Różnica pomiędzy stronami "Prawo do życia, czyli zwycięstwo hipokryzji" i "Twierdzenie Czebyszewa o funkcji π(n)"

Z Henryk Dąbrowski
(Różnica między stronami)
Przejdź do nawigacji Przejdź do wyszukiwania
m (1 wersja)
 
m (1 wersja)
 
Linia 1: Linia 1:
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">21.09.2021</div>
+
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">07.11.2021</div>
  
 +
__FORCETOC__
  
  
  
 +
== Oznaczenia ==
  
<blockquote style="text-align:center; font-size: 80%; color: #FF0000; background-color: #E3E3E3; border: solid thin grey;">
+
Będziemy stosowali następujące oznaczenia:
<gallery mode="packed-hover">
 
File: Angelo_Buono_1934_2002_life.jpg|Angelo Buono
 
File: Bernard_Eugene_Giles_1953_life.png|Bernard Giles
 
File: Charlene_Adell_Gallego_1956_y16m8.png|Charlene Gallego
 
File: Charles_Jackson_1937_2002_life.jpg|Charles Jackson
 
File: Charles_Milles_Manson_1934_2017_dth_life.jpg|Charles Manson
 
File: Craig_Chandler_Price_1973_y5.png|Craig Price
 
File: Edmund_Emil_Kemper_1948_life.jpg|Edmund Kemper
 
File: Edward_Arthur_Surratt_1941_life.jpg|Edward Surratt
 
File: Francisco_del_Junco_1957_life.jpg|Francisco Junco
 
File: Frederick_Pete_Cox_1953_life.png|Frederick Pete Cox
 
File: Gary_Leon_Ridgway_1949_life.jpg|Gary Ridgway
 
File: Gerard_John_Schaefer_1946_1995_life.jpg|Gerard John Schaefer
 
File: Herbert_William_Mullin_1947_life.jpg|Herbert Mullin
 
File: John_Floyd_Thomas_1936_life.png|John Floyd Thomas
 
File: John_Norman_Collins_ 1947_life.png|John Norman Collins
 
File: John_William_Kelley_1963_life.png|John William Kelley
 
File: Joran_Andreas_Petrus_van_der_Sloot_1987_y28.jpg|Joran van der Sloot
 
File: Jose_Manuel_Martinez_1962_life.jpg|José Manuel Martínez
 
File: Joseph_James_DeAngelo_1945_life.jpg|Joseph James DeAngelo
 
File: Juan_Vallejo_Corona_1934_2019_life.png|Juan Corona
 
File: Keith_Hunter_Jesperson_1955_life.png|Keith Hunter Jesperson
 
File: Kendall_Francois_1971_2014_life.jpg|Kendall Francois
 
File: Kenneth_Alessio_Bianchi_1951_life.png|Kenneth Bianchi
 
File: Loren_Joseph_Herzog_1965_2012_y14.jpg|Loren Herzog
 
File: Luis_Alfredo_Garavito_1957_y22.png|Luis Garavito
 
File: Marie_Alexandrine_Becker_1877_1942_life.jpg|Marie Becker
 
File: Patrick_Wayne_Kearney_1939_life.png|Patrick Kearney
 
File: Pedro_Rodrigues_Filho_1954_y42.jpg|Pedro Filho
 
File: Philip_Joseph_Hughes_1948_y7_to_life.png|Philip Joseph Hughes
 
File: Richard_Francis_Cottingham_1946_life.png|Richard Cottingham
 
File: Richard_Lawrence_Marquette_1934_life.png|Richard Marquette
 
File: Robert_Joseph_Silveria_1959_life.png|Robert Joseph Silveria
 
File: Roy_Allan_Melanson_1937_life.png|Roy Melanson
 
File: Terrence_Peder_Rasmussen_1943_2010_y15.png|Terry Rasmussen
 
File: Terry_Childs_1955_life.jpg|Terry Childs
 
File: Theodore_John_Kaczynski_1942_life.png|Ted Kaczynski
 
File: Timothy_Wayne_Krajcir_1944_life.jpg|Timothy Krajcir
 
File: Tony_Alvin_Ables_1954_dth_life.jpg|Tony Ables
 
File: William_Mansfield_1956_life.jpg|Billy Mansfield
 
File: Winston_Moseley_1935_2016_dth_life.jpg|Winston Moseley
 
</gallery>
 
<br/><br/><br/><span style="text-align:center; font-size: 250%; font-weight: bold; color: #FF0000;">Mordercy otrzymali życie, a&nbsp;ich ofiary „prawo do życia”</span><br/><br/><br/><br/><br/>
 
</blockquote>
 
  
 +
::<math>\mathbb{Z}</math> — zbiór liczb całkowitych<br/>
 +
::<math>\mathbb{Z}_+</math> — zbiór liczb całkowitych dodatnich<br/>
 +
::<math>\mathbb{N}</math> — zbiór liczb naturalnych <math>\mathbb{N} = \mathbb{Z}_{+}\cup \left \{ 0 \right \}</math><br/>
 +
::<math>\mathbb{R}</math> — zbiór liczb rzeczywistych<br/>
 +
::<math>d \mid n</math> — czytaj: d dzieli n (<math>d</math> jest dzielnikiem liczby <math>n</math>)<br/>
 +
::<math>d \nmid n</math> — czytaj: d nie dzieli n (<math>d</math> nie jest dzielnikiem liczby <math>n</math>)<br/>
 +
::<math>p_n</math> — <math>n</math>-ta liczba pierwsza<br/>
 +
::<math>\pi (n)</math> — ilość liczb pierwszych nie większych od <math>n</math><br/>
 +
::<math>P(n)</math> — iloczyn liczb pierwszych nie większych od <math>n</math><br/>
 +
::<math>\lfloor x \rfloor</math> — największa liczba całkowita nie większa od <math>x</math><br/>
 +
::<math>\binom{n}{m}</math> — współczynnik dwumianowy (symbol Newtona), <math>\binom{n}{m} = \frac{n!}{m! \cdot (n - m) !}</math><br/>
 +
::<math>\log (x)</math> — logarytm naturalny liczby <math>x > 0</math>
 +
::<math>W_p (n)</math> — wykładnik z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>n</math>
 +
::<math>n</math> — oznacza zawsze liczbę naturalną
 +
::<math>p</math> — oznacza zawsze liczbę pierwszą
  
  
  
 +
Przykładowe wartości niektórych wypisanych wyżej funkcji:
  
 +
::<math>p_2 = 3</math>,&nbsp;&nbsp; <math>p_{10} = 29</math>,&nbsp;&nbsp; <math>p_{100} = 541</math><br/>
 +
::<math>\pi (10) = 4</math>,&nbsp;&nbsp; <math>\pi (100) = 25</math>,&nbsp;&nbsp; <math>\pi (541) = 100</math><br/>
 +
::<math>P(5) = 30</math>,&nbsp;&nbsp; <math>P(10) = 210</math>,&nbsp;&nbsp; <math>P(50) = 614889782588491410</math><br/>
 +
::<math>\lfloor 1.2 \rfloor = 1</math>,&nbsp;&nbsp; <math>\lfloor 2.8 \rfloor = 2</math>,&nbsp;&nbsp; <math>\lfloor - 1.5 \rfloor = - 2</math><br/>
 +
::<math>\binom{5}{2} = 10</math>,&nbsp;&nbsp; <math>\binom{10}{5} = 252</math>,&nbsp;&nbsp; <math>\binom{9}{3} = 84</math><br/>
 +
::<math>W_2 (8) = 3</math>,&nbsp;&nbsp; <math>W_3 (18) = 2</math>,&nbsp;&nbsp; <math>W_7 (28) = 1</math>
  
  
Kiedy ktoś mówi mi, że mam „prawo do życia”, to czuję się niczym pan Jourdain z&nbsp;komedii Moliera „Mieszczanin szlachcicem”, gdy ten dowiaduje się, że mówi prozą.
 
  
:– A&nbsp;niech to! Tyle lat żyłem, nie mając o&nbsp;tym najmniejszego pojęcia!
+
Funkcje te są zaimplementowane w PARI/GP<ref name="PARIGP"/>
  
 +
::<math>p_n</math> = prime(n)<br/>
 +
::<math>\pi (n)</math> = primepi(n)<br/>
 +
::<math>P(n)</math> = prodeuler(p=2, n, p)<br/>
 +
::<math>\lfloor x \rfloor</math> = floor(x)<br/>
 +
::<math>\binom{n}{m}</math> = binomial(n, m)<br/>
 +
::<math>W_p (n)</math> = valuation(n, p)
  
  
  
Rodzi to podejrzenia, że owo „prawo do życia” wcale nie służy mnie, ale zupełnie innym celom. O&nbsp;„prawie do życia” mówi wiele, uważanych za poważne, dokumentów. Przywołajmy niektóre z&nbsp;nich, aby Czytelnik miał pewność, że poruszany temat nie jest jedynie wytworem fantazji:
 
  
  
<u>Powszechna Deklaracja Praw Człowieka</u><ref name="p1"/> (ONZ, 1948), artykuł 3:<br/>
+
== Twierdzenie Czebyszewa ==
'''''Każdy człowiek ma prawo do życia, wolności i&nbsp;bezpieczeństwa swej osoby.'''''
 
  
 +
W 1852 roku rosyjski matematyk Czebyszew<ref name="Czebyszew1"/><ref name="Czebyszew2"/> udowodnił, że dla funkcji <math>\pi (n)</math> prawdziwe jest następujące oszacowanie
  
<u>Europejska konwencja praw człowieka</u><ref name="p2"/><ref name="p3"/> (Rada Europy, 1950), artykuł 2 ust.&nbsp;1:<br/>
 
'''''Prawo każdego człowieka do życia jest chronione przez ustawę. Nikt nie może być umyślnie pozbawiony życia, wyjąwszy przypadki wykonania wyroku sądowego skazującego za przestępstwo, za które ustawa przewiduje taką karę.'''''
 
  
 +
::<math>a \cdot \frac{n}{\log n} \underset{n \geqslant 11}{<} \pi (n) \underset{n \geqslant 96098}{<} b \cdot \frac{n}{\log n}</math>
  
<u>Międzynarodowy pakt praw obywatelskich i&nbsp;politycznych</u><ref name="p4"/> (ONZ, 1966), artykuł 6 ust.&nbsp;1:<br/>
 
'''''Każda istota ludzka ma przyrodzone prawo do życia. Prawo to powinno być chronione przez ustawę. Nikt nie może być samowolnie pozbawiony życia.'''''
 
  
 +
gdzie <math>a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022</math> oraz <math>b = \tfrac{6}{5} a = 1.105550428</math>
  
<u>Konwencja o&nbsp;prawach dziecka</u><ref name="p5"/> (ONZ,  1989), artykuł 6 ust.&nbsp;1:<br/>
 
'''''Państwa-Strony uznają, że każde dziecko ma niezbywalne prawo do życia.'''''
 
  
 +
Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z&nbsp;nierównościami udowodnionymi przez Czebyszewa w&nbsp;teorii prawdopodobieństwa), a&nbsp;twierdzeniem Czebyszewa nazywany jest łatwy wniosek z&nbsp;tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o&nbsp;funkcji <math>\pi (n)</math>”
  
<u>Karta praw podstawowych Unii Europejskiej</u><ref name="p6"/> (Rada Europejska, 2000), artykuł 2 ust.&nbsp;1:<br/>
+
Twierdzenie Czebyszewa o&nbsp;funkcji <math>\pi (n)</math> nabrało nowego życia, gdy w&nbsp;1936 Erdos<ref name="Erdos"/> zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z&nbsp;tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.
'''''Każdy ma prawo do życia.'''''
 
  
  
Dla porównania z&nbsp;wyżej wymienionymi dokumentami, które pojawiły się obficie po II Wojnie Światowej, warto wspomnieć <u>Deklarację niepodległości Stanów Zjednoczonych</u> z&nbsp;1776 roku. W&nbsp;Deklaracji stwierdza się, że to Stwórca (a&nbsp;nie ustawodawca) obdarzył ludzi pewnymi nienaruszalnymi prawami. Rządy i&nbsp;prawo stanowione mają te nienaruszalne prawa (w&nbsp;tym prawo do życia) zabezpieczać, a&nbsp;nie zajmować się stanowieniem prawa, które będzie nas obdarzało tymi, niepodlegającymi dyskusji, prawami (tak, jakby w&nbsp;mocy jakiegokolwiek ustawodawcy było nam je udzielić). Mamy tutaj bardzo dobry przykład na to, jak odrzucenie transcendencji prowadzi na myślowe manowce, w&nbsp;rezultacie czego ludzki ustawodawca udaje, że niczym Bóg może obdarzyć ludzi prawem do życia.<br/>
+
Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami<ref name="Dusart99"/><ref name="Dusart06"/><ref name="Dusart10"/><ref name="Dusart18"/> funkcji <math>\pi (n)</math> oraz <math>p_n</math>
Ale bóg-człowiek nie ma boskiej MOCY, która pozwalała Stwórcy powiedzieć: gdyby ktoś podstępnie odebrał swojemu bliźniemu prawo do życia, które JA mu nadałem, „to nawet od mojego ołtarza masz go oderwać i&nbsp;ukarać śmiercią”. Samozwańczy bóg-człowiek rozdaje jedynie literki tekstu, który szumnie nazywa prawem i&nbsp;wartość tych literek potrafi właściwie ocenić dopisując wyjaśnienie: „(...) [morderca] nie może być skazany na karę śmierci”.
 
  
  
 +
::<math>\frac{n}{\log n} \left( 1 + \frac{1}{\log n} \right) \underset{n \geqslant 599}{<} \pi (n) \underset{n \geqslant 2}{<} \frac{n}{\log n} \left( 1 + \frac{1.28}{\log n} \right)</math>
  
  
  
 +
::<math>n (\log n + \log \log n - 1) \underset{n \geqslant 2}{<} p_n \underset{n \geqslant 6}{<} n (\log n + \log \log n)</math>
  
W polskiej Konstytucji nie zapisano „prawa do życia” – mamy słabsze i&nbsp;bardziej sensowne sformułowanie o&nbsp;gwarantowaniu każdemu człowiekowi prawnej ochrony życia<ref name="p7"/>. Nie oznacza to jednak, że Polska nie jest zobowiązana do zapewnienia „prawa do życia”. Ratyfikowane umowy międzynarodowe mają moc wiążącą. Oczywiście obowiązują w&nbsp;sposób szczególny – gdyby Polska chciała wprowadzić karę śmierci, to byłoby to naruszeniem podpisanych umów, gdyby jednak chciała wprowadzić aborcję na żądanie lub eutanazję, to umowy te nie stanowiłyby żadnych przeszkód.
 
  
  
Tak to jest, gdy podpisuje się umowy międzynarodowe, których celem jest propaganda, a&nbsp;nie jakikolwiek porządek prawny. Najważniejsze jest to, że te umowy mają zapisy mile brzmiące dla uszu gawiedzi – a&nbsp;to przypisujące każdemu przyrodzoną, niezbywalną i&nbsp;nienaruszalną godność<ref name="p7a"/> albo stwierdzające przyrodzone, niezbywalne i&nbsp;nienaruszalne prawo każdego do życia. Nic z&nbsp;tego nie wynika poza jednym – te zapisy można wykorzystać, gdy będą potrzebne, a&nbsp;pominąć, gdy staną się jedynie przeszkodą.
+
Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o&nbsp;funkcji <math>\pi (n)</math> oraz analogiczne oszacowanie dla funkcji <math>p_n</math>.
  
  
Takie podejście do tych zapisów możemy na co dzień obserwować w&nbsp;Polsce. Z&nbsp;„prawa do życia” wynika zakaz stosowania kary śmierci, ale całkowity zakaz aborcji już nie. Zbyt drogie leki nie refundowane, choć narusza to wprost „prawo do życia” osób, które właśnie ich potrzebują. „Prawo do życia” zobowiązuje państwo do sfinansowania najdroższych operacji ratujących życie, nawet takich, które mogą być wykonane jedynie za granicą, ale kto przejmowałby się obowiązującym prawem...
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A1</span><br/>
 +
Prawdziwe następujące oszacowania:
  
  
Nie może być inaczej, gdy podpisuje się buble prawne<ref name="p8"/>, bardziej dla poklepywania po plecach w&nbsp;gronie przedstawicieli postępu oraz poklasku pospólstwa i&nbsp;mediów niż z&nbsp;rzeczywistej potrzeby ich istnienia. Rząd akceptuje te buble z&nbsp;nadzieją, że problemy z&nbsp;nimi związane będzie rozwiązywał rząd następny, a&nbsp;ten spycha problemy na kolejny i&nbsp;tak toczy się koło „wielkiej polityki”. Przyjrzymy się bardziej temu prawu.
+
::<math>0.72 \cdot n \log n \underset{n \geqslant 1}{<} p_n \underset{n \geqslant 3}{<} 2n \log n</math>
  
  
 +
::<math>\frac{2}{3} \cdot \frac{n}{\log n} \underset{n \geqslant 3}{<} \pi (n) \underset{n \geqslant 2}{<} \frac{2 n}{\log n}</math>
  
  
 +
Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.
  
  
  
Nim powiemy więcej o&nbsp;życiu, do którego każdy ma prawo, warto uświadomić sobie, jak wiele przyczyn może doprowadzić do śmierci. Oczywiście śmierć bezprawnie pozbawia nas niezbywalnego i&nbsp;nienaruszalnego „prawa do życia” i&nbsp;już choćby tylko z&nbsp;tego powodu jest niemile widziana na salonach postępu. Łatwo zauważyć, że zgon może nastąpić z&nbsp;następujących przyczyn:
 
  
::*naturalnego biegu życia (starość, choroby związane ze starzeniem się)
 
::*niekorzystnych warunków życia (odwodnienie, niedożywienie, wychłodzenie)
 
::*działania przyrody ożywionej (bakterie, wirusy, ataki zwierząt, trujące rośliny)
 
::*działania przyrody nieożywionej (piorun, powódź, trzęsienia ziemi, pożary)
 
::*niezamierzonego działania własnego (utonięcia, porażenie prądem, upadek z&nbsp;wysokości, wypadki drogowe)
 
::*niezamierzonego działania innych ludzi (wypadki drogowe)
 
::*zamierzonego działania własnego (samobójstwo)
 
::*zamierzonego działania innych ludzi (zabójstwo, egzekucja, eutanazja, aborcja)
 
  
 +
== Oszacowanie <math>p_n</math> od dołu i <math>\pi (n)</math> od góry ==
  
 +
Rozpoczniemy od oszacowania liczby <math>\binom{2n}{n}</math>. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.
  
Wyżej przedstawiliśmy przykłady, gdzie pisane prawo stwierdza, że „Każdy ma prawo do życia”, ale cóż to za prawo, skoro niepisane prawo stanowi, że każdy musi umrzeć? Trudno oprzeć się wrażeniu, że ten zapis prawny, to tylko taka bajeczka dla naiwnych. Przecież życie – tylko na poziomie biologicznym – to oddychanie, picie, jedzenie i&nbsp;zdrowie. Zatem konsekwentnie musimy uznać też, że „Każdy ma prawo do powietrza, wody, jedzenia i&nbsp;zdrowia”.  
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A2</span><br/>
 +
Niech <math>n, k \in \mathbb{N}</math>. Współczynnik dwumianowy <math>\binom{n}{k}</math> jest zawsze liczbą całkowitą dodatnią.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Indukcja matematyczna. Ponieważ
  
A to tylko podstawowe prawa, bo przecież mróz i&nbsp;upał też potrafią zabić, zatem i&nbsp;prawo do jakiegoś lokum również należałoby dołączyć. Ale to nie kończy zbioru pobożnych życzeń kryjących się za prostym zapisem prawnym przyznającym żyjącym „prawo do życia”. Przecież powietrze powinno być czyste, woda dobrej jakości, jedzenie zdrowe, o&nbsp;nasze zdrowie powinna się troszczyć choćby w&nbsp;miarę wykwalifikowana służba zdrowia, a&nbsp;czas oczekiwania na poradę lekarską powinien być liczony w&nbsp;tygodniach, a&nbsp;nie w&nbsp;miesiącach i&nbsp;latach.
+
::<math>\binom{0}{0} = \binom{1}{0} = \binom{1}{1} = 1</math>
  
 +
to twierdzenie jest prawdziwe dla <math>n = 1</math>. Zakładając prawdziwość twierdzenia dla wszystkich liczb całkowitych należących do przedziału <math>[1, n]</math> mamy dla <math>n + 1</math>
  
A co jeśli ktoś zginie w&nbsp;wypadku drogowym albo utonie? To wyraźne lekceważenie zapisu o&nbsp;„prawie do życia”. Z&nbsp;pewnością nie można być obojętnym na te przypadki łamania podstawowego prawa człowieka – należy zmniejszyć dozwoloną prędkość samochodów, a&nbsp;kąpieliska odgrodzić siatkami od miejsc głębszych niż pół metra.
+
::<math>\binom{n + 1}{0} = \binom{n + 1}{n + 1} = 1</math>
  
 +
zaś dla <math>k</math> spełniającego warunek <math>1 \leqslant k \leqslant n</math>, jest
  
Prawo do życia to również zapewnienie, że nikt nas nie zastrzeli. Tu rozwiązanie jest proste: należy wprowadzić zakaz dostępu do broni palnej. Oczywiście zostają jeszcze noże i&nbsp;siekiery, ale tutaj już prawo idzie z&nbsp;pomocą: w&nbsp;nieodległej przyszłości nie będzie wolno nosić przy sobie noży i&nbsp;siekier.
+
::<math>\binom{n + 1}{k} = \binom{n}{k} + \binom{n}{k - 1}</math>
  
 +
Na podstawie założenia indukcyjnego liczby po prawej stronie są liczbami całkowitymi dodatnimi, zatem <math>\binom{n + 1}{k}</math> dla wszystkich wartości <math>k</math> jest liczbą całkowitą dodatnią. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
A co zrobić z&nbsp;nieporadnymi zabójcami, których niedoszła ofiara zabiła w&nbsp;obronie własnej. Tutaj też jest rozwiązanie! Oczywiście tej zatrważającej sytuacji jest winna sama żyjąca na swoje nieszczęście ofiara. Przecież, zamiast walczyć, mogła uciekać! Nie, to nie jest żart – poważni prawnicy wypowiadają się w&nbsp;tej kwestii i&nbsp;stoją na stanowisku, że pierwszym obowiązkiem zaatakowanego jest unikanie walki, a&nbsp;jeśli to możliwe – ucieczka<ref name="p9"/>. W&nbsp;sytuacji, gdy obrona konieczna była niekonieczna (np. osoba napadnięta mogła uciekać), mówimy o&nbsp;przekroczeniu granicy obrony koniecznej. Co prawda ucieczka jako obrona konieczna przypomina raczej obronę komiczną, ale jakichże to darów nie można złożyć na ołtarzu postępu ludzkości…
 
  
  
