Różnica pomiędzy stronami "Ciągi liczbowe" i "CRT, twierdzenia Lagrange'a, Wilsona i Fermata, kryterium Eulera, symbole Legendre'a i Jacobiego"

Z Henryk Dąbrowski
(Różnica między stronami)
Przejdź do nawigacji Przejdź do wyszukiwania
 
 
Linia 1: Linia 1:
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">12.03.2022</div>
+
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.03.2023</div>
  
 
__FORCETOC__
 
__FORCETOC__
Linia 5: Linia 5:
  
  
== Ciągi nieskończone ==
+
== Chińskie twierdzenie o&nbsp;resztach ==
  
<span style="font-size: 110%; font-weight: bold;">Definicja C1</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J1</span><br/>
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli każdej liczbie <math>n</math> przypiszemy pewną liczbę rzeczywistą <math>a_n</math>, to powiemy, że liczby <math>a_1, a_2, \ldots, a_n, \ldots</math> tworzą ciąg nieskończony.
+
Niech <math>a, u \in \mathbb{Z}</math> i <math>m, n \in \mathbb{Z}_+</math> i <math>\gcd (m, n) = 1</math>. Kongruencja
  
 +
::<math>u \equiv a \pmod{m n}</math>
  
 +
jest równoważna układowi kongruencji
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C2</span><br/>
+
::<math>\begin{align}
Ciąg nieskończony <math>a_1, a_2, \ldots, a_n, \ldots</math> będziemy oznaczać <math>(a_n)</math>. Często, o&nbsp;ile nie będzie prowadziło to do nieporozumień, ciąg nieskończony będziemy nazywać po prostu ciągiem.
+
u &\equiv a \pmod{m} \\
 +
u &\equiv a \pmod{n}
 +
\end{align}</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 +
<math>\Large{\Longrightarrow}</math>
 +
 +
Jeżeli liczba <math>u - a</math> jest podzielna przez iloczyn <math>m n</math>, to tym bardziej jest podzielna przez dowolny czynnik tego iloczynu, skąd wynika natychmiast wypisany układ kongruencji.
  
 +
<math>\Large{\Longleftarrow}</math>
  
<span style="font-size: 110%; font-weight: bold;">Definicja C3</span><br/>
+
Z kongruencji
Niech <math>n \in \mathbb{Z}_+</math>. Ciąg <math>(a_n)</math> będziemy nazywali
 
::* ciągiem rosnącym, jeżeli dla każdego <math>n</math> jest <math>a_{n + 1} \geqslant a_n</math>
 
::* ciągiem malejącym, jeżeli dla każdego <math>n</math> jest <math>a_{n + 1} \leqslant a_n</math>
 
  
Ciągi rosnące dzielimy na
+
::<math>u \equiv a \pmod{m}</math>
:::* ciągi silnie rosnące, jeżeli dla każdego <math>n</math> jest <math>a_{n + 1} > a_n</math>
 
:::* ciągi słabo rosnące, jeżeli istnieją takie <math>n</math>, że <math>a_{n + 1} = a_n</math>
 
  
Ciągi malejące dzielimy na
+
wynika, że <math>u - a = k m</math>, zaś z&nbsp;kongruencji
:::* ciągi silnie malejące, jeżeli dla każdego <math>n</math> jest <math>a_{n + 1} < a_n</math>
+
 
:::* ciągi słabo malejące, jeżeli istnieją takie <math>n</math>, że <math>a_{n + 1} = a_n</math>
+
::<math>u \equiv a \pmod{n}</math>
 +
 
 +
otrzymujemy <math>n \mid (u - a)</math>, czyli <math>n \mid k m</math>. Ponieważ <math>\gcd (m, n) = 1</math>, zatem <math>n \mid k</math> (zobacz C72) i&nbsp;istnieje taka liczba całkowita <math>s</math>, że <math>k = s n</math>, czyli <math>u - a = s n m</math>, a&nbsp;stąd <math>u \equiv a \!\! \pmod{m n}</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja C4</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J2</span><br/>
Niech <math>\varepsilon \in \mathbb{R}_+</math>. Liczbę <math>a</math> będziemy nazywali granicą ciągu <math>(a_n)</math>, jeżeli dla dowolnego <math>\varepsilon</math> w&nbsp;przedziale <math>(a - \varepsilon, a + \varepsilon)</math> znajdują się '''prawie wszystkie wyrazy ciągu''' <math>(a_n)</math> (to znaczy wszystkie poza co najwyżej skończoną ilością).
+
Dla dowolnych liczb <math>a, b \in \mathbb{Z}</math> i&nbsp;względnie pierwszych liczb <math>m, n \in \mathbb{Z}_+</math> istnieje dokładnie jedna taka liczba <math>c</math> (określona modulo <math>m n</math>), że prawdziwy jest układ kongruencji
  
 +
::<math>\begin{align}
 +
c & \equiv a \pmod{m} \\
 +
c & \equiv b \pmod{n}
 +
\end{align}</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z&nbsp;założenia liczby <math>m</math> i <math>n</math> są względnie pierwsze, zatem na mocy lematu Bézouta (C.71) istnieją takie liczby <math>x, y \in \mathbb{Z}</math>, że
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C5</span><br/>
+
::<math>m x + n y = 1</math>
1) sens definicji jest taki: jeżeli liczba <math>a</math> jest granicą ciągu <math>(a_n)</math>, to dla dowolnie małego <math>\varepsilon > 0</math>, poza przedziałem <math>(a - \varepsilon, a + \varepsilon)</math> może się znaleźć co najwyżej skończona ilość wyrazów ciągu <math>(a_n)</math>
 
  
2) słabsze żądanie, aby w&nbsp;przedziale <math>(a - \varepsilon, a + \varepsilon)</math> znajdowała się nieskończona ilość wyrazów ciągu nie prowadzi do poprawnej definicji granicy. Przykładowo, w&nbsp;przedziale <math>(1 - \varepsilon, 1 + \varepsilon)</math> znajduje się nieskończenie wiele wyrazów ciągu <math>a_n = (-1)^n</math>, ale ani liczba <math>1</math>, ani liczba <math>- 1</math> nie są granicami tego ciągu. O&nbsp;ciągu <math>a_n = (- 1)^n</math> mówimy, że nie ma granicy.
+
Niech <math>c = a n y + b m x</math>. Modulo <math>m</math> dostajemy
  
3) ze względu na równoważność warunków
+
::<math>c \equiv a n y \pmod{m}</math>
  
::* <math>\quad a_n \in (a - \varepsilon, a + \varepsilon)</math>
+
::<math>c \equiv a (1 - m x) \pmod{m}</math>
::* <math>\quad a - \varepsilon < a_n < a + \varepsilon</math>
 
::* <math>\quad - \varepsilon < a_n - a < \varepsilon</math>
 
::* <math>\quad | a_n - a | < \varepsilon</math>
 
  
definicja C4 może być wypowiedziana następująco
+
::<math>c \equiv a \pmod{m}</math>
  
 +
Natomiast modulo <math>n</math> mamy
  
 +
::<math>c \equiv b m x \pmod{n}</math>
  
<span style="font-size: 110%; font-weight: bold;">Definicja C6</span><br/>
+
::<math>c \equiv b (1 - n y) \pmod{n}</math>
Liczbę <math>a</math> będziemy nazywali granicą ciągu <math>(a_n)</math>, jeżeli dla dowolnego <math>\varepsilon > 0</math> '''prawie wszystkie wyrazy ciągu''' <math>(a_n)</math> spełniają warunek <math>|a_n - a| < \varepsilon</math>.
 
  
 +
::<math>c \equiv b \pmod{n}</math>
  
 +
Pokazaliśmy tym samym istnienie szukanej liczby <math>c</math>. Przypuśćmy, że istnieją dwie takie liczby <math>c</math> i <math>d</math>. Z&nbsp;założenia <math>m \mid (d - a)</math> i <math>m \mid (c - a)</math>, zatem <math>m</math> dzieli różnicę tych liczb, czyli <math>m \mid (d - c)</math>. Podobnie pokazujemy, że <math>n \mid (d - c)</math>. Ponieważ liczby <math>m</math> i <math>n</math> są względnie pierwsze, to <math>m n \mid (d - c)</math> (zobacz C73), co oznacza, że
  
<span style="font-size: 110%; font-weight: bold;">Definicja C7</span><br/>
+
::<math>d \equiv c \pmod{m n}</math>.
Ciąg <math>(a_n)</math> mający granicę (w rozumieniu definicji C4 lub C6) będziemy nazywali ciągiem zbieżnym, a&nbsp;fakt ten zapisujemy symbolicznie następująco
 
  
::<math>\lim_{n \to \infty} a_n = a</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;lub&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a_n \longrightarrow a</math>
+
Czyli możemy powiedzieć, że wybrana przez nas liczba <math>c</math> jest określona modulo <math>m n</math> i&nbsp;tak rozumiana jest dokładnie jedna. W&nbsp;szczególności istnieje tylko jedna liczba <math>c</math> taka, że <math>1 \leqslant c \leqslant m n</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
(od łacińskiego słowa ''limes'' oznaczającego granicę).
 
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J3 (chińskie twierdzenie o&nbsp;resztach)</span><br/>
 +
Niech <math>a, b, c, u \in \mathbb{Z}</math> i <math>m, n \in \mathbb{Z}_+</math> oraz niech <math>\gcd (m, n) = 1</math>. Istnieje dokładnie jedna liczba <math>c</math> (określona modulo <math>m n</math>) taka, że kongruencja
  
Zauważmy jeszcze, że wprost z&nbsp;definicji granicy wynika</br>
+
::<math>u \equiv c \pmod{m n}</math>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C8</span><br/>
 
::1. <math>\quad \lim_{n \to \infty} a_n = a \quad \iff \quad \lim_{n \to \infty} (a_n - a) = 0 \quad \iff \quad \lim_{n \to \infty} | a_n - a | = 0</math>
 
  
::2. <math>\quad \lim_{n \to \infty} a_n = 0 \quad \iff \quad \lim_{n \to \infty} | a_n | = 0</math>
+
jest równoważna układowi kongruencji
  
::3. <math>\quad \lim_{n \to \infty} a_n = a \quad \implies \quad \lim_{n \to \infty} | a_n | = | a |</math>
+
::<math>\begin{align}
 +
u & \equiv a \pmod{m} \\
 +
u & \equiv b \pmod{n}
 +
\end{align}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Punkt 1.'''<br/>
+
Z&nbsp;twierdzenia J2 wiemy, że istnieje dokładnie jedna liczba <math>c</math> (określona modulo <math>m n</math>) taka, że prawdziwy jest układ kongruencji
Prawdziwość twierdzenia wynika ze względu na identyczność warunków, które muszą spełniać prawie wszystkie wyrazy ciągu
 
  
::<math>| a_n - a | < \varepsilon \quad \iff \quad | (a_n - a) - 0 | < \varepsilon \quad \iff \quad \big|| a_n - a | - 0 \big| < \varepsilon</math>
+
::<math>\begin{align}
 +
c & \equiv a \pmod{m} \\
 +
c & \equiv b \pmod{n}
 +
\end{align}</math>
  
'''Punkt 2.'''<br/>
+
Korzystając z&nbsp;tego rezultatu i&nbsp;twierdzenia J1, otrzymujemy
Jest to jedynie szczególny przypadek punktu 1. dla <math>a = 0</math>.
 
  
'''Punkt 3.'''<br/>
+
::<math>u \equiv c \pmod{m n} \qquad \Longleftrightarrow \qquad
Dla dowolnych liczb <math>x, y \in \mathbb{R}</math> prawdziwa jest nierówność
+
\begin{array}{l}
 +
  u \equiv c \; \pmod{m} \\
 +
  u \equiv c \; \pmod{n} \\
 +
\end{array} \qquad \Longleftrightarrow \qquad
 +
\begin{array}{l}
 +
  u \equiv a \; \pmod{m} \\
 +
  u \equiv b \:\, \pmod{n} \\
 +
\end{array} </math>
  
::<math>\big|| x | - | y | \big| \leqslant |x - y|</math>
+
Co należało pokazać.<br/>
 
 
Wynika stąd, że jeżeli dla prawie wszystkich wyrazów ciągu <math>(a_n)</math> spełniona jest nierówność <math>|a_n - a| < \varepsilon</math>, to tym bardziej prawdą jest, że <math>\big|| a_n | - | a |\big| < \varepsilon</math><br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 95: Linia 118:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C9 (twierdzenie o&nbsp;trzech ciągach)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J4</span><br/>
Jeżeli istnieje taka liczba całkowita <math>N_0</math>, że dla każdego <math>n > N_0</math> jest spełniony warunek
+
Chińskie twierdzenie o&nbsp;resztach<ref name="CRT1"/> (CRT<ref name="CRT2"/>) pozostaje prawdziwe w&nbsp;przypadku układu skończonej liczby kongruencji. Założenie, że moduły <math>m</math> i <math>n</math> są względnie pierwsze, jest istotne. Przykładowo układ kongruencji
 +
 
 +
::<math>\begin{align}
 +
u &\equiv 1 \pmod{4} \\
 +
u &\equiv 3 \pmod{8}
 +
\end{align}</math>
 +
 
 +
nie może być zapisany w&nbsp;postaci jednej równoważnej kongruencji, bo nie istnieją liczby, które spełniałyby powyższy układ jednocześnie. Łatwo zauważamy, że rozwiązaniem pierwszego równania jest <math>u = 4 k + 1</math>, które dla liczb <math>k</math> parzystych i&nbsp;nieparzystych ma postać
 +
 
 +
::<math>u = 8 j + 1, \qquad u = 8 j + 5</math>
  
::<math>a_n \leqslant x_n \leqslant b_n</math>
+
i nie może być <math>u \equiv 3 \!\! \pmod{8}</math>.
  
oraz
 
  
::<math>\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = g</math>
 
  
to <math>\lim_{n \to \infty} x_n = g</math>.
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J5</span><br/>
 +
Niech <math>u, a_1, \ldots, a_k \in \mathbb{Z}</math> i <math>m_1, \ldots, m_k \in \mathbb{Z}_+</math>. Pokazać, że jeżeli liczby <math>m_1, \ldots, m_k</math> są parami względnie pierwsze (czyli <math>\gcd (m_i, m_j) = 1</math> dla <math>i \neq j</math>), to istnieje dokładnie jedna liczba <math>c</math> (określona modulo <math>m_1 \cdot \ldots \cdot m_k</math>) taka, że układ kongruencji
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\begin{align}
Niech <math>\varepsilon</math> będzie dowolną, ustaloną liczbą większą od <math>0</math>. Z&nbsp;założenia prawie wszystkie wyrazy ciągu <math>(a_n)</math> spełniają warunek <math>|a_n - g| < \varepsilon</math>. Możemy założyć, że są to wszystkie wyrazy, poczynając od wyrazu <math>N_a</math>. Podobnie prawie wszystkie wyrazy ciągu <math>(b_n)</math> spełniają warunek <math>|b_n - g| < \varepsilon</math> i&nbsp;podobnie możemy założyć, że są to wszystkie wyrazy, poczynając od wyrazu <math>N_b</math>
+
u & \equiv a_1 \pmod{m_1} \\
 +
  & \cdots \\
 +
u & \equiv a_k \pmod{m_k}
 +
\end{align}</math>
  
Nierówność <math>a_n \leqslant x_n \leqslant b_n</math> jest spełniona dla wszystkich wyrazów, poczynając od <math>N_0</math>, zatem oznaczając przez <math>M</math> największą z&nbsp;liczb <math>N_a</math>, <math>N_b</math>, <math>N_0</math>, możemy napisać, że o&nbsp;ile <math>n > M</math>, to spełnione są jednocześnie nierówności
+
można zapisać w&nbsp;sposób równoważny w&nbsp;postaci kongruencji
  
::* <math>\quad g - \varepsilon < a_n < g + \varepsilon\</math>
+
::<math>u \equiv c \;\; \pmod{m_1 \cdot \ldots \cdot m_k}</math>
::* <math>\quad g - \varepsilon < b_n < g + \varepsilon\</math>
 
::* <math>\quad a_n \leqslant x_n \leqslant b_n</math>
 
  
Z powyższych nierówności wynika natychmiast następujący ciąg nierówności
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Indukcja matematyczna. Twierdzenie jest prawdziwe dla liczby <math>k = 2</math> (zobacz J3). Zakładając prawdziwość twierdzenia dla liczby naturalnej <math>k \geqslant 2</math>, dla liczby <math>k + 1</math> otrzymujemy układ kongruencji
  
::<math>g - \varepsilon < a_n \leqslant x_n \leqslant b_n < g + \varepsilon</math>
+
::<math>\begin{align}
 +
u & \equiv c \quad \;\, \pmod{m_1 \cdot \ldots \cdot m_k} \\
 +
u & \equiv a_{k + 1} \pmod{m_{k + 1}}
 +
\end{align}</math>
  
Co oznacza, że dla <math>n > M</math> zachodzi
+
gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego. Z&nbsp;twierdzenia J3 wynika, że układ ten można zapisać w&nbsp;sposób równoważny w&nbsp;postaci kongruencji
  
::<math>g - \varepsilon < x_n < g + \varepsilon</math>
+
::<math>u \equiv c' \pmod{m_1 \cdot \ldots \cdot m_k m_{k + 1}}</math>
  
Czyli prawie wszystkie wyrazy ciągu <math>(x_n)</math> spełniają warunek <math>|x_n - g| < \varepsilon</math>. Co kończy dowód.<br/>
+
gdzie liczba <math>c'</math> jest dokładnie jedna i&nbsp;jest określona modulo <math>m_1 \cdot \ldots \cdot m_k m_{k + 1}</math>. Zatem twierdzenie jest prawdziwe dla <math>k + 1</math>. Co kończy dowód indukcyjny.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 129: Linia 165:
  
  
Bez dowodu podamy kilka ważnych twierdzeń.<br>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J6</span><br/>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C10*</span><br/>
+
Dysponujemy pewną ilością kulek. Grupując je po <math>5</math>, zostają nam <math>3</math>, a&nbsp;kiedy próbujemy ustawić je po <math>7</math>, zostają nam <math>4</math>. Jaka najmniejsza ilość kulek spełnia te warunki? Rozważmy układ kongruencji
Jeżeli istnieje taka liczba całkowita <math>n</math> i&nbsp;rzeczywista <math>M</math>, że dla każdego <math>k > n</math> jest
 
  
::<math>a_{k + 1}\geqslant a_k \qquad</math> oraz <math>\qquad a_k \leqslant M</math>
+
::<math>\begin{align}
 +
n &\equiv 3 \pmod{5} \\
 +
n &\equiv 4 \pmod{7}
 +
\end{align}</math>
  
to ciąg <math>(a_k)</math> jest zbieżny.<br/>
+
Z chińskiego twierdzenia o&nbsp;resztach wiemy, że powyższy układ możemy zapisać w&nbsp;postaci równoważnej kongruencji modulo <math>35</math>. Jeśli chcemy zaoszczędzić sobie trudu, to wystarczy skorzystać z&nbsp;PARI/GP. Wpisując proste polecenie
'''Inaczej mówiąc: ciąg rosnący i&nbsp;ograniczony od góry jest zbieżny.'''
 
  
 +
<span style="font-size: 90%; color:black;">chinese( Mod(3,5), Mod(4,7) )</span>
  
 +
uzyskujemy wynik <code>Mod(18, 35)</code>, zatem równoważna kongruencja ma postać
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C11*</span><br/>
+
::<math>n \equiv 18 \pmod{35}</math>
Jeżeli istnieje taka liczba całkowita <math>n</math> i&nbsp;rzeczywista <math>M</math>, że dla każdego <math>k > n</math> jest
 
  
::<math>a_{k + 1} \leqslant a_k \qquad</math> oraz <math>\qquad a_k \geqslant M</math>
+
Jest to zarazem odpowiedź na postawione pytanie: najmniejsza liczba kulek wynosi <math>18</math>.
  
to ciąg <math>(a_k)</math> jest zbieżny.<br/>
+
Gdybyśmy chcieli rozważać bardziej rozbudowany układ kongruencji, przykładowo
'''Inaczej mówiąc: ciąg malejący i&nbsp;ograniczony od dołu jest zbieżny.'''
 
  
 +
::<math>\begin{align}
 +
n &\equiv 1 \pmod{2} \\
 +
n &\equiv 2 \pmod{3} \\
 +
n &\equiv 3 \pmod{5} \\
 +
n &\equiv 4 \pmod{7} \\
 +
n &\equiv 5 \pmod{11}
 +
\end{align}</math>
  
 +
to argumenty należy zapisać w&nbsp;postaci wektora
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C12*</span><br/>
+
<span style="font-size: 90%; color:black;">chinese( [Mod(1,2), Mod(2,3), Mod(3,5), Mod(4,7), Mod(5,11)] )</span>
Jeżeli <math>\lim_{n \to \infty} a_n = a</math> oraz <math>\lim_{n \to \infty} b_n = b</math>, gdzie <math>a, b</math> są dowolnymi liczbami rzeczywistymi, to
 
  
# <math>\quad \lim_{n \to \infty} (a_n \pm b_n) = a \pm b</math>
+
Otrzymujemy <code>Mod(1523, 2310)</code>.
# <math>\quad \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b</math>
 
  
Jeżeli dodatkowo dla każdego <math>n</math> jest <math>b_n \neq 0</math> i <math>b \neq 0</math>, to
 
  
:&nbsp;&nbsp;3. <math>\quad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}</math>
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C13</span><br/>
+
== Wielomiany ==
Jeżeli <math>\lim_{n \to \infty} a_n = 0</math>, zaś ciąg <math>(x_n)</math> jest ograniczony, czyli istnieje taka liczba <math>M > 0</math>, że dla każdej wartości <math>n</math> prawdziwa jest nierówność <math>| x_n | < M</math>, to
 
  
::<math>\lim_{n \to \infty} (x_n \cdot a_n) = 0</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J7</span><br/>
 +
Niech <math>W_n (x)</math> będzie dowolnym wielomianem stopnia <math>n</math>. Wielomian <math>W_n (x)</math> można przedstawić w&nbsp;postaci
 +
 
 +
::<math>W_n (x) = W_n (s) + (x - s) V_{n - 1} (x)</math>
 +
 
 +
gdzie <math>V_{n - 1} (x)</math> jest wielomianem stopnia <math>n - 1</math>, a&nbsp;współczynniki wiodące wielomianów <math>W_n (x)</math> i <math>V_{n - 1} (x)</math> są sobie równe.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Wystarczy pokazać, że (zobacz twierdzenie C8 p.2)
+
Z założenia <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math>, gdzie <math>a_n \neq 0</math>. Zauważmy, że
  
::<math>\lim_{n \to \infty} |x_n \cdot a_n| = 0</math>
+
::<math>W_n (x) - W_n (s) = \sum_{k = 0}^{n} a_k x^k - \sum_{k = 0}^{n} a_k s^k</math>
  
Z założenia prawdziwe jest oszacowanie
+
::::::<math>\quad \; = \sum_{k = 1}^{n} a_k (x^k - s^k)</math>
  
::<math>0 \leqslant |x_n \cdot a_n| \leqslant |a_n| \cdot M</math>
+
Dla <math>k \geqslant 1</math> prawdziwy jest wzór
  
Zatem z twierdzenia o trzech ciągach otrzymujemy natychmiast, że
+
::<math>x^k - s^k = (x - s) \sum_{j = 1}^{k} x^{k - j} s^{j - 1}</math>
  
::<math>\lim_{n \to \infty} |x_n \cdot a_n| = 0</math>
+
::::<math>\;\,\, = (x - s) (x^{k - 1} + s x^{k - 2} + \ldots + s^{k - 2} x + s^{k - 1})</math>
  
Co kończy dowód.<br/>
+
::::<math>\;\,\, = (x - s) U^{(k)} (x)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
Gdzie przez <math>U^{(k)} (x) = \sum_{j = 1}^{k} x^{k - j} s^{j - 1}</math> oznaczyliśmy wielomian, którego stopień jest równy <math>k - 1</math>. Zatem możemy napisać
  
 +
::<math>W_n (x) - W_n (s) = (x - s) \sum_{k = 1}^{n} a_k U^{(k)} (x)</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C14</span><br/>
+
Suma wypisana po prawej stronie jest pewnym wielomianem <math>V_{n - 1} (x)</math>. Ponieważ ze wszystkich wielomianów <math>a_k U^{(k)} (x)</math>, wielomian <math>a_n U^{(n)} (x)</math> ma największy stopień równy <math>n - 1</math>, to stopień wielomianu <math>V_{n - 1} (x)</math> jest równy <math>n - 1</math>. Czyli
Dla <math>a \geqslant 0</math> i <math>n \geqslant 1</math> prawdziwa jest nierówność
 
  
::<math>(1 + a)^{1 / n} \leqslant 1 + \frac{a}{n}</math>
+
::<math>W_n (x) - W_n (s) = (x - s) V_{n - 1} (x)</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Niech <math>V_n (x) = \sum_{k = 0}^{n - 1} b_k x^k</math>. Mamy
Wzór jest prawdziwy dla <math>a = 0</math>. Zakładając, że <math>a > 0</math> i&nbsp;korzystając ze wzoru dwumianowego, mamy dla <math>n \geqslant 1</math>
 
  
::<math>\left( 1 + \frac{a}{n} \right)^n = \sum_{k=0}^{n}\left [\binom{n}{k} \cdot \left ( \frac{a}{n} \right )^k \right ] \geqslant</math>
+
::<math>\sum_{k = 0}^{n} a_k x^k - W_n (s) = \sum_{k = 0}^{n - 1} b_k x^{k + 1} - s \sum_{k = 0}^{n - 1} b_k x^k</math>
:::::<math>\;\; \geqslant \sum_{k=0}^{1}\left [\binom{n}{k} \cdot \left ( \frac{a}{n} \right )^k \right ] =</math>
 
:::::<math>\;\; = 1 + n \cdot \frac{a}{n} =</math>
 
:::::<math>\;\; = 1 + a</math>
 
  
Co należało pokazać.<br/>
+
Porównując wyrazy o&nbsp;największym stopniu, łatwo zauważamy, że <math>a_n = b_{n - 1}</math>. Czyli współczynnik wiodący wielomianu <math>V_{n - 1} (x)</math> jest równy <math>a_n</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 205: Linia 245:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C15</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja J8</span><br/>
Jeżeli <math>A > 0</math>, to <math>\lim_{n \to \infty} \sqrt[n]{A} = 1</math>.
+
Wielomian <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math>, gdzie <math>a_0, \ldots, a_n \in \mathbb{Z}</math> oraz <math>a_n \neq 0</math>, będziemy nazywali wielomianem całkowitym stopnia <math>n</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Dla <math>A > 1</math> możemy napisać <math>A = 1 + a</math>, gdzie <math>a > 0</math>, wtedy z&nbsp;twierdzenia C14 otrzymujemy
 
  
::<math>1 < \sqrt[n]{A} = (1 + a)^{1 / n} \leqslant 1 + \frac{a}{n}</math>
 
  
Z twierdzenia o&nbsp;trzech ciągach dostajemy natychmiast (dla <math>A > 1</math>)
+
<span style="font-size: 110%; font-weight: bold;">Definicja J9</span><br/>
 +
Powiemy, że wielomian całkowity <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> jest stopnia <math>n</math> modulo <math>p</math>, gdzie <math>p</math> jest liczbą pierwszą, jeżeli <math>p \nmid a_n</math>. Jeżeli każdy współczynnik <math>a_k</math>, gdzie <math>k = 0, 1, \ldots, n</math>, jest podzielny przez <math>p</math>, to stopień wielomianu <math>W_n (x)</math> modulo <math>p</math> jest nieokreślony.
  
::<math>\lim_{n \to \infty} \sqrt[n]{A} = 1</math>
 
  
W przypadku gdy <math>0 < A < 1</math>, możemy napisać <math>A = \frac{1}{B}</math>, gdzie <math>B > 1</math>, wtedy ze względu na udowodniony wyżej rezultat <math>\lim_{n \to \infty} \sqrt[n]{B} = 1</math>
 
  
::<math>\lim_{n \to \infty} \sqrt[n]{A} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{B}} = \frac{1}{\underset{n \rightarrow \infty}{\lim} \sqrt[n]{B}} = 1</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J10</span><br/>
 
+
Niech <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> będzie wielomianem całkowitym i <math>m \in \mathbb{Z}_+</math>. Jeżeli prawdziwa jest kongruencja <math>x \equiv y \!\! \pmod{m}</math>, to
Jeżeli <math>A = 1</math>, to <math>\sqrt[n]{A} = 1</math> dla każdego <math>n \geqslant 1</math>. Co kończy dowód.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>W_n (x) \equiv W_n (y) \pmod{m}</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Dla <math>k \geqslant 1</math> wyrażenie <math>x^k - y^k</math> jest podzielne przez <math>x - y</math>, co łatwo pokazać stosując indukcję matematyczną lub zauważając, że
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C16</span><br/>
+
::<math>x^k - y^k = (x - y) \sum_{j = 1}^{k} x^{k - j} y^{j - 1}</math>
Jeżeli prawie wszystkie wyrazy ciągu ciągu <math>(a_n)</math> spełniają warunek <math>0 < m < a_n < M</math>, to <math>\lim_{n \to \infty} \sqrt[n]{a_n} = 1</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Z założenia <math>m \mid (x - y)</math>, zatem dla <math>k \geqslant 1</math> mamy <math>m \mid (x^k - y^k)</math>. Wynika stąd, że prawdziwe są kongruencje
Z założenia dla prawie wszystkich wyrazów ciągu <math>(a_n)</math> jest
 
  
::<math>0 < m \leqslant a_n \leqslant M</math>
+
::<math>\begin{align}
 +
  a_0 & \equiv a_0 \;\;\:\, \pmod{m}\\
 +
  a_1 x & \equiv a_1 y \;\, \pmod{m}\\
 +
  a_2 x^2 & \equiv a_2 y^2 \pmod{m}\\
 +
  & \cdots \\
 +
  a_n x^n & \equiv a_n y^n \pmod{m}
 +
\end{align}</math>
  
Zatem dla prawie wszystkich wyrazów ciągu <math>a_n</math> mamy
+
Dodając wypisane kongruencje stronami, otrzymujemy
  
::<math>\sqrt[n]{m} \leqslant \sqrt[n]{a_n} \leqslant \sqrt[n]{M}</math>
+
::<math>W_n (x) \equiv W_n (y) \pmod{m}</math>
  
Z twierdzenia C15 wiemy, że <math>\lim_{n \to \infty} \sqrt[n]{m} = \lim_{n \to \infty} \sqrt[n]{M} = 1</math>, zatem na podstawie twierdzenia o&nbsp;trzech ciągach otrzymujemy natychmiast <math>\lim_{n \to \infty} \sqrt[n]{a_n} = 1</math><br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 245: Linia 285:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C17</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J11</span><br/>
Następujące ciągi są silnie rosnące i&nbsp;zbieżne
+
Niech <math>W(x)</math> będzie wielomianem całkowitym. Rozważmy kongruencję
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
::<math>W(x) \equiv 0 \pmod{m n} \qquad \qquad \qquad (1)</math>
|- style=height:4em
+
 
| <math>\quad 1. \quad</math> || <math>\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = e = 2.718281828 \ldots</math>
+
gdzie liczby <math>m</math> i <math>n</math> są względnie pierwsze.
|- style=height:4em
 
| <math>\quad 2. \quad</math> || <math>\lim_{n \to \infty} \left( 1 - \frac{1}{n} \right)^n = \frac{1}{e} = 0.367879441 \ldots</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Kongruencja ta jest równoważna układowi kongruencji
'''Punkt 1'''<br/>
 
W twierdzeniu A6 pokazaliśmy, że ciąg
 
  
::<math>a_n = \left( 1 + \frac{1}{n} \right)^n</math>
+
::<math>\begin{align}
 +
  W (x) &\equiv 0 \pmod{m}\\
 +
  W (x) &\equiv 0 \pmod{n}
 +
\end{align} \qquad \qquad \qquad \; (2)</math>
  
jest silnie rosnący i&nbsp;ograniczony od góry. Zatem z&nbsp;twierdzenia C10 wynika, że jest zbieżny. Liczbę będącą granicą tego ciągu oznaczamy literą <math>e</math>, jest ona podstawą logarytmu naturalnego.
+
Zatem problem szukania rozwiązań kongruencji <math>(1)</math> możemy sprowadzić do szukania rozwiązań układu kongruencji <math>(2)</math>. W&nbsp;szczególności wynika stąd, że jeżeli któraś z&nbsp;kongruencji <math>(2)</math> nie ma rozwiązania, to kongruencja <math>W(x) \equiv 0 \!\! \pmod{m n}</math> również nie ma rozwiązania.
  
'''Punkt 2'''<br/>
+
Załóżmy, że każda z&nbsp;kongruencji <math>(2)</math> ma przynajmniej jedno rozwiązanie i&nbsp;niech
Pokażemy najpierw, że ciąg <math>\left( 1 - \frac{1}{n} \right)^n</math> jest silnie rosnący. Musimy pokazać, że prawdziwa jest nierówność
 
  
::<math>\left( 1 - \frac{1}{n + 1} \right)^{n + 1} > \left( 1 - \frac{1}{n} \right)^n</math>
+
:* <math>x \equiv a \!\! \pmod{m}</math> będzie pierwiastkiem kongruencji <math>W (x) \equiv 0 \!\! \pmod{m}</math>
 +
:* <math>x \equiv b \!\! \pmod{n}</math> będzie pierwiastkiem kongruencji <math>W (x) \equiv 0 \!\! \pmod{n}</math>
  
Łatwo sprawdzamy prawdziwość nierówności dla <math>n = 1</math>. Załóżmy teraz, że <math>n \geqslant 2</math>. Przekształcając,
+
Pierwiastki te tworzą układ kongruencji
  
::<math>\left( \frac{n}{n + 1} \right)^{n + 1} > \left( \frac{n - 1}{n} \right)^n</math>
+
::<math>\begin{align}
 +
x &\equiv a \pmod{m} \\
 +
x &\equiv b \pmod{n}
 +
\end{align} \qquad \qquad \qquad \qquad (3)</math>
  
::<math>\frac{n}{n + 1} \cdot \left( \frac{n}{n + 1} \right)^n \cdot \left( \frac{n}{n - 1} \right)^n > 1</math>
+
Z chińskiego twierdzenia o&nbsp;resztach wiemy, że układ ten możemy zapisać w&nbsp;postaci równoważnej
  
::<math>\left( \frac{n^2}{n^2 - 1} \right)^n > \frac{n + 1}{n}</math>
+
::<math>x \equiv c \pmod{m n}</math>
  
otrzymujemy nierówność równoważną,
+
Zauważmy, że liczba <math>c</math> określona modulo <math>m n</math> jest rozwiązaniem kongruencji <math>(1)</math>. Istotnie z&nbsp;twierdzenia J10 mamy
  
::<math>\left( 1 + \frac{1}{n^2 - 1} \right)^n > 1 + \frac{1}{n}</math>
+
::<math>\begin{align}
 +
  W (c) &\equiv W (a) \equiv 0 \pmod{m} \\
 +
  W (c) &\equiv W (b) \equiv 0 \pmod{n}
 +
\end{align}</math>
  
którą już łatwo udowodnić, bo
+
ale liczby <math>m, n</math> są względnie pierwsze, zatem otrzymujemy, że
  
::<math>\left( 1 + \frac{1}{n^2 - 1} \right)^n > \left( 1 + \frac{1}{n^2} \right)^n = \sum_{k = 0}^{n} \binom{n}{k} \cdot \left( \frac{1}{n^2} \right)^k > \sum_{k = 0}^{1} \binom{n}{k} \cdot \frac{1}{n^{2k}} = 1 + \frac{1}{n}</math>
+
::<math>W (c) \equiv 0 \pmod{m n}</math>
  
Ponieważ dla każdego <math>n \geqslant 1</math> jest <math>\left( 1 - \frac{1}{n} \right)^n \leqslant 1</math> (bo iloczyn liczb mniejszych od <math>1</math> nie może być liczbą większą do jedności), to z&nbsp;twierdzenia C10 wynika, że ciąg ten jest zbieżny. Zatem możemy napisać
+
Wynika stąd, że każdemu układowi rozwiązań <math>(3)</math> odpowiada dokładnie jedno rozwiązanie kongruencji <math>(1)</math>.
  
::<math>\underset{n \rightarrow \infty}{\lim} \left( 1 - \frac{1}{n} \right)^n = g</math>
+
Podsumujmy: jeżeli kongruencje
  
Rozważmy teraz iloczyn wypisanych w&nbsp;twierdzeniu ciągów
+
::<math>\begin{align}
 +
  W (x) &\equiv 0 \pmod{m}\\
 +
  W (x) &\equiv 0 \pmod{n}
 +
\end{align}</math>
  
::<math>\left( 1 + \frac{1}{n} \right)^n \cdot \left( 1 - \frac{1}{n} \right)^n = \left( 1 - \frac{1}{n^2} \right)^n = \left[ \left( 1 - \frac{1}{n^2} \right)^{n^2} \right]^{1 / n}</math>
+
mają odpowiednio <math>r</math> i <math>s</math> pierwiastków, to liczba różnych układów kongruencji <math>(3)</math> jest równa iloczynowi <math>r s</math> i&nbsp;istnieje <math>r s</math> różnych rozwiązań kongruencji
  
Łatwo widzimy, że ciąg <math>\left( 1 - \frac{1}{n^2} \right)^{n^2}</math> jest podciągiem ciągu <math>\left( 1 - \frac{1}{n} \right)^n</math>, zatem jest ograniczony i&nbsp;dla <math>n \geqslant 2</math> spełniony jest układ nierówności
+
::<math>W(x) \equiv 0 \pmod{m n}</math>
  
::<math>0 < \left( \frac{3}{4} \right)^4 \leqslant \left( 1 - \frac{1}{n^2} \right)^{n^2} \leqslant 1</math>
 
  
Z twierdzenia C16 dostajemy
 
  
::<math>\lim_{n \to \infty} \left[ \left( 1 - \frac{1}{n^2} \right)^{n^2} \right]^{1 / n} = 1</math>
 
  
Z twierdzenia C12 p. 2 wynika natychmiast, że
 
  
::<math>e \cdot g = \lim_{n \to \infty} \left[ \left( 1 + \frac{1}{n} \right)^n \cdot \left( 1 - \frac{1}{n} \right)^n \right] = \lim_{n \to \infty} \left[ \left( 1 - \frac{1}{n^2} \right)^{n^2} \right]^{1 / n} = 1</math>
+
== Twierdzenie Lagrange'a ==
  
Zatem <math>g = \frac{1}{e}</math>.<br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J12</span><br/>
&#9633;
+
Kongruencja
{{\Spoiler}}
 
  
 +
::<math>a_1 x + a_0 \equiv 0 \pmod{p}</math>
  
 +
gdzie <math>p \nmid a_1</math>, ma dokładnie jedno rozwiązanie modulo <math>p</math>.
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C18</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Dla <math>n \geqslant 2</math> prawdziwe są następujące nierówności
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
'''A. Istnienie rozwiązania'''
|- style=height:4em
 
| <math>\quad 1. \quad</math> || <math> \frac{1}{n + 1} < \log \left( 1 + \frac{1}{n} \right) < \frac{1}{n}</math>
 
|- style=height:4em
 
| <math>\quad 2. \quad</math> || <math>- \frac{1}{n - 1} < \log \left( 1 - \frac{1}{n} \right) < - \frac{1}{n}</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ rozpatrywaną kongruencję możemy zapisać w&nbsp;postaci <math>a_1 x + a_0 = k p</math>, to istnienie liczb <math>x</math> i <math>k</math>, dla których ta równość jest prawdziwa, wynika z&nbsp;twierdzenia C74. Poniżej przedstawimy jeszcze jeden sposób znalezienia rozwiązania.
Ponieważ ciąg <math>\left( 1 + \frac{1}{n} \right)^n</math> jest silnie rosnący, to
 
  
::<math>\left( 1 + \frac{1}{n} \right)^n < e</math>
+
Ponieważ <math>\gcd (a_1, p) = 1</math>, to istnieją takie liczby <math>r, s</math>, że <math>a_1 r + p s = 1</math> (zobacz C71 - lemat Bézouta). Zauważmy, że <math>p \nmid r</math>, bo gdyby tak było, to liczba pierwsza <math>p</math> dzieliłaby wyrażenie <math>a_1 r + p s</math>, ale jest to niemożliwe, bo <math>a_1 r + p s = 1</math>. Czyli modulo <math>p</math> mamy
  
Logarytmując powyższą nierówność, mamy
+
::<math>a_1 r \equiv 1 \pmod{p}</math>
  
::<math>n \cdot \log \left( 1 + \frac{1}{n} \right) < 1</math>
+
Mnożąc rozpatrywaną kongruencję przez <math>r</math>, otrzymujemy
  
Stąd wynika natychmiast, że
+
::<math>a_1 r x + a_0 r \equiv 0 \pmod{p}</math>
  
::<math>\log \left( 1 + \frac{1}{n} \right) < \frac{1}{n}</math>
+
Zatem
  
 +
::<math>x \equiv - a_0 r \pmod{p}</math>
  
Ponieważ ciąg <math>\left( 1 - \frac{1}{n} \right)^n</math> również jest silnie rosnący, to postępując analogicznie, dostajemy
+
'''B. Brak innych rozwiązań'''
  
::<math>\left( 1 - \frac{1}{n} \right)^n < \frac{1}{e}</math>
+
Przypuśćmy, że istnieją dwa różne rozwiązania kongruencji
  
::<math>n \cdot \log \left( 1 - \frac{1}{n} \right) < - 1</math>
+
::<math>a_1 x + a_0 \equiv 0 \pmod{p}</math>
  
::<math>\log \left( 1 - \frac{1}{n} \right) < - \frac{1}{n}</math>
+
Jeśli oznaczymy je przez <math>x_1</math> i <math>x_2</math>, to otrzymamy
  
 +
::<math>a_1 x_1 + a_0 \equiv 0 \equiv a_1 x_2 + a_0 \pmod{p}</math>
  
Przekształcając otrzymane wzory, otrzymujemy
+
Czyli
  
::<math>- \log \left( 1 + \frac{1}{n} \right) = - \log \left( \frac{n + 1}{n} \right) = \log \left( \frac{n}{n + 1} \right) = \log \left( 1 - \frac{1}{n + 1} \right) < - \frac{1}{n + 1}</math>
+
::<math>a_1 x_1 \equiv a_1 x_2 \pmod{p}</math>
  
oraz
+
::<math>p \mid a_1 (x_1 - x_2)</math>
  
::<math>- \log \left( 1 - \frac{1}{n} \right) = - \log \left( \frac{n - 1}{n} \right) = \log \left( \frac{n}{n - 1} \right) = \log \left( 1 + \frac{1}{n - 1} \right) < \frac{1}{n - 1}</math><br/>
+
Ponieważ <math>p \nmid a_1</math>, to z&nbsp;lematu Euklidesa (C72) otrzymujemy natychmiast <math>p \mid (x_1 - x_2)</math>. Skąd wynika, że <math>x_1 \equiv x_2 \!\! \pmod{p}</math>, wbrew założeniu, że <math>x_1</math> i <math>x_2</math> są dwoma różnymi rozwiązaniami. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 355: Linia 394:
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J13 (Joseph Louis Lagrange, 1768)</span><br/>
 +
Jeżeli wielomian <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> ma stopień <math>n</math> modulo <math>p</math>, gdzie <math>n \geqslant 1</math>, to kongruencja
  
 +
::<math>W_n (x) \equiv 0 \pmod{p}</math>
  
== Liczby pierwsze w&nbsp;ciągach arytmetycznych ==
+
ma co najwyżej <math>n</math> rozwiązań.
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C19</span><br/>
 
Każda liczba naturalna <math>n \geqslant 2</math> jest liczbą pierwszą lub iloczynem liczb pierwszych.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/><br/>
+
Indukcja matematyczna. Z&nbsp;J12 wiemy, że dowodzone twierdzenie jest prawdziwe dla <math>n = 1</math>. Załóżmy, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od <math>n - 1</math>. Niech wielomian <math>W_n (x)</math> ma stopień <math>n</math> modulo <math>p</math>. Jeżeli kongruencja
Przypuśćmy, że istnieją liczby naturalne większe od <math>1</math>, które nie są liczbami pierwszymi ani nie są iloczynami liczb pierwszych. Niech <math>m</math> oznacza najmniejszą<ref name="WellOrdering"/> z&nbsp;takich liczb. Z&nbsp;założenia <math>m</math> nie jest liczbą pierwszą, zatem <math>m</math> może być zapisana w&nbsp;postaci <math>m = a \cdot b</math>, gdzie liczby <math>a, b</math> są liczbami naturalnymi mniejszymi od <math>m</math>.
 
  
Ponieważ <math>m</math> jest najmniejszą liczbą naturalną, która nie jest liczbą pierwszą ani nie jest iloczynem liczb pierwszych, to liczby <math>a</math> i <math>b</math> muszą być liczbami złożonymi, ale jako mniejsze od <math>m</math> są one iloczynami liczb pierwszych, zatem i&nbsp;liczba <math>m</math> musi być iloczynem liczb pierwszych.
+
::<math>W_n (x) \equiv 0 \pmod{p}</math>
  
Uzyskana sprzeczność dowodzi, że nasze przypuszczenie jest fałszywe.
+
nie ma żadnego rozwiązania, to dowodzone twierdzenie jest prawdziwe dla <math>n</math>. Przypuśćmy teraz, że wypisana wyżej kongruencja ma przynajmniej jeden pierwiastek <math>x \equiv s \!\! \pmod{p}</math>. Korzystając z&nbsp;twierdzenia J7, możemy napisać
  
 +
::<math>W_n (x) - W_n (s) = (x - s) V_{n - 1} (x)</math>
  
<span style="border-bottom-style: double;">Drugi sposób</span><br/><br/>
+
gdzie wielomian <math>V_{n - 1} (x)</math> ma stopień <math>n - 1</math> modulo <math>p</math>, bo wielomiany <math>W_n (x)</math> oraz <math>V_{n - 1} (x)</math> mają jednakowe współczynniki wiodące.
Indukcja matematyczna. Twierdzenie jest oczywiście prawdziwe dla <math>n = 2</math>.
 
Zakładając, że twierdzenie jest prawdziwe dla '''wszystkich''' liczb naturalnych <math>k \in [2, n]</math>, dla liczby <math>n + 1</math> mamy dwie możliwości
 
  
* <math>n + 1</math> jest liczbą pierwszą (wtedy twierdzenie jest prawdziwe w&nbsp;sposób oczywisty)
 
* <math>n + 1</math> jest liczbą złożoną wtedy, <math>n + 1 = a b</math>, gdzie <math>1 < a, b < n + 1</math>; zatem na podstawie założenia indukcyjnego liczby <math>a</math> i <math>b</math> są liczbami pierwszymi lub iloczynami liczb pierwszych, czyli <math>n + 1 = a b</math> jest iloczynem liczb pierwszych.
 
 
Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
Z założenia <math>x \equiv s \!\! \pmod{p}</math> jest jednym z&nbsp;pierwiastków kongruencji <math>W_n (x) \equiv 0 \!\! \pmod{p}</math>, zatem modulo <math>p</math> otrzymujemy
  
 +
::<math>W_n (x) \equiv (x - s) V_{n - 1} (x) \pmod{p}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C20 (Euklides, IV w. p.n.e.)</span><br/>
+
Ponieważ <math>p</math> jest liczbą pierwszą, to z&nbsp;rozpatrywanej kongruencji
Istnieje nieskończenie wiele liczb pierwszych.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>W_n (x) \equiv 0 \pmod{p}</math>
Przypuśćmy, że istnieje jedynie skończona ilość liczb pierwszych <math>p_1, p_2, \ldots, p_n</math> . Wtedy liczba <math>a = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1</math> jest większa od jedności i&nbsp;z&nbsp;twierdzenia C19 wynika, że posiada dzielnik będący liczbą pierwszą, ale jak łatwo zauważyć żadna z&nbsp;liczb pierwszych <math>p_1, p_2, \ldots, p_n</math> nie jest dzielnikiem liczby <math>a</math>. Zatem istnieje liczba pierwsza <math>p</math> będąca dzielnikiem pierwszym liczby <math>a</math> i&nbsp;różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_n</math>. Co kończy dowód.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
wynika, że musi być (zobacz C72)
  
 +
::<math>x \equiv s \pmod{p} \qquad \qquad \text{lub} \qquad \qquad V_{n - 1} (x) \equiv 0 \pmod{p}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C21</span><br/>
 
Jeżeli liczba naturalna <math>n</math> jest postaci <math>4 k + 3</math><ref name="LiczbaJestPostaci"/>, to ma dzielnik postaci <math>4 k + 3</math> będący liczbą pierwszą.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Z założenia indukcyjnego kongruencja
Jeżeli <math>n</math> jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy zatem sytuację gdy <math>n</math> jest liczbą złożoną. Z&nbsp;założenia <math>n</math> jest liczbą nieparzystą, zatem możliwe są trzy typy iloczynów
 
  
::<math>(4 a + 1) (4 b + 1) = 16 a b + 4 a + 4 b + 1 = 4 (4 a b + a + b) + 1</math>
+
::<math>V_{n - 1} (x) \pmod{p}</math>
  
::<math>(4 a + 1) (4 b + 3) = 16 a b + 12 a + 4 b + 3 = 4 (4 a b + 3 a + b) + 3</math>
+
ma co najwyżej <math>n - 1</math> rozwiązań, zatem kongruencja
  
::<math>(4 a + 3) (4 b + 3) = 16 a b + 12 a + 12 b + 9 = 4 (4 a b + 3 a + 3 b + 2) + 1</math>
+
::<math>W_n (x) \equiv 0 \pmod{p}</math>
  
Widzimy, że liczba złożona postaci <math>4 k + 3</math> jest iloczynem liczb postaci <math>4 k + 1</math> i <math>4 k + 3</math>. Wynika stąd natychmiast, że liczba złożona postaci <math>4 k + 3</math> posiada dzielnik postaci <math>4 k + 3</math>. Niech <math>q</math> oznacza najmniejszy dzielnik liczby <math>n</math> postaci <math>4 k + 3</math>. Pokażemy, że <math>q</math> jest liczbą pierwszą. Istotnie, gdyby <math>q</math> była liczbą złożoną, to miałaby dzielnik <math>d</math> postaci <math>4 k + 3</math> i&nbsp;byłoby <math>d < q</math>, wbrew założeniu, że <math>q</math> jest najmniejszym dzielnikiem liczby <math>n</math> postaci <math>4 k + 3</math>. Co kończy dowód.<br/>
+
ma nie więcej niż <math>n</math> rozwiązań. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 412: Linia 440:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C22</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J14</span><br/>
Istnieje nieskończenie wiele liczb pierwszych postaci <math>4 k + 3</math>.
+
Jeżeli kongruencja
 +
 
 +
::<math>a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \equiv 0 \pmod{p}</math>
 +
 
 +
ma więcej niż <math>n</math> rozwiązań, to wszystkie współczynniki <math>a_k</math>, gdzie <math>k = 0, \ldots, n</math>, muszą być podzielne przez <math>p</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Przypuśćmy, że istnieje tylko skończona ilość liczb pierwszych postaci <math>4 k + 3</math>. Niech będą to liczby <math>p_1, \ldots, p_s</math>. Liczba
+
Niech <math>S \subset \{ 0, 1, \ldots, n \}</math> będzie zbiorem takim, że dla każdego <math>k \in S</math> jest <math>p \nmid a_k</math>. Przypuśćmy, że <math>S</math> jest zbiorem niepustym. Niech <math>j</math> oznacza największy element zbioru <math>S</math>. Jeżeli <math>j = 0</math>, to wielomian <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> jest stopnia <math>0</math> modulo <math>p</math> i
  
::<math>M = 4 p_1 \cdot \ldots \cdot p_s - 1 = 4 (p_1 \cdot \ldots \cdot p_s - 1) + 3</math>
+
::<math>a_0 \not\equiv 0 \pmod{p}</math>
  
jest postaci <math>4 k + 3</math> i&nbsp;jak wiemy z&nbsp;twierdzenia C21, ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 3</math>. Ale jak łatwo zauważyć, żadna z&nbsp;liczb <math>p_1, \ldots, p_s</math> nie dzieli liczby <math>M</math>. Zatem istnieje liczba pierwsza <math>q</math> postaci <math>4 k + 3</math> różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_s</math>. Otrzymana sprzeczność kończy dowód.<br/>
+
Konsekwentnie, dla dowolnego <math>x \in \mathbb{Z}</math> jest
 +
 
 +
::<math>a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \not\equiv 0 \pmod{p}</math>
 +
 
 +
bo dla każdego <math>1 \leqslant k \leqslant n</math> mamy <math>a_k \equiv 0 \!\! \pmod{p}</math>. Zatem rozpatrywana kongruencja nie ma ani jednego rozwiązania, czyli rozwiązań nie może być więcej niż <math>n</math>.
 +
 
 +
W przypadku gdy <math>j \neq 0</math>, z&nbsp;twierdzenia Lagrange'a wynika, że rozpatrywana kongruencja ma nie więcej niż <math>j \leqslant n</math> rozwiązań, ponownie wbrew założeniu, że kongruencja ta ma więcej niż <math>n</math> rozwiązań. Uczynione przypuszczenie, że <math>S</math> jest zbiorem niepustym, okazało się fałszywe, zatem zbiór <math>S</math> musi być zbiorem pustym. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 426: Linia 464:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C23</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J15</span><br/>
Jeżeli liczba naturalna <math>n</math> jest postaci <math>6 k + 5</math>, to ma dzielnik postaci <math>6 k + 5</math> będący liczbą pierwszą.
+
Z twierdzenia Lagrange'a wynika, że kongruencja
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>x^p - x - 1 \equiv 0 \pmod{p}</math>
Jeżeli <math>n</math> jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy sytuację gdy <math>n</math> jest liczbą złożoną. Z&nbsp;twierdzenia C19 wiemy, że w&nbsp;tym przypadku liczba <math>n</math> będzie iloczynem liczb pierwszych. Zauważmy, że nieparzyste liczby pierwsze mogą być jedynie postaci <math>6 k + 1</math> lub <math>6 k + 5</math> (liczba <math>6 k + 3</math> jest liczbą złożoną). Ponieważ iloczyn liczb postaci <math>6 k + 1</math>
 
  
::<math>(6 a + 1) (6 b + 1) = 36 a b + 6 a + 6 b + 1 = 6 (6 a b + a + b) + 1</math>
+
ma co najwyżej <math>p</math> rozwiązań. W&nbsp;rzeczywistości nie ma ani jednego rozwiązania, bo z&nbsp;twierdzenia Fermata wiemy, że dla dowolnej liczby pierwszej <math>p</math> jest
  
jest liczbą postaci <math>6 k + 1</math>, to w&nbsp;rozkładzie liczby <math>n</math> na czynniki pierwsze musi pojawić się przynajmniej jeden czynnik postaci <math>6 k + 5</math>. Co kończy dowód.<br/>
+
::<math>x^p \equiv x \pmod{p}</math>
&#9633;
 
{{\Spoiler}}
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C24</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J16</span><br/>
Istnieje nieskończenie wiele liczb pierwszych postaci <math>6 k + 5</math>.
+
Zauważmy, że w&nbsp;przypadku, gdy <math>n \geqslant p</math>, możemy zawsze wielomian przekształcić do postaci takiej, że <math>n < p</math>. Niech <math>p = 5</math> i
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1</math>
Przypuśćmy, że istnieje tylko skończona ilość liczb pierwszych postaci <math>6 k + 5</math>. Niech będą to liczby <math>p_1, \ldots, p_s</math>. Liczba
 
  
::<math>M = 6 p_1 \cdot \ldots \cdot p_s - 1 = 6 (p_1 \cdot \ldots \cdot p_s - 1) + 5</math>
+
Ponieważ <math>x^5 \equiv x \!\! \pmod{5}</math>, to
  
jest postaci <math>6 k + 5</math> i&nbsp;jak wiemy z&nbsp;twierdzenia C23 ma dzielnik pierwszy <math>q</math> postaci <math>6 k + 5</math>. Ale jak łatwo zauważyć żadna z&nbsp;liczb <math>p_1, \ldots, p_s</math> nie dzieli liczby <math>M</math>. Zatem istnieje liczba pierwsza <math>q</math> postaci <math>6 k + 5</math> różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_s</math>. Otrzymana sprzeczność kończy dowód.<br/>
+
::<math>W(x) \equiv x^3 + 11 x^3 + 5 x + 2 x^2 + x + 1 \equiv 12 x^3 + 2 x^2 + 6 x + 1 \pmod{5}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
Co wynika również z&nbsp;faktu, że <math>W(x)</math> można zapisać w&nbsp;postaci
  
 +
::<math>W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1 = (x^5 - x) (x^{10} + 12 x^6 + 12 x^2 + 5) + 12 x^3 + 2 x^2 + 6 x + 1</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C25</span><br/>
+
ale <math>x^5 - x \equiv 0 \!\! \pmod{5}</math> na mocy twierdzenia Fermata.
Istnieje nieskończenie wiele liczb pierwszych postaci <math>3 k + 2</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Jeżeli <math>k = 2 j</math> jest liczbą parzystą, to otrzymujemy ciąg liczb parzystych
 
  
::<math>3 k + 2 = 6 j + 2</math>
 
  
w którym jedynie liczba <math>2</math> jest liczbą pierwszą (dla <math>j = 0</math>).
 
  
Jeżeli <math>k = 2 j + 1</math> jest liczbą nieparzystą, to otrzymujemy ciąg liczb nieparzystych
 
  
::<math>3 k + 2 = 3 (2 j + 1) + 2 = 6 j + 5</math>
+
== Twierdzenie Wilsona ==
  
o którym wiemy, że zawiera nieskończenie wiele liczb pierwszych (zobacz twierdzenie C24). Zatem w&nbsp;ciągu arytmetycznym postaci <math>3 k + 2</math> występuje nieskończenie wiele liczb pierwszych.<br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J17 (John Wilson, 1770)</span><br/>
&#9633;
+
Liczba całkowita <math>p \geqslant 2</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy
{{\Spoiler}}
 
  
 +
::<math>(p - 1) ! \equiv - 1 \pmod{p}</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C26</span><br/>
+
<math>\Large{\Longleftarrow}</math>
Zauważmy, że liczby postaci <math>2 k + 1</math> to wszystkie liczby nieparzyste dodatnie. Ponieważ wszystkie liczby pierwsze (poza liczbą <math>2</math>) są liczbami nieparzystymi, to wśród liczb postaci <math>2 k + 1</math> występuje nieskończenie wiele liczb pierwszych.
 
  
Wszystkie omówione wyżej przypadki ciągów arytmetycznych: <math>2 k + 1</math>, <math>3 k + 2</math>, <math>4 k + 3</math> i <math>6 k + 5</math>, w&nbsp;których występuje nieskończona ilość liczb pierwszych są szczególnymi przypadkami udowodnionego w 1837 roku twierdzenia<br/>
+
Przypuśćmy, że prawdziwa jest kongruencja <math>(p - 1) ! \equiv - 1 \!\! \pmod{p}</math> oraz <math>p</math> jest liczbą złożoną. Zatem liczba <math>p</math> ma dzielnik <math>d</math> taki, że <math>2 \leqslant d \leqslant p - 1</math>. Ponieważ <math>d \mid p</math>, to prawdziwa jest kongruencja
  
 +
::<math>(p - 1) ! \equiv - 1 \pmod{d}</math>
  
 +
czyli
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C27* (Peter Gustav Lejeune Dirichlet, 1837)</span><br/>
+
::<math>0 \equiv - 1 \pmod{d}</math>
Niech <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to w&nbsp;ciągu arytmetycznym <math>a k + b</math> występuje nieskończenie wiele liczb pierwszych.
 
  
 +
co jest niemożliwe.
  
 +
<math>\Large{\Longrightarrow}</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C28</span><br/>
+
Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>p = 2</math>. Niech teraz <math>p</math> będzie liczbą pierwszą nieparzystą. Rozważmy wielomiany
Dowód twierdzenia Dirichleta jest bardzo trudny. Natomiast bardzo łatwo można pokazać, że dowolny ciąg arytmetyczny <math>a k + b</math> zawiera nieskończenie wiele liczb złożonych. Istotnie, jeżeli liczby <math>a, b</math> nie są względnie pierwsze, to wszystkie wyrazy ciągu są liczbami złożonymi. Jeżeli <math>a, b</math> są względnie pierwsze i <math>b > 1 ,</math> to wystarczy przyjąć <math>k = b t</math>. Jeżeli są względnie pierwsze i <math>b = 1</math>, to wystarczy przyjąć <math>k = a t^2 + 2 t</math>, wtedy
 
  
::<math>a k + 1 = a^2 t^2 + 2 a t + 1 = (a t + 1)^2</math>
+
::<math>W(x) = (x - 1) (x - 2) \cdot \ldots \cdot (x - (p - 1))</math>
  
 +
oraz
  
 +
::<math>V(x) = x^{p - 1} - 1</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C29</span><br/>
+
Zauważmy, że
Wiemy już, że w przypadku gdy liczby <math>a</math> i <math>b</math> są względnie pierwsze, to w ciągu arytmetycznym <math>a k + b</math> występuje nieskończenie wiele liczb pierwszych. Pojawia się pytanie o to, czy możliwe jest oszacowanie najmniejszej liczby pierwszej <math>p</math> w takim ciągu. Jakkolwiek przypuszczamy, że prawdziwe jest oszacowanie <math>p < a^2</math>, to stan naszej obecnej wiedzy ujmuje twierdzenie Linnika<ref name="Linnik1"/><ref name="Linnik2"/><ref name="Linnik3"/><ref name="Linnik4"/>, które podajemy niżej. Trzeba było ponad pół wieku wysiłku wielu matematyków, aby pokazać, że w twierdzeniu Linnika możemy przyjąć <math>L = 5</math><ref name="Xylouris1"/>.
 