Pomimo tych wysiłków nad dostosowaniem prawa do marzeń jego niepełnosprawnych umysłowo twórców morderstwa ciągle się zdarzają. I&nbsp;tutaj radosna twórczość zderza się ze ścianą: ofiara nie żyje, morderca ma prawo do życia, ale przecież tak być nie może – nie wolno pozwolić ('''i&nbsp;zmusza nas do tego zapis o&nbsp;„prawie do życia”'''), aby ktokolwiek jeszcze został zamordowany. Morderca może wyjść na wolność i&nbsp;zabić ponownie<ref name="p10"/>, może zamordować współwięźnia lub kogoś z&nbsp;więziennego personelu. Takie przypadki zdarzają się stosunkowo często i&nbsp;wzbudzają uzasadnioną wątpliwość co do przestrzegania praworządności w&nbsp;danym kraju oraz kompromitują koncepcję „prawa do życia”. W&nbsp;tej sytuacji najlepiej byłoby mordercę powiesić, szczególnie gdy wydaje się, że prawdopodobieństwo ponownego mordu jest duże, ale przecież powiesić nie można. Jak rozwiązać ten '''paradoks mordercy'''?
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A3</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math>. Współczynnik dwumianowy <math>\binom{2 n}{n}</math> jest liczbą parzystą.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Łatwo zauważamy, że
  
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1)!}{n \cdot (n - 1) ! \cdot n!} = 2 \cdot \binom{2 n - 1}{n - 1}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Siły postępu rozwiązały problem w&nbsp;prosty sposób – wprowadzając kolejny przepis. W&nbsp;rzeczywistości artykuł 2 w&nbsp;Karcie praw podstawowych Unii Europejskiej ma postać:
 
  
::'''''<small>Artykuł 2</small>'''''<br/>
 
::'''''<small>1. Każdy ma prawo do życia.</small>'''''<br/>
 
::'''''<small>2. Nikt nie może być skazany na karę śmierci ani poddany jej wykonaniu.</small>'''''<br/>
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A4</span><br/>
 +
Prawdziwe są następujące oszacowania współczynnika dwumianowego <math>\binom{2 n}{n}</math>
  
Kiedy czytamy ten zapis, od razu wyczuwamy tkwiący w&nbsp;nim fałsz. Czujemy, że tkwi w&nbsp;nim jakaś nieusuwalna logiczna i&nbsp;moralna sprzeczność. Przecież kara śmierci jest orzekana tylko w&nbsp;przypadku najcięższych zbrodni – najczęściej w&nbsp;przypadku morderstwa. Jeśli miało miejsce morderstwo, to ofiara nie żyje, mimo iż ustęp pierwszy artykułu&nbsp;2 „gwarantował” jej prawo do życia. Jeśli jednak morderca żyje, to ustęp drugi gwarantuje mu, że nie spotka go adekwatna kara.
+
::<math>3.8^{n + 1} \underset{n \geqslant 80}{<} \binom{2 n}{n} \underset{n \geqslant 5}{<} 4^{n - 1}</math>
  
Nie sposób oprzeć się wrażeniu, że ustęp pierwszy tego artykułu został wprowadzony tylko po to, aby stanowił „uzasadnienie” dla ustępu drugiego. I&nbsp;w&nbsp;rzeczywistości dokładnie tak jest.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Indukcja matematyczna. W&nbsp;przypadku lewej nierówności łatwo sprawdzamy, że <math>3.8^{81} < \binom{160}{80}</math>. Zakładając prawdziwość nierówności dla <math>n \geqslant 80</math>, otrzymujemy dla <math>n + 1</math>
  
 +
::<math>\binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot \frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)} > 3.8^{n + 1} \cdot 2 \cdot \left( 2 - \frac{1}{n + 1} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - \frac{1}{80 + 1} \right) > 3.8^{n + 1} \cdot 3.9753 > 3.8^{n + 2}</math>
  
  
 +
Prawa nierówność jest prawdziwa dla <math>n = 5</math>. Zakładając prawdziwość nierówności dla <math>n</math>, otrzymujemy dla <math>n + 1</math>:
  
<div style="font-size: 170%; font-weight: bold; line-height: 1.2em">Ten zapis prawny daje pozorne prawo do życia dla ofiary i&nbsp;realne prawo do życia dla mordercy!</div>
+
::<math>\binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot \frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)} < 4^{n -1} \cdot 2 \cdot \left( 2 - \frac{1}{n + 1} \right) < 4^n</math>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A5</span><br/>
 +
Dla <math>n \geqslant 12</math> prawdziwe jest oszacowanie <math>p_n > 3 n</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Indukcja matematyczna. Dowód oprzemy na spostrzeżeniu, że wśród kolejnych sześciu liczb naturalnych <math>6 k, 6 k + 1, 6 k + 2, 6 k + 3, 6 k + 4, 6 k + 5</math>
 +
jedynie dwie: <math>6 k + 1</math> i <math>6 k + 5</math> mogą być pierwsze. Wynika stąd, że <math>p_{n + 2} \geqslant p_n + 6</math> dla <math>n \geqslant 4</math>. Dowód indukcyjny przeprowadzimy, stosując krok równy <math>2</math>. Twierdzenie jest oczywiście prawdziwe dla <math>n = 12</math>, bowiem <math>p_{12} = 37 > 3 \cdot 12 = 36</math>, podobnie <math>p_{13} = 41 > 3 \cdot 13 = 39</math>. Zakładając prawdziwość twierdzenia dla wszystkich liczb naturalnych <math>k \in [12, n]</math>, otrzymujemy dla <math>n + 2</math>:
  
 +
::<math>p_{n + 2} \geqslant p_n + 6 > 3 n + 6 = 3 \cdot (n + 2)</math>
  
 +
Uwaga: inaczej mówiąc, dowodzimy twierdzenie osobno dla <math>n</math> parzystych <math>(n \geqslant 12)</math> i&nbsp;osobno dla <math>n</math> nieparzystych <math>(n \geqslant 13)</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A6</span><br/>
 +
Ciąg <math>a_n = \left( 1 + \frac{1}{n} \right)^n</math> jest rosnący i&nbsp;ograniczony. Dla wyrazów ciągu <math>(a_n)</math> prawdziwe jest oszacowanie <math>2 \leqslant a_n < 3</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W&nbsp;artykule, w&nbsp;którym pojęcie współczynnika dwumianowego odgrywa główną rolę, nie mogło zabraknąć dowodu odwołującego się do wzoru dwumianowego
  