  
 +
:* stopnie tych wielomianów są równe <math>p - 1</math>
 +
:* współczynniki wiodące są równe <math>1</math>
 +
:* wyrazy wolne są równe odpowiednio <math>(p - 1) !</math> oraz <math>- 1</math>
 +
:* wielomiany mają <math>p - 1</math> rozwiązań modulo <math>p</math>
  
 +
Niech
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C30* (Jurij Linnik, 1944)</span><br/> Niech <math>a, b \in \mathbb{Z}_+</math> i <math>p_{\min} (a, b)</math> oznacza najmniejszą liczbę pierwszą w ciągu arytmetycznym <math>a k + b</math>, gdzie <math>k \in \mathbb{Z}_+</math>. Jeżeli <math>\gcd (a, b) = 1</math> i <math>b \in [1, a - 1]</math>, to istnieją takie stałe <math>L > 0</math> i <math>a_0 \geqslant 2</math>, że dla wszystkich <math>a > a_0</math> prawdziwe jest oszacowanie
+
::<math>U(x) = W (x) - V (x)</math>
  
::<math>p_{\min} (a, b) < a^L</math>
+
Zauważmy, że
  
 +
:* stopień wielomianu <math>U(x)</math> jest równy <math>p - 2 \geqslant 1</math>, ponieważ wyrazy o&nbsp;najwyższym stopniu uległy redukcji
 +
:* wielomian <math>U(x)</math> ma <math>p - 1</math> rozwiązań modulo <math>p</math>, bo dla każdego <math>k \in \{ 1, 2, \ldots, p - 1 \}</math> mamy <math>U(k) = W (k) - V (k) \equiv 0 \!\! \pmod{p}</math>
  
 +
Z twierdzenia Lagrange'a wiemy, że wielomian <math>U(x)</math> nie może mieć więcej niż <math>p - 2</math> rozwiązań modulo <math>p</math>. Zatem z&nbsp;twierdzenia J14 wynika natychmiast, że liczba pierwsza <math>p</math> musi dzielić każdy współczynnik <math>a_k</math> wielomianu <math>U(x)</math> i&nbsp;w&nbsp;szczególności musi dzielić wyraz wolny, który jest równy <math>(p - 1) ! + 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C31</span><br/>
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Wszystkie liczby naturalne zakończone cyframi <math>99</math> możemy zapisać w&nbsp;postaci <math>a_n = 100 k + 99</math>, gdzie <math>k \in \mathbb{N}</math>. Ponieważ ciąg <math>(a_n)</math> jest ciągiem arytmetycznym, a&nbsp;liczby <math>99</math> i <math>100</math> są względnie pierwsze, to na podstawie twierdzenia Dirichleta stwierdzamy, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi <math>99</math>.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J18</span><br/>
 +
Liczba całkowita nieparzysta <math>p \geqslant 3</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy
  
 +
::<math>\left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p}</math>
  
<span style="font-size: 110%; font-weight: bold;">Definicja C32</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>a \geqslant 2</math> będzie liczbą całkowitą. Wartość funkcji <math>\pi(n; a, b)</math> jest równa ilości liczb pierwszych nie większych od <math>n</math>, które przy dzieleniu przez <math>a</math> dają resztę <math>b</math>.
+
Z twierdzenia Wilsona wiemy, że liczba całkowita <math>p \geqslant 2</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy
  
 +
::<math>(p - 1) ! \equiv - 1 \pmod{p}</math>
  
 +
W przypadku, gdy liczba <math>p</math> jest liczbą nieparzystą możemy powyższy wzór łatwo przekształcić. Ponieważ czynniki w <math>(p - 1) !</math> są określone modulo <math>p</math>, to odejmując od każdego czynnika większego od <math>{\small\frac{p - 1}{2}}</math> liczbę <math>p</math>, otrzymujemy
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C33</span><br/>
+
::<math>1 \cdot 2 \cdot \ldots \cdot {\small\frac{p - 3}{2}} \cdot {\small\frac{p - 1}{2}} \cdot \left( {\small\frac{p + 1}{2}} - p \right) \left( {\small\frac{p + 3}{2}} - p \right) \cdot \ldots \cdot (- 2) \cdot (- 1) \equiv - 1 \!\! \pmod{p}</math>
Zauważmy, że w&nbsp;twierdzeniu Dirichleta na liczby <math>a</math> oraz <math>b</math> nałożone są minimalne warunki: <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Sytuacja w&nbsp;przypadku funkcji <math>\pi (n ; a, b)</math> jest odmienna – tutaj mamy <math>a \geqslant 2</math> oraz <math>0 \leqslant b \leqslant a - 1</math>. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja <math>\pi (n ; a, b)</math> jest podziałem pierwotnym, a&nbsp;twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział
 
liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek
 
  
::<math>\sum_{b = 0}^{a - 1} \pi (n ; a, b) = \pi (n)</math>
+
::<math>(- 1)^{\tfrac{p - 1}{2}} \cdot \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv - 1 \!\! \pmod{p}</math>
  
Oczywiście nie przeszkadza to w&nbsp;liczeniu liczb pierwszych w&nbsp;dowolnym ciągu arytmetycznym. Niech na przykład
+
::<math>\left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p}</math>
  
::<math>u_k = 7 k + 101 = 7 (k + 14) + 3 \qquad</math> gdzie <math>k = 0, 1, \ldots</math>
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Ilość liczb pierwszych w&nbsp;ciagu <math>(u_k)</math> jest równa
 
  
::<math>\pi (n ; 7, 3) - \pi (7 \cdot 13 + 3 ; 7, 3) = \pi (n ; 7, 3) - 5</math>
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C34</span><br/>
+
== Twierdzenie Fermata ==
Pokazać, że dla dowolnej liczby całkowitej <math>m \geqslant 1</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J19 (Pierre de Fermat, 1640)</span><br/>
 +
Niech <math>a \in \mathbb{Z}</math>. Jeżeli <math>p</math> jest liczbą pierwszą
  
* wśród liczb naturalnych zawsze można wskazać <math>m</math> kolejnych liczb, które są złożone
+
:* to liczba <math>a^p - a</math> jest podzielna przez <math>p</math>, czyli <math>a^p \equiv a \!\! \pmod p</math>
* w&nbsp;ciągu arytmetycznym <math>a k + b</math>, gdzie liczby <math>a</math> i <math>b</math> są względnie pierwsze, zawsze można wskazać <math>m</math> kolejnych wyrazów, które są złożone
+
:* i&nbsp;jeśli dodatkowo <math>p \nmid a</math>, to liczba <math>a^{p - 1} - 1</math> jest podzielna przez <math>p</math>, czyli <math>a^{p - 1} \equiv 1 \!\! \pmod p</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Punkt 1.'''<br/>
+
'''Punkt 1.'''
W przypadku liczb naturalnych, łatwo widzimy, że kolejne liczby
 
  
::<math>(m + 1) ! + 2, \quad (m + 1) ! + 3, \quad \ldots, \quad (m + 1) ! + (m + 1)</math>
+
Zauważmy, że<br/>
 +
a) twierdzenie jest prawdziwe dla <math>a = 0</math><br/>
 +
b) w&nbsp;przypadku, gdy <math>p = 2</math> wyrażenie <math>a^p - a = a^2 - a = a (a - 1)</math> jest podzielne przez <math>2</math>, bo jedna z&nbsp;liczb <math>a - 1</math> i <math>a</math> jest liczbą parzystą<br/>
 +
c) w&nbsp;przypadku, gdy <math>p</math> jest liczbą pierwszą nieparzystą i&nbsp;twierdzenie jest prawdziwe dla <math>a \geqslant 1</math>, to jest też prawdziwe dla <math>- a</math>, bo
 +
::<math>(- a)^p - (- a) = (- 1)^p a^p + a = - a^p + a = - (a^p - a)</math><br/>
  
są liczbami złożonymi. Co oznacza, że dla dowolnej liczby naturalnej <math>m</math> zawsze możemy wskazać taką liczbę <math>n</math>, że <math>p_{n + 1} - p_n > m</math>.
 
  
'''Punkt 2.'''<br/>
+
Zatem wystarczy pokazać, że dla ustalonej liczby pierwszej nieparzystej <math>p</math> twierdzenie jest prawdziwe dla każdego <math>a \in \mathbb{Z}_+</math>.
W przypadku ciągu arytmetycznego <math>u_k = a k + b</math> rozważmy kolejne wyrazy ciągu począwszy od wskaźnika
 
  
::<math>k_0 = \prod^{m - 1}_{j = 0} (a j + b)</math>
+
Indukcja matematyczna. Dla <math>a = 1</math> mamy <math>1^p - 1 = 0</math> zatem liczba pierwsza <math>p</math> jest dzielnikiem rozważanego wyrażenia. Zakładając, że twierdzenie jest prawdziwe dla <math>a</math>, czyli <math>p|a^p - a</math>, otrzymujmy dla <math>a + 1</math>
  
Łatwo zauważamy, że dla <math>k = k_0, k_0 + 1, \ldots, k_0 + (m - 1)</math> wyrazy ciągu arytmetycznego <math>u_k = a k + b</math> są liczbami złożonymi. Istotnie, niech <math>t = 0, 1, \ldots, m - 1</math> wtedy
+
::<math>(a + 1)^p - (a + 1) = \sum_{k = 0}^{p} \binom{p}{k} \cdot a^k - a - 1</math>
  
::<math>u_k = a k + b =</math>
+
:::::::<math>\;\;\,\, = 1 + \sum_{k = 1}^{p - 1} \binom{p}{k} \cdot a^k + a^p - a - 1</math>
  
:::<math>\! = a (k_0 + t) + b =</math>
+
:::::::<math>\;\;\,\, = a^p - a + \sum^{p - 1}_{k = 1} \binom{p}{k} \cdot a^k</math>
  
:::<math>\! = a k_0 + (a t + b) =</math>
 
  
:::<math>\! = a \prod^{m - 1}_{j = 0} (a j + b) + (a t + b)</math>
+
Z założenia indukcyjnego <math>p|a^p - a</math>, zaś <math>\binom{p}{k} = {\small\frac{p!}{k! \cdot (p - k) !}}</math> dla <math>k = 1, 2, \ldots, p - 1</math> jest podzielne przez <math>p</math> (ponieważ <math>p</math> dzieli licznik, ale nie dzieli mianownika). Zatem <math>(a + 1)^p - (a + 1)</math> jest podzielne przez liczbę pierwszą <math>p</math>.
  
i liczba <math>a t + b</math> dzieli iloczyn <math>\prod^{m - 1}_{j = 0} (a j + b)</math> dla <math>t = 0, \ldots, m - 1</math>. Co należało pokazać.
+
'''Punkt 2.'''
  
Wiemy, że jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to w&nbsp;ciągu <math>a k + b</math> występuje nieskończenie wiele liczb pierwszych. Niech będą to liczby <math>q_1, q_2, \ldots, q_r, \ldots</math>. Uzyskany rezultat oznacza, że dla dowolnej liczby naturalnej <math>m</math> zawsze możemy wskazać taką liczbę <math>n</math>, że <math>q_{n + 1} - q_n \geqslant a (m + 1)</math><br/>
+
Z punktu 1. wiemy, że liczba pierwsza <math>p</math> dzieli <math>a^p - a = a (a^{p - 1} - 1)</math>. Jeżeli <math>p \nmid a</math>, to z&nbsp;lematu Euklidesa (zobacz twierdzenie C72) wynika natychmiast, że <math>p</math> dzieli <math>a^{p - 1} - 1</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 572: Linia 611:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C35</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J20</span><br/>
Rozważmy ciąg arytmetyczny <math>u_k = 3 k + 2</math> i&nbsp;wskaźnik
+
Niech <math>x, y \in \mathbb{Z}</math>. Jeżeli <math>\gcd (x, y) = 1</math> i&nbsp;liczba pierwsza nieparzysta <math>p</math> dzieli <math>x^2 + y^2</math>, to <math>p</math> jest postaci <math>4 k + 1</math>.
  
::<math>k_0 = \prod^{12}_{j = 0} (3 j + 2) = 3091650738176000</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia
 +
 
 +
::<math>x^2 \equiv - y^2 \!\! \pmod{p}</math>
  
Trzynaście wyrazów tego szeregu dla <math>k = k_0 + t</math>, gdzie <math>t = 0, 1, \ldots, 12</math> to oczywiście liczby złożone, ale wyrazy dla <math>k = k_0 - 1</math> i <math>k = k_0 + 13</math> są liczbami pierwszymi.
+
Przypuśćmy, że <math>p|y</math>. Wtedy z&nbsp;powyższej kongruencji mamy natychmiast, że <math>p|x</math>, wbrew założeniu, że <math>\gcd (x, y) = 1</math>. Zatem <math>p \nmid y</math> i&nbsp;z&nbsp;twierdzenia Fermata dostajemy
  
Przeszukując ciąg <math>u_k = 3 k + 2</math> możemy łatwo znaleźć, że pierwsze trzynaście kolejnych wyrazów złożonych pojawia się już dla <math>k = 370, 371, \ldots, 382</math>.
+
::<math>1 \equiv x^{p - 1} \equiv (x^2)^{\tfrac{p - 1}{2}} \equiv (- y^2)^{\tfrac{p - 1}{2}} \equiv y^{p - 1} \cdot (- 1)^{\tfrac{p - 1}{2}} \equiv (- 1)^{\tfrac{p - 1}{2}} \!\! \pmod{p}</math>
  
 +
Wynika stąd, że <math>{\small\frac{p - 1}{2}}</math> musi być liczbą parzystą, czyli <math>p = 4 k + 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C36</span><br/>
 
Jeżeli <math>n \geqslant 3</math>, to istnieje <math>n</math> kolejnych liczb naturalnych, wśród których znajduje się dokładnie <math>r \leqslant \pi (n)</math> liczb pierwszych.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J21</span><br/>
Warunek <math>n \geqslant 3</math> nie wynika z&nbsp;potrzeb dowodu, a&nbsp;jedynie pomija sytuacje nietypowe, których twierdzenie nie obejmuje. Zawsze istnieje jedna liczba naturalna, która jest liczbą pierwszą i&nbsp;łatwo możemy wskazać dwie kolejne liczby naturalne będące liczbami pierwszymi.
+
Niech <math>x, y, n \geqslant 0</math>. Pokazać, że jedynymi rozwiązaniami równania
 +
 
 +
::<math>x^2 + y^2 = 2^n</math>
  
Niech <math>k \in \mathbb{N}</math>. Wartość funkcji
+
są liczby
  
::<math>Q(k, n) = \pi (k + n) - \pi (k)</math>
+
:* <math>x = 2^{n / 2} \,</math> i <math>\, y = 0 \,</math> lub <math>\, x = 0 \,</math> i <math>\, y = 2^{n / 2}</math>, gdy <math>2 \mid n</math>
 +
:* <math>x = y = 2^{(n - 1) / 2}</math>, gdy <math>2 \nmid n</math>
  
jest równa ilości liczb pierwszych wśród <math>n</math> kolejnych liczb naturalnych od liczby <math>k + 1</math> do liczby <math>k + n</math>.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''A.''' Gdy jedna z&nbsp;liczb <math>x, y</math> jest równa <math>0</math> (powiedzmy <math>y</math>), to mamy <math>x = 2^{n / 2}</math>, gdy <math>n</math> jest parzyste. Gdy <math>n</math> jest nieparzyste, to rozwiązanie nie istnieje. Od tej pory będziemy zakładali, że <math>x, y \geqslant 1</math>
  
Uwzględniając, że wypisane niżej wyrażenia w&nbsp;nawiasach kwadratowych mogą przyjmować jedynie dwie wartości <math>0</math> lub <math>1</math>, dostajemy
+
'''B.''' Wiemy, że kwadrat liczby nieparzystej przystaje do <math>1</math> modulo <math>4</math>. Gdy obie liczby <math>x, y</math> są nieparzyste, to modulo <math>4</math> mamy
  
:* <math>\biggl| Q (k + 1, n) - Q (k, n) \biggr| = \biggl| \bigl[\pi (k + n + 1) - \pi (k + n) \bigr] - \bigl[\pi (k + 1) - \pi (k) \bigr] \biggr| \leqslant 1</math>
+
::<math>2 \equiv 2^n \!\! \pmod{4}</math>
  
Ponadto mamy
+
Kongruencja ta jest prawdziwa tylko dla <math>n = 1</math> i&nbsp;w&nbsp;tym przypadku mamy <math>(x, y) = (1, 1)</math>.
  
:* <math>Q(0, n) = \pi (n) \qquad</math> bo <math>\pi (0) = 0</math>
+
'''C.''' W&nbsp;przypadku, gdy obie liczby są parzyste, możemy napisać <math>x = 2^a u</math>, <math>y = 2^b w</math>, gdzie liczby <math>u, w</math> są nieparzyste. Nie zmniejszając ogólności możemy założyć, że <math>1 \leqslant a \leqslant b < {\small\frac{n}{2}}</math>. Dostajemy
:* <math>Q((n + 1) ! + 1, n) = 0 \qquad</math> bo liczby <math>(n + 1) ! + 2, \ldots, (n + 1) ! + (n + 1)</math> są liczbami złożonymi
 
  
Ponieważ wartości funkcji <math>Q(k, n)</math> mogą zmieniać się tylko o <math>- 1</math>, <math>0</math> lub <math>1</math>, to <math>Q(k, n)</math> musi przyjmować '''wszystkie''' wartości całkowite od <math>0</math> do <math>\pi (n)</math>. Wynika stąd, że istnieje taka liczba <math>k_r</math>, że <math>Q(k_r, n) = r</math>, gdzie <math>0 \leqslant r \leqslant \pi (n)</math>.
+
::<math>u^2 + 2^{2 b - 2 a} w^2 = 2^{n - 2 a}</math>
  
 +
Widzimy, że nie może być <math>a < b</math>, bo suma liczby nieparzystej i&nbsp;parzystej nie jest liczbą parzystą. Zatem <math>a = b</math> i&nbsp;otrzymujemy równanie
  
::[[File: C_Q10.png|none]]
+
::<math>u^2 + w^2 = 2^{n - 2 a}</math>
  
Fragment wykresu funkcji <math>Q(k, 10)</math>. Widzimy, że dla <math>k = 113</math> po raz pierwszy mamy <math>Q(k, 10) = 0</math>, a&nbsp;funkcja <math>Q(k, 10)</math> przyjmuje wszystkie wartości całkowite od <math>0</math> do <math>5</math>.<br/>
+
które ma rozwiązanie w&nbsp;liczbach nieparzystych tylko dla wykładnika <math>n - 2 a = 1</math>. Mamy <math>u = w = 1</math>, zatem <math>x = y = 2^{(n - 1) / 2}</math> i <math>n</math> musi być liczbą nieparzystą.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 615: Linia 662:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C37</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J22</span><br/>
Czytelnik może łatwo sprawdzić, że ciąg <math>( 1308, \ldots, 1407 )</math> stu kolejnych liczb całkowitych zawiera dokładnie <math>8</math> liczb pierwszych.
+
Niech <math>x, y \in \mathbb{Z}_+</math>. Jeżeli <math>x \neq y</math>, to liczba <math>x^2 + y^2</math> ma dzielnik pierwszy postaci <math>4 k + 1</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W&nbsp;przypadku, gdy <math>x = y</math> mamy <math>x^2 + y^2 = 2 y^2</math> i&nbsp;jeśli liczba <math>y</math> nie ma dzielnika pierwszego postaci <math>4 k + 1</math>, to nie ma go również liczba <math>2 y^2</math>. Przykładowo <math>x^2 + y^2 = 2 y^2 = 2^{2 r + 1}, 2 \cdot 3^{2 r}, 2 \cdot 7^{2 r}</math>. Dlatego zakładamy, że <math>x \neq y</math>. Analogiczna sytuacja ma miejsce, gdy jedna z&nbsp;liczb <math>x, y</math> jest równa zero. Dlatego zakładamy, że <math>x, y \in \mathbb{Z}_+</math>.
  
 +
Niech <math>\gcd (x, y) = d</math>, zatem mamy <math>x = a d</math>, <math>y = b d</math>. Wynika stąd, że <math>x^2 + y^2 = d^2 (a^2 + b^2)</math>, gdzie <math>\gcd (a, b) = 1 \,</math> i <math>\, a \neq b</math>. Ponieważ <math>\, a \neq b</math>, to liczba <math>a^2 + b^2</math> musi mieć dzielnik pierwszy nieparzysty (zobacz J21). Z&nbsp;twierdzenia J20 zastosowanego do liczby <math>a^2 + b^2</math> wynika, że <math>a^2 + b^2</math> musi mieć dzielnik pierwszy postaci <math>4 k + 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C38</span><br/>
 
Pokazać, nie korzystając z&nbsp;twierdzenia C36, że istnieje <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Zauważmy, że <math>1000</math> kolejnych liczb naturalnych
 
  
::<math>1001! + 2, 1001! + 3, \ldots, 1001! + 1001</math>
 
  
nie zawiera żadnej liczby pierwszej. Wielokrotnie zmniejszając wszystkie wypisane wyżej liczby o&nbsp;jeden, aż do chwili, gdy pierwsza z&nbsp;wypisanych liczb będzie liczbą pierwszą uzyskamy <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
+
== Kryterium Eulera ==
  
Uwaga: dopiero liczba <math>1001! - 1733</math> jest pierwsza.<br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja J23</span><br/>
&#9633;
+
Niech <math>p</math> będzie liczbą pierwszą i <math>a \in \mathbb{Z}</math>. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math>, jeżeli kongruencja
{{\Spoiler}}
 
  
 +
::<math>x^2 \equiv a \pmod{p}</math>
  
 +
ma rozwiązanie, czyli istnieje taka liczba <math>k \in \mathbb{Z}</math>, że <math>p \mid (k^2 - a)</math>.
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C39</span><br/>
+
Powiemy, że liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math>, jeżeli kongruencja
Pokazać, że istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których jest dokładnie <math>5</math> liczb pierwszych.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>x^2 \equiv a \pmod{p}</math>
Rozwiązywanie zadania rozpoczniemy od dwóch spostrzeżeń
 
  
:* wśród pierwszych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> jest <math>13</math> liczb pierwszych
+
nie ma rozwiązania.
:* w&nbsp;ciągu <math>6 k + 1</math> istnieją dowolnie długie przedziały pozbawione liczb pierwszych (zobacz zadanie C34), zatem istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których nie ma ani jednej liczby pierwszej
 
  
Pierwsze spostrzeżenie pokazuje, że rozwiązanie problemu jest potencjalnie możliwe. Rozwiązanie mogłoby nie istnieć, gdybyśmy szukali <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> wśród których jest, powiedzmy, <math>15</math> liczb pierwszych.
 
  
Drugie spostrzeżenie mówi nam, że ilość liczb pierwszych wśród kolejnych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> zmienia się od <math>13</math> do <math>0</math>. Analiza przebiegu tych zmian jest kluczem do dowodu twierdzenia.
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J24</span><br/>
 +
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieje dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>.
  
Zbadajmy zatem, jak zmienia się ilość liczb pierwszych wśród kolejnych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math>. Rozważmy ciąg <math>a_k = 6 k + 1</math>, gdzie <math>k = 0, 1, 2, \ldots</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Zauważmy, że w&nbsp;rozważanym zbiorze liczb <math>\{ 1, 2, \ldots, p - 1 \}</math>, kwadraty liczb <math>k</math> i <math>p - k</math> są takimi samymi liczbami modulo <math>p</math>, co wynika z&nbsp;oczywistej kongruencji
  
<math>(a_k) = (1, \mathbf{7}, \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115, 121, \mathbf{127}, 133, \mathbf{139}, 145, \mathbf{151}, \mathbf{157}, \mathbf{163}, 169, 175, \mathbf{181}, 187, \mathbf{193}, \mathbf{199}, 205, \mathbf{211}, \ldots)</math>
+
::<math>k^2 \equiv (p - k)^2 \pmod{p}</math>
  
Liczby pierwsze zostały pogrubione.
+
Pozwala to wypisać pary liczb, których kwadraty są identyczne modulo <math>p</math>
  
 +
::<math>(1, p - 1), (2, p - 2), \ldots, \left( {\small\frac{p - 1}{2}}, p - {\small\frac{p - 1}{2}} \right)</math>
  
Niech <math>(B^n)</math> będzie fragmentem ciągu <math>(a_k)</math> rozpoczynającym się od <math>n</math>-tego wyrazu ciągu i&nbsp;złożonym z <math>20</math> kolejnych wyrazów ciągu <math>(a_k)</math>. Przykładowo mamy
+
Ponieważ
  
<math>(B^1) = (1, \mathbf{7}, \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115 )</math>
+
::<math>p - {\small\frac{p - 1}{2}} = {\small\frac{p + 1}{2}} = {\small\frac{p - 1}{2}} + 1</math>
  
<math>(B^2) = ( \mathbf{7}, \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115, 121 )</math>
+
to wypisane pary wyczerpują cały zbiór <math>\{ 1, 2, \ldots, p - 1 \}</math>. Co więcej, liczby <math>1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2</math> są wszystkie różne modulo <math>p</math>. Istotnie, przypuśćmy, że <math>1 \leqslant i, j \leqslant {\small\frac{p - 1}{2}}</math> oraz <math>i \neq j</math>, a&nbsp;jednocześnie <math>i^2 \equiv j^2 \!\! \pmod{p}</math>. Gdyby tak było, to mielibyśmy
  
<math>(B^3) = ( \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115, 121, \mathbf{127} )</math>
+
::<math>(i - j) (i + j) \equiv 0 \pmod{p}</math>
  
 +
Łatwo zauważamy, że jest to niemożliwe, bo żaden z&nbsp;czynników nie jest podzielny przez <math>p</math>, co wynika z&nbsp;prostych oszacowań
  
Musimy zrozumieć, jak przejście od ciągu <math>(B^n)</math> do ciągu <math>(B^{n + 1})</math>
+
::<math>1 \leqslant | i - j | \leqslant i + j < p - 1</math>
wpływa na ilość liczb pierwszych w&nbsp;tych ciągach.
 
  
* jeżeli najmniejszy wyraz ciągu <math>(B^n)</math> jest liczbą złożoną, to po przejściu do ciągu <math>(B^{n + 1})</math> ilość liczb pierwszych w&nbsp;tym ciągu w&nbsp;stosunku do ilości liczb pierwszych w&nbsp;ciągu <math>(B^n)</math> może
+
::<math>2 < i + j < p - 1</math>
** pozostać bez zmian (w przypadku, gdy największy wyraz ciągu <math>(B^{n + 1})</math> jest liczbą złożoną)
 
** zwiększyć się o&nbsp;jeden (w przypadku, gdy największy wyraz ciągu <math>(B^{n + 1})</math> jest liczbą pierwszą)
 
  
* jeżeli najmniejszy wyraz ciągu <math>(B^n)</math> jest liczbą pierwszą, to po przejściu do ciągu <math>(B^{n + 1})</math> ilość liczb pierwszych w&nbsp;tym ciągu w&nbsp;stosunku do ilości liczb pierwszych w&nbsp;ciągu <math>(B^n)</math> może
 
** zmniejszyć się o&nbsp;jeden (w przypadku, gdy największy wyraz ciągu <math>(B^{n + 1})</math> jest liczbą złożoną)
 
** pozostać bez zmian (w przypadku, gdy największy wyraz ciągu <math>(B^{n + 1})</math> jest liczbą pierwszą)
 
  
 +
Ponieważ (z definicji) liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math>, jeżeli kongruencja
  
Wynika stąd, że przechodząc od ciągu <math>(B^n)</math> do ciągu <math>(B^{n + 1})</math> ilość liczb pierwszych może się zmienić o <math>- 1</math>, <math>0</math> lub <math>1</math>. Z&nbsp;drugiego ze spostrzeżeń uczynionych na początku dowodu wynika istnienie takiej liczby <math>r</math>, że wśród ciągów
+
::<math>x^2 \equiv a \pmod{p}</math>
  
::<math>(B^1), (B^2), \ldots, (B^r)</math>
+
ma rozwiązanie, to liczba kwadratowa modulo <math>p</math> musi przystawać do pewnego kwadratu modulo <math>p</math>.
  
ilość liczb pierwszych będzie przyjmowała '''wszystkie''' możliwe wartości od liczby <math>13</math> do liczby <math>0</math>. Co zapewnia istnienie takich <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, że wśród nich jest dokładnie <math>5</math> liczb pierwszych.<br/>
+
Wynika stąd, że różnych liczb kwadratowych modulo <math>p</math> jest tyle samo, co kwadratów <math>1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2</math>. Czyli jest ich dokładnie <math>{\small\frac{p - 1}{2}}</math>. Pozostałe liczby w&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> to liczby niekwadratowe modulo <math>p</math> i&nbsp;jest ich również <math>{\small\frac{p - 1}{2}}</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 688: Linia 732:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C40</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J25 (kryterium Eulera, 1748)</span><br/>
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>a \geqslant 2</math> i <math>0 \leqslant b \leqslant a - 1</math>. Jeżeli liczby <math>a</math> oraz <math>b</math> są względnie pierwsze, to istnieje <math>n</math> kolejnych liczb postaci <math>a k + b</math>, wśród których znajduje się dokładnie <math>r \leqslant \pi (a (n - 1) + b ; a, b)</math> liczb pierwszych.
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>p \nmid a</math>. Modulo <math>p</math> mamy
 +
 
 +
::{| border="0"
 +
|-style=height:2.5em
 +
| &#9679;&nbsp;&nbsp;&nbsp; || liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv 1 \pmod{p}</math>
 +
|-style=height:2.5em
 +
| &#9679;&nbsp;&nbsp;&nbsp; || liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv - 1 \pmod{p}</math>
 +
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Twierdzenie można udowodnić uogólniając dowód twierdzenia C36 lub wykorzystując metodę zastosowaną w&nbsp;rozwiązaniu zadania C39.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
'''Punkt 1.'''
  
 +
Niech <math>Q \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich liczb kwadratowych modulo <math>p</math>, a <math>S \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich rozwiązań kongruencji
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C41</span><br/>
+
::<math>x^{(p - 1) / 2} \equiv 1 \pmod{p}</math>
Niech <math>p \geqslant 5</math> będzie liczbą pierwszą. Pokazać, że w&nbsp;ciągu <math>6 k + 1</math> występują kwadraty wszystkich liczb pierwszych <math>p</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Zauważmy, że
Wiemy, że liczby pierwsze nieparzyste <math>p \geqslant 5</math> mogą być postaci <math>6 k + 1</math> lub <math>6 k + 5</math>. Ponieważ
 
  
::<math>(6 k + 1)^2 = 6 (6 k^2 + 2 k) + 1</math>
+
::{| border=1 style="border-collapse: collapse;"
 +
|-style=height:2.5em
 +
| &nbsp;&nbsp;&nbsp;'''A'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| Q | = {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz J24
 +
|-style=height:2.5em
 +
| &nbsp;&nbsp;&nbsp;'''B'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| S | \leqslant {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz twierdzenie Lagrange'a J13
 +
|-style=height:2.5em
 +
| &nbsp;&nbsp;&nbsp;'''C'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;jeżeli <math>a \in Q</math>, to <math>a \in S \qquad </math> || &nbsp;&nbsp;&nbsp;wynika z&nbsp;ciągu implikacji:<br/> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a \in Q \qquad \Longrightarrow \qquad a \equiv k^2 \pmod{p}</math><br/> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a \equiv k^2 \pmod{p} \qquad \Longrightarrow \qquad a^{(p - 1) / 2} \equiv (k^2)^{(p - 1) / 2} \equiv k^{p - 1} \equiv 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;<br/> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a^{(p - 1) / 2} \equiv 1 \pmod{p} \qquad \Longrightarrow \qquad a \in S</math>
 +
|-style=height:2.5em
 +
| &nbsp;&nbsp;&nbsp;'''D'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>Q \subseteq S</math> || &nbsp;&nbsp;&nbsp;z punktu '''C''' wynika, że '''każdy''' element zbioru <math>Q</math> należy do zbioru <math>S</math>
 +
|}
  
::<math>(6 k + 5)^2 = 6 (6 k^2 + 10 k + 4) + 1</math>
 
  
zatem kwadraty liczb pierwszych są postaci <math>6 k + 1</math> i&nbsp;nie mogą występować w&nbsp;ciągu postaci <math>6 k + 5</math>.<br/>
+
Łącząc rezultaty z&nbsp;tabeli, otrzymujemy
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>{\small\frac{p - 1}{2}} = | Q | \leqslant | S | \leqslant {\small\frac{p - 1}{2}}</math>
  
 +
Skąd łatwo widzimy, że
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C42</span><br/>
+
::<math>| Q | = | S | = {\small\frac{p - 1}{2}}</math>
Dany jest ciąg arytmetyczny <math>a k + b</math>, gdzie liczby <math>a</math> i <math>b</math> są względnie pierwsze. Pokazać, że
 
  
* jeżeli liczba pierwsza <math>p</math> dzieli <math>a</math>, to żaden wyraz ciągu <math>a k + b</math> nie jest podzielny przez <math>p</math>
+
Ponieważ <math>Q \subseteq S</math>, a&nbsp;zbiory <math>Q</math> i <math>S</math> są równoliczne, to zbiory te są równe (zobacz J26). Prostą konsekwencją równości zbiorów <math>Q</math> i <math>S</math> jest stwierdzenie
* jeżeli liczba pierwsza <math>p</math> nie dzieli <math>a</math>, to istnieje nieskończenie wiele wyrazów ciągu <math>a k + b</math>, które są podzielne przez <math>p</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::{| border=0 style="background: #EEEEEE;"
'''Punkt 1.'''<br/>
+
|-style=height:2.0em
Zauważmy, że liczby <math>a</math> i <math>b</math> są względnie pierwsze, zatem liczba pierwsza <math>p</math> nie może jednocześnie dzielić liczb <math>a</math> i <math>b</math>. Ponieważ z&nbsp;założenia <math>p|a</math>, to wynika stąd, że <math>p</math> nie dzieli <math>b</math>. Jeśli tak, to
+
|&nbsp;&nbsp;&nbsp;liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;
 +
|}
  
::<math>a k + b = (n p) k + b</math>
+
Co kończy dowód punktu pierwszego.
  
i <math>p</math> nie dzieli żadnej liczby postaci <math>a k + b</math>.
+
'''Punkt 2.'''
  
'''Punkt 2.'''<br/>
+
Z udowodnionego już punktu pierwszego wynika<ref name="logic1"/>, że
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/><br/>
 
Niech <math>k_0 \in \mathbb{N}</math>. Przypuśćmy, że dla pewnych różnych liczb naturalnych <math>i, j</math> takich, że <math>1 \leqslant i < j \leqslant p</math> liczby <math>a(k_0 + i) + b</math> oraz <math>a(k_0 + j) + b</math> dają tę samą resztę przy dzieleniu przez liczbę pierwszą <math>p</math>. Zatem różnica tych liczb jest podzielna przez <math>p</math>
 
  
::<math>p| [a (k_0 + j) + b] - [a (k_0 + i) + b]</math>
+
::{| border=0 style="background: #EEEEEE;"
 +
|-style=height:2.0em
 +
|&nbsp;&nbsp;&nbsp;liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \not\equiv 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;
 +
|}
  
czyli
+
Z twierdzenia Fermata
  
::<math>p|a (j - i)</math>
+
::<math>a^{p - 1} - 1 = (a^{(p - 1) / 2} - 1) \cdot (a^{(p - 1) / 2} + 1) \equiv 0 \pmod{p}</math>
  
Ponieważ <math>p \nmid a</math> to na mocy lematu Euklidesa (twierdzenie C72), mamy
+
wynika natychmiast, że jeżeli <math>a^{(p - 1) / 2} - 1 \not\equiv 0 \pmod{p}</math>, to musi być
  
::<math>p| (j - i)</math>
+
::<math>a^{(p - 1) / 2} + 1 \equiv 0 \pmod{p}</math>
  
co jest niemożliwe, bo <math>1 \leqslant j - i \leqslant p - 1 < p</math>.
+
Fakt ten pozwala sformułować uzyskaną równoważność bardziej precyzyjnie
  
Zatem reszty <math>r_1, r_2, \ldots, r_p</math> są wszystkie różne, a&nbsp;ponieważ jest ich <math>p</math>, czyli tyle ile jest różnych reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>S = \{ 0, 1, 2, \ldots, p - 1 \}</math>. W&nbsp;szczególności wynika stąd, że wśród <math>p</math> kolejnych wyrazów ciągu arytmetycznego <math>a k + b</math> jeden z&nbsp;tych wyrazów jest podzielny przez <math>p</math>. Zatem istnieje nieskończenie wiele wyrazów ciągu <math>a k + b</math>, które są podzielne przez <math>p</math>.
+
::{| border=0 style="background: #EEEEEE;"
 +
|-style=height:2.0em
 +
|&nbsp;&nbsp;&nbsp;liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv - 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;
 +
|}
  
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span style="border-bottom-style: double;">Drugi sposób</span><br/><br/>
 
Problem sprowadza się do wykazania istnienia nieskończenie wielu par liczb naturalnych <math>(k, n)</math>, takich że
 
  
::<math>a k + b = n p</math>
 
  
Co z&nbsp;kolei sprowadza się do badania rozwiązań całkowitych równania
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J26</span><br/>
 +
Niech <math>A</math> i <math>B</math> będą zbiorami skończonymi. Pokazać, że jeżeli <math>A \subseteq B \;\; \text{i} \;\; | A | = | B |</math>, to <math>\; A = B</math>.
  
::<math>n p - a k = b</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Ponieważ zbiór <math>A</math> jest podzbiorem zbioru <math>B</math>, to zbiór <math>B</math> można przedstawić w&nbsp;postaci sumy zbiorów <math>A</math> i <math>C</math> takich, że żaden element zbioru <math>C</math> nie jest elementem zbioru <math>A</math>. Zatem
  
Zauważmy, że ponieważ <math>p \nmid a</math>, to liczby <math>a</math> i <math>p</math> są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba <math>1</math>. Na mocy twierdzenia C76 równanie to ma nieskończenie wiele rozwiązań w&nbsp;liczbach całkowitych
+
::<math>B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing</math>
  
::<math>n = n_0 + p t</math>
+
Ponieważ z&nbsp;założenia zbiory <math>A</math> i <math>C</math> są rozłączne, to wiemy, że
::<math>k = k_0 + a t</math>
 
  
gdzie <math>t</math> jest dowolną liczbą całkowitą, a&nbsp;para liczb <math>(n_0, k_0)</math> jest dowolnym rozwiązaniem tego równania. Widzimy, że dla dostatecznie dużych liczb <math>t</math> zawsze możemy uzyskać takie <math>n</math> i <math>k</math>, że <math>n, k \in \mathbb{Z}_+</math>. Pokazaliśmy w&nbsp;ten sposób, że w&nbsp;ciągu arytmetycznym <math>a k + b</math> istnieje nieskończenie wiele wyrazów podzielnych przez liczbę pierwszą <math>p</math>.
+
::<math>| A \cup C | = | A | + | C |</math>
  
 +
Czyli
  
<span style="border-bottom-style: double;">Trzeci sposób</span><br/><br/>
+
::<math>| B | = | A \cup C | = | A | + | C |</math>
Zauważmy, że ponieważ <math>p \nmid a</math>, to liczby <math>a</math> i <math>p</math> są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba <math>1</math>. Lemat Bézouta zapewnia istnienie takich liczb całkowitych <math>x</math> i <math>y</math>, że
 
  
::<math>a x + p y = 1</math>
+
Skąd wynika, że <math>| C | = 0</math>, zatem zbiór <math>C</math> jest zbiorem pustym i&nbsp;otrzymujemy natychmiast <math>B = A</math>. Co należało pokazać.
  
Niech <math>k_0 = r p - b x</math>, gdzie <math>r</math> jest dowolną liczbą całkowitą dodatnią, ale na tyle dużą, aby <math>k_0</math> była liczbą dodatnią bez względu na znak iloczynu <math>b x</math>. Łatwo sprawdzamy, że liczba <math>a k_0 + b</math> jest podzielna przez <math>p</math>
 
  
::<math>a k_0 + b = a (r p - b x) + b =</math>
+
<span style="border-bottom-style: double;">Uwaga (przypadek zbiorów skończonych)</span><br/>
 +
Najczęściej prawdziwe jest jedynie oszacowanie <math>| A \cup C | \leqslant | A | + | C |</math>, bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów <math>| A |</math> i <math>| C |</math>, zatem od sumy <math>| A | + | C |</math> musimy odjąć liczbę elementów iloczynu zbiorów <math>| A |</math> i <math>| C |</math>. Co daje ogólny wzór<ref name="sumazbiorow"/>
  
::::<math>\;\; = a r p - a b x + b =</math>
+
::<math>| A \cup C | = | A | + | C | - | A \cap C |</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::<math>\;\; = a r p + b (1 - a x) =</math>
 
  
::::<math>\;\; = a r p + b p y =</math>
 
  
::::<math>\;\; = p (a r + b y)</math>
 
  
Zatem w&nbsp;ciągu <math>a k + b</math> istnieje przynajmniej jeden wyraz podzielny przez liczbę pierwszą <math>p</math>. Jeśli tak, to w&nbsp;ciągu arytmetycznym <math>a k + b</math> istnieje nieskończenie wiele liczb podzielnych przez <math>p</math>, bo dla <math>k = k_0 + s p</math>, gdzie <math>s \in \mathbb{N}</math>, mamy
 
 
::<math>a k + b = a (k_0 + s p) + b = a s p + (a k_0 + b)</math>
 
 
Czyli <math>p|a k + b</math>.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
== Symbol Legendre'a ==
  
 +
<span style="font-size: 110%; font-weight: bold;">Definicja J27</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>a \in \mathbb{Z}</math>. Symbolem Legendre'a<ref name="legendre1"/> nazywamy funkcję <math>a</math> i <math>p</math> zdefiniowaną następująco
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C43</span><br/>
+
::<math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} =
Łatwo możemy napisać w&nbsp;PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną <math>k_0</math>, dla której wyraz ciągu arytmetycznego <math>a k + b</math> jest podzielny przez <math>p</math> (przy założeniu, że liczby <math>a</math> i <math>p</math> są względnie pierwsze).
+
\begin{cases}
 +
\;\;\: 1 & \text{gdy } \, a \, \text{ jest liczbą kwadratową modulo } \, p \,  \text{ oraz } \, p \nmid a \\
 +
      - 1 & \text{gdy } \, a \, \text{ jest liczbą niekwadratową modulo } \, p \\
 +
\;\;\: 0 & \text{gdy } \, p \mid a
 +
\end{cases}</math>
  
f(a,b,p) = lift( Mod(-b,p)*Mod(a,p)^(-1) )
 
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J28</span><br/>
 +
Powyższa definicja pozwala nam zapisać kryterium Eulera w&nbsp;zwartej formie, która obejmuje również przypadek, gdy <math>p \mid a</math>
  
 +
::<math>a^{(p - 1) / 2} \equiv \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \pmod{p}</math>
  
  
== Ciągi nieskończone i&nbsp;liczby pierwsze ==
 
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C44</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J29*</span><br/>
Choć wiele ciągów jest dobrze znanych i&nbsp;równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo
+
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>p, q</math> będą nieparzystymi liczbami pierwszymi. Symbol Legendre'a ma następujące właściwości
  
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 
|-
 
|-
| <math>\quad 1. \quad</math>
+
| &nbsp;&nbsp;1.&nbsp;&nbsp; || <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \,\, = \,\, 0 \quad \Longleftrightarrow \quad \gcd (a, p) > 1</math>
| <math>a_n = n^2 + 1</math>
 
| [https://oeis.org/A002496 A002496]
 
 
|-
 
|-
| <math>\quad 2. \quad</math>
+
| &nbsp;&nbsp;2.&nbsp;&nbsp; || <math>a \equiv b \pmod p \quad \Longrightarrow \quad \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}}</math>
| <math>b_n = n^2 - n - 1</math>
 
| [https://oeis.org/A002327 A002327]
 
 
|-
 
|-
| <math>\quad 3. \quad</math>
+
| &nbsp;&nbsp;3.&nbsp;&nbsp; || <math>\left( {\small\frac{a b}{p}} \right)_{\small{\!\! L}} \,\, = \,\, \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \cdot  \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}}</math>
| <math>c_n = n^2 + n + 1</math>
 
| [https://oeis.org/A002383 A002383]
 
 
|-
 
|-
| <math>\quad 4. \quad</math>
+
| &nbsp;&nbsp;4.&nbsp;&nbsp; || <math>a^{(p - 1) / 2} \equiv \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \pmod{p}</math>
| <math>d_n = n^4 + 1</math>
 
| [https://oeis.org/A000068 A000068]
 
 
|-
 
|-
| <math>\quad 5. \quad</math>
+
| &nbsp;&nbsp;5.&nbsp;&nbsp; || <math>\left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} \,\, = \,\, 1</math>
| <math>u_n = n! + 1</math>
 
| [https://oeis.org/A002981 A002981]
 
 
|-
 
|-
| <math>\quad 6. \quad</math>
+
| &nbsp;&nbsp;6.&nbsp;&nbsp; || <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \,\, = \,\, (- 1)^{\tfrac{p - 1}{2}} \,\, = \,\,
| <math>v_n = n! - 1</math>
+
  \begin{cases}
| [https://oeis.org/A002982 A002982]
+
\;\;\: 1 & \text{gdy } p \equiv 1 \pmod{4} \\
 +
      - 1 & \text{gdy } p \equiv 3 \pmod{4}
 +
  \end{cases}</math>
 
|-
 
|-
| <math>\quad 7. \quad</math>
+
| &nbsp;&nbsp;7.&nbsp;&nbsp; || <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, (- 1)^{\tfrac{p^2 - 1}{8}} \,\, = \,\,
| <math>M_n = 2^n - 1</math> (liczby Mersenne'a)
+
  \begin{cases}
| [https://oeis.org/A000043 A000043]
+
\;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\
 +
      - 1 & \text{gdy } p \equiv 3, 5 \pmod{8}
 +
  \end{cases}</math>
 
|-
 
|-
| <math>\quad 8. \quad</math>
+
| &nbsp;&nbsp;8.&nbsp;&nbsp; || <math>\left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, (- 1)^{\tfrac{(p - 1)(p - 3)}{8}} \,\, = \,\,
| <math>F_n = 2^{2^n} + 1</math> (liczby Fermata)
+
  \begin{cases}
| [https://oeis.org/A019434 A019434]
+
\;\;\: 1 & \text{gdy } p \equiv 1, 3 \pmod{8} \\
 +
      - 1 & \text{gdy } p \equiv 5, 7 \pmod{8}
 +
  \end{cases}</math>
 
|-
 
|-
| <math>\quad 9. \quad</math>
+
| &nbsp;&nbsp;9.&nbsp;&nbsp; || <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! L}} \,\, = \,\, \left( {\small\frac{q}{p}} \right)_{\small{\!\! L}} \cdot (-1)^{\tfrac{q - 1}{2} \cdot \tfrac{p - 1}{2}} \,\, = \,\, \left( {\small\frac{q}{p}} \right)_{\small{\!\! L}} \cdot
| <math>F_n (a) = a^{2^n} + 1</math> (uogólnione liczby Fermata, <math>a</math> parzyste)
+
\begin{cases}
| [https://mathworld.wolfram.com/GeneralizedFermatNumber.html MathWorld]
+
\;\;\: 1 & \text{gdy } p \equiv 1 \pmod{4} \;\;\; \text{lub} \;\;\; q \equiv 1 \pmod{4} \\
 +
      - 1 & \text{gdy } p \equiv q \equiv 3 \pmod{4}
 +
  \end{cases}</math>
 
|}
 
|}
  
Nie wiemy, czy istnieje wielomian całkowity <math>W(n)</math> stopnia większego niż jeden taki, że <math>W(n)</math> jest liczbą pierwszą dla nieskończenie wielu liczb <math>n</math>.
 
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie J30</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, <math>a, d \in \mathbb{Z}</math> i <math>p \nmid d</math>. Pokazać, że
 +
 +
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład C45</span><br/>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0</math>
Łatwo sprawdzić, że wartości wielomianu <math>W(n) = n^2 + n + 41</math> są liczbami pierwszymi dla <math>1 \leqslant n \leqslant 39</math>. Oczywiście <math>41 | W(41)</math>.
 
  
 +
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = 0</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C46</span><br/>
+
'''Punkt 1. i 2.'''
Niech <math>a, n</math> będą liczbami całkowitymi takimi, że <math>a \geqslant 2</math> i <math>n \geqslant 1</math>. Jeżeli liczba <math>a^n + 1</math> jest liczbą pierwszą, to <math>a</math> jest liczbą parzystą i <math>n = 2^m</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Aby udowodnić dwa pierwsze wzory, wystarczy zauważyć, że wśród liczb <math>1, 2, \ldots, p - 1</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych modulo <math>p</math>. Zatem
Gdyby liczba <math>a</math> była nieparzysta, to <math>a^n + 1 \geqslant 4</math> byłoby parzyste i&nbsp;nie mogłoby być liczbą pierwszą.
 
  
Niech teraz wykładnik <math>n = x y</math> będzie liczbą złożoną, zaś <math>x</math> będzie liczbą nieparzystą. Wtedy
+
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) = 0</math>
  
::<math>a^n + 1 = (a^y)^x + 1</math>
+
'''Punkt 3.'''
  
Oznaczając <math>b = a^y</math> oraz <math>x = 2 k + 1</math> mamy
+
Z założenia liczby <math>p</math> i <math>d</math> są względnie pierwsze. Z&nbsp;twierdzenia C55 wiemy, że reszty <math>r_1, r_2, \ldots, r_p</math> z&nbsp;dzielenia <math>p</math> kolejnych wyrazów ciągu arytmetycznego
  
::<math>a^n + 1 = (a^y)^x + 1 =</math>
+
::<math>x_k = a + k d</math>
  
::::<math>\: = b^x + 1 =</math>
+
przez liczbę <math>p</math> są wszystkie różne i&nbsp;tworzą zbiór <math>S = \{ 0, 1, \ldots, p - 1 \}</math>.
  
::::<math>\: = b^{2 k + 1} + 1 =</math>
+
Zatem wśród reszt <math>r_1, r_2, \ldots, r_p</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math>, tyle samo liczb niekwadratowych modulo <math>p</math>, a&nbsp;jedna z&nbsp;tych reszt jest podzielna przez <math>p .</math> Czyli
  
::::<math>\: = (b + 1) \cdot (b^{2 k} - b^{2 k - 1} + \ldots - b^3 + b^2 - b + 1)</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) + 0 = 0</math>
  
Wynika stąd, że w&nbsp;takim przypadku <math>a^n + 1</math> jest liczbą złożoną. Zatem wykładnik <math>n</math> nie może zawierać czynników nieparzystych, czyli musi być <math>n = 2^m</math>. Co należało pokazać.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 879: Linia 939:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C47</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J31</span><br/>
Dla dowolnej liczby naturalnej <math>n \geqslant 1</math> liczba <math>x - y</math> jest dzielnikiem wyrażenia <math>x^n - y^n</math>.
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Pokazać, że jeżeli <math>k \in S = \{ 1, 2, \ldots, p - 1 \}</math>, to dla każdego <math>k</math> istnieją liczby <math>x_k</math> i <math>y_k</math> takie, że
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::'''A.'''&nbsp;&nbsp;&nbsp;<math>x_k \cdot k + y_k \cdot p = 1</math>
Indukcja matematyczna. Twierdzenie jest prawdziwe dla <math>n = 1</math>, bo <math>x - y</math> dzieli <math>x^1 - y^1</math>. Załóżmy, że <math>x - y</math> jest dzielnikiem wyrażenia <math>x^n - y^n</math>, czyli <math>x^n - y^n = (x - y) \cdot k</math>, otrzymujemy dla <math>n + 1</math>
+
 
 +
::'''B.'''&nbsp;&nbsp;&nbsp;<math>p \nmid x_k</math>
 +
 
 +
::'''C.'''&nbsp;&nbsp;&nbsp;<math>x_k \cdot k \equiv 1 \!\! \pmod{p}</math>
  
::<math>x^{n + 1} - y^{n + 1} = x x^n - y x^n + y x^n - y y^n =</math>
+
::'''D.'''&nbsp;&nbsp;&nbsp;jeżeli <math>k \neq j</math>, to <math>x_k \not\equiv x_j \!\! \pmod{p}</math>
  
:::::<math>\quad \, = (x - y) x^n + y (x^n - y^n) =</math>
+
::'''E.'''&nbsp;&nbsp;&nbsp;gdy <math>k</math> przebiega cały zbiór <math>S</math>, to <math>x_k</math> przebiega zbiór <math>S'</math> identyczny ze zbiorem <math>S</math> modulo <math>p</math>
  
:::::<math>\quad \, = (x - y) x^n + y (x - y) \cdot k =</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''A.''' Dla każdego <math>k \in S</math> mamy <math>\gcd (k, p) = 1</math>, zatem punkt A. wynika z&nbsp;lematu Bézouta (zobacz C71).
  
:::::<math>\quad \, = (x - y) (x^n + y \cdot k)</math>
+
'''B.''' Gdyby <math>p \mid x_k</math>, to mielibyśmy <math>p \mid 1</math>, co jest niemożliwe.
  
Czyli <math>x - y</math> jest dzielnikiem <math>x^{n + 1} - y^{n + 1}</math>. Co kończy dowód indukcyjny.<br/>
+
'''C.''' Kongruencję otrzymujemy, rozpatrując punkt A. modulo <math>p</math>.
&#9633;
 
{{\Spoiler}}
 
  
 +
'''D.''' Gdyby dla <math>k \neq j</math> było
  
 +
::<math>x_k \equiv x_j \!\! \pmod{p}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C48</span><br/>
+
to z&nbsp;różnicy kongruencji (zobacz punkt C.)
Jeżeli <math>n \geqslant 2</math> oraz <math>a^n - 1</math> jest liczbą pierwszą, to <math>a = 2</math> i <math>n</math> jest liczbą pierwszą.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>x_k \cdot k - x_j \cdot j \equiv 0 \!\! \pmod{p}</math>
Z twierdzenia C47 wiemy, że <math>x - y | x^n - y^n</math>. W&nbsp;przypadku gdy <math>a > 2</math> mamy
 
  
::<math>a - 1 | a^n - 1</math>
+
mielibyśmy
  
Czyli musi być <math>a = 2</math>. Z&nbsp;tego samego twierdzenia wynika też, że jeżeli <math>n</math> jest liczbą złożoną <math>n = r s</math>, to
+
::<math>x_k (k - j) \equiv 0 \!\! \pmod{p}</math>
  
::<math>2^r - 1 | 2^{r s} - 1</math>
+
Co jest niemożliwe, bo <math>p \nmid x_k</math> (punkt B.) oraz <math>p \nmid (k - j)</math>, bo dla <math>k \neq j</math> mamy <math>1 \leqslant | k - j | \leqslant p - 2</math>.
  
bo <math>a^r - b^r | (a^r)^s - (b^r)^s</math>. Zatem <math>n</math> musi być liczbą pierwszą. Co kończy dowód.<br/>
+
'''E.''' Z&nbsp;założenia <math>k</math> przebiega zbiór wszystkich reszt z&nbsp;dzielenia przez <math>p</math> poza liczbą zero. Z&nbsp;punktu B. wiemy, że dla każdej liczby <math>x_k</math> jest <math>x_k \not\equiv 0 \!\! \pmod{p}</math>. Z&nbsp;punktu D. wiemy, że różnym liczbom <math>k, j \in S</math> odpowiadają różne (modulo <math>p</math>) liczby <math>x_k, x_j</math>. Zatem modulo <math>p</math> zbiór <math>S'</math> musi być identyczny ze zbiorem <math>S</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 917: Linia 979:
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie J32</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Pokazać, że
  
 +
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = - 1</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Do rozwiązania problemu wykorzystamy liczby <math>x_k</math>, które zostały zdefiniowane i&nbsp;omówione w&nbsp;zadaniu poprzednim.
  
== Ciągi arytmetyczne liczb pierwszych ==
+
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}}</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C49</span><br/>
+
::::::<math>\;\;\;\, = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k + x_k \cdot k)}{p}} \right)_{\small{\!\! L}}</math>
Ciągi arytmetyczne liczb pierwszych<ref name="PAPWiki"/><ref name="PAPMathWorld"/> zbudowane z&nbsp;dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o&nbsp;długości <math>n \geqslant 3</math>.
 
  
Ponieważ nie da się zbudować ciągu arytmetycznego liczb pierwszych o&nbsp;długości <math>n \geqslant 3</math>, w&nbsp;którym pierwszym wyrazem jest liczba <math>p_0 = 2</math>, to będą nas interesowały ciągi rozpoczynające się od liczby pierwszej <math>p_0 \geqslant 3</math>
+
::::::<math>\;\;\;\, = \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{1 + x_k}{p}} \right)_{\small{\!\! L}}</math>
  
Jeżeli do liczby pierwszej nieparzystej dodamy dodatnią liczbę nieparzystą, to otrzymamy liczbę parzystą złożoną, zatem różnica ciągu arytmetycznego <math>d</math> musi być liczbą parzystą, aby zbudowanie jakiegokolwiek ciągu arytmetycznego liczb pierwszych o&nbsp;długości <math>n \geqslant 3</math> było możliwe.
+
::::::<math>\;\;\;\, = \sum_{k = 1}^{p - 1} \left( {\small\frac{1 + x_k}{p}} \right)_{\small{\!\! L}}</math>
  
Istnienie nieskończenie wiele ciągów arytmetycznych liczb pierwszych o&nbsp;długości <math>n = 3</math> pokazano już wiele lat temu<ref name="Corput"/>. Temat ciągów arytmetycznych liczb pierwszych zyskał na popularności<ref name="largestPAP"/> po udowodnieniu przez Bena Greena i&nbsp;Terence'a Tao twierdzenia o&nbsp;istnieniu dowolnie długich (ale skończonych) ciągów arytmetycznych liczb pierwszych<ref name="GeenTao"/>.
+
Gdy <math>k</math> przebiega zbiór <math>S = \{ 1, 2, \ldots, p - 1 \}</math>, to <math>x_k</math> przebiega pewien zbiór <math>S'</math>. Wiemy, że zbiory <math>S</math> i <math>S'</math> są identyczne modulo <math>p</math>.
  
 +
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{a = 1} \left( {\small\frac{1 + a}{p}} \right)_{\small{\!\! L}}</math>
  
 +
::::::<math>\;\;\;\, = \sum_{b = 2}^{p} \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C50* (Ben Green i&nbsp;Terence Tao, 2004)</span><br/>
+
::::::<math>\;\;\;\, = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum_{b = 1}^{p - 1} \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}}</math>
Dla dowolnej liczby naturalnej <math>n \geqslant 2</math> istnieje nieskończenie wiele <math>n</math>-wyrazowych ciągów arytmetycznych liczb pierwszych.
 
  
 +
::::::<math>\;\;\;\, = - 1</math>
  
 +
(zobacz J30). Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C51</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 3</math> i <math>n = 4</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabele|Hide=Ukryj tabele}}
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J33</span><br/>
W przypadku <math>n = 3</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 2 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^8</math>.
+
Pokazać, że jeżeli <math>p \geqslant 7</math> jest liczbą pierwszą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieją:
  
W przypadku <math>n = 4</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 6 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^8</math>.
+
:* dwie kolejne liczby będące liczbami kwadratowymi modulo <math>p</math>
 +
:* dwie kolejne liczby będące liczbami niekwadratowymi modulo <math>p</math>
  
Jeżeli w&nbsp;tabeli jest wypisanych sześć wartości <math>p_0</math>, to oznacza to, że zostało znalezionych co najmniej sześć wartości <math>p_0</math>.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Dla <math>p = 7</math> łatwo sprawdzamy, że twierdzenie jest prawdziwe.
 +
 
 +
'''Punkt 1.'''
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
Zauważmy, że przynajmniej jedna z&nbsp;liczb <math>2, 5, 10</math> jest liczbą kwadratową. Zakładając, że tak nie jest, otrzymujemy natychmiast sprzeczność
|- style="background: #98fb98; text-align: center;"
+
 
| colspan=7 | <math>\mathbf{n = 3}</math>
+
::<math> -1 = \left( {\small\frac{10}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{5}{p}} \right)_{\small{\!\! L}} = (- 1) \cdot (- 1) = 1</math>
|- style="text-align: center;"
+
 
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
W zależności od tego, która z&nbsp;liczb <math>2, 5, 10</math> jest liczbą kwadratową, mamy następujące pary kolejnych liczb kwadratowych
| colspan=6 | <math>\mathbf{p_0}</math>
+
 
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
|-
 +
| <math>2</math> || <math>1, 2 \; \text{ oraz } \; 8, 9</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 2}</math>||<math> 3</math>||||||||||
+
| <math>5</math> || <math>4, 5</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 4}</math>||<math> 3</math>||||||||||
+
| <math>10</math> || <math>9, 10</math>
 +
|}
 +
 
 +
'''Punkt 2.'''
 +
 
 +
Rozważmy wszystkie możliwe wartości <math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}</math> dla <math>k = 1, 2, 3, 4</math> i <math>p \geqslant 11</math>. Zauważmy, że <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! L}}</math>.
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 6}</math>||<math> 5</math>||<math> 7</math>||<math> 11</math>||<math> 17</math>||<math> 31</math>||<math> 41</math>
+
! <math>\boldsymbol{k}</math> || <math>\,\, \boldsymbol{1} \,\,</math> || <math>\boldsymbol{2}</math> || <math>\boldsymbol{3}</math> || <math>\,\, \boldsymbol{4} \,\,</math> || <math>\,\, \boldsymbol{5} \,\,</math> || <math>\boldsymbol{6}</math> || <math>\boldsymbol{(…)}</math> || <math>\boldsymbol{p-1}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 8}</math>||<math> 3</math>||||||||||
+
! <math>\boldsymbol{A.}</math>
 +
| <math>1</math> || <math>1</math> || <math>1</math> || <math>1</math> || <math></math> || <math>1</math> || <math></math> || <math></math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 10}</math>||<math> 3</math>||||||||||
+
! <math>\boldsymbol{B.}</math>
 +
| <math>1</math> || <math>1</math> || <math>-1</math> || <math>1</math> || <math></math> || <math>-1</math> || <math></math> || <math></math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 12}</math>||<math> 5</math>||<math> 7</math>||<math> 17</math>||<math> 19</math>||<math> 29</math>||<math> 47</math>
+
! <math>\boldsymbol{C.}</math>
 +
| <math>1</math> || <math>-1</math> || <math>1</math> || <math>1</math> || <math></math> || <math>-1</math> || <math></math> || <math></math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 14}</math>||<math> 3</math>||||||||||
+
! <math>\boldsymbol{D.}</math>  
|-
+
| <math>1</math> || <math>-1</math> || <math>-1</math> || <math>1</math> || <math></math> || <math>1</math> || <math></math> || <math></math>
| style="background:#ffd890;"|<math>\mathbf{ 18}</math>||<math> 5</math>||<math> 11</math>||<math> 23</math>||<math> 43</math>||<math> 53</math>||<math> 61</math>
+
|}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 20}</math>||<math> 3</math>||||||||||
+
'''A.''' W&nbsp;tym przypadku liczby <math>2, 3</math> są liczbami kwadratowymi modulo <math>p</math>. Gdyby w&nbsp;pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo <math>p</math>, to musielibyśmy <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych umieścić wśród pozostałych <math>p - 5</math> komórek tak, aby między nimi zawsze była liczba kwadratowa modulo <math>p</math>. Wartość <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}}</math> wymusza, aby liczby niekwadratowe modulo <math>p</math> umieszczać w&nbsp;komórkach „nieparzystych”. Po wypełnieniu tych komórek pozostaną nam dwie liczby, które będziemy zmuszeni umieścić w&nbsp;komórkach „parzystych”. Co oznacza, że muszą pojawić się dwie pary kolejnych liczb niekwadratowych modulo <math>p</math>.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 24}</math>||<math> 5</math>||<math> 13</math>||<math> 19</math>||<math> 23</math>||<math> 59</math>||<math> 79</math>
+
'''B. i C.''' W&nbsp;tym przypadku dokładnie jedna z&nbsp;liczb <math>2, 3</math> jest liczbą kwadratową modulo <math>p</math>. Gdyby w&nbsp;pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo <math>p</math>, to musielibyśmy <math>{\small\frac{p - 3}{2}}</math> liczb niekwadratowych umieścić wśród pozostałych <math>p - 5</math> komórek tak, aby między nimi zawsze była liczba kwadratowa modulo <math>p</math>. Wartość <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}}</math> wymusza, aby liczby niekwadratowe modulo <math>p</math> umieszczać w&nbsp;komórkach „parzystych”. Po wypełnieniu tych komórek pozostanie nam jedna liczba, którą będziemy zmuszeni umieścić w&nbsp;komórce „nieparzystej”. Co oznacza, że musi pojawić się jedna para kolejnych liczb niekwadratowych modulo <math>p</math>.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 28}</math>||<math> 3</math>||||||||||
+
'''D.''' W&nbsp;tym przypadku nie musimy niczego dowodzić, bo liczby <math>2, 3</math> są kolejnymi liczbami niekwadratowymi modulo <math>p</math>.<br/>
|-
+
&#9633;
| style="background:#ffd890;"|<math>\mathbf{ 30}</math>||<math> 7</math>||<math> 11</math>||<math> 13</math>||<math> 23</math>||<math> 29</math>||<math> 37</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 34}</math>||<math> 3</math>||||||||||
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 36}</math>||<math> 7</math>||<math> 11</math>||<math> 17</math>||<math> 31</math>||<math> 37</math>||<math> 67</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J34</span><br/>
|-
+
Wzmocnimy wynik uzyskany w&nbsp;poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem.
| style="background:#ffd890;"|<math>\mathbf{ 38}</math>||<math> 3</math>||||||||||
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 40}</math>||<math> 3</math>||||||||||
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J35</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 42}</math>||<math> 5</math>||<math> 17</math>||<math> 19</math>||<math> 29</math>||<math> 47</math>||<math> 67</math>
+
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 48}</math>||<math> 5</math>||<math> 11</math>||<math> 13</math>||<math> 31</math>||<math> 41</math>||<math> 53</math>
+
:* istnieje <math>\left\lfloor {\small\frac{p - 3}{4}} \right\rfloor</math> różnych par kolejnych liczb kwadratowych modulo <math>p</math>
|-
+
:* istnieje <math>\left\lfloor {\small\frac{p - 1}{4}} \right\rfloor</math> różnych par kolejnych liczb niekwadratowych modulo <math>p</math>
| style="background:#ffd890;"|<math>\mathbf{ 50}</math>||<math> 3</math>||||||||||
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
| style="background:#ffd890;"|<math>\mathbf{ 54}</math>||<math> 5</math>||<math> 19</math>||<math> 29</math>||<math> 43</math>||<math> 59</math>||<math> 73</math>
+
 
|-
+
'''Punkt 1.'''
| style="background:#ffd890;"|<math>\mathbf{ 60}</math>||<math> 7</math>||<math> 11</math>||<math> 19</math>||<math> 29</math>||<math> 37</math>||<math> 43</math>
+
 
|-
+
Chcemy znaleźć ilość takich liczb <math>k \in \{ 1, 2, \ldots, p - 2 \}</math>, dla których
| style="background:#ffd890;"|<math>\mathbf{ 64}</math>||<math> 3</math>||||||||||
+
 
|-
+
::<math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 66}</math>||<math> 5</math>||<math> 7</math>||<math> 17</math>||<math> 31</math>||<math> 41</math>||<math> 47</math>
+
 
|-
+
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
| style="background:#ffd890;"|<math>\mathbf{ 68}</math>||<math> 3</math>||||||||||
+
 
|-
+
::<math>N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
| style="background:#ffd890;"|<math>\mathbf{ 72}</math>||<math> 7</math>||<math> 29</math>||<math> 37</math>||<math> 67</math>||<math> 79</math>||<math> 107</math>
+
 
|-
+
Tylko w&nbsp;przypadku, gdy obie liczby <math>k</math> i <math>k + 1</math> są liczbami kwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>4</math> (stąd czynnik <math>{\small\frac{1}{4}}</math> przed sumą).
| style="background:#ffd890;"|<math>\mathbf{ 78}</math>||<math> 11</math>||<math> 23</math>||<math> 71</math>||<math> 73</math>||<math> 101</math>||<math> 113</math>
+
 
|-
+
::<math>4 N = \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
| style="background:#ffd890;"|<math>\mathbf{ 80}</math>||<math> 3</math>||||||||||
+
 
|-
+
<div style="margin-top: 1em; margin-bottom: 1em;">
| style="background:#ffd890;"|<math>\mathbf{ 84}</math>||<math> 5</math>||<math> 13</math>||<math> 23</math>||<math> 29</math>||<math> 43</math>||<math> 73</math>
+
:::<math>\; = p - 2 + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}</math>
|-
+
</div>
| style="background:#ffd890;"|<math>\mathbf{ 90}</math>||<math> 11</math>||<math> 13</math>||<math> 17</math>||<math> 19</math>||<math> 47</math>||<math> 59</math>
+
 
|-
+
Po kolei wyliczymy sumy po lewej stronie
| style="background:#ffd890;"|<math>\mathbf{ 94}</math>||<math> 3</math>||||||||||
+
 
|-
+
<div style="margin-top: 0em; margin-bottom: 1em;">
| style="background:#ffd890;"|<math>\mathbf{ 96}</math>||<math> 5</math>||<math> 7</math>||<math> 31</math>||<math> 41</math>||<math> 71</math>||<math> 101</math>
+
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{p - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}}</math>
|-
+
</div>
| style="background:#ffd890;"|<math>\mathbf{ 98}</math>||<math> 3</math>||||||||||
+
 
|-
+
<div style="margin-top: 1em; margin-bottom: 1em;">
| style="background:#ffd890;"|<math>\mathbf{ 102}</math>||<math> 7</math>||<math> 29</math>||<math> 37</math>||<math> 47</math>||<math> 79</math>||<math> 89</math>
+
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = \sum_{j = 2}^{p - 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum^{p - 1}_{j = 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} = - 1</math>
|-
+
</div>
| style="background:#ffd890;"|<math>\mathbf{ 104}</math>||<math> 3</math>||||||||||
+
 
|-
+
<div style="margin-top: 1em; margin-bottom: 1em;">
| style="background:#ffd890;"|<math>\mathbf{ 108}</math>||<math> 23</math>||<math> 41</math>||<math> 131</math>||<math> 163</math>||<math> 173</math>||<math> 223</math>
+
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = \sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = - 1</math>
|-
+
</div>
| style="background:#ffd890;"|<math>\mathbf{ 110}</math>||<math> 3</math>||||||||||
+
 
|-
+
(zobacz J30 i&nbsp;J32). Zatem
| style="background:#ffd890;"|<math>\mathbf{ 114}</math>||<math> 13</math>||<math> 23</math>||<math> 43</math>||<math> 53</math>||<math> 79</math>||<math> 83</math>
+
 
|-
+
::<math>N = {\small\frac{1}{4}} \left[ p - 4 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right]</math>
| style="background:#ffd890;"|<math>\mathbf{ 120}</math>||<math> 11</math>||<math> 17</math>||<math> 29</math>||<math> 31</math>||<math> 37</math>||<math> 43</math>
+
 
|-
+
Czyli
| style="background:#ffd890;"|<math>\mathbf{ 124}</math>||<math> 3</math>||||||||||
+
 
|-
+
::<math>N =
| style="background:#ffd890;"|<math>\mathbf{ 126}</math>||<math> 5</math>||<math> 11</math>||<math> 31</math>||<math> 41</math>||<math> 97</math>||<math> 101</math>
+
\begin{cases}
|-
+
  {\large\frac{p - 5}{4}} & \text{ gdy } \; p \equiv 1 \, \pmod{4} \\
| style="background:#ffd890;"|<math>\mathbf{ 132}</math>||<math> 5</math>||<math> 7</math>||<math> 17</math>||<math> 19</math>||<math> 47</math>||<math> 67</math>
+
  {\large\frac{p - 3}{4}} & \text{ gdy } \; p \equiv 3 \, \pmod{4} \\
|-
+
\end{cases}</math>
| style="background:#ffd890;"|<math>\mathbf{ 134}</math>||<math> 3</math>||||||||||
+
 
|-
+
Powyższy wynik można zapisać w&nbsp;postaci
| style="background:#ffd890;"|<math>\mathbf{ 138}</math>||<math> 41</math>||<math> 61</math>||<math> 73</math>||<math> 103</math>||<math> 113</math>||<math> 173</math>
+
 
|-
+
::<math>N = \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor</math>
| style="background:#ffd890;"|<math>\mathbf{ 144}</math>||<math> 5</math>||<math> 19</math>||<math> 23</math>||<math> 29</math>||<math> 79</math>||<math> 113</math>
+
 
|-
+
'''Punkt 2.'''
| style="background:#ffd890;"|<math>\mathbf{ 150}</math>||<math> 7</math>||<math> 13</math>||<math> 17</math>||<math> 31</math>||<math> 47</math>||<math> 73</math>
+
 
|-
+
Chcemy znaleźć ilość takich liczb <math>k \in \{ 1, 2, \ldots, p - 2 \}</math>, dla których
| style="background:#ffd890;"|<math>\mathbf{ 154}</math>||<math> 3</math>||||||||||
+
 
|-
+
::<math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 156}</math>||<math> 37</math>||<math> 41</math>||<math> 67</math>||<math> 71</math>||<math> 107</math>||<math> 127</math>
+
 
|-
+
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
| style="background:#ffd890;"|<math>\mathbf{ 162}</math>||<math> 29</math>||<math> 107</math>||<math> 109</math>||<math> 197</math>||<math> 239</math>||<math> 269</math>
+
 
|-
+
::<math>N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
| style="background:#ffd890;"|<math>\mathbf{ 164}</math>||<math> 3</math>||||||||||
+
 
|-
+
Tylko w&nbsp;przypadku, gdy obie liczby <math>k</math> i <math>k + 1</math> są liczbami niekwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>4</math> (stąd czynnik <math>{\small\frac{1}{4}}</math> przed sumą).
| style="background:#ffd890;"|<math>\mathbf{ 168}</math>||<math> 11</math>||<math> 13</math>||<math> 23</math>||<math> 31</math>||<math> 43</math>||<math> 61</math>
+
 
|-
+
::<math>4 N = \sum_{k = 1}^{p - 2} \left[ 1 - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
| style="background:#ffd890;"|<math>\mathbf{ 174}</math>||<math> 5</math>||<math> 19</math>||<math> 53</math>||<math> 83</math>||<math> 109</math>||<math> 139</math>
+
 
|-
+
<div style="margin-top: 1em; margin-bottom: 1em;">
| style="background:#ffd890;"|<math>\mathbf{ 178}</math>||<math> 3</math>||||||||||
+
:::<math>\; = p - 2 - \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}</math>
|-
+
</div>
| style="background:#ffd890;"|<math>\mathbf{ 180}</math>||<math> 13</math>||<math> 19</math>||<math> 59</math>||<math> 61</math>||<math> 71</math>||<math> 83</math>
+
 
|-
+
Wartości sum wyliczyliśmy już w&nbsp;punkcie 1. Zatem
| style="background:#ffd890;"|<math>\mathbf{ 186}</math>||<math> 7</math>||<math> 11</math>||<math> 37</math>||<math> 47</math>||<math> 71</math>||<math> 107</math>
+
 
|-
+
::<math>N = {\small\frac{1}{4}} \left[ p - 2 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right]</math>
| style="background:#ffd890;"|<math>\mathbf{ 188}</math>||<math> 3</math>||||||||||
+
 
|-
+
Czyli
| style="background:#ffd890;"|<math>\mathbf{ 190}</math>||<math> 3</math>||||||||||
+
 
|-
+
::<math>N =
| style="background:#ffd890;"|<math>\mathbf{ 192}</math>||<math> 5</math>||<math> 37</math>||<math> 47</math>||<math> 59</math>||<math> 79</math>||<math> 139</math>
+
\begin{cases}
|-
+
  {\large\frac{p - 1}{4}} & \text{ gdy } \; p \equiv 1 \, \pmod{4} \\
| style="background:#ffd890;"|<math>\mathbf{ 198}</math>||<math> 13</math>||<math> 43</math>||<math> 53</math>||<math> 71</math>||<math> 83</math>||<math> 113</math>
+
  {\large\frac{p - 3}{4}} & \text{ gdy } \; p \equiv 3 \, \pmod{4} \\
|}
+
\end{cases}</math>
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
 
|- style="background: #98fb98; text-align: center;"
+
Powyższy wynik można zapisać w&nbsp;postaci
| colspan=7 | <math>\mathbf{n = 4}</math>
+
 
|- style="text-align: center;"
+
::<math>N = \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor</math>
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
 
| colspan=6 | <math>\mathbf{p_0}</math>
+
Co należało pokazać.<br/>
|-
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 6}</math>||<math> 5</math>||<math> 11</math>||<math> 41</math>||<math> 61</math>||<math> 251</math>||<math> 601</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12}</math>||<math> 5</math>||<math> 7</math>||<math> 17</math>||<math> 47</math>||<math> 127</math>||<math> 227</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18}</math>||<math> 5</math>||<math> 43</math>||<math> 53</math>||<math> 113</math>||<math> 313</math>||<math> 673</math>
+
 
|-
+
== Symbol Jacobiego ==
| style="background:#ffd890;"|<math>\mathbf{ 24}</math>||<math> 59</math>||<math> 79</math>||<math> 349</math>||<math> 419</math>||<math> 499</math>||<math> 569</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Definicja J36</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 30}</math>||<math> 7</math>||<math> 11</math>||<math> 13</math>||<math> 23</math>||<math> 37</math>||<math> 41</math>
+
Niech liczby <math>a \in \mathbb{Z}</math> i <math>m \in \mathbb{Z}_+</math> będą względnie pierwsze. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math>, jeżeli kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 36}</math>||<math> 31</math>||<math> 241</math>||<math> 281</math>||<math> 311</math>||<math> 751</math>||<math> 911</math>
+
::<math>x^2 \equiv a \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 42}</math>||<math> 5</math>||<math> 47</math>||<math> 67</math>||<math> 97</math>||<math> 107</math>||<math> 157</math>
+
ma rozwiązanie, czyli istnieje taka liczba <math>k \in \mathbb{Z}</math>, że <math>m \mid (k^2 - a)</math>.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 48}</math>||<math> 5</math>||<math> 13</math>||<math> 53</math>||<math> 83</math>||<math> 613</math>||<math> 643</math>
+
Powiemy, że liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, jeżeli kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 54}</math>||<math> 5</math>||<math> 19</math>||<math> 29</math>||<math> 239</math>||<math> 379</math>||<math> 719</math>
+
::<math>x^2 \equiv a \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 60}</math>||<math> 11</math>||<math> 19</math>||<math> 43</math>||<math> 47</math>||<math> 53</math>||<math> 71</math>
+
nie ma rozwiązania.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 66}</math>||<math> 31</math>||<math> 41</math>||<math> 241</math>||<math> 251</math>||<math> 521</math>||<math> 541</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 72}</math>||<math> 7</math>||<math> 67</math>||<math> 167</math>||<math> 347</math>||<math> 947</math>||<math> 1217</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J37</span><br/>
|-
+
Prosta funkcja pozwala łatwo sprawdzić, czy liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math>.
| style="background:#ffd890;"|<math>\mathbf{ 78}</math>||<math> 23</math>||<math> 73</math>||<math> 113</math>||<math> 233</math>||<math> 353</math>||<math> 443</math>
+
 
|-
+
<span style="font-size: 90%; color:black;">isQR(a, m) =
| style="background:#ffd890;"|<math>\mathbf{ 84}</math>||<math> 5</math>||<math> 29</math>||<math> 149</math>||<math> 179</math>||<math> 379</math>||<math> 439</math>
+
\\ funkcja zwraca 1, gdy a jest liczbą kwadratową modulo m,
|-
+
\\ -1, gdy a jest liczbą niekwadratową i 0, gdy gcd(a, m) > 1
| style="background:#ffd890;"|<math>\mathbf{ 90}</math>||<math> 11</math>||<math> 13</math>||<math> 47</math>||<math> 61</math>||<math> 83</math>||<math> 89</math>
+
{
|-
+
'''local'''(w);
| style="background:#ffd890;"|<math>\mathbf{ 96}</math>||<math> 5</math>||<math> 71</math>||<math> 101</math>||<math> 631</math>||<math> 761</math>||<math> 1471</math>
+
'''if'''( '''gcd'''(a, m) > 1, '''return'''(0) ); \\ liczba nie jest ani QR, ani QNR
|-
+
w = -1;
| style="background:#ffd890;"|<math>\mathbf{ 102}</math>||<math> 7</math>||<math> 47</math>||<math> 127</math>||<math> 257</math>||<math> 337</math>||<math> 557</math>
+
'''for'''(k = 1, '''floor'''(m/2), '''if'''( (k^2 - a)%m == 0, w = 1; '''break'''() ));
|-
+
'''return'''(w);
| style="background:#ffd890;"|<math>\mathbf{ 108}</math>||<math> 23</math>||<math> 163</math>||<math> 223</math>||<math> 293</math>||<math> 353</math>||<math> 643</math>
+
}</span>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 114}</math>||<math> 79</math>||<math> 349</math>||<math> 569</math>||<math> 709</math>||<math> 1259</math>||<math> 2039</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 120}</math>||<math> 29</math>||<math> 37</math>||<math> 71</math>||<math> 73</math>||<math> 107</math>||<math> 149</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J38</span><br/>
|-
+
Ponieważ często można spotkać definicję liczb kwadratowych i&nbsp;niekwadratowych modulo <math>m</math>, w&nbsp;której warunek <math>\gcd (a, m) = 1</math> zostaje pominięty, to Czytelnik powinien zawsze upewnić się, jaka definicja jest stosowana. Najczęściej w&nbsp;takim przypadku liczba <math>0</math> nie jest uznawana za liczbę kwadratową modulo <math>m</math>.
| style="background:#ffd890;"|<math>\mathbf{ 126}</math>||<math> 5</math>||<math> 11</math>||<math> 31</math>||<math> 41</math>||<math> 101</math>||<math> 131</math>
+
 
|-
+
Przykładowo:
| style="background:#ffd890;"|<math>\mathbf{ 132}</math>||<math> 5</math>||<math> 47</math>||<math> 67</math>||<math> 257</math>||<math> 277</math>||<math> 487</math>
+
 
|-
+
::<math>\left\{ 0^2, 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2 \right\} \equiv \left\{ 0, 1, 4, 9, 6, 5, 6, 9, 4, 1 \right\} \pmod{10}</math>
| style="background:#ffd890;"|<math>\mathbf{ 138}</math>||<math> 73</math>||<math> 173</math>||<math> 383</math>||<math> 463</math>||<math> 563</math>||<math> 773</math>
+
 
|-
+
Liczby kwadratowe modulo <math>10</math> to <math>\left\{ 1, 9 \right\}</math>, a&nbsp;niekwadratowe to <math>\left\{ 3, 7 \right\}</math>. Liczby <math>\left\{ 0, 2, 4, 5, 6, 8 \right\}</math> nie są ani liczbami kwadratowymi, ani liczbami niekwadratowymi modulo <math>10</math>.
| style="background:#ffd890;"|<math>\mathbf{ 144}</math>||<math> 29</math>||<math> 509</math>||<math> 599</math>||<math> 1019</math>||<math> 1579</math>||<math> 2609</math>
+
 
|-
+
Jeśli odrzucimy warunek <math>\gcd (a, m) = 1</math>, to liczbami kwadratowymi modulo <math>10</math> będą <math>\left\{ 0, 1, 4, 5, 6, 9 \right\}</math>, a&nbsp;niekwadratowymi <math>\left\{ 2, 3, 7, 8 \right\}</math>.
| style="background:#ffd890;"|<math>\mathbf{ 150}</math>||<math> 7</math>||<math> 13</math>||<math> 17</math>||<math> 73</math>||<math> 157</math>||<math> 163</math>
+
 
 +
Inny przykład. Niech <math>m = 210 = 2 \cdot 3 \cdot 5 \cdot 7</math>. W&nbsp;zależności od przyjętej definicji najmniejszą liczbą niekwadratową modulo <math>m</math> będzie albo <math>11</math>, albo <math>2</math>.
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie J39</span><br/>
 +
Niech liczby <math>m, n \in \mathbb{Z}_+</math> i <math>\gcd (m, n) = 1</math>. Pokazać, że liczba <math>a \in \mathbb{Z}</math> jest liczbą kwadratową modulo <math>m n</math> wtedy i&nbsp;tylko wtedy, gdy jest liczbą kwadratową modulo <math>m</math> i&nbsp;modulo <math>n</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Niech <math>W(x) = x^2 - a</math>. Zauważmy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy kongruencja <math>W(x) \equiv 0 \!\! \pmod{m}</math> ma rozwiązanie. Dalsza analiza problemu przebiega dokładnie tak, jak to zostało przedstawione w&nbsp;uwadze J11.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Definicja J40</span><br/>
 +
Symbol Jacobiego<ref name="jacobi1"/> <math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}}</math> jest uogólnieniem symbolu Legendre'a <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}}</math> dla dodatnich liczb nieparzystych.
 +
Niech <math>n = \prod_i p_i^{\alpha_i}</math> będzie rozkładem liczby <math>n</math> na czynniki pierwsze, wtedy
 +
 
 +
::<math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} = \prod_i \left( {\small\frac{a}{p_i}} \right)_{\small{\!\! L}}^{\!\! \alpha_i}</math>
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J41</span><br/>
 +
Zauważmy, że w&nbsp;przypadku gdy <math>n = 1</math>, po prawej stronie mamy „pusty” iloczyn (bez jakiegokolwiek czynnika). Podobnie jak „pustej” sumie przypisujemy wartość zero, tak „pustemu” iloczynowi przypisujemy wartość jeden. Zatem dla dowolnego <math>a \in \mathbb{Z}</math> jest <math>\left( {\small\frac{a}{1}} \right)_{\small{\!\! J}} = 1</math>.
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J42*</span><br/>
 +
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>m, n \in \mathbb{Z}_+</math> i <math>m, n</math> będą liczbami nieparzystymi. Symbol Jacobiego ma następujące właściwości
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 156}</math>||<math> 41</math>||<math> 151</math>||<math> 191</math>||<math> 461</math>||<math> 571</math>||<math> 641</math>
+
| &nbsp;&nbsp;1.&nbsp;&nbsp; || <math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} \,\, = \,\, 0 \quad \Longleftrightarrow \quad \gcd (a, n) > 1</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 162}</math>||<math> 107</math>||<math> 197</math>||<math> 337</math>||<math> 967</math>||<math> 1297</math>||<math> 1627</math>
+
| &nbsp;&nbsp;2.&nbsp;&nbsp; || <math>a \equiv b \pmod n \quad \Longrightarrow \quad \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} = \left( {\small\frac{b}{n}} \right)_{\small{\!\! J}}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 168}</math>||<math> 43</math>||<math> 73</math>||<math> 83</math>||<math> 103</math>||<math> 113</math>||<math> 373</math>
+
| &nbsp;&nbsp;3.&nbsp;&nbsp; || <math>\left( {\small\frac{a b}{n}} \right)_{\small{\!\! J}} \,\, = \,\, \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} \cdot  \left( {\small\frac{b}{n}} \right)_{\small{\!\! J}}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 174}</math>||<math> 19</math>||<math> 109</math>||<math> 139</math>||<math> 509</math>||<math> 839</math>||<math> 929</math>
+
| &nbsp;&nbsp;4.&nbsp;&nbsp; || <math>\left( {\small\frac{a}{m n}} \right)_{\small{\!\! J}} \,\, = \,\, \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} \cdot  \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 180}</math>||<math> 59</math>||<math> 61</math>||<math> 101</math>||<math> 103</math>||<math> 281</math>||<math> 283</math>
+
| &nbsp;&nbsp;5.&nbsp;&nbsp; || <math>\left( {\small\frac{1}{n}} \right)_{\small{\!\! J}} \,\, = \,\, 1</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 186}</math>||<math> 11</math>||<math> 151</math>||<math> 271</math>||<math> 281</math>||<math> 491</math>||<math> 691</math>
+
| &nbsp;&nbsp;6.&nbsp;&nbsp; || <math>\left( {\small\frac{- 1}{n}} \right)_{\small{\!\! J}} \,\, = \,\, (- 1)^{\tfrac{n - 1}{2}} \,\, = \,\,
 +
  \begin{cases}
 +
\;\;\: 1 & \text{gdy } n \equiv 1 \pmod{4} \\
 +
      - 1 & \text{gdy } n \equiv 3 \pmod{4}
 +
  \end{cases}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 192}</math>||<math> 37</math>||<math> 157</math>||<math> 307</math>||<math> 647</math>||<math> 1087</math>||<math> 1427</math>
+
| &nbsp;&nbsp;7.&nbsp;&nbsp; || <math>\left( {\small\frac{2}{n}} \right)_{\small{\!\! J}} \,\, = \,\, (- 1)^{\tfrac{n^2 - 1}{8}} \,\, = \,\,
 +
  \begin{cases}
 +
\;\;\: 1 & \text{gdy } n \equiv 1, 7 \pmod{8} \\
 +
      - 1 & \text{gdy } n \equiv 3, 5 \pmod{8}
 +
  \end{cases}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 198}</math>||<math> 13</math>||<math> 53</math>||<math> 83</math>||<math> 263</math>||<math> 373</math>||<math> 853</math>
+
| &nbsp;&nbsp;8.&nbsp;&nbsp; || <math>\left( {\small\frac{- 2}{n}} \right)_{\small{\!\! J}} \,\, = \,\, (- 1)^{\tfrac{(n - 1)(n - 3)}{8}} \,\, = \,\,
 +
  \begin{cases}
 +
\;\;\: 1 & \text{gdy } n \equiv 1, 3 \pmod{8} \\
 +
      - 1 & \text{gdy } n \equiv 5, 7 \pmod{8}
 +
  \end{cases}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 204}</math>||<math> 79</math>||<math> 149</math>||<math> 449</math>||<math> 479</math>||<math> 569</math>||<math> 919</math>
+
| &nbsp;&nbsp;9.&nbsp;&nbsp; || <math>\left( {\small\frac{m}{n}} \right)_{\small{\!\! J}} \,\, = \,\, \left( {\small\frac{n}{m}} \right)_{\small{\!\! J}} \cdot (-1)^{\tfrac{n - 1}{2} \cdot \tfrac{m - 1}{2}} \,\, = \,\, \left( {\small\frac{n}{m}} \right)_{\small{\!\! J}} \cdot
|-
+
\begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 210}</math>||<math> 13</math>||<math> 23</math>||<math> 29</math>||<math> 47</math>||<math> 71</math>||<math> 103</math>
+
\;\;\: 1 & \text{gdy } m \equiv 1 \pmod{4} \;\;\; \text{lub} \;\;\; n \equiv 1 \pmod{4} \\
|-
+
      - 1 & \text{gdy } m \equiv n \equiv 3 \pmod{4}
| style="background:#ffd890;"|<math>\mathbf{ 216}</math>||<math> 11</math>||<math> 181</math>||<math> 761</math>||<math> 1021</math>||<math> 1061</math>||<math> 1231</math>
+
  \end{cases}</math>
|-
+
|}
| style="background:#ffd890;"|<math>\mathbf{ 222}</math>||<math> 17</math>||<math> 157</math>||<math> 197</math>||<math> 547</math>||<math> 617</math>||<math> 787</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 228}</math>||<math> 43</math>||<math> 263</math>||<math> 313</math>||<math> 593</math>||<math> 953</math>||<math> 1093</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J43</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 234}</math>||<math> 359</math>||<math> 499</math>||<math> 619</math>||<math> 829</math>||<math> 1549</math>||<math> 2309</math>
+
Zauważmy, że poza zmienionym założeniem tabela z&nbsp;powyższego twierdzenia i&nbsp;tabela z&nbsp;twierdzenia J29 różnią się jedynie punktem czwartym. Oczywiście jest to tylko podobieństwo formalne – symbol Legendre'a i&nbsp;symbol Jacobiego są różnymi funkcjami.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 240}</math>||<math> 23</math>||<math> 41</math>||<math> 67</math>||<math> 107</math>||<math> 139</math>||<math> 263</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 246}</math>||<math> 31</math>||<math> 71</math>||<math> 101</math>||<math> 331</math>||<math> 541</math>||<math> 661</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J44</span><br/>
|-
+
Zauważmy, że w&nbsp;przypadku, gdy <math>m</math> jest liczbą nieparzystą
| style="background:#ffd890;"|<math>\mathbf{ 252}</math>||<math> 5</math>||<math> 17</math>||<math> 97</math>||<math> 127</math>||<math> 197</math>||<math> 257</math>
+
 
|-
+
:* jeżeli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m</math>
| style="background:#ffd890;"|<math>\mathbf{ 258}</math>||<math> 53</math>||<math> 313</math>||<math> 503</math>||<math> 1103</math>||<math> 1873</math>||<math> 3253</math>
+
:* jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to '''nie musi być''' <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>
|-
+
:* jeżeli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1</math>, to <math>a</math> '''nie musi być''' liczbą kwadratową modulo <math>m</math>
| style="background:#ffd890;"|<math>\mathbf{ 264}</math>||<math> 19</math>||<math> 29</math>||<math> 89</math>||<math> 199</math>||<math> 379</math>||<math> 409</math>
+
:* jeżeli <math>a</math> jest liczbą kwadratową modulo <math>m</math>, to jest <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 270}</math>||<math> 47</math>||<math> 67</math>||<math> 229</math>||<math> 491</math>||<math> 557</math>||<math> 613</math>
+
Przykład: jeżeli <math>\gcd (a, m) = 1</math>, to <math>\left( {\small\frac{a}{m^2}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}^2 = + 1</math>, ale <math>a</math> może być liczbą niekwadratową modulo <math>m^2</math>.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 276}</math>||<math> 181</math>||<math> 191</math>||<math> 401</math>||<math> 601</math>||<math> 661</math>||<math> 1171</math>
+
Modulo <math>9</math> liczbami niekwadratowymi są: <math>2, 5, 8</math>. Modulo <math>25</math> liczbami niekwadratowymi są: <math>2, 3, 7, 8, 12, 13, 17, 18, 22, 23</math>.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 282}</math>||<math> 137</math>||<math> 317</math>||<math> 457</math>||<math> 1297</math>||<math> 1747</math>||<math> 1787</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 288}</math>||<math> 23</math>||<math> 43</math>||<math> 233</math>||<math> 353</math>||<math> 463</math>||<math> 743</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J45</span><br/>
|-
+
Wszystkie liczby kwadratowe i&nbsp;niekwadratowe modulo <math>m</math> można łatwo znaleźć, wykorzystując prosty program:
| style="background:#ffd890;"|<math>\mathbf{ 294}</math>||<math> 59</math>||<math> 89</math>||<math> 139</math>||<math> 269</math>||<math> 349</math>||<math> 719</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
| style="background:#ffd890;"|<math>\mathbf{ 300}</math>||<math> 7</math>||<math> 47</math>||<math> 53</math>||<math> 83</math>||<math> 109</math>||<math> 139</math>
+
<span style="font-size: 90%; color:black;">QRandQNR(m) =
|-
+
{
| style="background:#ffd890;"|<math>\mathbf{ 306}</math>||<math> 491</math>||<math> 691</math>||<math> 971</math>||<math> 1321</math>||<math> 1471</math>||<math> 2341</math>
+
'''local'''(k, S, V);
|-
+
S = [];
| style="background:#ffd890;"|<math>\mathbf{ 312}</math>||<math> 127</math>||<math> 257</math>||<math> 347</math>||<math> 547</math>||<math> 607</math>||<math> 757</math>
+
V = [];
|-
+
'''for'''(k = 1,  m - 1, '''if'''( '''gcd'''(k, m) > 1, '''next'''() ); S = '''concat'''(S, k));
| style="background:#ffd890;"|<math>\mathbf{ 318}</math>||<math> 283</math>||<math> 373</math>||<math> 653</math>||<math> 1063</math>||<math> 1493</math>||<math> 1823</math>
+
S = '''Set'''(S); \\ zbiór liczb względnie pierwszych z m
|-
+
'''for'''(k = 1,  m - 1, '''if'''( '''gcd'''(k, m) > 1, '''next'''() ); V = '''concat'''(V, k^2 % m));
| style="background:#ffd890;"|<math>\mathbf{ 324}</math>||<math> 179</math>||<math> 349</math>||<math> 839</math>||<math> 2389</math>||<math> 2699</math>||<math> 2879</math>
+
V = '''Set'''(V); \\ zbiór liczb kwadratowych modulo m
|-
+
'''print'''("QR: ", V);
| style="background:#ffd890;"|<math>\mathbf{ 330}</math>||<math> 23</math>||<math> 59</math>||<math> 79</math>||<math> 101</math>||<math> 113</math>||<math> 127</math>
+
'''print'''("QNR: ", '''setminus'''(S, V)); \\ różnica zbiorów S i V
|-
+
}</span>
| style="background:#ffd890;"|<math>\mathbf{ 336}</math>||<math> 11</math>||<math> 61</math>||<math> 281</math>||<math> 311</math>||<math> 421</math>||<math> 491</math>
+
<br/>
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 342}</math>||<math> 7</math>||<math> 67</math>||<math> 137</math>||<math> 257</math>||<math> 467</math>||<math> 887</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 348}</math>||<math> 5</math>||<math> 73</math>||<math> 563</math>||<math> 593</math>||<math> 743</math>||<math> 1373</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J46</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 354}</math>||<math> 89</math>||<math> 239</math>||<math> 389</math>||<math> 509</math>||<math> 659</math>||<math> 739</math>
+
Pokazać, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 360}</math>||<math> 7</math>||<math> 13</math>||<math> 23</math>||<math> 37</math>||<math> 101</math>||<math> 107</math>
+
::<math>\left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} =
|-
+
\begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 366}</math>||<math> 461</math>||<math> 571</math>||<math> 1481</math>||<math> 1511</math>||<math> 1901</math>||<math> 2111</math>
+
\;\;\: 1 & \text{gdy } m = 6 k + 1 \\
|-
+
\;\;\: 0 & \text{gdy } m = 6 k + 3 \\
| style="background:#ffd890;"|<math>\mathbf{ 372}</math>||<math> 7</math>||<math> 547</math>||<math> 857</math>||<math> 877</math>||<math> 1087</math>||<math> 2887</math>
+
      - 1 & \text{gdy } m = 6 k + 5
|-
+
\end{cases}</math>
| style="background:#ffd890;"|<math>\mathbf{ 378}</math>||<math> 53</math>||<math> 83</math>||<math> 163</math>||<math> 313</math>||<math> 503</math>||<math> 563</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
| style="background:#ffd890;"|<math>\mathbf{ 384}</math>||<math> 139</math>||<math> 229</math>||<math> 719</math>||<math> 1229</math>||<math> 1439</math>||<math> 1699</math>
+
Zauważmy, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 390}</math>||<math> 31</math>||<math> 43</math>||<math> 59</math>||<math> 131</math>||<math> 157</math>||<math> 197</math>
+
::<math>\left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 396}</math>||<math> 5</math>||<math> 61</math>||<math> 71</math>||<math> 431</math>||<math> 691</math>||<math> 701</math>
+
::::<math>\; = (- 1)^{\tfrac{m - 1}{2}} \cdot (- 1)^{\tfrac{m - 1}{2} \cdot \tfrac{3 - 1}{2}} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 402}</math>||<math> 7</math>||<math> 17</math>||<math> 167</math>||<math> 727</math>||<math> 997</math>||<math> 1637</math>
+
::::<math>\; = (- 1)^{m - 1} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 408}</math>||<math> 13</math>||<math> 223</math>||<math> 643</math>||<math> 683</math>||<math> 1063</math>||<math> 1213</math>
+
::::<math>\; = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 414}</math>||<math> 269</math>||<math> 359</math>||<math> 619</math>||<math> 1039</math>||<math> 1879</math>||<math> 2089</math>
+
bo <math>m</math> jest liczbą nieparzystą.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 420}</math>||<math> 19</math>||<math> 23</math>||<math> 37</math>||<math> 41</math>||<math> 43</math>||<math> 47</math>
+
Rozważmy liczby nieparzyste <math>m</math> postaci <math>6 k + r</math>, gdzie <math>r = 1, 3, 5</math>. Mamy
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 426}</math>||<math> 5</math>||<math> 131</math>||<math> 181</math>||<math> 431</math>||<math> 761</math>||<math> 811</math>
+
::<math>\left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 432}</math>||<math> 227</math>||<math> 617</math>||<math> 857</math>||<math> 997</math>||<math> 1657</math>||<math> 1667</math>
+
::::<math>\; = \left( {\small\frac{6 k + r}{3}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 438}</math>||<math> 5</math>||<math> 53</math>||<math> 383</math>||<math> 1163</math>||<math> 1303</math>||<math> 1873</math>
+
::::<math>\; = \left( {\small\frac{r}{3}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 444}</math>||<math> 199</math>||<math> 409</math>||<math> 1109</math>||<math> 1669</math>||<math> 1889</math>||<math> 2029</math>
+
::::<math>\; =
|-
+
\begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 450}</math>||<math> 11</math>||<math> 97</math>||<math> 149</math>||<math> 193</math>||<math> 251</math>||<math> 359</math>
+
\;\;\: 1 & \text{gdy } r = 1 \\
|-
+
\;\;\: 0 & \text{gdy } r = 3 \\
| style="background:#ffd890;"|<math>\mathbf{ 456}</math>||<math> 191</math>||<math> 521</math>||<math> 631</math>||<math> 1171</math>||<math> 1291</math>||<math> 2341</math>
+
      - 1 & \text{gdy } r = 5
|-
+
\end{cases}</math>
| style="background:#ffd890;"|<math>\mathbf{ 462}</math>||<math> 47</math>||<math> 107</math>||<math> 137</math>||<math> 277</math>||<math> 307</math>||<math> 367</math>
+
 
|-
+
bo odpowiednio dla <math>r = 1, 3, 5</math> jest
| style="background:#ffd890;"|<math>\mathbf{ 468}</math>||<math> 193</math>||<math> 293</math>||<math> 503</math>||<math> 683</math>||<math> 733</math>||<math> 1013</math>
+
 
|-
+
::<math>\left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 474}</math>||<math> 5</math>||<math> 29</math>||<math> 379</math>||<math> 479</math>||<math> 719</math>||<math> 829</math>
+
 
|-
+
::<math>\left( {\small\frac{3}{3}} \right)_{\small{\!\! J}} = 0</math>
| style="background:#ffd890;"|<math>\mathbf{ 480}</math>||<math> 7</math>||<math> 11</math>||<math> 127</math>||<math> 347</math>||<math> 439</math>||<math> 449</math>
+
 
|-
+
::<math>\left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{9 - 1}{8}} = - 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 486}</math>||<math> 241</math>||<math> 811</math>||<math> 941</math>||<math> 1361</math>||<math> 1861</math>||<math> 1871</math>
+
 
|-
+
Łatwo zauważamy, że
| style="background:#ffd890;"|<math>\mathbf{ 492}</math>||<math> 7</math>||<math> 107</math>||<math> 947</math>||<math> 1607</math>||<math> 2897</math>||<math> 3037</math>
+
 
|-
+
::<math>\left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3 \cdot 2^2}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}}^{\! 2} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}}</math>
| style="background:#ffd890;"|<math>\mathbf{ 498}</math>||<math> 73</math>||<math> 883</math>||<math> 953</math>||<math> 983</math>||<math> 1723</math>||<math> 1913</math>
+
 
|-
+
Co należało pokazać.<br/>
| style="background:#ffd890;"|<math>\mathbf{ 504}</math>||<math> 89</math>||<math> 109</math>||<math> 229</math>||<math> 359</math>||<math> 599</math>||<math> 619</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 510}</math>||<math> 13</math>||<math> 67</math>||<math> 83</math>||<math> 89</math>||<math> 97</math>||<math> 167</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 516}</math>||<math> 31</math>||<math> 61</math>||<math> 71</math>||<math> 1181</math>||<math> 1361</math>||<math> 1471</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J47</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 522}</math>||<math> 47</math>||<math> 487</math>||<math> 907</math>||<math> 1097</math>||<math> 1237</math>||<math> 1747</math>
+
Pokazać, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 528}</math>||<math> 13</math>||<math> 73</math>||<math> 443</math>||<math> 503</math>||<math> 653</math>||<math> 1213</math>
+
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} =
|-
+
\begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 534}</math>||<math> 839</math>||<math> 919</math>||<math> 1019</math>||<math> 1399</math>||<math> 1579</math>||<math> 1619</math>
+
\;\;\: 1 & \text{gdy } m = 12 k \pm 1 \\
|-
+
\;\;\: 0 & \text{gdy } m = 12 k \pm 3 \\
| style="background:#ffd890;"|<math>\mathbf{ 540}</math>||<math> 7</math>||<math> 17</math>||<math> 37</math>||<math> 73</math>||<math> 101</math>||<math> 113</math>
+
      - 1 & \text{gdy } m = 12 k \pm 5
|-
+
\end{cases}</math>
| style="background:#ffd890;"|<math>\mathbf{ 546}</math>||<math> 31</math>||<math> 61</math>||<math> 71</math>||<math> 401</math>||<math> 431</math>||<math> 821</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 552}</math>||<math> 67</math>||<math> 257</math>||<math> 277</math>||<math> 727</math>||<math> 1427</math>||<math> 2267</math>
+
::<math>\left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} =
|-
+
\begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 558}</math>||<math> 463</math>||<math> 593</math>||<math> 673</math>||<math> 1013</math>||<math> 1583</math>||<math> 2243</math>
+
\;\;\: 1 & \text{gdy } m = 10 k \pm 1 \\
|-
+
\;\;\: 0 & \text{gdy } m = 10 k + 5 \\
| style="background:#ffd890;"|<math>\mathbf{ 564}</math>||<math> 109</math>||<math> 179</math>||<math> 659</math>||<math> 719</math>||<math> 859</math>||<math> 1429</math>
+
      - 1 & \text{gdy } m = 10 k \pm 3
|-
+
\end{cases}</math>
| style="background:#ffd890;"|<math>\mathbf{ 570}</math>||<math> 23</math>||<math> 31</math>||<math> 73</math>||<math> 157</math>||<math> 163</math>||<math> 241</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
| style="background:#ffd890;"|<math>\mathbf{ 576}</math>||<math> 151</math>||<math> 401</math>||<math> 541</math>||<math> 991</math>||<math> 1061</math>||<math> 1091</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 582}</math>||<math> 37</math>||<math> 127</math>||<math> 457</math>||<math> 647</math>||<math> 967</math>||<math> 1087</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 588}</math>||<math> 103</math>||<math> 113</math>||<math> 223</math>||<math> 233</math>||<math> 443</math>||<math> 613</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 594}</math>||<math> 5</math>||<math> 89</math>||<math> 439</math>||<math> 599</math>||<math> 839</math>||<math> 1019</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 600}</math>||<math> 31</math>||<math> 101</math>||<math> 173</math>||<math> 227</math>||<math> 229</math>||<math> 239</math>
 
|}
 
<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
'''Punkt 1.'''
  
 +
Przy wyliczaniu symboli Legendre'a i&nbsp;Jacobiego, zawsze warto sprawdzić, czy da się ustalić przystawanie liczb modulo <math>4</math>. W&nbsp;tym przypadku mamy
  
<span style="font-size: 110%; font-weight: bold;">Przykład C52</span><br/>
+
::<math>3 \equiv 3 \pmod{4}</math>
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 5</math> i <math>n = 6</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabele|Hide=Ukryj tabele}}
+
i odpowiednio dla różnych postaci liczby <math>m</math> jest
W przypadku <math>n = 5</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 6 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^8</math>.
 
  
W przypadku <math>n = 6</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 30 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^8</math>.
+
::<math>m = 12 k + 1 \equiv 1 \pmod{4}</math>
  
Jeżeli w&nbsp;tabeli jest wypisanych sześć wartości <math>p_0</math>, to oznacza to, że zostało znalezionych co najmniej sześć wartości <math>p_0</math>.
+
::<math>m = 12 k + 5 \equiv 1 \pmod{4}</math>
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
::<math>m = 12 k + 7 \equiv 3 \pmod{4}</math>
|- style="background: #98fb98; text-align: center;"
+
 
| colspan=7 | <math>\mathbf{n = 5}</math>
+
::<math>m = 12 k + 11 \equiv 3 \pmod{4}</math>
|- style="text-align: center;"
+
 
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
Ułatwi nam to znacznie wykonywanie przekształceń (zobacz J42 p.9)
| colspan=6 | <math>\mathbf{p_0}</math>
+
 
|-
+
<div style="margin-top: 1em; margin-bottom: 1em;">
|-
+
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 1}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 1}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 6}</math>||<math> 5</math>||||||||||
+
</div>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12}</math>||<math> 5</math>||||||||||
+
<div style="margin-top: 1em; margin-bottom: 1em;">
|-
+
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 5}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 30}</math>||<math> 7</math>||<math> 11</math>||<math> 37</math>||<math> 107</math>||<math> 137</math>||<math> 151</math>
+
</div>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 42}</math>||<math> 5</math>||||||||||
+
<div style="margin-top: 1em; margin-bottom: 1em;">
|-
+
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 7}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = - 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 48}</math>||<math> 5</math>||||||||||
+
</div>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 60}</math>||<math> 11</math>||<math> 43</math>||<math> 53</math>||<math> 71</math>||<math> 113</math>||<math> 571</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
|-
+
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 11}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 90}</math>||<math> 13</math>||<math> 61</math>||<math> 83</math>||<math> 89</math>||<math> 103</math>||<math> 503</math>
+
</div>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 96}</math>||<math> 5</math>||||||||||
+
'''Punkt 2.'''
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 120}</math>||<math> 29</math>||<math> 107</math>||<math> 239</math>||<math> 281</math>||<math> 359</math>||<math> 379</math>
+
Ponieważ <math>5 \equiv 1 \!\! \pmod{4}</math>, to nie ma już znaczenia, czy <math>m \equiv 1 \!\! \pmod{4}</math>, czy też <math>m \equiv 3 \!\! \pmod{4}</math>. Otrzymujemy natychmiast (zobacz J42 p.9)
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 126}</math>||<math> 5</math>||||||||||
+
<div style="margin-top: 1em; margin-bottom: 1em;">
|-
+
::<math>\left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}}</math>
| style="background:#ffd890;"|<math>\mathbf{ 150}</math>||<math> 7</math>||<math> 13</math>||<math> 17</math>||<math> 73</math>||<math> 157</math>||<math> 223</math>
+
</div>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 180}</math>||<math> 101</math>||<math> 103</math>||<math> 367</math>||<math> 397</math>||<math> 577</math>||<math> 1013</math>
+
Rozważmy liczby nieparzyste <math>m</math> postaci <math>10 k + r</math>, gdzie <math>r = 1, 3, 5, 7, 9</math>. Mamy
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 210}</math>||<math> 13</math>||<math> 23</math>||<math> 47</math>||<math> 71</math>||<math> 127</math>||<math> 157</math>
+
::<math>\left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 240}</math>||<math> 23</math>||<math> 263</math>||<math> 331</math>||<math> 571</math>||<math> 823</math>||<math> 947</math>
+
:::<math>\:\, \quad = \left( {\small\frac{10 k + r}{5}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 252}</math>||<math> 5</math>||||||||||
+
:::<math>\:\, \quad = \left( {\small\frac{r}{5}} \right)_{\small{\!\! J}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 270}</math>||<math> 491</math>||<math> 557</math>||<math> 613</math>||<math> 641</math>||<math> 743</math>||<math> 827</math>
+
:::<math>\:\, \quad =
|-
+
\begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 300}</math>||<math> 83</math>||<math> 223</math>||<math> 383</math>||<math> 419</math>||<math> 509</math>||<math> 523</math>
+
\;\;\: 1 & \text{gdy } r = 1 \\
|-
+
      - 1 & \text{gdy } r = 3 \\
| style="background:#ffd890;"|<math>\mathbf{ 330}</math>||<math> 79</math>||<math> 113</math>||<math> 127</math>||<math> 317</math>||<math> 457</math>||<math> 491</math>
+
\;\;\: 0 & \text{gdy } r = 5 \\
|-
+
      - 1 & \text{gdy } r = 7 \\
| style="background:#ffd890;"|<math>\mathbf{ 360}</math>||<math> 7</math>||<math> 13</math>||<math> 227</math>||<math> 293</math>||<math> 349</math>||<math> 577</math>
+
\;\;\: 1 & \text{gdy } r = 9
|-
+
\end{cases}</math>
| style="background:#ffd890;"|<math>\mathbf{ 390}</math>||<math> 59</math>||<math> 229</math>||<math> 311</math>||<math> 619</math>||<math> 1097</math>||<math> 1489</math>
+
 
|-
+
bo odpowiednio dla <math>r = 1, 3, 5, 7, 9</math> jest
| style="background:#ffd890;"|<math>\mathbf{ 420}</math>||<math> 19</math>||<math> 41</math>||<math> 43</math>||<math> 67</math>||<math> 193</math>||<math> 199</math>
+
 
|-
+
::<math>\left( {\small\frac{1}{5}} \right)_{\small{\!\! J}} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 426}</math>||<math> 5</math>||||||||||
+
 
|-
+
::<math>\left( {\small\frac{3}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{-2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{(5 - 1)(5 - 3)}{8}} = -1</math>
| style="background:#ffd890;"|<math>\mathbf{ 450}</math>||<math> 11</math>||<math> 149</math>||<math> 193</math>||<math> 599</math>||<math> 1033</math>||<math> 1117</math>
+
 
|-
+
::<math>\left( {\small\frac{5}{5}} \right)_{\small{\!\! J}} = 0</math>
| style="background:#ffd890;"|<math>\mathbf{ 474}</math>||<math> 5</math>||||||||||
+
 
|-
+
::<math>\left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{25 - 1}{8}} = - 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 480}</math>||<math> 11</math>||<math> 347</math>||<math> 491</math>||<math> 1019</math>||<math> 1103</math>||<math> 1723</math>
+
 
|-
+
::<math>\left( {\small\frac{9}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{5}} \right)_{\small{\!\! J}}^{\! 2} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 510}</math>||<math> 13</math>||<math> 89</math>||<math> 97</math>||<math> 167</math>||<math> 229</math>||<math> 419</math>
+
 
|-
+
Co należało pokazać.<br/>
| style="background:#ffd890;"|<math>\mathbf{ 540}</math>||<math> 113</math>||<math> 211</math>||<math> 281</math>||<math> 379</math>||<math> 673</math>||<math> 919</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 570}</math>||<math> 31</math>||<math> 157</math>||<math> 241</math>||<math> 269</math>||<math> 647</math>||<math> 839</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 594}</math>||<math> 5</math>||||||||||
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J48</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 600}</math>||<math> 283</math>||<math> 311</math>||<math> 353</math>||<math> 509</math>||<math> 1223</math>||<math> 1531</math>
+
Wykorzystując podane w&nbsp;twierdzeniu J42 właściwości symbolu Jacobiego, możemy napisać prostą funkcję w&nbsp;PARI/GP znajdującą jego wartość. Zauważmy, że nie potrzebujemy znać rozkładu liczby <math>n</math> na czynniki pierwsze.
|}
+
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
<span style="font-size: 90%; color:black;">jacobi(a, n) =
|- style="background: #98fb98; text-align: center;"
+
{
| colspan=7 | <math>\mathbf{n = 6}</math>
+
'''local'''(r, w);
|- style="text-align: center;"
+
'''if'''( n <= 0 || n % 2 == 0, '''return'''("Error") );
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
a = a % n; \\ korzystamy ze wzoru (a|n) = (b|n), gdy a &equiv; b (mod n)
| colspan=6 | <math>\mathbf{p_0}</math>
+
w = 1;
|-
+
'''while'''( a <> 0,
|-
+
        '''while'''( a % 2 == 0, a = a/2; r = n % 8; '''if'''( r == 3 || r == 5, w = -w ) );
| style="background:#ffd890;"|<math>\mathbf{ 30}</math>||<math> 7</math>||<math> 107</math>||<math> 359</math>||<math> 541</math>||<math> 2221</math>||<math> 6673</math>
+
        \\ usunęliśmy czynnik 2 ze zmiennej a, uwzględniając, że (2|n) = -1, gdy n &equiv; 3,5 (mod 8)
|-
+
        \\ teraz zmienne a oraz n są nieparzyste
| style="background:#ffd890;"|<math>\mathbf{ 60}</math>||<math> 11</math>||<math> 53</math>||<math> 641</math>||<math> 5443</math>||<math> 10091</math>||<math> 12457</math>
+
        r = a; \\ zmienna r tylko przechowuje wartość a
|-
+
        a = n;
| style="background:#ffd890;"|<math>\mathbf{ 90}</math>||<math> 13</math>||<math> 503</math>||<math> 1973</math>||<math> 2351</math>||<math> 5081</math>||<math> 10709</math>
+
        n = r;
|-
+
        '''if'''( a % 4 == 3 && n % 4 == 3, w = -w );
| style="background:#ffd890;"|<math>\mathbf{ 120}</math>||<math> 239</math>||<math> 281</math>||<math> 701</math>||<math> 2339</math>||<math> 2437</math>||<math> 10613</math>
+
        \\ zamieniliśmy zmienne, uwzględniając, że (a|n) = - (n|a), gdy a &equiv; n &equiv; 3 (mod 4)
|-
+
        a = a % n;
| style="background:#ffd890;"|<math>\mathbf{ 150}</math>||<math> 7</math>||<math> 73</math>||<math> 157</math>||<math> 2467</math>||<math> 4637</math>||<math> 6079</math>
+
      );
|-
+
'''if'''( n == 1, '''return'''(w), '''return'''(0) ); \\ n jest teraz równe gcd(a, n)
| style="background:#ffd890;"|<math>\mathbf{ 180}</math>||<math> 397</math>||<math> 1013</math>||<math> 1307</math>||<math> 17029</math>||<math> 20963</math>||<math> 24337</math>
+
}</span>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 210}</math>||<math> 13</math>||<math> 47</math>||<math> 179</math>||<math> 199</math>||<math> 257</math>||<math> 389</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 240}</math>||<math> 23</math>||<math> 331</math>||<math> 2207</math>||<math> 3677</math>||<math> 5021</math>||<math> 6323</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J49</span><br/>
|-
+
Jeżeli <math>m</math> jest liczbą pierwszą, to symbol Jacobiego jest symbolem Legendre'a, czyli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math>. Jeżeli <math>m</math> jest liczbą złożoną, to symbol Legendre'a <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math> nie istnieje, a&nbsp;symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> dostarcza jedynie ograniczonych informacji.
| style="background:#ffd890;"|<math>\mathbf{ 270}</math>||<math> 557</math>||<math> 1201</math>||<math> 2377</math>||<math> 8467</math>||<math> 9923</math>||<math> 12107</math>
+
 
|-
+
W przyszłości symbol Legendre'a / Jacobiego będziemy zapisywali w&nbsp;formie uproszczonej <math>(a \mid m)</math> i&nbsp;nie będziemy rozróżniali tych symboli. Interpretacja zapisu jest prosta:
| style="background:#ffd890;"|<math>\mathbf{ 300}</math>||<math> 83</math>||<math> 223</math>||<math> 587</math>||<math> 1511</math>||<math> 4073</math>||<math> 4423</math>
+
 
|-
+
:* jeżeli '''wiemy''', że <math>m</math> jest liczbą pierwszą, to symbol <math>(a \mid m)</math> jest symbolem Legendre'a
| style="background:#ffd890;"|<math>\mathbf{ 330}</math>||<math> 127</math>||<math> 491</math>||<math> 2129</math>||<math> 2857</math>||<math> 3137</math>||<math> 5153</math>
+
:* jeżeli '''wiemy''', że <math>m</math> jest liczbą złożoną, to symbol <math>(a \mid m)</math> jest symbolem Jacobiego
|-
+
:* jeżeli '''nie wiemy''', czy <math>m</math> jest liczbą pierwszą, czy złożoną, to symbol <math>(a \mid m)</math> jest symbolem Jacobiego
| style="background:#ffd890;"|<math>\mathbf{ 360}</math>||<math> 227</math>||<math> 577</math>||<math> 1669</math>||<math> 9187</math>||<math> 13331</math>||<math> 13933</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 390}</math>||<math> 229</math>||<math> 3701</math>||<math> 9007</math>||<math> 9833</math>||<math> 13291</math>||<math> 17911</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 420}</math>||<math> 41</math>||<math> 43</math>||<math> 193</math>||<math> 613</math>||<math> 743</math>||<math> 1289</math>
+
 
|-
+
== Rozwiązywanie kongruencji <math>x^2 \equiv a \!\! \pmod{m}</math> ==
| style="background:#ffd890;"|<math>\mathbf{ 450}</math>||<math> 149</math>||<math> 1381</math>||<math> 1451</math>||<math> 3607</math>||<math> 5651</math>||<math> 8521</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J50</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 480}</math>||<math> 11</math>||<math> 5051</math>||<math> 8719</math>||<math> 10567</math>||<math> 11113</math>||<math> 13591</math>
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, zaś <math>a</math> liczbą całkowitą taką, że <math>\gcd (a, p) = 1</math>. Kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 510}</math>||<math> 97</math>||<math> 419</math>||<math> 811</math>||<math> 3191</math>||<math> 3583</math>||<math> 4283</math>
+
::<math>x^2 \equiv a \pmod{p^n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 540}</math>||<math> 379</math>||<math> 673</math>||<math> 3851</math>||<math> 3907</math>||<math> 7043</math>||<math> 12377</math>
+
ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 570}</math>||<math> 269</math>||<math> 1039</math>||<math> 2887</math>||<math> 3853</math>||<math> 10979</math>||<math> 11399</math>
+
::<math>x^2 \equiv a \pmod{p}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 600}</math>||<math> 8839</math>||<math> 23371</math>||<math> 38183</math>||<math> 44189</math>||<math> 59743</math>||<math> 63467</math>
+
ma rozwiązanie.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 630}</math>||<math> 179</math>||<math> 193</math>||<math> 1637</math>||<math> 2267</math>||<math> 2897</math>||<math> 4813</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 660}</math>||<math> 163</math>||<math> 317</math>||<math> 401</math>||<math> 2753</math>||<math> 3229</math>||<math> 5077</math>
+
<math>\Large{\Longrightarrow}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 690}</math>||<math> 277</math>||<math> 1523</math>||<math> 6101</math>||<math> 10427</math>||<math> 15971</math>||<math> 27059</math>
+
Z założenia kongruencja <math>x^2 \equiv a \!\! \pmod{p^n}</math> ma rozwiązanie. Zatem istnieje taka liczba <math>r \in \mathbb{Z}</math>, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 720}</math>||<math> 1231</math>||<math> 3793</math>||<math> 4003</math>||<math> 6229</math>||<math> 7573</math>||<math> 10079</math>
+
::<math>r^2 \equiv a \pmod{p^n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 750}</math>||<math> 1051</math>||<math> 1289</math>||<math> 1583</math>||<math> 2857</math>||<math> 12377</math>||<math> 18523</math>
+
Ponieważ <math>p^n \mid (r^2 - a)</math>, to tym bardziej <math>p \mid (r^2 - a)</math>, co oznacza, że prawdziwa jest kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 780}</math>||<math> 1151</math>||<math> 3517</math>||<math> 3923</math>||<math> 4637</math>||<math> 5309</math>||<math> 9929</math>
+
::<math>r^2 \equiv a \pmod{p}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 810}</math>||<math> 1993</math>||<math> 7817</math>||<math> 11443</math>||<math> 17519</math>||<math> 52631</math>||<math> 109919</math>
+
Skąd wynika natychmiast, że kongruencja <math>x^2 \equiv a \!\! \pmod{p}</math> ma rozwiązanie.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 840}</math>||<math> 97</math>||<math> 313</math>||<math> 1061</math>||<math> 1753</math>||<math> 1901</math>||<math> 2593</math>
+
<math>\Large{\Longleftarrow}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 870}</math>||<math> 2039</math>||<math> 2179</math>||<math> 5273</math>||<math> 5987</math>||<math> 9431</math>||<math> 10957</math>
+
Indukcja matematyczna. Z&nbsp;uczynionego w&nbsp;twierdzeniu założenia wiemy, że kongruencja <math>x^2 \equiv a \!\! \pmod{p}</math> ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla <math>n = 1</math>. Załóżmy teraz (założenie indukcyjne), że kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 900}</math>||<math> 1747</math>||<math> 12541</math>||<math> 14767</math>||<math> 21193</math>||<math> 31511</math>||<math> 40289</math>
+
::<math>x^2 \equiv a \pmod{p^n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 930}</math>||<math> 7</math>||<math> 293</math>||<math> 9043</math>||<math> 10247</math>||<math> 34327</math>||<math> 38891</math>
+
ma rozwiązanie <math>x \equiv u_n \!\! \pmod{p^n}</math> i&nbsp;pokażmy, że twierdzenie jest prawdziwe dla <math>n + 1</math>, czyli że rozwiązanie ma kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 960}</math>||<math> 4943</math>||<math> 8737</math>||<math> 15373</math>||<math> 28351</math>||<math> 35393</math>||<math> 36919</math>
+
::<math>x^2 \equiv a \pmod{p^{n + 1}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 990}</math>||<math> 1249</math>||<math> 1319</math>||<math> 2467</math>||<math> 2957</math>||<math> 4049</math>||<math> 8291</math>
+
Wiemy, że liczba <math>u_n</math> jest określona modulo <math>p^n</math>. Nie tracąc ogólności, możemy założyć, że <math>1 \leqslant u_n < p^n</math>. Wartość <math>u_n</math> może zostać wybrana dowolnie (modulo <math>p^n</math>), ale musi zostać ustalona — wymaga tego precyzja i&nbsp;czytelność dowodu. Zatem
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1020}</math>||<math> 887</math>||<math> 929</math>||<math> 2441</math>||<math> 4639</math>||<math> 15083</math>||<math> 19997</math>
+
::<math>u^2_n - a = k p^n</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1050}</math>||<math> 53</math>||<math> 257</math>||<math> 443</math>||<math> 839</math>||<math> 1103</math>||<math> 3469</math>
+
Zauważmy, że liczba <math>k</math> jest jednoznacznie określona, bo wartość <math>u_n</math> została ustalona. Ponieważ <math>\gcd (2 u_n, p) = 1</math>, to równanie
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1080}</math>||<math> 1423</math>||<math> 9011</math>||<math> 10663</math>||<math> 27799</math>||<math> 36493</math>||<math> 51473</math>
+
::<math>2 u_n \cdot s - p \cdot l = - k</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1110}</math>||<math> 3847</math>||<math> 9643</math>||<math> 10357</math>||<math> 11743</math>||<math> 16223</math>||<math> 21977</math>
+
ma rozwiązanie (zobacz C74). Niech liczby <math>s_0</math> i <math>l_0</math> będą rozwiązaniem tego równania. Zatem
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1140}</math>||<math> 1063</math>||<math> 1301</math>||<math> 1553</math>||<math> 1777</math>||<math> 5683</math>||<math> 6397</math>
+
::<math>2 u_n \cdot s_0 - p \cdot l_0 = - k</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1170}</math>||<math> 379</math>||<math> 701</math>||<math> 911</math>||<math> 2143</math>||<math> 2297</math>||<math> 2857</math>
+
::<math>2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - k p^n</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1200}</math>||<math> 367</math>||<math> 2677</math>||<math> 3391</math>||<math> 18749</math>||<math> 34961</math>||<math> 59699</math>
+
::<math>2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - ( u^2_n - a )</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1230}</math>||<math> 2539</math>||<math> 6053</math>||<math> 6823</math>||<math> 9091</math>||<math> 12101</math>||<math> 14831</math>
+
::<math>u^2_n + 2 u_n \cdot s_0 p^n = a + l_0 \cdot p^{n + 1}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1260}</math>||<math> 359</math>||<math> 617</math>||<math> 739</math>||<math> 1051</math>||<math> 1619</math>||<math> 1931</math>
+
Modulo <math>p^{n + 1}</math> dostajemy
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1290}</math>||<math> 149</math>||<math> 17747</math>||<math> 20981</math>||<math> 24481</math>||<math> 46643</math>||<math> 47917</math>
+
::<math>u^2_n + 2 u_n \cdot s_0 p^n \equiv a \pmod{p^{n + 1}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1320}</math>||<math> 53</math>||<math> 977</math>||<math> 991</math>||<math> 2237</math>||<math> 9461</math>||<math> 20983</math>
+
::<math>(u_n + s_0 p^n)^2 \equiv a \pmod{p^{n + 1}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1350}</math>||<math> 811</math>||<math> 937</math>||<math> 3877</math>||<math> 14923</math>||<math> 16001</math>||<math> 18493</math>
+
bo <math>p^{n + 1} \mid p^{2 n}</math>. Zatem liczba <math>u_{n + 1} = u_n + s_0 p^n</math> jest rozwiązaniem kongruencji
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1380}</math>||<math> 3613</math>||<math> 9227</math>||<math> 15541</math>||<math> 16927</math>||<math> 17417</math>||<math> 18089</math>
+
::<math>x^2 \equiv a \pmod{p^{n + 1}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1410}</math>||<math> 367</math>||<math> 2593</math>||<math> 12421</math>||<math> 50599</math>||<math> 60889</math>||<math> 80629</math>
+
Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.<br/>
|-
+
&#9633;
| style="background:#ffd890;"|<math>\mathbf{ 1440}</math>||<math> 439</math>||<math> 6277</math>||<math> 20753</math>||<math> 21929</math>||<math> 39079</math>||<math> 57727</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1470}</math>||<math> 1279</math>||<math> 1877</math>||<math> 2383</math>||<math> 2393</math>||<math> 2749</math>||<math> 2801</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1500}</math>||<math> 7331</math>||<math> 8423</math>||<math> 15493</math>||<math> 28513</math>||<math> 31607</math>||<math> 38453</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J51</span><br/>
|-
+
Dla niewielkich modułów rozwiązania dowolnej kongruencji możemy znaleźć przez bezpośrednie sprawdzenie. Omówimy teraz rozwiązania kongruencji <math>x^2 \equiv a \!\! \pmod{2^n}</math> dla <math>n = 1, 2, 3</math>. Ponieważ zakładamy, że <math>\gcd (a, m) = \gcd (a, 2^n) = 1</math>, to <math>a</math> musi być liczbą nieparzystą, zaś <math>x</math> nie może być liczbą parzystą. Istotnie, gdyby tak było, to mielibyśmy <math>0 \equiv 1 \!\! \pmod{2}</math>, bo <math>2 \mid 2^n</math>.
| style="background:#ffd890;"|<math>\mathbf{ 1530}</math>||<math> 2741</math>||<math> 3203</math>||<math> 8537</math>||<math> 14389</math>||<math> 20143</math>||<math> 21277</math>
+
 