 +
::<math>\left ( x + y \right )^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k}y^{k} = \binom{n}{0} x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n}y^{n}</math>
 +
 +
gdzie <math>\binom{n}{k} = \frac{n!}{k! \cdot (n - k)!}</math>.
 +
 +
 +
 +
Dowód opiera się na spostrzeżeniu, że <math>e = \sum_{k=0}^{\infty} \frac{1}{k!} = 2.718281828 \ldots</math>, a&nbsp;wykorzystanie wzoru dwumianowego pozwala przekształcić wyrażenie <math>\left( 1 + \frac{1}{n} \right)^n</math> do postaci sumy z wyraźnie wydzielonym czynnikiem <math>\frac{1}{k!}</math>. Stosując wzór dwumianowy, możemy zapisać <math>n</math>-ty wyraz ciągu <math>(a_n)</math> w&nbsp;postaci
 +
 +
::<math>a_n = \left( 1 + \frac{1}{n} \right)^n =</math>
 +
 +
::<math>\quad \; = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} =</math>
 +
 +
::<math>\quad \; = 2 + \sum_{k=2}^{n} \frac{n!}{k! \cdot (n - k)!} \cdot \frac{1}{n^k} =</math>
 +
 +
::<math>\quad \; = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n \cdot (n - 1) \cdot \ldots \cdot (n - (k - 1))}{n^k} =</math>
 +
 +
::<math>\quad \; = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) </math>
 +
 +
 +
Odpowiednio dla wyrazu <math>a_{n + 1}</math> mamy
 +
 +
::<math>a_{n + 1} = \left( 1 + \frac{1}{n + 1} \right)^{n + 1} =</math>
 +
 +
::<math>\qquad \: = 2 + \sum_{k=2}^{n + 1} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n + 1} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n + 1} \right) ></math>
 +
 +
::<math>\qquad \: > 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n + 1} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n + 1} \right) ></math>
 +
 +
::<math>\qquad \: > 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) =</math>
 +
 +
::<math>\qquad \: = a_n</math>
 +
 +
Ostatnia nierówność jest prawdziwa, bo dla dowolnej liczby <math>x \in \mathbb{R}_+</math> jest <math>1 - \frac{x}{n + 1} > 1 - \frac{x}{n}</math>
 +
 +
Zatem ciąg <math>(a_n)</math> jest rosnący. Musimy jeszcze wykazać, że jest ograniczony od góry. Pokazaliśmy wyżej, że wyraz <math>a_n</math> może być zapisany w postaci
 +
 +
::<math>a_n = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) </math>
 +
 +
 +
Ponieważ czynniki w&nbsp;nawiasach są dodatnie i&nbsp;mniejsze od jedności, to
 +
 +
::<math>a_n \leqslant 2 + \sum_{k=2}^{n} \frac{1}{k!} =</math>
 +
 +
::<math>\quad \; \leqslant 1 + 1 + \sum_{k=2}^{n} \frac{1}{2^{k-1}} =</math>
 +
 +
::<math>\quad \; = 1 + \left ( 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}}\right ) =</math>
 +
 +
::<math>\quad \; = 1 + \frac{1 - \left ( \frac{1}{2} \right )^{n}}{1 - \frac{1}{2}} =</math>
 +
 +
::<math>\quad \; = 1 + 2 - \frac{1}{2^{n-1}} < </math>
 +
 +
::<math>\quad \; < 3</math>
 +
 +
 +
Druga nierówność (nieostra) jest prawdziwa, bo dla <math>k \geqslant 2</math> zachodzi oczywista nierówność <math>k! \geqslant 2^{k - 1}</math>. Do sumy ujętej w nawiasy zastosowaliśmy wzór na sumę częściową szeregu geometrycznego.
 +
 +
Ponieważ <math>a_1 = 2</math>, to prawdziwe jest oszacowanie <math>2 \leqslant a_n < 3</math>. Zauważmy jeszcze (już bez dowodu), że ciąg <math>(a_n)</math>, jako rosnący i&nbsp;ograniczony od góry<ref name="p1"/>, jest zbieżny. Granicą ciągu <math>(a_n)</math> jest liczba niewymierna <math>e = 2.718281828 \ldots</math>, która jest podstawą logarytmu naturalnego.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A7</span><br/>
 +
Prawdziwe są następujące oszacowania:
 +
 +
::<math>n^n \underset{n \geqslant 13}{<} p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{<} (n \log n)^n</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Indukcja matematyczna. Udowodnimy tylko oszacowanie od dołu. Dowód oszacowania od góry przedstawimy po zakończeniu dowodu twierdzenia A1. Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>n = 13</math>. Zakładając prawdziwość twierdzenia dla liczb naturalnych <math>k \in [13, n]</math> mamy dla <math>n + 1</math>:
 +
 +
::<math>p_1 p_2 \cdot \ldots \cdot p_n p_{n + 1} > n^n \cdot p_{n + 1} > n^n \cdot 3 (n + 1) > n^n \cdot \left( 1 + \frac{1}{n} \right)^n \cdot (n + 1) = (n + 1)^{n + 1}</math>
 +
 +
Gdzie skorzystaliśmy z faktu, że <math>p_n > 3 n</math> dla <math>n \geqslant 12</math> oraz z właściwości rosnącego ciągu <math>a_n = \left( 1 + \frac{1}{n} \right)^n < e =
 +
2.718281828 \ldots < 3</math> (zobacz twierdzenie A6).<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A8</span><br/>
 +
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\frac{P (2 n)}{P (n)} < 4^{n - 1}</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Rozważmy współczynnik dwumianowy
 +
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}</math>
 +
 +
Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> występuje w&nbsp;liczniku wypisanego wyżej ułamka i&nbsp;nie występuje w&nbsp;mianowniku. Wynika stąd oszacowanie
 +
 +
::<math>\binom{2 n}{n} = C \cdot \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} > \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} = \frac{P (2 n)}{P (n)}</math>
 +
 +
Zauważmy, że wypisany w&nbsp;powyższej nierówności iloczyn liczb pierwszych jest liczbą nieparzystą. Ponieważ współczynnik dwumianowy <math>\binom{2 n}{n}</math> jest dodatnią liczbą całkowitą parzystą, zatem również czynnik <math>C \geqslant 2</math> musi być dodatnią liczbą całkowitą parzystą. Łącząc uzyskaną nierówność z&nbsp;oszacowaniem z&nbsp;twierdzenia A4, otrzymujemy natychmiast:
 +
 +
::<math>\frac{P (2 n)}{P (n)} < \binom{2 n}{n} < 4^{n - 1}</math>
 +
 +
Dla <math>n = 2, 3, 4</math> sprawdzamy uzyskany rezultat bezpośrednio.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A9</span><br/>
 +
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>P(n) < 4^n</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Indukcja matematyczna. Oszacowanie <math>P(n) < 4^n</math> jest prawdziwe dla <math>n = 1, 2</math>. Zakładając prawdziwość oszacowania dla wszystkich liczb całkowitych nie większych od <math>n</math>, dla <math>n + 1</math> rozpatrzymy dwa przypadki. Jeżeli <math>n + 1 = 2 k + 1</math> jest liczbą nieparzystą większą lub równą <math>3</math>, to mamy
 +
 +
::<math>P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot \frac{P (2 k + 2)}{P (k + 1)} < 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1}</math>
 +
 +
gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia A8.
 +
 +
Jeżeli <math>n + 1 = 2 k</math> jest liczbą parzystą większą lub równą <math>4</math>, to mamy
 +
 +
::<math>P(n + 1) = P (2 k) = P (k) \cdot \frac{P (2 k)}{P (k)} < 4^k \cdot 4^{k - 1} = 4^{2 k - 1} < 4^{2 k} = 4^{n + 1}</math>
 +
 +
gdzie ponownie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia A8.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A10</span><br/>
 +
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>p_n > \frac{1}{2 \log 2} \cdot n \log n</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ z&nbsp;definicji <math>P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n</math>, to korzystając z&nbsp;oszacowań uzyskanych w&nbsp;twierdzeniach A5 i&nbsp;A8 dostajemy dla <math>n \geqslant 13</math>
 +
 +
::<math>n^n < p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) < 4^{p_n}</math>
 +
 +
Logarytmując obie strony nierówności, mamy
 +
 +
::<math>n \log n < p_n \cdot \log 4</math>
 +
 +
Skąd natychmiast wynika dowodzone oszacowanie
 +
 +
::<math>p_n > \frac{1}{2 \log 2} \cdot n \log n > 0.72 \cdot n \log n</math>
 +
 +
Prawdziwość powyższej nierówności dla <math>n \leqslant 12</math> sprawdzamy bezpośrednio.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A11</span><br/>
 +
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot \frac{n}{\log n}</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> jest dzielnikiem współczynnika dwumianowego
 +
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}</math>
 +
 +
bowiem dzieli licznik i&nbsp;nie dzieli mianownika. Ponieważ dla każdej z&nbsp;tych liczb jest <math>p > n</math>, to
 +
 +
::<math>n^{\pi (2 n) - \pi (n)} < \prod_{n < p_i \leqslant 2 n} p_i < \binom{2 n}{n} < 4^n</math>
 +
 +
Ostatnia nierówność wynika z&nbsp;twierdzenia A4. Logarytmując, dostajemy
 +
 +
::<math>[\pi (2 n) - \pi (n)] \cdot \log n < 2 n \cdot \log 2</math>
 +
 +
Czyli
 +
 +
::<math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot \frac{n}{\log n}</math>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A12</span><br/>
 +
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (n) < 2 \cdot \frac{n}{\log n}</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Indukcja matematyczna. Oszacowanie <math>\pi (n) < 2 \cdot \frac{n}{\log n}</math> jest prawdziwe dla <math>2 \leqslant n \leqslant 62</math>, co łatwo sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wpisać polecenie:
 +
 +
::for(n=2, 62, if( primepi(n) >= 2 * n/log(n), print(n) ))
 +
 +
Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych należących do przedziału <math>[2, n]</math>, otrzymujemy dla <math>n + 1</math>
 +
 +
a) jeżeli <math>n + 1</math> jest liczbą parzystą, to:
 +
 +
::<math>\pi (n + 1) = \pi (n) = 2 \cdot \frac{n}{\log n} < 2 \cdot \frac{n + 1}{\log (n + 1)}</math>
 +
 +
ostania nierówność wynika ze spostrzeżenia, że funkcja <math>\frac{x}{\log x}</math> jest funkcją rosnącą dla <math>x > e \approx 2.71828</math>. Można też wykorzystać oszacowanie <math>\log(1 + x) < x</math> prawdziwe dla <math>x > 0</math>.
 +
 +
b) jeżeli <math>n + 1</math> jest liczbą nieparzystą, to możemy położyć <math>n + 1 = 2 k + 1</math> i&nbsp;otrzymujemy:
 +
 +
::<math>\pi (n + 1) = \pi (2 k + 1) =</math>
 +
 +
::::<math>\quad = \pi (2 k + 2) =</math>
 +
 +
::::<math>\quad = \pi (k + 1) + [\pi (2 k + 2) - \pi (k + 1)] <</math>
 +
 +
::::<math>\quad < 2 \cdot \frac{k + 1}{\log (k + 1)} + 2 \log 2 \cdot \frac{k + 1}{\log (k + 1)} =</math>
 +
 +
::::<math>\quad = (1 + \log 2) \cdot \frac{2 k + 2}{\log (k + 1)} <</math>
 +
 +
::::<math>\quad < \left[ 1.7 \cdot \frac{2 k + 2}{\log (k + 1)} \cdot \frac{\log (2 k + 1)}{2 k + 1} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} <</math>
 +
 +
::::<math>\quad < \left[ 1.7 \cdot \frac{2 k + 2}{2 k + 1} \cdot \frac{\log (2 k + 2)}{\log (k + 1)} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} <</math>
 +
 +
::::<math>\quad = \left[ 1.7 \cdot \left( 1 + \frac{1}{2 k + 1} \right) \cdot \frac{\log (k + 1) + \log 2}{\log (k + 1)} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} =</math>
 +
 +
::::<math>\quad = \left[ 1.7 \cdot \left( 1 + \frac{1}{2 k + 1} \right) \cdot \left( 1 + \frac{\log 2}{\log (k + 1)} \right) \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} <</math>
 +
 +
::::<math>\quad < 2 \cdot \frac{2 k + 1}{\log (2 k + 1)} =</math>
 +
 +
::::<math>\quad = 2 \cdot \frac{n + 1}{\log (n + 1)}</math>
 +
 +
Ostatnia nierówność wynika z&nbsp;faktu, że czynnik w nawiasie kwadratowym maleje wraz ze wzrostem <math>k</math> i&nbsp;dla <math>k = 63</math> osiąga wartość <math>1.9989 \ldots</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
== Wykładnik z jakim liczba pierwsza <math>p</math> występuje w <math>n!</math> ==
 +
 +
Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2}</math>.
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Definicja A13</span><br/>
 +
Funkcję <math>\lfloor x \rfloor</math> (czytaj: całość z <math>x</math>) definiujemy jako największą liczbę całkowitą nie większą od <math>x</math>. Operacyjnie możemy ją zdefiniować następująco: niech liczby <math>x, \varepsilon \in \mathbb{R}</math>, liczba <math>k \in \mathbb{Z}</math> oraz <math>0 \leqslant \varepsilon < 1</math>, jeżeli <math>x = k + \varepsilon</math>, to <math>\lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k </math>.
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A14</span><br/>
 +
Dla <math>n \in \mathbb{Z}_+</math>, <math>x \in \mathbb{R}</math> jest <math>\left \lfloor \frac{x}{n} \right\rfloor = \left \lfloor \frac{\left \lfloor x \right \rfloor}{n} \right \rfloor</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Korzystając z&nbsp;definicji A13, przedstawmy liczbę w&nbsp;postaci <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>.
 +
 +
Z&nbsp;twierdzenia&nbsp;o dzieleniu z&nbsp;resztą liczbę <math>k</math> możemy zapisać w&nbsp;postaci <math>k = q n + r</math>, gdzie <math>0 \leqslant r \leqslant n - 1</math>, mamy zatem <math>x = q n + r + \varepsilon</math>. Ponieważ <math>0 \leqslant r + \varepsilon < n</math>, to po podzieleniu przez <math>n</math> dostajemy
 +
 +
::<math>0 \leqslant \frac{r + \varepsilon}{n} < 1</math>
 +
 +
czyli
 +
 +
::<math>\left \lfloor \frac{x}{n} \right \rfloor = \left \lfloor \frac{qn + r + \varepsilon }{n} \right \rfloor = \left \lfloor q + \frac{r + \varepsilon }{n} \right \rfloor = q</math>
 +
 +
Podobnie, ponieważ <math>0 \leqslant r < n</math>, to <math>0 \leqslant \frac{r}{n} < 1</math> i&nbsp;otrzymujemy
 +
 +
::<math>\left\lfloor \frac{\left \lfloor x \right\rfloor}{n} \right\rfloor = \left \lfloor \frac{\left \lfloor qn + r + \varepsilon \right \rfloor}{n} \right \rfloor = \left \lfloor \frac{qn + r}{n} \right \rfloor = \left \lfloor q + \frac{r}{n} \right \rfloor = q</math>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A15</span><br/>
 +
Niech <math>x \in \mathbb{R}</math>. Liczba <math>\lfloor 2 x \rfloor - 2 \lfloor x \rfloor</math> przyjmuje wartości <math>0</math> lub <math>1</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>. Mamy
 +
 +
::<math> \lfloor 2 x \rfloor - 2 \lfloor x \rfloor = \lfloor 2 k + 2 \varepsilon \rfloor - 2 \lfloor k + \varepsilon \rfloor = 2 k + \lfloor 2 \varepsilon \rfloor - 2 k -2 \lfloor \varepsilon \rfloor = \lfloor 2 \varepsilon \rfloor</math>
 +
 +
Ponieważ <math>0 \leqslant 2 \varepsilon < 2</math>, zatem <math>\lfloor 2 \varepsilon \rfloor = 0</math> lub <math>\lfloor 2 \varepsilon \rfloor = 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
Bardzo istotnym rezultatem (z&nbsp;punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!</math>
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Definicja A16</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą, zaś <math>a</math> dowolną liczbą naturalną. Jeżeli liczba pierwsza <math>p</math> wchodzi do rozwinięcia liczby naturalnej <math>n \geqslant 2</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>a</math>, to powiemy, że funkcja <math>W_p (n)</math> przyjmuje wartość <math>a</math>. Fakt ten możemy zapisać następująco
 +
 +
::<math>W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n</math>
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład A17</span><br/>
 +
<math>W_5 (100) = 2</math>,&nbsp;&nbsp; <math>W_7 (42) = 1</math>,&nbsp;&nbsp; ponieważ <math>11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11</math>, to <math>W_3 (11!) = 4</math>
 +
 +
 +
 +
Wprost z&nbsp;definicji funkcji <math>W_p (n)</math> wynikają następujące właściwości:
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A18</span><br/>
 +
 +
Podstawowe własności funkcji <math>W_p (n)</math>
 +
 +
::# <math>\;\; W_p (n \cdot m) = W_p (n) + W_p (m)</math>
 +
::# <math>\;\; W_p (n \cdot p^a) = a + W_p (n)</math>
 +
::# <math>\;\; W_{p}\left ( \frac{n}{m} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad \frac{n}{m}\in \mathbb{Z}_{+}</math>
 +
::# <math>\;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0</math>
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A19</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą. Ilość liczb podzielnych przez <math>p</math> i&nbsp;występujących w&nbsp;ciągu <math>1, 2, 3, \ldots, n</math> wynosi <math>r = \left\lfloor \frac{n}{p} \right\rfloor</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Wśród liczb naturalnych <math>1, 2, 3, \ldots, n</math> istnieje pewna ilość liczb podzielnych przez <math>p</math>. Liczby te możemy z&nbsp;łatwością wypisać, będą nimi
 +
 +
::<math>1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, r \cdot p</math>
 +
 +
Gdzie <math>r</math> jest największą liczbą całkowitą nie większą niż <math>\frac{n}{p}</math>, czyli <math>r = \left\lfloor \frac{n}{p} \right\rfloor</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład A20</span><br/>
 +
Ilość liczb całkowitych dodatnich podzielnych przez <math>5</math> i&nbsp;nie większych od <math>63</math> wynosi <math>\left\lfloor \frac{63}{5} \right\rfloor = 12</math>. Liczby te to <math>5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60</math>.
 +
 +
 +
 +
Twierdzenie A19 umożliwi nam określenie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w <math>n!</math>
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A21</span><br/>
 +
Liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Dowód sprowadza się do znalezienia wartości funkcji <math>W_p (n!)</math>.
 +
 +
::<math>W_p (n!) = W_p (1 \cdot 2 \cdot 3 \cdot \ldots \cdot n) = W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \cdot p \right)</math>
 +
 +
Pozostawiliśmy jedynie czynniki podzielne przez <math>p</math> (czynniki niepodzielne przez <math>p</math> nie dają wkładu do wykładnika, z&nbsp;jakim <math>p</math> występuje w <math>n!</math>), wyłączając czynnik <math>p</math> z&nbsp;każdej z&nbsp;liczb <math>p, 2 p, 3 p, \ldots, \left\lfloor \frac{n}{p} \right\rfloor \cdot p</math> mamy
 +
 +
::<math>W_p (n!) = W_p \left( p^{\lfloor n / p \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \right) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \right)</math>
 +
 +
Otrzymane wyrażenie przekształcamy analogicznie jak wyżej
 +
 +
::<math>W_p (n!) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{\lfloor n / p \rfloor}{p} \right\rfloor \cdot p \right)</math>
 +
 +
Z twierdzenia A14 wiemy, że dla <math>x \in \mathbb{R}</math> i <math>n \in \mathbb{Z}_{+}</math> jest:
 +
 +
::<math>\left\lfloor \frac{\lfloor x \rfloor}{n} \right\rfloor = \left \lfloor \frac{x}{n} \right \rfloor</math>
 +
 +
zatem
 +
 +
::<math>W_p (n!) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \cdot p \right) =</math>
 +
 +
::::<math>\;\, = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p^{\lfloor n / p^2 \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \right) =</math>
 +
 +
::::<math>\;\, = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \right)</math>
 +
 +
Oczywiście opisaną wyżej procedurę możemy powtarzać wielokrotnie. Zakończenie następuje wtedy, gdy wykładnik liczby pierwszej <math>p</math> osiągnie wartość tak dużą, że <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math>. Ponieważ nie wiemy, jaka to wartość (choć możemy ją oszacować), to stosujemy zapis
 +
 +
::<math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor</math>
 +
 +
zdając sobie sprawę z&nbsp;tego, że w&nbsp;rzeczywistości sumowanie obejmuje jedynie skończoną liczbę składników.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga A22</span><br/>
 +
Należy zauważyć, że liczba sumowań jest skończona, bowiem bardziej precyzyjnie możemy powyższy wzór zapisać w postaci
 +
 +
::<math>W_p (n!) = \sum_{k = 1}^B \left\lfloor \frac{n}{p^k} \right\rfloor</math>
 +
 +
gdzie <math>B = \lfloor \log_2 (n) \rfloor</math>. Jest tak dlatego, że jeżeli <math>k</math> przekroczy <math>\lfloor \log_2 (n) \rfloor</math>, to dla liczby pierwszej <math>p = 2</math>, jak również dla wszystkich innych liczb pierwszych mamy
 +
 +
::<math>\frac{n}{p^k} < 1</math>
 +
 +
czyli dla <math>k > B</math> sumujemy same zera.
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład A23</span><br/>
 +
Niech <math>n = 30</math>, <math>p = 3</math>
 +
 +
::<math>W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) =</math>
 +
 +
::::<math>\quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) =</math>
 +
 +
::::<math>\quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) =</math>
 +
 +
::::<math>\quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) =</math>
 +
 +
::::<math>\quad = 10 + W_3 (3 \cdot 6 \cdot 9) =</math>
 +
 +
::::<math>\quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) =</math>
 +
 +
::::<math>\quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) =</math>
 +
 +
::::<math>\quad = 10 + 3 + W_3 (3) =</math>
 +
 +
::::<math>\quad = 10 + 3 + 1 =</math>
 +
 +
::::<math>\quad = 14</math>
 +
 +
Co jest zgodne ze wzorem:
 +
 +
::<math>W_3 (30!) = \left\lfloor \frac{30}{3} \right\rfloor + \left\lfloor \frac{30}{3^2} \right\rfloor + \left\lfloor \frac{30}{3^3} \right\rfloor = 10 + 3 + 1 = 14</math>
 +
 +
 +
 +
 +
Podobnie jak w&nbsp;poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci <math>\binom{2 n}{n}</math>. Teraz już łatwo możemy policzyć wykładnik, z&nbsp;jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A24</span><br/>
 +
Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>\binom{2 n}{n}</math> z&nbsp;wykładnikiem
 +
 +
::<math>u = \sum^{\infty}_{k = 1} \left( \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right)</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ <math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2}</math>, to liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>\binom{2 n}{n}</math> z&nbsp;wykładnikiem:
 +
 +
::<math>W_p \left( \binom{2 n}{n} \right) = W_p ((2 n) !) - 2 W_p (n!) = \sum^{\infty}_{k = 1} \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \sum^{\infty}_{k = 1} \left \lfloor \frac{n}{p^{k}} \right \rfloor = \sum^{\infty}_{k = 1} \left( \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right)</math>
 +
<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/>
 +
Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>u = 1</math> lub <math>u = 0</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Jeżeli <math>p > \sqrt{2 n}</math>, to dla <math>k \geqslant 2</math> mamy <math>p^k \geqslant p^2 > 2 n > n</math>. Zatem dla <math>k \geqslant 2</math> jest <math>\left\lfloor \frac{2 n}{p^k} \right\rfloor = \left\lfloor \frac{n}{p^k} \right\rfloor = 0</math> i&nbsp;otrzymujemy
 +
 +
::<math>u = \sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = \left \lfloor \frac{2 n}{p} \right \rfloor - 2 \left \lfloor \frac{n}{p} \right \rfloor</math>
 +
 +
Na mocy twierdzenia A15 (dla <math>x = \tfrac{n}{p}</math>), dostajemy natychmiast, że <math>u = 1</math> lub <math>u = 0</math>.
 +
<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \big\rvert \binom{2 n}{n}</math>, to <math>p^a \leqslant 2 n</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>u</math> oznacza wykładnik, z&nbsp;jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze. Mamy
 +
 +
::<math>u = \sum_{k = 1}^{\infty} \left( \left\lfloor \frac{2 n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor \right)</math>
 +
 +
gdzie sumowanie przebiega w&nbsp;rzeczywistości od <math>k = 1</math> do <math>k = s</math>, a&nbsp;wartość liczby <math>s</math> wynika z&nbsp;warunku <math>p^s \leqslant 2 n < p^{s + 1}</math>. Ponieważ sumowane wyrazy są równe <math>0</math> lub <math>1</math>, to otrzymujemy natychmiast oszacowanie <math>u \leqslant s</math>, skąd wynika następujący ciąg nierówności
 +
 +
::<math>p^a \leqslant p^u \leqslant p^s \leqslant 2 n</math>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
== Oszacowanie <math>p_n</math> od góry i <math>\pi (n)</math> od dołu ==
 +
 +
Z twierdzenia A26 wynika natychmiast
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/>
 +
Niech <math>\binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>.
 +
 +
Uwaga: w&nbsp;powyższym twierdzeniu <math>q_i</math> nie oznacza <math>i</math>-tej liczby pierwszej, a&nbsp;pewną liczbą pierwszą o&nbsp;indeksie <math>i</math> ze zboru liczb pierwszych <math>q_1, \ldots q_s</math>, które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z&nbsp;wykładnikiem większym od zera.
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/>
 +
Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>\binom{2 n}{n}</math>
 +
 +
::<math>\binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Dowód wynika natychmiast z&nbsp;twierdzenia A27, bowiem
 +
 +
::<math>\binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A29</span><br/>
 +
Dla <math>n \geqslant 3</math> prawdziwe jest następujące oszacowanie
 +
 +
::<math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W twierdzeniu A4 oszacowaliśmy współczynnik dwumianowy <math>\binom{2 n}{n}</math>. Przepiszemy, to twierdzenie w&nbsp;postaci bardziej czytelnej dla potrzeb tego dowodu
 +
 +
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < \binom{2 n}{n}</math>
 +
 +
Nierówności te są prawdziwe dla <math>n \geqslant 80</math>. Z&nbsp;twierdzenia A28 mamy
 +
 +
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 +
 +
Łącząc odpowiednie oszacowania współczynnika dwumianowego <math>\binom{2 n}{n}</math> od góry z&nbsp;odpowiednimi oszacowaniami od dołu, dostajemy
 +
 +
::<math>(2 n + 1)^{\pi (2 n + 1)} > \left( \sqrt{3.8} \right)^{2 n + 1}</math>
 +
 +
::<math>(2 n)^{\pi (2 n)} > \left( \sqrt{3.8} \right)^{2 n}</math>
 +
 +
Zatem zarówno dla parzystych, jak i&nbsp;nieparzystych liczb <math>m \geqslant 160</math> jest
 +
 +
::<math>m^{\pi (m)} > \left( \sqrt{3.8} \right)^m</math>
 +
 +
::<math>\pi (m) \cdot \log m > m \cdot \log \left( \sqrt{3.8} \right)</math>
 +
 +
Czyli
 +
 +
::<math>\pi (m) > \frac{1}{2} \cdot \log \left ( 3.8 \right ) \cdot \frac{m}{\log m} > 0.6675 \cdot \frac{m}{\log m} > \frac{2}{3} \cdot \frac{m}{\log m}</math>
 +
 +
Dla <math>m = 3, 4, \ldots, 159</math> prawdziwość nierówności sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wykonać polecenie
 +
 +
::for( n=2, 200, if( primepi(n) <= 2/3*n/log(n), print(n) ))<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A30</span><br/>
 +
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 2 n \log n</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia A29 wiemy, że dla <math>n \geqslant 3</math> zachodzi <math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>. Kładąc <math>n = p_s</math> otrzymujemy dla <math>s \geqslant 2</math>
 +
 +
::<math>s = \pi (p_s) > \frac{2}{3} \cdot \frac{p_s}{\log p_s}</math>
 +
 +
Rozważmy funkcję
 +
 +
::<math>\frac{2}{3} \cdot \frac{x}{\log x} - x^{3 / 4} = \frac{2}{3} \cdot \frac{x^{3 / 4}}{\log x} \left( x^{1 / 4} - \frac{3}{2} \cdot \log x \right)</math>
 +
 +
Zamieszczony niżej obrazek przedstawia wykres funkcji <math>x^{1 / 4} - \tfrac{3}{2} \cdot \log x</math>
 +
 +
[[File: Czebyszew-wykres-1.png|center]]
 +
 +
Wpisując w PARI/GP polecenie
 +
 +
::solve(x=10^4, 10^5, x^(1/4) - 3/2*log(x))
 +
 +
łatwo sprawdzamy, że funkcja <math>x^{1 / 4} - \tfrac{3}{2} \cdot \log x</math> przecina oś <math>OX</math> w&nbsp;punkcie <math>x = 83499.136 \ldots</math> Wynika stąd, że dla <math>x > 83499.14</math> prawdziwe jest oszacowanie
 +
 +
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{3 / 4}</math>
 +
 +
Zatem możemy napisać
 +
 +
::<math>s = \pi (p_s) > \frac{2}{3} \cdot \frac{p_s}{\log p_s} > (p_s)^{3 / 4}</math>
 +
 +
Co oznacza, że dla <math>s \geqslant 8153</math> (bo <math>p_{8153} = 83537 > 83499.14</math>) mamy <math>p_s < s^{4 / 3}</math> i&nbsp;wpisując w PARI/GP polecenie
 +
 +
::for(n=1, 10^4, if( prime(n) >= n^(4/3), print(n) ))
 +
 +
sprawdzamy, że otrzymane oszacowanie <math>p_s < s^{4 / 3}</math> jest prawdziwe dla <math>s \geqslant 255</math>. Wykorzystując ten rezultat i&nbsp;szacując po raz drugi dostajemy dla <math>s \geqslant 255</math>
 +
 +
::<math>p_s < \frac{3}{2} \cdot s \cdot \log p_s < \frac{3}{2} \cdot s \cdot \log s^{4 / 3} = 2 s \cdot \log s</math>
 +
 +
Ponownie w&nbsp;GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>s \geqslant 3</math>
 +
 +
::for( s=1, 300, if( prime(s) >= 2*s*log(s), print(s) ))<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
Dowód twierdzenia A30 kończy dowód całego twierdzenia&nbsp;A1. Możemy teraz dokończyć dowód twierdzenia&nbsp;A7 i&nbsp;pokazać, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie:
 +
 +
::<math>p_1 \cdot \ldots \cdot p_n < (n \log n)^n</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Indukcja matematyczna. Twierdzenie jest prawdziwe dla <math>n = 3</math>. Zakładając prawdziwość twierdzenia dla <math>n</math>, otrzymujemy dla <math>n + 1</math>:
 +
 +
::<math>p_1 \cdot \ldots \cdot p_n p_{n + 1} < (n \log n)^n \cdot p_{n + 1} < </math>
 +
 +
::::::<math>\quad < n^n \cdot (\log n)^n \cdot 2 (n + 1) \log (n + 1) \leqslant</math>
 +
 +
::::::<math>\quad \leqslant n^n \cdot \left( 1 + \frac{1}{n} \right)^n \cdot (n + 1) \cdot (\log n)^n \cdot \log (n + 1) <</math>
 +
 +
::::::<math>\quad < (n + 1)^{n + 1} \cdot [\log (n + 1)]^n \cdot \log (n + 1) =</math>
 +
 +
::::::<math>\quad = [(n + 1) \cdot \log (n + 1)]^{n + 1}</math>
 +
 +
Gdzie skorzystaliśmy z&nbsp;twierdzenia A30 oraz z&nbsp;faktu, że ciąg <math>a_n = \left( 1 + \frac{1}{n} \right)^n</math> jest ciągiem ograniczonym <math>2 \leqslant a_n < 3</math> (zobacz twierdzenie A6).<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
== Uwagi do dowodu ==
 +
Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i&nbsp;udowodnić
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A31</span><br/>
 +
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie
 +
 +
::<math>p_n < 1.875 \cdot n \log n</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia A1 wiemy, że dla <math>n \geqslant 3</math> zachodzi <math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>. Kładąc <math>n = p_s</math>, otrzymujemy dla <math>s \geqslant 2</math>
 +
 +
::<math>s = \pi (p_s) > \frac{2}{3} \cdot \frac{p_s}{\log p_s} > (p_s)^{4 / 5}</math>
 +
 +
Ostatnia nierówność wynika z&nbsp;faktu, że dla <math>x > 7572437.223 \ldots</math> prawdziwe jest oszacowanie
 +
 +
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{4 / 5}</math>
 +
 +
Zatem dla <math>s \geqslant 512830</math> (bo <math>p_{512830} = 7572449 > 7572437.223 \ldots</math>) mamy <math>p_s < s^{5 / 4}</math> i&nbsp;wpisując w PARI/GP polecenie
 +
 +
::for(s=1, 520000, if( prime(s) >= s^(5/4), print(s) ))
 +
 +
sprawdzamy, że otrzymane oszacowanie <math>p_s < s^{5 / 4}</math> jest prawdziwe dla <math>s \geqslant 13760</math>. Wykorzystując ten rezultat i&nbsp;szacując po raz drugi, dostajemy dla <math>s \geqslant 13760</math>
 +
 +
::<math>p_s < \frac{3}{2} \cdot s \cdot \log p_s < \frac{3}{2} \cdot s \cdot \log s^{5 / 4} = 1.875 \cdot s \cdot \log s</math>
 +
 +
Ponownie w&nbsp;GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>s \geqslant 3</math>:
 +
 +
::for(s=1, 15000, if( prime(s)>=1.875*s*log(s), print(s) ))<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A32</span><br/>
 +
Niech <math>n \geqslant 2</math>. Dla funkcji <math>\pi (n)</math> prawdziwe jest oszacowanie
 +
 +
::<math>\pi (n) < 1.733 \cdot \frac{n}{\log n}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia A1 wiemy, że dla <math>n \geqslant 3</math> jest
 +
 +
::<math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n} > n^{4 / 5}</math>
 +
 +
Ostatnia nierówność wynika z&nbsp;faktu, że dla <math>x > 7572437.223 \ldots</math> prawdziwe jest oszacowanie
 +
 +
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{4 / 5}</math>
 +
 +
Korzystając z&nbsp;twierdzenia A9 możemy napisać ciąg nierówności
 +
 +
::<math>4^n > P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} > \pi (n)^{\pi (n)} > (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5}</math>
 +
 +
skąd otrzymujemy, że dla <math>n \geqslant 7572438</math> prawdziwe jest oszacowanie
 +
 +
::<math>\pi (n) < 1.733 \cdot \frac{n}{\log n}</math>
 +
 +
W GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>n \geqslant 2</math>
 +
 +
::for(n=2, 8*10^6, if( primepi(n) >= 1.733*n/log(n), print(n) ))<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga A33</span><br/>
 +
Dowód twierdzenia A31 wymagał wykorzystania polecenia PARI/GP, w&nbsp;którym wielokrotnie była wywoływana funkcja prime(n). Analogiczna sytuacja miała miejsce w&nbsp;przypadku twierdzenia&nbsp;A32 – tam musieliśmy wielokrotnie wywoływać funkcję primepi(n). Znacznie lepiej w&nbsp;takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w&nbsp;sposób ciągły w&nbsp;całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy Test1(n) i&nbsp;Test2(n) wywołane z&nbsp;parametrami n&nbsp;=&nbsp;520000 i&nbsp;odpowiednio n&nbsp;=&nbsp;8*10^6 odpowiadają poleceniom:
 +
 +
::for(s=1, 520000, if( prime(s) >= s^(5/4), print(s) ))
 +
 +
::for(n=2, 8*10^6, if( primepi(n) >= 1.733*n/log(n), print(n) ))
 +
 +
ale wykonywane są znacznie szybciej.
 +
 +
Test1(n)=
 +
\\test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
 +
\\bez bezpośredniego odwoływania się do funkcji prime(k)
 +
{local(p, k);
 +
k=1;
 +
p=2;
 +
while(k <= n,
 +
      if( p >= k^(5/4), print(k) );
 +
      k = k + 1;
 +
      p = nextprime(p+1); \\liczba p ma wartość prime(k)
 +
      )
 +
}
 +
 +
Test2(n)=
 +
\\test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n
 +
\\bez bezpośredniego odwoływania się do funkcji primepi(k)
 +
{local(s, k);
 +
s=1;
 +
k=2;
 +
while(k <= n,
 +
      if( s >= 1.733*k/log(k), print(k) );
 +
      k = k + 1;
 +
      s = s + isprime(k); \\ dla kolejnych k liczba s ma wartość primepi(k)
 +
      )
 +
}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga A34</span><br/>
 +
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji <math>\pi (n)</math> lub <math>p_n</math>. Już osiągnięcie tą drogą oszacowania <math>p_n < 1.6 \cdot n \log n</math> przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność
 +
 +
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{15 / 16}</math>
 +
 +
jest prawdziwa dla <math>x > 7.671 \cdot 10^{32}</math>.
 +
 +
 +
 +
 +
 +
== Zastosowania ==
 +
 +
Ciekawy rezultat wynika z twierdzenia&nbsp;A7, ale wcześniej musimy udowodnić twierdzenie o&nbsp;średniej arytmetycznej i&nbsp;geometrycznej.
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A35</span><br/>
 +
Dla dowolnych liczb dodatnich <math>a_1, a_2, \ldots, a_n</math> średnia arytmetyczna jest nie mniejsza od średniej geometrycznej
 +
 +
::<math>\frac{a_1 + a_2 + \ldots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Twierdzenie jest w sposób oczywisty prawdziwe dla <math>n = 1</math>. Równie łatwo stwierdzamy prawdziwość nierówności dla <math>n = 2</math>
 +
 +
::<math>(a_1 - a_2)^2 \geqslant 0</math>
 +
 +
::<math>a^2_1 - 2 a_1 a_2 + a^2_2 \geqslant 0</math>
 +
 +
::<math>a^2_1 + 2 a_1 a_2 + a^2_2 \geqslant 4 a_1 a_2</math>
 +
 +
::<math>(a_1 + a_2)^2 \geqslant 4 a_1 a_2</math>
 +
 +
::<math>\frac{a_1 + a_2}{2} \geqslant \sqrt{a_1 a_2}</math>
 +
 +
Dla potrzeb dowodu zapiszemy dowodzoną nierówność w postaci
 +
 +
::<math>\left( \frac{a_1 + a_2 + \ldots + a_n}{n} \right)^n \geqslant a_1 a_2 \cdot \ldots \cdot a_n</math>
 +
 +
Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od <math>n</math> dla <math>n + 1</math> mamy
 +
 +
a) w przypadku gdy <math>n + 1 = 2 k</math> jest liczbą parzystą
 +
 +
::<math>\left( \frac{a_1 + a_2 + \ldots + a_{n + 1}}{n + 1} \right)^{n + 1} = \left( \frac{a_1 + a_2 + \ldots + a_{2 k}}{2 k} \right)^{2 k} =</math>
 +
 +
::::::::::<math>\quad = \left[ \left( \frac{\frac{a_1 + a_2}{2} + \frac{a_3 + a_4}{2} + \ldots + \frac{a_{2 k - 1} + a_{2 k}}{2}}{k} \right)^k \right]^2 \geqslant</math>
 +
 +
::::::::::<math>\quad \geqslant \left( \frac{a_1 + a_2}{2} \cdot \frac{a_3 + a_4}{2} \cdot \ldots \cdot \frac{a_{2 k - 1} + a_{2 k}}{2} \right)^2 \geqslant</math>
 +
 +
::::::::::<math>\quad \geqslant \left( \sqrt{a_1 a_2} \cdot \sqrt{a_3 a_4} \cdot \ldots \cdot \sqrt{a_{2 k - 1} a_{2 k}} \right)^2 =</math>
 +
 +
::::::::::<math>\quad = a_1 a_2 \cdot \ldots \cdot a_{2 k} =</math>
 +
 +
::::::::::<math>\quad = a_1 a_2 \cdot \ldots \cdot a_{n + 1}</math>
 +
 +
Gdzie skorzystaliśmy z założenia indukcyjnego i&nbsp;prawdziwości dowodzonego twierdzenia dla <math>n = 2</math>.
 +
 +
b) w przypadku gdy <math>n + 1 = 2 k - 1</math> jest liczbą nieparzystą, możemy skorzystać z&nbsp;udowodnionego wyżej punktu a) dla '''parzystej''' ilości liczb
 +
 +
::<math>a_1, a_2, \ldots, a_{2 k - 1}, S</math>
 +
 +
gdzie przez <math>S</math> oznaczyliśmy średnią arytmetyczną liczb <math>a_1, a_2, \ldots, a_{2 k - 1}</math>
 +
 +
::<math>S = \frac{a_1 + a_2 + \ldots + a_{2 k - 1}}{2 k - 1}</math>
 +
 +
Na mocy punktu a) prawdziwa jest nierówność
 +
 +
::<math>\left( \frac{a_1 + a_2 + \ldots + a_{2 k - 1} + S}{2 k} \right)^{2 k} = \left( \frac{(2 k - 1) S + S}{2 k} \right)^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>
 +
 +
Skąd otrzymujemy
 +
 +
::<math>S^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>
 +
 +
::<math>S^{2 k - 1} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1}</math>
 +
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A36</span><br/>
 +
Dla <math>n \geqslant 1</math> prawdziwa jest nierówność <math>p_1 + p_2 + \ldots + p_n > n^2</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Korzystając z&nbsp;twierdzeń A7 i A35 możemy napisać następujący ciąg nierówności dla <math>n</math> kolejnych liczb pierwszych
 +
 +
::<math>\frac{p_1 + p_2 + \ldots + p_n}{n} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} > \sqrt[n]{n^n} = n</math>
 +
 +
Stąd otrzymujemy natychmiast tezę twierdzenia, którą sprawdzamy dla <math>n < 13</math>. Do sprawdzenia można wykorzystać proste polecenie w PARI/GP
 +
 +
::for(n=1, 20, s=0; for(k=1, n, s=s+prime(k)); if( s <= n^2, print(n) ))<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji <math>\pi (n)</math> i <math>p_n</math>, które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego <math>\varepsilon > 0</math> istnieje takie <math>n_0</math>, że dla każdego <math>n > n_0</math> prawdziwa jest nierówność <math>\log x < x^{\varepsilon}</math>. Inaczej mówiąc, funkcja <math>\log x</math> rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A37</span><br/>
 +
Prawdziwe są następujące nierówności:
 +
 +
::1.&nbsp;&nbsp;&nbsp; <math>e^x > x</math>, dla każdego <math>x \in \mathbb{R}</math>
 +
 +
::2.&nbsp;&nbsp;&nbsp; <math>\log x < n \cdot x^{1 / n}</math>, dla każdego <math>x \in \mathbb{R}_+</math> i dowolnego <math>n \in \mathbb{Z}_+</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Można powiedzieć, że dowód pierwszej nierówności jest oczywisty, bo każdy z&nbsp;nas ma przed oczami przebieg funkcji <math>e^x</math> i <math>x</math>:
 +
 +
[[File: Czebyszew-wykres-2.png|center]]
 +
 +
Komu taki dowód obrazkowy nie wystarcza, może posłużyć się rozwinięciem funkcji <math>e^x</math> w szereg nieskończony
 +
 +
::<math>e^x = \underset{k = 0}{\overset{\infty}{\sum}} \frac{x^k}{k!} = 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \ldots</math>
 +
 +
zbieżny dla dowolnego <math>x \in \mathbb{R}</math>. Teraz wystarczy zauważyć, że:
 +
 +
::* dla <math>x > 0</math> prawdziwe jest oszacowanie: <math>e^x > 1 + x > x</math>
 +
::* w punkcie <math>x = 0</math> mamy <math>e^x = 1</math> i <math>x = 0</math>
 +
::* dla <math>x < 0</math> funkcja <math>e^x</math> jest dodatnia, a funkcja <math>x</math> ujemna
 +
 +
 +
W drugiej nierówności połóżmy zmienną pomocniczą <math>x = e^y</math>, gdzie <math>y \in \mathbb{R}</math>. Otrzymujemy
 +
 +
::<math>y < n \cdot (e^y)^{1 / n}</math>
 +
 +
czyli
 +
 +
::<math>\frac{y}{n} < e^{y / n}</math>
 +
 +
Kładąc <math>z = \frac{y}{n}</math>, gdzie <math>z \in \mathbb{R}</math>, mamy <math>z < e^z</math>. Otrzymana nierówność jest prawdziwa dla każdego <math>z \in \mathbb{R}</math> na mocy punktu&nbsp;1 tego twierdzenia.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A38</span><br/>
 +
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:
 +
 +
::<math>10 n \underset{n \geqslant 6473}{<} p_n \underset{n \geqslant 2}{<} n^2</math>
 +
 +
::<math>\sqrt{n} \underset{n \geqslant 5}{<} \pi (n) \underset{n \geqslant 64721}{<} \frac{n}{10}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
<span style="border-bottom-style: double;">Lewa górna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 1</math> jest <math>p_n > 0.72 \cdot n \log n</math>. Wystarczy rozwiązać nierówność:
 +
 +
::<math>0.72 \cdot \log n > 10</math>
 +
 +
czyli <math>n > \exp \left( \frac{10}{0.72} \right) = 1076137.5</math>
 +
 +
W PARI/GP wpisujemy polecenie:
 +
 +
::for(n=1, 11*10^5, if( prime(n) <= 10*n, print(n) ))
 +
 +
 +
<span style="border-bottom-style: double;">Prawa górna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 3</math> jest <math>p_n < 2 n \log n</math>. Zatem wystarczy pokazać, że <math>2 n \log n < n^2</math>. Korzystając z&nbsp;twierdzenia&nbsp;A37, łatwo zauważmy, że dla <math>n > 16</math> jest:
 +
 +
::<math>n - 2 \log n > n - 2 \cdot 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 4 \right) > 0</math>
 +
 +
Przypadki <math>n \leqslant 16</math> sprawdzamy bezpośrednio.
 +
 +
 +
<span style="border-bottom-style: double;">Lewa dolna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 3</math> jest <math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>. Zatem wystarczy pokazać, że <math>\frac{2}{3} \cdot \frac{n}{\log n} > \sqrt{n}</math>. Korzystając z twierdzenia&nbsp;A37, łatwo zauważmy, że dla <math>n > 6^4 = 1296</math> jest:
 +
 +
::<math>\frac{2}{3} \cdot \frac{n}{\log n} - \sqrt{n} > \frac{2}{3} \cdot \frac{n}{4 \cdot n^{1 / 4}} - \sqrt{n} = \frac{1}{6} \cdot n^{3 / 4} - \sqrt{n} = \frac{1}{6} \sqrt{n} (n^{1 / 4} - 6) > 0</math>
 +
 +
Sprawdzenie przypadków <math>n \leqslant 1296</math> sprowadza się do wpisania w PARI/GP polecenia:
 +
 +
::for(n=1, 2000, if( primepi(n) <= sqrt(n), print(n) ))
 +
 +
 +
<span style="border-bottom-style: double;">Prawa dolna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 2</math> jest <math>\pi (n) < \frac{2 n}{\log n}</math>. Zatem wystarczy pokazać, że <math>\frac{2 n}{\log n} < \frac{n}{10}</math>. Nierówność ta jest prawdziwa dla <math>\log n > 20</math>, czyli dla
 +
 +
::<math>n > e^{20} > 485165195.4</math>
 +
 +
Sprawdzenie przypadków dla <math>n \leqslant 490 \cdot 10^6</math> będzie wymagało napisania w PARI/GP krótkiego programu i&nbsp;wywołania go z&nbsp;parametrem n&nbsp;=&nbsp;490*10^6
 +
 +
Test3(n)=
 +
\\test oszacowania: primepi(k) < k/10 dla 2 <= k <= n
 +
\\bez bezpośredniego odwoływania się do funkcji primepi(k)
 +
{local(s, k);
 +
s=1;
 +
k=2;
 +
while(k <= n,
 +
      if( s >= k/10, print(k) );
 +
      k = k + 1;
 +
      s = s + isprime(k); \\ dla kolejnych k liczba s ma wartość primepi(k)
 +
      )
 +
}<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A39</span><br/>
 +
Każda liczba pierwsza <math>p</math>, taka że <math>p \in \left( \frac{n}{2}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia A21 wiemy, że każda liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor</math>
 +
 +
Z założenia <math>p \leqslant n</math> i <math>2 p > n</math>, zatem:
 +
 +
::1.&nbsp;&nbsp;&nbsp; <math>\frac{n}{p} \geqslant 1</math> &nbsp;&nbsp;oraz&nbsp;&nbsp; <math>\frac{n}{p} < 2</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor \frac{n}{p} \right\rfloor = 1</math>
 +
 +
::2.&nbsp;&nbsp;&nbsp; <math>\frac{n}{p^2} < \frac{2}{p} \leqslant 1</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor \frac{n}{p^2} \right\rfloor = 0</math> &nbsp;&nbsp;i tym bardziej&nbsp;&nbsp; <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math> &nbsp;&nbsp;dla&nbsp;&nbsp; <math>k \geqslant 3</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia A40 i A42 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A41 i A43 to tylko twierdzenia A40 i A42 dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A40 i A42, to może je pominąć.
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A40</span><br/>
 +
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left(
 +
\frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
'''Najpierw udowodnimy przypadek <math>k = 0</math>.'''
 +
 +
Zauważmy, że każda liczba pierwsza <math>p \in (n, 2 n]</math> występuje dokładnie jeden raz w&nbsp;liczniku ułamka
 +
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
i nie występuje w&nbsp;mianowniku. Zatem w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze wystąpi z&nbsp;wykładnikiem równym <math>1</math>.
 +
 +
Co kończy dowód twierdzenia w przypadku, gdy <math>k = 0</math>.
 +
 +
'''Możemy teraz przejść do dowodu dla wszystkich <math>k \geqslant 1</math>.'''
 +
 +
 +
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
 +
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka
 +
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
 +
 +
* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku
 +
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
 +
* <math>(2 k + 1) p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k + 1</math> razy w&nbsp;liczniku
 +
* <math>(2 k + 2) p > 2 n</math> — warunek ten (łącznie z warunkiem <math>(2 k + 1) p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k + 1</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, (2 k + 1) p</math>)
 +
 +
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left(\frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k + 1</math> razy w&nbsp;liczniku ułamka
 +
 +
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.
 +
 +
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k + 1</math>. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek
 +
 +
::<math>r_i \notin \left( \frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right]</math>
 +
 +
Warunek ten będzie z&nbsp;pewnością spełniony, gdy
 +
 +
::<math>q \leqslant 2 k + 1 \leqslant \frac{n}{k + 1}</math>
 +
 +
czyli dla <math>n</math> spełniających nierówność <math>n \geqslant (k + 1) (2 k + 1)</math>.
 +
 +
Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>.
 +
 +
 +
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
 +
Rozważmy najpierw pierwszy składnik sumy
 +
 +
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right )</math>
 +
 +
Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy
 +
 +
1)&nbsp;&nbsp;&nbsp; <math>p > \frac{n}{k + 1} \quad\ \implies \quad \frac{n}{p} < k + 1 \quad\ \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \leqslant k</math>
 +
 +
2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{n}{k + \tfrac{1}{2}} \quad\ \implies \quad \frac{2 n}{p} \geqslant 2 k + 1 \quad\ \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \geqslant 2 k + 1</math>
 +
 +
Zatem
 +
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \geqslant 2 k + 1 - 2 k = 1</math>
 +
 +
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 +
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 1</math>
 +
 +
 +
Założenie, że <math>n \geqslant 2 (k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
 +
 +
::<math>p > \frac{n}{k + 1} \quad \implies \quad \frac{2 n}{p} < 2 k + 2 \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{(2 n)^s}{p^s} < (2 k + 2)^s \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 2)^2}{2 n} \cdot \left( \frac{2 k + 2}{2 n} \right)^{s - 2} \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 2)^2}{2 n} \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} < 1 \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \! \! \implies \quad \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>
 +
 +
Jeżeli <math>\left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^s} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 2 (k + 1)^2</math> jest
 +
 +
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) = 1</math>
 +
 +
Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < 2 (k + 1)^2</math> twierdzenie pozostaje prawdziwe.
 +
 +
Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 (k + 1) (k + \tfrac{1}{2})</math>
 +
<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład A41</span><br/>
 +
Jeżeli <math>n \geqslant 6</math> i liczba pierwsza <math>p \in \left( \frac{n}{2}, \frac{2 n}{3} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
 +
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w&nbsp;postaci ułamka
 +
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
 +
 +
* <math>p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej jeden raz w&nbsp;mianowniku
 +
* <math>2 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie jeden raz w&nbsp;mianowniku (jako <math>p</math>)
 +
* <math>3 p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>2 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku
 +
* <math>4 p > 2 n</math> — warunek ten (łącznie z warunkiem <math>3 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>2 p</math> i <math>3 p</math>)
 +
 +
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math> pojawia się dokładnie jeden raz w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka
 +
 +
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.
 +
 +
Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>p = 2, 3</math>. Dlatego zakładamy, że <math>n \geqslant 6</math>, bo dla <math>n \geqslant 6</math> liczby pierwsze <math>p = 2, 3</math> nie spełniają warunku <math>p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math>.
 +
 +
Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 5</math> i&nbsp;liczba <math>3^2</math> dzieli liczbę <math>\binom{10}{5} = 252 = 9 \cdot 28</math>
 +
 +
 +
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
 +
Rozważmy najpierw pierwszy składnik sumy
 +
 +
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right )</math>
 +
 +
Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy
 +
 +
::1)&nbsp;&nbsp;&nbsp; <math>p > \frac{n}{2} \quad \implies \quad \frac{n}{p} < 2 \quad \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \leqslant 1</math>
 +
 +
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{2 n}{3} \quad \implies \quad \frac{2 n}{p} \geqslant 3 \quad \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \geqslant 3</math>
 +
 +
Zatem
 +
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \geqslant 3 - 2 = 1</math>
 +
 +
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 +
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 1</math>
 +
 +
 +
Założenie, że <math>n \geqslant 9</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
 +
 +
::<math>p > \frac{n}{2} \quad \implies \quad \frac{(2 n)^k}{p^k} < 4^k \quad \implies \quad \frac{2 n}{p^k} < \frac{16}{2 n} \cdot \left( \frac{4}{2 n} \right)^{k - 2} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{16}{2 n} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{16}{18} \quad \implies \quad \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>
 +
 +
Jeżeli <math>\left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 9</math> jest
 +
 +
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = 1</math>
 +
 +
Dla <math>n = 6, 7</math> żadna liczba pierwsza nie należy do <math>\left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math>. Dla <math>n = 8</math> łatwo sprawdzamy, że liczba <math>5</math> wchodzi do rozkładu liczby <math>\binom{16}{8} = 12870</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 +
 +
Zatem dla <math>n \geqslant 6</math> liczba pierwsza <math>p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math> wchodzi do rozkładu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A42</span><br/>
 +
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( \frac{n}{k + \tfrac{1}{2}}, \frac{n}{k} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
 +
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka
 +
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
 +
 +
* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku
 +
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
 +
* <math>2 k p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;liczniku
 +
* <math>(2 k + 1) p > 2 n</math> — warunek ten (łącznie z warunkiem <math>2 k p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, 2 k p</math>)
 +
 +
 +
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( \frac{n}{k + \frac{1}{2}}, \frac{n}{k} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k</math> razy w&nbsp;liczniku ułamka
 +
 +
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Co oznacza, że <math>p</math> nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze.
 +
 +
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k</math>. Rozpatrywane przez nas wielokrotności liczby <math>p</math> zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek
 +
 +
::<math>r_i \notin \left( \frac{n}{k + \frac{1}{2}}, \frac{n}{k} \right]</math>
 +
 +
Warunek ten będzie z&nbsp;pewnością spełniony, gdy
 +
 +
::<math>q \leqslant 2 k \leqslant \frac{n}{k + \frac{1}{2}}</math>
 +
 +
czyli dla <math>n</math> spełniających nierówność <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>. Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 k (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 k (k + \tfrac{1}{2})</math>.
 +
 +
 +
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
 +
Rozważmy najpierw pierwszy składnik sumy
 +
 +
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right )</math>
 +
 +
Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy
 +
 +
1)&nbsp;&nbsp;&nbsp; <math>p > \frac{n}{k + \frac{1}{2}} \quad\ \implies \quad \frac{2 n}{p} < 2 k + 1 \quad\ \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \leqslant 2 k</math>
 +
 +
2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{n}{k} \quad\ \implies \quad \frac{n}{p} \geqslant k \quad\ \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \geqslant k</math>
 +
 +
Zatem
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \leqslant 2 k - 2 k = 0</math>
 +
 +
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 +
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 0</math>
 +
 +
 +
Założenie, że <math>2 n \geqslant (2 k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
 +
 +
::<math>p > \frac{2 n}{2 k + 1} \quad \implies \quad \frac{(2 n)^s}{p^s} < (2 k + 1)^s \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 1)^2}{2 n} \cdot \left( \frac{2 k + 1}{2 n} \right)^{s - 2} \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 1)^2}{2 n} \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} < 1 \quad \implies</math>
 +
 +
::<math>\qquad \qquad \qquad \; \implies \quad \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>
 +
 +
Jeżeli <math>\left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^s} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>2 n \geqslant (2 k + 1)^2</math> jest
 +
 +
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) = 0</math>
 +
 +
Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < \frac{1}{2} (2 k + 1)^2</math> twierdzenie pozostaje prawdziwe.
 +
 +
Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład A43</span><br/>
 +
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( \frac{2 n}{5}, \frac{n}{2} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
 +
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka
 +
 +
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
 +
 +
* <math>2 p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;mianowniku
 +
* <math>3 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;mianowniku (jako <math>p</math> i <math>2 p</math>)
 +
* <math>4 p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>3 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku
 +
* <math>5 p > 2 n</math> — warunek ten (łącznie z warunkiem <math>4 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>3 p</math> i <math>4 p</math>)
 +
 +
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math> pojawia się dokładnie dwa razy w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka
 +
 +
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
 +
 +
Zatem nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze.
 +
 +
Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>2</math> i <math>3</math>. Dlatego zakładamy, że <math>n \geqslant 8</math>, bo dla <math>n \geqslant 8</math> liczby pierwsze <math>2, 3</math> nie spełniają warunku <math>p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math>.
 +
 +
Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 7</math> i&nbsp;liczba <math>3</math> dzieli liczbę <math>\binom{14}{7} = 3432</math>
 +
 +
 +
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
 +
Rozważmy najpierw pierwszy składnik sumy
 +
 +
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right )</math>
 +
 +
Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy
 +
 +
::1)&nbsp;&nbsp;&nbsp; <math>p > \frac{2 n}{5} \quad \implies \quad \frac{2 n}{p} < 5 \quad \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \leqslant 4</math>
 +
 +
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{n}{2} \quad \implies \quad \frac{n}{p} \geqslant 2 \quad \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \geqslant 2</math>
 +
 +
Zatem
 +
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \leqslant 4 - 4 = 0</math>
 +
 +
Ponieważ każdy ze składników szukanej sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 +
 +
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 0</math>
 +
 +
 +
Założenie, że <math>n \geqslant 13</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
 +
 +
::<math>p > \frac{2 n}{5} \quad \implies \quad \frac{(2 n)^k}{p^k} < 5^k \quad \implies \quad \frac{2 n}{p^k} < \frac{25}{2 n} \cdot \left( \frac{5}{2 n} \right)^{k - 2} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{25}{2 n} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{25}{26} \quad \implies \quad \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>
 +
 +
Jeżeli <math>\left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 13</math> jest
 +
 +
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = 0</math>
 +
 +
Dla <math>n = 8, 9</math> żadna liczba pierwsza nie należy do <math>\left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math>.
 +
 +
Dla <math>n = 10, 11, 12</math> łatwo sprawdzamy, że liczba <math>5</math> nie dzieli liczb <math>\binom{20}{10} = 184756</math>, <math>\binom{22}{11} = 705432</math> oraz <math>\binom{24}{12} = 2704156</math>.
 +
 +
Zatem dla <math>n \geqslant 8</math> liczba pierwsza <math>p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math> nie dzieli liczby <math>\binom{2 n}{n}</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga A44</span><br/>
 +
Z przykładu A41 nie wynika, że w&nbsp;przedziale <math>\left( \frac{n}{2}, \frac{2 n}{3} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;A43 oraz twierdzeń&nbsp;A40 i&nbsp;A42. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład A45</span><br/>
 +
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń A40 i A42 do współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
 +
Wybraliśmy współczynnik dwumianowy <math>\binom{2 \cdot 3284}{3284}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
 +
 +
Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;A40 i A42 nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
 +
 +
 +
2<sup>6</sup>, 3<sup>8</sup>, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59<sup>2</sup>, 61<sup>2</sup>, 67, 71, 73<sup>2</sup>, 79<sup>2</sup>, 83, 89, 97, 101, 103, <span style="border-bottom-style: double;">'''107'''</span>, '''127''', '''137''', 139, '''151''', '''157''', '''167''', '''173''', '''197''', 199, '''211''', '''223''', '''239''', 241, '''257''', '''277''', 281, 283, '''307''', 311, '''331''', 337, '''367''', 373, 379, 383, '''419''', 421, 431, 433, '''479''', 487, 491, 499, 503, '''557''', 563, 569, 571, 577, 587, 593, '''659''', 661, 673, 677, 683, 691, 701, 709, 719, 727, '''823''', 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, '''1097''', 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, '''1657''', 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179
 +
 +
 +
 +
Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>
 +
 +
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A40, jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A42, jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;A40 i A42 można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
 +
 +
Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>
 +
 +
{| class="wikitable"  style="font-size: 90%; text-align: center; margin: 1em auto 1em auto;"
 +
! <math>k</math>||<math>\frac{3284}{k+1}</math>||<math>p \in \left ( \frac{3284}{k + 1}, \frac{3284}{k + \tfrac{1}{2}} \right ]</math>||<math>\frac{3284}{k+\tfrac{1}{2}}</math>||<math>\frac{3284}{k}</math>
 +
|-
 +
| 0||3284||{3299, 3301, ..., 6553, 6563}||6568||
 +
|-
 +
| 1||1642||{1657, 1663, ..., 2161, 2179}||2189,33||3284
 +
|-
 +
| 2||1094,67||{1097, 1103, ..., 1303, 1307}||1313,60||1642
 +
|-
 +
| 3||'''821'''||{823, 827, ..., 929, 937}||938,29||1094,67
 +
|-
 +
| 4||656,80||{659, 661, 673, 677, 683, 691, 701, 709, 719, 727}||729,78||821
 +
|-
 +
| 5||547,33||{557, 563, 569, 571, 577, 587, 593}||597,09||656,80
 +
|-
 +
| 6||469,14||{479, 487, 491, 499, 503}||505,23||547,33
 +
|-
 +
| 7||410,50||{419, 421, 431, 433}||437,87||469,14
 +
|-
 +
| 8||364,89||{367, 373, 379, 383}||386,35||410,50
 +
|-
 +
| 9||328,40||{331, 337}||345,68||364,89
 +
|-
 +
| 10||298,55||{307, 311}||312,76||328,40
 +
|-
 +
| 11||273,67||{277, 281, 283}||285,57||298,55
 +
|-
 +
| 12||252,62||{257}||262,72||273,67
 +
|-
 +
| 13||234,57||{239, 241}||243,26||252,62
 +
|-
 +
| 14||218,93||{223}||226,48||234,57
 +
|-
 +
| 15||205,25||{211}||211,87||218,93
 +
|-
 +
| 16||193,18||{197, 199}||199,03||205,25
 +
|-
 +
| 17||182,44||{}||187,66||193,18
 +
|-
 +
| 18||172,84||{173}||177,51||182,44
 +
|-
 +
| 19||164,20||{167}||168,41||172,84
 +
|-
 +
| 20||156,38||{157}||160,20||164,20
 +
|-
 +
| 21||149,27||{151}||152,74||156,38
 +
|-
 +
| 22||142,78||{}||145,96||149,27
 +
|-
 +
| 23||136,83||{137, 139}||139,74||142,78
 +
|-
 +
| 24||131,36||{}||134,04||136,83
 +
|-
 +
| 25||126,31||{127}||128,78||131,36
 +
|-
 +
| 26||121,63||{}||123,92||126,31
 +
|-
 +
| 27||117,29||{}||119,42||121,63
 +
|-
 +
| 28||113,24||{}||115,23||117,29
 +
|-
 +
| 29||109,47||{}||111,32||113,24
 +
|-
 +
| 30||105,94||{<span style="border-bottom-style: double;">'''107'''</span>}||107,67||109,47
 +
|-
 +
| 31||102,63||{103}||104,25||105,94
 +
|-
 +
| 32||99,52||{101}||101,05||102,63
 +
|-
 +
| 33||96,59||{97}||98,03||99,52
 +
|-
 +
| 34||93,83||{}||95,19||96,59
 +
|-
 +
| 35||91,22||{}||92,51||93,83
 +
|-
 +
| 36||88,76||{89}||89,97||91,22
 +
|-
 +
| 37||86,42||{}||87,57||88,76
 +
|-
 +
| 38||84,21||{}||85,30||86,42
 +
|-
 +
| '''39'''||'''82,10'''||{83}||'''83,14'''||84,21
 +
|-
 +
| '''40'''||80,10||{}||'''81,09'''||'''82,10'''
 +
|-
 +
| 41||78,19||{79}||79,13||80,10
 +
|-
 +
| 42||76,37||{}||77,27||78,19
 +
|-
 +
| 43||74,64||{}||75,49||76,37
 +
|-
 +
| 44||72,98||{'''73'''}||73,80||74,64
 +
|-
 +
| 45||71,39||{}||72,18||72,98
 +
|-
 +
| 46||69,87||{}||70,62||71,39
 +
|-
 +
| 47||68,42||{}||69,14||69,87
 +
|-
 +
| 48||67,02||{}||67,71||68,42
 +
|-
 +
| 49||65,68||{}||66,34||67,02
 +
|-
 +
| 50||64,39||{}||65,03||65,68
 +
|-
 +
| 51||63,15||{}||63,77||64,39
 +
|-
 +
| 52||61,96||{}||62,55||63,15
 +
|-
 +
| 53||60,81||{61}||61,38||61,96
 +
|-
 +
| 54||59,71||{}||60,26||60,81
 +
|-
 +
| 55||58,64||{59}||59,17||59,71
 +
|-
 +
| 56||57,61||{}||58,12||58,64
 +
|-
 +
| 57||56,62||{}||57,11||57,61
 +
|-
 +
| 58||55,66||{}||56,14||56,62
 +
|-
 +
| 59||54,73||{}||55,19||55,66
 +
|-
 +
| 60||53,84||{}||54,28||54,73
 +
|-
 +
| 61||52,97||{53}||53,40||53,84
 +
|-
 +
| 62||52,13||{}||52,54||52,97
 +
|-
 +
| 63||51,31||{}||51,72||52,13
 +
|-
 +
| 64||50,52||{}||50,91||51,31
 +
|-
 +
| 65||49,76||{}||50,14||50,52
 +
|-
 +
| 66||49,01||{}||49,38||49,76
 +
|-
 +
| 67||48,29||{}||48,65||49,01
 +
|-
 +
| 68||47,59||{}||47,94||48,29
 +
|-
 +
| 69||46,91||{47}||47,25||47,59
 +
|-
 +
| 70||46,25||{}||46,58||46,91
 +
|}
 +
<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
Linia 188: Linia 1562:
 