|-
+
Kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 1560}</math>||<math> 419</math>||<math> 727</math>||<math> 3499</math>||<math> 3919</math>||<math> 6257</math>||<math> 9029</math>
+
 
|-
+
::<math>x^2 \equiv a \pmod{2}</math>
| style="background:#ffd890;"|<math>\mathbf{ 1590}</math>||<math> 2213</math>||<math> 2339</math>||<math> 4523</math>||<math> 6469</math>||<math> 9241</math>||<math> 9857</math>
+
 
|-
+
ma dokładnie jedno rozwiązanie <math>x \equiv 1 \!\! \pmod{2}</math>.
| style="background:#ffd890;"|<math>\mathbf{ 1620}</math>||<math> 7717</math>||<math> 9103</math>||<math> 12379</math>||<math> 37607</math>||<math> 43613</math>||<math> 46567</math>
+
 
|-
+
Kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 1650}</math>||<math> 19</math>||<math> 3001</math>||<math> 3659</math>||<math> 4051</math>||<math> 4289</math>||<math> 11527</math>
+
 
|-
+
::<math>x^2 \equiv a \pmod{4}</math>
| style="background:#ffd890;"|<math>\mathbf{ 1680}</math>||<math> 197</math>||<math> 997</math>||<math> 1289</math>||<math> 1319</math>||<math> 2309</math>||<math> 2683</math>
+
 
|-
+
ma dwa rozwiązania, gdy <math>a \equiv 1 \!\! \pmod{4}</math>. Rozwiązaniami są: <math>x \equiv 1, 3 \!\! \pmod{4}</math>. W&nbsp;przypadku, gdy <math>a \equiv 3 \!\! \pmod{4}</math> kongruencja nie ma rozwiązań.
| style="background:#ffd890;"|<math>\mathbf{ 1710}</math>||<math> 373</math>||<math> 1549</math>||<math> 1913</math>||<math> 2711</math>||<math> 12539</math>||<math> 15031</math>
+
 
|-
+
Kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 1740}</math>||<math> 1621</math>||<math> 5387</math>||<math> 6269</math>||<math> 15551</math>||<math> 61723</math>||<math> 77543</math>
+
 
|-
+
::<math>x^2 \equiv a \pmod{8}</math>
| style="background:#ffd890;"|<math>\mathbf{ 1770}</math>||<math> 1483</math>||<math> 13691</math>||<math> 15329</math>||<math> 20873</math>||<math> 23869</math>||<math> 29917</math>
+
 
|-
+
ma cztery rozwiązania, gdy <math>a \equiv 1 \!\! \pmod{8}</math>. Rozwiązaniami są: <math>x \equiv 1, 3, 5, 7 \!\! \pmod{8}</math>. W&nbsp;przypadku, gdy <math>a \equiv 3, 5, 7 \!\! \pmod{8}</math> kongruencja nie ma rozwiązań.
| style="background:#ffd890;"|<math>\mathbf{ 1800}</math>||<math> 421</math>||<math> 967</math>||<math> 1499</math>||<math> 6217</math>||<math> 30983</math>||<math> 37171</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1830}</math>||<math> 31</math>||<math> 17909</math>||<math> 46567</math>||<math> 89057</math>||<math> 105619</math>||<math> 128341</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J52</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 1860}</math>||<math> 5087</math>||<math> 6151</math>||<math> 9133</math>||<math> 16567</math>||<math> 23819</math>||<math> 29881</math>
+
Niech <math>n \geqslant 3</math> i <math>a</math> będzie liczbą nieparzystą. Kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1890}</math>||<math> 23</math>||<math> 727</math>||<math> 1109</math>||<math> 1279</math>||<math> 1409</math>||<math> 1543</math>
+
::<math>x^2 \equiv a \pmod{2^n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1920}</math>||<math> 79</math>||<math> 1493</math>||<math> 13967</math>||<math> 19973</math>||<math> 41351</math>||<math> 46867</math>
+
ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1950}</math>||<math> 3259</math>||<math> 4813</math>||<math> 8803</math>||<math> 12373</math>||<math> 13577</math>||<math> 13619</math>
+
::<math>x^2 \equiv a \pmod{8}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1980}</math>||<math> 1511</math>||<math> 3863</math>||<math> 4969</math>||<math> 5039</math>||<math> 7027</math>||<math> 9337</math>
+
ma rozwiązanie.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2010}</math>||<math> 1303</math>||<math> 3739</math>||<math> 7309</math>||<math> 13763</math>||<math> 22093</math>||<math> 31151</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2040}</math>||<math> 1039</math>||<math> 6779</math>||<math> 7507</math>||<math> 8963</math>||<math> 10069</math>||<math> 12281</math>
+
<math>\Large{\Longrightarrow}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2070}</math>||<math> 1097</math>||<math> 2063</math>||<math> 2917</math>||<math> 4289</math>||<math> 6571</math>||<math> 11149</math>
+
Z założenia kongruencja <math>x^2 \equiv a \!\! \pmod{2^n}</math> ma rozwiązanie, zatem istnieje taka liczba <math>r \in \mathbb{Z}</math>, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2100}</math>||<math> 29</math>||<math> 281</math>||<math> 757</math>||<math> 1459</math>||<math> 1847</math>||<math> 2503</math>
+
::<math>r^2 \equiv a \pmod{2^n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2130}</math>||<math> 3677</math>||<math> 5077</math>||<math> 11699</math>||<math> 17159</math>||<math> 21149</math>||<math> 31159</math>
+
Ponieważ <math>2^n \mid (r^2 - a)</math>, gdzie <math>n \geqslant 3</math>, to tym bardziej <math>2^3 \mid (r^2 - a)</math>. Co oznacza, że prawdziwa jest kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2160}</math>||<math> 5849</math>||<math> 6619</math>||<math> 24329</math>||<math> 43019</math>||<math> 114419</math>||<math> 126823</math>
+
::<math>r^2 \equiv a \pmod{2^3}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2190}</math>||<math> 643</math>||<math> 4283</math>||<math> 4339</math>||<math> 23743</math>||<math> 24821</math>||<math> 30211</math>
+
Skąd wynika natychmiast, że kongruencja <math>x^2 \equiv a \!\! \pmod{8}</math> ma rozwiązanie.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2220}</math>||<math> 4229</math>||<math> 11243</math>||<math> 11467</math>||<math> 12503</math>||<math> 13693</math>||<math> 26209</math>
+
<math>\Large{\Longleftarrow}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2250}</math>||<math> 4721</math>||<math> 6359</math>||<math> 17321</math>||<math> 19477</math>||<math> 21661</math>||<math> 23117</math>
+
Indukcja matematyczna. Z&nbsp;uczynionego w&nbsp;twierdzeniu założenia wiemy, że kongruencja <math>x^2 \equiv a \pmod{8}</math> ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla <math>n = 3</math>. Załóżmy teraz (założenie indukcyjne), że kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2280}</math>||<math> 719</math>||<math> 2399</math>||<math> 15797</math>||<math> 22391</math>||<math> 23189</math>||<math> 27809</math>
+
::<math>x^2 \equiv a \pmod{2^n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2310}</math>||<math> 37</math>||<math> 71</math>||<math> 83</math>||<math> 547</math>||<math> 661</math>||<math> 859</math>
+
ma rozwiązanie <math>x \equiv u_n \!\! \pmod{2^n}</math> i&nbsp;pokażemy, że twierdzenie jest prawdziwe dla <math>n + 1</math>, czyli że rozwiązanie ma kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2340}</math>||<math> 107</math>||<math> 4363</math>||<math> 5483</math>||<math> 9613</math>||<math> 12413</math>||<math> 14737</math>
+
::<math>x^2 \equiv a \pmod{2^{n + 1}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2370}</math>||<math> 1187</math>||<math> 1831</math>||<math> 4211</math>||<math> 7963</math>||<math> 9419</math>||<math> 15607</math>
+
Z założenia istnieje taka liczba <math>k</math>, że <math>u^2_n - a = k \cdot 2^n</math>. Niech
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2400}</math>||<math> 503</math>||<math> 853</math>||<math> 4787</math>||<math> 15091</math>||<math> 20327</math>||<math> 23603</math>
+
::<math>r =
|-
+
  \begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 2430}</math>||<math> 13217</math>||<math> 31039</math>||<math> 38851</math>||<math> 43261</math>||<math> 46747</math>||<math> 67481</math>
+
  0 & \text{gdy } k \text{ jest liczbą parzystą}\\
|-
+
  1 & \text{gdy } k \text{ jest liczbą nieparzystą}
| style="background:#ffd890;"|<math>\mathbf{ 2460}</math>||<math> 227</math>||<math> 1459</math>||<math> 6779</math>||<math> 6863</math>||<math> 18553</math>||<math> 29207</math>
+
  \end{cases}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2490}</math>||<math> 1237</math>||<math> 7621</math>||<math> 14411</math>||<math> 19801</math>||<math> 46457</math>||<math> 55921</math>
+
Zauważmy, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2520}</math>||<math> 113</math>||<math> 709</math>||<math> 1013</math>||<math> 1181</math>||<math> 1303</math>||<math> 1409</math>
+
::<math>(u_n + r \cdot 2^{n - 1})^2 - a = u^2_n - a + 2^n r + r^2 \cdot 2^{2 n - 2}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2550}</math>||<math> 1871</math>||<math> 9403</math>||<math> 33203</math>||<math> 36241</math>||<math> 70009</math>||<math> 74587</math>
+
::::::::<math>\;\! = k \cdot 2^n + 2^n r + r^2 \cdot 2^{2 n - 2}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2580}</math>||<math> 277</math>||<math> 6101</math>||<math> 29383</math>||<math> 35851</math>||<math> 55871</math>||<math> 61723</math>
+
::::::::<math>\;\! = 2^n (k + r) + r^2 \cdot 2^{2 n - 2}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2610}</math>||<math> 5179</math>||<math> 8539</math>||<math> 8861</math>||<math> 10093</math>||<math> 15679</math>||<math> 17989</math>
+
::::::::<math>\;\! \equiv 0 \pmod{2^{n + 1}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2640}</math>||<math> 9283</math>||<math> 10781</math>||<math> 12377</math>||<math> 12433</math>||<math> 13679</math>||<math> 22751</math>
+
bo <math>k + r</math> jest liczbą parzystą, a&nbsp;dla <math>n \geqslant 3</math> mamy <math>2 n - 2 \geqslant n + 1</math>. Zatem liczba <math>u_{n + 1} = u_n + r \cdot 2^{n - 1}</math> jest rozwiązaniem kongruencji
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2670}</math>||<math> 1039</math>||<math> 4133</math>||<math> 12589</math>||<math> 14731</math>||<math> 16411</math>||<math> 23789</math>
+
::<math>x^2 \equiv a \pmod{2^{n + 1}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2700}</math>||<math> 8629</math>||<math> 10267</math>||<math> 16217</math>||<math> 17477</math>||<math> 18149</math>||<math> 19843</math>
+
Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.<br/>
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2730}</math>||<math> 19</math>||<math> 631</math>||<math> 761</math>||<math> 811</math>||<math> 1091</math>||<math> 1423</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2760}</math>||<math> 7</math>||<math> 2473</math>||<math> 2767</math>||<math> 9137</math>||<math> 9403</math>||<math> 9767</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2790}</math>||<math> 6899</math>||<math> 15733</math>||<math> 20353</math>||<math> 20899</math>||<math> 23447</math>||<math> 29201</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2820}</math>||<math> 727</math>||<math> 1259</math>||<math> 3023</math>||<math> 7951</math>||<math> 17989</math>||<math> 20201</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2850}</math>||<math> 379</math>||<math> 463</math>||<math> 2843</math>||<math> 4831</math>||<math> 9661</math>||<math> 10067</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2880}</math>||<math> 1459</math>||<math> 2803</math>||<math> 4973</math>||<math> 7283</math>||<math> 8543</math>||<math> 12281</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2910}</math>||<math> 397</math>||<math> 12409</math>||<math> 19087</math>||<math> 25121</math>||<math> 37441</math>||<math> 41081</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2940}</math>||<math> 17</math>||<math> 383</math>||<math> 691</math>||<math> 983</math>||<math> 2393</math>||<math> 2797</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2970}</math>||<math> 1031</math>||<math> 2879</math>||<math> 3593</math>||<math> 5147</math>||<math> 6029</math>||<math> 6673</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 3000}</math>||<math> 907</math>||<math> 35543</math>||<math> 45413</math>||<math> 60337</math>||<math> 65713</math>||<math> 89009</math>
 
|}
 
<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Wniosek J53</span><br/>
 +
Jeżeli <math>a</math> jest liczbą nieparzystą, to kongruencja <math>x^2 \equiv a \!\! \pmod{2^n}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy <math>a</math> jest postaci <math>2 k + 1</math>, <math>4 k + 1</math> lub <math>8 k + 1</math> w&nbsp;zależności od tego, czy <math>n = 1</math>, czy <math>n = 2</math>, czy <math>n \geqslant 3</math>.
  
<span style="font-size: 110%; font-weight: bold;">Przykład C53</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 7</math> i <math>n = 8</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabele|Hide=Ukryj tabele}}
 
W przypadku <math>n = 7</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 30 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^8</math>.
 
  
W przypadku <math>n = 8</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 210 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^8</math>.
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J54</span><br/>
 +
Niech <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> i <math>\gcd (a, m) = 1</math>. Z&nbsp;chińskiego twierdzenia o&nbsp;resztach (zobacz J3 i&nbsp;J11) wynika, że kongruencja <math>x^2 \equiv a \!\! \pmod{m}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy ma rozwiązanie każda z&nbsp;kongruencji
  
Jeżeli w&nbsp;tabeli jest wypisanych sześć wartości <math>p_0</math>, to oznacza to, że zostało znalezionych co najmniej sześć wartości <math>p_0</math>.
+
::<math>\begin{align}
 +
x^2 & \equiv a \pmod{p^{\alpha_1}_1} \\
 +
    & \,\,\,\cdots \\
 +
x^2 & \equiv a \pmod{p^{\alpha_s}_s} \\
 +
\end{align}</math>
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
Z definicji J27, twierdzeń J50 i&nbsp;J52, uwagi J51 i&nbsp;wniosku J53 otrzymujemy
|- style="background: #98fb98; text-align: center;"
+
 
| colspan=7 | <math>\mathbf{n = 7}</math>
+
 
|- style="text-align: center;"
+
 
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J55</span><br/>
| colspan=6 | <math>\mathbf{p_0}</math>
+
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
|-
+
 
|-
+
::<math>x^2 \equiv a \pmod{m}</math>
| style="background:#ffd890;"|<math>\mathbf{ 150}</math>||<math> 7</math>||||||||||
+
 
|-
+
ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy
| style="background:#ffd890;"|<math>\mathbf{ 210}</math>||<math> 47</math>||<math> 179</math>||<math> 199</math>||<math> 409</math>||<math> 619</math>||<math> 829</math>
+
 
|-
+
::{| border="0"  
| style="background:#ffd890;"|<math>\mathbf{ 420}</math>||<math> 193</math>||<math> 1619</math>||<math> 2239</math>||<math> 2659</math>||<math> 4259</math>||<math> 5849</math>
+
|-style=height:1em
|-
+
| &#9679;&nbsp;&nbsp;&nbsp; dla każdego nieparzystego dzielnika pierwszego <math>p</math> liczby <math>m</math> jest&nbsp; <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 630}</math>||<math> 1637</math>||<math> 2267</math>||<math> 5569</math>||<math> 8369</math>||<math> 11003</math>||<math> 11633</math>
+
|-style=height:1em
|-
+
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \mid m</math>, &nbsp;to&nbsp; <math>8 \mid ( a - 1 )</math>
| style="background:#ffd890;"|<math>\mathbf{ 840}</math>||<math> 1061</math>||<math> 1753</math>||<math> 3623</math>||<math> 4493</math>||<math> 5651</math>||<math> 6043</math>
+
|-style=height:2.5em
|-
+
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \nmid m</math>, &nbsp;ale&nbsp; <math>4 \mid m</math>, &nbsp;to&nbsp; <math>4 \mid ( a - 1 )</math>
| style="background:#ffd890;"|<math>\mathbf{ 1050}</math>||<math> 53</math>||<math> 3469</math>||<math> 6653</math>||<math> 8629</math>||<math> 8783</math>||<math> 8837</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 1260}</math>||<math> 359</math>||<math> 1931</math>||<math> 2063</math>||<math> 3323</math>||<math> 4583</math>||<math> 13933</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 1470}</math>||<math> 1279</math>||<math> 2393</math>||<math> 2801</math>||<math> 8117</math>||<math> 8191</math>||<math> 9661</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 1680}</math>||<math> 1289</math>||<math> 1319</math>||<math> 2683</math>||<math> 2969</math>||<math> 11261</math>||<math> 12941</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 1890}</math>||<math> 1279</math>||<math> 1723</math>||<math> 1811</math>||<math> 1879</math>||<math> 2693</math>||<math> 4583</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2100}</math>||<math> 1847</math>||<math> 3947</math>||<math> 26497</math>||<math> 34913</math>||<math> 35771</math>||<math> 36187</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2310}</math>||<math> 71</math>||<math> 547</math>||<math> 1019</math>||<math> 1063</math>||<math> 1367</math>||<math> 1747</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2520}</math>||<math> 113</math>||<math> 1181</math>||<math> 1409</math>||<math> 5413</math>||<math> 7109</math>||<math> 7933</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2730}</math>||<math> 631</math>||<math> 811</math>||<math> 1091</math>||<math> 2417</math>||<math> 3643</math>||<math> 3821</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2760}</math>||<math> 7</math>||||||||||
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 2940}</math>||<math> 17</math>||<math> 6317</math>||<math> 6911</math>||<math> 9433</math>||<math> 11927</math>||<math> 12373</math>
 
 
|}
 
|}
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
 
|- style="background: #98fb98; text-align: center;"
+
 
| colspan=7 | <math>\mathbf{n = 8}</math>
+
 
|- style="text-align: center;"
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J56</span><br/>
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
| colspan=6 | <math>\mathbf{p_0}</math>
+
 
|-
+
::<math>x^2 \equiv a \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 210}</math>||<math> 199</math>||<math> 409</math>||<math> 619</math>||<math> 881</math>||<math> 3499</math>||<math> 3709</math>
+
nie ma rozwiązania wtedy i&nbsp;tylko wtedy, gdy spełniony jest co najmniej jeden z&nbsp;warunków
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 420}</math>||<math> 2239</math>||<math> 10243</math>||<math> 18493</math>||<math> 29297</math>||<math> 39199</math>||<math> 40343</math>
+
::{| border="0"  
 +
|-style=height:1em
 +
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli dla dowolnego nieparzystego dzielnika <math>d</math> liczby <math>m</math> jest <math>\left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1</math>
 +
|-style=height:1em
 +
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \mid m</math> &nbsp;i&nbsp; <math>8 \nmid ( a - 1 )</math>
 +
|-style=height:2.5em
 +
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \nmid m</math>, &nbsp;ale&nbsp; <math>4 \mid m</math> &nbsp;i&nbsp; <math>4 \nmid ( a - 1 )</math>
 +
|}
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 
 +
'''Punkt 1.'''
 +
 
 +
Z założenia <math>d \mid m</math>. Gdyby kongruencja
 +
 
 +
::<math>x^2 \equiv a \pmod{m}</math>
 +
 
 +
miała rozwiązanie, to również kongruencja
 +
 
 +
::<math>x^2 \equiv a \pmod{d}</math>
 +
 
 +
miałaby rozwiązanie, ale jest to niemożliwe, bo założyliśmy, że <math>\left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1</math>, co oznacza, że <math>a</math> jest liczbą niekwadratową modulo <math>d</math>.
 +
 
 +
Punkty 2. i 3. wynikają wprost z&nbsp;twierdzenia J55.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Przykład J57</span><br/>
 +
Zauważmy, że <math>\left( {\small\frac{17}{19}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{19}} \right)_{\small{\!\! J}} = 1</math> oraz <math>\left( {\small\frac{17}{23}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{23}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;tabelach zestawiliśmy kongruencje i&nbsp;ich rozwiązania.
 +
 
 +
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 60px; margin-right: 50px; font-size: 90%; text-align: left;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 630}</math>||<math> 1637</math>||<math> 11003</math>||<math> 38693</math>||<math> 53161</math>||<math> 56477</math>||<math> 198971</math>
+
! Kongruencje || Rozwiązania
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 840}</math>||<math> 6043</math>||<math> 6883</math>||<math> 10861</math>||<math> 11701</math>||<math> 84521</math>||<math> 103837</math>
+
| <math>x^2 \equiv 17 \pmod{16 \cdot 19}</math> || <math>25, 63, 89, 127, 177, 215, 241, 279</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 1050}</math>||<math> 8837</math>||<math> 41507</math>||<math> 246289</math>||<math> 302273</math>||<math> 382727</math>||<math> 499679</math>
+
| <math>x^2 \equiv 17 \pmod{8 \cdot 19}</math> || <math>13, 25, 51, 63, 89, 101, 127, 139</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 1260}</math>||<math> 2063</math>||<math> 3323</math>||<math> 87511</math>||<math> 145949</math>||<math> 208099</math>||<math> 213247</math>
+
| <math>x^2 \equiv 5 \;\, \pmod{8 \cdot 19}</math> || <math>\text{brak}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 1470}</math>||<math> 8191</math>||<math> 15289</math>||<math> 101027</math>||<math> 102497</math>||<math> 187931</math>||<math> 227399</math>
+
| <math>x^2 \equiv 5 \;\, \pmod{4 \cdot 19}</math> || <math>9, 29, 47, 67</math>
 +
|}
 +
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 5px; font-size: 90%; text-align: left;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 1680}</math>||<math> 1289</math>||<math> 11261</math>||<math> 31333</math>||<math> 33013</math>||<math> 133919</math>||<math> 193283</math>
+
! Kongruencje || Rozwiązania
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 1890}</math>||<math> 2693</math>||<math> 15493</math>||<math> 15607</math>||<math> 17497</math>||<math> 45767</math>||<math> 47657</math>
+
| <math>x^2 \equiv 17 \pmod{16 \cdot 23}</math> || <math>\text{brak}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 2100}</math>||<math> 1847</math>||<math> 34913</math>||<math> 37013</math>||<math> 39113</math>||<math> 83311</math>||<math> 102871</math>
+
| <math>x^2 \equiv 17 \pmod{8 \cdot 23}</math> || <math>\text{brak}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 2310}</math>||<math> 1019</math>||<math> 3823</math>||<math> 5557</math>||<math> 6133</math>||<math> 7853</math>||<math> 9941</math>
+
| <math>x^2 \equiv 5 \;\, \pmod{8 \cdot 23}</math> || <math>\text{brak}</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 2520}</math>||<math> 5413</math>||<math> 7109</math>||<math> 19141</math>||<math> 21661</math>||<math> 23509</math>||<math> 24763</math>
+
| <math>x^2 \equiv 5 \;\, \pmod{4 \cdot 23}</math> || <math>\text{brak}</math>
|-
+
|}
| style="background:#ffd890;"|<math>\mathbf{ 2730}</math>||<math> 1091</math>||<math> 4721</math>||<math> 7451</math>||<math> 22079</math>||<math> 49339</math>||<math> 53759</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2940}</math>||<math> 9433</math>||<math> 11927</math>||<math> 14867</math>||<math> 50587</math>||<math> 80933</math>||<math> 127207</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J58</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 3150}</math>||<math> 433</math>||<math> 3583</math>||<math> 7877</math>||<math> 24677</math>||<math> 27827</math>||<math> 49031</math>
+
Rozwiązać kongruencję, gdzie <math>p</math> jest liczbą pierwszą nieparzystą
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 3360}</math>||<math> 6571</math>||<math> 9041</math>||<math> 39791</math>||<math> 210391</math>||<math> 213751</math>||<math> 217111</math>
+
::<math>x^2 + rx + s \equiv 0 \pmod{p}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 3570}</math>||<math> 8971</math>||<math> 10429</math>||<math> 27737</math>||<math> 28387</math>||<math> 37313</math>||<math> 57047</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
|-
+
Ponieważ <math>\gcd (2, p) = 1</math>, to nie zmniejszając ogólności kongruencję powyższą możemy zapisać w&nbsp;postaci
| style="background:#ffd890;"|<math>\mathbf{ 3780}</math>||<math> 45767</math>||<math> 82037</math>||<math> 155569</math>||<math> 473513</math>||<math> 477293</math>||<math> 511873</math>
+
 
|-
+
::<math>4 x^2 + 4 rx + 4 s \equiv 0 \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 3990}</math>||<math> 1699</math>||<math> 2909</math>||<math> 5689</math>||<math> 25033</math>||<math> 29873</math>||<math> 40559</math>
+
 
|-
+
::<math>(2 x + r)^2 - r^2 + 4 s \equiv 0 \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 4200}</math>||<math> 12547</math>||<math> 16747</math>||<math> 37013</math>||<math> 57139</math>||<math> 89899</math>||<math> 94099</math>
+
 
|-
+
::<math>(2 x + r)^2 \equiv r^2 - 4 s \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 4410}</math>||<math> 20809</math>||<math> 87623</math>||<math> 142271</math>||<math> 262733</math>||<math> 267143</math>||<math> 439009</math>
+
 
|-
+
Widzimy, że rozpatrywana kongruencja ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy liczba <math>r^2 - 4 s</math> jest liczbą kwadratową modulo <math>p</math>. Istotnie, jeśli jest liczbą kwadratową, to istnieje taka liczba <math>b</math>, że <math>b^2 \equiv r^2 - 4 s \!\! \pmod{p}</math>, zatem otrzymujemy
| style="background:#ffd890;"|<math>\mathbf{ 4620}</math>||<math> 103</math>||<math> 1531</math>||<math> 3083</math>||<math> 3257</math>||<math> 6427</math>||<math> 9461</math>
+
 
|-
+
::<math>(2 x + r)^2 \equiv b^2 \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 4830}</math>||<math> 3907</math>||<math> 13313</math>||<math> 30427</math>||<math> 35257</math>||<math> 40087</math>||<math> 72547</math>
+
 
|-
+
::<math>2 x + r \equiv \pm b \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 5040}</math>||<math> 13477</math>||<math> 14951</math>||<math> 25073</math>||<math> 25931</math>||<math> 30113</math>||<math> 57457</math>
+
 
|-
+
::<math>x \equiv {\small\frac{p + 1}{2}} \cdot (- r \pm b) \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 5250}</math>||<math> 3413</math>||<math> 8663</math>||<math> 44179</math>||<math> 49429</math>||<math> 111109</math>||<math> 648107</math>
+
 
|-
+
Jeśli <math>r^2 - 4 s</math> nie jest liczbą kwadratową modulo <math>p</math>, to kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 5460}</math>||<math> 1559</math>||<math> 18899</math>||<math> 36389</math>||<math> 43711</math>||<math> 59393</math>||<math> 75541</math>
+
 
|-
+
::<math>(2 x + r)^2 \equiv r^2 - 4 s \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 5670}</math>||<math> 187477</math>||<math> 231109</math>||<math> 402137</math>||<math> 680123</math>||<math> 706463</math>||<math> 712133</math>
+
 
|-
+
nie ma rozwiązania. Wynika stąd, że równoważna jej kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 5880}</math>||<math> 73</math>||<math> 29959</math>||<math> 152389</math>||<math> 158269</math>||<math> 317021</math>||<math> 2115961</math>
+
 
|-
+
::<math>x^2 + rx + s \equiv 0 \pmod{p}</math>
| style="background:#ffd890;"|<math>\mathbf{ 6090}</math>||<math> 12239</math>||<math> 22469</math>||<math> 38543</math>||<math> 50893</math>||<math> 72533</math>||<math> 90863</math>
+
 
|-
+
również nie ma rozwiązania.<br/>
| style="background:#ffd890;"|<math>\mathbf{ 6300}</math>||<math> 37097</math>||<math> 86869</math>||<math> 92639</math>||<math> 224633</math>||<math> 440269</math>||<math> 641327</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 6510}</math>||<math> 1063</math>||<math> 20599</math>||<math> 21701</math>||<math> 27109</math>||<math> 41611</math>||<math> 46187</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6720}</math>||<math> 3167</math>||<math> 7457</math>||<math> 22669</math>||<math> 62347</math>||<math> 69067</math>||<math> 75787</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J59</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 6930}</math>||<math> 17</math>||<math> 5581</math>||<math> 6947</math>||<math> 7151</math>||<math> 13469</math>||<math> 14081</math>
+
Rozwiązać kongruencję
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 7140}</math>||<math> 3347</math>||<math> 53309</math>||<math> 281557</math>||<math> 370879</math>||<math> 380447</math>||<math> 466897</math>
+
::<math>5 x^2 + 6 x + 8 \equiv 0 \pmod{19}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 7350}</math>||<math> 206047</math>||<math> 348163</math>||<math> 363037</math>||<math> 435661</math>||<math> 576677</math>||<math> 906107</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
|-
+
Rozwiązywanie kongruencji w&nbsp;przypadku konkretnych wartości liczb <math>r, s</math> jest łatwiejsze niż w&nbsp;przypadku ogólnym. Mnożąc obie strony kongruencji przez <math>4</math>, otrzymujemy
| style="background:#ffd890;"|<math>\mathbf{ 7560}</math>||<math> 29387</math>||<math> 36947</math>||<math> 39191</math>||<math> 44267</math>||<math> 342389</math>||<math> 349949</math>
+
 
|-
+
::<math>x^2 + 24 x + 32 \equiv 0 \pmod{19}</math>
| style="background:#ffd890;"|<math>\mathbf{ 7770}</math>||<math> 6553</math>||<math> 14323</math>||<math> 25169</math>||<math> 28549</math>||<math> 36319</math>||<math> 42061</math>
+
 
|-
+
::<math>x^2 + 24 x + 13 \equiv 0 \pmod{19}</math>
| style="background:#ffd890;"|<math>\mathbf{ 7980}</math>||<math> 137</math>||<math> 4091</math>||<math> 7237</math>||<math> 8117</math>||<math> 12071</math>||<math> 24029</math>
+
 
|-
+
Celowo zostawiliśmy parzysty współczynnik przy <math>x</math>. Gdyby był nieparzysty, to zawsze możemy dodać do niego nieparzysty moduł.
| style="background:#ffd890;"|<math>\mathbf{ 8190}</math>||<math> 3593</math>||<math> 21017</math>||<math> 35591</math>||<math> 43781</math>||<math> 49727</math>||<math> 59021</math>
+
 
|-
+
::<math>(x + 12)^2 - 144 + 13 \equiv 0 \pmod{19}</math>
| style="background:#ffd890;"|<math>\mathbf{ 8400}</math>||<math> 86599</math>||<math> 173909</math>||<math> 788413</math>||<math> 1251869</math>||<math> 1365019</math>||<math> 1392731</math>
+
 
|-
+
::<math>(x + 12)^2 + 2 \equiv 0 \pmod{19}</math>
| style="background:#ffd890;"|<math>\mathbf{ 8610}</math>||<math> 541</math>||<math> 1867</math>||<math> 63703</math>||<math> 132283</math>||<math> 140893</math>||<math> 175837</math>
+
 
|-
+
::<math>(x + 12)^2 \equiv - 2 \pmod{19}</math>
| style="background:#ffd890;"|<math>\mathbf{ 8820}</math>||<math> 9403</math>||<math> 83563</math>||<math> 84421</math>||<math> 93241</math>||<math> 187823</math>||<math> 296983</math>
+
 
|-
+
::<math>(x + 12)^2 \equiv 6^2 \pmod{19}</math>
| style="background:#ffd890;"|<math>\mathbf{ 9030}</math>||<math> 11087</math>||<math> 195203</math>||<math> 219799</math>||<math> 352813</math>||<math> 426973</math>||<math> 487651</math>
+
 
|-
+
::<math>x + 12 \equiv \pm 6 \pmod{19}</math>
| style="background:#ffd890;"|<math>\mathbf{ 9240}</math>||<math> 199</math>||<math> 937</math>||<math> 10177</math>||<math> 21031</math>||<math> 27961</math>||<math> 30271</math>
+
 
 +
Otrzymujemy: <math>x \equiv 1 \!\! \pmod{19}</math> lub <math>x \equiv 13 \!\! \pmod{19}</math>.
 +
 
 +
 
 +
Nieco spostrzegawczości pozwala znaleźć rozwiązanie kongruencji natychmiast. W&nbsp;naszym przypadku wystarczyło zauważyć, że
 +
 
 +
::<math>x^2 + 24 x + 13 \equiv x^2 - 14 x + 13 \equiv (x - 1) (x - 13) \equiv 0 \pmod{19}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
 
 +
 
 +
== Najmniejsze liczby niekwadratowe modulo ==
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J60</span><br/>
 +
Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i&nbsp;zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i&nbsp;symbol Jacobiego.
 +
 
 +
 
 +
 
 +
 
 +
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
 +
| &nbsp;'''A.''' Najmniejsze liczby niekwadratowe modulo <math>p</math>&nbsp;
 +
|}
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Przykład J61</span><br/>
 +
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
! <math>\boldsymbol{m}</math>  
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 9450}</math>||<math> 1609</math>||<math> 157181</math>||<math> 182867</math>||<math> 663049</math>||<math> 1028479</math>||<math> 1037929</math>
+
<math>\boldsymbol{\mathbb{n}( p )}</math>  
|-
+
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
| style="background:#ffd890;"|<math>\mathbf{ 9660}</math>||<math> 521</math>||<math> 3449</math>||<math> 10181</math>||<math> 50417</math>||<math> 84229</math>||<math> 218363</math>
+
|}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 9870}</math>||<math> 61</math>||<math> 43013</math>||<math> 89923</math>||<math> 220333</math>||<math> 294479</math>||<math> 490493</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 10080}</math>||<math> 6949</math>||<math> 17029</math>||<math> 54293</math>||<math> 99023</math>||<math> 125353</math>||<math> 125899</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J62</span><br/>
|-
+
Do wyszukiwania liczb <math>\mathbb{n} = \mathbb{n} (p)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
| style="background:#ffd890;"|<math>\mathbf{ 10290}</math>||<math> 6143</math>||<math> 16433</math>||<math> 179057</math>||<math> 211777</math>||<math> 681949</math>||<math> 1018357</math>
+
 
|-
+
<span style="font-size: 90%; color:black;">A(p) =
| style="background:#ffd890;"|<math>\mathbf{ 10500}</math>||<math> 9109</math>||<math> 91153</math>||<math> 218527</math>||<math> 447817</math>||<math> 513167</math>||<math> 1113239</math>
+
{
|-
+
'''if'''( p == 2, '''return'''(0) );
| style="background:#ffd890;"|<math>\mathbf{ 10710}</math>||<math> 9419</math>||<math> 28603</math>||<math> 28871</math>||<math> 37861</math>||<math> 43691</math>||<math> 75041</math>
+
'''if'''( !'''isprime'''(p), '''return'''(0) );
|-
+
'''forprime'''(q = 2, p, '''if'''( jacobi(q, p) == -1, '''return'''(q) ));
| style="background:#ffd890;"|<math>\mathbf{ 10920}</math>||<math> 14657</math>||<math> 21491</math>||<math> 52321</math>||<math> 63241</math>||<math> 79997</math>||<math> 80621</math>
+
}</span>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 11130}</math>||<math> 49681</math>||<math> 70607</math>||<math> 187009</math>||<math> 198139</math>||<math> 209269</math>||<math> 219613</math>
+
Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w&nbsp;rzeczywistości symbol Legendre'a, '''bo wiemy''', że liczba <math>p</math> jest liczbą pierwszą (w przypadku, gdy <math>p</math> jest liczbą złożoną, funkcja zwraca zero).
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 11340}</math>||<math> 24197</math>||<math> 57143</math>||<math> 68483</math>||<math> 158617</math>||<math> 212297</math>||<math> 237257</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 11550}</math>||<math> 4483</math>||<math> 4673</math>||<math> 9619</math>||<math> 16223</math>||<math> 21169</math>||<math> 66161</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J63</span><br/>
|-
+
Niech <math>\mathbb{n} \in \mathbb{Z}_+</math> i&nbsp;niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, to jest liczbą pierwszą.
| style="background:#ffd890;"|<math>\mathbf{ 11760}</math>||<math> 3511</math>||<math> 241793</math>||<math> 469613</math>||<math> 517949</math>||<math> 548263</math>||<math> 643469</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
| style="background:#ffd890;"|<math>\mathbf{ 11970}</math>||<math> 6221</math>||<math> 10531</math>||<math> 22501</math>||<math> 40343</math>||<math> 216233</math>||<math> 280187</math>
+
Przypuśćmy, że <math>\mathbb{n} = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < \mathbb{n}</math>. Z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, zatem liczby <math>a, b</math> są liczbami kwadratowymi modulo <math>p</math>. Z&nbsp;definicji liczb kwadratowych muszą istnieć takie liczby <math>r, s</math>, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12180}</math>||<math> 18211</math>||<math> 65437</math>||<math> 126943</math>||<math> 137239</math>||<math> 149939</math>||<math> 361213</math>
+
::<math>r^2 \equiv a \pmod{p}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12390}</math>||<math> 7477</math>||<math> 24391</math>||<math> 41669</math>||<math> 76913</math>||<math> 95213</math>||<math> 181211</math>
+
::<math>s^2 \equiv b \pmod{p}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12600}</math>||<math> 26003</math>||<math> 435577</math>||<math> 448177</math>||<math> 558431</math>||<math> 571031</math>||<math> 583631</math>
+
Skąd wynika, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12810}</math>||<math> 19289</math>||<math> 35437</math>||<math> 40949</math>||<math> 53791</math>||<math> 59357</math>||<math> 94309</math>
+
::<math>\mathbb{n} = a b \equiv (r s)^2 \pmod{p}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 13020}</math>||<math> 15913</math>||<math> 55843</math>||<math> 77773</math>||<math> 179519</math>||<math> 418927</math>||<math> 670853</math>
+
Wbrew założeniu, że <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>p</math>.<br/>
|-
+
&#9633;
| style="background:#ffd890;"|<math>\mathbf{ 13230}</math>||<math> 5843</math>||<math> 7433</math>||<math> 9391</math>||<math> 31729</math>||<math> 40543</math>||<math> 53773</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 13440}</math>||<math> 2141</math>||<math> 15581</math>||<math> 270143</math>||<math> 335021</math>||<math> 405269</math>||<math> 448741</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 13650}</math>||<math> 3343</math>||<math> 12097</math>||<math> 16993</math>||<math> 19259</math>||<math> 63611</math>||<math> 81001</math>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J64</span><br/>
|-
+
Pokazać, że najmniejszą liczbą niekwadratową modulo <math>p</math> jest
| style="background:#ffd890;"|<math>\mathbf{ 13860}</math>||<math> 6029</math>||<math> 6211</math>||<math> 26171</math>||<math> 27653</math>||<math> 32441</math>||<math> 51839</math>
+
 
|-
+
:* &nbsp;liczba <math>2</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 8 k \pm 3</math>
| style="background:#ffd890;"|<math>\mathbf{ 14070}</math>||<math> 40879</math>||<math> 87793</math>||<math> 87991</math>||<math> 159491</math>||<math> 285497</math>||<math> 485389</math>
+
:* &nbsp;liczba <math>3</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 24 k \pm 7</math>
|-
+
:* &nbsp;liczba <math>\geqslant 5</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 24 k \pm 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 14280}</math>||<math> 6947</math>||<math> 15923</math>||<math> 27337</math>||<math> 79481</math>||<math> 111227</math>||<math> 364687</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
| style="background:#ffd890;"|<math>\mathbf{ 14490}</math>||<math> 41039</math>||<math> 48491</math>||<math> 142049</math>||<math> 144667</math>||<math> 159157</math>||<math> 161263</math>
+
Z właściwości symbolu Legendre'a (zobacz J29 p.7) wiemy, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 14700}</math>||<math> 12409</math>||<math> 36583</math>||<math> 51283</math>||<math> 161363</math>||<math> 218989</math>||<math> 578267</math>
+
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, =
|-
+
\,\,
| style="background:#ffd890;"|<math>\mathbf{ 14910}</math>||<math> 23957</math>||<math> 74161</math>||<math> 79633</math>||<math> 89071</math>||<math> 109367</math>||<math> 120977</math>
+
  \begin{cases}
|-
+
\;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\
| style="background:#ffd890;"|<math>\mathbf{ 15120}</math>||<math> 33997</math>||<math> 121853</math>||<math> 136973</math>||<math> 203429</math>||<math> 330413</math>||<math> 379369</math>
+
      - 1 & \text{gdy } p \equiv 3, 5 \pmod{8}
|-
+
  \end{cases}</math>
| style="background:#ffd890;"|<math>\mathbf{ 15330}</math>||<math> 12781</math>||<math> 64613</math>||<math> 505559</math>||<math> 588529</math>||<math> 614071</math>||<math> 873121</math>
+
 
|-
+
Wynika stąd natychmiast, dla liczb pierwszych <math>p</math> postaci <math>8 k \pm 3</math> (i tylko dla takich liczb) liczba <math>2</math> jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo <math>p</math>.
| style="background:#ffd890;"|<math>\mathbf{ 15540}</math>||<math> 15053</math>||<math> 33071</math>||<math> 41131</math>||<math> 160781</math>||<math> 176321</math>||<math> 209357</math>
+
 
|-
+
Z zadania J47 wynika, że liczba <math>3</math> jest liczbą niekwadratową jedynie dla liczb pierwszych postaci <math>12 k \pm 5</math>. Zatem dla liczb pierwszych, które są jednocześnie postaci <math>p = 8 k \pm 1</math> i <math>p = 12 j \pm 5</math>, liczba <math>3</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Z&nbsp;czterech warunków
| style="background:#ffd890;"|<math>\mathbf{ 15750}</math>||<math> 7001</math>||<math> 10459</math>||<math> 64579</math>||<math> 80329</math>||<math> 103409</math>||<math> 119159</math>
+
 
|-
+
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5</math>
| style="background:#ffd890;"|<math>\mathbf{ 15960}</math>||<math> 1847</math>||<math> 6037</math>||<math> 17807</math>||<math> 21997</math>||<math> 33767</math>||<math> 71917</math>
+
 
|-
+
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 7</math>
| style="background:#ffd890;"|<math>\mathbf{ 16170}</math>||<math> 32321</math>||<math> 66179</math>||<math> 82349</math>||<math> 99661</math>||<math> 130343</math>||<math> 219451</math>
+
 
|-
+
::<math>p = 8 k + 7 \quad \text{i} \quad p = 12 j + 5</math>
| style="background:#ffd890;"|<math>\mathbf{ 16380}</math>||<math> 22859</math>||<math> 28579</math>||<math> 43759</math>||<math> 43913</math>||<math> 60139</math>||<math> 95107</math>
+
 
|-
+
::<math>p = 8 k + 7 \quad \text{i} \quad p = 12 j + 7</math>
| style="background:#ffd890;"|<math>\mathbf{ 16590}</math>||<math> 6703</math>||<math> 23293</math>||<math> 29009</math>||<math> 45599</math>||<math> 51341</math>||<math> 57917</math>
+
 
|-
+
Drugi i&nbsp;trzeci nie są możliwe, bo modulo <math>4</math> otrzymujemy
| style="background:#ffd890;"|<math>\mathbf{ 16800}</math>||<math> 91463</math>||<math> 276037</math>||<math> 524857</math>||<math> 874063</math>||<math> 940319</math>||<math> 957119</math>
+
 
|-
+
::<math>p \equiv 1 \pmod{4} \quad \text{i} \quad p \equiv 3 \pmod{4}</math>
| style="background:#ffd890;"|<math>\mathbf{ 17010}</math>||<math> 6571</math>||<math> 70529</math>||<math> 117037</math>||<math> 227147</math>||<math> 797119</math>||<math> 814129</math>
+
 
|-
+
::<math>p \equiv 3 \pmod{4} \quad \text{i} \quad p \equiv 1 \pmod{4}</math>
| style="background:#ffd890;"|<math>\mathbf{ 17220}</math>||<math> 120713</math>||<math> 225769</math>||<math> 242989</math>||<math> 343601</math>||<math> 819229</math>||<math> 965711</math>
+
 
|-
+
a z&nbsp;pierwszego i&nbsp;czwartego mamy
| style="background:#ffd890;"|<math>\mathbf{ 17430}</math>||<math> 4219</math>||<math> 6101</math>||<math> 15643</math>||<math> 25471</math>||<math> 33073</math>||<math> 42901</math>
+
 
|-
+
::<math>3 p = 24 k + 3 \quad \text{i} \quad 2 p = 24 j + 10 \qquad \;\: \Longrightarrow \qquad p = 24 (k - j) - 7 \qquad \Longrightarrow \qquad p \equiv - 7 \pmod{24}</math>
| style="background:#ffd890;"|<math>\mathbf{ 17640}</math>||<math> 12917</math>||<math> 34877</math>||<math> 59407</math>||<math> 62047</math>||<math> 85667</math>||<math> 193607</math>
+
 
|-
+
::<math>3 p = 24 k + 21 \quad \text{i} \quad 2 p = 24 j + 14 \qquad \Longrightarrow \qquad p = 24 (k - j) + 7 \qquad \Longrightarrow \qquad p \equiv 7 \pmod{24}</math>
| style="background:#ffd890;"|<math>\mathbf{ 17850}</math>||<math> 9803</math>||<math> 129379</math>||<math> 147229</math>||<math> 238229</math>||<math> 270157</math>||<math> 289253</math>
+
 
|-
+
Zauważmy, że problem mogliśmy zapisać w&nbsp;postaci układu kongruencji
| style="background:#ffd890;"|<math>\mathbf{ 18060}</math>||<math> 87613</math>||<math> 90583</math>||<math> 117223</math>||<math> 512671</math>||<math> 574297</math>||<math> 623353</math>
+
 
|-
+
::<math>p \equiv \pm 1 \pmod{8}</math>
| style="background:#ffd890;"|<math>\mathbf{ 18270}</math>||<math> 29567</math>||<math> 47837</math>||<math> 86491</math>||<math> 268189</math>||<math> 424819</math>||<math> 511201</math>
+
 
|-
+
::<math>p \equiv \pm 5 \pmod{12}</math>
| style="background:#ffd890;"|<math>\mathbf{ 18480}</math>||<math> 1861</math>||<math> 2711</math>||<math> 8093</math>||<math> 10831</math>||<math> 11161</math>||<math> 11909</math>
+
 
|-
+
Gdyby moduły tych kongruencji były względnie pierwsze, to każdemu wyborowi znaków odpowiadałaby pewna kongruencja równoważna (zobacz J3). Widzimy, że w&nbsp;przypadku, gdy moduły nie są względnie pierwsze, kongruencja równoważna może istnieć, ale nie musi. Rozwiązując taki problem, wygodnie jest skorzystać z&nbsp;programu PARI/GP. Wystarczy wpisać
| style="background:#ffd890;"|<math>\mathbf{ 18690}</math>||<math> 881</math>||<math> 19571</math>||<math> 79531</math>||<math> 529829</math>||<math> 654767</math>||<math> 812353</math>
+
 
|-
+
chinese(Mod(1, 8), Mod(5, 12)) = Mod(17, 24)
| style="background:#ffd890;"|<math>\mathbf{ 18900}</math>||<math> 6899</math>||<math> 23201</math>||<math> 52267</math>||<math> 73823</math>||<math> 92723</math>||<math> 462079</math>
+
chinese(Mod(1, 8), Mod(-5, 12)) - błąd
|-
+
chinese(Mod(-1, 8), Mod(5, 12)) - błąd
| style="background:#ffd890;"|<math>\mathbf{ 19110}</math>||<math> 8941</math>||<math> 30091</math>||<math> 39367</math>||<math> 58603</math>||<math> 63737</math>||<math> 80611</math>
+
chinese(Mod(-1, 8), Mod(-5, 12)) = Mod(7, 24)
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 19320}</math>||<math> 6857</math>||<math> 218761</math>||<math> 236699</math>||<math> 237733</math>||<math> 300319</math>||<math> 300499</math>
+
Ostatni punkt zadania rozwiążemy tą metodą. Liczba większa lub równa <math>5</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy liczby <math>2</math> i <math>3</math> są liczbami kwadratowymi modulo <math>p</math>, co oznacza, że liczba pierwsza <math>p</math> spełnia kongruencje
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 19530}</math>||<math> 33829</math>||<math> 46183</math>||<math> 50929</math>||<math> 70459</math>||<math> 283859</math>||<math> 361651</math>
+
::<math>p \equiv \pm 1 \pmod{8}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 19740}</math>||<math> 1117</math>||<math> 2729</math>||<math> 22469</math>||<math> 30757</math>||<math> 50497</math>||<math> 165391</math>
+
::<math>p \equiv \pm 1 \pmod{12}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 19950}</math>||<math> 13339</math>||<math> 23767</math>||<math> 44549</math>||<math> 47791</math>||<math> 92399</math>||<math> 142699</math>
+
Postępując jak wyżej, otrzymujemy
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 20160}</math>||<math> 2857</math>||<math> 5821</math>||<math> 147089</math>||<math> 948263</math>||<math> 1044859</math>||<math> 1094123</math>
+
chinese(Mod(1, 8), Mod(1, 12)) = Mod(1, 24)
|-
+
chinese(Mod(1, 8), Mod(-1, 12)) - błąd
| style="background:#ffd890;"|<math>\mathbf{ 20370}</math>||<math> 81649</math>||<math> 154073</math>||<math> 164239</math>||<math> 398539</math>||<math> 443881</math>||<math> 556123</math>
+
chinese(Mod(-1, 8), Mod(1, 12)) - błąd
|-
+
chinese(Mod(-1, 8), Mod(-1, 12)) = Mod(23, 24)
| style="background:#ffd890;"|<math>\mathbf{ 20580}</math>||<math> 9689</math>||<math> 30269</math>||<math> 105379</math>||<math> 316501</math>||<math> 337081</math>||<math> 398023</math>
+
 
|-
+
Co należało pokazać.<br/>
| style="background:#ffd890;"|<math>\mathbf{ 20790}</math>||<math> 12713</math>||<math> 20023</math>||<math> 33503</math>||<math> 40813</math>||<math> 69829</math>||<math> 92251</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 21000}</math>||<math> 5501</math>||<math> 19471</math>||<math> 26501</math>||<math> 29153</math>||<math> 40471</math>||<math> 56773</math>
 
|}
 
<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1843: Linia 1978:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C54</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J65</span><br/>
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 9</math> i <math>n = 10</math>.
+
Dla każdej liczby pierwszej <math>p_n</math> istnieje nieskończenie wiele takich liczb pierwszych <math>q</math>, że <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>2, p_2, \ldots, p_{n - 1}, p_n</math> będą kolejnymi liczbami pierwszymi. Wybierzmy liczbę <math>u</math> tak, aby spełniała układ kongruencji
 +
 
 +
::<math>\begin{align}
 +
u & \equiv 1 \pmod{8 p_2 \cdot \ldots \cdot p_{n - 1}} \\
 +
u & \equiv a \pmod{p_n}
 +
\end{align}</math>
 +
 
 +
gdzie <math>a</math> oznacza dowolną liczbą niekwadratową modulo <math>p_n</math>. Na podstawie chińskiego twierdzenia o&nbsp;resztach (zobacz J3) powyższy układ kongruencji może być zapisany w&nbsp;postaci kongruencji równoważnej
 +
 
 +
::<math>u \equiv c \pmod{8 p_2 \cdot \ldots \cdot p_n}</math>
 +
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabele|Hide=Ukryj tabele}}
+
Zauważmy, że żadna z&nbsp;liczb pierwszych <math>p_k</math>, gdzie <math>1 \leqslant k \leqslant n</math> nie dzieli liczby <math>c</math>, bo mielibyśmy
W przypadku <math>n = 9</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 210 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^9</math>.
 