<references>
 
<references>
  
<ref name="p1">Dokument nie stanowi prawa.</ref>
+
<ref name="PARIGP">Wikipedia, ''PARI/GP'', ([https://en.wikipedia.org/wiki/PARI/GP Wiki-en])</ref>
 
 
<ref name="p2">Inna nazwa: Europejska konwencja o&nbsp;ochronie praw człowieka i&nbsp;podstawowych wolności.</ref>
 
 
 
<ref name="p3">Dokument został ratyfikowany przez Polskę 19 stycznia 1993&nbsp;r. Polska ratyfikowała również (1 września 2014&nbsp;r.) protokół nr 13, dotyczący całkowitego zniesienia kary śmierci.</ref>
 
  
<ref name="p4">Dokument został ratyfikowany przez Polskę 18 marca 1977&nbsp;r.</ref>
+
<ref name="Czebyszew1">Wikipedia, ''Pafnuty Czebyszew (1821 - 1893)'', ([https://pl.wikipedia.org/wiki/Pafnutij_Czebyszow Wiki-pl]), ([https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B1%D1%8B%D1%88%D1%91%D0%B2,_%D0%9F%D0%B0%D1%84%D0%BD%D1%83%D1%82%D0%B8%D0%B9_%D0%9B%D1%8C%D0%B2%D0%BE%D0%B2%D0%B8%D1%87 Wiki-ru])</ref>
  
<ref name="p5">Dokument został ratyfikowany przez Polskę 7 czerwca 1991&nbsp;r. ([https://pl.wikipedia.org/wiki/Konwencja_o_prawach_dziecka#Konwencja_o_prawach_dziecka_a_stanowisko_Polski Wiki&#8209;pl])</ref>
+
<ref name="Czebyszew2">P. L. Chebyshev, ''Mémoire sur les nombres premiers'', J. de Math. Pures Appl. (1) 17 (1852), 366-390, ([http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf LINK])</ref>
  
<ref name="p6">Dokument został ratyfikowany 10 października 2009&nbsp;r. jako część Traktatu lizbońskiego. W&nbsp;Polsce obowiązuje z&nbsp;wyłączeniami wynikającymi z&nbsp;Protokołu brytyjskiego. ([https://pl.wikipedia.org/wiki/Karta_praw_podstawowych_Unii_Europejskiej#Karta_praw_podstawowych_w_Polsce Wiki&#8209;pl])</ref>
+
<ref name="Erdos">P. Erdos, ''Beweis eines Satzes von Tschebyschef'', Acta Litt. Sci. Szeged 5 (1932), 194-198, ([https://old.renyi.hu/~p_erdos/1932-01.pdf LINK1]), ([http://acta.bibl.u-szeged.hu/13396/1/math_005_194-198.pdf LINK2])</ref>
  
<ref name="p7">Art. 38. ''Rzeczpospolita Polska zapewnia każdemu człowiekowi prawną ochronę życia.''</ref>
+
<ref name="Dusart99">P. Dusart, ''The <math>k^{th}</math> prime is greater than <math>k (\ln k + \ln \ln k - 1)</math> for <math>k \geqslant 2</math>'', Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.</ref>
  
<ref name="p7a">Henryk Dąbrowski, ''Prawa człowieka czy prawa bandyty? Przyrodzona godność ludzka'', ([https://henryk-dabrowski.pl/index.php?title=Prawa_cz%C5%82owieka_czy_prawa_bandyty%3F_Przyrodzona_godno%C5%9B%C4%87_ludzka LINK])</ref>
+
<ref name="Dusart06">P. Dusart, ''Sharper bounds for <math>\psi</math>, <math>\theta</math>, <math>\pi</math>, <math>p_k</math>'', Rapport de recherche no. 1998-06, Université de Limoges, ([http://www.unilim.fr/laco/rapports/1998/R1998_06.pdf LINK])</ref>
  
<ref name="p8">W wywiadzie dla Rzeczpospolitej pan Janusz Kochanowski, Rzecznik Praw Obywatelskich, powiedział:<br/><br/>
+
<ref name="Dusart10">P. Dusart, ''Estimates of some functions over primes without R.H.'', (2010), ([https://arxiv.org/abs/1002.0442 LINK])</ref>
'' (...) ten styl zapisów prawnych jest wyrazem tendencji, która może, choć nie musi, okazać się niebezpieczna. Zawiera ona bowiem dążenie do jakiejś utopii prawnej, dzięki której wszyscy otrzymają nie tyle prawo do dążenia do szczęśliwości (jakie leży u&nbsp;podstaw konstytucji amerykańskiej), ile prawo do szczęścia przysługujące każdemu obywatelowi. Takie ujęcie jest utopijne, bo nie ma prawa, które mogłoby dać ludziom szczęście, dzieciom dobrych rodziców, osobom starszym i&nbsp;chorym szacunek i&nbsp;miłość, dać radość z&nbsp;pracy pracownikom i&nbsp;skłonić pracodawców, by ci ostatni pochylali się nad tymi pierwszymi z&nbsp;miłością niemalże ojcowską.''<br/><br/>
 
T.P. Terlikowski, ''Karta praw podstawowych z&nbsp;krainy utopii'', Rzeczpospolita, 29.11.2007&nbsp;r. ([https://www.rp.pl/kraj/art16444821-karta-praw-podstawowych-z-krainy-utopii LINK])<br/>&nbsp;</ref>
 
  
<ref name="p9">Wikipedia, ''Obrona konieczna'', ([https://pl.wikipedia.org/wiki/Obrona_konieczna#Konieczno%C5%9B%C4%87_obrony_koniecznej Wiki&#8209;pl])</ref>
+
<ref name="Dusart18">P. Dusart, ''Explicit estimates of some functions over primes'', Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.</ref>
  
<ref name="p10">Henryk Dąbrowski, ''Pomyłki sądowe – mordercy którym pozwolono zabić ponownie'', ([https://henryk-dabrowski.pl/index.php?title=Pomy%C5%82ki_s%C4%85dowe_%E2%80%93_mordercy_kt%C3%B3rym_pozwolono_zabi%C4%87_ponownie LINK])</ref>
+
<ref name="p1">Wikipedia, ''Twierdzenie o zbieżności ciągu monotonicznego'', ([https://pl.wikipedia.org/wiki/Twierdzenie\_o\_zbie\%C5\%BCno\%C5\%9Bci\_ci\%C4\%85gu\_monotonicznego LINK])</ref>
  
 
</references>
 
</references>

Wersja z 22:36, 18 wrz 2022

07.11.2021



Oznaczenia

Będziemy stosowali następujące oznaczenia:

[math]\displaystyle{ \mathbb{Z} }[/math] — zbiór liczb całkowitych
[math]\displaystyle{ \mathbb{Z}_+ }[/math] — zbiór liczb całkowitych dodatnich
[math]\displaystyle{ \mathbb{N} }[/math] — zbiór liczb naturalnych [math]\displaystyle{ \mathbb{N} = \mathbb{Z}_{+}\cup \left \{ 0 \right \} }[/math]
[math]\displaystyle{ \mathbb{R} }[/math] — zbiór liczb rzeczywistych
[math]\displaystyle{ d \mid n }[/math] — czytaj: d dzieli n ([math]\displaystyle{ d }[/math] jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ d \nmid n }[/math] — czytaj: d nie dzieli n ([math]\displaystyle{ d }[/math] nie jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ p_n }[/math][math]\displaystyle{ n }[/math]-ta liczba pierwsza
[math]\displaystyle{ \pi (n) }[/math] — ilość liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ P(n) }[/math] — iloczyn liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ \lfloor x \rfloor }[/math] — największa liczba całkowita nie większa od [math]\displaystyle{ x }[/math]
[math]\displaystyle{ \binom{n}{m} }[/math] — współczynnik dwumianowy (symbol Newtona), [math]\displaystyle{ \binom{n}{m} = \frac{n!}{m! \cdot (n - m) !} }[/math]
[math]\displaystyle{ \log (x) }[/math] — logarytm naturalny liczby [math]\displaystyle{ x \gt 0 }[/math]
[math]\displaystyle{ W_p (n) }[/math] — wykładnik z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ n }[/math]
[math]\displaystyle{ n }[/math] — oznacza zawsze liczbę naturalną
[math]\displaystyle{ p }[/math] — oznacza zawsze liczbę pierwszą


Przykładowe wartości niektórych wypisanych wyżej funkcji:

[math]\displaystyle{ p_2 = 3 }[/math],   [math]\displaystyle{ p_{10} = 29 }[/math],   [math]\displaystyle{ p_{100} = 541 }[/math]
[math]\displaystyle{ \pi (10) = 4 }[/math],   [math]\displaystyle{ \pi (100) = 25 }[/math],   [math]\displaystyle{ \pi (541) = 100 }[/math]
[math]\displaystyle{ P(5) = 30 }[/math],   [math]\displaystyle{ P(10) = 210 }[/math],   [math]\displaystyle{ P(50) = 614889782588491410 }[/math]
[math]\displaystyle{ \lfloor 1.2 \rfloor = 1 }[/math],   [math]\displaystyle{ \lfloor 2.8 \rfloor = 2 }[/math],   [math]\displaystyle{ \lfloor - 1.5 \rfloor = - 2 }[/math]
[math]\displaystyle{ \binom{5}{2} = 10 }[/math],   [math]\displaystyle{ \binom{10}{5} = 252 }[/math],   [math]\displaystyle{ \binom{9}{3} = 84 }[/math]
[math]\displaystyle{ W_2 (8) = 3 }[/math],   [math]\displaystyle{ W_3 (18) = 2 }[/math],   [math]\displaystyle{ W_7 (28) = 1 }[/math]


Funkcje te są zaimplementowane w PARI/GP[1]

[math]\displaystyle{ p_n }[/math] = prime(n)
[math]\displaystyle{ \pi (n) }[/math] = primepi(n)
[math]\displaystyle{ P(n) }[/math] = prodeuler(p=2, n, p)
[math]\displaystyle{ \lfloor x \rfloor }[/math] = floor(x)
[math]\displaystyle{ \binom{n}{m} }[/math] = binomial(n, m)
[math]\displaystyle{ W_p (n) }[/math] = valuation(n, p)



Twierdzenie Czebyszewa

W 1852 roku rosyjski matematyk Czebyszew[2][3] udowodnił, że dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest następujące oszacowanie


[math]\displaystyle{ a \cdot \frac{n}{\log n} \underset{n \geqslant 11}{\lt } \pi (n) \underset{n \geqslant 96098}{\lt } b \cdot \frac{n}{\log n} }[/math]


gdzie [math]\displaystyle{ a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022 }[/math] oraz [math]\displaystyle{ b = \tfrac{6}{5} a = 1.105550428 }[/math]


Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z nierównościami udowodnionymi przez Czebyszewa w teorii prawdopodobieństwa), a twierdzeniem Czebyszewa nazywany jest łatwy wniosek z tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math]

Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] nabrało nowego życia, gdy w 1936 Erdos[4] zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.


Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami[5][6][7][8] funkcji [math]\displaystyle{ \pi (n) }[/math] oraz [math]\displaystyle{ p_n }[/math]


[math]\displaystyle{ \frac{n}{\log n} \left( 1 + \frac{1}{\log n} \right) \underset{n \geqslant 599}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } \frac{n}{\log n} \left( 1 + \frac{1.28}{\log n} \right) }[/math]


[math]\displaystyle{ n (\log n + \log \log n - 1) \underset{n \geqslant 2}{\lt } p_n \underset{n \geqslant 6}{\lt } n (\log n + \log \log n) }[/math]


Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] oraz analogiczne oszacowanie dla funkcji [math]\displaystyle{ p_n }[/math].


Twierdzenie A1
Prawdziwe są następujące oszacowania:


[math]\displaystyle{ 0.72 \cdot n \log n \underset{n \geqslant 1}{\lt } p_n \underset{n \geqslant 3}{\lt } 2n \log n }[/math]


[math]\displaystyle{ \frac{2}{3} \cdot \frac{n}{\log n} \underset{n \geqslant 3}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } \frac{2 n}{\log n} }[/math]


Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.



Oszacowanie [math]\displaystyle{ p_n }[/math] od dołu i [math]\displaystyle{ \pi (n) }[/math] od góry

Rozpoczniemy od oszacowania liczby [math]\displaystyle{ \binom{2n}{n} }[/math]. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.

Twierdzenie A2
Niech [math]\displaystyle{ n, k \in \mathbb{N} }[/math]. Współczynnik dwumianowy [math]\displaystyle{ \binom{n}{k} }[/math] jest zawsze liczbą całkowitą dodatnią.

Dowód

Indukcja matematyczna. Ponieważ

[math]\displaystyle{ \binom{0}{0} = \binom{1}{0} = \binom{1}{1} = 1 }[/math]

to twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Zakładając prawdziwość twierdzenia dla wszystkich liczb całkowitych należących do przedziału [math]\displaystyle{ [1, n] }[/math] mamy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \binom{n + 1}{0} = \binom{n + 1}{n + 1} = 1 }[/math]

zaś dla [math]\displaystyle{ k }[/math] spełniającego warunek [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math], jest

[math]\displaystyle{ \binom{n + 1}{k} = \binom{n}{k} + \binom{n}{k - 1} }[/math]

Na podstawie założenia indukcyjnego liczby po prawej stronie są liczbami całkowitymi dodatnimi, zatem [math]\displaystyle{ \binom{n + 1}{k} }[/math] dla wszystkich wartości [math]\displaystyle{ k }[/math] jest liczbą całkowitą dodatnią. Co należało pokazać.


Twierdzenie A3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math] jest liczbą parzystą.

Dowód

Łatwo zauważamy, że

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1)!}{n \cdot (n - 1) ! \cdot n!} = 2 \cdot \binom{2 n - 1}{n - 1} }[/math]


Twierdzenie A4
Prawdziwe są następujące oszacowania współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math]

[math]\displaystyle{ 3.8^{n + 1} \underset{n \geqslant 80}{\lt } \binom{2 n}{n} \underset{n \geqslant 5}{\lt } 4^{n - 1} }[/math]
Dowód

Indukcja matematyczna. W przypadku lewej nierówności łatwo sprawdzamy, że [math]\displaystyle{ 3.8^{81} \lt \binom{160}{80} }[/math]. Zakładając prawdziwość nierówności dla [math]\displaystyle{ n \geqslant 80 }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot \frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)} \gt 3.8^{n + 1} \cdot 2 \cdot \left( 2 - \frac{1}{n + 1} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - \frac{1}{80 + 1} \right) \gt 3.8^{n + 1} \cdot 3.9753 \gt 3.8^{n + 2} }[/math]


Prawa nierówność jest prawdziwa dla [math]\displaystyle{ n = 5 }[/math]. Zakładając prawdziwość nierówności dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ \binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot \frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)} \lt 4^{n -1} \cdot 2 \cdot \left( 2 - \frac{1}{n + 1} \right) \lt 4^n }[/math]


Twierdzenie A5
Dla [math]\displaystyle{ n \geqslant 12 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt 3 n }[/math].

Dowód

Indukcja matematyczna. Dowód oprzemy na spostrzeżeniu, że wśród kolejnych sześciu liczb naturalnych [math]\displaystyle{ 6 k, 6 k + 1, 6 k + 2, 6 k + 3, 6 k + 4, 6 k + 5 }[/math] jedynie dwie: [math]\displaystyle{ 6 k + 1 }[/math] i [math]\displaystyle{ 6 k + 5 }[/math] mogą być pierwsze. Wynika stąd, że [math]\displaystyle{ p_{n + 2} \geqslant p_n + 6 }[/math] dla [math]\displaystyle{ n \geqslant 4 }[/math]. Dowód indukcyjny przeprowadzimy, stosując krok równy [math]\displaystyle{ 2 }[/math]. Twierdzenie jest oczywiście prawdziwe dla [math]\displaystyle{ n = 12 }[/math], bowiem [math]\displaystyle{ p_{12} = 37 \gt 3 \cdot 12 = 36 }[/math], podobnie [math]\displaystyle{ p_{13} = 41 \gt 3 \cdot 13 = 39 }[/math]. Zakładając prawdziwość twierdzenia dla wszystkich liczb naturalnych [math]\displaystyle{ k \in [12, n] }[/math], otrzymujemy dla [math]\displaystyle{ n + 2 }[/math]:

[math]\displaystyle{ p_{n + 2} \geqslant p_n + 6 \gt 3 n + 6 = 3 \cdot (n + 2) }[/math]

Uwaga: inaczej mówiąc, dowodzimy twierdzenie osobno dla [math]\displaystyle{ n }[/math] parzystych [math]\displaystyle{ (n \geqslant 12) }[/math] i osobno dla [math]\displaystyle{ n }[/math] nieparzystych [math]\displaystyle{ (n \geqslant 13) }[/math].


Twierdzenie A6
Ciąg [math]\displaystyle{ a_n = \left( 1 + \frac{1}{n} \right)^n }[/math] jest rosnący i ograniczony. Dla wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math].

Dowód

W artykule, w którym pojęcie współczynnika dwumianowego odgrywa główną rolę, nie mogło zabraknąć dowodu odwołującego się do wzoru dwumianowego

[math]\displaystyle{ \left ( x + y \right )^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k}y^{k} = \binom{n}{0} x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n}y^{n} }[/math]

gdzie [math]\displaystyle{ \binom{n}{k} = \frac{n!}{k! \cdot (n - k)!} }[/math].


Dowód opiera się na spostrzeżeniu, że [math]\displaystyle{ e = \sum_{k=0}^{\infty} \frac{1}{k!} = 2.718281828 \ldots }[/math], a wykorzystanie wzoru dwumianowego pozwala przekształcić wyrażenie [math]\displaystyle{ \left( 1 + \frac{1}{n} \right)^n }[/math] do postaci sumy z wyraźnie wydzielonym czynnikiem [math]\displaystyle{ \frac{1}{k!} }[/math]. Stosując wzór dwumianowy, możemy zapisać [math]\displaystyle{ n }[/math]-ty wyraz ciągu [math]\displaystyle{ (a_n) }[/math] w postaci

[math]\displaystyle{ a_n = \left( 1 + \frac{1}{n} \right)^n = }[/math]
[math]\displaystyle{ \quad \; = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} \frac{n!}{k! \cdot (n - k)!} \cdot \frac{1}{n^k} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n \cdot (n - 1) \cdot \ldots \cdot (n - (k - 1))}{n^k} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) }[/math]


Odpowiednio dla wyrazu [math]\displaystyle{ a_{n + 1} }[/math] mamy

[math]\displaystyle{ a_{n + 1} = \left( 1 + \frac{1}{n + 1} \right)^{n + 1} = }[/math]
[math]\displaystyle{ \qquad \: = 2 + \sum_{k=2}^{n + 1} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n + 1} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n + 1} \right) \gt }[/math]
[math]\displaystyle{ \qquad \: \gt 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n + 1} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n + 1} \right) \gt }[/math]
[math]\displaystyle{ \qquad \: \gt 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) = }[/math]
[math]\displaystyle{ \qquad \: = a_n }[/math]

Ostatnia nierówność jest prawdziwa, bo dla dowolnej liczby [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] jest [math]\displaystyle{ 1 - \frac{x}{n + 1} \gt 1 - \frac{x}{n} }[/math]

Zatem ciąg [math]\displaystyle{ (a_n) }[/math] jest rosnący. Musimy jeszcze wykazać, że jest ograniczony od góry. Pokazaliśmy wyżej, że wyraz [math]\displaystyle{ a_n }[/math] może być zapisany w postaci

[math]\displaystyle{ a_n = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) }[/math]


Ponieważ czynniki w nawiasach są dodatnie i mniejsze od jedności, to

[math]\displaystyle{ a_n \leqslant 2 + \sum_{k=2}^{n} \frac{1}{k!} = }[/math]
[math]\displaystyle{ \quad \; \leqslant 1 + 1 + \sum_{k=2}^{n} \frac{1}{2^{k-1}} = }[/math]
[math]\displaystyle{ \quad \; = 1 + \left ( 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}}\right ) = }[/math]
[math]\displaystyle{ \quad \; = 1 + \frac{1 - \left ( \frac{1}{2} \right )^{n}}{1 - \frac{1}{2}} = }[/math]
[math]\displaystyle{ \quad \; = 1 + 2 - \frac{1}{2^{n-1}} \lt }[/math]
[math]\displaystyle{ \quad \; \lt 3 }[/math]


Druga nierówność (nieostra) jest prawdziwa, bo dla [math]\displaystyle{ k \geqslant 2 }[/math] zachodzi oczywista nierówność [math]\displaystyle{ k! \geqslant 2^{k - 1} }[/math]. Do sumy ujętej w nawiasy zastosowaliśmy wzór na sumę częściową szeregu geometrycznego.