  
W przypadku <math>n = 10</math> wyszukiwanie ciągów zostało przeprowadzone dla <math>d = 210 k</math>, gdzie <math>1 \leqslant k \leqslant 100</math> i (przy ustalonym <math>d</math>) dla kolejnych liczb pierwszych <math>p_0 \leqslant 10^{10}</math>.
+
::<math>u \equiv 0 \pmod{p_k}</math>
  
Jeżeli w&nbsp;tabeli jest wypisanych sześć wartości <math>p_0</math>, to oznacza to, że zostało znalezionych co najmniej sześć wartości <math>p_0</math>.
+
wbrew wypisanemu wyżej układowi kongruencji. Zatem <math>\gcd (c, 8 p_2 \cdot \ldots \cdot p_n) = 1</math> i&nbsp;z&nbsp;twierdzenia Dirichleta wiemy, że wśród liczb <math>u</math> spełniających kongruencję <math>u \equiv c \!\! \pmod{8 p_2 \cdot \ldots \cdot p_n}</math> występuje nieskończenie wiele liczb pierwszych (bo wśród tych liczb są liczby postaci <math>8 p_2 \cdot \ldots \cdot p_n \cdot k + c</math>, gdzie <math>k \in \mathbb{Z}_+</math>). Oznaczmy przez <math>q</math> dowolną z&nbsp;tych liczb pierwszych.
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
 
|- style="background: #98fb98; text-align: center;"
+
Ponieważ <math>q \equiv 1 \!\! \pmod{8}</math>, to <math>\left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1</math> (zobacz J29), a&nbsp;dla wszystkich liczb pierwszych nieparzystych <math>p_k < p_n</math> mamy
| colspan=7 | <math>\mathbf{n = 9}</math>
+
 
|- style="text-align: center;"
+
<div style="margin-top: 1em; margin-bottom: 1em;">
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
::<math>\left( {\small\frac{p_k}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_k - 1}{2}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{p_k}} \right)_{\small{\!\! L}} = 1</math>
| colspan=6 | <math>\mathbf{p_0}</math>
+
</div>
|-
+
 
|-
+
bo <math>8 \mid (q - 1)</math>. Dla liczby pierwszej <math>p_n</math> jest
| style="background:#ffd890;"|<math>\mathbf{ 210}</math>||<math> 199</math>||<math> 409</math>||<math> 3499</math>||<math> 10859</math>||<math> 564973</math>||<math> 1288607</math>
+
 
|-
+
<div style="margin-top: 1em; margin-bottom: 1em;">
| style="background:#ffd890;"|<math>\mathbf{ 420}</math>||<math> 52879</math>||<math> 53299</math>||<math> 56267</math>||<math> 61637</math>||<math> 3212849</math>||<math> 3544939</math>
+
::<math>\left( {\small\frac{p_n}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_n - 1}{2}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p_n}} \right)_{\small{\!\! L}} = - 1</math>
|-
+
</div>
| style="background:#ffd890;"|<math>\mathbf{ 630}</math>||<math> 279857</math>||<math> 514949</math>||<math> 939359</math>||<math> 964417</math>||<math> 965047</math>||<math> 1003819</math>
+
 
|-
+
Zatem wszystkie liczby pierwsze mniejsze od <math>p_n</math> są liczbami kwadratowymi modulo <math>q</math>, a&nbsp;liczba pierwsza <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>. Zauważmy, że <math>q</math> była dowolnie wybraną liczbą pierwszą z&nbsp;nieskończenie wielu liczb pierwszych występujących w&nbsp;ciągu arytmetycznym <math>8 p_2 \cdot \ldots \cdot p_n \cdot k + c</math>, gdzie <math>k \in \mathbb{Z}_+</math>. Co kończy dowód.<br/>
| style="background:#ffd890;"|<math>\mathbf{ 840}</math>||<math> 6043</math>||<math> 10861</math>||<math> 103837</math>||<math> 201781</math>||<math> 915611</math>||<math> 916451</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 1050}</math>||<math> 26052251</math>||<math> 33267943</math>||<math> 54730813</math>||<math> 87640921</math>||<math> 112704443</math>||<math> 115677517</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1260}</math>||<math> 2063</math>||<math> 1040089</math>||<math> 2166511</math>||<math> 2202547</math>||<math> 4152847</math>||<math> 4400639</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J66 (Sarvadaman Chowla)</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 1470}</math>||<math> 101027</math>||<math> 363949</math>||<math> 1936289</math>||<math> 2534561</math>||<math> 2536031</math>||<math> 3248197</math>
+
Istnieje niekończenie wiele liczb pierwszych <math>p</math> takich, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math>, gdzie <math>L</math> jest stałą Linnika.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1680}</math>||<math> 31333</math>||<math> 216947</math>||<math> 258527</math>||<math> 316621</math>||<math> 607109</math>||<math> 4635361</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
Niech <math>a = 4 P (m)</math>, gdzie <math>P(m)</math> jest iloczynem wszystkich liczb pierwszych nie większych od <math>m</math>. Z&nbsp;twierdzenia Dirichleta wiemy, że w&nbsp;ciągu arytmetycznym <math>u_k = a k + 1</math> występuje nieskończenie wiele liczb pierwszych. Niech <math>p</math> oznacza dowolną z&nbsp;nich.
| style="background:#ffd890;"|<math>\mathbf{ 1890}</math>||<math> 15607</math>||<math> 45767</math>||<math> 194113</math>||<math> 534211</math>||<math> 997201</math>||<math> 1442173</math>
+
 
|-
+
Ponieważ <math>p \equiv 1 \!\! \pmod{8}</math>, to
| style="background:#ffd890;"|<math>\mathbf{ 2100}</math>||<math> 34913</math>||<math> 37013</math>||<math> 102871</math>||<math> 176087</math>||<math> 581393</math>||<math> 583493</math>
+
 
|-
+
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 2310}</math>||<math> 3823</math>||<math> 60317</math>||<math> 80761</math>||<math> 563117</math>||<math> 574813</math>||<math> 1215583</math>
+
 
|-
+
(zobacz J29 p.7). Oczywiście <math>p \equiv 1 \!\! \pmod{4}</math>, zatem dla dowolnej liczby pierwszej nieparzystej <math>q_i \leqslant m</math> z&nbsp;twierdzenia J29 p.9 otrzymujemy
| style="background:#ffd890;"|<math>\mathbf{ 2520}</math>||<math> 19141</math>||<math> 23509</math>||<math> 1058597</math>||<math> 1061117</math>||<math> 1465993</math>||<math> 5650097</math>
+
 
|-
+
<div style="margin-top: 1em; margin-bottom: 1em;">
| style="background:#ffd890;"|<math>\mathbf{ 2730}</math>||<math> 4721</math>||<math> 65881</math>||<math> 122069</math>||<math> 123059</math>||<math> 124799</math>||<math> 125789</math>
+
::<math>\left( {\small\frac{q_i}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{p}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{a k + 1}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{q_i}} \right)_{\small{\!\! L}} = 1</math>
|-
+
</div>
| style="background:#ffd890;"|<math>\mathbf{ 2940}</math>||<math> 11927</math>||<math> 145723</math>||<math> 1222279</math>||<math> 12424921</math>||<math> 23527081</math>||<math> 33820273</math>
+
 
|-
+
Wynika stąd, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>m</math>. Wiemy też, że (zobacz A9)
| style="background:#ffd890;"|<math>\mathbf{ 3150}</math>||<math> 433</math>||<math> 24677</math>||<math> 49031</math>||<math> 348763</math>||<math> 1243393</math>||<math> 1640071</math>
+
 
|-
+
::<math>a = 4 P (m) < 4 \cdot 4^m = 4^{m + 1}</math>
| style="background:#ffd890;"|<math>\mathbf{ 3360}</math>||<math> 210391</math>||<math> 213751</math>||<math> 245173</math>||<math> 1863509</math>||<math> 3831437</math>||<math> 6470249</math>
+
 
|-
+
Załóżmy teraz, że <math>p</math> jest najmniejszą liczbą pierwszą w&nbsp;ciągu arytmetycznym <math>u_k = a k + 1</math>, a&nbsp;liczba <math>m</math> została wybrana tak, że liczba <math>a = 4 P (m)</math> jest dostatecznie duża i&nbsp;możliwe jest skorzystanie z&nbsp;twierdzenia Linnika (zobacz C30). Dostajemy natychmiast oszacowanie
| style="background:#ffd890;"|<math>\mathbf{ 3570}</math>||<math> 57047</math>||<math> 133271</math>||<math> 150343</math>||<math> 153913</math>||<math> 399433</math>||<math> 920827</math>
+
 
|-
+
::<math>p = p_{\min} (a, 1) < a^L</math>
| style="background:#ffd890;"|<math>\mathbf{ 3780}</math>||<math> 473513</math>||<math> 1282607</math>||<math> 3536881</math>||<math> 4045763</math>||<math> 4049543</math>||<math> 5655283</math>
+
 
 +
gdzie <math>L</math> jest stałą Linnika (możemy przyjąć <math>L = 5</math>). Łącząc powyższe oszacowania, łatwo otrzymujemy oszacowanie najmniejszej liczby niekwadratowej modulo <math>p</math>
 +
 
 +
::<math>\mathbb{n}(p) \geqslant m + 1 > \log_4 a = {\small\frac{\log a}{\log 4}} = {\small\frac{\log a^L}{2 L \log 2}} > {\small\frac{\log p}{2 L \log 2}}</math>
 +
 
 +
Każdemu wyborowi innej liczby <math>m' > m</math> takiej, że <math>P(m') > P (m)</math> odpowiada inna liczba pierwsza <math>p'</math> taka, że <math>\mathbb{n}(p') > {\small\frac{\log p'}{2 L \log 2}}</math>, zatem liczb pierwszych <math>p</math> dla których najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math> jest nieskończenie wiele.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J67</span><br/>
 +
W twierdzeniu J65 pokazaliśmy, że dla każdej liczby pierwszej <math>\mathbb{n}</math> istnieją takie liczby pierwsze <math>p</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Zatem zbiór <math>S_\mathbb{n}</math> liczb pierwszych takich, że dla każdej liczby <math>p \in S_\mathbb{n}</math> liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> jest zbiorem niepustym. Wynika stąd, że zbiór <math>S_\mathbb{n}</math> ma element najmniejszy i&nbsp;możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w&nbsp;PARI/GP napisać proste polecenie
 +
 
 +
<span style="font-size: 90%; color:black;">'''forprime'''(n = 2, 50, '''forprime'''(p = 2, 10^10, '''if'''( A(p) == n, '''print'''(n, "  ", p); '''break'''() )))</span>
 +
 
 +
W tabeli przedstawiamy uzyskane rezultaty (zobacz też [https://oeis.org/A000229 A000229]).
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 3990}</math>||<math> 1699</math>||<math> 99877</math>||<math> 103867</math>||<math> 649217</math>||<math> 1614973</math>||<math> 2732441</math>
+
! <math>\boldsymbol{\mathbb{n}}</math>
 +
| <math>2</math> || <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 4200}</math>||<math> 12547</math>||<math> 89899</math>||<math> 835721</math>||<math> 2544221</math>||<math> 5013919</math>||<math> 11254637</math>
+
! <math>\boldsymbol{p}</math>  
|-
+
| <math>3</math> || <math>7</math> || <math>23</math> || <math>71</math> || <math>311</math> || <math>479</math> || <math>1559</math> || <math>5711</math> || <math>10559</math> || <math>18191</math> || <math>31391</math> || <math>422231</math> || <math>701399</math> || <math>366791</math> || <math>3818929</math>
| style="background:#ffd890;"|<math>\mathbf{ 4410}</math>||<math> 262733</math>||<math> 439009</math>||<math> 12940541</math>||<math> 15091459</math>||<math> 27878321</math>||<math> 29196199</math>
+
|}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 4620}</math>||<math> 55697</math>||<math> 64919</math>||<math> 85363</math>||<math> 89983</math>||<math> 217409</math>||<math> 372751</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 4830}</math>||<math> 30427</math>||<math> 35257</math>||<math> 72547</math>||<math> 351749</math>||<math> 2985809</math>||<math> 6020477</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J68</span><br/>
|-
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Prawdziwe jest oszacowanie
| style="background:#ffd890;"|<math>\mathbf{ 5040}</math>||<math> 25073</math>||<math> 57457</math>||<math> 531359</math>||<math> 1245479</math>||<math> 2491381</math>||<math> 7136659</math>
+
 
|-
+
::<math>\mathbb{n} (p) < \sqrt{p} + {\small\frac{1}{2}}</math>
| style="background:#ffd890;"|<math>\mathbf{ 5250}</math>||<math> 3413</math>||<math> 44179</math>||<math> 2117239</math>||<math> 2122489</math>||<math> 2649067</math>||<math> 4895993</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
| style="background:#ffd890;"|<math>\mathbf{ 5460}</math>||<math> 144779</math>||<math> 913921</math>||<math> 1280987</math>||<math> 2243491</math>||<math> 2283571</math>||<math> 2289031</math>
+
Ponieważ <math>\mathbb{n} \nmid p</math>, to z&nbsp;oszacowania <math>x - 1 < \lfloor x \rfloor \leqslant x</math> wynika, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 5670}</math>||<math> 706463</math>||<math> 915221</math>||<math> 10882211</math>||<math> 21206993</math>||<math> 21212663</math>||<math> 23859467</math>
+
::<math>{\small\frac{p}{\mathbb{n}}} - 1 < \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor < {\small\frac{p}{\mathbb{n}}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 5880}</math>||<math> 152389</math>||<math> 4896887</math>||<math> 6559873</math>||<math> 9131321</math>||<math> 19210043</math>||<math> 24248461</math>
+
::<math>p < \mathbb{n} \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + \mathbb{n} < p + \mathbb{n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6090}</math>||<math> 206191</math>||<math> 357661</math>||<math> 517003</math>||<math> 1910927</math>||<math> 5835283</math>||<math> 10292729</math>
+
Niech <math>u = \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1</math>, mamy
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6300}</math>||<math> 641327</math>||<math> 1962449</math>||<math> 2797723</math>||<math> 3626881</math>||<math> 4663249</math>||<math> 5601139</math>
+
::<math>0 < \mathbb{n} u - p < \mathbb{n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6510}</math>||<math> 20599</math>||<math> 155461</math>||<math> 161971</math>||<math> 573437</math>||<math> 4395739</math>||<math> 6457669</math>
+
Liczba <math>\mathbb{n} u - p</math> musi być liczbą kwadratową modulo <math>p</math>, zatem
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6720}</math>||<math> 62347</math>||<math> 69067</math>||<math> 5072869</math>||<math> 9545051</math>||<math> 10379081</math>||<math> 11184743</math>
+
::<math>1 = \left( {\small\frac{\mathbb{n} u - p}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6930}</math>||<math> 17</math>||<math> 7151</math>||<math> 13469</math>||<math> 36469</math>||<math> 38261</math>||<math> 309167</math>
+
Ale z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą taką, że <math>\left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} = - 1</math>. Wynika stąd, że musi być <math>\mathbb{n} \leqslant u</math> i&nbsp;łatwo znajdujemy, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 7140}</math>||<math> 1241197</math>||<math> 1247479</math>||<math> 2614559</math>||<math> 4496813</math>||<math> 4575947</math>||<math> 7799837</math>
+
::<math>\mathbb{n} \leqslant \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 < {\small\frac{p}{\mathbb{n}}} + 1</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 7350}</math>||<math> 1445303</math>||<math> 8526533</math>||<math> 12683299</math>||<math> 12690649</math>||<math> 21459209</math>||<math> 21466559</math>
+
::<math>\mathbb{n}^2 < p + \mathbb{n}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 7560}</math>||<math> 29387</math>||<math> 342389</math>||<math> 539839</math>||<math> 2141497</math>||<math> 7573327</math>||<math> 7580887</math>
+
Ponieważ wypisane liczby są liczbami całkowitymi, to ostatnią nierówność możemy zapisać w&nbsp;postaci
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 7770}</math>||<math> 6553</math>||<math> 28549</math>||<math> 36319</math>||<math> 90373</math>||<math> 819317</math>||<math> 827087</math>
+
::<math>\mathbb{n}^2 \leqslant p + \mathbb{n} - 1</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 7980}</math>||<math> 137</math>||<math> 4091</math>||<math> 24029</math>||<math> 31393</math>||<math> 165313</math>||<math> 182687</math>
+
Skąd otrzymujemy
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 8190}</math>||<math> 35591</math>||<math> 59021</math>||<math> 287629</math>||<math> 401627</math>||<math> 410257</math>||<math> 702323</math>
+
::<math>\left( \mathbb{n} - {\small\frac{1}{2}} \right)^2 \leqslant p - {\small\frac{3}{4}}</math>
 +
 
 +
::<math>\mathbb{n} \leqslant {\small\frac{1}{2}} + \sqrt{p - {\small\frac{3}{4}}} < {\small\frac{1}{2}} + \sqrt{p}</math>
 +
 
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J69*</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Dla <math>p \geqslant 5</math> prawdziwe jest oszacowanie<ref name="Norton1"/><ref name="Trevino1"/><ref name="Trevino2"/>
 +
 
 +
::<math>\mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p</math>
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J70</span><br/>
 +
Liczby <math>\mathbb{n} = \mathbb{n} (p)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (p)</math>, gdzie <math>p</math> są nieparzystymi liczbami pierwszymi, jest równa<ref name="Erdos1"/>
 +
 
 +
::<math>\lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots</math>
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J71</span><br/>
 +
Możemy też badać najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>.
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 8400}</math>||<math> 6127909</math>||<math> 8133469</math>||<math> 8528483</math>||<math> 8536883</math>||<math> 14448397</math>||<math> 19175929</math>
+
! <math>\boldsymbol{m}</math>
 +
| <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 8610}</math>||<math> 132283</math>||<math> 2164387</math>||<math> 6903121</math>||<math> 10892747</math>||<math> 10901357</math>||<math> 17489623</math>
+
! <math>\boldsymbol{\mathbb{n}_1( p )}</math>
|-
+
| <math>3</math> || <math>3</math> || <math>-</math> || <math>7</math> || <math>5</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
| style="background:#ffd890;"|<math>\mathbf{ 8820}</math>||<math> 84421</math>||<math> 466451</math>||<math> 3052177</math>||<math> 3905777</math>||<math> 11397371</math>||<math> 53189407</math>
+
|}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 9030}</math>||<math> 2630153</math>||<math> 4927921</math>||<math> 5686141</math>||<math> 6043399</math>||<math> 8411567</math>||<math> 8510357</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 9240}</math>||<math> 937</math>||<math> 21031</math>||<math> 53681</math>||<math> 62921</math>||<math> 95339</math>||<math> 495791</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J72</span><br/>
|-
+
Dla każdej liczby pierwszej <math>p \geqslant 5</math> najmniejsza '''nieparzysta''' liczba niekwadratowa modulo <math>p</math> jest liczbą pierwszą mniejszą od <math>p</math>.
| style="background:#ffd890;"|<math>\mathbf{ 9450}</math>||<math> 1028479</math>||<math> 1832711</math>||<math> 8104549</math>||<math> 15802459</math>||<math> 43975031</math>||<math> 97126691</math>
+
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>S \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich '''nieparzystych''' liczb niekwadratowych modulo <math>p</math>. Z&nbsp;twierdzenia J24 wiemy, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to w&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> jest dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>. W&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> mamy też dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb parzystych i&nbsp;tyle samo liczb nieparzystych.
 +
 
 +
Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo <math>p</math>, bo <math>4 = 2^2 < 5 \leqslant p</math> jest parzystą liczbą kwadratową modulo <math>p</math>, czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo <math>p</math>. Wynika stąd, że zbiór <math>S</math> nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru <math>S</math> jest liczbą pierwszą.
 +
 
 +
Niech <math>3 \leqslant \mathbb{n}_\boldsymbol{1} \leqslant p - 2</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Wynika stąd, że każda liczba <math>a < \mathbb{n}_\boldsymbol{1}</math> musi być liczbą parzystą lub liczbą kwadratową modulo <math>p</math>. Przypuśćmy, że <math>\mathbb{n}_\boldsymbol{1}</math> jest liczbą złożoną, czyli <math>\mathbb{n}_\boldsymbol{1} = a b</math>, gdzie <math>1 < a, b < \mathbb{n}_\boldsymbol{1}</math>. Zauważmy, że żadna z&nbsp;liczb <math>a, b</math> nie może być liczbą parzystą, bo wtedy liczba <math>\mathbb{n}_\boldsymbol{1}</math> również byłaby liczbą parzystą wbrew określeniu liczby <math>\mathbb{n}_\boldsymbol{1}</math>. Zatem obie liczby <math>a, b</math> muszą być nieparzystymi liczbami kwadratowymi, co jest niemożliwe, bo
 +
 
 +
::<math>- 1 = \left( {\small\frac{\mathbb{n}_\boldsymbol{1}}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! J}}</math>
 +
 
 +
i jeden z&nbsp;czynników po prawej stronie musi być ujemny. Co oznacza, że jedna z&nbsp;liczb <math>a, b</math> jest nieparzystą liczbą niekwadratową modulo <math>p</math> mniejszą od <math>\mathbb{n}_\boldsymbol{1}</math> wbrew określeniu liczby <math>\mathbb{n}_\boldsymbol{1}</math>. Uzyskana sprzeczność pokazuje, że liczba <math>\mathbb{n}_\boldsymbol{1}</math> jest liczbą pierwszą. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
 
 +
 
 +
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
 +
| &nbsp;'''B.''' Najmniejsze liczby niekwadratowe modulo <math>m</math>
 +
|}
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J73</span><br/>
 +
Najmniejsze liczby niekwadratowe modulo <math>m</math> są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo <math>p .</math> W&nbsp;jednym i&nbsp;drugim przypadku liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową w&nbsp;zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od <math>p</math> lub <math>m .</math> Dlatego będziemy je oznaczali również jako <math>\mathbb{n}(m) .</math>
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Definicja J74</span><br/>
 +
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Powiemy, że <math>\mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, gdy <math>\mathbb{n}</math> jest najmniejszą liczbą dodatnią względnie pierwszą z <math>m</math> taką, że kongruencja
 +
 
 +
::<math>x^2 \equiv \mathbb{n} \pmod{m}</math>
 +
 
 +
nie ma rozwiązania.
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Przykład J75</span><br/>
 +
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> i&nbsp;najmniejsze liczby niekwadratowe modulo <math>m .</math>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 9660}</math>||<math> 521</math>||<math> 464413</math>||<math> 707071</math>||<math> 716731</math>||<math> 1197121</math>||<math> 1259053</math>
+
! <math>\boldsymbol{\mathbb{n}( p )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 9870}</math>||<math> 576439</math>||<math> 1115923</math>||<math> 7516427</math>||<math> 9249301</math>||<math> 16561691</math>||<math> 16571561</math>
+
! <math>\boldsymbol{\mathbb{n}( m )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>3</math> || <math>2</math>
 +
|}
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 10080}</math>||<math> 6949</math>||<math> 125353</math>||<math> 156941</math>||<math> 949517</math>||<math> 3363089</math>||<math> 3373169</math>
+
! <math>\boldsymbol{m}</math>
 +
| <math>4</math> || <math>6</math> || <math>8</math> || <math>10</math> || <math>12</math> || <math>14</math> || <math>16</math> || <math>18</math> || <math>20</math> || <math>22</math> || <math>24</math> || <math>26</math> || <math>28</math> || <math>30</math> || <math>32</math> || <math>34</math> || <math>36</math> || <math>38</math> || <math>40</math> || <math>42</math> || <math>44</math> || <math>46</math> || <math>48</math> || <math>50</math> || <math>52</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 10290}</math>||<math> 6143</math>||<math> 1535489</math>||<math> 2477177</math>||<math> 4259887</math>||<math> 5294563</math>||<math> 10818191</math>
+
! <math>\boldsymbol{\mathbb{n}( m )}</math>  
|-
+
| <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>7</math> || <math>5</math> || <math>5</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>5</math> || <math>5</math> || <math>3</math> || <math>3</math>
| style="background:#ffd890;"|<math>\mathbf{ 10500}</math>||<math> 1113239</math>||<math> 1841087</math>||<math> 7005059</math>||<math> 8026327</math>||<math> 13707959</math>||<math> 22837799</math>
+
|}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 10710}</math>||<math> 314299</math>||<math> 439123</math>||<math> 735467</math>||<math> 1784911</math>||<math> 1923049</math>||<math> 2781203</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 10920}</math>||<math> 52321</math>||<math> 285521</math>||<math> 527909</math>||<math> 538829</math>||<math> 1673941</math>||<math> 2214349</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J76</span><br/>
|-
+
Do wyszukiwania liczb <math>\mathbb{n} (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
| style="background:#ffd890;"|<math>\mathbf{ 11130}</math>||<math> 187009</math>||<math> 198139</math>||<math> 255803</math>||<math> 547499</math>||<math> 2160253</math>||<math> 11518723</math>
+
 
|-
+
<span style="font-size: 90%; color:black;">B(m) =
| style="background:#ffd890;"|<math>\mathbf{ 11340}</math>||<math> 57143</math>||<math> 559051</math>||<math> 1091561</math>||<math> 10756139</math>||<math> 13865323</math>||<math> 13876663</math>
+
{
|-
+
'''local'''(p, res);
| style="background:#ffd890;"|<math>\mathbf{ 11550}</math>||<math> 4673</math>||<math> 9619</math>||<math> 89659</math>||<math> 112643</math>||<math> 155317</math>||<math> 166601</math>
+
p = 1;
|-
+
'''while'''( p < m,
| style="background:#ffd890;"|<math>\mathbf{ 11760}</math>||<math> 3458731</math>||<math> 5759843</math>||<math> 6305939</math>||<math> 6904789</math>||<math> 11527693</math>||<math> 15296227</math>
+
        p = '''nextprime'''(p + 1);
|-
+
        '''if'''( m%p == 0, '''next'''() );
| style="background:#ffd890;"|<math>\mathbf{ 11970}</math>||<math> 10531</math>||<math> 1911199</math>||<math> 2210573</math>||<math> 2298397</math>||<math> 15519563</math>||<math> 21608347</math>
+
        res = -1;
|-
+
        '''for'''( k = 2, '''floor'''(m/2), '''if'''( k^2%m == p, res = 1; '''break'''() ) );
| style="background:#ffd890;"|<math>\mathbf{ 12180}</math>||<math> 1067597</math>||<math> 1778461</math>||<math> 1784599</math>||<math> 3551221</math>||<math> 7384493</math>||<math> 12485003</math>
+
        '''if'''( res == -1, '''return'''(p) );
|-
+
      );
| style="background:#ffd890;"|<math>\mathbf{ 12390}</math>||<math> 184291</math>||<math> 651017</math>||<math> 804493</math>||<math> 1536187</math>||<math> 4158103</math>||<math> 4751293</math>
+
}</span>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12600}</math>||<math> 435577</math>||<math> 558431</math>||<math> 571031</math>||<math> 727369</math>||<math> 2890117</math>||<math> 3367363</math>
+
Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby <math>m .</math> Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 12810}</math>||<math> 116953</math>||<math> 166909</math>||<math> 5627029</math>||<math> 6623117</math>||<math> 10981339</math>||<math> 10994149</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
|-
+
<span style="font-size: 90%; color:black;">B(m) =
| style="background:#ffd890;"|<math>\mathbf{ 13020}</math>||<math> 1691411</math>||<math> 3574871</math>||<math> 22963981</math>||<math> 27098723</math>||<math> 29812603</math>||<math> 31218403</math>
+
{
|-
+
'''local'''(p, res, t);
| style="background:#ffd890;"|<math>\mathbf{ 13230}</math>||<math> 40543</math>||<math> 104651</math>||<math> 313219</math>||<math> 4705247</math>||<math> 4718477</math>||<math> 6268289</math>
+
t = m%8;
|-
+
'''if'''( t == 3 || t == 5, '''return'''(2) );
| style="background:#ffd890;"|<math>\mathbf{ 13440}</math>||<math> 2141</math>||<math> 448741</math>||<math> 815261</math>||<math> 1560997</math>||<math> 1574437</math>||<math> 2070517</math>
+
t = m%12;
|-
+
'''if'''( t == 4 || t == 8, '''return'''(3) );
| style="background:#ffd890;"|<math>\mathbf{ 13650}</math>||<math> 3343</math>||<math> 96997</math>||<math> 110647</math>||<math> 521047</math>||<math> 1590961</math>||<math> 2276503</math>
+
t = m%24;
|-
+
'''if'''( t == 9 || t == 15, '''return'''(2) );
| style="background:#ffd890;"|<math>\mathbf{ 13860}</math>||<math> 110437</math>||<math> 124297</math>||<math> 138157</math>||<math> 148891</math>||<math> 152017</math>||<math> 152947</math>
+
'''if'''( t == 10 || t == 14, '''return'''(3) );
|-
+
t = m%30;
| style="background:#ffd890;"|<math>\mathbf{ 14070}</math>||<math> 2679239</math>||<math> 2886281</math>||<math> 3817111</math>||<math> 6446353</math>||<math> 6460423</math>||<math> 6976289</math>
+
'''if'''( t == 6 || t == 12 || t == 18 || t == 24, '''return'''(5) );
|-
+
p = 1;
| style="background:#ffd890;"|<math>\mathbf{ 14280}</math>||<math> 364687</math>||<math> 749773</math>||<math> 1867573</math>||<math> 2146181</math>||<math> 2434997</math>||<math> 4112627</math>
+
'''while'''( p < m,
|-
+
        p = '''nextprime'''(p + 1);
| style="background:#ffd890;"|<math>\mathbf{ 14490}</math>||<math> 144667</math>||<math> 161263</math>||<math> 259603</math>||<math> 286333</math>||<math> 336251</math>||<math> 377809</math>
+
        '''if'''( m%p == 0, '''next'''() );
|-
+
        res = -1;
| style="background:#ffd890;"|<math>\mathbf{ 14700}</math>||<math> 36583</math>||<math> 578267</math>||<math> 8529749</math>||<math> 14365553</math>||<math> 14380253</math>||<math> 14830787</math>
+
        '''for'''( k = 2, '''floor'''(m/2), '''if'''( k^2%m == p, res = 1; '''break'''() ) );
|-
+
        '''if'''( res == -1, '''return'''(p) );
| style="background:#ffd890;"|<math>\mathbf{ 14910}</math>||<math> 74161</math>||<math> 109367</math>||<math> 120977</math>||<math> 1260011</math>||<math> 1372211</math>||<math> 11898287</math>
+
      );
|-
+
}</span>
| style="background:#ffd890;"|<math>\mathbf{ 15120}</math>||<math> 121853</math>||<math> 689459</math>||<math> 822383</math>||<math> 11354437</math>||<math> 37245407</math>||<math> 48384221</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 15330}</math>||<math> 7713709</math>||<math> 8049187</math>||<math> 11583113</math>||<math> 12934973</math>||<math> 16769749</math>||<math> 30793649</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 15540}</math>||<math> 160781</math>||<math> 580577</math>||<math> 4095187</math>||<math> 5838409</math>||<math> 9523079</math>||<math> 10473559</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J77</span><br/>
|-
+
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to <math>\mathbb{n}</math> jest liczbą pierwszą.
| style="background:#ffd890;"|<math>\mathbf{ 15750}</math>||<math> 64579</math>||<math> 103409</math>||<math> 182587</math>||<math> 849869</math>||<math> 865619</math>||<math> 1468729</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
| style="background:#ffd890;"|<math>\mathbf{ 15960}</math>||<math> 1847</math>||<math> 6037</math>||<math> 17807</math>||<math> 137147</math>||<math> 652969</math>||<math> 989977</math>
+
Przypuśćmy, że <math>\mathbb{n} = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < \mathbb{n} .</math> Z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, zatem liczby <math>a, b</math> są liczbami kwadratowymi modulo <math>m .</math> Z&nbsp;definicji liczb kwadratowych muszą istnieć takie liczby <math>r, s</math>, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 16170}</math>||<math> 66179</math>||<math> 219451</math>||<math> 511843</math>||<math> 583421</math>||<math> 812431</math>||<math> 848567</math>
+
::<math>r^2 \equiv a \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 16380}</math>||<math> 43759</math>||<math> 339263</math>||<math> 355643</math>||<math> 695047</math>||<math> 2011517</math>||<math> 2893309</math>
+
::<math>s^2 \equiv b \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 16590}</math>||<math> 6703</math>||<math> 29009</math>||<math> 2489183</math>||<math> 4028743</math>||<math> 9340181</math>||<math> 10005263</math>
+
Skąd wynika, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 16800}</math>||<math> 940319</math>||<math> 3772907</math>||<math> 3873007</math>||<math> 9905921</math>||<math> 79622351</math>||<math> 95679271</math>
+
::<math>\mathbb{n} = a b \equiv (r s)^2 \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 17010}</math>||<math> 797119</math>||<math> 18296627</math>||<math> 23152907</math>||<math> 38133913</math>||<math> 60796007</math>||<math> 83709047</math>
+
Wbrew założeniu, że <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>m .</math><br/>
|-
+
&#9633;
| style="background:#ffd890;"|<math>\mathbf{ 17220}</math>||<math> 225769</math>||<math> 1452511</math>||<math> 1469731</math>||<math> 1606379</math>||<math> 2415473</math>||<math> 3469069</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 17430}</math>||<math> 15643</math>||<math> 25471</math>||<math> 42901</math>||<math> 1170599</math>||<math> 3120547</math>||<math> 3983249</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 17640}</math>||<math> 193607</math>||<math> 211247</math>||<math> 7624613</math>||<math> 10290239</math>||<math> 16104047</math>||<math> 22618907</math>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J78</span><br/>
|-
+
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli <math>m = 8 k \pm 3</math>, to <math>\mathbb{n} (m) = 2 .</math>
| style="background:#ffd890;"|<math>\mathbf{ 17850}</math>||<math> 129379</math>||<math> 289253</math>||<math> 1341433</math>||<math> 1728911</math>||<math> 1746761</math>||<math> 2918737</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
| style="background:#ffd890;"|<math>\mathbf{ 18060}</math>||<math> 1013921</math>||<math> 1038209</math>||<math> 2703941</math>||<math> 3580333</math>||<math> 3914689</math>||<math> 11110339</math>
+
Z twierdzenia J42 wiemy, że <math>\left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1</math>, gdy <math>m = 8 k \pm 3 .</math> Wynika stąd, że <math>2</math> jest liczbą niekwadratową modulo <math>m</math>, a&nbsp;jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo <math>m .</math> Co należało pokazać.<br/>
|-
+
&#9633;
| style="background:#ffd890;"|<math>\mathbf{ 18270}</math>||<math> 29567</math>||<math> 511201</math>||<math> 1615723</math>||<math> 1890701</math>||<math> 1989811</math>||<math> 2008081</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18480}</math>||<math> 2711</math>||<math> 25643</math>||<math> 40853</math>||<math> 149143</math>||<math> 194839</math>||<math> 213319</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18690}</math>||<math> 881</math>||<math> 9421469</math>||<math> 10687877</math>||<math> 11455753</math>||<math> 14740463</math>||<math> 21499799</math>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J79</span><br/>
|-
+
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli spełniony jest jeden z&nbsp;warunków
| style="background:#ffd890;"|<math>\mathbf{ 18900}</math>||<math> 73823</math>||<math> 462079</math>||<math> 804113</math>||<math> 823013</math>||<math> 1323799</math>||<math> 1370987</math>
+
 
|-
+
:*&nbsp;&nbsp;<math>4 \mid m \;</math> i <math>\; \gcd (3, m) = 1</math>
| style="background:#ffd890;"|<math>\mathbf{ 19110}</math>||<math> 63737</math>||<math> 322171</math>||<math> 520193</math>||<math> 999763</math>||<math> 1023487</math>||<math> 1032067</math>
+
:*&nbsp;&nbsp;<math>m = 12 k \pm 4</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 19320}</math>||<math> 682411</math>||<math> 743747</math>||<math> 1343669</math>||<math> 1373233</math>||<math> 1782499</math>||<math> 2574437</math>
+
to <math>\mathbb{n} (m) = 3 .</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 19530}</math>||<math> 50929</math>||<math> 738919</math>||<math> 1773689</math>||<math> 1793219</math>||<math> 6121807</math>||<math> 18867007</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
|-
+
Zauważmy, że <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m</math>, bo <math>2 \mid m .</math> Rozważmy kongruencję
| style="background:#ffd890;"|<math>\mathbf{ 19740}</math>||<math> 2729</math>||<math> 30757</math>||<math> 360163</math>||<math> 1652591</math>||<math> 18160973</math>||<math> 18862889</math>
+
 
|-
+
::<math>x^2 \equiv 3 \pmod{m}</math>
| style="background:#ffd890;"|<math>\mathbf{ 19950}</math>||<math> 142699</math>||<math> 162649</math>||<math> 239957</math>||<math> 302287</math>||<math> 322237</math>||<math> 661547</math>
+
 
|-
+
Z założenia <math>4 \mid m</math>, co nie wyklucza możliwości, że również <math>8 \mid m .</math> Ponieważ <math>4 \nmid (3 - 1)</math> i <math>8 \nmid (3 - 1)</math>, to z&nbsp;twierdzenia J56 wynika, że kongruencja <math>x^2 \equiv 3 \!\! \pmod{m}</math> nie ma rozwiązania. Jeśli tylko <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math> W&nbsp;pierwszym punkcie jest to założone wprost, w&nbsp;drugim łatwo widzimy, że <math>3 \nmid (12 k \pm 4) .</math>
| style="background:#ffd890;"|<math>\mathbf{ 20160}</math>||<math> 3330211</math>||<math> 5620609</math>||<math> 6413401</math>||<math> 15055609</math>||<math> 32094917</math>||<math> 52863893</math>
+
 
|-
+
Można też zauważyć, że żądanie, aby <math>\gcd (3, m) = 1</math>, prowadzi do dwóch układów kongruencji
| style="background:#ffd890;"|<math>\mathbf{ 20370}</math>||<math> 1158881</math>||<math> 1216213</math>||<math> 1236583</math>||<math> 3893899</math>||<math> 7991839</math>||<math> 8012209</math>
+
 
|-
+
::<math>\begin{align}
| style="background:#ffd890;"|<math>\mathbf{ 20580}</math>||<math> 9689</math>||<math> 316501</math>||<math> 398023</math>||<math> 2047813</math>||<math> 2219557</math>||<math> 2240137</math>
+
m &\equiv 0 \pmod{4} \\
|-
+
m &\equiv 1 \pmod{3}
| style="background:#ffd890;"|<math>\mathbf{ 20790}</math>||<math> 12713</math>||<math> 20023</math>||<math> 141079</math>||<math> 159571</math>||<math> 296117</math>||<math> 914813</math>
+
\end{align}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 21000}</math>||<math> 5501</math>||<math> 19471</math>||<math> 65837</math>||<math> 688139</math>||<math> 3980407</math>||<math> 8983031</math>
+
oraz
|}
+
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
::<math>\begin{align}
|- style="background: #98fb98; text-align: center;"
+
m &\equiv 0 \pmod{4} \\
| colspan=7 | <math>\mathbf{n = 10}</math>
+
m &\equiv 2 \pmod{3}
|- style="text-align: center;"
+
\end{align}</math>
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
 
| colspan=6 | <math>\mathbf{p_0}</math>
+
którym, na mocy chińskiego twierdzenia o&nbsp;resztach, odpowiadają dwie kongruencje równoważne
|-
+
 
|-
+
::<math>m \equiv \pm 4 \pmod{12}</math>
| style="background:#ffd890;"|<math>\mathbf{ 210}</math>||<math> 199</math>||<math> 243051733</math>||<math> 498161423</math>||<math> 2490123989</math>||<math> 5417375591</math>||<math> 8785408259</math>
+
 
|-
+
Co należało pokazać.<br/>
| style="background:#ffd890;"|<math>\mathbf{ 420}</math>||<math> 52879</math>||<math> 3544939</math>||<math> 725283077</math>||<math> 1580792347</math>||<math> 1931425157</math>||<math> 8392393693</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 630}</math>||<math> 964417</math>||<math> 1021331</math>||<math> 3710699</math>||<math> 174610351</math>||<math> 396598051</math>||<math> 525173641</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 840}</math>||<math> 915611</math>||<math> 24748189</math>||<math> 33791509</math>||<math> 314727967</math>||<math> 510756371</math>||<math> 1079797657</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J80</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 1050}</math>||<math> 130006783</math>||<math> 208734751</math>||<math> 400663741</math>||<math> 963551671</math>||<math> 1219200119</math>||<math> 1231110787</math>
+
Niech <math>m = 24 k \pm 10 .</math> Pokazać, że <math>\mathbb{n} (m) = 3 .</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 1260}</math>||<math> 6722909</math>||<math> 27846803</math>||<math> 63289771</math>||<math> 1000262819</math>||<math> 1476482057</math>||<math> 4565705117</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
|-
+
Zapiszmy <math>m</math> w&nbsp;postaci <math>m = 2 m'</math>, gdzie <math>m' = 12 k \pm 5 .</math> Gdyby kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 1470}</math>||<math> 2534561</math>||<math> 189999707</math>||<math> 833570987</math>||<math> 1168004581</math>||<math> 2010828277</math>||<math> 3182258251</math>
+
 
|-
+
::<math>x^2 \equiv 3 \pmod{2 m'}</math>
| style="background:#ffd890;"|<math>\mathbf{ 1680}</math>||<math> 1343205113</math>||<math> 3033769813</math>||<math> 4093882757</math>||<math> 4112814241</math>||<math> 4348188919</math>||<math> 4749575333</math>
+
 
|-
+
miała rozwiązanie, to również kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 1890}</math>||<math> 41513261</math>||<math> 95317913</math>||<math> 6232033069</math>||<math> 6361761239</math>||<math> 6709899029</math>||<math> 8521839071</math>
+
 
|-
+
::<math>x^2 \equiv 3 \pmod{m'}</math>
| style="background:#ffd890;"|<math>\mathbf{ 2100}</math>||<math> 34913</math>||<math> 581393</math>||<math> 8397091</math>||<math> 10200607</math>||<math> 31913837</math>||<math> 258411317</math>
+
 
|-
+
miałaby rozwiązanie, ale jest to niemożliwe, bo <math>\left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J47), czyli <math>3</math> jest liczbą niekwadratową modulo <math>m' .</math> Ponieważ <math>2 \mid m</math>, to <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m .</math> Wynika stąd, że <math>\mathbb{n} (m) = 3 .</math><br/>
| style="background:#ffd890;"|<math>\mathbf{ 2310}</math>||<math> 2564251</math>||<math> 7245143</math>||<math> 15898823</math>||<math> 34834237</math>||<math> 51404371</math>||<math> 60858179</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 2520}</math>||<math> 1058597</math>||<math> 8226307</math>||<math> 438716653</math>||<math> 799422581</math>||<math> 975166567</math>||<math> 983999677</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 2730}</math>||<math> 122069</math>||<math> 123059</math>||<math> 158633</math>||<math> 3319219</math>||<math> 3427393</math>||<math> 5082629</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J81</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 2940}</math>||<math> 2546781317</math>||<math> 3736609957</math>||<math> 4895747497</math>||||||
+
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą nieparzystą podzielną przez <math>p \in S_2</math>, to <math>\mathbb{n} (m) = 2 .</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 3150}</math>||<math> 34071019</math>||<math> 1174379903</math>||<math> 1247572429</math>||<math> 1914733781</math>||<math> 5502174781</math>||<math> 5598860513</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
Z założenia <math>p \mid m \;</math> i <math>\; \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 3360}</math>||<math> 210391</math>||<math> 762261571</math>||<math> 2289797801</math>||<math> 5842998881</math>||<math> 5973997177</math>||<math> 6486241481</math>
+
 
|-
+
::<math>x^2 \equiv 2 \pmod{m}</math>
| style="background:#ffd890;"|<math>\mathbf{ 3570}</math>||<math> 150343</math>||<math> 920827</math>||<math> 47896129</math>||<math> 110935963</math>||<math> 124813783</math>||<math> 253908793</math>
+
 
|-
+
nie ma rozwiązania (zobacz J56). Ponieważ <math>2 \nmid m</math>, to <math>\mathbb{n} (m) = 2 .</math>
| style="background:#ffd890;"|<math>\mathbf{ 3780}</math>||<math> 4045763</math>||<math> 162045979</math>||<math> 3611162221</math>||<math> 3953439013</math>||<math> 5751477079</math>||<math> 6389572141</math>
+
 
|-
+
Uwaga: zbiór <math>S_2</math> tworzą liczby pierwsze postaci <math>8 k \pm 3</math> (zobacz J42).<br/>
| style="background:#ffd890;"|<math>\mathbf{ 3990}</math>||<math> 99877</math>||<math> 2732441</math>||<math> 145829681</math>||<math> 1512868211</math>||<math> 1519374557</math>||<math> 1905288811</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 4200}</math>||<math> 75187297</math>||<math> 436800197</math>||<math> 825073159</math>||<math> 953483507</math>||<math> 1237285949</math>||<math> 1620977257</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 4410}</math>||<math> 343475219</math>||<math> 718394137</math>||<math> 1714841501</math>||<math> 4312513897</math>||<math> 4433557501</math>||<math> 7302174197</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J82</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 4620}</math>||<math> 85363</math>||<math> 372751</math>||<math> 926879</math>||<math> 10645541</math>||<math> 11022827</math>||<math> 11027447</math>
+
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą parzystą niepodzielną przez <math>3</math> i&nbsp;podzielną przez <math>p \in S_3</math>, to <math>\mathbb{n} (m) = 3 .</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 4830}</math>||<math> 30427</math>||<math> 6020477</math>||<math> 16424981</math>||<math> 151254533</math>||<math> 229780123</math>||<math> 482610239</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
Z założenia <math>p \mid m \;</math> i <math>\; \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 5040}</math>||<math> 145866041</math>||<math> 226851517</math>||<math> 292104419</math>||<math> 517266257</math>||<math> 986618569</math>||<math> 1785262393</math>
+
 
|-
+
::<math>x^2 \equiv 3 \pmod{m}</math>
| style="background:#ffd890;"|<math>\mathbf{ 5250}</math>||<math> 2117239</math>||<math> 134051459</math>||<math> 444256783</math>||<math> 635071121</math>||<math> 3239335223</math>||<math> 3689988833</math>
+
 
|-
+
nie ma rozwiązania (zobacz J56). Ponieważ <math>2 \mid m</math> i <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math>
| style="background:#ffd890;"|<math>\mathbf{ 5460}</math>||<math> 2283571</math>||<math> 11988607</math>||<math> 17327831</math>||<math> 18230447</math>||<math> 97175423</math>||<math> 168445523</math>
+
 
|-
+
Uwaga: zbiór <math>S_3</math> tworzą liczby pierwsze postaci <math>12 k \pm 5</math> (zobacz J47).<br/>
| style="background:#ffd890;"|<math>\mathbf{ 5670}</math>||<math> 21206993</math>||<math> 42322087</math>||<math> 232282121</math>||<math> 530515507</math>||<math> 2074726021</math>||<math> 2176462667</math>
+
&#9633;
|-
+
{{\Spoiler}}
| style="background:#ffd890;"|<math>\mathbf{ 5880}</math>||<math> 769792447</math>||<math> 1028745119</math>||<math> 2716511507</math>||<math> 2850255403</math>||<math> 4059527753</math>||<math> 4338343433</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6090}</math>||<math> 98202331</math>||<math> 218657237</math>||<math> 508050341</math>||<math> 965528153</math>||<math> 1963343323</math>||<math> 2133623147</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J83</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 6300}</math>||<math> 46452799</math>||<math> 161073877</math>||<math> 416581987</math>||<math> 444443777</math>||<math> 799148171</math>||<math> 1536915817</math>
+
Jeżeli <math>m</math> jest liczbą dodatnią podzielną przez <math>6</math> i&nbsp;niepodzielną przez <math>5</math>, to <math>\mathbb{n} (m) = 5 .</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 6510}</math>||<math> 155461</math>||<math> 11699279</math>||<math> 59259649</math>||<math> 82736531</math>||<math> 138908647</math>||<math> 156852947</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>3 \mid m \;</math> i <math>\; \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
 +
 
 +
::<math>x^2 \equiv 5 \pmod{m}</math>
 +
 
 +
nie ma rozwiązania (zobacz J56). Ponieważ <math>2 \mid m</math>, <math>3 \mid m</math> i <math>5 \nmid m</math>, to <math>\mathbb{n} (m) = 5 .</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J84</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math> i <math>p \geqslant 5</math> będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od <math>p</math> dzieli <math>m</math> i <math>p \nmid m</math>, to <math>\mathbb{n} (m) = p</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia J113 wiemy, że istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> Z&nbsp;założenia <math>q \mid m</math>, zatem kongruencja
 +
 
 +
::<math>x^2 \equiv p \pmod{m}</math>
 +
 
 +
nie ma rozwiązania (zobacz J56). Ponieważ wszystkie liczby pierwsze mniejsze od <math>p</math> dzielą <math>m</math>, to <math>\mathbb{n} (m) = p</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie J85</span><br/>
 +
Pokazać, że podanym w&nbsp;pierwszej kolumnie postaciom liczby <math>m</math> odpowiadają wymienione w&nbsp;drugiej kolumnie wartości <math>\mathbb{n} (m) .</math>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: left; margin-right: auto;"
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 6720}</math>||<math> 62347</math>||<math> 18249241</math>||<math> 402509117</math>||<math> 646946233</math>||<math> 694032349</math>||<math> 748855249</math>
+
! Postać liczby <math>\boldsymbol{m}</math> || <math>\boldsymbol{𝕟(m)}</math> || Uwagi
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 6930}</math>||<math> 1664417</math>||<math> 3306839</math>||<math> 6703841</math>||<math> 10343167</math>||<math> 16988767</math>||<math> 17046329</math>
+
| <math>m=24k \pm 9</math> || style="text-align:center;" | <math>2</math> || rowspan="3" style="text-align:center;" | J81
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 7140}</math>||<math> 12331793</math>||<math> 21994589</math>||<math> 32695477</math>||<math> 135554233</math>||<math> 355138829</math>||<math> 730901161</math>
+
| <math>m=120k \pm 25</math> || style="text-align:center;" | <math>2</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 7350}</math>||<math> 12683299</math>||<math> 21459209</math>||<math> 38446267</math>||<math> 423264613</math>||<math> 3158377081</math>||<math> 5208862573</math>
+
| <math>m=120k \pm 55</math> || style="text-align:center;" | <math>2</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 7560}</math>||<math> 7573327</math>||<math> 369901513</math>||<math> 2755541693</math>||<math> 2774476609</math>||<math> 3311703233</math>||<math> 5004136327</math>
+
| <math>m=120k \pm 50</math> || style="text-align:center;" | <math>3</math> || style="text-align:center;" | J82
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 7770}</math>||<math> 28549</math>||<math> 819317</math>||<math> 3721051</math>||<math> 11941571</math>||<math> 35273473</math>||<math> 46949093</math>
+
| <math>m=30k \pm 6</math> || style="text-align:center;" | <math>5</math> || rowspan="2" style="text-align:center;" | J83, J84
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 7980}</math>||<math> 1024853</math>||<math> 355670309</math>||<math> 446786191</math>||<math> 547343483</math>||<math> 682871447</math>||<math> 1772834893</math>
+
| <math>m=30k \pm 12</math> || style="text-align:center;" | <math>5</math>
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 8190}</math>||<math> 7328437</math>||<math> 15275849</math>||<math> 17503261</math>||<math> 22737017</math>||<math> 27294053</math>||<math> 45150331</math>
+
| <math>m=210k \pm 30</math> || style="text-align:center;" | <math>7</math> || rowspan="3" style="text-align:center;" | J84
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 8400}</math>||<math> 8528483</math>||<math> 40313929</math>||<math> 243787771</math>||<math> 385895737</math>||<math> 467671013</math>||<math> 797154607</math>
+
| <math>m=210k \pm 60</math> || style="text-align:center;" | <math>7</math>  
 
|-
 
|-
| style="background:#ffd890;"|<math>\mathbf{ 8610}</math>||<math> 10892747</math>||<math> 17489623</math>||<math> 28416517</math>||<math> 55350017</math>||<math> 200631439</math>||<math> 449962543</math>
+
| <math>m=210k \pm 90</math> || style="text-align:center;" | <math>7</math>  
|-
+
|}
| style="background:#ffd890;"|<math>\mathbf{ 8820}</math>||<math> 275550449</math>||<math> 340210649</math>||<math> 375439381</math>||<math> 1299902701</math>||<math> 7189505563</math>||<math> 8000213747</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 9030}</math>||<math> 31057003</math>||<math> 150282967</math>||<math> 634308509</math>||<math> 643690123</math>||<math> 2295863833</math>||<math> 2515095703</math>
+
 
|-
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J86</span><br/>
| style="background:#ffd890;"|<math>\mathbf{ 9240}</math>||<math> 53681</math>||<math> 14224981</math>||<math> 14432399</math>||<math> 23559377</math>||<math> 28467293</math>||<math> 42049001</math>
+
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 9450}</math>||<math> 334554023</math>||<math> 488051653</math>||<math> 2038389299</math>||<math> 2162899399</math>||<math> 2445407273</math>||<math> 3057392207</math>
+
::<math>\begin{array}{lll}
|-
+
  \mathbb{n} (2 m) >\mathbb{n} (m) &  & \text{gdy} \;\; \mathbb{n} (m) = 2 \\
| style="background:#ffd890;"|<math>\mathbf{ 9660}</math>||<math> 707071</math>||<math> 125628439</math>||<math> 303544463</math>||<math> 441911263</math>||<math> 449336813</math>||<math> 511484261</math>
+
  \mathbb{n} (2 m) =\mathbb{n} (m) &  & \text{gdy} \;\; \mathbb{n} (m) > 2
|-
+
\end{array}</math>
| style="background:#ffd890;"|<math>\mathbf{ 9870}</math>||<math> 16561691</math>||<math> 26691349</math>||<math> 373909451</math>||<math> 558247033</math>||<math> 626630117</math>||<math> 1074793063</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
| style="background:#ffd890;"|<math>\mathbf{ 10080}</math>||<math> 3363089</math>||<math> 35937059</math>||<math> 57814343</math>||<math> 83864653</math>||<math> 264068017</math>||<math> 2293066417</math>
+
 
|-
+
'''Punkt 1.'''
| style="background:#ffd890;"|<math>\mathbf{ 10290}</math>||<math> 459609859</math>||<math> 522069971</math>||<math> 535273337</math>||<math> 720980111</math>||<math> 1617247087</math>||<math> 1769323693</math>
+
 
|-
+
W przypadku, gdy <math>\mathbb{n} (m) = 2</math>, mamy <math>\mathbb{n} (2 m) > 2 = \mathbb{n} (m)</math>, bo <math>\mathbb{n} (2 m)</math> musi być liczbą względnie pierwszą z <math>2 m .</math>
| style="background:#ffd890;"|<math>\mathbf{ 10500}</math>||<math> 38610347</math>||<math> 185388121</math>||<math> 511207351</math>||<math> 512002717</math>||<math> 573447551</math>||<math> 728734969</math>
+
 
|-
+
'''Punkt 2.'''
| style="background:#ffd890;"|<math>\mathbf{ 10710}</math>||<math> 2781203</math>||<math> 10327159</math>||<math> 15741997</math>||<math> 161184019</math>||<math> 290334601</math>||<math> 387848743</math>
+
 
|-
+
Z definicji najmniejszej liczby niekwadratowej modulo <math>m</math> wiemy, że kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 10920}</math>||<math> 527909</math>||<math> 8754457</math>||<math> 19711711</math>||<math> 68442943</math>||<math> 70092481</math>||<math> 108555763</math>
+
 
|-
+
::<math>x^2 \equiv \mathbb{n} (m) \pmod{m}</math>
| style="background:#ffd890;"|<math>\mathbf{ 11130}</math>||<math> 187009</math>||<math> 74743931</math>||<math> 1717072597</math>||<math> 2241197341</math>||<math> 3885152797</math>||<math> 5442728839</math>
+
 
|-
+
nie ma rozwiązania. Oznacza to, że istnieje liczba pierwsza nieparzysta <math>p</math> taka, że <math>p \mid m \;</math> i <math>\; \left( {\small\frac{\mathbb{n} (m)}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Ponieważ <math>p \mid 2 m</math>, to wynika stąd natychmiast, że kongruencja
| style="background:#ffd890;"|<math>\mathbf{ 11340}</math>||<math> 13865323</math>||<math> 151172779</math>||<math> 155052347</math>||<math> 169766761</math>||<math> 417004037</math>||<math> 759377761</math>
+
 
|-
+
::<math>x^2 \equiv \mathbb{n} (m) \pmod{2 m}</math>
| style="background:#ffd890;"|<math>\mathbf{ 11550}</math>||<math> 166601</math>||<math> 178151</math>||<math> 189701</math>||<math> 2902951</math>||<math> 2939267</math>||<math> 6906061</math>
+
 
|-
+
również nie ma rozwiązania (zobacz J56).
| style="background:#ffd890;"|<math>\mathbf{ 11760}</math>||<math> 15296227</math>||<math> 115733179</math>||<math> 793412467</math>||<math> 2045327461</math>||<math> 3317282629</math>||<math> 3405094727</math>
+
 
|-
+
Zatem <math>\mathbb{n} (2 m) \leqslant \mathbb{n} (m) .</math> Niech <math>q</math> będzie liczbą pierwszą taką, że <math>2 < q <\mathbb{n} (m) .</math> Kongruencję
| style="background:#ffd890;"|<math>\mathbf{ 11970}</math>||<math> 70627031</math>||<math> 81131437</math>||<math> 190977547</math>||<math> 295424263</math>||<math> 435613939</math>||<math> 436230467</math>
+
 
|-
+
::<math>x^2 \equiv q \pmod{2 m} \qquad \qquad (1)</math>
| style="background:#ffd890;"|<math>\mathbf{ 12180}</math>||<math> 96579871</math>||<math> 196123667</math>||<math> 1414855181</math>||<math> 1594532899</math>||<math> 1852156771</math>||<math> 5477685029</math>
+
 
|-
+
możemy zapisać w&nbsp;postaci układu kongruencji równoważnych (zobacz J1)
| style="background:#ffd890;"|<math>\mathbf{ 12390}</math>||<math> 355974491</math>||<math> 1228212781</math>||<math> 1597738157</math>||<math> 2356239043</math>||<math> 2537515919</math>||<math> 2664004501</math>
+
 
|-
+
::<math>\begin{align}
| style="background:#ffd890;"|<math>\mathbf{ 12600}</math>||<math> 558431</math>||<math> 4885897</math>||<math> 62631409</math>||<math> 222308641</math>||<math> 247236973</math>||<math> 597208309</math>
+
x^2 & \equiv q \pmod{m} \qquad \qquad \;\: (2) \\
|-
+
x^2 & \equiv q \pmod{2} \qquad \qquad \;\;\,\, (3) \\
| style="background:#ffd890;"|<math>\mathbf{ 12810}</math>||<math> 10981339</math>||<math> 73391203</math>||<math> 614195423</math>||<math> 722428933</math>||<math> 1804485667</math>||<math> 2011342889</math>
+
\end{align}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 13020}</math>||<math> 37278391</math>||<math> 396360829</math>||<math> 477013687</math>||<math> 1035592279</math>||<math> 1668997513</math>||<math> 1740405707</math>
+
Z definicji <math>q</math> jest liczbą kwadratową modulo <math>m</math>, zatem kongruencja <math>(2)</math> ma rozwiązanie – oznaczmy to rozwiązanie przez <math>x_0 .</math> Łatwo zauważamy, że liczba
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 13230}</math>||<math> 4705247</math>||<math> 43971617</math>||<math> 150462859</math>||<math> 3214143193</math>||<math> 4385611183</math>||<math> 6156888427</math>
+
::<math>x'_0 =
|-
+
  \begin{cases}
| style="background:#ffd890;"|<math>\mathbf{ 13440}</math>||<math> 1560997</math>||<math> 2070517</math>||<math> 319796189</math>||<math> 397320779</math>||<math> 534628103</math>||<math> 1466338729</math>
+
  \;\;\;\; x_0 & \text{gdy} \quad x_0 \equiv 1 \pmod{2} \\
|-
+
  x_0 + m & \text{gdy} \quad x_0 \equiv 0 \pmod{2} \\
| style="background:#ffd890;"|<math>\mathbf{ 13650}</math>||<math> 96997</math>||<math> 8628157</math>||<math> 23309989</math>||<math> 84831493</math>||<math> 95865989</math>||<math> 183786877</math>
+
  \end{cases}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 13860}</math>||<math> 110437</math>||<math> 124297</math>||<math> 138157</math>||<math> 152947</math>||<math> 166807</math>||<math> 180667</math>
+
jest rozwiązaniem układu kongruencji <math>(2)</math> i <math>(3)</math>, a&nbsp;tym samym kongruencja <math>(1)</math> ma rozwiązanie dla każdego <math>2 < q <\mathbb{n} (m) .</math> Wynika stąd, że <math>\mathbb{n} (2 m) =\mathbb{n} (m) .</math><br/>
|-
+
&#9633;
| style="background:#ffd890;"|<math>\mathbf{ 14070}</math>||<math> 6446353</math>||<math> 6976289</math>||<math> 9167027</math>||<math> 315420997</math>||<math> 324294169</math>||<math> 850130293</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 14280}</math>||<math> 8022137</math>||<math> 46017523</math>||<math> 49573471</math>||<math> 84264127</math>||<math> 201286747</math>||<math> 664107853</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 14490}</math>||<math> 4421849</math>||<math> 7258067</math>||<math> 55181701</math>||<math> 266196461</math>||<math> 400560449</math>||<math> 658093439</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J87</span><br/>
|-
+
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
| style="background:#ffd890;"|<math>\mathbf{ 14700}</math>||<math> 14365553</math>||<math> 79088123</math>||<math> 578429339</math>||<math> 1590374273</math>||<math> 1620663103</math>||<math> 1692678277</math>
+
 
|-
+
::<math>\begin{array}{lllll}
| style="background:#ffd890;"|<math>\mathbf{ 14910}</math>||<math> 1313271217</math>||<math> 1398822683</math>||<math> 3458123993</math>||<math> 5050258823</math>||<math> 8564509277</math>||
+
  \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2        & & \text{gdy } \;\; 3 \mid m \\
|-
+
  \mathbb{n} (4 m) = 3        & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\
| style="background:#ffd890;"|<math>\mathbf{ 15120}</math>||<math> 643929523</math>||<math> 1697175937</math>||<math> 3456724013</math>||<math> 3604668029</math>||<math> 5105194837</math>||<math> 5972188679</math>
+
\end{array}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 15330}</math>||<math> 423644591</math>||<math> 792183047</math>||<math> 1013912467</math>||<math> 1239474463</math>||<math> 1707297247</math>||<math> 1918187839</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 15540}</math>||<math> 15113711</math>||<math> 49877209</math>||<math> 90195289</math>||<math> 113317157</math>||<math> 542625751</math>||<math> 801528769</math>
+
'''Punkt 1.'''
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 15750}</math>||<math> 849869</math>||<math> 281904709</math>||<math> 741349123</math>||<math> 1196157763</math>||<math> 1264569469</math>||<math> 1628362679</math>
+
Z twierdzenia J81 wynika, że w&nbsp;przypadku, gdy <math>3 \mid m</math>, to <math>\mathbb{n} (m) = 2 .</math> Ponieważ <math>2 \mid 4 m</math> i <math>3 \mid 4 m</math>, to <math>\mathbb{n} (4 m) \geqslant 5 .</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 15960}</math>||<math> 1847</math>||<math> 3178141</math>||<math> 47378869</math>||<math> 105168887</math>||<math> 140273363</math>||<math> 315104063</math>
+
'''Punkt 2.'''
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 16170}</math>||<math> 3360767</math>||<math> 7292851</math>||<math> 8511059</math>||<math> 10038841</math>||<math> 26643899</math>||<math> 35098631</math>
+
Ponieważ <math>m</math> jest liczbą nieparzystą, to <math>8 \nmid 4 m</math>, ale <math>4 \mid 4 m \;</math> i <math>\; 4 \nmid (3 - 1)</math>, zatem z&nbsp;twierdzenia J56 wynika, że kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 16380}</math>||<math> 339263</math>||<math> 2893309</math>||<math> 7118387</math>||<math> 189387287</math>||<math> 209606629</math>||<math> 266620267</math>
+
::<math>x^2 \equiv 3 \pmod{4 m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 16590}</math>||<math> 381816437</math>||<math> 695288453</math>||<math> 1555003309</math>||<math> 2096563163</math>||<math> 2844269837</math>||<math> 4876784057</math>
+
nie ma rozwiązania. Ponieważ <math>2 \mid 4 m \;</math> i <math>\; 3 \nmid 4 m</math>, to <math>\mathbb{n} (4 m) = 3 .</math><br/>
|-
+
&#9633;
| style="background:#ffd890;"|<math>\mathbf{ 16800}</math>||<math> 143614397</math>||<math> 681135667</math>||<math> 1337835403</math>||<math> 1547432483</math>||<math> 1809315247</math>||<math> 2850704453</math>
+
{{\Spoiler}}
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 17010}</math>||<math> 83709047</math>||<math> 1041057263</math>||<math> 1265416651</math>||<math> 1665987569</math>||<math> 2529254831</math>||<math> 4576482871</math>
+
 
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 17220}</math>||<math> 1452511</math>||<math> 10612519</math>||<math> 16814099</math>||<math> 216348577</math>||<math> 382728461</math>||<math> 532388587</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J88</span><br/>
|-
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>p \,</math> i <math>\, p \mid m</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m .</math>
| style="background:#ffd890;"|<math>\mathbf{ 17430}</math>||<math> 25471</math>||<math> 137293657</math>||<math> 632342783</math>||<math> 960368107</math>||<math> 5503090291</math>||<math> 6704824913</math>
+
 
|-
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
| style="background:#ffd890;"|<math>\mathbf{ 17640}</math>||<math> 193607</math>||<math> 33411011</math>||<math> 511632469</math>||<math> 819466853</math>||<math> 960062011</math>||<math> 1178974859</math>
+
Wiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 17850}</math>||<math> 1728911</math>||<math> 4584401</math>||<math> 7627309</math>||<math> 77294621</math>||<math> 99462899</math>||<math> 170832131</math>
+
::<math>x^2 \equiv a \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18060}</math>||<math> 51826531</math>||<math> 210101329</math>||<math> 235062067</math>||<math> 605501191</math>||<math> 1083324911</math>||<math> 2230437163</math>
+
ma rozwiązanie. Przypuśćmy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m .</math> Zatem istnieje taka liczba <math>k \in \mathbb{Z}</math>, że
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18270}</math>||<math> 1989811</math>||<math> 825611753</math>||<math> 2281896011</math>||<math> 2468212757</math>||<math> 2968471043</math>||<math> 4958366753</math>
+
::<math>k^2 \equiv a \pmod{m}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18480}</math>||<math> 194839</math>||<math> 1044739</math>||<math> 1075237</math>||<math> 2169967</math>||<math> 2467369</math>||<math> 3135841</math>
+
Ponieważ z&nbsp;założenia <math>p \mid m</math>, to prawdziwa jest też kongruencja
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18690}</math>||<math> 90365419</math>||<math> 551760331</math>||<math> 1165944209</math>||<math> 1887703247</math>||<math> 1932471091</math>||<math> 3396823123</math>
+
::<math>k^2 \equiv a \pmod{p}</math>
|-
+
 
| style="background:#ffd890;"|<math>\mathbf{ 18900}</math>||<math> 804113</math>||<math> 1087721813</math>||<math> 2462595313</math>||<math> 3420103007</math>||<math> 5068097201</math>||<math> 5268928117</math>
+
co przeczy założeniu, że liczba <math>a</math> jest liczbą niekwadratową modulo <math>p .</math><br/>
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 19110}</math>||<math> 1023487</math>||<math> 6202067</math>||<math> 6640901</math>||<math> 19304167</math>||<math> 78325591</math>||<math> 152030453</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 19320}</math>||<math> 13154717</math>||<math> 123351947</math>||<math> 180065461</math>||<math> 191400653</math>||<math> 307980523</math>||<math> 526607503</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 19530}</math>||<math> 1773689</math>||<math> 128832049</math>||<math> 226504217</math>||<math> 544697521</math>||<math> 880832749</math>||<math> 1511819633</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 19740}</math>||<math> 216443629</math>||<math> 1460073841</math>||<math> 2172351869</math>||<math> 3696955411</math>||<math> 4020404251</math>||<math> 4234603313</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 19950}</math>||<math> 142699</math>||<math> 302287</math>||<math> 661547</math>||<math> 64740661</math>||<math> 176566177</math>||<math> 562542581</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 20160}</math>||<math> 77727823</math>||<math> 585546277</math>||<math> 1013154997</math>||<math> 1309662637</math>||<math> 2007871577</math>||<math> 2231189419</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 20370}</math>||<math> 1216213</math>||<math> 7991839</math>||<math> 156234857</math>||<math> 1222246309</math>||<math> 2382533789</math>||<math> 2523592993</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 20580}</math>||<math> 2219557</math>||<math> 508048529</math>||<math> 906000787</math>||<math> 1111806827</math>||<math> 2134225213</math>||<math> 6894499589</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 20790}</math>||<math> 2397931</math>||<math> 4022297</math>||<math> 4043087</math>||<math> 15314617</math>||<math> 26974879</math>||<math> 35575247</math>
 
|-
 
| style="background:#ffd890;"|<math>\mathbf{ 21000}</math>||<math> 49402277</math>||<math> 263368843</math>||<math> 701455591</math>||<math> 2403274567</math>||<math> 3097244987</math>||<math> 5984865767</math>
 
|}
 
<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2275: Linia 2522:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C55</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J89</span><br/>
Niech <math>d, k, k_0, n \in \mathbb{Z}_+</math> oraz <math>a \in \mathbb{Z}</math>. Jeżeli liczby <math>d</math> i <math>n</math> są względnie pierwsze, to reszty <math>r_1, r_2, \ldots, r_n</math> z&nbsp;dzielenia <math>n</math> kolejnych wyrazów ciągu arytmetycznego
+
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to istnieje taki dzielnik pierwszy <math>p</math> liczby <math>m</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p .</math>
 
 
::<math>x_k = a + k d \qquad</math> dla <math>\; k = k_0 + 1, \ldots, k_0 + n</math>
 
 
 
przez liczbę <math>n</math> są wszystkie różne i&nbsp;tworzą zbiór <math>S = \{ 0, 1, \ldots, n - 1 \}</math>. W&nbsp;szczególności wynika stąd, że wśród <math>n</math> kolejnych wyrazów ciągu arytmetycznego <math>(x_k)</math> jeden z&nbsp;tych wyrazów jest podzielny przez <math>n</math>.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Przypuśćmy, że dla pewnych różnych liczb naturalnych <math>i, j</math> takich, że <math>1 \leqslant i < j \leqslant n</math> liczby <math>a + (k_0 + i) d</math> oraz <math>a + (k_0 + j) d</math> dają tę samą resztę przy dzieleniu przez <math>n</math>. Zatem różnica tych liczb jest podzielna przez <math>n</math>
+
Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby <math>m</math>: <math>\{ p_1, \ldots, p_s \}</math> i&nbsp;powiązany z&nbsp;dzielnikami pierwszymi <math>p_k</math> zbiór najmniejszych liczb niekwadratowych modulo <math>p_k</math>: <math>\{ \mathbb{n}_1, \ldots, \mathbb{n}_s \}</math>, z&nbsp;których każda jest liczbą niekwadratową modulo <math>m</math> (zobacz J88). Wynika stąd, że liczba <math>\mathbb{n} = \mathbb{n} (m)</math> musi być mniejsza od każdej z&nbsp;liczb <math>\mathbb{n}_k .</math>
  
::<math>n| [a + (k_0 + j) d] - [a + (k_0 + i) d]</math>
+
Z definicji liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest liczbą niekwadratową modulo <math>m</math>, co oznacza, że kongruencja
  
Czyli
+
::<math>x^2 \equiv \mathbb{n} \pmod{m}</math>
  
::<math>n|d (j - i)</math>
+
nie ma rozwiązania. Niech <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s .</math> Zatem przynajmniej jedna z&nbsp;kongruencji
  
Ponieważ liczby <math>d</math> i <math>n</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C72), mamy
+
::<math>x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k}</math>
  
::<math>n| (j - i)</math>
+
musi nie mieć rozwiązania (zobacz J11). Z&nbsp;twierdzenia J50 wiemy, że wtedy kongruencja
  
Co jest niemożliwe, bo <math>1 \leqslant j - i \leqslant n - 1 < n</math>.
+
::<math>x^2 \equiv \mathbb{n} \pmod{p_k}</math>
  
Zatem reszty <math>r_1, r_2, \ldots, r_n</math> są wszystkie różne, a&nbsp;ponieważ jest ich <math>n</math>, czyli tyle ile jest różnych reszt z&nbsp;dzielenia przez liczbę <math>n</math>, to zbiór tych reszt jest identyczny ze zbiorem reszt z&nbsp;dzielenia przez <math>n</math>, czyli ze zbiorem <math>S = \{ 0, 1, 2, \ldots, n - 1 \}</math>.<br/>
+
również nie ma rozwiązania. Zatem <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>p_k \,</math> i <math>\, \mathbb{n} < \mathbb{n}_k</math>, co przeczy definicji liczby <math>\mathbb{n}_k .</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2303: Linia 2546:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C56</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J90</span><br/>
Niech <math>d \in \mathbb{Z}_+</math> i&nbsp;niech będzie dany ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>
+
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
 +
 
 +
::<math>\mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) )</math>
  
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
+
gdzie <math>\mathbb{n}(m)</math> jest najmniejszą liczbą kwadratową modulo <math>m</math>, a <math>\mathbb{n}(p_k)</math> są najmniejszymi liczbami kwadratowymi modulo <math>p_k .</math>
  
Z żądania, aby dany ciąg arytmetyczny był ciągiem arytmetycznym liczb pierwszych, wynika, że muszą być spełnione następujące warunki
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Twierdzenie to jest prostym wnioskiem z&nbsp;twierdzenia J89, ale musimy jeszcze pokazać, że <math>\gcd (\mathbb{n} (m), m) = 1 .</math> Przypuśćmy, że <math>p_k |\mathbb{n} (m)</math> dla pewnego <math>1 \leqslant k \leqslant s .</math> Ponieważ <math>\mathbb{n} (m)</math> jest liczbą pierwszą, to musi być <math>\mathbb{n} (m) = p_k</math>, ale wtedy
  
:* <math>p_0 \nmid d</math>
+
::<math>\mathbb{n} (p_k) < p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k)</math>
:* <math>n \leqslant p_0</math>
 
:* <math>P(n - 1) |d</math>
 
:* jeżeli liczba pierwsza <math>q</math> nie dzieli <math>d</math>, to <math>n \leqslant q</math>
 
  
gdzie <math>P(t)</math> jest iloczynem wszystkich liczb pierwszych nie większych od <math>t</math>.
+
Otrzymana sprzeczność dowodzi, że <math>\mathbb{n} (m)</math> jest względnie pierwsza z&nbsp;każdą z&nbsp;liczb pierwszych <math>p_i</math>, gdzie <math>1 \leqslant i \leqslant s .</math> Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
'''Punkt 1.'''<br/>
 
Gdyby <math>p_0 |d</math>, to dla <math>k \geqslant 1</math> mielibyśmy <math>p_k = p_0 \left( 1 + k \cdot \frac{d}{p_0} \right)</math> i&nbsp;wszystkie te liczby byłyby złożone.
 
  
'''Punkt 2.'''<br/>
 
Ponieważ <math>p_0</math> dzieli <math>p_0 + p_0 d</math>, więc musi być <math>n - 1 < p_0</math>, czyli <math>n \leqslant p_0</math>.
 
  
'''Punkt 3.'''<br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J91</span><br/>
Niech <math>q</math> będzie liczbą pierwszą mniejszą od <math>n</math>, a&nbsp;liczby <math>r_k</math> będą resztami uzyskanymi z&nbsp;dzielenia liczb <math>p_k = p_0 + k d</math> przez <math>q</math>, dla <math>k = 0, 1, \ldots, q - 1</math>. Ponieważ z&nbsp;założenia liczby <math>p_0, \ldots, p_{n - 1}</math> są liczbami pierwszymi większymi od <math>q</math> (zauważmy, że <math>p_0 \geqslant n</math>), to żadna z&nbsp;reszt <math>r_k</math> nie może być równa zeru. Czyli mamy <math>q</math> reszt mogących przyjmować jedynie <math>q - 1</math> różnych wartości. Zatem istnieją różne liczby <math>i, j</math>, takie że <math>0 \leqslant i < j \leqslant q - 1</math>, dla których <math>r_i = r_j</math>. Wynika stąd, że różnica liczb
+
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>\mathbb{n}(m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m .</math> Prawdziwe są oszacowania
  
::<math>p_j - p_i = (p_0 + j d) - (p_0 + i d) = d (j - i)</math>
+
::<math>\mathbb{n}(m) < \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3</math>
  
musi być podzielna przez <math>q</math>. Ponieważ <math>q \nmid (j - i)</math>, bo <math>1 \leqslant j - i \leqslant q - 1 < q</math>, zatem z&nbsp;lematu Euklidesa <math>q|d</math>.
+
::<math>\mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5</math>
  
Z uwagi na fakt, że jest tak dla każdej liczby pierwszej <math>q < n</math>, liczba <math>d</math> musi być podzielna przez
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>p</math> będzie dzielnikiem pierwszym liczby <math>m</math> takim, że <math>\mathbb{n}(m) = \mathbb{n} (p)</math> (z twierdzenia J89 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie <math>\mathbb{n}(p) < F (p)</math>, gdzie <math>F(x)</math> jest funkcją rosnącą, to
  
::<math>P(n - 1) = \prod_{q < n} q</math>
+
::<math>\mathbb{n}(m) = \mathbb{n} (p) < F (p) \leqslant F (m)</math>
  
'''Punkt 4.'''<br/>
+
Podane w&nbsp;twierdzeniu oszacowania wynikają natychmiast z&nbsp;twierdzeń J68 i&nbsp;J69.<br/>
Ponieważ <math>P(n - 1)|d</math>, to wszystkie liczby pierwsze mniejsze od <math>n</math> muszą być dzielnikami <math>d</math>. Wynika stąd, że jeśli liczba pierwsza <math>q</math> nie dzieli <math>d</math>, to musi być <math>q \geqslant n</math>. Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2342: Linia 2582:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C57</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J92</span><br/>
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „''prime arithmetic progression''”. Konsekwentnie zapis PAP-<math>n</math> będzie oznaczał ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, a&nbsp;zapis PAP<math>(n, d, q)</math> ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, pierwszym wyrazie <math>q</math> i&nbsp;różnicy <math>d</math>.
+
Liczby <math>\mathbb{n} (m)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (m)</math> wynosi<ref name="Pollack1"/>
  
 +
::<math>\lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots</math>
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C58</span><br/>
 
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej <math>q</math> i&nbsp;o&nbsp;dowolnej długości <math>3 \leqslant n \leqslant q</math>, to obecnie jest to tylko nieudowodnione przypuszczenie.
 
  
Dlatego '''nawet dla najmniejszej''' liczby pierwszej <math>q</math> takiej, że <math>q \nmid d</math> nierówność <math>n \leqslant q</math>, pokazana w&nbsp;twierdzeniu C56, pozostaje nadal tylko oszacowaniem. W&nbsp;szczególności nie możemy z&nbsp;góry przyjmować, że dla liczby <math>n = q</math> znajdziemy taką liczbę <math>d</math> będącą wielokrotnością liczby <math>P(q - 1)</math> i&nbsp;niepodzielną przez <math>q</math>, że będzie istniał PAP<math>(q, d, q)</math>.
 
  
  
 +
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
 +
| &nbsp;'''C.''' Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>&nbsp;
 +
|}
  
<span style="font-size: 110%; font-weight: bold;">Przykład C59</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J93</span><br/>
Rozważmy dwie różnice <math>d_1 = 6 = 2 \cdot 3</math> oraz <math>d_2 = 42 = 2 \cdot 3 \cdot 7</math>. Zauważmy, że liczba pierwsza <math>5</math> nie dzieli ani <math>d_1</math>, ani <math>d_2</math>. Co więcej, liczba pierwsza <math>5</math> jest '''najmniejszą''' liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność <math>n \leqslant 5</math> zapewnia najmocniejsze oszacowanie długości ciągu <math>n</math>. Łatwo sprawdzamy w&nbsp;zamieszczonych tabelach, że dla <math>d = 6</math> oraz dla <math>d = 42</math> są ciągi o&nbsp;długości <math>3, 4, 5</math>, ale nie ma ciągów o&nbsp;długości <math>6, 7, \ldots</math>
+
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>, najmniejsze liczby niekwadratowe modulo <math>m</math> i&nbsp;najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>.
  
W szczególności z&nbsp;twierdzenia C56 wynika, że szukając ciągów arytmetycznych liczb pierwszych o&nbsp;określonej długości <math>n</math>, należy szukać ich tylko dla różnic <math>d</math> będących wielokrotnością liczby <math>P(n - 1)</math>.
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 +
|-
 +
!  <math>\boldsymbol{\mathbb{n}( p )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 +
|-
 +
!  <math>\boldsymbol{\mathbb{n}( m )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>3</math> || <math>2</math>
 +
|-
 +
!  <math>\boldsymbol{c( m )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>7</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>7</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>-</math> || <math>2</math>
 +
|}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C60</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J94</span><br/>
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że jeżeli <math>p_0 = 3</math>, to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.
+
Do wyszukiwania liczb <math>c = c (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 +
 
 +
<span style="font-size: 90%; color:black;">C(m) =
 +
{
 +
'''if'''( m%2 == 0, '''return'''(0) );
 +
'''if'''( '''issquare'''(m), '''return'''(0) );
 +
'''forprime'''(p = 2, m, '''if'''( jacobi(p, m) == -1, '''return'''(p) ));
 +
}</span>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Ponieważ <math>p_0 = 3</math>, a&nbsp;rozpatrywany PAP jest rosnący, to kolejne wyrazy ciągu są większe od liczby <math>3</math> i&nbsp;mogą być przedstawione w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Z&nbsp;twierdzenia C56 wiemy, że musi być <math>n \leqslant p_0 = 3</math>, czyli długość rozpatrywanego ciągu arytmetycznego liczb pierwszych wynosi dokładnie <math>3</math> i&nbsp;istnieją tylko dwa następne wyrazy.
 
  
Rozważmy ciąg arytmetyczny liczb pierwszych składający się z&nbsp;trzech wyrazów <math>p, q, r</math> takich, że <math>p = 3</math>. Mamy
 
  
::<math>r = q + d = q + (q - p) = 2 q - p</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J95</span><br/>
 +
Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math> oznaczyliśmy jako <math>c(m)</math>. Zauważmy, że są to liczby inne od <math>\mathbb{n}(p)</math> i <math>\mathbb{n}(m)</math>. Wystarczy zwrócić uwagę na występujące w&nbsp;tabeli liczby <math>\mathbb{n}(p)</math>, <math>\mathbb{n}(m)</math> i <math>c(m)</math> dla <math>m = 15, 33, 39</math>. Różnice wynikają z&nbsp;innej definicji liczb <math>c(m)</math> – jeżeli liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> nie musi być równy <math>- 1</math>. I&nbsp;tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.
  
Zatem
+
Ponieważ <math>c(m)</math> nie zawsze będzie najmniejszą liczbą kwadratową modulo <math>m</math>, to mamy natychmiast oszacowanie: <math>c(m) \geqslant \mathbb{n} (m)</math> (poza przypadkami, gdy <math>m = n^2</math>).
  
::<math>r + q = 3 q - 3</math>
+
Dla <math>c(m)</math> nie są prawdziwe oszacowania podane w&nbsp;twierdzeniu J68. Łatwo zauważamy, że
  
Widzimy, że prawa strona powyższej równości jest podzielna przez <math>3</math>. Zatem liczby po lewej stronie wypisanych wyżej równości muszą być różnych postaci, bo tylko w&nbsp;takim przypadku lewa strona równości będzie również podzielna przez <math>3</math>.<br/>
+
::<math>c = c (15) = 7 > \sqrt{15} + {\small\frac{1}{2}} \approx 4.37</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>c = c (39) = 7 > \sqrt{39} + {\small\frac{1}{2}} \approx 6.74</math>
  
 +
::<math>c = c (105) = 11 > \sqrt{105} + {\small\frac{1}{2}} \approx 10.75</math>
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C61</span><br/>
+
::<math>c = c (231) = 17 > \sqrt{231} + {\small\frac{1}{2}} \approx 15.7</math>
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych <math>p_0, p_1, \ldots, p_{n - 1}</math>, gdzie <math>p_0 \geqslant 5</math> i <math>n \geqslant 3</math> muszą być jednakowej postaci.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Nie ma więcej takich przypadków dla <math>m < 10^9</math>.
Niech liczby <math>p, q, r</math> będą trzema kolejnymi (dowolnie wybranymi) wyrazami rozpatrywanego ciągu. Łatwo zauważmy, że
 
  
::<math>r = q + d = q + (q - p) = 2 q - p</math>
 
  
Zatem
 
  
::<math>p + q = 3 q - r</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J96</span><br/>
 +
Niech <math>c, m \in \mathbb{Z}_+</math> i&nbsp;niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>c</math> będzie najmniejszą liczbą taką, że <math>\left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1</math>. Liczba <math>c</math> musi być liczbą pierwszą.
  
::<math>q + r = 3 q - p</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Przypuśćmy, że <math>c = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < c</math>. Mamy
  
::<math>p + r = 2 q</math>
+
::<math>- 1 = \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math><math>\left( {\small\frac{b}{m}} \right)_{\small{\!\! J}}</math>
  
Zauważmy, że prawa strona wypisanych wyżej równości nie jest podzielna przez <math>3</math>, bo liczby <math>p, q, r</math> są liczbami pierwszymi większymi od liczby <math>3</math>. Zatem liczby po lewej stronie wypisanych wyżej równości muszą być tej samej postaci, bo gdyby było inaczej, to lewa strona tych równości byłaby podzielna przez <math>3</math>, a&nbsp;prawa nie. Czyli każda para liczb z&nbsp;trójki <math>p, q, r</math> musi być tej samej postaci i&nbsp;wynika stąd, że wszystkie trzy liczby muszą być tej samej postaci. Ponieważ trzy kolejne wyrazy ciągu <math>p_0, p_1, \ldots, p_{n - 1}</math> były wybrane dowolnie, to wszystkie wyrazy tego ciągu muszą być tej samej postaci.<br/>
+
Zatem jeden z&nbsp;czynników po prawej stronie musi być równy <math>- 1</math> wbrew definicji liczby <math>c</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2403: Linia 2659:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C62</span><br/>
 
Niech <math>d > 0</math> będzie różnicą ciągu arytmetycznego liczb pierwszych o&nbsp;długości <math>n</math>
 
  
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
 
  
Pokazać, nie korzystając z&nbsp;twierdzenia C56, że jeżeli liczba pierwsza <math>q</math> nie dzieli <math>d</math>, to <math>n \leqslant q</math>.
+
== Liczby pierwsze postaci <math>x^2 + n y^2</math> ==
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
<span style="font-size: 110%; font-weight: bold;">Przykład J97</span><br/>
Przypuśćmy, że <math>n > q</math> tak, że <math>q < n \leqslant p_0</math>, zatem
+
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>85</math> na sumę postaci <math>x^2 + y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. Rozkłady różniące się jedynie kolejnością liczb <math>x , y</math> nie zostały uwzględnione.
  
::<math>q < p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
+
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{n}</math>
 +
| <math>1</math> || style="background-color: #99cc66" | <math>2</math> || <math>4</math> || style="background-color: #99cc66" | <math>5</math> || <math>8</math> || <math>9</math> || <math>10</math> || style="background-color: #99cc66" | <math>13</math> || <math>16</math> || style="background-color: #99cc66" | <math>17</math> || <math>18</math> || <math>20</math> || <math>25</math> || <math>26</math> || style="background-color: #99cc66" | <math>29</math> || <math>32</math> || <math>34</math> || <math>36</math> || style="background-color: #99cc66" | <math>37</math> || <math>40</math> || style="background-color: #99cc66" | <math>41</math> || <math>45</math> || <math>49</math> || <math>50</math> || <math>52</math> || style="background-color: #99cc66" | <math>53</math> || <math>58</math> ||style="background-color: #99cc66" | <math>61</math> || <math>64</math> || <math>65</math> || <math>68</math> || <math>72</math> || style="background-color: #99cc66" | <math>73</math> || <math>74</math> || <math>80</math> || <math>81</math> || <math>82</math> || <math>85</math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>
 +
| <math>1,0</math> || <math>1,1</math> || <math>2,0</math> || <math>2,1</math> || <math>2,2</math> || <math>3,0</math> || <math>3,1</math> || <math>3,2</math> || <math>4,0</math> || <math>4,1</math> || <math>3,3</math> || <math>4,2</math> || <math>5,0</math> || <math>5,1</math> || <math>5,2</math> || <math>4,4</math> || <math>5,3</math> || <math>6,0</math> || <math>6,1</math> || <math>6,2</math> || <math>5,4</math> || <math>6,3</math> || <math>7,0</math> || <math>7,1</math> || <math>6,4</math> || <math>7,2</math> || <math>7,3</math> || <math>6,5</math> || <math>8,0</math> || <math>8,1</math> || <math>8,2</math> || <math>6,6</math> || <math>8,3</math> || <math>7,5</math> || <math>8,4</math> || <math>9,0</math> || <math>9,1</math> || <math>9,2</math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>
 +
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>4,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>5,5</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>7,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>7,6</math>
 +
|}
  
Ponieważ <math>q \nmid d</math>, to na mocy twierdzenia C55 wśród <math>q</math> kolejnych wyrazów <math>p_0, p_1, \ldots, p_{q - 1}</math> (zauważmy, że <math>q - 1 < n - 1</math>) jedna liczba pierwsza <math>p_k</math> musi być podzielna przez <math>q</math>, zatem musi być równa <math>q</math>. Jednak jest to niemożliwe, bo <math>q < p_k</math> dla wszystkich <math>k = 0, 1, \ldots, n - 1</math>. Zatem nie może być <math>n > q</math>.<br/>
+
Zauważmy, że liczba złożona <math>21</math> nie ma rozkładu na sumę kwadratów, a&nbsp;liczba złożona <math>65</math> ma dwa takie rozkłady. Obie liczby są postaci <math>4 k + 1</math>.
&#9633;
 
{{\Spoiler}}
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C63</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J98</span><br/>
Niech <math>q</math> będzie liczbą pierwszą, a&nbsp;liczby pierwsze
+
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>73</math> na sumę postaci <math>x^2 + 2 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>.
  
::<math>p_k = p_0 + k d \qquad</math> gdzie <math>\; k = 0, 1, \ldots, q - 1</math>
+
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{n}</math>
 +
| <math>1</math> || style="background-color: #99cc66" | <math>2</math> || style="background-color: #99cc66" | <math>3</math> || <math>4</math> || <math>6</math> || <math>8</math> || <math>9</math> || style="background-color: #99cc66" | <math>11</math> || <math>12</math> || <math>16</math> || style="background-color: #99cc66" | <math>17</math> || <math>18</math> || style="background-color: #99cc66" | <math>19</math> || <math>22</math> || <math>24</math> || <math>25</math> || <math>27</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>36</math> || <math>38</math> || style="background-color: #99cc66" | <math>41</math> || style="background-color: #99cc66" | <math>43</math> || <math>44</math> || <math>48</math> || <math>49</math> || <math>50</math> || <math>51</math> || <math>54</math> || <math>57</math> || style="background-color: #99cc66" | <math>59</math> || <math>64</math> || <math>66</math> || style="background-color: #99cc66" | <math>67</math> || <math>68</math> || <math>72</math> || style="background-color: #99cc66" | <math>73</math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>
 +
| <math>1,0</math> || <math>0,1</math> || <math>1,1</math> || <math>2,0</math> || <math>2,1</math> || <math>0,2</math> || <math>3,0</math> || <math>3,1</math> || <math>2,2</math> || <math>4,0</math> || <math>3,2</math> || <math>4,1</math> || <math>1,3</math> || <math>2,3</math> || <math>4,2</math> || <math>5,0</math> || <math>5,1</math> || <math>0,4</math> || <math>5,2</math> || <math>4,3</math> || <math>6,0</math> || <math>6,1</math> || <math>3,4</math> || <math>5,3</math> || <math>6,2</math> || <math>4,4</math> || <math>7,0</math> || <math>0,5</math> || <math>7,1</math> || <math>6,3</math> || <math>7,2</math> || <math>3,5</math> || <math>8,0</math> || <math>8,1</math> || <math>7,3</math> || <math>6,4</math> || <math>8,2</math> || <math>1,6</math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>
 +
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,2</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>0,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>3,3</math> || <math></math> || <math>1,4</math> || <math></math> || <math>2,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,5</math> || <math>2,5</math> || <math>5,4</math> || <math></math> || <math></math> || <math>4,5</math> || <math></math> || <math></math> || <math>0,6</math> || <math></math>
 +
|}
  
tworzą ciąg arytmetyczny o&nbsp;długości <math>q</math> i&nbsp;różnicy <math>d > 0</math>.
+
Zauważmy, że liczba złożona <math>65</math> nie ma rozkładu na sumę postaci <math>x^2 + 2 y^2</math>, a&nbsp;liczba złożona <math>33</math> ma dwa takie rozkłady. Obie liczby są postaci <math>8 k + 1</math>.
  
Równość <math>p_0 = q</math> zachodzi wtedy i&nbsp;tylko wtedy, gdy <math>q \nmid d</math>.
+
Zauważmy też, że liczba złożona <math>35</math> nie ma rozkładu na sumę postaci <math>x^2 + 2 y^2</math>, a&nbsp;liczba złożona <math>27</math> ma dwa takie rozkłady. Obie liczby są postaci <math>8 k + 3</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
<math>\Longrightarrow</math><br/>
 
Jeżeli <math>p_0 = q</math>, to <math>q</math>-wyrazowy ciąg arytmetyczny liczb pierwszych ma postać
 
  
::<math>p_k = q + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, q - 1</math>
 
  
Gdyby <math>q|d</math>, to mielibyśmy
+
<span style="font-size: 110%; font-weight: bold;">Przykład J99</span><br/>
 +
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>103</math> na sumę postaci <math>x^2 + 3 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>.
  
::<math>p_k = q \left( 1 + k \cdot \frac{d}{q} \right)</math>
+
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 
+
|-
i wszystkie liczby <math>p_k</math> dla <math>k \geqslant 1</math> byłyby złożone, wbrew założeniu, że <math>p_k</math> tworzą <math>q</math>-wyrazowy ciąg arytmetyczny liczb pierwszych.
+
! <math>\boldsymbol{n}</math>
 
+
| <math>1</math> || style="background-color: #99cc66" | <math>3</math> || <math>4</math> || style="background-color: #99cc66" | <math>7</math> || <math>9</math> || <math>12</math> || style="background-color: #99cc66" | <math>13</math> || <math>16</math> || style="background-color: #99cc66" | <math>19</math> || <math>21</math> || <math>25</math> || <math>27</math> || <math>28</math> || style="background-color: #99cc66" | <math>31</math> || <math>36</math> || style="background-color: #99cc66" | <math>37</math> || <math>39</math> || style="background-color: #99cc66" | <math>43</math> || <math>48</math> || <math>49</math> || <math>52</math> || <math>57</math> || style="background-color: #99cc66" | <math>61</math> || <math>63</math> || <math>64</math> || style="background-color: #99cc66" | <math>67</math> || style="background-color: #99cc66" | <math>73</math> || <math>75</math> || <math>76</math> || style="background-color: #99cc66" | <math>79</math> || <math>81</math> || <math>84</math> || <math>91</math> || <math>93</math> || style="background-color: #99cc66" | <math>97</math> || <math>100</math> || style="background-color: #99cc66" | <math>103</math>
<math>\Longleftarrow</math><br/>
+
|-
Ponieważ <math>q</math> jest długością rozpatrywanego ciągu arytmetycznego liczb pierwszych, to z&nbsp;twierdzenia C56 wynika, że musi być <math>q \leqslant p_0</math>.
+
! <math>\boldsymbol{x,y}</math>
 +
| <math>1,0</math> || <math>0,1</math> || <math>2,0</math> || <math>2,1</math> || <math>3,0</math> || <math>3,1</math> || <math>1,2</math> || <math>4,0</math> || <math>4,1</math> || <math>3,2</math> || <math>5,0</math> || <math>0,3</math> || <math>5,1</math> || <math>2,3</math> || <math>6,0</math> || <math>5,2</math> || <math>6,1</math> || <math>4,3</math> || <math>6,2</math> || <math>7,0</math> || <math>7,1</math> || <math>3,4</math> || <math>7,2</math> || <math>6,3</math> || <math>8,0</math> || <math>8,1</math> || <math>5,4</math> || <math>0,5</math> || <math>8,2</math> || <math>2,5</math> || <math>9,0</math> || <math>9,1</math> || <math>8,3</math> || <math>9,2</math> || <math>7,4</math> || <math>10,0</math> || <math>10,1</math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>  
 +
| <math></math> || <math></math> || <math>1,1</math> || <math></math> || <math></math> || <math>0,2</math> || <math></math> || <math>2,2</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>4,2</math> || <math></math> || <math>3,3</math> || <math></math> || <math></math> || <math></math> || <math>0,4</math> || <math>1,4</math> || <math>5,3</math> || <math></math> || <math></math> || <math></math> || <math>4,4</math> || <math></math> || <math></math> || <math></math> || <math>7,3</math> || <math></math> || <math></math> || <math>6,4</math> || <math>4,5</math> || <math></math> || <math></math> || <math>5,5</math> || <math></math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>
 +
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>2,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,5</math> || <math></math> || <math></math> || <math>3,5</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math>
 +
|}
  
Z założenia liczba pierwsza <math>q</math> nie dzieli <math>d</math>, zatem z&nbsp;twierdzenia C55 wiemy, że <math>q</math> musi dzielić jedną z&nbsp;liczb <math>p_0, p_1, \ldots, p_{q - 1}</math>.
+
Zauważmy, że liczba złożona <math>55</math> nie ma rozkładu na sumę postaci <math>x^2 + 3 y^2</math>, a&nbsp;liczba złożona <math>91</math> ma dwa takie rozkłady. Obie liczby są postaci <math>6 k + 1</math>.
  
Jeżeli <math>q|p_k</math>, to <math>p_k = q</math>. Ponieważ <math>q \leqslant p_0</math>, to możliwe jest jedynie <math>q|p_0</math> i&nbsp;musi być <math>p_0 = q</math>.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J100</span><br/>
 +
Jeżeli liczba nieparzysta postaci <math>Q = x^2 + n y^2</math>, gdzie <math>n \in \{ 1, 2, 3 \}</math>, ma dwa różne takie przedstawienia w&nbsp;liczbach całkowitych dodatnich, to jest liczbą złożoną.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W dowodzie wyróżniliśmy miejsca, które wymagają oddzielnej analizy ze względu na wartość liczby <math>n</math>.
 +
 +
Niech
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C64</span><br/>
+
::<math>Q = x^2 + n y^2 = a^2 + n b^2</math>
Niech ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math> ma postać
 
  
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
+
<div style="border: thin solid black; padding-top: 0em; margin-top: 0.5em; padding-bottom: 0em; margin-bottom: 0.5em;">
 +
<math>\boldsymbol{n = 1}</math>
  
Z udowodnionych wyżej twierdzeń C56 i&nbsp;C63 wynika, że ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n</math> można podzielić na dwie grupy
+
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby występujące w&nbsp;rozkładach <math>x^2 + y^2 = a^2 + b^2</math> muszą mieć przeciwną parzystość. Nie zmniejszając ogólności, możemy założyć, że liczby <math>x, a</math> są parzyste, a&nbsp;liczby <math>y, b</math> nieparzyste.
  
:* jeżeli <math>n</math> jest liczbą pierwszą i <math>n \nmid d</math>, to <math>P(n - 1) |d</math> oraz <math>p_0 = n</math> (dla ustalonego <math>d</math> może istnieć tylko jeden ciąg)
+
<math>\boldsymbol{n = 2}</math>
:* jeżeli <math>n</math> jest liczbą złożoną lub <math>n|d</math>, to <math>P(n) |d</math> oraz <math>p_0 > n</math>
 
  
Funkcja <math>P(t)</math> jest iloczynem wszystkich liczb pierwszych nie większych od <math>t</math>.
+
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby <math>x, a</math> występująca w&nbsp;rozkładach <math>x^2 + 2 y^2 = a^2 + 2 b^2</math> muszą być nieparzyste. Pokażemy, że liczby <math>y, b</math> muszą mieć taką samą parzystość. Przypuśćmy, że <math>y</math> jest parzysta, a <math>b</math> nieparzysta, wtedy modulo <math>4</math> dostajemy
  
 +
::<math>1 + 2 \cdot 0 \equiv 1 + 2 \cdot 1 \!\! \pmod{4}</math>
  
 +
Co jest niemożliwe.
  
<span style="font-size: 110%; font-weight: bold;">Przykład C65</span><br/>
+
<math>\boldsymbol{n = 3}</math>
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi <math>d = 10^t</math>, gdzie <math>t \geqslant 1</math>. Zauważmy, że dla dowolnego <math>t</math> liczba <math>3</math> jest najmniejszą liczbą pierwszą, która nie dzieli <math>d</math>. Z&nbsp;oszacowania <math>n \leqslant 3</math> wynika, że musi być <math>n = 3</math>.
 
  
Jeżeli długość ciągu <math>n = 3</math> i <math>n \nmid d</math>, to musi być <math>p_0 = n = 3</math> i&nbsp;może istnieć tylko jeden PAP dla każdego <math>d</math>. W&nbsp;przypadku <math>t \leqslant 10000</math> jedynie dla <math>t = 1, 5, 6, 17</math> wszystkie liczby ciągu arytmetycznego <math>(3, 3 + 10^t, 3 + 2 \cdot 10^t)</math> są pierwsze.
+
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby występujące w&nbsp;rozkładach <math>x^2 + 3 y^2 = a^2 + 3 b^2</math> muszą mieć przeciwną parzystość. Pokażemy, że liczby <math>x, a</math> muszą mieć taką samą parzystość. Gdyby liczba <math>x</math> była nieparzysta, a&nbsp;liczba <math>a</math> parzysta, to modulo <math>4</math> mielibyśmy
  
 +
::<math>1 + 3 \cdot 0 \equiv 0 + 3 \cdot 1 \!\! \pmod{4}</math>
  
 +
Co jest niemożliwe.
 +
</div>
 +
Mamy
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C66</span><br/>
+
::<math>x^2 - a^2 = n (b^2 - y^2)</math>
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>d = 2, 4, 8, 10, 14, 16</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>(x - a) (x + a) = n (b - y) (b + y)</math>
Zauważmy, że dla każdej z&nbsp;podanych różnic <math>d</math>, liczba <math>3</math> jest najmniejszą liczbą pierwszą, która nie dzieli <math>d</math>. Z&nbsp;oszacowania <math>n \leqslant 3</math> wynika, że musi być <math>n = 3</math>.
 
  
Ponieważ <math>n = 3</math> jest liczbą pierwszą i&nbsp;dla wypisanych <math>d</math> liczba <math>n \nmid d</math>, to w&nbsp;każdym przypadku może istnieć tylko jeden ciąg, którego pierwszym wyrazem jest liczba pierwsza <math>p_0 = n = 3</math>. Dla <math>d = 2, 4, 8, 10, 14</math> łatwo znajdujemy odpowiednie ciągi
+
Niech <math>f = \gcd (x - a, b - y)</math>, zatem <math>f</math> jest liczbą parzystą i
  
::<math>(3, 5, 7)</math>, <math>\qquad (3, 7, 11)</math>, <math>\qquad (3, 11, 19)</math>, <math>\qquad (3, 13, 23)</math>, <math>\qquad (3, 17, 31)</math>
+
::<math>x - a = f r , \qquad \qquad b - y = f s , \qquad \qquad \gcd (r, s) = 1</math>
  
Dla <math>d = 16</math> szukany ciąg nie istnieje, bo <math>35 = 5 \cdot 7</math>.<br/>
+
Czyli
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>r(x + a) = n s (y + b)</math>
  
 +
ale liczby <math>r, s</math> są względnie pierwsze, zatem <math>s \mid (x + a)</math> i&nbsp;musi być
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C67</span><br/>
+
::<math>x + a = k s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = k r</math>
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>n = 3, 5, 7, 11</math> i <math>d = P (n - 1)</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Gdyby <math>k</math> było liczbą nieparzystą, to liczby <math>r, s</math> musiałyby być parzyste, co jest niemożliwe, bo <math>\gcd (r, s) = 1</math>. Zatem <math>k</math> jest liczbą parzystą i <math>2 s \mid (x + a)</math>, czyli możemy pokazać więcej. Musi być
Z założenia PAP ma długość <math>n</math>, liczba <math>n</math> jest liczbą pierwszą i <math>n \nmid d</math>. Zatem może istnieć tylko jeden PAP taki, że <math>p_0 = n</math>. Dla <math>n = 3, 5</math> i&nbsp;odpowiednio <math>d = 2, 6</math> otrzymujemy ciągi arytmetyczne liczb pierwszych
 
  
::<math>(3, 5, 7)</math>, <math>\qquad (5, 11, 17, 23, 29)</math>
+
::<math>x + a = 2 l s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = 2 l r</math>
  
Ale dla <math>n = 7, 11</math> i&nbsp;odpowiednio <math>d = 30, 210</math> szukane ciągi nie istnieją, bo
+
W przypadku gdy <math>n = 2</math> lub <math>n = 3</math>, zauważmy, że <math>n \mid l</math> lub <math>n \mid r</math>.
  
::<math>(7, 37, 67, 97, 127, 157, {\color{Red} 187 = 11 \cdot 17})</math>
+
Łatwo otrzymujemy
  
::<math>(11, {\color{Red} 221 = 13 \cdot 17}, 431, 641, {\color{Red} 851 = 23 \cdot 37}, 1061, {\color{Red} 1271 = 31 \cdot 41}, 1481, {\color{Red} 1691 = 19 \cdot 89}, 1901, 2111)</math><br/>
+
::<math>x = {\small\frac{1}{2}} (2 l s + f r)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>y = {\small\frac{1}{2 n}} (2 l r - n f s)</math>
  
 +
Ostatecznie
  
<span style="font-size: 110%; font-weight: bold;">Przykład C68</span><br/>
+
::<math>Q = x^2 + n y^2</math>
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych, takie że <math>n = p_0</math> dla <math>n = 3, 5, 7, 11, 13</math>. Zauważmy, że wypisane w&nbsp;tabeli wartości <math>d</math> są wielokrotnościami liczby <math>P(n - 1)</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabelę|Hide=Ukryj tabelę}}
+
::<math>\;\;\;\: = \left[ {\small\frac{1}{2}} (2 l s + f r) \right]^2 + n \left[ {\small\frac{1}{2 n}} (2 l r - n f s) \right]^2</math>
{| class="wikitable plainlinks"  style="display: inline-table; font-size: 80%; text-align: right;"
 
|- style="text-align: center;"
 
| style="background:#98fb98;"|<math>\mathbf{n = p_0}</math>
 
| colspan=10 style="background:#ffd890;"| <math>\mathbf{d}</math>
 
|-
 
|-
 
| style="background:#98fb98; text-align: center;"|<math>\mathbf{3}</math>||<math>2</math>||<math>4</math>||<math>8</math>||<math>10</math>||<math>14</math>||<math>20</math>||<math>28</math>||<math>34</math>||<math>38</math>||<math>40</math>
 
|-
 
| style="background:#98fb98; text-align: center;"|<math>\mathbf{5}</math>||<math>6</math>||<math>12</math>||<math>42</math>||<math>48</math>||<math>96</math>||<math>126</math>||<math>252</math>||<math>426</math>||<math>474</math>||<math>594</math>
 
|-
 
| style="background:#98fb98; text-align: center;"|<math>\mathbf{7}</math>||<math>150</math>||<math>2760</math>||<math>3450</math>||<math>9150</math>||<math>14190</math>||<math>20040</math>||<math>21240</math>||<math>63600</math>||<math>76710</math>||<math>117420</math>
 
|-
 
| style="background:#98fb98; text-align: center;"|<math>\mathbf{11}</math>||<math>1536160080</math>||<math>4911773580</math>||<math>25104552900</math>||<math>77375139660</math>||<math>83516678490</math>||<math>100070721660</math>||<math>150365447400</math>||<math>300035001630</math>||<math>318652145070</math>||<math>369822103350</math>
 
|-
 
| style="background:#98fb98; text-align: center;"|<math>\mathbf{13}</math>||<math>9918821194590</math>||<math>104340979077720</math>||<math>187635245859600</math>||<math>232320390245790</math>||<math>391467874710990</math>||<math>859201916576850</math>||<math>1024574038282410</math>||<math>1074380369464710</math>||<math>1077624363457950</math>||<math>1185763337651970</math>
 
|}
 
  
 +
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s + f r)^2 + (2 l r - n f s)^2]</math>
  
Przykłady takich ciągów dla jeszcze większych liczb pierwszych Czytelnik znajdzie na stronie [http://oeis.org/A088430 A088430].<br/>
+
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s)^2 + n (f r)^2 + (2 l r)^2 + (n f s)^2]</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2)</math>
  
 +
<div style="border: thin solid black; padding-top: 0em; margin-top: 0.5em; padding-bottom: 0em; margin-bottom: 0.5em;">
 +
<math>\boldsymbol{n = 1}</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład C69</span><br/>
+
::<math>Q = {\small\frac{1}{4}} [(2 l)^2 + f^2] (r^2 + s^2) = \left[ l^2 + \left( {\small\frac{f}{2}} \right)^2 \right] (r^2 + s^2)</math>
Liczby <math>3, 5, 7</math> są najprostszym przykładem ciągu arytmetycznego '''kolejnych''' liczb pierwszych. Zauważmy, że tylko w&nbsp;przypadku <math>n = 3</math> możliwa jest sytuacja, że <math>n = p_0 = 3</math>. Istotnie, łatwo stwierdzamy, że
 
  
:* ponieważ <math>p_0</math> i <math>p_1</math> są '''kolejnymi''' liczbami pierwszymi, to <math>p_1 - p_0 < p_0</math> (zobacz zadanie B22)
+
<math>\boldsymbol{n = 2 , 3}</math>
:* dla dowolnej liczby pierwszej <math>q \geqslant 5</math> jest <math>q < P (q - 1)</math> (zobacz zadanie B26)
 
  
Przypuśćmy teraz, że istnieje ciąg arytmetyczny '''kolejnych''' liczb pierwszych, taki że <math>n = p_0 \geqslant 5</math>. Mamy
+
W zależności od tego, która z&nbsp;liczb <math>l, r</math> jest podzielna przez <math>n</math>, możemy napisać
  
::<math>d = p_1 - p_0 < p_0 < P (p_0 - 1) = P (n - 1)</math>
+
::<math>Q = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4 n}} \right] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4}} \right] \left( {\small\frac{r^2 + n s^2}{n}} \right)</math>
 +
</div>
  
Zatem <math>P(n - 1) \nmid d</math>, co jest niemożliwe.
+
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Wynika stąd, że poza przypadkiem <math>n = p_0 = 3</math> ciąg arytmetyczny kolejnych liczb pierwszych musi spełniać warunek <math>P(n)|d</math>, czyli <math>P(n)|(p_1 - p_0)</math>.
 
  
Poniższe tabele przedstawiają przykładowe ciągi arytmetyczne kolejnych liczb pierwszych o&nbsp;długościach <math>n = 3, 4, 5, 6</math> dla rosnących wartości <math>p_0</math>. Nie istnieje ciąg arytmetyczny kolejnych liczb pierwszych o&nbsp;długości <math>n = 7</math> dla <math>p_0 < 10^{13}</math>. Prawdopodobnie CPAP-7 pojawią się dopiero dla <math>p_0 \sim 10^{20}</math>.
 
  
Znane są ciągi arytmetyczne kolejnych liczb pierwszych o&nbsp;długościach <math>n \leqslant 10</math><ref name="CPAP1"/>.
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J101</span><br/>
 +
Zauważmy, że iloczyn liczb postaci <math>x^2 + n y^2</math> jest liczbą tej samej postaci.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabele|Hide=Ukryj tabele}}
+
::<math>(a^2 + n b^2) (x^2 + n y^2) = (a x + n b y)^2 + n (a y - b x)^2</math>
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
::::::::<math>\;\;\;\:\, = (a x - n b y)^2 + n (a y + b x)^2</math>
|- style="background: #98fb98; text-align: center;"
+
 
| colspan=2 | <math>\mathbf{n = 3}</math>
+
 
|- style="text-align: center;"
+
 
| <math>\mathbf{p_0 \leqslant 10^{3}}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J102</span><br/>
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
Niech <math>x, y, a, b \in \mathbb{Z}</math> i <math>n \in \{ 1, 2, 3 \}</math>. Jeżeli liczba parzysta <math>Q = x^2 + n y^2</math>, to <math>Q = 2^{\alpha} R</math>, gdzie <math>R = a^2 + n b^2</math> jest liczbą nieparzystą.
|-
+
 
| <math>\mathbf{3}</math> || style="background:#ffd890;"|<math>2</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
W szczególnym przypadku, gdy <math>R = 1</math>, mamy <math>R = 1^2 + n \cdot 0^2</math>.
| <math>\mathbf{47}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
Dowód sprowadza się do podania wzorów, które pozwalają obniżyć wykładnik, z&nbsp;jakim liczba <math>2</math> występuje w&nbsp;rozwinięciu na czynniki pierwsze liczby <math>Q</math>. Zauważmy, że wynik jest zawsze liczbą, której postać jest taka sama, jak postać liczby <math>Q</math>. Stosując te wzory odpowiednią ilość razy, otrzymujmy rozkład <math>Q = 2^{\alpha} R</math>, gdzie <math>R</math> jest liczbą nieparzystą postaci <math>a^2 + n b^2</math>.
| <math>\mathbf{151}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
'''1.''' <math>\boldsymbol{Q = x^2 + y^2}</math>
| <math>\mathbf{167}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + \left( {\small\frac{y}{2}} \right)^2</math>
| <math>\mathbf{199}</math> || style="background:#ffd890;"|<math>12</math>
+
 
|-
+
b) jeżeli liczby <math>x, y</math> są nieparzyste, to <math>{\small\frac{Q}{2}} = \left( {\small\frac{x + y}{2}} \right)^2 + \left( {\small\frac{x - y}{2}} \right)^2</math>
| <math>\mathbf{251}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
'''2.''' <math>\boldsymbol{Q = x^2 + 2 y^2}</math>
| <math>\mathbf{257}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 2 \left( {\small\frac{y}{2}} \right)^2</math>
| <math>\mathbf{367}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
b) jeżeli liczba <math>x</math> jest parzysta, a <math>y</math> nieparzysta, to <math>{\small\frac{Q}{2}} = y^2 + 2 \left( {\small\frac{x}{2}} \right)^2</math>
| <math>\mathbf{557}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
'''3.''' <math>\boldsymbol{Q = x^2 + 3 y^2}</math>
| <math>\mathbf{587}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 3 \left( {\small\frac{y}{2}} \right)^2</math>
| <math>\mathbf{601}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
b) jeżeli liczby <math>x, y</math> są nieparzyste i <math>4| (x + y)</math>, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x - 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x + y}{4}} \right)^2</math>
| <math>\mathbf{647}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
c) jeżeli liczby <math>x, y</math> są nieparzyste i <math>4| (x - y)</math>, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x + 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x - y}{4}} \right)^2</math>
| <math>\mathbf{727}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
Co należało pokazać.<br/>
| <math>\mathbf{941}</math> || style="background:#ffd890;"|<math>6</math>
+
&#9633;
|-
+
{{\Spoiler}}
| <math>\mathbf{971}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|}
+
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
+
 
|- style="background: #98fb98; text-align: center;"
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J103</span><br/>
| colspan=2 | <math>\mathbf{n = 4}</math>
+
Liczba pierwsza <math>p \geqslant 3</math> jest postaci
|- style="text-align: center;"
+
 
| <math>\mathbf{p_0 \leqslant 10^{4}}</math>
+
:(a)&nbsp;&nbsp;<math>4 k + 1</math>
| style="background: #ffd890;" | <math>\mathbf{d}</math>
+
 
|-
+
:(b)&nbsp;&nbsp;<math>8 k + 1 \,</math> lub <math>\: 8 k + 3</math>
| <math>\mathbf{251}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
:(c)&nbsp;&nbsp;<math>6 k + 1</math>
| <math>\mathbf{1741}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
wtedy i&nbsp;tylko wtedy, gdy istnieje dokładnie jedna para liczb całkowitych dodatnich <math>x, y</math>, że
| <math>\mathbf{3301}</math> || style="background:#ffd890;"|<math>6</math>
+
 
|-
+
:(a)&nbsp;&nbsp;<math>p = x^2 + y^2</math>
| <math>\mathbf{5101}</math> || style="background:#ffd890;"|<math>6</math>
 
|-
 
| <math>\mathbf{5381}</math> || style="background:#ffd890;"|<math>6</math>
 
|-
 
| <math>\mathbf{6311}</math> || style="background:#ffd890;"|<math>6</math>
 
|-
 
| <math>\mathbf{6361}</math> || style="background:#ffd890;"|<math>6</math>
 
|}
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
 
|- style="background: #98fb98; text-align: center;"
 
| colspan=2 | <math>\mathbf{n = 5}</math>
 
|- style="text-align: center;"
 
| <math>\mathbf{p_0 \leqslant 10^{8}}</math>
 
| style="background: #ffd890;" | <math>\mathbf{d}</math>
 
|-
 
| <math>\mathbf{9843019}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{37772429}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{53868649}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{71427757}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{78364549}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{79080577}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{98150021}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{99591433}</math> || style="background:#ffd890;"|<math>30</math>
 
|}
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 80%; text-align: right;"
 
|- style="background: #98fb98; text-align: center;"
 
| colspan=2 | <math>\mathbf{n = 6}</math>
 
|- style="text-align: center;"
 
| <math>\mathbf{p_0 \leqslant 10^{10}}</math>
 
| style="background: #ffd890;" | <math>\mathbf{d}</math>
 
|-
 
| <math>\mathbf{121174811}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{1128318991}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{2201579179}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{2715239543}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{2840465567}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{3510848161}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{3688067693}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{3893783651}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{5089850089}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{5825680093}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{6649068043}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{6778294049}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{7064865859}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{7912975891}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{8099786711}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{9010802341}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{9327115723}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{9491161423}</math> || style="background:#ffd890;"|<math>30</math>
 
|-
 
| <math>\mathbf{9544001791}</math> || style="background:#ffd890;"|<math>30</math>
 
|}
 
<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
:(b)&nbsp;&nbsp;<math>p = x^2 + 2 y^2</math>
  
 +
:(c)&nbsp;&nbsp;<math>p = x^2 + 3 y^2</math>
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C70</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Uzasadnij przypuszczenie, że ciągów arytmetycznych '''kolejnych''' liczb pierwszych o&nbsp;długości <math>n = 7</math> możemy oczekiwać dopiero dla <math>p_0 \sim 10^{20}</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
<math>\Large{\Longleftarrow}</math>
Zauważmy, że ilość liczb pierwszych nie większych od <math>x</math> w&nbsp;dobrym przybliżeniu jest określona funkcją <math>\frac{x}{\log x}</math>. Ponieważ funkcja <math>\log x</math> zmienia się bardzo wolno, to odcinki liczb naturalnych o&nbsp;tej samej długości położone w&nbsp;niewielkiej odległości od siebie będą zawierały podobne ilości liczb pierwszych. Przykładowo, dla dużych wartości <math>x</math>, ilość liczb pierwszych w&nbsp;przedziale <math>(x, 2 x)</math> jest tego samego rzędu, co ilość liczb pierwszych w&nbsp;przedziale <math>(1, x)</math><ref name="PrimesInInterval"/>.
 
  
 +
Niech <math>n = 1, 2, 3</math>. Z&nbsp;założenia liczba pierwsza <math>p \geqslant 3</math> może być przedstawiona w&nbsp;postaci <math>p = x_0^2 + n y_0^2</math>, gdzie <math>x_0, y_0</math> są liczbami takimi, że <math>1 \leqslant x_0, y_0 < p</math>. Zatem <math>p \nmid x_0</math> i <math>p \nmid y_0</math>, a&nbsp;rozpatrując równanie <math>p = x_0^2 + n y_0^2</math> modulo <math>p</math> dostajemy
  
Zatem liczbę <math>\frac{1}{\log x}</math> możemy traktować jako prawdopodobieństwo trafienia na liczbę pierwszą wśród liczb znajdujących się w&nbsp;pobliżu liczby <math>x</math>. Zakładając, że liczby pierwsze są rozłożone przypadkowo, możemy wyliczyć prawdopodobieństwo tego, że <math>n</math> kolejnych liczb pierwszych, położonych w&nbsp;pobliżu liczby <math>x</math>, utworzy ciąg arytmetyczny
+
::<math>x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p}</math>
  
::<math>\text{prob}_{\text{cpap}} (n, x) = \left( \frac{1}{\log x} \right)^n \left( 1 - \frac{1}{\log x} \right)^{(n - 1) (d - 1)}</math>
+
Zauważmy, że liczba <math>x_0</math> jest rozwiązaniem kongruencji
  
gdzie <math>d = P (n)</math>. Jest tak, ponieważ w&nbsp;ciągu kolejnych liczb całkowitych musimy trafić na liczbę pierwszą, następnie na <math>d - 1</math> liczb złożonych, taka sytuacja musi się powtórzyć dokładnie <math>n - 1</math> razy, a&nbsp;na koniec znowu musimy trafić na liczbę pierwszą. Czyli potrzebujemy <math>n</math> liczb pierwszych, na które trafiamy z&nbsp;prawdopodobieństwem <math>\frac{1}{\log x}</math> oraz <math>(n - 1) (d - 1)</math> liczb złożonych, na które trafiamy z&nbsp;prawdopodobieństwem <math>1 - \frac{1}{\log x}</math>, a&nbsp;liczby te muszą pojawiać się w&nbsp;ściśle określonej kolejności.
+
::<math>x^2 \equiv - n y_0^2 \!\! \pmod{p}</math>
  
 +
Wynika stąd, że liczba <math>- n y_0^2</math> jest liczbą kwadratową modulo <math>p</math>. Zatem
  
Ilość ciągów arytmetycznych utworzonych przez <math>n</math> kolejnych liczb pierwszych należących do przedziału <math>(x, 2 x)</math> możemy zatem oszacować na równą około
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{- n y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1</math>
 +
</div>
  
::<math>Q_{\text{cpap}}(n, x) = x \cdot \left( \frac{1}{\log x} \right)^n \left( 1 - \frac{1}{\log x} \right)^{(n - 1) (d - 1)}</math>
+
Z twierdzenia J42 i&nbsp;zadania J46 otrzymujemy natychmiast
  
 +
:(a) jeżeli <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>4 k + 1</math>
  
Porównując powyższe oszacowanie z&nbsp;rzeczywistą ilością <math>\# \text{CPAP}(n, x)</math> ciągów arytmetycznych kolejnych liczb pierwszych w&nbsp;przedziale <math>(x, 2x)</math> dostajemy
+
:(b) jeżeli <math>\left( {\small\frac{- 2}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>8 k + 1</math> lub <math>8 k + 3</math>
  
::<math>\frac{\# \text{CPAP}(n, x)}{Q_{\text{cpap}} (n, x)} = f (n, x)</math>
+
:(c) jeżeli <math>\left( {\small\frac{- 3}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>6 k + 1</math>
  
gdzie w&nbsp;możliwym do zbadania zakresie, czyli dla <math>x < 2^{42} \approx 4.4 \cdot 10^{12}</math> mamy
+
Co należało pokazać.
  
::<math>f(n, x) \approx a_n \cdot \log x + b_n</math>
 
  
Stałe <math>a_n</math> i <math>b_n</math> wyznaczamy metodą regresji liniowej. Musimy pamiętać, że uzyskanych w&nbsp;ten sposób wyników nie możemy ekstrapolować dla dowolnie dużych <math>x</math>.
+
<math>\Large{\Longrightarrow}</math>
  
W przypadku <math>n = 5</math> oraz <math>n = 6</math> dysponowaliśmy zbyt małą liczbą danych, aby wyznaczyć stałe <math>a_n</math> i <math>b_n</math> z&nbsp;wystarczającą dokładnością. Dlatego w&nbsp;tych przypadkach ograniczyliśmy się do podania oszacowania funkcji <math>f(n, x)</math>.
+
'''A. Istnienie rozwiązania kongruencji''' <math>\boldsymbol{x^2 + n y^2 \equiv 0 \!\! \pmod{p}}</math>
  
Uzyskany wyżej rezultaty są istotne, bo z&nbsp;wyliczonych postaci funkcji <math>f(n, x)</math> wynika, że są to funkcje bardzo wolno zmienne, a&nbsp;ich ekstrapolacja jest w&nbsp;pełni uprawniona.
+
Z założenia liczba pierwsza <math>p \geqslant 3</math> jest postaci
  
 +
:(a)&nbsp;&nbsp;<math>4 k + 1</math>
  
W zamieszczonej niżej tabeli mamy kolejno
+
:(b)&nbsp;&nbsp;<math>8 k + 1 \,</math> lub <math>\: 8 k + 3</math>
  
:* <math>n</math>, czyli długość CPAP
+
:(c)&nbsp;&nbsp;<math>6 k + 1</math>
:* wartość iloczynu <math>n \cdot P (n)</math>
 
:* znalezioną postać funkcji <math>f(n, x)</math> lub oszacowanie wartości tej funkcji <math>C_n</math> na podstawie uzyskanych danych; w&nbsp;przypadku <math>n = 7</math> jest to oszacowanie wynikające z&nbsp;obserwacji, że wartości funkcji <math>f(n, x)</math> są rzędu <math>n \cdot P (n)</math>
 
:* wyliczoną wartość <math>\frac{\# \text{CPAP}(n, 2^{40})}{Q_{\text{cpap}}(n, 2^{40})}</math>, czyli <math>f(n, 2^{40})</math>
 
:* wartość funkcji <math>f(n, 2^{70})</math> wynikające z&nbsp;ekstrapolacji wzoru <math>f(n, x) = a_n \cdot \log x + b_n \qquad</math> (dla <math>n = 3, 4</math>)
 
:* wartość <math>x</math> wynikającą z&nbsp;rozwiązania równania
 
::: <math>\qquad (a_n \cdot \log x + b_n) \cdot Q_{\text{cpap}} (n, x) = 1 \qquad</math> (dla <math>n = 3, 4</math>)
 
::: <math>\qquad C_n \cdot Q_{\text{cpap}} (n, x) = 1 \qquad</math> (dla <math>n = 5, 6, 7</math>)
 
:* dla porównania w&nbsp;kolejnych kolumnach zostały podane dwie najmniejsze wartości <math>p_0</math> dla CPAP-n
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
+
Wynika stąd, że dla (a) <math>n = 1</math>, (b) <math>n = 2</math>, (c) <math>n = 3</math> mamy
|-
 
! <math>n</math> !! <math>n \cdot P(n)</math> !! <math>f (n, x) \quad \text{lub} \quad C_n</math> !! <math>f (n, 2^{40})</math> !! <math>f (n, 2^{70})</math> !! <math>\sim p_0</math> !! <math></math> !! <math></math>
 
|-
 
| <math>\quad 3 \quad</math> || <math>18</math> || <math>0.52 \cdot \log x + 6.3</math> || <math>20.94</math> || <math>30</math> || <math>130</math> || <math>47</math> || <math>151</math>
 
|-
 
| <math>\quad 4 \quad</math> || <math>24</math> || <math>0.53 \cdot \log x + 11.6</math> || <math>26.61</math> || <math>36</math> || <math>1.5 \cdot 10^3</math> || <math>251</math> || <math>1741</math>
 
|-
 
| <math>\quad 5 \quad</math> || <math>150</math> || <math>120</math> || <math>121.45</math> || <math></math> || <math>15 \cdot 10^6</math> || <math>9843019</math> || <math>37772429</math>
 
|-
 
| <math>\quad 6 \quad</math> || <math>180</math> || <math>235</math> || <math>228.27</math> || <math></math> || <math>540 \cdot 10^6</math> || <math>121174811</math> || <math>1128318991</math>
 
|-
 
| <math>\quad 7 \quad</math> || <math>1470</math> || <math>2500</math> || <math>0</math> || <math></math> || <math>2 \cdot 10^{20}</math> || <math></math> || <math></math>
 
|}
 
  
Zauważając, że funkcje <math>f(n, x)</math> są rzędu <math>n \cdot P (n)</math> i&nbsp;przyjmując, że podobnie będzie dla <math>f(7, x)</math>, możemy wyliczyć wartość <math>x</math>, dla której może pojawić się pierwszy CPAP-7. Wartość ta jest równa w&nbsp;przybliżeniu <math>2 \cdot 10^{20}</math> i&nbsp;wynika z&nbsp;rozwiązania równania
+
::<math>\left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1</math>
  
::<math>f(7, x) \cdot Q_{\text{cpap}}(7, x) = 1</math>
+
(zobacz J42 i&nbsp;J46) i&nbsp;liczba <math>- n</math> jest liczbą kwadratową modulo <math>p</math>. Zatem kongruencja
  
Możemy ją łatwo wyliczyć w&nbsp;PARI/GP. Oczywiście funkcję <math>f(7, x)</math> zastąpiliśmy jej oszacowaniem <math>C_7 = 2500</math>
+
::<math>x^2 \equiv - n \!\! \pmod{p}</math>
  
P(n) = prod(k=2, n, if( isprime(k), k, 1 ))
+
ma rozwiązanie, czyli istnieje taka liczba <math>k</math>, że
Q(x) = 2500 * x * ( 1/log(x) )^7 * ( 1 - 1/log(x) )^( (7-1)*(P(7)-1) )
 
solve(x=10^10, 10^23, Q(x) - 1 )
 
<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>k^2 + n \equiv 0 \!\! \pmod{p}</math>
  
 +
Zauważmy, że liczby <math>x_0 = k</math> i <math>y_0 = 1</math> są szczególnymi przypadkami rozwiązania kongruencji
  
 +
::<math>x^2 + n y^2 \equiv 0 \!\! \pmod{p}</math>
  
 +
W przypadku (a), korzystając z&nbsp;twierdzenia Wilsona (zobacz J18), liczbę <math>x_0</math> możemy jawnie wypisać: <math>x_0 = \left( {\small\frac{p - 1}{2}} \right) !</math>
  
== Uzupełnienie ==
 
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C71 (lemat Bézouta)</span><br/>
+
'''B. Zmniejszenie rozwiązania początkowego'''
Jeżeli liczby całkowite <math>a</math> i <math>b</math> nie są jednocześnie równe zeru, a&nbsp;największy wspólny dzielnik tych liczb jest równy <math>D</math>, to istnieją takie liczby całkowite <math>x, y</math>, że
 
  
::<math>a x + b y = D</math>
+
Niech liczby <math>x_0, y_0</math> takie, że <math>p \nmid x_0 \,</math> i <math>\, p \nmid y_0</math> spełniają kongruencję
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p}</math>
Niech <math>S</math> będzie zbiorem wszystkich liczb całkowitych dodatnich postaci <math>a n + b m</math>, gdzie <math>n, m</math> są dowolnymi liczbami całkowitymi. Zbiór <math>S</math> nie jest zbiorem pustym, bo przykładowo liczba <math>a^2 + b^2 \in S</math>. Z&nbsp;zasady dobrego uporządkowania liczb naturalnych wynika, że zbiór <math>S</math> ma element najmniejszy, oznaczmy go literą <math>d</math>.
 
  
Pokażemy, że <math>d \mid a</math> i <math>d \mid b</math>. Z&nbsp;twierdzenia o&nbsp;dzieleniu z&nbsp;resztą możemy napisać <math>a = k d + r</math>, gdzie <math>0 \leqslant r < d</math>.
+
Wybierzmy liczby <math>r, s</math> tak, aby były najbliższymi liczbami całkowitymi odpowiednio dla liczb <math>{\small\frac{x_0}{p}} \,</math> i <math>\, {\small\frac{y_0}{p}}</math>. Z&nbsp;definicji mamy
  
Przypuśćmy, że <math>d \nmid a</math>, czyli że <math>r > 0</math>. Ponieważ <math>d \in S</math>, to mamy <math>d = a u + b v</math> dla pewnych liczb całkowitych <math>u</math> i <math>v</math>. Zatem
+
::<math>\left| {\small\frac{x_0}{p}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y_0}{p}} - s \right| \leqslant {\small\frac{1}{2}}</math>
  
::<math>r = a - k d =</math>
+
Zatem
  
::<math>\;\;\, = a - k (a u + b v) =</math>
+
::<math>| x_0 - r p | \leqslant {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \leqslant {\small\frac{p}{2}}</math>
  
::<math>\;\;\, = a \cdot (1 - k u) + b \cdot (- k v)</math>
+
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie <math>{\small\frac{p}{2}}</math>, gdzie <math>p</math> jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
  
Wynika stąd, że dodatnia liczba <math>r</math> należy do zbioru <math>S</math> oraz <math>r < d</math>, wbrew określeniu liczby <math>d</math>, czyli musi być <math>r = 0</math> i <math>d \mid a</math>. Podobnie pokazujemy, że <math>d \mid b</math>.
+
::<math>| x_0 - r p | < {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | < {\small\frac{p}{2}}</math>
  
Jeżeli <math>d'</math> jest innym dzielnikiem liczb <math>a</math> i <math>b</math>, to <math>d' \mid d</math>, bo <math>d' \mid (a u + b v)</math>. Zatem <math>d' \leqslant d</math>, skąd wynika natychmiast, że liczba <math>d</math> jest największym z&nbsp;dzielników, które jednocześnie dzielą liczby <math>a</math> oraz <math>b</math>.
+
Wynika stąd, że dla dowolnego rozwiązania początkowego <math>x_0, y_0</math> możemy wybrać liczby  
Czyli <math>d = D</math>.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>x = x_0 - r p \qquad \qquad \text{i} \qquad \qquad y = y_0 - s p</math>
  
 +
takie, że <math>p \nmid x</math> oraz <math>p \nmid y</math> i&nbsp;dla których
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C72 (lemat Euklidesa)</span><br/>
+
::<math>0 < x^2 + n y^2 < \left( {\small\frac{p}{2}} \right)^2 + n \left( {\small\frac{p}{2}} \right)^2 = {\small\frac{(n + 1) p}{4}} \cdot p</math>
Niech <math>p</math> będzie liczbą pierwszą oraz <math>a, b, d \in \mathbb{Z}</math>.
 