Ponieważ [math]\displaystyle{ a_1 = 2 }[/math], to prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math]. Zauważmy jeszcze (już bez dowodu), że ciąg [math]\displaystyle{ (a_n) }[/math], jako rosnący i ograniczony od góry[9], jest zbieżny. Granicą ciągu [math]\displaystyle{ (a_n) }[/math] jest liczba niewymierna [math]\displaystyle{ e = 2.718281828 \ldots }[/math], która jest podstawą logarytmu naturalnego.


Twierdzenie A7
Prawdziwe są następujące oszacowania:

[math]\displaystyle{ n^n \underset{n \geqslant 13}{\lt } p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{\lt } (n \log n)^n }[/math]
Dowód

Indukcja matematyczna. Udowodnimy tylko oszacowanie od dołu. Dowód oszacowania od góry przedstawimy po zakończeniu dowodu twierdzenia A1. Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 13 }[/math]. Zakładając prawdziwość twierdzenia dla liczb naturalnych [math]\displaystyle{ k \in [13, n] }[/math] mamy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n p_{n + 1} \gt n^n \cdot p_{n + 1} \gt n^n \cdot 3 (n + 1) \gt n^n \cdot \left( 1 + \frac{1}{n} \right)^n \cdot (n + 1) = (n + 1)^{n + 1} }[/math]

Gdzie skorzystaliśmy z faktu, że [math]\displaystyle{ p_n \gt 3 n }[/math] dla [math]\displaystyle{ n \geqslant 12 }[/math] oraz z właściwości rosnącego ciągu [math]\displaystyle{ a_n = \left( 1 + \frac{1}{n} \right)^n \lt e = 2.718281828 \ldots \lt 3 }[/math] (zobacz twierdzenie A6).


Twierdzenie A8
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \frac{P (2 n)}{P (n)} \lt 4^{n - 1} }[/math].

Dowód

Rozważmy współczynnik dwumianowy

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!} }[/math]

Każda liczba pierwsza należąca do przedziału [math]\displaystyle{ [n + 1, 2 n] }[/math] występuje w liczniku wypisanego wyżej ułamka i nie występuje w mianowniku. Wynika stąd oszacowanie

[math]\displaystyle{ \binom{2 n}{n} = C \cdot \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} \gt \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} = \frac{P (2 n)}{P (n)} }[/math]

Zauważmy, że wypisany w powyższej nierówności iloczyn liczb pierwszych jest liczbą nieparzystą. Ponieważ współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math] jest dodatnią liczbą całkowitą parzystą, zatem również czynnik [math]\displaystyle{ C \geqslant 2 }[/math] musi być dodatnią liczbą całkowitą parzystą. Łącząc uzyskaną nierówność z oszacowaniem z twierdzenia A4, otrzymujemy natychmiast:

[math]\displaystyle{ \frac{P (2 n)}{P (n)} \lt \binom{2 n}{n} \lt 4^{n - 1} }[/math]

Dla [math]\displaystyle{ n = 2, 3, 4 }[/math] sprawdzamy uzyskany rezultat bezpośrednio.


Twierdzenie A9
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ P(n) \lt 4^n }[/math]

Dowód

Indukcja matematyczna. Oszacowanie [math]\displaystyle{ P(n) \lt 4^n }[/math] jest prawdziwe dla [math]\displaystyle{ n = 1, 2 }[/math]. Zakładając prawdziwość oszacowania dla wszystkich liczb całkowitych nie większych od [math]\displaystyle{ n }[/math], dla [math]\displaystyle{ n + 1 }[/math] rozpatrzymy dwa przypadki. Jeżeli [math]\displaystyle{ n + 1 = 2 k + 1 }[/math] jest liczbą nieparzystą większą lub równą [math]\displaystyle{ 3 }[/math], to mamy

[math]\displaystyle{ P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot \frac{P (2 k + 2)}{P (k + 1)} \lt 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1} }[/math]

gdzie skorzystaliśmy z założenia indukcyjnego i oszacowania z twierdzenia A8.

Jeżeli [math]\displaystyle{ n + 1 = 2 k }[/math] jest liczbą parzystą większą lub równą [math]\displaystyle{ 4 }[/math], to mamy

[math]\displaystyle{ P(n + 1) = P (2 k) = P (k) \cdot \frac{P (2 k)}{P (k)} \lt 4^k \cdot 4^{k - 1} = 4^{2 k - 1} \lt 4^{2 k} = 4^{n + 1} }[/math]

gdzie ponownie skorzystaliśmy z założenia indukcyjnego i oszacowania z twierdzenia A8.


Twierdzenie A10
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt \frac{1}{2 \log 2} \cdot n \log n }[/math].

Dowód

Ponieważ z definicji [math]\displaystyle{ P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n }[/math], to korzystając z oszacowań uzyskanych w twierdzeniach A5 i A8 dostajemy dla [math]\displaystyle{ n \geqslant 13 }[/math]

[math]\displaystyle{ n^n \lt p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) \lt 4^{p_n} }[/math]

Logarytmując obie strony nierówności, mamy

[math]\displaystyle{ n \log n \lt p_n \cdot \log 4 }[/math]

Skąd natychmiast wynika dowodzone oszacowanie

[math]\displaystyle{ p_n \gt \frac{1}{2 \log 2} \cdot n \log n \gt 0.72 \cdot n \log n }[/math]

Prawdziwość powyższej nierówności dla [math]\displaystyle{ n \leqslant 12 }[/math] sprawdzamy bezpośrednio.


Twierdzenie A11
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (2 n) - \pi (n) \lt 2 \log 2 \cdot \frac{n}{\log n} }[/math].

Dowód

Każda liczba pierwsza należąca do przedziału [math]\displaystyle{ [n + 1, 2 n] }[/math] jest dzielnikiem współczynnika dwumianowego

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!} }[/math]

bowiem dzieli licznik i nie dzieli mianownika. Ponieważ dla każdej z tych liczb jest [math]\displaystyle{ p \gt n }[/math], to

[math]\displaystyle{ n^{\pi (2 n) - \pi (n)} \lt \prod_{n \lt p_i \leqslant 2 n} p_i \lt \binom{2 n}{n} \lt 4^n }[/math]

Ostatnia nierówność wynika z twierdzenia A4. Logarytmując, dostajemy

[math]\displaystyle{ [\pi (2 n) - \pi (n)] \cdot \log n \lt 2 n \cdot \log 2 }[/math]

Czyli

[math]\displaystyle{ \pi (2 n) - \pi (n) \lt 2 \log 2 \cdot \frac{n}{\log n} }[/math]


Twierdzenie A12
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \lt 2 \cdot \frac{n}{\log n} }[/math].

Dowód

Indukcja matematyczna. Oszacowanie [math]\displaystyle{ \pi (n) \lt 2 \cdot \frac{n}{\log n} }[/math] jest prawdziwe dla [math]\displaystyle{ 2 \leqslant n \leqslant 62 }[/math], co łatwo sprawdzamy przez bezpośrednie wyliczenie. W programie GP/PARI wystarczy wpisać polecenie:

for(n=2, 62, if( primepi(n) >= 2 * n/log(n), print(n) ))

Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych należących do przedziału [math]\displaystyle{ [2, n] }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

a) jeżeli [math]\displaystyle{ n + 1 }[/math] jest liczbą parzystą, to:

[math]\displaystyle{ \pi (n + 1) = \pi (n) = 2 \cdot \frac{n}{\log n} \lt 2 \cdot \frac{n + 1}{\log (n + 1)} }[/math]

ostania nierówność wynika ze spostrzeżenia, że funkcja [math]\displaystyle{ \frac{x}{\log x} }[/math] jest funkcją rosnącą dla [math]\displaystyle{ x \gt e \approx 2.71828 }[/math]. Można też wykorzystać oszacowanie [math]\displaystyle{ \log(1 + x) \lt x }[/math] prawdziwe dla [math]\displaystyle{ x \gt 0 }[/math].

b) jeżeli [math]\displaystyle{ n + 1 }[/math] jest liczbą nieparzystą, to możemy położyć [math]\displaystyle{ n + 1 = 2 k + 1 }[/math] i otrzymujemy:

[math]\displaystyle{ \pi (n + 1) = \pi (2 k + 1) = }[/math]
[math]\displaystyle{ \quad = \pi (2 k + 2) = }[/math]
[math]\displaystyle{ \quad = \pi (k + 1) + [\pi (2 k + 2) - \pi (k + 1)] \lt }[/math]
[math]\displaystyle{ \quad \lt 2 \cdot \frac{k + 1}{\log (k + 1)} + 2 \log 2 \cdot \frac{k + 1}{\log (k + 1)} = }[/math]
[math]\displaystyle{ \quad = (1 + \log 2) \cdot \frac{2 k + 2}{\log (k + 1)} \lt }[/math]
[math]\displaystyle{ \quad \lt \left[ 1.7 \cdot \frac{2 k + 2}{\log (k + 1)} \cdot \frac{\log (2 k + 1)}{2 k + 1} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} \lt }[/math]
[math]\displaystyle{ \quad \lt \left[ 1.7 \cdot \frac{2 k + 2}{2 k + 1} \cdot \frac{\log (2 k + 2)}{\log (k + 1)} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} \lt }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot \left( 1 + \frac{1}{2 k + 1} \right) \cdot \frac{\log (k + 1) + \log 2}{\log (k + 1)} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} = }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot \left( 1 + \frac{1}{2 k + 1} \right) \cdot \left( 1 + \frac{\log 2}{\log (k + 1)} \right) \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} \lt }[/math]
[math]\displaystyle{ \quad \lt 2 \cdot \frac{2 k + 1}{\log (2 k + 1)} = }[/math]
[math]\displaystyle{ \quad = 2 \cdot \frac{n + 1}{\log (n + 1)} }[/math]

Ostatnia nierówność wynika z faktu, że czynnik w nawiasie kwadratowym maleje wraz ze wzrostem [math]\displaystyle{ k }[/math] i dla [math]\displaystyle{ k = 63 }[/math] osiąga wartość [math]\displaystyle{ 1.9989 \ldots }[/math]



Wykładnik z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} }[/math].


Definicja A13
Funkcję [math]\displaystyle{ \lfloor x \rfloor }[/math] (czytaj: całość z [math]\displaystyle{ x }[/math]) definiujemy jako największą liczbę całkowitą nie większą od [math]\displaystyle{ x }[/math]. Operacyjnie możemy ją zdefiniować następująco: niech liczby [math]\displaystyle{ x, \varepsilon \in \mathbb{R} }[/math], liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math], jeżeli [math]\displaystyle{ x = k + \varepsilon }[/math], to [math]\displaystyle{ \lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k }[/math].


Twierdzenie A14
Dla [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], [math]\displaystyle{ x \in \mathbb{R} }[/math] jest [math]\displaystyle{ \left \lfloor \frac{x}{n} \right\rfloor = \left \lfloor \frac{\left \lfloor x \right \rfloor}{n} \right \rfloor }[/math].

Dowód

Korzystając z definicji A13, przedstawmy liczbę w postaci [math]\displaystyle{ x = k + \varepsilon }[/math], gdzie [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math].

Z twierdzenia o dzieleniu z resztą liczbę [math]\displaystyle{ k }[/math] możemy zapisać w postaci [math]\displaystyle{ k = q n + r }[/math], gdzie [math]\displaystyle{ 0 \leqslant r \leqslant n - 1 }[/math], mamy zatem [math]\displaystyle{ x = q n + r + \varepsilon }[/math]. Ponieważ [math]\displaystyle{ 0 \leqslant r + \varepsilon \lt n }[/math], to po podzieleniu przez [math]\displaystyle{ n }[/math] dostajemy

[math]\displaystyle{ 0 \leqslant \frac{r + \varepsilon}{n} \lt 1 }[/math]

czyli

[math]\displaystyle{ \left \lfloor \frac{x}{n} \right \rfloor = \left \lfloor \frac{qn + r + \varepsilon }{n} \right \rfloor = \left \lfloor q + \frac{r + \varepsilon }{n} \right \rfloor = q }[/math]

Podobnie, ponieważ [math]\displaystyle{ 0 \leqslant r \lt n }[/math], to [math]\displaystyle{ 0 \leqslant \frac{r}{n} \lt 1 }[/math] i otrzymujemy

[math]\displaystyle{ \left\lfloor \frac{\left \lfloor x \right\rfloor}{n} \right\rfloor = \left \lfloor \frac{\left \lfloor qn + r + \varepsilon \right \rfloor}{n} \right \rfloor = \left \lfloor \frac{qn + r}{n} \right \rfloor = \left \lfloor q + \frac{r}{n} \right \rfloor = q }[/math]


Twierdzenie A15
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Liczba [math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor }[/math] przyjmuje wartości [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math].

Dowód

Niech [math]\displaystyle{ x = k + \varepsilon }[/math], gdzie [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math]. Mamy

[math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor = \lfloor 2 k + 2 \varepsilon \rfloor - 2 \lfloor k + \varepsilon \rfloor = 2 k + \lfloor 2 \varepsilon \rfloor - 2 k -2 \lfloor \varepsilon \rfloor = \lfloor 2 \varepsilon \rfloor }[/math]

Ponieważ [math]\displaystyle{ 0 \leqslant 2 \varepsilon \lt 2 }[/math], zatem [math]\displaystyle{ \lfloor 2 \varepsilon \rfloor = 0 }[/math] lub [math]\displaystyle{ \lfloor 2 \varepsilon \rfloor = 1 }[/math].


Bardzo istotnym rezultatem (z punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n! }[/math]


Definicja A16
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą, zaś [math]\displaystyle{ a }[/math] dowolną liczbą naturalną. Jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ a }[/math], to powiemy, że funkcja [math]\displaystyle{ W_p (n) }[/math] przyjmuje wartość [math]\displaystyle{ a }[/math]. Fakt ten możemy zapisać następująco

[math]\displaystyle{ W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n }[/math]


Przykład A17
[math]\displaystyle{ W_5 (100) = 2 }[/math],   [math]\displaystyle{ W_7 (42) = 1 }[/math],   ponieważ [math]\displaystyle{ 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11 }[/math], to [math]\displaystyle{ W_3 (11!) = 4 }[/math]


Wprost z definicji funkcji [math]\displaystyle{ W_p (n) }[/math] wynikają następujące właściwości:


Twierdzenie A18

Podstawowe własności funkcji [math]\displaystyle{ W_p (n) }[/math]

  1. [math]\displaystyle{ \;\; W_p (n \cdot m) = W_p (n) + W_p (m) }[/math]
  2. [math]\displaystyle{ \;\; W_p (n \cdot p^a) = a + W_p (n) }[/math]
  3. [math]\displaystyle{ \;\; W_{p}\left ( \frac{n}{m} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad \frac{n}{m}\in \mathbb{Z}_{+} }[/math]
  4. [math]\displaystyle{ \;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0 }[/math]


Twierdzenie A19
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Ilość liczb podzielnych przez [math]\displaystyle{ p }[/math] i występujących w ciągu [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] wynosi [math]\displaystyle{ r = \left\lfloor \frac{n}{p} \right\rfloor }[/math].

Dowód

Wśród liczb naturalnych [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] istnieje pewna ilość liczb podzielnych przez [math]\displaystyle{ p }[/math]. Liczby te możemy z łatwością wypisać, będą nimi

[math]\displaystyle{ 1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, r \cdot p }[/math]

Gdzie [math]\displaystyle{ r }[/math] jest największą liczbą całkowitą nie większą niż [math]\displaystyle{ \frac{n}{p} }[/math], czyli [math]\displaystyle{ r = \left\lfloor \frac{n}{p} \right\rfloor }[/math].


Przykład A20
Ilość liczb całkowitych dodatnich podzielnych przez [math]\displaystyle{ 5 }[/math] i nie większych od [math]\displaystyle{ 63 }[/math] wynosi [math]\displaystyle{ \left\lfloor \frac{63}{5} \right\rfloor = 12 }[/math]. Liczby te to [math]\displaystyle{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 }[/math].


Twierdzenie A19 umożliwi nam określenie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Twierdzenie A21
Liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor }[/math]

Dowód

Dowód sprowadza się do znalezienia wartości funkcji [math]\displaystyle{ W_p (n!) }[/math].

[math]\displaystyle{ W_p (n!) = W_p (1 \cdot 2 \cdot 3 \cdot \ldots \cdot n) = W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \cdot p \right) }[/math]

Pozostawiliśmy jedynie czynniki podzielne przez [math]\displaystyle{ p }[/math] (czynniki niepodzielne przez [math]\displaystyle{ p }[/math] nie dają wkładu do wykładnika, z jakim [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]), wyłączając czynnik [math]\displaystyle{ p }[/math] z każdej z liczb [math]\displaystyle{ p, 2 p, 3 p, \ldots, \left\lfloor \frac{n}{p} \right\rfloor \cdot p }[/math] mamy

[math]\displaystyle{ W_p (n!) = W_p \left( p^{\lfloor n / p \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \right) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \right) }[/math]

Otrzymane wyrażenie przekształcamy analogicznie jak wyżej

[math]\displaystyle{ W_p (n!) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{\lfloor n / p \rfloor}{p} \right\rfloor \cdot p \right) }[/math]

Z twierdzenia A14 wiemy, że dla [math]\displaystyle{ x \in \mathbb{R} }[/math] i [math]\displaystyle{ n \in \mathbb{Z}_{+} }[/math] jest:

[math]\displaystyle{ \left\lfloor \frac{\lfloor x \rfloor}{n} \right\rfloor = \left \lfloor \frac{x}{n} \right \rfloor }[/math]

zatem

[math]\displaystyle{ W_p (n!) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \cdot p \right) = }[/math]
[math]\displaystyle{ \;\, = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p^{\lfloor n / p^2 \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \right) = }[/math]
[math]\displaystyle{ \;\, = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \right) }[/math]

Oczywiście opisaną wyżej procedurę możemy powtarzać wielokrotnie. Zakończenie następuje wtedy, gdy wykładnik liczby pierwszej [math]\displaystyle{ p }[/math] osiągnie wartość tak dużą, że [math]\displaystyle{ \left\lfloor \frac{n}{p^k} \right\rfloor = 0 }[/math]. Ponieważ nie wiemy, jaka to wartość (choć możemy ją oszacować), to stosujemy zapis

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor }[/math]

zdając sobie sprawę z tego, że w rzeczywistości sumowanie obejmuje jedynie skończoną liczbę składników.


Uwaga A22
Należy zauważyć, że liczba sumowań jest skończona, bowiem bardziej precyzyjnie możemy powyższy wzór zapisać w postaci

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^B \left\lfloor \frac{n}{p^k} \right\rfloor }[/math]

gdzie [math]\displaystyle{ B = \lfloor \log_2 (n) \rfloor }[/math]. Jest tak dlatego, że jeżeli [math]\displaystyle{ k }[/math] przekroczy [math]\displaystyle{ \lfloor \log_2 (n) \rfloor }[/math], to dla liczby pierwszej [math]\displaystyle{ p = 2 }[/math], jak również dla wszystkich innych liczb pierwszych mamy

[math]\displaystyle{ \frac{n}{p^k} \lt 1 }[/math]

czyli dla [math]\displaystyle{ k \gt B }[/math] sumujemy same zera.


Przykład A23
Niech [math]\displaystyle{ n = 30 }[/math], [math]\displaystyle{ p = 3 }[/math]

[math]\displaystyle{ W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3 \cdot 6 \cdot 9) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + 1 = }[/math]
[math]\displaystyle{ \quad = 14 }[/math]

Co jest zgodne ze wzorem:

[math]\displaystyle{ W_3 (30!) = \left\lfloor \frac{30}{3} \right\rfloor + \left\lfloor \frac{30}{3^2} \right\rfloor + \left\lfloor \frac{30}{3^3} \right\rfloor = 10 + 3 + 1 = 14 }[/math]



Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci [math]\displaystyle{ \binom{2 n}{n} }[/math]. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.


Twierdzenie A24
Liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] z wykładnikiem

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left( \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right) }[/math]
Dowód

Ponieważ [math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] z wykładnikiem:

[math]\displaystyle{ W_p \left( \binom{2 n}{n} \right) = W_p ((2 n) !) - 2 W_p (n!) = \sum^{\infty}_{k = 1} \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \sum^{\infty}_{k = 1} \left \lfloor \frac{n}{p^{k}} \right \rfloor = \sum^{\infty}_{k = 1} \left( \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right) }[/math]



Twierdzenie A25
Liczby pierwsze spełniające warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math] występują w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].

Dowód

Jeżeli [math]\displaystyle{ p \gt \sqrt{2 n} }[/math], to dla [math]\displaystyle{ k \geqslant 2 }[/math] mamy [math]\displaystyle{ p^k \geqslant p^2 \gt 2 n \gt n }[/math]. Zatem dla [math]\displaystyle{ k \geqslant 2 }[/math] jest [math]\displaystyle{ \left\lfloor \frac{2 n}{p^k} \right\rfloor = \left\lfloor \frac{n}{p^k} \right\rfloor = 0 }[/math] i otrzymujemy

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = \left \lfloor \frac{2 n}{p} \right \rfloor - 2 \left \lfloor \frac{n}{p} \right \rfloor }[/math]

Na mocy twierdzenia A15 (dla [math]\displaystyle{ x = \tfrac{n}{p} }[/math]), dostajemy natychmiast, że [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].


Twierdzenie A26
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Jeżeli [math]\displaystyle{ p^a \big\rvert \binom{2 n}{n} }[/math], to [math]\displaystyle{ p^a \leqslant 2 n }[/math].

Dowód

Niech [math]\displaystyle{ u }[/math] oznacza wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze. Mamy

[math]\displaystyle{ u = \sum_{k = 1}^{\infty} \left( \left\lfloor \frac{2 n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor \right) }[/math]

gdzie sumowanie przebiega w rzeczywistości od [math]\displaystyle{ k = 1 }[/math] do [math]\displaystyle{ k = s }[/math], a wartość liczby [math]\displaystyle{ s }[/math] wynika z warunku [math]\displaystyle{ p^s \leqslant 2 n \lt p^{s + 1} }[/math]. Ponieważ sumowane wyrazy są równe [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy natychmiast oszacowanie [math]\displaystyle{ u \leqslant s }[/math], skąd wynika następujący ciąg nierówności

[math]\displaystyle{ p^a \leqslant p^u \leqslant p^s \leqslant 2 n }[/math]



Oszacowanie [math]\displaystyle{ p_n }[/math] od góry i [math]\displaystyle{ \pi (n) }[/math] od dołu

Z twierdzenia A26 wynika natychmiast


Twierdzenie A27
Niech [math]\displaystyle{ \binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math] będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej [math]\displaystyle{ q_i }[/math], [math]\displaystyle{ i = 1, \ldots, s }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ q^{\alpha_i}_i \leqslant 2 n }[/math].