  
:* jeżeli <math>d \mid a b</math> i liczba <math>d</math> jest względnie pierwsza z <math>a</math>, to <math>d \mid b</math>
+
Ponieważ modulo <math>p</math> jest <math>x \equiv x_0 \,</math> i <math>\, y \equiv y_0</math>, to liczby <math>x, y</math> spełniają kongruencję
  
:* jeżeli <math>p \mid a b</math>, to <math>p \mid a</math> lub <math>p \mid b</math>
+
::<math>x^2 + n y^2 \equiv 0 \!\! \pmod{p}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Zatem wynikające z&nbsp;powyższej kongruencji równanie
  
'''Punkt 1.'''
+
::<math>x^2 + n y^2 = m p</math>
  
Z założenia liczby <math>d</math> i <math>a</math> są względnie pierwsze, zatem na mocy lematu Bézouta (twierdzenie C71) istnieją takie liczby całkowite <math>x</math> i <math>y</math>, że
+
ma rozwiązanie dla liczb
  
::<math>d x + a y = 1</math>
+
::<math>| x | < {\small\frac{p}{2}} , \qquad \qquad | y | < {\small\frac{p}{2}}, \qquad \qquad 1 \leqslant m < {\small\frac{(n + 1) p}{4}}</math>
  
Mnożąc obie strony równania przez <math>b</math>, dostajemy
+
Pomysł ze zmniejszaniem liczb stanowiących rozwiązanie za chwilę wykorzystamy ponownie i&nbsp;będzie to istotny element dowodu.
  
::<math>d b x + a b y = b</math>
 
  
Obydwa wyrazy po prawej stronie są podzielne przez <math>d</math>, bo z założenia <math>d \mid a b</math>. Zatem prawa strona również jest podzielna przez <math>d</math>, czyli <math>d \mid b</math>. Co kończy dowód punktu pierwszego.
+
'''C. Metoda nieskończonego schodzenia Fermata'''<ref name="InfiniteDescent1"/><ref name="Bussey1"/>
  
'''Punkt 2.'''
+
Pomysł dowodu został zaczerpnięty z&nbsp;książki Hardy'ego i&nbsp;Wrighta<ref name="HardyWright1"/>.
  
Jeżeli <math>p \nmid a</math>, to <math>\gcd (p, a) = 1</math>, zatem z punktu pierwszego wynika, że <math>p \mid b</math>.
+
Jeżeli w&nbsp;rozwiązaniu <math>m = 1</math>, to <math>p = x^2 + n y^2</math> i&nbsp;twierdzenie jest udowodnione. W&nbsp;przypadku gdy <math>m > 1</math> wskażemy sposób postępowania, który pozwoli nam z&nbsp;istniejącego rozwiązania równania
  
Jeżeli <math>p \nmid b</math>, to <math>\gcd (p, b) = 1</math>, zatem z punktu pierwszego wynika, że <math>p \mid a</math>.
+
::<math>x^2 + n y^2 = m p</math>
  
Czyli <math>p</math> musi dzielić przynajmniej jedną z liczb <math>a, b</math>. Co należało pokazać.<br/>
+
otrzymać nowe rozwiązanie tej samej postaci
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>x_1^2 + n y_1^2 = m_1 p</math>
  
 +
takie, że <math>1 \leqslant m_1 < m</math>. Powtarzając tę procedurę odpowiednią ilość razy, otrzymamy rozwiązanie <math>x_k, y_k, m_k</math>, gdzie <math>m_k = 1</math>. Istnienie takiej procedury stanowi dowód prawdziwości twierdzenia.
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C73</span><br/>
+
Zauważmy, że podział na parzyste i&nbsp;nieparzyste liczby <math>m</math> jest konieczny tylko w&nbsp;przypadku gdy <math>n = 3</math>. W&nbsp;pozostałych przypadkach nie musimy wzmacniać nierówności, aby prawdziwe było oszacowanie <math>1 \leqslant m_1 < m</math>.
Niech <math>a, b, m \in \mathbb{Z}</math>. Jeżeli <math>a \mid m</math> i <math>b \mid m</math> oraz <math>\gcd (a, b) = 1</math>, to <math>a b \mid m</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
'''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą parzystą'''
  
Z założenia istnieją takie liczby <math>r, s, x, y \in \mathbb{Z}</math>, że <math>m = a r</math> i <math>m = b s</math> oraz
+
Jeżeli <math>m > 1</math> jest liczbą parzystą, to z&nbsp;twierdzenia J102 wiemy, że liczba <math>x^2 + n y^2</math> może być zapisana w&nbsp;postaci
  
::<math>a x + b y = 1</math>
+
::<math>x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1)</math>
  
(zobacz C71). Zatem
+
gdzie <math>x^2_1 + n y^2_1</math> jest liczbą nieparzystą. Wystarczy położyć <math>m_1 = {\small\frac{m}{2^{\alpha}}}</math>, aby z&nbsp;istniejącego rozwiązania otrzymać nowe rozwiązanie tej samej postaci
  
::<math>m = m (a x + b y)</math>
+
::<math>x_1^2 + n y_1^2 = m_1 p</math>
  
::<math>\quad \, = m a x + m b y </math>
+
gdzie <math>m_1</math> jest liczbą nieparzystą i <math>1 \leqslant m_1 < m</math>.
  
::<math>\quad \, = b s a x + a r b y</math>
+
'''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą nieparzystą'''
  
::<math>\quad \, = a b (s x + r y)</math>
+
Niech liczby <math>r, s</math> będą liczbami całkowitymi najbliższymi liczbom <math>{\small\frac{x}{m}} \,</math> i <math>\, {\small\frac{y}{m}}</math>. Z&nbsp;definicji mamy
  
Czyli <math>a b \mid m</math>. Co należało pokazać.<br/>
+
::<math>\left| {\small\frac{x}{m}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y}{m}} - s \right| \leqslant {\small\frac{1}{2}}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
Zatem
  
 +
::<math>| x - r m | \leqslant {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \leqslant {\small\frac{m}{2}}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C74</span><br/>
+
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie <math>{\small\frac{m}{2}}</math>, gdzie <math>m</math> jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
Niech <math>a, b, c \in \mathbb{Z}</math>. Równanie <math>a x + b y = c</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest dzielnikiem liczby <math>c</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>| x - r m | < {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | < {\small\frac{m}{2}}</math>
Niech <math>D</math> oznacza największy wspólny dzielnik liczb <math>a</math> i <math>b</math>.
 
  
<math>\Longrightarrow</math>
+
Połóżmy
  
Jeżeli liczby całkowite <math>x_0</math> i <math>y_0</math> są rozwiązaniem rozpatrywanego równania, to
+
::<math>a = x - r m \qquad \qquad \text{i} \qquad \qquad b = y - s m</math>
  
::<math>a x_0 + b y_0 = c</math>
+
Zauważmy, że liczba <math>m</math> nie może jednocześnie dzielić liczb <math>x</math> i <math>y</math>, bo mielibyśmy <math>m^2 \mid (x^2 + n y^2)</math>, czyli <math>m \mid p</math>, co jest niemożliwe. Zatem przynajmniej jedna z&nbsp;liczb <math>a, b</math> musi być różna od <math>0</math>.
  
Ponieważ <math>D</math> dzieli lewą stronę równania, to musi również dzielić prawą, zatem musi być <math>D|c</math>.
+
Rozpatrując równanie <math>x^2 + n y^2 = m p</math> modulo <math>m</math> i&nbsp;uwzględniając, że
  
<math>\Longleftarrow</math>
+
::<math>x \equiv a \!\! \pmod{m}</math>
  
Jeżeli <math>D|c</math>, to możemy napisać <math>c = k D</math> i&nbsp;równanie przyjmuje postać
+
::<math>y \equiv b \!\! \pmod{m}</math>
  
::<math>a x + b y = k D</math>
+
otrzymujemy
  
Lemat Bézouta (twierdzenie C71) zapewnia istnienie liczb całkowitych <math>x_0</math> i <math>y_0</math> takich, że
+
::<math>a^2 + n b^2 \equiv 0 \pmod{m}</math>
  
::<math>a x_0 + b y_0 = D</math>
+
Mamy też oszacowanie
  
Czyli z&nbsp;lematu Bézouta wynika, że równanie <math>a x + b y = D</math> ma rozwiązanie w&nbsp;liczbach całkowitych. Przekształcając, dostajemy
+
::<math>0 < a^2 + n b^2 < \left( {\small\frac{m}{2}} \right)^2 + n \cdot \left( {\small\frac{m}{2}} \right)^2 = {\small\frac{(n + 1) m^2}{4}} = {\small\frac{(n + 1) m}{4}} \cdot m</math>
  
::<math>a(k x_0) + b (k y_0) = k D</math>
+
Wynika stąd, że istnieje taka liczba <math>m_1</math> spełniająca warunek <math>1 \leqslant m_1 < {\small\frac{(n + 1) m}{4}}</math>, że
  
Zatem liczby <math>k x_0</math> i <math>k y_0</math> są rozwiązaniem równania
+
::<math>a^2 + n b^2 = m_1 m</math>
  
::<math>a x + b y = k D</math>
+
Mnożąc stronami powyższe równanie i&nbsp;równanie <math>x^2 + n y^2 = m p</math>, otrzymujemy
  
Co oznacza, że równianie <math>a x + b y = c</math> ma rozwiązanie.<br/>
+
::<math>m_1 m^2 p = (a^2 + n b^2) (x^2 + n y^2)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::::<math>\;\; = (a x + n b y)^2 + n (a y - b x)^2</math>
  
 +
(zobacz J101). Zauważmy teraz, że
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C75</span><br/>
+
::<math>a x + n b y = (x - r m) x + n (y - s m) y</math>
Z twierdzenia C74 wynika, że szukając rozwiązań równania <math>A x + B y = C</math> w&nbsp;liczbach całkowitych, powinniśmy
 
  
:* obliczyć największy wspólny dzielnik <math>D</math> liczb <math>A</math> i <math>B</math>
+
::::<math>\quad \; = x^2 - r m x + n y^2 - n s m y</math>
:* jeżeli <math>D > 1</math>, należy sprawdzić, czy <math>D|C</math>
 
:* jeżeli <math>D \nmid C</math>, to równanie <math>A x + B y = C</math> nie ma rozwiązań w&nbsp;liczbach całkowitych
 
:* jeżeli <math>D|C</math>, należy podzielić obie strony równania <math>A x + B y = C</math> przez <math>D</math> i&nbsp;przejść do rozwiązywania równania równoważnego <math>a x + b y = c</math>, gdzie <math>a = \frac{A}{D}</math>, <math>b = \frac{B}{D}</math>, <math>c = \frac{C}{D}</math>, zaś największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest równy <math>1</math>.
 
  
 +
::::<math>\quad \; = m (p - r x - n s y)</math>
  
 +
::::<math>\quad \; = m x_1</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C76</span><br/>
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to równanie
 
  
::<math>a x + b y = c</math>
+
::<math>a y - b x = (x - r m) y - (y - s m) x</math>
  
ma nieskończenie wiele rozwiązań w&nbsp;liczbach całkowitych.
+
::::<math>\;\;\, = x y - r m y - y x + s m x</math>
  
Jeżeli para liczb całkowitych <math>(x_0, y_0)</math> jest jednym z&nbsp;tych rozwiązań, to wszystkie pozostałe rozwiązania całkowite można otrzymać ze wzorów
+
::::<math>\;\;\, = m (s x - r y)</math>
  
::<math>x = x_0 + b t</math>
+
::::<math>\;\;\, = m y_1</math>
::<math>y = y_0 - a t</math>
 
  
gdzie <math>t</math> jest dowolną liczbą całkowitą.
+
Gdzie oznaczyliśmy
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>x_1 = p - r x - n s y</math>
Z założenia liczby <math>a</math> i <math>b</math> są względnie pierwsze, zatem największy wspólny dzielnik tych liczb jest równy <math>1</math> i&nbsp;dzieli liczbę <math>c</math>. Na mocy twierdzenia C74 równanie
 
  
::<math>a x + b y = c</math>
+
::<math>y_1 = s x - r y</math>
  
ma rozwiązanie w&nbsp;liczbach całkowitych.
+
Wynika stąd, że
  
Zauważmy, że jeżeli para liczb całkowitych <math>(x_0, y_0)</math> jest rozwiązaniem równania <math>a x + b y = c</math>, to para liczb <math>(x_0 + b t, y_0 - a t)</math> również
+
::<math>m_1 m^2 p = (m x_1)^2 + n (m y_1)^2</math>
jest rozwiązaniem. Istotnie
 
  
::<math>a(x_0 + b t) + b (y_0 - a t) = a x_0 + a b t + b y_0 - b a t =</math>
+
Zatem
 +
 
 +
::<math>x^2_1 + n y^2_1 = m_1 p</math>
 +
 
 +
gdzie
 +
 
 +
::<math>1 \leqslant m_1 < {\small\frac{(n + 1) m}{4}}</math>
 +
 
 +
Czyli powtarzając odpowiednią ilość razy opisaną powyżej procedurę, otrzymamy <math>m_k = 1</math>.
 +
 
 +
 
 +
'''D. Jednoznaczność rozkładu'''
 +
 
 +
Z założenia <math>p</math> jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z&nbsp;twierdzenia J100. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J104</span><br/>
 +
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej <math>p</math> postaci <math>4 k + 1</math> na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 +
<span style="font-size: 90%; color:black;">SumOfTwoSquares(p) =
 +
{
 +
'''local'''(m, r, s, x, y, x1, y1);
 +
'''if'''( p%4 <> 1 || !'''isprime'''(p), '''return'''("Error") );
 +
x = 1;
 +
'''for'''(k = 2, (p-1)/2, x = (x*k)%p); \\ x = { [(p-1)/2]! } % p
 +
x = x - '''round'''(x/p)*p;
 +
y = 1;
 +
m = (x^2 + y^2)/p;
 +
'''while'''( m > 1,
 +
        r = '''round'''(x/m);
 +
        s = '''round'''(y/m);
 +
        x1 = p - r*x - s*y;
 +
        y1 = r*y - s*x;
 +
        x = x1;
 +
        y = y1;
 +
        m = (x^2 + y^2)/p;
 +
      );
 +
'''return'''([ '''abs'''(x), '''abs'''(y), p ]);
 +
}</span>
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie J105</span><br/>
 +
Niech liczby pierwsze <math>p, q</math> będą postaci <math>4 k + 1</math>, a&nbsp;liczba pierwsza <math>r</math>
 +
będzie postaci <math>4 k + 3</math>. Pokazać, że
 +
:*&nbsp;&nbsp;liczby <math>r, p r \,</math> i <math>\, r^2</math> nie rozkładają się na sumę dwóch kwadratów liczb całkowitych dodatnich
 +
:*&nbsp;&nbsp;liczby <math>p</math>, <math>2 p</math>, <math>p^2 \,</math> i <math>\, p r^2</math> mają jeden rozkład na sumę dwóch kwadratów liczb całkowitych dodatnich
 +
:*&nbsp;&nbsp;liczba <math>p q</math>, <math>p \neq q</math> ma dwa rozkłady na sumę dwóch kwadratów liczb całkowitych dodatnich
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
 
 +
'''Punkt 1.'''
 +
 
 +
Ponieważ liczby <math>r \,</math> i <math>\, p r</math> są postaci <math>4 k + 3</math>, to modulo <math>4</math> mamy
 +
 
 +
::<math>r, p r \equiv 3 \!\! \pmod{4}</math>
  
:::::::::<math>\, = a x_0 + b y_0 =</math>
+
Suma <math>x^2 + y^2</math> musi być liczbą nieparzystą, zatem liczby <math>x, y</math> muszą mieć przeciwną parzystość i&nbsp;modulo <math>4</math> mamy
  
:::::::::<math>\, = c</math>
+
::<math>x^2 + y^2 \equiv 1 \!\! \pmod{4}</math>
  
Pokażmy teraz, że nie istnieją inne rozwiązania niż określone wzorami
+
Przypuśćmy, że
  
::<math>x = x_0 + b t</math>
+
::<math>r^2 = x^2 + y^2</math>
::<math>y = y_0 - a t</math>
 
  
gdzie <math>t</math> jest dowolną liczbą całkowitą.
+
gdzie <math>x, y \in \mathbb{Z}_+</math>. Liczby <math>x, y</math> muszą mieć przeciwną parzystość, zatem <math>x \neq y</math>. Z&nbsp;twierdzenia J22 wynika, że liczba <math>x^2 + y^2</math> musi mieć dzielnik pierwszy postaci <math>4 k + 1</math>, co w&nbsp;sposób oczywisty jest niemożliwe.
  
Przypuśćmy, że pary liczb całkowitych <math>(x, y)</math> oraz <math>(x_0, y_0)</math> są rozwiązaniami rozpatrywanego równania, zatem
+
'''Punkt 2.'''
  
::<math>a x + b y = c = a x_0 + b y_0</math>
+
W przypadku liczby pierwszej <math>p</math> odpowiedzi udziela twierdzenie J103. Niech <math>p = x^2 + y^2</math>, mamy
  
Wynika stąd, że musi być spełniony warunek
+
::<math>2 p = (x + y)^2 + (x - y)^2</math>
  
::<math>a(x - x_0) = b (y_0 - y)</math>
+
::<math>p^2 = (x^2 - y^2)^2 + (2 x y)^2</math>
  
Ponieważ liczby <math>a</math> i <math>b</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C72) <math>b|(x - x_0)</math>. Skąd mamy
+
::<math>p r^2 = (r x)^2 + (r y)^2</math>
  
::<math>x - x_0 = b t</math>
+
'''Punkt 3.'''
  
gdzie <math>t</math> jest dowolną liczbą całkowitą. Po podstawieniu dostajemy natychmiast
+
Niech <math>p = x^2 + y^2</math> i <math>q = a^2 + b^2</math>. Ze wzorów podanych w&nbsp;uwadze J101 mamy
  
::<math>y - y_0 = - a t</math>
+
::<math>p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2</math>
  
Co kończy dowód.<br/>
+
:::::::::<math>\:\, = (a x - b y)^2 + (a y + b x)^2</math>
 +
 
 +
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
 
 
 
<span style="font-size: 110%; font-weight: bold;">Przykład C77</span><br/>
 
Rozwiązania równania
 
 
::<math>a x + b y = c</math>
 
 
gdzie <math>\gcd (a, b) = 1</math>, które omówiliśmy w poprzednim twierdzeniu, najłatwiej znaleźć korzystając w PARI/GP z funkcji <code>gcdext(a, b)</code>. Funkcja ta zwraca wektor liczb <code>[x<sub>0</sub>, y<sub>0</sub>, d]</code>, gdzie <math>d = \gcd (a, b)</math>, a liczby <math>x_0</math> i <math>y_0</math> są rozwiązaniami równania
 
 
::<math>a x_0 + b y_0 = \gcd (a, b)</math>
 
 
Ponieważ założyliśmy, że <math>\gcd (a, b) = 1</math>, to łatwo zauważmy, że
 
 
::<math>a(c x_0) + b (c y_0) = c</math>
 
 
Zatem para liczb całkowitych <math>(c x_0, c y_0)</math> jest jednym z rozwiązań równania
 
 
::<math>a x + b y = c</math>
 
 
i wszystkie pozostałe rozwiązania uzyskujemy ze wzorów
 
 
::<math>x = c x_0 + b t</math>
 
 
::<math>y = c y_0 - a t</math>
 
 
Niech <math>a = 7</math> i <math>b = 17</math>. Funkcja <code>gcdext(7,17)</code> zwraca wektor <code>[5, -2, 1]</code>, zatem rozwiązaniami równania <math>7 x + 17 y = 1</math> są liczby
 
 
::<math>x = 5 + 17 t</math>
 
 
::<math>y = - 2 - 7 t</math>
 
 
A rozwiązaniami równania <math>7 x + 17 y = 10</math> są liczby
 
 
::<math>x = 50 + 17 t</math>
 
 
::<math>y = - 20 - 7 t</math>
 
 
 
  
  
Linia 3001: Linia 3176:
  
  
 +
== Twierdzenia o&nbsp;istnieniu liczb pierwszych kwadratowych i&nbsp;niekwadratowych modulo ==
  
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie J106</span><br/>
 +
Niech <math>s = \pm 1</math>. Zbadać podzielność liczby <math>p - s a^2</math>
  
 +
:* przez <math>4</math>, gdy <math>p = 4 k + r</math>, gdzie <math>r = 1, 3</math>
 +
:* przez <math>8</math>, gdy <math>p = 8 k + r</math>, gdzie <math>r = 1, 3, 5, 7</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Problem sprowadza się do uzyskania odpowiedzi, kiedy kongruencja
 +
 +
::<math>p - s a^2 \equiv 0 \pmod{2^n}</math>
 +
 +
gdzie <math>n = 2, 3</math>, ma rozwiązanie. Podstawiając, dostajemy
 +
 +
::<math>2^n k + r \equiv s a^2 \pmod{2^n}</math>
 +
 +
::<math>s a^2 \equiv r \pmod{2^n}</math>
 +
 +
::<math>a^2 \equiv s r \pmod{2^n}</math>
 +
 +
Z twierdzenia J55 wiemy, że aby powyższa kongruencja miała rozwiązanie, musi być <math>2^n \mid (s r - 1)</math>, co jest możliwe tylko, gdy
 +
 +
::<math>s =
 +
\begin{cases}
 +
\;\;\: 1 & \text{gdy } r = 1 \\
 +
      - 1 & \text{gdy } r = 3 \\
 +
\end{cases}</math>
 +
 +
dla <math>2^n = 4</math> i&nbsp;gdy
 +
 +
::<math>s =
 +
\begin{cases}
 +
\;\;\: 1 & \text{gdy } r = 1 \\
 +
      - 1 & \text{gdy } r = 7 \\
 +
\end{cases}</math>
 +
 +
dla <math>2^n = 8</math>. Dla <math>2^n = 8</math> i <math>r = 3, 5</math> rozpatrywana kongruencja nie ma rozwiązania.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J107</span><br/>
 +
Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo <math>p</math>. Pomysł ujęcia problemu zaczerpnęliśmy z&nbsp;pracy Alexandru Gicy<ref name="Gica1"/>. Zadanie J106 należy traktować jako uzupełnienie do dowodu twierdzenia J108. Z&nbsp;zadania łatwo widzimy, że powiązanie liczby <math>s</math> z&nbsp;postacią liczby pierwszej <math>p</math> nie jest przypadkowe.
 +
 +
Zauważmy, że twierdzenia ograniczają się do liczb pierwszych <math>p</math>, ponieważ dla liczb złożonych nieparzystych <math>m > 0</math> wynik <math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1</math> nie oznacza, że liczba pierwsza <math>q</math> jest liczbą kwadratową modulo <math>m</math>.
 +
 +
W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> kwadratowe modulo <math>p</math>.
 +
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{p}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math> || <math>53</math> || <math>59</math> || <math>61</math> || <math>67</math> || <math>71</math> || <math>73</math> || <math>79</math> || <math>83</math> || <math>89</math> || <math>97</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>
 +
| style="background-color: red" | <math>13</math> || style="background-color: red" | <math>29</math> || style="background-color: red" | <math>29</math> || <math>5</math> || style="background-color: red" | <math>17</math> || <math>13</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>41</math> || <math>5</math> || <math>13</math> || <math>17</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>17</math> || <math>5</math> || <math>37</math> || <math>5</math> || <math>17</math> || <math>5</math> || <math>53</math>
 +
|}
  
  
 +
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 3</math> kwadratowe modulo <math>p</math>.
  
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{p}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math> || <math>53</math> || <math>59</math> || <math>61</math> || <math>67</math> || <math>71</math> || <math>73</math> || <math>79</math> || <math>83</math> || <math>89</math> || <math>97</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>
 +
| style="background-color: red" | <math>7</math> || style="background-color: red" | <math>11</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>19</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>23</math> || <math>11</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>19</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>3</math> || <math>11</math> || <math>3</math>
 +
|}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J108</span><br/>
 +
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 17</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> kwadratowa modulo <math>p</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech
 +
::<math>s =
 +
\begin{cases}
 +
\;\;\: 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 1 \\
 +
      - 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 3 \\
 +
\end{cases}</math>
 +
 +
Dla ustalonych liczb <math>n</math> i <math>s</math> rozważmy liczbę <math>u(a) = {\small\frac{p - s a^2}{2^n}}</math> taką, że <math>3 \leqslant u (a) < p</math>. Jeżeli liczba ta jest postaci <math>4 k + 3</math>, to ma dzielnik pierwszy <math>q < p</math> postaci <math>4 k + 3</math> (zobacz C21). Zatem możemy napisać <math>u (a) = t q</math>, co oznacza, że
 +
 +
::<math>p - s a^2 = 2^n u (a) = 2^n t q</math>
 +
 +
Czyli
 +
 +
::<math>p \equiv s a^2 \pmod{q}</math>
 +
 +
i otrzymujemy
 +
 +
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s a^2}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{a^2}{q}} \right)_{\small{\!\! J}} =s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} = 1</math>
 +
 +
Zatem liczba <math>q < p</math> jest liczbą kwadratową modulo <math>p</math>.
 +
 +
Pomysł dowodu polega na wskazaniu kilku liczb <math>u(a_1), \ldots, u(a_r)</math> takich, że
 +
 +
::<math>3 \leqslant u(a_1) < \ldots < u(a_r) < p</math>
 +
 +
z których jedna musi być postaci <math>4 k + 3</math>.
 +
 +
'''Przypadek pierwszy:''' <math>\boldsymbol{p \equiv 3 \!\! \pmod{8}}</math>
 +
 +
Mamy <math>s = - 1</math> i&nbsp;przyjmujemy <math>n = 2</math>. Rozważmy liczby
 +
 +
::<math>3 \leqslant {\small\frac{p + 1}{4}} < {\small\frac{p + 9}{4}} < p</math>
 +
 +
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 11</math>. Z&nbsp;założenia <math>p = 8 k + 3</math>, zatem rozpatrywane liczby to <math>\{ 2 k + 1, 2 k + 3 \}</math>. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z&nbsp;nich jest postaci <math>4 k + 3</math>.
 +
 +
'''Przypadek drugi:''' <math>\boldsymbol{p \equiv 5 \!\! \pmod{8}}</math>
 +
 +
Mamy <math>s = + 1</math> i&nbsp;przyjmujemy <math>n = 2</math>. Rozważmy liczby
 +
 +
::<math>3 \leqslant {\small\frac{p - 9}{4}} < {\small\frac{p - 1}{4}} < p</math>
 +
 +
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 21</math>. Z&nbsp;założenia <math>p = 8 k + 5</math>, zatem rozpatrywane liczby to <math>\{ 2 k - 1, 2 k + 1 \}</math>. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z&nbsp;nich jest postaci <math>4 k + 3</math>.
 +
 +
'''Przypadek trzeci:''' <math>\boldsymbol{p \equiv 7 \!\! \pmod{8}}</math>
 +
 +
Mamy <math>s = - 1</math> i&nbsp;przyjmujemy <math>n = 3</math>. Rozważmy liczby
 +
 +
::<math>3 \leqslant {\small\frac{p + 1}{8}} < {\small\frac{p + 9}{8}} < {\small\frac{p + 25}{8}} < {\small\frac{p + 49}{8}} < p</math>
 +
 +
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 23</math>. Z&nbsp;założenia <math>p = 8 k + 7</math>, zatem rozpatrywane liczby to <math>\{ k + 1, k + 2, k + 4, k + 7 \}</math>. Jeżeli <math>k \equiv r \!\! \pmod{4}</math>, to modulo <math>4</math> mamy zbiór <math>\{ r + 1, r + 2, r, r + 3 \}</math>. Zatem jedna z&nbsp;liczb w&nbsp;tym zbiorze jest postaci <math>4 k + 3</math>.
 +
 +
'''Przypadek czwarty:''' <math>\boldsymbol{p \equiv 1 \!\! \pmod{8}}</math>
 +
 +
Mamy <math>s = + 1</math> i&nbsp;przyjmujemy <math>n = 3</math>. Rozważmy liczby
 +
 +
::<math>3 \leqslant {\small\frac{p - 49}{8}} < {\small\frac{p - 25}{8}} < {\small\frac{p - 9}{8}} < {\small\frac{p - 1}{8}} < p</math>
 +
 +
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 73</math>. Z&nbsp;założenia <math>p = 8 k + 1</math>, zatem rozpatrywane liczby to <math>\{ k - 6, k - 3, k - 1, k \}</math>. Jeżeli <math>k \equiv r \!\! \pmod{4}</math>, to modulo <math>4</math> mamy zbiór <math>\{ r + 2, r + 1, r + 3, r \}</math>. Zatem jedna z&nbsp;liczb w&nbsp;tym zbiorze jest postaci <math>4 k + 3</math>.
 +
 +
Pozostaje sprawdzić twierdzenie dla liczb pierwszych <math>p < 73</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J109</span><br/>
 +
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W przypadku, gdy liczba pierwsza <math>p</math> jest postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieją takie liczby całkowite dodatnie <math>x, y</math>, że <math>p = x^2 + 2 y^2</math> (zobacz J103). Ponieważ z&nbsp;założenia <math>p \geqslant 11</math>, to musi być <math>x \neq y</math>. Z&nbsp;twierdzenia J22 wynika, że liczba <math>x^2 + y^2</math> ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 1</math>. Łatwo widzimy, że <math>q \leqslant x^2 + y^2 < x^2 + 2 y^2 = p</math>.
 +
 +
Modulo <math>q</math> możemy napisać
 +
 +
::<math>x^2 + y^2 \equiv 0 \!\! \pmod{q}</math>
 +
 +
Liczba pierwsza <math>q < p</math> nie może dzielić <math>y</math>, bo mielibyśmy <math>q \mid x</math>, czyli <math>q \mid p</math>, co jest niemożliwe. Rozpatrując równość <math>p = x^2 + 2 y^2</math> modulo <math>q</math>, dostajemy
 +
 +
::<math>p \equiv y^2 \!\! \pmod{q}</math>
 +
 +
Wynika stąd natychmiast (zobacz J42 p.9)
 +
 +
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = 1</math>
 +
 +
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J110</span><br/>
 +
Jeżeli <math>p \geqslant 19</math> jest liczbą pierwszą postaci <math>12 k + 7</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>p \equiv 1 \!\! \pmod{6}</math>, zatem istnieją takie liczby <math>x, y \in \mathbb{Z}_+</math>, że <math>p = x^2 + 3 y^2</math> (zobacz J103).
 +
Liczby <math>x, y</math> muszą mieć przeciwną parzystość i&nbsp;być względnie pierwsze. Gdyby liczba <math>x</math> była nieparzysta, to modulo <math>4</math> mielibyśmy
 +
 +
::<math>1 + 3 \cdot 0 \equiv 3 \!\! \pmod{4}</math>
 +
 +
Co jest niemożliwe. Zatem <math>x = 2 k</math>, a&nbsp;liczba <math>y</math> musi być nieparzysta. Otrzymujemy
 +
 +
::<math>p = 4 k^2 + 3 y^2 = 4 (k^2 + y^2) - y^2</math>
 +
 +
Ponieważ <math>p</math> jest liczbą pierwszą, to jedynie w&nbsp;przypadku gdy <math>k = y = 1</math> możliwa jest sytuacja, że <math>k = y</math>. Mielibyśmy wtedy <math>p = 7</math>, ale z&nbsp;założenia musi być <math>p \geqslant 19</math>. Wynika stąd, że <math>k \neq y</math>, zatem liczba <math>k^2 + y^2</math> ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 1</math> (zobacz J22). Oczywiście <math>q \leqslant k^2 + y^2 < 4 k^2 + 3 y^2 = p</math>.
 +
 +
Modulo <math>q</math> możemy napisać
 +
 +
::<math>k^2 + y^2 \equiv 0 \!\! \pmod{q}</math>
 +
 +
Liczba pierwsza <math>q</math> nie może dzielić <math>y</math>, bo mielibyśmy <math>q \mid k</math>, czyli <math>q \mid p</math>, co jest niemożliwe. Rozpatrując równość <math>p = 4 (k^2 + y^2) - y^2</math> modulo <math>q</math>, dostajemy
 +
 +
::<math>p \equiv - y^2 \!\! \pmod{q}</math>
 +
 +
Wynika stąd natychmiast (zobacz J42 p.9 i&nbsp;p.6)
 +
 +
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{- y^2}{q}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} = 1</math>
 +
 +
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
Twierdzenia J109 i&nbsp;J110 można uogólnić na wszystkie liczby pierwsze.<ref name="Gica1"/><br/>
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J111*</span><br/>
 +
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 13, 37</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga J112</span><br/>
 +
W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>.
 +
 +
:{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{m}</math>
 +
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math> || <math>21</math> || <math>22</math> || <math>23</math> || <math>24</math> || <math>25</math> || <math>26</math> || <math>27</math> || <math>28</math> || <math>29</math> || <math>30</math> || <math>31</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>35</math> || <math>36</math> || <math>37</math> || <math>38</math> || <math>39</math> || <math>40</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>
 +
| style="background-color: red" | <math>-</math> || style="background-color: red" | <math>5</math> || style="background-color: red" | <math>-</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>13</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>13</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>17</math> || <math>13</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>13</math>
 +
|}
 +
 +
 +
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 3</math> niekwadratowe modulo <math>m</math>.
 +
 +
:{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{m}</math>
 +
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math> || <math>21</math> || <math>22</math> || <math>23</math> || <math>24</math> || <math>25</math> || <math>26</math> || <math>27</math> || <math>28</math> || <math>29</math> || <math>30</math> || <math>31</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>35</math> || <math>36</math> || <math>37</math> || <math>38</math> || <math>39</math> || <math>40</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>
 +
| style="background-color: red" | <math>-</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>11</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>19</math> || <math>3</math> || <math>7</math> || <math>3</math>
 +
|}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J113</span><br/>
 +
Jeżeli <math>m \geqslant 7</math> jest liczbą całkowitą postaci <math>4 k + 3</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ liczba <math>m - 4 \geqslant 3</math> jest postaci <math>4 k + 3</math>, to ma dzielnik pierwszy <math>q < m</math> postaci <math>4 k + 3</math> (zobacz C21). Czyli <math>m - 4 = k q</math> i&nbsp;z&nbsp;twierdzenia J42 p.9 dostajemy
 +
 +
::<math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} =
 +
- \left( {\small\frac{m}{q}} \right)_{\small{\!\! J}} =
 +
- \left( {\small\frac{k q + 4}{q}} \right)_{\small{\!\! J}} =
 +
- \left( {\small\frac{4}{q}} \right)_{\small{\!\! J}} = - 1</math>
 +
 +
Zatem <math>q</math> jest liczbą niekwadratową modulo <math>m</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
Można też pokazać, że<ref name="Pollack2"/><br/>
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J114*</span><br/>
 +
'''A.''' Jeżeli <math>p \geqslant 13</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>p</math>.
 +
 +
'''B.''' Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>p</math>.
 +
 +
 +
 +
Zauważmy, że twierdzenie J114 można łatwo uogólnić na liczby całkowite dodatnie.<br/>
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J115</span><br/>
 +
'''A.''' Jeżeli <math>m \geqslant 6</math> jest liczbą całkowitą i <math>m \neq 10 , 11</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>m</math>.
 +
 +
'''B.''' Jeżeli <math>m \geqslant 4</math> jest liczbą całkowitą i <math>m \neq 6 , 9</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 +
'''Punkt B'''
 +
 +
Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b</math>.
 +
 +
Jeżeli <math>3 \mid m</math>, to <math>11</math> jest liczbą niekwadratową modulo <math>m</math>, bo <math>\left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J56 i&nbsp;J88).
 +
 +
Jeżeli <math>3 \nmid m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J56).
 +
 +
Jeżeli <math>3 \nmid m</math> i <math>8 \nmid m</math>, ale <math>4 \mid m</math>, to <math>4 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J56).
 +
 +
Jeżeli <math>m = 2</math>, to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo <math>2</math>.
 +
 +
 +
Zbierając:
 +
 +
:* jeśli liczba <math>m \geqslant 12</math> nie ma dzielnika pierwszego <math>p \geqslant 5</math>, czyli jest postaci <math>m = 2^a 3^b</math>, to liczba pierwsza <math>q = 11</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math>.
 +
:* jeśli liczba <math>m \geqslant 12</math> ma dzielnik pierwszy <math>p \geqslant 5</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math> (zobacz J114 i&nbsp;J88).
 +
 +
 +
Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 11</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 3</math>.
 +
 +
<span style="font-size: 90%; color:black;">'''for'''(m = 3, 15, '''forprimestep'''(q = 3, 100, 4, '''if'''( isQR(q,m) == -1, '''print'''(m, "  ", q); '''break'''() )))</span>
 +
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>
 +
| style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math>
 +
|}
 +
 +
Widzimy, że twierdzenie jest prawdziwe dla <math>m \geqslant 4</math>, o ile <math>m \neq 6 , 9</math>.
 +
 +
'''Punkt A'''
 +
 +
Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>.
 +
 +
Jeżeli jedna z&nbsp;liczb <math>3, 5, 7, 11</math> dzieli <math>m</math>, to <math>17</math> jest liczbą niekwadratową modulo <math>m</math>, bo
 +
<math>\left( {\small\frac{17}{3}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{17}{5}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{17}{7}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{17}{11}} \right)_{\small{\!\! J}}
 +
= - 1</math>.
 +
 +
Jeżeli żadna z&nbsp;liczb <math>3, 5, 7, 11</math> nie dzieli <math>m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (5 - 1)</math>, zatem liczba <math>5</math> jest liczbą niekwadratową modulo <math>m</math>.
 +
 +
Jeżeli żadna z&nbsp;liczb <math>3, 5, 7, 11</math> nie dzieli <math>m</math> i <math>8 \nmid m</math>, ale <math>4 \mid m</math>, to nie istnieją liczby pierwsze postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>, bo <math>4 \mid [(4 k + 1) - 1]</math>
 +
 +
Jeżeli <math>m = 2</math>, to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo <math>2</math>.
 +
 +
Zbierając:
 +
 +
:* jeśli liczba <math>m \geqslant 18</math> nie ma dzielnika pierwszego <math>p \geqslant 13</math>, czyli jest postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>, to liczba pierwsza <math>q = 5</math> lub <math>q = 17</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 1</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math>.
 +
:* jeśli liczba <math>m \geqslant 18</math> ma dzielnik pierwszy <math>p \geqslant 13</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 1</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math> (zobacz J114 i&nbsp;J88).
 +
 +
Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 17</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 1</math>.
 +
 +
<span style="font-size: 90%; color:black;">'''for'''(m = 3, 20, '''forprimestep'''(q = 1, 100, 4, '''if'''( isQR(q,m) == -1, '''print'''(m, "  ", q); '''break'''() )))</span>
 +
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>
 +
| style="background-color: red" | <math>5</math> || style="background-color: red" | <math>-</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>13</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>13</math>
 +
|}
 +
 +
Widzimy, że twierdzenie jest prawdziwe dla <math>m \geqslant 6</math>, o ile <math>m \neq 10 , 11</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J116</span><br/>
 +
Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Łatwo sprawdzamy, że
 +
 +
::<math>\left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math>
 +
 +
(zobacz J42&nbsp;p.7). Zatem dowód wystarczy przeprowadzić dla <math>p \geqslant 13</math>.
 +
 +
'''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 1}</math>
 +
 +
Niech liczba <math>q</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Z&nbsp;twierdzenia J72 wiemy, że dla <math>p \geqslant 5</math> liczba <math>q</math> jest liczbą pierwszą i&nbsp;jest mniejsza od <math>p</math>. Ponieważ <math>p \equiv 1 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J42&nbsp;p.9 otrzymujemy natychmiast
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1</math>
 +
</div>
 +
 +
'''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 3}</math>
 +
 +
Z twierdzenia J108 wynika, że dla każdej liczby pierwszej <math>p \geqslant 11</math> postaci <math>4 k + 3</math> istnieje liczba pierwsza <math>q < p</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą kwadratową modulo <math>p</math>. Ponieważ <math>p \equiv q \equiv 3 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J42 p.9 otrzymujemy natychmiast
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1</math>
 +
</div>
 +
 +
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie J117</span><br/>
 +
Udowodnić twierdzenie J116 w&nbsp;przypadku, gdy liczba pierwsza <math>p \geqslant 19</math> jest postaci <math>4 k + 3</math>, nie korzystając z&nbsp;twierdzenia J108.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z założenia <math>p = 4 k + 3</math>. Liczba <math>k</math> może być postaci <math>k = 3 j</math>, <math>k = 3 j + 1</math> i <math>k = 3 j + 2</math>. Odpowiada to liczbom pierwszym postaci <math>p = 12 j + 3</math>, <math>p = 12 j + 7</math> i <math>p = 12 j + 11</math>.
 +
 +
Ponieważ nie ma liczb pierwszych <math>p \geqslant 19</math> i&nbsp;będących postaci <math>p = 12 j + 3</math>, to pozostaje rozważyć przypadki <math>p = 12 j + 7</math> i <math>p = 12 j + 11</math>.
 +
 +
'''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{12 j + 11}</math>
 +
 +
Wiemy, że w&nbsp;tym przypadku <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1</math> (zobacz J47). Mamy
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math>
 +
</div>
 +
 +
Czyli wystarczy przyjąć <math>q = 3</math>.
 +
 +
'''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{12 j + 7}</math>
 +
 +
Wiemy, że w&nbsp;tym przypadku <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J42&nbsp;p.6 oraz J47). Otrzymujemy
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = - \left( {\small\frac{p - 12}{p}} \right)_{\small{\!\! J}} = - \left( {\small\frac{- 12}{p}} \right)_{\small{\!\! J}} = \left[ - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} \right] \cdot \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = -1</math>
 +
</div>
 +
 +
Ponieważ liczba <math>p - 12 \geqslant 7</math> jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy <math>q < p</math> liczby <math>p - 12</math> taki, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;przeciwnym razie z&nbsp;twierdzenia J42&nbsp;p.4 mielibyśmy <math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
== Przypisy ==
 +
 +
<references>
  
 +
<ref name="CRT1">Wikipedia, ''Chińskie twierdzenie o&nbsp;resztach'', ([https://pl.wikipedia.org/wiki/Chi%C5%84skie_twierdzenie_o_resztach Wiki-pl]), ([https://en.wikipedia.org/wiki/Chinese_remainder_theorem Wiki-en])</ref>
  
== Przypisy ==
+
<ref name="CRT2">CRT to często używany skrót od angielskiej nazwy twierdzenia: ''Chinese remainder theorem''</ref>
<references>
 
  
<ref name="WellOrdering">Korzystamy w&nbsp;tym momencie z&nbsp;zasady dobrego uporządkowania zbioru liczb naturalnych, która stwierdza, że każdy niepusty podzbiór zbioru liczb naturalnych zawiera element najmniejszy. ([https://pl.wikipedia.org/wiki/Zasada_dobrego_uporz%C4%85dkowania Wiki-pl]), ([https://en.wikipedia.org/wiki/Well-ordering_principle Wiki-en])</ref>
+
<ref name="logic1">Wikipedia, ''Logical equivalence'', ([https://en.wikipedia.org/wiki/Logical_equivalence Wiki-en])</ref>
  
<ref name="LiczbaJestPostaci">Określenie, że „liczba <math>n</math> jest postaci <math>a k + b</math>”, jest jedynie bardziej czytelnym (obrazowym) zapisem stwierdzenia, że reszta z&nbsp;dzielenia liczby <math>n</math> przez <math>a</math> wynosi <math>b</math>. Zapis „liczba <math>n</math> jest postaci <math>a k - 1</math>” oznacza, że reszta z&nbsp;dzielenia liczby <math>n</math> przez <math>a</math> wynosi <math>a - 1</math>.</ref>
+
<ref name="sumazbiorow">Wikipedia, ''Zasada włączeń i&nbsp;wyłączeń'', ([https://pl.wikipedia.org/wiki/Zasada_w%C5%82%C4%85cze%C5%84_i_wy%C5%82%C4%85cze%C5%84 Wiki-pl]), ([https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle Wiki-en])</ref>
  
<ref name="Linnik1">Wikipedia, ''Linnik's theorem'', ([https://en.wikipedia.org/wiki/Linnik%27s_theorem Wiki-en])</ref>
+
<ref name="jacobi1">Wikipedia, ''Symbol Jacobiego'', ([https://pl.wikipedia.org/wiki/Symbol_Jacobiego Wiki-pl]), ([https://en.wikipedia.org/wiki/Jacobi_symbol Wiki-en])</ref>
  
<ref name="Linnik2">MathWorld, ''Linnik's Theorem''. ([https://mathworld.wolfram.com/LinniksTheorem.html MathWorld])</ref>
+
<ref name="legendre1">Wikipedia, ''Symbol Legendre’a'', ([https://pl.wikipedia.org/wiki/Symbol_Legendre%E2%80%99a Wiki-pl]), ([https://en.wikipedia.org/wiki/Legendre_symbol Wiki-en])</ref>
  
<ref name="Linnik3">Yuri Linnik, ''On the least prime in an arithmetic progression. I. The basic theorem'', Mat. Sb. (N.S.) 15 (1944) 139–178.</ref>
+
<ref name="Norton1">Karl K. Norton, ''Numbers with Small Prime Factors, and the Least ''k''th Power Non-Residue'', Memoirs of the American Mathematical Society, No. 106 (1971)</ref>
  
<ref name="Linnik4">Yuri Linnik, ''On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon'', Mat. Sb. (N.S.) 15 (1944) 347–368.</ref>
+
<ref name="Trevino1">Enrique Treviño, ''The least k-th power non-residue'', Journal of Number Theory, Volume 149 (2015)</ref>
  
<ref name="Xylouris1">Triantafyllos Xylouris, ''Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression'', Bonner Mathematische Schriften, vol. 404, Univ. Bonn, 2011, Diss.</ref>
+
<ref name="Trevino2">Kevin J. McGown and Enrique Treviño, ''The least quadratic non-residue'', Mexican Mathematicians in the World (2021)</ref>
  
<ref name="PAPWiki">Wikipedia, ''Primes in arithmetic progression'', ([https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression Wiki-en])</ref>
+
<ref name="Erdos1">Paul Erdős, ''Számelméleti megjegyzések I'', Afar. Lapok, v. 12 (1961)</ref>
  
<ref name="PAPMathWorld">MathWorld, ''Prime Arithmetic Progression'', ([https://mathworld.wolfram.com/PrimeArithmeticProgression.html LINK])</ref>
+
<ref name="Pollack1">Paul Pollack, ''The average least quadratic nonresidue modulo <math>m</math> and other variations on a&nbsp;theme of Erdős'', Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.</ref>
  
<ref name="Corput">J. G. van der Corput, ''Über Summen von Primzahlen und Primzahlquadraten'', Mathematische Annalen, 116 (1939) 1-50, ([https://eudml.org/doc/159991 LINK])</ref>
+
<ref name="InfiniteDescent1">Wikipedia, ''Proof by infinite descent'', ([https://en.wikipedia.org/wiki/Proof_by_infinite_descent Wiki-en])</ref>
  
<ref name="largestPAP">Wikipedia, ''Largest known primes in AP'', ([https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression#Largest_known_primes_in_AP Wiki-en])</ref>
+
<ref name="Bussey1">W. H. Bussey, ''Fermat's Method of Infinite Descent'', The American Mathematical Monthly, Vol. 25, No. 8 (1918)</ref>
  
<ref name="GeenTao">Ben Green and Terence Tao, ''The Primes Contain Arbitrarily Long Arithmetic Progressions.'', Ann. of Math. (2) 167 (2008), 481-547, ([https://annals.math.princeton.edu/2008/167-2/p03 LINK1]), Preprint. 8 Apr 2004, ([http://arxiv.org/abs/math.NT/0404188 LINK2])</ref>
+
<ref name="HardyWright1">G. H. Hardy and Edward M. Wright, ''An Introduction to the Theory of Numbers'', New York: Oxford University Press, 5th Edition, zobacz dowód Twierdzenia 366 w&nbsp;sekcji 20.4 na stronie 301.</ref>
  
<ref name="CPAP1">Wikipedia, ''Primes in arithmetic progression - Largest known consecutive primes in AP'', ([https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression#Largest_known_consecutive_primes_in_AP Wiki-en])</ref>
+
<ref name="Gica1">Alexandru Gica, ''Quadratic Residues of Certain Types'', Rocky Mountain J. Math. 36 (2006), no. 6, 1867-1871.</ref>
  
<ref name="PrimesInInterval">Henryk Dąbrowski, ''Twierdzenie Czebyszewa o&nbsp;liczbie pierwszej między n i 2n - Uwagi do twierdzenia'', ([https://henryk-dabrowski.pl/index.php?title=Twierdzenie_Czebyszewa_o_liczbie_pierwszej_mi%C4%99dzy_n_i_2n#Uwagi_do_twierdzenia LINK])</ref>
+
<ref name="Pollack2">Paul Pollack, ''The least prime quadratic nonresidue in a&nbsp;prescribed residue class mod 4'', Journal of Number Theory 187 (2018), 403-414</ref>
  
 
</references>
 
</references>
 
 
 
 
 
  
  

Wersja z 17:15, 20 maj 2023

22.03.2023



Chińskie twierdzenie o resztach

Twierdzenie J1
Niech [math]\displaystyle{ a, u \in \mathbb{Z} }[/math] i [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Kongruencja

[math]\displaystyle{ u \equiv a \pmod{m n} }[/math]

jest równoważna układowi kongruencji

[math]\displaystyle{ \begin{align} u &\equiv a \pmod{m} \\ u &\equiv a \pmod{n} \end{align} }[/math]
Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Jeżeli liczba [math]\displaystyle{ u - a }[/math] jest podzielna przez iloczyn [math]\displaystyle{ m n }[/math], to tym bardziej jest podzielna przez dowolny czynnik tego iloczynu, skąd wynika natychmiast wypisany układ kongruencji.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z kongruencji

[math]\displaystyle{ u \equiv a \pmod{m} }[/math]

wynika, że [math]\displaystyle{ u - a = k m }[/math], zaś z kongruencji

[math]\displaystyle{ u \equiv a \pmod{n} }[/math]

otrzymujemy [math]\displaystyle{ n \mid (u - a) }[/math], czyli [math]\displaystyle{ n \mid k m }[/math]. Ponieważ [math]\displaystyle{ \gcd (m, n) = 1 }[/math], zatem [math]\displaystyle{ n \mid k }[/math] (zobacz C72) i istnieje taka liczba całkowita [math]\displaystyle{ s }[/math], że [math]\displaystyle{ k = s n }[/math], czyli [math]\displaystyle{ u - a = s n m }[/math], a stąd [math]\displaystyle{ u \equiv a \!\! \pmod{m n} }[/math]. Co kończy dowód.


Twierdzenie J2
Dla dowolnych liczb [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] i względnie pierwszych liczb [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] istnieje dokładnie jedna taka liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m n }[/math]), że prawdziwy jest układ kongruencji

[math]\displaystyle{ \begin{align} c & \equiv a \pmod{m} \\ c & \equiv b \pmod{n} \end{align} }[/math]
Dowód

Z założenia liczby [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, zatem na mocy lematu Bézouta (C.71) istnieją takie liczby [math]\displaystyle{ x, y \in \mathbb{Z} }[/math], że

[math]\displaystyle{ m x + n y = 1 }[/math]

Niech [math]\displaystyle{ c = a n y + b m x }[/math]. Modulo [math]\displaystyle{ m }[/math] dostajemy

[math]\displaystyle{ c \equiv a n y \pmod{m} }[/math]
[math]\displaystyle{ c \equiv a (1 - m x) \pmod{m} }[/math]
[math]\displaystyle{ c \equiv a \pmod{m} }[/math]

Natomiast modulo [math]\displaystyle{ n }[/math] mamy

[math]\displaystyle{ c \equiv b m x \pmod{n} }[/math]
[math]\displaystyle{ c \equiv b (1 - n y) \pmod{n} }[/math]
[math]\displaystyle{ c \equiv b \pmod{n} }[/math]

Pokazaliśmy tym samym istnienie szukanej liczby [math]\displaystyle{ c }[/math]. Przypuśćmy, że istnieją dwie takie liczby [math]\displaystyle{ c }[/math] i [math]\displaystyle{ d }[/math]. Z założenia [math]\displaystyle{ m \mid (d - a) }[/math] i [math]\displaystyle{ m \mid (c - a) }[/math], zatem [math]\displaystyle{ m }[/math] dzieli różnicę tych liczb, czyli [math]\displaystyle{ m \mid (d - c) }[/math]. Podobnie pokazujemy, że [math]\displaystyle{ n \mid (d - c) }[/math]. Ponieważ liczby [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, to [math]\displaystyle{ m n \mid (d - c) }[/math] (zobacz C73), co oznacza, że

[math]\displaystyle{ d \equiv c \pmod{m n} }[/math].

Czyli możemy powiedzieć, że wybrana przez nas liczba [math]\displaystyle{ c }[/math] jest określona modulo [math]\displaystyle{ m n }[/math] i tak rozumiana jest dokładnie jedna. W szczególności istnieje tylko jedna liczba [math]\displaystyle{ c }[/math] taka, że [math]\displaystyle{ 1 \leqslant c \leqslant m n }[/math].


Twierdzenie J3 (chińskie twierdzenie o resztach)
Niech [math]\displaystyle{ a, b, c, u \in \mathbb{Z} }[/math] i [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] oraz niech [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Istnieje dokładnie jedna liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m n }[/math]) taka, że kongruencja

[math]\displaystyle{ u \equiv c \pmod{m n} }[/math]

jest równoważna układowi kongruencji

[math]\displaystyle{ \begin{align} u & \equiv a \pmod{m} \\ u & \equiv b \pmod{n} \end{align} }[/math]
Dowód

Z twierdzenia J2 wiemy, że istnieje dokładnie jedna liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m n }[/math]) taka, że prawdziwy jest układ kongruencji

[math]\displaystyle{ \begin{align} c & \equiv a \pmod{m} \\ c & \equiv b \pmod{n} \end{align} }[/math]

Korzystając z tego rezultatu i twierdzenia J1, otrzymujemy

[math]\displaystyle{ u \equiv c \pmod{m n} \qquad \Longleftrightarrow \qquad \begin{array}{l} u \equiv c \; \pmod{m} \\ u \equiv c \; \pmod{n} \\ \end{array} \qquad \Longleftrightarrow \qquad \begin{array}{l} u \equiv a \; \pmod{m} \\ u \equiv b \:\, \pmod{n} \\ \end{array} }[/math]

Co należało pokazać.


Uwaga J4
Chińskie twierdzenie o resztach[1] (CRT[2]) pozostaje prawdziwe w przypadku układu skończonej liczby kongruencji. Założenie, że moduły [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, jest istotne. Przykładowo układ kongruencji

[math]\displaystyle{ \begin{align} u &\equiv 1 \pmod{4} \\ u &\equiv 3 \pmod{8} \end{align} }[/math]

nie może być zapisany w postaci jednej równoważnej kongruencji, bo nie istnieją liczby, które spełniałyby powyższy układ jednocześnie. Łatwo zauważamy, że rozwiązaniem pierwszego równania jest [math]\displaystyle{ u = 4 k + 1 }[/math], które dla liczb [math]\displaystyle{ k }[/math] parzystych i nieparzystych ma postać

[math]\displaystyle{ u = 8 j + 1, \qquad u = 8 j + 5 }[/math]

i nie może być [math]\displaystyle{ u \equiv 3 \!\! \pmod{8} }[/math].


Zadanie J5
Niech [math]\displaystyle{ u, a_1, \ldots, a_k \in \mathbb{Z} }[/math] i [math]\displaystyle{ m_1, \ldots, m_k \in \mathbb{Z}_+ }[/math]. Pokazać, że jeżeli liczby [math]\displaystyle{ m_1, \ldots, m_k }[/math] są parami względnie pierwsze (czyli [math]\displaystyle{ \gcd (m_i, m_j) = 1 }[/math] dla [math]\displaystyle{ i \neq j }[/math]), to istnieje dokładnie jedna liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m_1 \cdot \ldots \cdot m_k }[/math]) taka, że układ kongruencji

[math]\displaystyle{ \begin{align} u & \equiv a_1 \pmod{m_1} \\ & \cdots \\ u & \equiv a_k \pmod{m_k} \end{align} }[/math]

można zapisać w sposób równoważny w postaci kongruencji

[math]\displaystyle{ u \equiv c \;\; \pmod{m_1 \cdot \ldots \cdot m_k} }[/math]
Rozwiązanie

Indukcja matematyczna. Twierdzenie jest prawdziwe dla liczby [math]\displaystyle{ k = 2 }[/math] (zobacz J3). Zakładając prawdziwość twierdzenia dla liczby naturalnej [math]\displaystyle{ k \geqslant 2 }[/math], dla liczby [math]\displaystyle{ k + 1 }[/math] otrzymujemy układ kongruencji

[math]\displaystyle{ \begin{align} u & \equiv c \quad \;\, \pmod{m_1 \cdot \ldots \cdot m_k} \\ u & \equiv a_{k + 1} \pmod{m_{k + 1}} \end{align} }[/math]

gdzie skorzystaliśmy z założenia indukcyjnego. Z twierdzenia J3 wynika, że układ ten można zapisać w sposób równoważny w postaci kongruencji

[math]\displaystyle{ u \equiv c' \pmod{m_1 \cdot \ldots \cdot m_k m_{k + 1}} }[/math]

gdzie liczba [math]\displaystyle{ c' }[/math] jest dokładnie jedna i jest określona modulo [math]\displaystyle{ m_1 \cdot \ldots \cdot m_k m_{k + 1} }[/math]. Zatem twierdzenie jest prawdziwe dla [math]\displaystyle{ k + 1 }[/math]. Co kończy dowód indukcyjny.


Przykład J6
Dysponujemy pewną ilością kulek. Grupując je po [math]\displaystyle{ 5 }[/math], zostają nam [math]\displaystyle{ 3 }[/math], a kiedy próbujemy ustawić je po [math]\displaystyle{ 7 }[/math], zostają nam [math]\displaystyle{ 4 }[/math]. Jaka najmniejsza ilość kulek spełnia te warunki? Rozważmy układ kongruencji

[math]\displaystyle{ \begin{align} n &\equiv 3 \pmod{5} \\ n &\equiv 4 \pmod{7} \end{align} }[/math]

Z chińskiego twierdzenia o resztach wiemy, że powyższy układ możemy zapisać w postaci równoważnej kongruencji modulo [math]\displaystyle{ 35 }[/math]. Jeśli chcemy zaoszczędzić sobie trudu, to wystarczy skorzystać z PARI/GP. Wpisując proste polecenie

chinese( Mod(3,5), Mod(4,7) )

uzyskujemy wynik Mod(18, 35), zatem równoważna kongruencja ma postać

[math]\displaystyle{ n \equiv 18 \pmod{35} }[/math]

Jest to zarazem odpowiedź na postawione pytanie: najmniejsza liczba kulek wynosi [math]\displaystyle{ 18 }[/math].

Gdybyśmy chcieli rozważać bardziej rozbudowany układ kongruencji, przykładowo

[math]\displaystyle{ \begin{align} n &\equiv 1 \pmod{2} \\ n &\equiv 2 \pmod{3} \\ n &\equiv 3 \pmod{5} \\ n &\equiv 4 \pmod{7} \\ n &\equiv 5 \pmod{11} \end{align} }[/math]

to argumenty należy zapisać w postaci wektora

chinese( [Mod(1,2), Mod(2,3), Mod(3,5), Mod(4,7), Mod(5,11)] )

Otrzymujemy Mod(1523, 2310).



Wielomiany

Twierdzenie J7
Niech [math]\displaystyle{ W_n (x) }[/math] będzie dowolnym wielomianem stopnia [math]\displaystyle{ n }[/math]. Wielomian [math]\displaystyle{ W_n (x) }[/math] można przedstawić w postaci

[math]\displaystyle{ W_n (x) = W_n (s) + (x - s) V_{n - 1} (x) }[/math]

gdzie [math]\displaystyle{ V_{n - 1} (x) }[/math] jest wielomianem stopnia [math]\displaystyle{ n - 1 }[/math], a współczynniki wiodące wielomianów [math]\displaystyle{ W_n (x) }[/math] i [math]\displaystyle{ V_{n - 1} (x) }[/math] są sobie równe.

Dowód

Z założenia [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math], gdzie [math]\displaystyle{ a_n \neq 0 }[/math]. Zauważmy, że

[math]\displaystyle{ W_n (x) - W_n (s) = \sum_{k = 0}^{n} a_k x^k - \sum_{k = 0}^{n} a_k s^k }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 1}^{n} a_k (x^k - s^k) }[/math]

Dla [math]\displaystyle{ k \geqslant 1 }[/math] prawdziwy jest wzór

[math]\displaystyle{ x^k - s^k = (x - s) \sum_{j = 1}^{k} x^{k - j} s^{j - 1} }[/math]
[math]\displaystyle{ \;\,\, = (x - s) (x^{k - 1} + s x^{k - 2} + \ldots + s^{k - 2} x + s^{k - 1}) }[/math]
[math]\displaystyle{ \;\,\, = (x - s) U^{(k)} (x) }[/math]

Gdzie przez [math]\displaystyle{ U^{(k)} (x) = \sum_{j = 1}^{k} x^{k - j} s^{j - 1} }[/math] oznaczyliśmy wielomian, którego stopień jest równy [math]\displaystyle{ k - 1 }[/math]. Zatem możemy napisać

[math]\displaystyle{ W_n (x) - W_n (s) = (x - s) \sum_{k = 1}^{n} a_k U^{(k)} (x) }[/math]

Suma wypisana po prawej stronie jest pewnym wielomianem [math]\displaystyle{ V_{n - 1} (x) }[/math]. Ponieważ ze wszystkich wielomianów [math]\displaystyle{ a_k U^{(k)} (x) }[/math], wielomian [math]\displaystyle{ a_n U^{(n)} (x) }[/math] ma największy stopień równy [math]\displaystyle{ n - 1 }[/math], to stopień wielomianu [math]\displaystyle{ V_{n - 1} (x) }[/math] jest równy [math]\displaystyle{ n - 1 }[/math]. Czyli

[math]\displaystyle{ W_n (x) - W_n (s) = (x - s) V_{n - 1} (x) }[/math]

Niech [math]\displaystyle{ V_n (x) = \sum_{k = 0}^{n - 1} b_k x^k }[/math]. Mamy

[math]\displaystyle{ \sum_{k = 0}^{n} a_k x^k - W_n (s) = \sum_{k = 0}^{n - 1} b_k x^{k + 1} - s \sum_{k = 0}^{n - 1} b_k x^k }[/math]

Porównując wyrazy o największym stopniu, łatwo zauważamy, że [math]\displaystyle{ a_n = b_{n - 1} }[/math]. Czyli współczynnik wiodący wielomianu [math]\displaystyle{ V_{n - 1} (x) }[/math] jest równy [math]\displaystyle{ a_n }[/math]. Co należało pokazać.