Uwaga: w powyższym twierdzeniu [math]\displaystyle{ q_i }[/math] nie oznacza [math]\displaystyle{ i }[/math]-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie [math]\displaystyle{ i }[/math] ze zboru liczb pierwszych [math]\displaystyle{ q_1, \ldots q_s }[/math], które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera.


Twierdzenie A28
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest następujące oszacowanie współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math]

[math]\displaystyle{ \binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]
Dowód

Dowód wynika natychmiast z twierdzenia A27, bowiem

[math]\displaystyle{ \binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]


Twierdzenie A29
Dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \pi (n) \gt \frac{2}{3} \cdot \frac{n}{\log n} }[/math]
Dowód

W twierdzeniu A4 oszacowaliśmy współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math]. Przepiszemy, to twierdzenie w postaci bardziej czytelnej dla potrzeb tego dowodu

[math]\displaystyle{ \left( \sqrt{3.8} \right)^{2 n} \lt \left( \sqrt{3.8} \right)^{2 n + 1} \lt \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} \lt \binom{2 n}{n} }[/math]

Nierówności te są prawdziwe dla [math]\displaystyle{ n \geqslant 80 }[/math]. Z twierdzenia A28 mamy

[math]\displaystyle{ \left( \sqrt{3.8} \right)^{2 n} \lt \left( \sqrt{3.8} \right)^{2 n + 1} \lt \binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]

Łącząc odpowiednie oszacowania współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math] od góry z odpowiednimi oszacowaniami od dołu, dostajemy

[math]\displaystyle{ (2 n + 1)^{\pi (2 n + 1)} \gt \left( \sqrt{3.8} \right)^{2 n + 1} }[/math]
[math]\displaystyle{ (2 n)^{\pi (2 n)} \gt \left( \sqrt{3.8} \right)^{2 n} }[/math]

Zatem zarówno dla parzystych, jak i nieparzystych liczb [math]\displaystyle{ m \geqslant 160 }[/math] jest

[math]\displaystyle{ m^{\pi (m)} \gt \left( \sqrt{3.8} \right)^m }[/math]
[math]\displaystyle{ \pi (m) \cdot \log m \gt m \cdot \log \left( \sqrt{3.8} \right) }[/math]

Czyli

[math]\displaystyle{ \pi (m) \gt \frac{1}{2} \cdot \log \left ( 3.8 \right ) \cdot \frac{m}{\log m} \gt 0.6675 \cdot \frac{m}{\log m} \gt \frac{2}{3} \cdot \frac{m}{\log m} }[/math]

Dla [math]\displaystyle{ m = 3, 4, \ldots, 159 }[/math] prawdziwość nierówności sprawdzamy przez bezpośrednie wyliczenie. W programie GP/PARI wystarczy wykonać polecenie

for( n=2, 200, if( primepi(n) <= 2/3*n/log(n), print(n) ))


Twierdzenie A30
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 2 n \log n }[/math]

Dowód

Z twierdzenia A29 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] zachodzi [math]\displaystyle{ \pi (n) \gt \frac{2}{3} \cdot \frac{n}{\log n} }[/math]. Kładąc [math]\displaystyle{ n = p_s }[/math] otrzymujemy dla [math]\displaystyle{ s \geqslant 2 }[/math]

[math]\displaystyle{ s = \pi (p_s) \gt \frac{2}{3} \cdot \frac{p_s}{\log p_s} }[/math]

Rozważmy funkcję

[math]\displaystyle{ \frac{2}{3} \cdot \frac{x}{\log x} - x^{3 / 4} = \frac{2}{3} \cdot \frac{x^{3 / 4}}{\log x} \left( x^{1 / 4} - \frac{3}{2} \cdot \log x \right) }[/math]

Zamieszczony niżej obrazek przedstawia wykres funkcji [math]\displaystyle{ x^{1 / 4} - \tfrac{3}{2} \cdot \log x }[/math]

Wpisując w PARI/GP polecenie

solve(x=10^4, 10^5, x^(1/4) - 3/2*log(x))

łatwo sprawdzamy, że funkcja [math]\displaystyle{ x^{1 / 4} - \tfrac{3}{2} \cdot \log x }[/math] przecina oś [math]\displaystyle{ OX }[/math] w punkcie [math]\displaystyle{ x = 83499.136 \ldots }[/math] Wynika stąd, że dla [math]\displaystyle{ x \gt 83499.14 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \frac{2}{3} \cdot \frac{x}{\log x} \gt x^{3 / 4} }[/math]

Zatem możemy napisać

[math]\displaystyle{ s = \pi (p_s) \gt \frac{2}{3} \cdot \frac{p_s}{\log p_s} \gt (p_s)^{3 / 4} }[/math]

Co oznacza, że dla [math]\displaystyle{ s \geqslant 8153 }[/math] (bo [math]\displaystyle{ p_{8153} = 83537 \gt 83499.14 }[/math]) mamy [math]\displaystyle{ p_s \lt s^{4 / 3} }[/math] i wpisując w PARI/GP polecenie

for(n=1, 10^4, if( prime(n) >= n^(4/3), print(n) ))

sprawdzamy, że otrzymane oszacowanie [math]\displaystyle{ p_s \lt s^{4 / 3} }[/math] jest prawdziwe dla [math]\displaystyle{ s \geqslant 255 }[/math]. Wykorzystując ten rezultat i szacując po raz drugi dostajemy dla [math]\displaystyle{ s \geqslant 255 }[/math]

[math]\displaystyle{ p_s \lt \frac{3}{2} \cdot s \cdot \log p_s \lt \frac{3}{2} \cdot s \cdot \log s^{4 / 3} = 2 s \cdot \log s }[/math]

Ponownie w GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla [math]\displaystyle{ s \geqslant 3 }[/math]

for( s=1, 300, if( prime(s) >= 2*s*log(s), print(s) ))






Dowód twierdzenia A30 kończy dowód całego twierdzenia A1. Możemy teraz dokończyć dowód twierdzenia A7 i pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n \lt (n \log n)^n }[/math]
Dowód

Indukcja matematyczna. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 3 }[/math]. Zakładając prawdziwość twierdzenia dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n p_{n + 1} \lt (n \log n)^n \cdot p_{n + 1} \lt }[/math]
[math]\displaystyle{ \quad \lt n^n \cdot (\log n)^n \cdot 2 (n + 1) \log (n + 1) \leqslant }[/math]
[math]\displaystyle{ \quad \leqslant n^n \cdot \left( 1 + \frac{1}{n} \right)^n \cdot (n + 1) \cdot (\log n)^n \cdot \log (n + 1) \lt }[/math]
[math]\displaystyle{ \quad \lt (n + 1)^{n + 1} \cdot [\log (n + 1)]^n \cdot \log (n + 1) = }[/math]
[math]\displaystyle{ \quad = [(n + 1) \cdot \log (n + 1)]^{n + 1} }[/math]

Gdzie skorzystaliśmy z twierdzenia A30 oraz z faktu, że ciąg [math]\displaystyle{ a_n = \left( 1 + \frac{1}{n} \right)^n }[/math] jest ciągiem ograniczonym [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math] (zobacz twierdzenie A6).



Uwagi do dowodu

Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i udowodnić


Twierdzenie A31
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_n \lt 1.875 \cdot n \log n }[/math]
Dowód

Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] zachodzi [math]\displaystyle{ \pi (n) \gt \frac{2}{3} \cdot \frac{n}{\log n} }[/math]. Kładąc [math]\displaystyle{ n = p_s }[/math], otrzymujemy dla [math]\displaystyle{ s \geqslant 2 }[/math]

[math]\displaystyle{ s = \pi (p_s) \gt \frac{2}{3} \cdot \frac{p_s}{\log p_s} \gt (p_s)^{4 / 5} }[/math]

Ostatnia nierówność wynika z faktu, że dla [math]\displaystyle{ x \gt 7572437.223 \ldots }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \frac{2}{3} \cdot \frac{x}{\log x} \gt x^{4 / 5} }[/math]

Zatem dla [math]\displaystyle{ s \geqslant 512830 }[/math] (bo [math]\displaystyle{ p_{512830} = 7572449 \gt 7572437.223 \ldots }[/math]) mamy [math]\displaystyle{ p_s \lt s^{5 / 4} }[/math] i wpisując w PARI/GP polecenie

for(s=1, 520000, if( prime(s) >= s^(5/4), print(s) ))

sprawdzamy, że otrzymane oszacowanie [math]\displaystyle{ p_s \lt s^{5 / 4} }[/math] jest prawdziwe dla [math]\displaystyle{ s \geqslant 13760 }[/math]. Wykorzystując ten rezultat i szacując po raz drugi, dostajemy dla [math]\displaystyle{ s \geqslant 13760 }[/math]

[math]\displaystyle{ p_s \lt \frac{3}{2} \cdot s \cdot \log p_s \lt \frac{3}{2} \cdot s \cdot \log s^{5 / 4} = 1.875 \cdot s \cdot \log s }[/math]

Ponownie w GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla [math]\displaystyle{ s \geqslant 3 }[/math]:

for(s=1, 15000, if( prime(s)>=1.875*s*log(s), print(s) ))


Twierdzenie A32
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) \lt 1.733 \cdot \frac{n}{\log n} }[/math]
Dowód

Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest

[math]\displaystyle{ \pi (n) \gt \frac{2}{3} \cdot \frac{n}{\log n} \gt n^{4 / 5} }[/math]

Ostatnia nierówność wynika z faktu, że dla [math]\displaystyle{ x \gt 7572437.223 \ldots }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \frac{2}{3} \cdot \frac{x}{\log x} \gt x^{4 / 5} }[/math]

Korzystając z twierdzenia A9 możemy napisać ciąg nierówności

[math]\displaystyle{ 4^n \gt P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} \gt \pi (n)^{\pi (n)} \gt (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5} }[/math]

skąd otrzymujemy, że dla [math]\displaystyle{ n \geqslant 7572438 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) \lt 1.733 \cdot \frac{n}{\log n} }[/math]

W GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 2 }[/math]

for(n=2, 8*10^6, if( primepi(n) >= 1.733*n/log(n), print(n) ))


Uwaga A33
Dowód twierdzenia A31 wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja prime(n). Analogiczna sytuacja miała miejsce w przypadku twierdzenia A32 – tam musieliśmy wielokrotnie wywoływać funkcję primepi(n). Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy Test1(n) i Test2(n) wywołane z parametrami n = 520000 i odpowiednio n = 8*10^6 odpowiadają poleceniom:

for(s=1, 520000, if( prime(s) >= s^(5/4), print(s) ))
for(n=2, 8*10^6, if( primepi(n) >= 1.733*n/log(n), print(n) ))

ale wykonywane są znacznie szybciej.

Test1(n)=
\\test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
\\bez bezpośredniego odwoływania się do funkcji prime(k)
{local(p, k);
k=1;
p=2;
while(k <= n,
      if( p >= k^(5/4), print(k) );
      k = k + 1;
      p = nextprime(p+1); \\liczba p ma wartość prime(k)
     )
}
Test2(n)=
\\test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n 
\\bez bezpośredniego odwoływania się do funkcji primepi(k)
{local(s, k);
s=1;
k=2;
while(k <= n,
      if( s >= 1.733*k/log(k), print(k) );
      k = k + 1;
      s = s + isprime(k); \\ dla kolejnych k liczba s ma wartość primepi(k)
     )
}


Uwaga A34
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] lub [math]\displaystyle{ p_n }[/math]. Już osiągnięcie tą drogą oszacowania [math]\displaystyle{ p_n \lt 1.6 \cdot n \log n }[/math] przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność

[math]\displaystyle{ \frac{2}{3} \cdot \frac{x}{\log x} \gt x^{15 / 16} }[/math]

jest prawdziwa dla [math]\displaystyle{ x \gt 7.671 \cdot 10^{32} }[/math].



Zastosowania

Ciekawy rezultat wynika z twierdzenia A7, ale wcześniej musimy udowodnić twierdzenie o średniej arytmetycznej i geometrycznej.

Twierdzenie A35
Dla dowolnych liczb dodatnich [math]\displaystyle{ a_1, a_2, \ldots, a_n }[/math] średnia arytmetyczna jest nie mniejsza od średniej geometrycznej

[math]\displaystyle{ \frac{a_1 + a_2 + \ldots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n} }[/math]
Dowód

Twierdzenie jest w sposób oczywisty prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Równie łatwo stwierdzamy prawdziwość nierówności dla [math]\displaystyle{ n = 2 }[/math]

[math]\displaystyle{ (a_1 - a_2)^2 \geqslant 0 }[/math]
[math]\displaystyle{ a^2_1 - 2 a_1 a_2 + a^2_2 \geqslant 0 }[/math]
[math]\displaystyle{ a^2_1 + 2 a_1 a_2 + a^2_2 \geqslant 4 a_1 a_2 }[/math]
[math]\displaystyle{ (a_1 + a_2)^2 \geqslant 4 a_1 a_2 }[/math]
[math]\displaystyle{ \frac{a_1 + a_2}{2} \geqslant \sqrt{a_1 a_2} }[/math]

Dla potrzeb dowodu zapiszemy dowodzoną nierówność w postaci

[math]\displaystyle{ \left( \frac{a_1 + a_2 + \ldots + a_n}{n} \right)^n \geqslant a_1 a_2 \cdot \ldots \cdot a_n }[/math]

Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] dla [math]\displaystyle{ n + 1 }[/math] mamy

a) w przypadku gdy [math]\displaystyle{ n + 1 = 2 k }[/math] jest liczbą parzystą

[math]\displaystyle{ \left( \frac{a_1 + a_2 + \ldots + a_{n + 1}}{n + 1} \right)^{n + 1} = \left( \frac{a_1 + a_2 + \ldots + a_{2 k}}{2 k} \right)^{2 k} = }[/math]
[math]\displaystyle{ \quad = \left[ \left( \frac{\frac{a_1 + a_2}{2} + \frac{a_3 + a_4}{2} + \ldots + \frac{a_{2 k - 1} + a_{2 k}}{2}}{k} \right)^k \right]^2 \geqslant }[/math]
[math]\displaystyle{ \quad \geqslant \left( \frac{a_1 + a_2}{2} \cdot \frac{a_3 + a_4}{2} \cdot \ldots \cdot \frac{a_{2 k - 1} + a_{2 k}}{2} \right)^2 \geqslant }[/math]
[math]\displaystyle{ \quad \geqslant \left( \sqrt{a_1 a_2} \cdot \sqrt{a_3 a_4} \cdot \ldots \cdot \sqrt{a_{2 k - 1} a_{2 k}} \right)^2 = }[/math]
[math]\displaystyle{ \quad = a_1 a_2 \cdot \ldots \cdot a_{2 k} = }[/math]
[math]\displaystyle{ \quad = a_1 a_2 \cdot \ldots \cdot a_{n + 1} }[/math]

Gdzie skorzystaliśmy z założenia indukcyjnego i prawdziwości dowodzonego twierdzenia dla [math]\displaystyle{ n = 2 }[/math].

b) w przypadku gdy [math]\displaystyle{ n + 1 = 2 k - 1 }[/math] jest liczbą nieparzystą, możemy skorzystać z udowodnionego wyżej punktu a) dla parzystej ilości liczb

[math]\displaystyle{ a_1, a_2, \ldots, a_{2 k - 1}, S }[/math]

gdzie przez [math]\displaystyle{ S }[/math] oznaczyliśmy średnią arytmetyczną liczb [math]\displaystyle{ a_1, a_2, \ldots, a_{2 k - 1} }[/math]

[math]\displaystyle{ S = \frac{a_1 + a_2 + \ldots + a_{2 k - 1}}{2 k - 1} }[/math]

Na mocy punktu a) prawdziwa jest nierówność

[math]\displaystyle{ \left( \frac{a_1 + a_2 + \ldots + a_{2 k - 1} + S}{2 k} \right)^{2 k} = \left( \frac{(2 k - 1) S + S}{2 k} \right)^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S }[/math]

Skąd otrzymujemy

[math]\displaystyle{ S^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S }[/math]
[math]\displaystyle{ S^{2 k - 1} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} }[/math]

Co należało pokazać.


Twierdzenie A36
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność [math]\displaystyle{ p_1 + p_2 + \ldots + p_n \gt n^2 }[/math].

Dowód

Korzystając z twierdzeń A7 i A35 możemy napisać następujący ciąg nierówności dla [math]\displaystyle{ n }[/math] kolejnych liczb pierwszych

[math]\displaystyle{ \frac{p_1 + p_2 + \ldots + p_n}{n} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} \gt \sqrt[n]{n^n} = n }[/math]

Stąd otrzymujemy natychmiast tezę twierdzenia, którą sprawdzamy dla [math]\displaystyle{ n \lt 13 }[/math]. Do sprawdzenia można wykorzystać proste polecenie w PARI/GP

for(n=1, 20, s=0; for(k=1, n, s=s+prime(k)); if( s <= n^2, print(n) ))


Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] i [math]\displaystyle{ p_n }[/math], które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] istnieje takie [math]\displaystyle{ n_0 }[/math], że dla każdego [math]\displaystyle{ n \gt n_0 }[/math] prawdziwa jest nierówność [math]\displaystyle{ \log x \lt x^{\varepsilon} }[/math]. Inaczej mówiąc, funkcja [math]\displaystyle{ \log x }[/math] rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.


Twierdzenie A37
Prawdziwe są następujące nierówności:

1.    [math]\displaystyle{ e^x \gt x }[/math], dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
2.    [math]\displaystyle{ \log x \lt n \cdot x^{1 / n} }[/math], dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
Dowód

Można powiedzieć, że dowód pierwszej nierówności jest oczywisty, bo każdy z nas ma przed oczami przebieg funkcji [math]\displaystyle{ e^x }[/math] i [math]\displaystyle{ x }[/math]:

Komu taki dowód obrazkowy nie wystarcza, może posłużyć się rozwinięciem funkcji [math]\displaystyle{ e^x }[/math] w szereg nieskończony

[math]\displaystyle{ e^x = \underset{k = 0}{\overset{\infty}{\sum}} \frac{x^k}{k!} = 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \ldots }[/math]

zbieżny dla dowolnego [math]\displaystyle{ x \in \mathbb{R} }[/math]. Teraz wystarczy zauważyć, że:

  • dla [math]\displaystyle{ x \gt 0 }[/math] prawdziwe jest oszacowanie: [math]\displaystyle{ e^x \gt 1 + x \gt x }[/math]
  • w punkcie [math]\displaystyle{ x = 0 }[/math] mamy [math]\displaystyle{ e^x = 1 }[/math] i [math]\displaystyle{ x = 0 }[/math]
  • dla [math]\displaystyle{ x \lt 0 }[/math] funkcja [math]\displaystyle{ e^x }[/math] jest dodatnia, a funkcja [math]\displaystyle{ x }[/math] ujemna


W drugiej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^y }[/math], gdzie [math]\displaystyle{ y \in \mathbb{R} }[/math]. Otrzymujemy

[math]\displaystyle{ y \lt n \cdot (e^y)^{1 / n} }[/math]

czyli

[math]\displaystyle{ \frac{y}{n} \lt e^{y / n} }[/math]

Kładąc [math]\displaystyle{ z = \frac{y}{n} }[/math], gdzie [math]\displaystyle{ z \in \mathbb{R} }[/math], mamy [math]\displaystyle{ z \lt e^z }[/math]. Otrzymana nierówność jest prawdziwa dla każdego [math]\displaystyle{ z \in \mathbb{R} }[/math] na mocy punktu 1 tego twierdzenia.


Twierdzenie A38
Dla funkcji [math]\displaystyle{ p_n }[/math] i [math]\displaystyle{ \pi (n) }[/math] prawdziwe są następujące oszacowania:

[math]\displaystyle{ 10 n \underset{n \geqslant 6473}{\lt } p_n \underset{n \geqslant 2}{\lt } n^2 }[/math]
[math]\displaystyle{ \sqrt{n} \underset{n \geqslant 5}{\lt } \pi (n) \underset{n \geqslant 64721}{\lt } \frac{n}{10} }[/math]
Dowód

Lewa górna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ p_n \gt 0.72 \cdot n \log n }[/math]. Wystarczy rozwiązać nierówność:

[math]\displaystyle{ 0.72 \cdot \log n \gt 10 }[/math]

czyli [math]\displaystyle{ n \gt \exp \left( \frac{10}{0.72} \right) = 1076137.5 }[/math]

W PARI/GP wpisujemy polecenie:

for(n=1, 11*10^5, if( prime(n) <= 10*n, print(n) ))


Prawa górna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest [math]\displaystyle{ p_n \lt 2 n \log n }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ 2 n \log n \lt n^2 }[/math]. Korzystając z twierdzenia A37, łatwo zauważmy, że dla [math]\displaystyle{ n \gt 16 }[/math] jest:

[math]\displaystyle{ n - 2 \log n \gt n - 2 \cdot 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 4 \right) \gt 0 }[/math]

Przypadki [math]\displaystyle{ n \leqslant 16 }[/math] sprawdzamy bezpośrednio.


Lewa dolna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest [math]\displaystyle{ \pi (n) \gt \frac{2}{3} \cdot \frac{n}{\log n} }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ \frac{2}{3} \cdot \frac{n}{\log n} \gt \sqrt{n} }[/math]. Korzystając z twierdzenia A37, łatwo zauważmy, że dla [math]\displaystyle{ n \gt 6^4 = 1296 }[/math] jest:

[math]\displaystyle{ \frac{2}{3} \cdot \frac{n}{\log n} - \sqrt{n} \gt \frac{2}{3} \cdot \frac{n}{4 \cdot n^{1 / 4}} - \sqrt{n} = \frac{1}{6} \cdot n^{3 / 4} - \sqrt{n} = \frac{1}{6} \sqrt{n} (n^{1 / 4} - 6) \gt 0 }[/math]

Sprawdzenie przypadków [math]\displaystyle{ n \leqslant 1296 }[/math] sprowadza się do wpisania w PARI/GP polecenia:

for(n=1, 2000, if( primepi(n) <= sqrt(n), print(n) ))


Prawa dolna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 2 }[/math] jest [math]\displaystyle{ \pi (n) \lt \frac{2 n}{\log n} }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ \frac{2 n}{\log n} \lt \frac{n}{10} }[/math]. Nierówność ta jest prawdziwa dla [math]\displaystyle{ \log n \gt 20 }[/math], czyli dla

[math]\displaystyle{ n \gt e^{20} \gt 485165195.4 }[/math]

Sprawdzenie przypadków dla [math]\displaystyle{ n \leqslant 490 \cdot 10^6 }[/math] będzie wymagało napisania w PARI/GP krótkiego programu i wywołania go z parametrem n = 490*10^6

Test3(n)=
\\test oszacowania: primepi(k) < k/10 dla 2 <= k <= n 
\\bez bezpośredniego odwoływania się do funkcji primepi(k)
{local(s, k);
s=1;
k=2;
while(k <= n,
      if( s >= k/10, print(k) );
      k = k + 1;
      s = s + isprime(k); \\ dla kolejnych k liczba s ma wartość primepi(k)
     )
}


Twierdzenie A39
Każda liczba pierwsza [math]\displaystyle{ p }[/math], taka że [math]\displaystyle{ p \in \left( \frac{n}{2}, n \right] }[/math] występuje w rozwinięciu [math]\displaystyle{ n! }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Z twierdzenia A21 wiemy, że każda liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor }[/math]

Z założenia [math]\displaystyle{ p \leqslant n }[/math] i [math]\displaystyle{ 2 p \gt n }[/math], zatem:

1.    [math]\displaystyle{ \frac{n}{p} \geqslant 1 }[/math]   oraz   [math]\displaystyle{ \frac{n}{p} \lt 2 }[/math],   czyli   [math]\displaystyle{ \left\lfloor \frac{n}{p} \right\rfloor = 1 }[/math]
2.    [math]\displaystyle{ \frac{n}{p^2} \lt \frac{2}{p} \leqslant 1 }[/math],   czyli   [math]\displaystyle{ \left\lfloor \frac{n}{p^2} \right\rfloor = 0 }[/math]   i tym bardziej   [math]\displaystyle{ \left\lfloor \frac{n}{p^k} \right\rfloor = 0 }[/math]   dla   [math]\displaystyle{ k \geqslant 3 }[/math]


Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza [math]\displaystyle{ p }[/math], aby występowała w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia A40 i A42 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A41 i A43 to tylko twierdzenia A40 i A42 dla wybranych wartości liczby [math]\displaystyle{ k }[/math]. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A40 i A42, to może je pominąć.


Twierdzenie A40
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą naturalną. Jeżeli [math]\displaystyle{ n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right) }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( \frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Najpierw udowodnimy przypadek [math]\displaystyle{ k = 0 }[/math].

Zauważmy, że każda liczba pierwsza [math]\displaystyle{ p \in (n, 2 n] }[/math] występuje dokładnie jeden raz w liczniku ułamka

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

i nie występuje w mianowniku. Zatem w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze wystąpi z wykładnikiem równym [math]\displaystyle{ 1 }[/math].

Co kończy dowód twierdzenia w przypadku, gdy [math]\displaystyle{ k = 0 }[/math].

Możemy teraz przejść do dowodu dla wszystkich [math]\displaystyle{ k \geqslant 1 }[/math].


Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math] w postaci ułamka

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ k p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w mianowniku
  • [math]\displaystyle{ (k + 1) p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku (jako [math]\displaystyle{ p, 2 p, \ldots, k p }[/math])
  • [math]\displaystyle{ (2 k + 1) p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (k + 1) p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k + 1 }[/math] razy w liczniku
  • [math]\displaystyle{ (2 k + 2) p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (2 k + 1) p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k + 1 }[/math] razy w liczniku (jako [math]\displaystyle{ (k + 1) p, (k + 2) p, \ldots, (2 k + 1) p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left(\frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right] }[/math] pojawia się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku i dokładnie [math]\displaystyle{ k + 1 }[/math] razy w liczniku ułamka

[math]\displaystyle{ \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Zatem występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem jeden.

Niech [math]\displaystyle{ q }[/math] będzie największą liczbą pierwszą nie większą od ustalonej liczby [math]\displaystyle{ 2 k + 1 }[/math]. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ r_i \in \{ 2, 3, \ldots, q \} }[/math]. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek

[math]\displaystyle{ r_i \notin \left( \frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right] }[/math]

Warunek ten będzie z pewnością spełniony, gdy

[math]\displaystyle{ q \leqslant 2 k + 1 \leqslant \frac{n}{k + 1} }[/math]

czyli dla [math]\displaystyle{ n }[/math] spełniających nierówność [math]\displaystyle{ n \geqslant (k + 1) (2 k + 1) }[/math].

Oczywiście nie wyklucza to możliwości, że istnieją liczby [math]\displaystyle{ n \lt 2 (k + 1) (k + \tfrac{1}{2}) }[/math], dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby [math]\displaystyle{ k }[/math]) bezpośrednio sprawdzić prawdziwość twierdzenia dla [math]\displaystyle{ n \lt 2 (k + 1) (k + \tfrac{1}{2}) }[/math].


Dowód na podstawie twierdzenia A24

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 1 }[/math], to będziemy szukali oszacowania od dołu. Z założenia mamy

1)    [math]\displaystyle{ p \gt \frac{n}{k + 1} \quad\ \implies \quad \frac{n}{p} \lt k + 1 \quad\ \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \leqslant k }[/math]

2)    [math]\displaystyle{ p \leqslant \frac{n}{k + \tfrac{1}{2}} \quad\ \implies \quad \frac{2 n}{p} \geqslant 2 k + 1 \quad\ \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \geqslant 2 k + 1 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \geqslant 2 k + 1 - 2 k = 1 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 1 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 2 (k + 1)^2 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt \frac{n}{k + 1} \quad \implies \quad \frac{2 n}{p} \lt 2 k + 2 \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \! \! \implies \quad \frac{(2 n)^s}{p^s} \lt (2 k + 2)^s \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} \lt \frac{(2 k + 2)^2}{2 n} \cdot \left( \frac{2 k + 2}{2 n} \right)^{s - 2} \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} \lt \frac{(2 k + 2)^2}{2 n} \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} \lt 1 \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \! \! \implies \quad \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor \frac{n}{p^s} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 2 (k + 1)^2 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) = 1 }[/math]

Pozostaje bezpośrednio sprawdzić, dla jakich wartości [math]\displaystyle{ n \lt 2 (k + 1)^2 }[/math] twierdzenie pozostaje prawdziwe.

Ponieważ analiza krotności pojawiania się liczby pierwszej [math]\displaystyle{ p }[/math] jest bardziej precyzyjna, to podajemy, że twierdzenie jest z pewnością prawdziwe dla [math]\displaystyle{ n \geqslant 2 (k + 1) (k + \tfrac{1}{2}) }[/math]


Przykład A41
Jeżeli [math]\displaystyle{ n \geqslant 6 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( \frac{n}{2}, \frac{2 n}{3} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math] w postaci ułamka

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej jeden raz w mianowniku
  • [math]\displaystyle{ 2 p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie jeden raz w mianowniku (jako [math]\displaystyle{ p }[/math])
  • [math]\displaystyle{ 3 p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 2 p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w liczniku
  • [math]\displaystyle{ 4 p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 3 p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w liczniku (jako [math]\displaystyle{ 2 p }[/math] i [math]\displaystyle{ 3 p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right] }[/math] pojawia się dokładnie jeden raz w mianowniku i dokładnie dwa razy w liczniku ułamka

[math]\displaystyle{ \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Zatem występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem jeden.

Wielokrotności liczby [math]\displaystyle{ p }[/math] podnoszą wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ p = 2, 3 }[/math]. Dlatego zakładamy, że [math]\displaystyle{ n \geqslant 6 }[/math], bo dla [math]\displaystyle{ n \geqslant 6 }[/math] liczby pierwsze [math]\displaystyle{ p = 2, 3 }[/math] nie spełniają warunku [math]\displaystyle{ p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right] }[/math].

Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 5 }[/math] i liczba [math]\displaystyle{ 3^2 }[/math] dzieli liczbę [math]\displaystyle{ \binom{10}{5} = 252 = 9 \cdot 28 }[/math]


Dowód na podstawie twierdzenia A24

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 1 }[/math], to będziemy szukali oszacowania od dołu. Z założenia mamy

1)    [math]\displaystyle{ p \gt \frac{n}{2} \quad \implies \quad \frac{n}{p} \lt 2 \quad \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \leqslant 1 }[/math]
2)    [math]\displaystyle{ p \leqslant \frac{2 n}{3} \quad \implies \quad \frac{2 n}{p} \geqslant 3 \quad \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \geqslant 3 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \geqslant 3 - 2 = 1 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 1 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 9 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt \frac{n}{2} \quad \implies \quad \frac{(2 n)^k}{p^k} \lt 4^k \quad \implies \quad \frac{2 n}{p^k} \lt \frac{16}{2 n} \cdot \left( \frac{4}{2 n} \right)^{k - 2} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{16}{2 n} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{16}{18} \quad \implies \quad \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor \frac{n}{p^k} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 9 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = 1 }[/math]

Dla [math]\displaystyle{ n = 6, 7 }[/math] żadna liczba pierwsza nie należy do [math]\displaystyle{ \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right] }[/math]. Dla [math]\displaystyle{ n = 8 }[/math] łatwo sprawdzamy, że liczba [math]\displaystyle{ 5 }[/math] wchodzi do rozkładu liczby [math]\displaystyle{ \binom{16}{8} = 12870 }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Zatem dla [math]\displaystyle{ n \geqslant 6 }[/math] liczba pierwsza [math]\displaystyle{ p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right] }[/math] wchodzi do rozkładu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.


Twierdzenie A42
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza [math]\displaystyle{ p \in \left( \frac{n}{k + \tfrac{1}{2}}, \frac{n}{k} \right] }[/math], to dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math] liczba [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math] w postaci ułamka

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Rozważmy dowolną liczbę pierwszą [math]\displaystyle{ p }[/math] występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ k p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w mianowniku
  • [math]\displaystyle{ (k + 1) p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku (jako [math]\displaystyle{ p, 2 p, \ldots, k p }[/math])
  • [math]\displaystyle{ 2 k p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (k + 1) p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w liczniku
  • [math]\displaystyle{ (2 k + 1) p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 2 k p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w liczniku (jako [math]\displaystyle{ (k + 1) p, (k + 2) p, \ldots, 2 k p }[/math])


Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( \frac{n}{k + \frac{1}{2}}, \frac{n}{k} \right] }[/math] pojawia się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku i dokładnie [math]\displaystyle{ k }[/math] razy w liczniku ułamka

[math]\displaystyle{ \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Co oznacza, że [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze.

Niech [math]\displaystyle{ q }[/math] będzie największą liczbą pierwszą nie większą od ustalonej liczby [math]\displaystyle{ 2 k }[/math]. Rozpatrywane przez nas wielokrotności liczby [math]\displaystyle{ p }[/math] zwiększają wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ r_i \in \{ 2, 3, \ldots, q \} }[/math]. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek

[math]\displaystyle{ r_i \notin \left( \frac{n}{k + \frac{1}{2}}, \frac{n}{k} \right] }[/math]

Warunek ten będzie z pewnością spełniony, gdy

[math]\displaystyle{ q \leqslant 2 k \leqslant \frac{n}{k + \frac{1}{2}} }[/math]

czyli dla [math]\displaystyle{ n }[/math] spełniających nierówność [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math]. Oczywiście nie wyklucza to możliwości, że istnieją liczby [math]\displaystyle{ n \lt 2 k (k + \tfrac{1}{2}) }[/math], dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby [math]\displaystyle{ k }[/math]) bezpośrednio sprawdzić prawdziwość twierdzenia dla [math]\displaystyle{ n \lt 2 k (k + \tfrac{1}{2}) }[/math].


Dowód na podstawie twierdzenia A24

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 0 }[/math], to będziemy szukali oszacowania od góry. Z założenia mamy

1)    [math]\displaystyle{ p \gt \frac{n}{k + \frac{1}{2}} \quad\ \implies \quad \frac{2 n}{p} \lt 2 k + 1 \quad\ \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \leqslant 2 k }[/math]

2)    [math]\displaystyle{ p \leqslant \frac{n}{k} \quad\ \implies \quad \frac{n}{p} \geqslant k \quad\ \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \geqslant k }[/math]

Zatem

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \leqslant 2 k - 2 k = 0 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 0 }[/math]


Założenie, że [math]\displaystyle{ 2 n \geqslant (2 k + 1)^2 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt \frac{2 n}{2 k + 1} \quad \implies \quad \frac{(2 n)^s}{p^s} \lt (2 k + 1)^s \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} \lt \frac{(2 k + 1)^2}{2 n} \cdot \left( \frac{2 k + 1}{2 n} \right)^{s - 2} \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} \lt \frac{(2 k + 1)^2}{2 n} \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} \lt 1 \quad \implies }[/math]
[math]\displaystyle{ \qquad \qquad \qquad \; \implies \quad \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor \frac{n}{p^s} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ 2 n \geqslant (2 k + 1)^2 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) = 0 }[/math]

Pozostaje bezpośrednio sprawdzić, dla jakich wartości [math]\displaystyle{ n \lt \frac{1}{2} (2 k + 1)^2 }[/math] twierdzenie pozostaje prawdziwe.

Ponieważ analiza krotności pojawiania się liczby pierwszej [math]\displaystyle{ p }[/math] jest bardziej precyzyjna, to podajemy, że twierdzenie jest z pewnością prawdziwe dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math].


Przykład A43
Jeżeli [math]\displaystyle{ n \geqslant 8 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( \frac{2 n}{5}, \frac{n}{2} \right] }[/math], to [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math] w postaci ułamka

[math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Rozważmy dowolną liczbę pierwszą [math]\displaystyle{ p }[/math] występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ 2 p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w mianowniku
  • [math]\displaystyle{ 3 p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w mianowniku (jako [math]\displaystyle{ p }[/math] i [math]\displaystyle{ 2 p }[/math])
  • [math]\displaystyle{ 4 p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 3 p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w liczniku
  • [math]\displaystyle{ 5 p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 4 p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w liczniku (jako [math]\displaystyle{ 3 p }[/math] i [math]\displaystyle{ 4 p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right] }[/math] pojawia się dokładnie dwa razy w mianowniku i dokładnie dwa razy w liczniku ułamka

[math]\displaystyle{ \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n} }[/math]

Zatem nie występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze.

Wielokrotności liczby [math]\displaystyle{ p }[/math] podnoszą wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ 3 }[/math]. Dlatego zakładamy, że [math]\displaystyle{ n \geqslant 8 }[/math], bo dla [math]\displaystyle{ n \geqslant 8 }[/math] liczby pierwsze [math]\displaystyle{ 2, 3 }[/math] nie spełniają warunku [math]\displaystyle{ p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right] }[/math].

Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 7 }[/math] i liczba [math]\displaystyle{ 3 }[/math] dzieli liczbę [math]\displaystyle{ \binom{14}{7} = 3432 }[/math]


Dowód na podstawie twierdzenia A24

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 0 }[/math], to będziemy szukali oszacowania od góry. Z założenia mamy

1)    [math]\displaystyle{ p \gt \frac{2 n}{5} \quad \implies \quad \frac{2 n}{p} \lt 5 \quad \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \leqslant 4 }[/math]
2)    [math]\displaystyle{ p \leqslant \frac{n}{2} \quad \implies \quad \frac{n}{p} \geqslant 2 \quad \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \geqslant 2 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \leqslant 4 - 4 = 0 }[/math]

Ponieważ każdy ze składników szukanej sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 0 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 13 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt \frac{2 n}{5} \quad \implies \quad \frac{(2 n)^k}{p^k} \lt 5^k \quad \implies \quad \frac{2 n}{p^k} \lt \frac{25}{2 n} \cdot \left( \frac{5}{2 n} \right)^{k - 2} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{25}{2 n} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{25}{26} \quad \implies \quad \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor \frac{n}{p^k} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 13 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = 0 }[/math]

Dla [math]\displaystyle{ n = 8, 9 }[/math] żadna liczba pierwsza nie należy do [math]\displaystyle{ \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right] }[/math].

Dla [math]\displaystyle{ n = 10, 11, 12 }[/math] łatwo sprawdzamy, że liczba [math]\displaystyle{ 5 }[/math] nie dzieli liczb [math]\displaystyle{ \binom{20}{10} = 184756 }[/math], [math]\displaystyle{ \binom{22}{11} = 705432 }[/math] oraz [math]\displaystyle{ \binom{24}{12} = 2704156 }[/math].

Zatem dla [math]\displaystyle{ n \geqslant 8 }[/math] liczba pierwsza [math]\displaystyle{ p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right] }[/math] nie dzieli liczby [math]\displaystyle{ \binom{2 n}{n} }[/math].


Uwaga A44
Z przykładu A41 nie wynika, że w przedziale [math]\displaystyle{ \left( \frac{n}{2}, \frac{2 n}{3} \right] }[/math] znajduje się choćby jedna liczba pierwsza [math]\displaystyle{ p }[/math]. Analogiczna uwaga jest prawdziwa w przypadku przykładu A43 oraz twierdzeń A40 i A42. Istnienie liczby pierwszej w określonym przedziale będzie tematem kolejnego artykułu.


Przykład A45
Pokazujemy i omawiamy wynik zastosowania twierdzeń A40 i A42 do współczynnika dwumianowego [math]\displaystyle{ \binom{2 \cdot 3284}{3284} }[/math]. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math], co w naszym przypadku daje [math]\displaystyle{ p \gt \sqrt{2 \cdot 3284} \approx 81.04 }[/math].

Pokaż przykład

Wybraliśmy współczynnik dwumianowy [math]\displaystyle{ \binom{2 \cdot 3284}{3284} }[/math] dlatego, że w rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze [math]\displaystyle{ p \leqslant 107 }[/math], co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z wykładnikiem większym niż jeden. Ponieważ [math]\displaystyle{ \sqrt{2 \cdot 3284} \approx 81.043 }[/math], zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z wykładnikiem większym niż jeden i tak właśnie jest.

Poniżej wypisaliśmy wszystkie liczby pierwsze [math]\displaystyle{ p \leqslant 3284 }[/math], które występują w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ \binom{2 \cdot 3284}{3284} }[/math] na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w tabeli. Ostatnią pogrubioną i dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w tabeli – oczywiście tak się nie stanie, bo twierdzeń A40 i A42 nie można stosować bez ograniczeń dla coraz większych liczb [math]\displaystyle{ k }[/math].


26, 38, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 592, 612, 67, 71, 732, 792, 83, 89, 97, 101, 103, 107, 127, 137, 139, 151, 157, 167, 173, 197, 199, 211, 223, 239, 241, 257, 277, 281, 283, 307, 311, 331, 337, 367, 373, 379, 383, 419, 421, 431, 433, 479, 487, 491, 499, 503, 557, 563, 569, 571, 577, 587, 593, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179


Liczba 821 została pogrubiona (w tabeli), bo jest liczbą pierwszą i wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w rozkładzie współczynnika dwumianowego [math]\displaystyle{ \binom{2 \cdot 3284}{3284} }[/math] na czynniki pierwsze.

Czytelnik łatwo sprawdzi, że największą wartością liczby [math]\displaystyle{ k }[/math], dla jakiej można jeszcze stosować twierdzenie A40, jest [math]\displaystyle{ k = 39 }[/math]. Podobnie największą wartością liczby [math]\displaystyle{ k }[/math], dla jakiej można jeszcze stosować twierdzenie A42, jest [math]\displaystyle{ k = 40 }[/math]. Wartości te i odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia A40 i A42 można stosować dla liczb pierwszych [math]\displaystyle{ p }[/math] spełniających warunek [math]\displaystyle{ p \gt 81.09 }[/math]. Co bardzo dokładnie pokrywa się z warunkiem [math]\displaystyle{ p \gt \sqrt{2 \cdot 3284} \approx 81.04 }[/math]

Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i 67, które występują w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ \binom{2 \cdot 3284}{3284} }[/math] na czynniki pierwsze.

[math]\displaystyle{ k }[/math] [math]\displaystyle{ \frac{3284}{k+1} }[/math] [math]\displaystyle{ p \in \left ( \frac{3284}{k + 1}, \frac{3284}{k + \tfrac{1}{2}} \right ] }[/math] [math]\displaystyle{ \frac{3284}{k+\tfrac{1}{2}} }[/math] [math]\displaystyle{ \frac{3284}{k} }[/math]
0 3284 {3299, 3301, ..., 6553, 6563} 6568
1 1642 {1657, 1663, ..., 2161, 2179} 2189,33 3284
2 1094,67 {1097, 1103, ..., 1303, 1307} 1313,60 1642
3 821 {823, 827, ..., 929, 937} 938,29 1094,67
4 656,80 {659, 661, 673, 677, 683, 691, 701, 709, 719, 727} 729,78 821
5 547,33 {557, 563, 569, 571, 577, 587, 593} 597,09 656,80
6 469,14 {479, 487, 491, 499, 503} 505,23 547,33
7 410,50 {419, 421, 431, 433} 437,87 469,14
8 364,89 {367, 373, 379, 383} 386,35 410,50
9 328,40 {331, 337} 345,68 364,89
10 298,55 {307, 311} 312,76 328,40
11 273,67 {277, 281, 283} 285,57 298,55
12 252,62 {257} 262,72 273,67
13 234,57 {239, 241} 243,26 252,62
14 218,93 {223} 226,48 234,57
15 205,25 {211} 211,87 218,93
16 193,18 {197, 199} 199,03 205,25
17 182,44 {} 187,66 193,18
18 172,84 {173} 177,51 182,44
19 164,20 {167} 168,41 172,84
20 156,38 {157} 160,20 164,20
21 149,27 {151} 152,74 156,38
22 142,78 {} 145,96 149,27
23 136,83 {137, 139} 139,74 142,78
24 131,36 {} 134,04 136,83
25 126,31 {127} 128,78 131,36
26 121,63 {} 123,92 126,31
27 117,29 {} 119,42 121,63
28 113,24 {} 115,23 117,29
29 109,47 {} 111,32 113,24
30 105,94 {107} 107,67 109,47
31 102,63 {103} 104,25 105,94
32 99,52 {101} 101,05 102,63
33 96,59 {97} 98,03 99,52
34 93,83 {} 95,19 96,59
35 91,22 {} 92,51 93,83
36 88,76 {89} 89,97 91,22
37 86,42 {} 87,57 88,76
38 84,21 {} 85,30 86,42
39 82,10 {83} 83,14 84,21
40 80,10 {} 81,09 82,10
41 78,19 {79} 79,13 80,10
42 76,37 {} 77,27 78,19
43 74,64 {} 75,49 76,37
44 72,98 {73} 73,80 74,64
45 71,39 {} 72,18 72,98
46 69,87 {} 70,62 71,39
47 68,42 {} 69,14 69,87
48 67,02 {} 67,71 68,42
49 65,68 {} 66,34 67,02
50 64,39 {} 65,03 65,68
51 63,15 {} 63,77 64,39
52 61,96 {} 62,55 63,15
53 60,81 {61} 61,38 61,96
54 59,71 {} 60,26 60,81
55 58,64 {59} 59,17 59,71
56 57,61 {} 58,12 58,64
57 56,62 {} 57,11 57,61
58 55,66 {} 56,14 56,62
59 54,73 {} 55,19 55,66
60 53,84 {} 54,28 54,73
61 52,97 {53} 53,40 53,84
62 52,13 {} 52,54 52,97
63 51,31 {} 51,72 52,13
64 50,52 {} 50,91 51,31
65 49,76 {} 50,14 50,52
66 49,01 {} 49,38 49,76
67 48,29 {} 48,65 49,01
68 47,59 {} 47,94 48,29
69 46,91 {47} 47,25 47,59
70 46,25 {} 46,58 46,91









Przypisy

  1. Wikipedia, PARI/GP, (Wiki-en)
  2. Wikipedia, Pafnuty Czebyszew (1821 - 1893), (Wiki-pl), (Wiki-ru)
  3. P. L. Chebyshev, Mémoire sur les nombres premiers, J. de Math. Pures Appl. (1) 17 (1852), 366-390, (LINK)
  4. P. Erdos, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198, (LINK1), (LINK2)
  5. P. Dusart, The [math]\displaystyle{ k^{th} }[/math] prime is greater than [math]\displaystyle{ k (\ln k + \ln \ln k - 1) }[/math] for [math]\displaystyle{ k \geqslant 2 }[/math], Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.
  6. P. Dusart, Sharper bounds for [math]\displaystyle{ \psi }[/math], [math]\displaystyle{ \theta }[/math], [math]\displaystyle{ \pi }[/math], [math]\displaystyle{ p_k }[/math], Rapport de recherche no. 1998-06, Université de Limoges, (LINK)
  7. P. Dusart, Estimates of some functions over primes without R.H., (2010), (LINK)
  8. P. Dusart, Explicit estimates of some functions over primes, Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.
  9. Wikipedia, Twierdzenie o zbieżności ciągu monotonicznego, (LINK)