Definicja J8
Wielomian [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math], gdzie [math]\displaystyle{ a_0, \ldots, a_n \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ a_n \neq 0 }[/math], będziemy nazywali wielomianem całkowitym stopnia [math]\displaystyle{ n }[/math].


Definicja J9
Powiemy, że wielomian całkowity [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] jest stopnia [math]\displaystyle{ n }[/math] modulo [math]\displaystyle{ p }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą, jeżeli [math]\displaystyle{ p \nmid a_n }[/math]. Jeżeli każdy współczynnik [math]\displaystyle{ a_k }[/math], gdzie [math]\displaystyle{ k = 0, 1, \ldots, n }[/math], jest podzielny przez [math]\displaystyle{ p }[/math], to stopień wielomianu [math]\displaystyle{ W_n (x) }[/math] modulo [math]\displaystyle{ p }[/math] jest nieokreślony.


Twierdzenie J10
Niech [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] będzie wielomianem całkowitym i [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Jeżeli prawdziwa jest kongruencja [math]\displaystyle{ x \equiv y \!\! \pmod{m} }[/math], to

[math]\displaystyle{ W_n (x) \equiv W_n (y) \pmod{m} }[/math]
Dowód

Dla [math]\displaystyle{ k \geqslant 1 }[/math] wyrażenie [math]\displaystyle{ x^k - y^k }[/math] jest podzielne przez [math]\displaystyle{ x - y }[/math], co łatwo pokazać stosując indukcję matematyczną lub zauważając, że

[math]\displaystyle{ x^k - y^k = (x - y) \sum_{j = 1}^{k} x^{k - j} y^{j - 1} }[/math]

Z założenia [math]\displaystyle{ m \mid (x - y) }[/math], zatem dla [math]\displaystyle{ k \geqslant 1 }[/math] mamy [math]\displaystyle{ m \mid (x^k - y^k) }[/math]. Wynika stąd, że prawdziwe są kongruencje

[math]\displaystyle{ \begin{align} a_0 & \equiv a_0 \;\;\:\, \pmod{m}\\ a_1 x & \equiv a_1 y \;\, \pmod{m}\\ a_2 x^2 & \equiv a_2 y^2 \pmod{m}\\ & \cdots \\ a_n x^n & \equiv a_n y^n \pmod{m} \end{align} }[/math]

Dodając wypisane kongruencje stronami, otrzymujemy

[math]\displaystyle{ W_n (x) \equiv W_n (y) \pmod{m} }[/math]

Co należało pokazać.


Uwaga J11
Niech [math]\displaystyle{ W(x) }[/math] będzie wielomianem całkowitym. Rozważmy kongruencję

[math]\displaystyle{ W(x) \equiv 0 \pmod{m n} \qquad \qquad \qquad (1) }[/math]

gdzie liczby [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze.

Kongruencja ta jest równoważna układowi kongruencji

[math]\displaystyle{ \begin{align} W (x) &\equiv 0 \pmod{m}\\ W (x) &\equiv 0 \pmod{n} \end{align} \qquad \qquad \qquad \; (2) }[/math]

Zatem problem szukania rozwiązań kongruencji [math]\displaystyle{ (1) }[/math] możemy sprowadzić do szukania rozwiązań układu kongruencji [math]\displaystyle{ (2) }[/math]. W szczególności wynika stąd, że jeżeli któraś z kongruencji [math]\displaystyle{ (2) }[/math] nie ma rozwiązania, to kongruencja [math]\displaystyle{ W(x) \equiv 0 \!\! \pmod{m n} }[/math] również nie ma rozwiązania.

Załóżmy, że każda z kongruencji [math]\displaystyle{ (2) }[/math] ma przynajmniej jedno rozwiązanie i niech

  • [math]\displaystyle{ x \equiv a \!\! \pmod{m} }[/math] będzie pierwiastkiem kongruencji [math]\displaystyle{ W (x) \equiv 0 \!\! \pmod{m} }[/math]
  • [math]\displaystyle{ x \equiv b \!\! \pmod{n} }[/math] będzie pierwiastkiem kongruencji [math]\displaystyle{ W (x) \equiv 0 \!\! \pmod{n} }[/math]

Pierwiastki te tworzą układ kongruencji

[math]\displaystyle{ \begin{align} x &\equiv a \pmod{m} \\ x &\equiv b \pmod{n} \end{align} \qquad \qquad \qquad \qquad (3) }[/math]

Z chińskiego twierdzenia o resztach wiemy, że układ ten możemy zapisać w postaci równoważnej

[math]\displaystyle{ x \equiv c \pmod{m n} }[/math]

Zauważmy, że liczba [math]\displaystyle{ c }[/math] określona modulo [math]\displaystyle{ m n }[/math] jest rozwiązaniem kongruencji [math]\displaystyle{ (1) }[/math]. Istotnie z twierdzenia J10 mamy

[math]\displaystyle{ \begin{align} W (c) &\equiv W (a) \equiv 0 \pmod{m} \\ W (c) &\equiv W (b) \equiv 0 \pmod{n} \end{align} }[/math]

ale liczby [math]\displaystyle{ m, n }[/math] są względnie pierwsze, zatem otrzymujemy, że

[math]\displaystyle{ W (c) \equiv 0 \pmod{m n} }[/math]

Wynika stąd, że każdemu układowi rozwiązań [math]\displaystyle{ (3) }[/math] odpowiada dokładnie jedno rozwiązanie kongruencji [math]\displaystyle{ (1) }[/math].

Podsumujmy: jeżeli kongruencje

[math]\displaystyle{ \begin{align} W (x) &\equiv 0 \pmod{m}\\ W (x) &\equiv 0 \pmod{n} \end{align} }[/math]

mają odpowiednio [math]\displaystyle{ r }[/math] i [math]\displaystyle{ s }[/math] pierwiastków, to liczba różnych układów kongruencji [math]\displaystyle{ (3) }[/math] jest równa iloczynowi [math]\displaystyle{ r s }[/math] i istnieje [math]\displaystyle{ r s }[/math] różnych rozwiązań kongruencji

[math]\displaystyle{ W(x) \equiv 0 \pmod{m n} }[/math]



Twierdzenie Lagrange'a

Twierdzenie J12
Kongruencja

[math]\displaystyle{ a_1 x + a_0 \equiv 0 \pmod{p} }[/math]

gdzie [math]\displaystyle{ p \nmid a_1 }[/math], ma dokładnie jedno rozwiązanie modulo [math]\displaystyle{ p }[/math].

Dowód

A. Istnienie rozwiązania

Ponieważ rozpatrywaną kongruencję możemy zapisać w postaci [math]\displaystyle{ a_1 x + a_0 = k p }[/math], to istnienie liczb [math]\displaystyle{ x }[/math] i [math]\displaystyle{ k }[/math], dla których ta równość jest prawdziwa, wynika z twierdzenia C74. Poniżej przedstawimy jeszcze jeden sposób znalezienia rozwiązania.

Ponieważ [math]\displaystyle{ \gcd (a_1, p) = 1 }[/math], to istnieją takie liczby [math]\displaystyle{ r, s }[/math], że [math]\displaystyle{ a_1 r + p s = 1 }[/math] (zobacz C71 - lemat Bézouta). Zauważmy, że [math]\displaystyle{ p \nmid r }[/math], bo gdyby tak było, to liczba pierwsza [math]\displaystyle{ p }[/math] dzieliłaby wyrażenie [math]\displaystyle{ a_1 r + p s }[/math], ale jest to niemożliwe, bo [math]\displaystyle{ a_1 r + p s = 1 }[/math]. Czyli modulo [math]\displaystyle{ p }[/math] mamy

[math]\displaystyle{ a_1 r \equiv 1 \pmod{p} }[/math]

Mnożąc rozpatrywaną kongruencję przez [math]\displaystyle{ r }[/math], otrzymujemy

[math]\displaystyle{ a_1 r x + a_0 r \equiv 0 \pmod{p} }[/math]

Zatem

[math]\displaystyle{ x \equiv - a_0 r \pmod{p} }[/math]

B. Brak innych rozwiązań

Przypuśćmy, że istnieją dwa różne rozwiązania kongruencji

[math]\displaystyle{ a_1 x + a_0 \equiv 0 \pmod{p} }[/math]

Jeśli oznaczymy je przez [math]\displaystyle{ x_1 }[/math] i [math]\displaystyle{ x_2 }[/math], to otrzymamy

[math]\displaystyle{ a_1 x_1 + a_0 \equiv 0 \equiv a_1 x_2 + a_0 \pmod{p} }[/math]

Czyli

[math]\displaystyle{ a_1 x_1 \equiv a_1 x_2 \pmod{p} }[/math]
[math]\displaystyle{ p \mid a_1 (x_1 - x_2) }[/math]

Ponieważ [math]\displaystyle{ p \nmid a_1 }[/math], to z lematu Euklidesa (C72) otrzymujemy natychmiast [math]\displaystyle{ p \mid (x_1 - x_2) }[/math]. Skąd wynika, że [math]\displaystyle{ x_1 \equiv x_2 \!\! \pmod{p} }[/math], wbrew założeniu, że [math]\displaystyle{ x_1 }[/math] i [math]\displaystyle{ x_2 }[/math] są dwoma różnymi rozwiązaniami. Co kończy dowód.


Twierdzenie J13 (Joseph Louis Lagrange, 1768)
Jeżeli wielomian [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] ma stopień [math]\displaystyle{ n }[/math] modulo [math]\displaystyle{ p }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], to kongruencja

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

ma co najwyżej [math]\displaystyle{ n }[/math] rozwiązań.

Dowód

Indukcja matematyczna. Z J12 wiemy, że dowodzone twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Załóżmy, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n - 1 }[/math]. Niech wielomian [math]\displaystyle{ W_n (x) }[/math] ma stopień [math]\displaystyle{ n }[/math] modulo [math]\displaystyle{ p }[/math]. Jeżeli kongruencja

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

nie ma żadnego rozwiązania, to dowodzone twierdzenie jest prawdziwe dla [math]\displaystyle{ n }[/math]. Przypuśćmy teraz, że wypisana wyżej kongruencja ma przynajmniej jeden pierwiastek [math]\displaystyle{ x \equiv s \!\! \pmod{p} }[/math]. Korzystając z twierdzenia J7, możemy napisać

[math]\displaystyle{ W_n (x) - W_n (s) = (x - s) V_{n - 1} (x) }[/math]

gdzie wielomian [math]\displaystyle{ V_{n - 1} (x) }[/math] ma stopień [math]\displaystyle{ n - 1 }[/math] modulo [math]\displaystyle{ p }[/math], bo wielomiany [math]\displaystyle{ W_n (x) }[/math] oraz [math]\displaystyle{ V_{n - 1} (x) }[/math] mają jednakowe współczynniki wiodące.


Z założenia [math]\displaystyle{ x \equiv s \!\! \pmod{p} }[/math] jest jednym z pierwiastków kongruencji [math]\displaystyle{ W_n (x) \equiv 0 \!\! \pmod{p} }[/math], zatem modulo [math]\displaystyle{ p }[/math] otrzymujemy

[math]\displaystyle{ W_n (x) \equiv (x - s) V_{n - 1} (x) \pmod{p} }[/math]

Ponieważ [math]\displaystyle{ p }[/math] jest liczbą pierwszą, to z rozpatrywanej kongruencji

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

wynika, że musi być (zobacz C72)

[math]\displaystyle{ x \equiv s \pmod{p} \qquad \qquad \text{lub} \qquad \qquad V_{n - 1} (x) \equiv 0 \pmod{p} }[/math]


Z założenia indukcyjnego kongruencja

[math]\displaystyle{ V_{n - 1} (x) \pmod{p} }[/math]

ma co najwyżej [math]\displaystyle{ n - 1 }[/math] rozwiązań, zatem kongruencja

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

ma nie więcej niż [math]\displaystyle{ n }[/math] rozwiązań. Co należało pokazać.


Twierdzenie J14
Jeżeli kongruencja

[math]\displaystyle{ a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \equiv 0 \pmod{p} }[/math]

ma więcej niż [math]\displaystyle{ n }[/math] rozwiązań, to wszystkie współczynniki [math]\displaystyle{ a_k }[/math], gdzie [math]\displaystyle{ k = 0, \ldots, n }[/math], muszą być podzielne przez [math]\displaystyle{ p }[/math].

Dowód

Niech [math]\displaystyle{ S \subset \{ 0, 1, \ldots, n \} }[/math] będzie zbiorem takim, że dla każdego [math]\displaystyle{ k \in S }[/math] jest [math]\displaystyle{ p \nmid a_k }[/math]. Przypuśćmy, że [math]\displaystyle{ S }[/math] jest zbiorem niepustym. Niech [math]\displaystyle{ j }[/math] oznacza największy element zbioru [math]\displaystyle{ S }[/math]. Jeżeli [math]\displaystyle{ j = 0 }[/math], to wielomian [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] jest stopnia [math]\displaystyle{ 0 }[/math] modulo [math]\displaystyle{ p }[/math] i

[math]\displaystyle{ a_0 \not\equiv 0 \pmod{p} }[/math]

Konsekwentnie, dla dowolnego [math]\displaystyle{ x \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \not\equiv 0 \pmod{p} }[/math]

bo dla każdego [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math] mamy [math]\displaystyle{ a_k \equiv 0 \!\! \pmod{p} }[/math]. Zatem rozpatrywana kongruencja nie ma ani jednego rozwiązania, czyli rozwiązań nie może być więcej niż [math]\displaystyle{ n }[/math].

W przypadku gdy [math]\displaystyle{ j \neq 0 }[/math], z twierdzenia Lagrange'a wynika, że rozpatrywana kongruencja ma nie więcej niż [math]\displaystyle{ j \leqslant n }[/math] rozwiązań, ponownie wbrew założeniu, że kongruencja ta ma więcej niż [math]\displaystyle{ n }[/math] rozwiązań. Uczynione przypuszczenie, że [math]\displaystyle{ S }[/math] jest zbiorem niepustym, okazało się fałszywe, zatem zbiór [math]\displaystyle{ S }[/math] musi być zbiorem pustym. Co należało pokazać.


Przykład J15
Z twierdzenia Lagrange'a wynika, że kongruencja

[math]\displaystyle{ x^p - x - 1 \equiv 0 \pmod{p} }[/math]

ma co najwyżej [math]\displaystyle{ p }[/math] rozwiązań. W rzeczywistości nie ma ani jednego rozwiązania, bo z twierdzenia Fermata wiemy, że dla dowolnej liczby pierwszej [math]\displaystyle{ p }[/math] jest

[math]\displaystyle{ x^p \equiv x \pmod{p} }[/math]


Przykład J16
Zauważmy, że w przypadku, gdy [math]\displaystyle{ n \geqslant p }[/math], możemy zawsze wielomian przekształcić do postaci takiej, że [math]\displaystyle{ n \lt p }[/math]. Niech [math]\displaystyle{ p = 5 }[/math] i

[math]\displaystyle{ W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1 }[/math]

Ponieważ [math]\displaystyle{ x^5 \equiv x \!\! \pmod{5} }[/math], to

[math]\displaystyle{ W(x) \equiv x^3 + 11 x^3 + 5 x + 2 x^2 + x + 1 \equiv 12 x^3 + 2 x^2 + 6 x + 1 \pmod{5} }[/math]

Co wynika również z faktu, że [math]\displaystyle{ W(x) }[/math] można zapisać w postaci

[math]\displaystyle{ W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1 = (x^5 - x) (x^{10} + 12 x^6 + 12 x^2 + 5) + 12 x^3 + 2 x^2 + 6 x + 1 }[/math]

ale [math]\displaystyle{ x^5 - x \equiv 0 \!\! \pmod{5} }[/math] na mocy twierdzenia Fermata.



Twierdzenie Wilsona

Twierdzenie J17 (John Wilson, 1770)
Liczba całkowita [math]\displaystyle{ p \geqslant 2 }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy

[math]\displaystyle{ (p - 1) ! \equiv - 1 \pmod{p} }[/math]
Dowód

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Przypuśćmy, że prawdziwa jest kongruencja [math]\displaystyle{ (p - 1) ! \equiv - 1 \!\! \pmod{p} }[/math] oraz [math]\displaystyle{ p }[/math] jest liczbą złożoną. Zatem liczba [math]\displaystyle{ p }[/math] ma dzielnik [math]\displaystyle{ d }[/math] taki, że [math]\displaystyle{ 2 \leqslant d \leqslant p - 1 }[/math]. Ponieważ [math]\displaystyle{ d \mid p }[/math], to prawdziwa jest kongruencja

[math]\displaystyle{ (p - 1) ! \equiv - 1 \pmod{d} }[/math]

czyli

[math]\displaystyle{ 0 \equiv - 1 \pmod{d} }[/math]

co jest niemożliwe.

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ p = 2 }[/math]. Niech teraz [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Rozważmy wielomiany

[math]\displaystyle{ W(x) = (x - 1) (x - 2) \cdot \ldots \cdot (x - (p - 1)) }[/math]

oraz

[math]\displaystyle{ V(x) = x^{p - 1} - 1 }[/math]

Zauważmy, że

  • stopnie tych wielomianów są równe [math]\displaystyle{ p - 1 }[/math]
  • współczynniki wiodące są równe [math]\displaystyle{ 1 }[/math]
  • wyrazy wolne są równe odpowiednio [math]\displaystyle{ (p - 1) ! }[/math] oraz [math]\displaystyle{ - 1 }[/math]
  • wielomiany mają [math]\displaystyle{ p - 1 }[/math] rozwiązań modulo [math]\displaystyle{ p }[/math]

Niech

[math]\displaystyle{ U(x) = W (x) - V (x) }[/math]

Zauważmy, że

  • stopień wielomianu [math]\displaystyle{ U(x) }[/math] jest równy [math]\displaystyle{ p - 2 \geqslant 1 }[/math], ponieważ wyrazy o najwyższym stopniu uległy redukcji
  • wielomian [math]\displaystyle{ U(x) }[/math] ma [math]\displaystyle{ p - 1 }[/math] rozwiązań modulo [math]\displaystyle{ p }[/math], bo dla każdego [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 1 \} }[/math] mamy [math]\displaystyle{ U(k) = W (k) - V (k) \equiv 0 \!\! \pmod{p} }[/math]

Z twierdzenia Lagrange'a wiemy, że wielomian [math]\displaystyle{ U(x) }[/math] nie może mieć więcej niż [math]\displaystyle{ p - 2 }[/math] rozwiązań modulo [math]\displaystyle{ p }[/math]. Zatem z twierdzenia J14 wynika natychmiast, że liczba pierwsza [math]\displaystyle{ p }[/math] musi dzielić każdy współczynnik [math]\displaystyle{ a_k }[/math] wielomianu [math]\displaystyle{ U(x) }[/math] i w szczególności musi dzielić wyraz wolny, który jest równy [math]\displaystyle{ (p - 1) ! + 1 }[/math]. Co należało pokazać.


Twierdzenie J18
Liczba całkowita nieparzysta [math]\displaystyle{ p \geqslant 3 }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy

[math]\displaystyle{ \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p} }[/math]
Dowód

Z twierdzenia Wilsona wiemy, że liczba całkowita [math]\displaystyle{ p \geqslant 2 }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy

[math]\displaystyle{ (p - 1) ! \equiv - 1 \pmod{p} }[/math]

W przypadku, gdy liczba [math]\displaystyle{ p }[/math] jest liczbą nieparzystą możemy powyższy wzór łatwo przekształcić. Ponieważ czynniki w [math]\displaystyle{ (p - 1) ! }[/math] są określone modulo [math]\displaystyle{ p }[/math], to odejmując od każdego czynnika większego od [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczbę [math]\displaystyle{ p }[/math], otrzymujemy

[math]\displaystyle{ 1 \cdot 2 \cdot \ldots \cdot {\small\frac{p - 3}{2}} \cdot {\small\frac{p - 1}{2}} \cdot \left( {\small\frac{p + 1}{2}} - p \right) \left( {\small\frac{p + 3}{2}} - p \right) \cdot \ldots \cdot (- 2) \cdot (- 1) \equiv - 1 \!\! \pmod{p} }[/math]
[math]\displaystyle{ (- 1)^{\tfrac{p - 1}{2}} \cdot \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv - 1 \!\! \pmod{p} }[/math]
[math]\displaystyle{ \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p} }[/math]

Co należało pokazać.



Twierdzenie Fermata

Twierdzenie J19 (Pierre de Fermat, 1640)
Niech [math]\displaystyle{ a \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą

  • to liczba [math]\displaystyle{ a^p - a }[/math] jest podzielna przez [math]\displaystyle{ p }[/math], czyli [math]\displaystyle{ a^p \equiv a \!\! \pmod p }[/math]
  • i jeśli dodatkowo [math]\displaystyle{ p \nmid a }[/math], to liczba [math]\displaystyle{ a^{p - 1} - 1 }[/math] jest podzielna przez [math]\displaystyle{ p }[/math], czyli [math]\displaystyle{ a^{p - 1} \equiv 1 \!\! \pmod p }[/math]
Dowód

Punkt 1.

Zauważmy, że
a) twierdzenie jest prawdziwe dla [math]\displaystyle{ a = 0 }[/math]
b) w przypadku, gdy [math]\displaystyle{ p = 2 }[/math] wyrażenie [math]\displaystyle{ a^p - a = a^2 - a = a (a - 1) }[/math] jest podzielne przez [math]\displaystyle{ 2 }[/math], bo jedna z liczb [math]\displaystyle{ a - 1 }[/math] i [math]\displaystyle{ a }[/math] jest liczbą parzystą
c) w przypadku, gdy [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i twierdzenie jest prawdziwe dla [math]\displaystyle{ a \geqslant 1 }[/math], to jest też prawdziwe dla [math]\displaystyle{ - a }[/math], bo

[math]\displaystyle{ (- a)^p - (- a) = (- 1)^p a^p + a = - a^p + a = - (a^p - a) }[/math]


Zatem wystarczy pokazać, że dla ustalonej liczby pierwszej nieparzystej [math]\displaystyle{ p }[/math] twierdzenie jest prawdziwe dla każdego [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math].

Indukcja matematyczna. Dla [math]\displaystyle{ a = 1 }[/math] mamy [math]\displaystyle{ 1^p - 1 = 0 }[/math] zatem liczba pierwsza [math]\displaystyle{ p }[/math] jest dzielnikiem rozważanego wyrażenia. Zakładając, że twierdzenie jest prawdziwe dla [math]\displaystyle{ a }[/math], czyli [math]\displaystyle{ p|a^p - a }[/math], otrzymujmy dla [math]\displaystyle{ a + 1 }[/math]

[math]\displaystyle{ (a + 1)^p - (a + 1) = \sum_{k = 0}^{p} \binom{p}{k} \cdot a^k - a - 1 }[/math]
[math]\displaystyle{ \;\;\,\, = 1 + \sum_{k = 1}^{p - 1} \binom{p}{k} \cdot a^k + a^p - a - 1 }[/math]
[math]\displaystyle{ \;\;\,\, = a^p - a + \sum^{p - 1}_{k = 1} \binom{p}{k} \cdot a^k }[/math]


Z założenia indukcyjnego [math]\displaystyle{ p|a^p - a }[/math], zaś [math]\displaystyle{ \binom{p}{k} = {\small\frac{p!}{k! \cdot (p - k) !}} }[/math] dla [math]\displaystyle{ k = 1, 2, \ldots, p - 1 }[/math] jest podzielne przez [math]\displaystyle{ p }[/math] (ponieważ [math]\displaystyle{ p }[/math] dzieli licznik, ale nie dzieli mianownika). Zatem [math]\displaystyle{ (a + 1)^p - (a + 1) }[/math] jest podzielne przez liczbę pierwszą [math]\displaystyle{ p }[/math].

Punkt 2.

Z punktu 1. wiemy, że liczba pierwsza [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ a^p - a = a (a^{p - 1} - 1) }[/math]. Jeżeli [math]\displaystyle{ p \nmid a }[/math], to z lematu Euklidesa (zobacz twierdzenie C72) wynika natychmiast, że [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ a^{p - 1} - 1 }[/math].


Twierdzenie J20
Niech [math]\displaystyle{ x, y \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ \gcd (x, y) = 1 }[/math] i liczba pierwsza nieparzysta [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ x^2 + y^2 }[/math], to [math]\displaystyle{ p }[/math] jest postaci [math]\displaystyle{ 4 k + 1 }[/math].

Dowód

Z założenia

[math]\displaystyle{ x^2 \equiv - y^2 \!\! \pmod{p} }[/math]

Przypuśćmy, że [math]\displaystyle{ p|y }[/math]. Wtedy z powyższej kongruencji mamy natychmiast, że [math]\displaystyle{ p|x }[/math], wbrew założeniu, że [math]\displaystyle{ \gcd (x, y) = 1 }[/math]. Zatem [math]\displaystyle{ p \nmid y }[/math] i z twierdzenia Fermata dostajemy

[math]\displaystyle{ 1 \equiv x^{p - 1} \equiv (x^2)^{\tfrac{p - 1}{2}} \equiv (- y^2)^{\tfrac{p - 1}{2}} \equiv y^{p - 1} \cdot (- 1)^{\tfrac{p - 1}{2}} \equiv (- 1)^{\tfrac{p - 1}{2}} \!\! \pmod{p} }[/math]

Wynika stąd, że [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] musi być liczbą parzystą, czyli [math]\displaystyle{ p = 4 k + 1 }[/math]. Co należało pokazać.


Zadanie J21
Niech [math]\displaystyle{ x, y, n \geqslant 0 }[/math]. Pokazać, że jedynymi rozwiązaniami równania

[math]\displaystyle{ x^2 + y^2 = 2^n }[/math]

są liczby

  • [math]\displaystyle{ x = 2^{n / 2} \, }[/math] i [math]\displaystyle{ \, y = 0 \, }[/math] lub [math]\displaystyle{ \, x = 0 \, }[/math] i [math]\displaystyle{ \, y = 2^{n / 2} }[/math], gdy [math]\displaystyle{ 2 \mid n }[/math]
  • [math]\displaystyle{ x = y = 2^{(n - 1) / 2} }[/math], gdy [math]\displaystyle{ 2 \nmid n }[/math]
Rozwiązanie

A. Gdy jedna z liczb [math]\displaystyle{ x, y }[/math] jest równa [math]\displaystyle{ 0 }[/math] (powiedzmy [math]\displaystyle{ y }[/math]), to mamy [math]\displaystyle{ x = 2^{n / 2} }[/math], gdy [math]\displaystyle{ n }[/math] jest parzyste. Gdy [math]\displaystyle{ n }[/math] jest nieparzyste, to rozwiązanie nie istnieje. Od tej pory będziemy zakładali, że [math]\displaystyle{ x, y \geqslant 1 }[/math]

B. Wiemy, że kwadrat liczby nieparzystej przystaje do [math]\displaystyle{ 1 }[/math] modulo [math]\displaystyle{ 4 }[/math]. Gdy obie liczby [math]\displaystyle{ x, y }[/math] są nieparzyste, to modulo [math]\displaystyle{ 4 }[/math] mamy

[math]\displaystyle{ 2 \equiv 2^n \!\! \pmod{4} }[/math]

Kongruencja ta jest prawdziwa tylko dla [math]\displaystyle{ n = 1 }[/math] i w tym przypadku mamy [math]\displaystyle{ (x, y) = (1, 1) }[/math].

C. W przypadku, gdy obie liczby są parzyste, możemy napisać [math]\displaystyle{ x = 2^a u }[/math], [math]\displaystyle{ y = 2^b w }[/math], gdzie liczby [math]\displaystyle{ u, w }[/math] są nieparzyste. Nie zmniejszając ogólności możemy założyć, że [math]\displaystyle{ 1 \leqslant a \leqslant b \lt {\small\frac{n}{2}} }[/math]. Dostajemy

[math]\displaystyle{ u^2 + 2^{2 b - 2 a} w^2 = 2^{n - 2 a} }[/math]

Widzimy, że nie może być [math]\displaystyle{ a \lt b }[/math], bo suma liczby nieparzystej i parzystej nie jest liczbą parzystą. Zatem [math]\displaystyle{ a = b }[/math] i otrzymujemy równanie

[math]\displaystyle{ u^2 + w^2 = 2^{n - 2 a} }[/math]

które ma rozwiązanie w liczbach nieparzystych tylko dla wykładnika [math]\displaystyle{ n - 2 a = 1 }[/math]. Mamy [math]\displaystyle{ u = w = 1 }[/math], zatem [math]\displaystyle{ x = y = 2^{(n - 1) / 2} }[/math] i [math]\displaystyle{ n }[/math] musi być liczbą nieparzystą.


Twierdzenie J22
Niech [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ x \neq y }[/math], to liczba [math]\displaystyle{ x^2 + y^2 }[/math] ma dzielnik pierwszy postaci [math]\displaystyle{ 4 k + 1 }[/math].

Dowód

W przypadku, gdy [math]\displaystyle{ x = y }[/math] mamy [math]\displaystyle{ x^2 + y^2 = 2 y^2 }[/math] i jeśli liczba [math]\displaystyle{ y }[/math] nie ma dzielnika pierwszego postaci [math]\displaystyle{ 4 k + 1 }[/math], to nie ma go również liczba [math]\displaystyle{ 2 y^2 }[/math]. Przykładowo [math]\displaystyle{ x^2 + y^2 = 2 y^2 = 2^{2 r + 1}, 2 \cdot 3^{2 r}, 2 \cdot 7^{2 r} }[/math]. Dlatego zakładamy, że [math]\displaystyle{ x \neq y }[/math]. Analogiczna sytuacja ma miejsce, gdy jedna z liczb [math]\displaystyle{ x, y }[/math] jest równa zero. Dlatego zakładamy, że [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math].

Niech [math]\displaystyle{ \gcd (x, y) = d }[/math], zatem mamy [math]\displaystyle{ x = a d }[/math], [math]\displaystyle{ y = b d }[/math]. Wynika stąd, że [math]\displaystyle{ x^2 + y^2 = d^2 (a^2 + b^2) }[/math], gdzie [math]\displaystyle{ \gcd (a, b) = 1 \, }[/math] i [math]\displaystyle{ \, a \neq b }[/math]. Ponieważ [math]\displaystyle{ \, a \neq b }[/math], to liczba [math]\displaystyle{ a^2 + b^2 }[/math] musi mieć dzielnik pierwszy nieparzysty (zobacz J21). Z twierdzenia J20 zastosowanego do liczby [math]\displaystyle{ a^2 + b^2 }[/math] wynika, że [math]\displaystyle{ a^2 + b^2 }[/math] musi mieć dzielnik pierwszy postaci [math]\displaystyle{ 4 k + 1 }[/math].



Kryterium Eulera

Definicja J23
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą i [math]\displaystyle{ a \in \mathbb{Z} }[/math]. Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

ma rozwiązanie, czyli istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że [math]\displaystyle{ p \mid (k^2 - a) }[/math].

Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

nie ma rozwiązania.


Twierdzenie J24
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] istnieje dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].

Dowód

Zauważmy, że w rozważanym zbiorze liczb [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math], kwadraty liczb [math]\displaystyle{ k }[/math] i [math]\displaystyle{ p - k }[/math] są takimi samymi liczbami modulo [math]\displaystyle{ p }[/math], co wynika z oczywistej kongruencji

[math]\displaystyle{ k^2 \equiv (p - k)^2 \pmod{p} }[/math]

Pozwala to wypisać pary liczb, których kwadraty są identyczne modulo [math]\displaystyle{ p }[/math]

[math]\displaystyle{ (1, p - 1), (2, p - 2), \ldots, \left( {\small\frac{p - 1}{2}}, p - {\small\frac{p - 1}{2}} \right) }[/math]

Ponieważ

[math]\displaystyle{ p - {\small\frac{p - 1}{2}} = {\small\frac{p + 1}{2}} = {\small\frac{p - 1}{2}} + 1 }[/math]

to wypisane pary wyczerpują cały zbiór [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math]. Co więcej, liczby [math]\displaystyle{ 1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2 }[/math] są wszystkie różne modulo [math]\displaystyle{ p }[/math]. Istotnie, przypuśćmy, że [math]\displaystyle{ 1 \leqslant i, j \leqslant {\small\frac{p - 1}{2}} }[/math] oraz [math]\displaystyle{ i \neq j }[/math], a jednocześnie [math]\displaystyle{ i^2 \equiv j^2 \!\! \pmod{p} }[/math]. Gdyby tak było, to mielibyśmy

[math]\displaystyle{ (i - j) (i + j) \equiv 0 \pmod{p} }[/math]

Łatwo zauważamy, że jest to niemożliwe, bo żaden z czynników nie jest podzielny przez [math]\displaystyle{ p }[/math], co wynika z prostych oszacowań

[math]\displaystyle{ 1 \leqslant | i - j | \leqslant i + j \lt p - 1 }[/math]
[math]\displaystyle{ 2 \lt i + j \lt p - 1 }[/math]


Ponieważ (z definicji) liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

ma rozwiązanie, to liczba kwadratowa modulo [math]\displaystyle{ p }[/math] musi przystawać do pewnego kwadratu modulo [math]\displaystyle{ p }[/math].

Wynika stąd, że różnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math] jest tyle samo, co kwadratów [math]\displaystyle{ 1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2 }[/math]. Czyli jest ich dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math]. Pozostałe liczby w zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] to liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] i jest ich również [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math]. Co należało pokazać.


Twierdzenie J25 (kryterium Eulera, 1748)
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą i [math]\displaystyle{ p \nmid a }[/math]. Modulo [math]\displaystyle{ p }[/math] mamy

●    liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv 1 \pmod{p} }[/math]
●    liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv - 1 \pmod{p} }[/math]
Dowód

Punkt 1.

Niech [math]\displaystyle{ Q \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich liczb kwadratowych modulo [math]\displaystyle{ p }[/math], a [math]\displaystyle{ S \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich rozwiązań kongruencji

[math]\displaystyle{ x^{(p - 1) / 2} \equiv 1 \pmod{p} }[/math]

Zauważmy, że

   A       [math]\displaystyle{ | Q | = {\small\frac{p - 1}{2}} }[/math]    zobacz J24
   B       [math]\displaystyle{ | S | \leqslant {\small\frac{p - 1}{2}} }[/math]    zobacz twierdzenie Lagrange'a J13
   C       jeżeli [math]\displaystyle{ a \in Q }[/math], to [math]\displaystyle{ a \in S \qquad }[/math]    wynika z ciągu implikacji:
         [math]\displaystyle{ a \in Q \qquad \Longrightarrow \qquad a \equiv k^2 \pmod{p} }[/math]
         [math]\displaystyle{ a \equiv k^2 \pmod{p} \qquad \Longrightarrow \qquad a^{(p - 1) / 2} \equiv (k^2)^{(p - 1) / 2} \equiv k^{p - 1} \equiv 1 \pmod{p} }[/math]   
         [math]\displaystyle{ a^{(p - 1) / 2} \equiv 1 \pmod{p} \qquad \Longrightarrow \qquad a \in S }[/math]
   D       [math]\displaystyle{ Q \subseteq S }[/math]    z punktu C wynika, że każdy element zbioru [math]\displaystyle{ Q }[/math] należy do zbioru [math]\displaystyle{ S }[/math]


Łącząc rezultaty z tabeli, otrzymujemy

[math]\displaystyle{ {\small\frac{p - 1}{2}} = | Q | \leqslant | S | \leqslant {\small\frac{p - 1}{2}} }[/math]

Skąd łatwo widzimy, że

[math]\displaystyle{ | Q | = | S | = {\small\frac{p - 1}{2}} }[/math]

Ponieważ [math]\displaystyle{ Q \subseteq S }[/math], a zbiory [math]\displaystyle{ Q }[/math] i [math]\displaystyle{ S }[/math] są równoliczne, to zbiory te są równe (zobacz J26). Prostą konsekwencją równości zbiorów [math]\displaystyle{ Q }[/math] i [math]\displaystyle{ S }[/math] jest stwierdzenie

   liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv 1 \pmod{p} }[/math]   

Co kończy dowód punktu pierwszego.

Punkt 2.

Z udowodnionego już punktu pierwszego wynika[3], że

   liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \not\equiv 1 \pmod{p} }[/math]   

Z twierdzenia Fermata

[math]\displaystyle{ a^{p - 1} - 1 = (a^{(p - 1) / 2} - 1) \cdot (a^{(p - 1) / 2} + 1) \equiv 0 \pmod{p} }[/math]

wynika natychmiast, że jeżeli [math]\displaystyle{ a^{(p - 1) / 2} - 1 \not\equiv 0 \pmod{p} }[/math], to musi być

[math]\displaystyle{ a^{(p - 1) / 2} + 1 \equiv 0 \pmod{p} }[/math]

Fakt ten pozwala sformułować uzyskaną równoważność bardziej precyzyjnie

   liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv - 1 \pmod{p} }[/math]   

Co należało pokazać.


Zadanie J26
Niech [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] będą zbiorami skończonymi. Pokazać, że jeżeli [math]\displaystyle{ A \subseteq B \;\; \text{i} \;\; | A | = | B | }[/math], to [math]\displaystyle{ \; A = B }[/math].

Rozwiązanie

Ponieważ zbiór [math]\displaystyle{ A }[/math] jest podzbiorem zbioru [math]\displaystyle{ B }[/math], to zbiór [math]\displaystyle{ B }[/math] można przedstawić w postaci sumy zbiorów [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] takich, że żaden element zbioru [math]\displaystyle{ C }[/math] nie jest elementem zbioru [math]\displaystyle{ A }[/math]. Zatem

[math]\displaystyle{ B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing }[/math]

Ponieważ z założenia zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są rozłączne, to wiemy, że

[math]\displaystyle{ | A \cup C | = | A | + | C | }[/math]

Czyli

[math]\displaystyle{ | B | = | A \cup C | = | A | + | C | }[/math]

Skąd wynika, że [math]\displaystyle{ | C | = 0 }[/math], zatem zbiór [math]\displaystyle{ C }[/math] jest zbiorem pustym i otrzymujemy natychmiast [math]\displaystyle{ B = A }[/math]. Co należało pokazać.


Uwaga (przypadek zbiorów skończonych)
Najczęściej prawdziwe jest jedynie oszacowanie [math]\displaystyle{ | A \cup C | \leqslant | A | + | C | }[/math], bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math], zatem od sumy [math]\displaystyle{ | A | + | C | }[/math] musimy odjąć liczbę elementów iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math]. Co daje ogólny wzór[4]

[math]\displaystyle{ | A \cup C | = | A | + | C | - | A \cap C | }[/math]



Symbol Legendre'a

Definicja J27
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą i [math]\displaystyle{ a \in \mathbb{Z} }[/math]. Symbolem Legendre'a[5] nazywamy funkcję [math]\displaystyle{ a }[/math] i [math]\displaystyle{ p }[/math] zdefiniowaną następująco

[math]\displaystyle{ \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\: 1 & \text{gdy } \, a \, \text{ jest liczbą kwadratową modulo } \, p \, \text{ oraz } \, p \nmid a \\ - 1 & \text{gdy } \, a \, \text{ jest liczbą niekwadratową modulo } \, p \\ \;\;\: 0 & \text{gdy } \, p \mid a \end{cases} }[/math]


Uwaga J28
Powyższa definicja pozwala nam zapisać kryterium Eulera w zwartej formie, która obejmuje również przypadek, gdy [math]\displaystyle{ p \mid a }[/math]

[math]\displaystyle{ a^{(p - 1) / 2} \equiv \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \pmod{p} }[/math]


Twierdzenie J29*
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ p, q }[/math] będą nieparzystymi liczbami pierwszymi. Symbol Legendre'a ma następujące właściwości


Zadanie J30
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, [math]\displaystyle{ a, d \in \mathbb{Z} }[/math] i [math]\displaystyle{ p \nmid d }[/math]. Pokazać, że

[math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
Rozwiązanie

Punkt 1. i 2.

Aby udowodnić dwa pierwsze wzory, wystarczy zauważyć, że wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) = 0 }[/math]

Punkt 3.

Z założenia liczby [math]\displaystyle{ p }[/math] i [math]\displaystyle{ d }[/math] są względnie pierwsze. Z twierdzenia C55 wiemy, że reszty [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] z dzielenia [math]\displaystyle{ p }[/math] kolejnych wyrazów ciągu arytmetycznego

[math]\displaystyle{ x_k = a + k d }[/math]

przez liczbę [math]\displaystyle{ p }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, p - 1 \} }[/math].

Zatem wśród reszt [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math], tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], a jedna z tych reszt jest podzielna przez [math]\displaystyle{ p . }[/math] Czyli

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) + 0 = 0 }[/math]

Co należało pokazać.


Zadanie J31
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Pokazać, że jeżeli [math]\displaystyle{ k \in S = \{ 1, 2, \ldots, p - 1 \} }[/math], to dla każdego [math]\displaystyle{ k }[/math] istnieją liczby [math]\displaystyle{ x_k }[/math] i [math]\displaystyle{ y_k }[/math] takie, że

A.   [math]\displaystyle{ x_k \cdot k + y_k \cdot p = 1 }[/math]
B.   [math]\displaystyle{ p \nmid x_k }[/math]
C.   [math]\displaystyle{ x_k \cdot k \equiv 1 \!\! \pmod{p} }[/math]
D.   jeżeli [math]\displaystyle{ k \neq j }[/math], to [math]\displaystyle{ x_k \not\equiv x_j \!\! \pmod{p} }[/math]
E.   gdy [math]\displaystyle{ k }[/math] przebiega cały zbiór [math]\displaystyle{ S }[/math], to [math]\displaystyle{ x_k }[/math] przebiega zbiór [math]\displaystyle{ S' }[/math] identyczny ze zbiorem [math]\displaystyle{ S }[/math] modulo [math]\displaystyle{ p }[/math]
Rozwiązanie

A. Dla każdego [math]\displaystyle{ k \in S }[/math] mamy [math]\displaystyle{ \gcd (k, p) = 1 }[/math], zatem punkt A. wynika z lematu Bézouta (zobacz C71).

B. Gdyby [math]\displaystyle{ p \mid x_k }[/math], to mielibyśmy [math]\displaystyle{ p \mid 1 }[/math], co jest niemożliwe.

C. Kongruencję otrzymujemy, rozpatrując punkt A. modulo [math]\displaystyle{ p }[/math].

D. Gdyby dla [math]\displaystyle{ k \neq j }[/math] było

[math]\displaystyle{ x_k \equiv x_j \!\! \pmod{p} }[/math]

to z różnicy kongruencji (zobacz punkt C.)

[math]\displaystyle{ x_k \cdot k - x_j \cdot j \equiv 0 \!\! \pmod{p} }[/math]

mielibyśmy

[math]\displaystyle{ x_k (k - j) \equiv 0 \!\! \pmod{p} }[/math]

Co jest niemożliwe, bo [math]\displaystyle{ p \nmid x_k }[/math] (punkt B.) oraz [math]\displaystyle{ p \nmid (k - j) }[/math], bo dla [math]\displaystyle{ k \neq j }[/math] mamy [math]\displaystyle{ 1 \leqslant | k - j | \leqslant p - 2 }[/math].

E. Z założenia [math]\displaystyle{ k }[/math] przebiega zbiór wszystkich reszt z dzielenia przez [math]\displaystyle{ p }[/math] poza liczbą zero. Z punktu B. wiemy, że dla każdej liczby [math]\displaystyle{ x_k }[/math] jest [math]\displaystyle{ x_k \not\equiv 0 \!\! \pmod{p} }[/math]. Z punktu D. wiemy, że różnym liczbom [math]\displaystyle{ k, j \in S }[/math] odpowiadają różne (modulo [math]\displaystyle{ p }[/math]) liczby [math]\displaystyle{ x_k, x_j }[/math]. Zatem modulo [math]\displaystyle{ p }[/math] zbiór [math]\displaystyle{ S' }[/math] musi być identyczny ze zbiorem [math]\displaystyle{ S }[/math].


Zadanie J32
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Pokazać, że

[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
Rozwiązanie

Do rozwiązania problemu wykorzystamy liczby [math]\displaystyle{ x_k }[/math], które zostały zdefiniowane i omówione w zadaniu poprzednim.

[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k + x_k \cdot k)}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{1 + x_k}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{k = 1}^{p - 1} \left( {\small\frac{1 + x_k}{p}} \right)_{\small{\!\! L}} }[/math]

Gdy [math]\displaystyle{ k }[/math] przebiega zbiór [math]\displaystyle{ S = \{ 1, 2, \ldots, p - 1 \} }[/math], to [math]\displaystyle{ x_k }[/math] przebiega pewien zbiór [math]\displaystyle{ S' }[/math]. Wiemy, że zbiory [math]\displaystyle{ S }[/math] i [math]\displaystyle{ S' }[/math] są identyczne modulo [math]\displaystyle{ p }[/math].

[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{a = 1} \left( {\small\frac{1 + a}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{b = 2}^{p} \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum_{b = 1}^{p - 1} \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = - 1 }[/math]

(zobacz J30). Co należało pokazać.


Zadanie J33
Pokazać, że jeżeli [math]\displaystyle{ p \geqslant 7 }[/math] jest liczbą pierwszą, to wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] istnieją:

  • dwie kolejne liczby będące liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]
  • dwie kolejne liczby będące liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math]
Rozwiązanie

Dla [math]\displaystyle{ p = 7 }[/math] łatwo sprawdzamy, że twierdzenie jest prawdziwe.

Punkt 1.

Zauważmy, że przynajmniej jedna z liczb [math]\displaystyle{ 2, 5, 10 }[/math] jest liczbą kwadratową. Zakładając, że tak nie jest, otrzymujemy natychmiast sprzeczność

[math]\displaystyle{ -1 = \left( {\small\frac{10}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{5}{p}} \right)_{\small{\!\! L}} = (- 1) \cdot (- 1) = 1 }[/math]

W zależności od tego, która z liczb [math]\displaystyle{ 2, 5, 10 }[/math] jest liczbą kwadratową, mamy następujące pary kolejnych liczb kwadratowych

Punkt 2.

Rozważmy wszystkie możliwe wartości [math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} }[/math] dla [math]\displaystyle{ k = 1, 2, 3, 4 }[/math] i [math]\displaystyle{ p \geqslant 11 }[/math]. Zauważmy, że [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! L}} }[/math].

A. W tym przypadku liczby [math]\displaystyle{ 2, 3 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Gdyby w pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], to musielibyśmy [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych umieścić wśród pozostałych [math]\displaystyle{ p - 5 }[/math] komórek tak, aby między nimi zawsze była liczba kwadratowa modulo [math]\displaystyle{ p }[/math]. Wartość [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} }[/math] wymusza, aby liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] umieszczać w komórkach „nieparzystych”. Po wypełnieniu tych komórek pozostaną nam dwie liczby, które będziemy zmuszeni umieścić w komórkach „parzystych”. Co oznacza, że muszą pojawić się dwie pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].

B. i C. W tym przypadku dokładnie jedna z liczb [math]\displaystyle{ 2, 3 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Gdyby w pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], to musielibyśmy [math]\displaystyle{ {\small\frac{p - 3}{2}} }[/math] liczb niekwadratowych umieścić wśród pozostałych [math]\displaystyle{ p - 5 }[/math] komórek tak, aby między nimi zawsze była liczba kwadratowa modulo [math]\displaystyle{ p }[/math]. Wartość [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} }[/math] wymusza, aby liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] umieszczać w komórkach „parzystych”. Po wypełnieniu tych komórek pozostanie nam jedna liczba, którą będziemy zmuszeni umieścić w komórce „nieparzystej”. Co oznacza, że musi pojawić się jedna para kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].

D. W tym przypadku nie musimy niczego dowodzić, bo liczby [math]\displaystyle{ 2, 3 }[/math] są kolejnymi liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math].


Uwaga J34
Wzmocnimy wynik uzyskany w poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem.


Twierdzenie J35
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to

  • istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor }[/math] różnych par kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math]
  • istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor }[/math] różnych par kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]
Dowód

Punkt 1.

Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 2 \} }[/math], dla których

[math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = 1 }[/math]

Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a

[math]\displaystyle{ N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Tylko w przypadku, gdy obie liczby [math]\displaystyle{ k }[/math] i [math]\displaystyle{ k + 1 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 4 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{4}} }[/math] przed sumą).

[math]\displaystyle{ 4 N = \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
[math]\displaystyle{ \; = p - 2 + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} }[/math]

Po kolei wyliczymy sumy po lewej stronie

[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{p - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = \sum_{j = 2}^{p - 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum^{p - 1}_{j = 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = \sum_{k = 1}^{p - 2} \left( {\small\frac{k (k + 1)}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]

(zobacz J30 i J32). Zatem

[math]\displaystyle{ N = {\small\frac{1}{4}} \left[ p - 4 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Czyli

[math]\displaystyle{ N = \begin{cases} {\large\frac{p - 5}{4}} & \text{ gdy } \; p \equiv 1 \, \pmod{4} \\ {\large\frac{p - 3}{4}} & \text{ gdy } \; p \equiv 3 \, \pmod{4} \\ \end{cases} }[/math]

Powyższy wynik można zapisać w postaci

[math]\displaystyle{ N = \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor }[/math]

Punkt 2.

Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 2 \} }[/math], dla których

[math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]

Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a

[math]\displaystyle{ N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Tylko w przypadku, gdy obie liczby [math]\displaystyle{ k }[/math] i [math]\displaystyle{ k + 1 }[/math] są liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 4 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{4}} }[/math] przed sumą).

[math]\displaystyle{ 4 N = \sum_{k = 1}^{p - 2} \left[ 1 - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
[math]\displaystyle{ \; = p - 2 - \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} }[/math]

Wartości sum wyliczyliśmy już w punkcie 1. Zatem

[math]\displaystyle{ N = {\small\frac{1}{4}} \left[ p - 2 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Czyli

[math]\displaystyle{ N = \begin{cases} {\large\frac{p - 1}{4}} & \text{ gdy } \; p \equiv 1 \, \pmod{4} \\ {\large\frac{p - 3}{4}} & \text{ gdy } \; p \equiv 3 \, \pmod{4} \\ \end{cases} }[/math]

Powyższy wynik można zapisać w postaci

[math]\displaystyle{ N = \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor }[/math]

Co należało pokazać.



Symbol Jacobiego

Definicja J36
Niech liczby [math]\displaystyle{ a \in \mathbb{Z} }[/math] i [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] będą względnie pierwsze. Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

ma rozwiązanie, czyli istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że [math]\displaystyle{ m \mid (k^2 - a) }[/math].

Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

nie ma rozwiązania.


Uwaga J37
Prosta funkcja pozwala łatwo sprawdzić, czy liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math].

isQR(a, m) = 
\\ funkcja zwraca 1, gdy a jest liczbą kwadratową modulo m,
\\ -1, gdy a jest liczbą niekwadratową i 0, gdy gcd(a, m) > 1
{
local(w);
if( gcd(a, m) > 1, return(0) ); \\ liczba nie jest ani QR, ani QNR
w = -1;
for(k = 1, floor(m/2), if( (k^2 - a)%m == 0, w = 1; break() ));
return(w);
}


Uwaga J38
Ponieważ często można spotkać definicję liczb kwadratowych i niekwadratowych modulo [math]\displaystyle{ m }[/math], w której warunek [math]\displaystyle{ \gcd (a, m) = 1 }[/math] zostaje pominięty, to Czytelnik powinien zawsze upewnić się, jaka definicja jest stosowana. Najczęściej w takim przypadku liczba [math]\displaystyle{ 0 }[/math] nie jest uznawana za liczbę kwadratową modulo [math]\displaystyle{ m }[/math].

Przykładowo:

[math]\displaystyle{ \left\{ 0^2, 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2 \right\} \equiv \left\{ 0, 1, 4, 9, 6, 5, 6, 9, 4, 1 \right\} \pmod{10} }[/math]

Liczby kwadratowe modulo [math]\displaystyle{ 10 }[/math] to [math]\displaystyle{ \left\{ 1, 9 \right\} }[/math], a niekwadratowe to [math]\displaystyle{ \left\{ 3, 7 \right\} }[/math]. Liczby [math]\displaystyle{ \left\{ 0, 2, 4, 5, 6, 8 \right\} }[/math] nie są ani liczbami kwadratowymi, ani liczbami niekwadratowymi modulo [math]\displaystyle{ 10 }[/math].

Jeśli odrzucimy warunek [math]\displaystyle{ \gcd (a, m) = 1 }[/math], to liczbami kwadratowymi modulo [math]\displaystyle{ 10 }[/math] będą [math]\displaystyle{ \left\{ 0, 1, 4, 5, 6, 9 \right\} }[/math], a niekwadratowymi [math]\displaystyle{ \left\{ 2, 3, 7, 8 \right\} }[/math].

Inny przykład. Niech [math]\displaystyle{ m = 210 = 2 \cdot 3 \cdot 5 \cdot 7 }[/math]. W zależności od przyjętej definicji najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] będzie albo [math]\displaystyle{ 11 }[/math], albo [math]\displaystyle{ 2 }[/math].


Zadanie J39
Niech liczby [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Pokazać, że liczba [math]\displaystyle{ a \in \mathbb{Z} }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m n }[/math] wtedy i tylko wtedy, gdy jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] i modulo [math]\displaystyle{ n }[/math].

Rozwiązanie

Niech [math]\displaystyle{ W(x) = x^2 - a }[/math]. Zauważmy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy kongruencja [math]\displaystyle{ W(x) \equiv 0 \!\! \pmod{m} }[/math] ma rozwiązanie. Dalsza analiza problemu przebiega dokładnie tak, jak to zostało przedstawione w uwadze J11.


Definicja J40
Symbol Jacobiego[6] [math]\displaystyle{ \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} }[/math] jest uogólnieniem symbolu Legendre'a [math]\displaystyle{ \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} }[/math] dla dodatnich liczb nieparzystych. Niech [math]\displaystyle{ n = \prod_i p_i^{\alpha_i} }[/math] będzie rozkładem liczby [math]\displaystyle{ n }[/math] na czynniki pierwsze, wtedy

[math]\displaystyle{ \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} = \prod_i \left( {\small\frac{a}{p_i}} \right)_{\small{\!\! L}}^{\!\! \alpha_i} }[/math]


Uwaga J41
Zauważmy, że w przypadku gdy [math]\displaystyle{ n = 1 }[/math], po prawej stronie mamy „pusty” iloczyn (bez jakiegokolwiek czynnika). Podobnie jak „pustej” sumie przypisujemy wartość zero, tak „pustemu” iloczynowi przypisujemy wartość jeden. Zatem dla dowolnego [math]\displaystyle{ a \in \mathbb{Z} }[/math] jest [math]\displaystyle{ \left( {\small\frac{a}{1}} \right)_{\small{\!\! J}} = 1 }[/math].


Twierdzenie J42*
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ m, n }[/math] będą liczbami nieparzystymi. Symbol Jacobiego ma następujące właściwości


Uwaga J43
Zauważmy, że poza zmienionym założeniem tabela z powyższego twierdzenia i tabela z twierdzenia J29 różnią się jedynie punktem czwartym. Oczywiście jest to tylko podobieństwo formalne – symbol Legendre'a i symbol Jacobiego są różnymi funkcjami.


Uwaga J44
Zauważmy, że w przypadku, gdy [math]\displaystyle{ m }[/math] jest liczbą nieparzystą

  • jeżeli [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math], to [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math]
  • jeżeli [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to nie musi być [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math]
  • jeżeli [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1 }[/math], to [math]\displaystyle{ a }[/math] nie musi być liczbą kwadratową modulo [math]\displaystyle{ m }[/math]
  • jeżeli [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], to jest [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1 }[/math]

Przykład: jeżeli [math]\displaystyle{ \gcd (a, m) = 1 }[/math], to [math]\displaystyle{ \left( {\small\frac{a}{m^2}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}^2 = + 1 }[/math], ale [math]\displaystyle{ a }[/math] może być liczbą niekwadratową modulo [math]\displaystyle{ m^2 }[/math].

Modulo [math]\displaystyle{ 9 }[/math] liczbami niekwadratowymi są: [math]\displaystyle{ 2, 5, 8 }[/math]. Modulo [math]\displaystyle{ 25 }[/math] liczbami niekwadratowymi są: [math]\displaystyle{ 2, 3, 7, 8, 12, 13, 17, 18, 22, 23 }[/math].


Uwaga J45
Wszystkie liczby kwadratowe i niekwadratowe modulo [math]\displaystyle{ m }[/math] można łatwo znaleźć, wykorzystując prosty program:

Pokaż kod
QRandQNR(m) = 
{
local(k, S, V);
S = [];
V = [];
for(k = 1,  m - 1, if( gcd(k, m) > 1, next() ); S = concat(S, k));
S = Set(S); \\ zbiór liczb względnie pierwszych z m
for(k = 1,  m - 1, if( gcd(k, m) > 1, next() ); V = concat(V, k^2 % m));
V = Set(V); \\ zbiór liczb kwadratowych modulo m
print("QR: ", V);
print("QNR: ", setminus(S, V)); \\ różnica zbiorów S i V
}



Zadanie J46
Pokazać, że

[math]\displaystyle{ \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} = \begin{cases} \;\;\: 1 & \text{gdy } m = 6 k + 1 \\ \;\;\: 0 & \text{gdy } m = 6 k + 3 \\ - 1 & \text{gdy } m = 6 k + 5 \end{cases} }[/math]
Rozwiązanie

Zauważmy, że

[math]\displaystyle{ \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = (- 1)^{\tfrac{m - 1}{2}} \cdot (- 1)^{\tfrac{m - 1}{2} \cdot \tfrac{3 - 1}{2}} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = (- 1)^{m - 1} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]

bo [math]\displaystyle{ m }[/math] jest liczbą nieparzystą.

Rozważmy liczby nieparzyste [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ 6 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5 }[/math]. Mamy

[math]\displaystyle{ \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \left( {\small\frac{6 k + r}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \left( {\small\frac{r}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ \;\;\: 0 & \text{gdy } r = 3 \\ - 1 & \text{gdy } r = 5 \end{cases} }[/math]

bo odpowiednio dla [math]\displaystyle{ r = 1, 3, 5 }[/math] jest

[math]\displaystyle{ \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{3}} \right)_{\small{\!\! J}} = 0 }[/math]
[math]\displaystyle{ \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{9 - 1}{8}} = - 1 }[/math]

Łatwo zauważamy, że

[math]\displaystyle{ \left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3 \cdot 2^2}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}}^{\! 2} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} }[/math]

Co należało pokazać.


Zadanie J47
Pokazać, że

[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \begin{cases} \;\;\: 1 & \text{gdy } m = 12 k \pm 1 \\ \;\;\: 0 & \text{gdy } m = 12 k \pm 3 \\ - 1 & \text{gdy } m = 12 k \pm 5 \end{cases} }[/math]


[math]\displaystyle{ \left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = \begin{cases} \;\;\: 1 & \text{gdy } m = 10 k \pm 1 \\ \;\;\: 0 & \text{gdy } m = 10 k + 5 \\ - 1 & \text{gdy } m = 10 k \pm 3 \end{cases} }[/math]
Rozwiązanie

Punkt 1.

Przy wyliczaniu symboli Legendre'a i Jacobiego, zawsze warto sprawdzić, czy da się ustalić przystawanie liczb modulo [math]\displaystyle{ 4 }[/math]. W tym przypadku mamy

[math]\displaystyle{ 3 \equiv 3 \pmod{4} }[/math]

i odpowiednio dla różnych postaci liczby [math]\displaystyle{ m }[/math] jest

[math]\displaystyle{ m = 12 k + 1 \equiv 1 \pmod{4} }[/math]
[math]\displaystyle{ m = 12 k + 5 \equiv 1 \pmod{4} }[/math]
[math]\displaystyle{ m = 12 k + 7 \equiv 3 \pmod{4} }[/math]
[math]\displaystyle{ m = 12 k + 11 \equiv 3 \pmod{4} }[/math]

Ułatwi nam to znacznie wykonywanie przekształceń (zobacz J42 p.9)

[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 1}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 1}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 5}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 7}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 11}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = 1 }[/math]

Punkt 2.

Ponieważ [math]\displaystyle{ 5 \equiv 1 \!\! \pmod{4} }[/math], to nie ma już znaczenia, czy [math]\displaystyle{ m \equiv 1 \!\! \pmod{4} }[/math], czy też [math]\displaystyle{ m \equiv 3 \!\! \pmod{4} }[/math]. Otrzymujemy natychmiast (zobacz J42 p.9)

[math]\displaystyle{ \left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} }[/math]

Rozważmy liczby nieparzyste [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ 10 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5, 7, 9 }[/math]. Mamy

[math]\displaystyle{ \left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \:\, \quad = \left( {\small\frac{10 k + r}{5}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \:\, \quad = \left( {\small\frac{r}{5}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \:\, \quad = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 3 \\ \;\;\: 0 & \text{gdy } r = 5 \\ - 1 & \text{gdy } r = 7 \\ \;\;\: 1 & \text{gdy } r = 9 \end{cases} }[/math]

bo odpowiednio dla [math]\displaystyle{ r = 1, 3, 5, 7, 9 }[/math] jest

[math]\displaystyle{ \left( {\small\frac{1}{5}} \right)_{\small{\!\! J}} = 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{-2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{(5 - 1)(5 - 3)}{8}} = -1 }[/math]
[math]\displaystyle{ \left( {\small\frac{5}{5}} \right)_{\small{\!\! J}} = 0 }[/math]
[math]\displaystyle{ \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{25 - 1}{8}} = - 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{9}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{5}} \right)_{\small{\!\! J}}^{\! 2} = 1 }[/math]

Co należało pokazać.


Uwaga J48
Wykorzystując podane w twierdzeniu J42 właściwości symbolu Jacobiego, możemy napisać prostą funkcję w PARI/GP znajdującą jego wartość. Zauważmy, że nie potrzebujemy znać rozkładu liczby [math]\displaystyle{ n }[/math] na czynniki pierwsze.

jacobi(a, n) = 
{
local(r, w);
if( n <= 0 || n % 2 == 0, return("Error") );
a = a % n; \\ korzystamy ze wzoru (a|n) = (b|n), gdy a ≡ b (mod n)
w = 1;
while( a <> 0,
       while( a % 2 == 0, a = a/2; r = n % 8; if( r == 3 || r == 5, w = -w ) );
       \\ usunęliśmy czynnik 2 ze zmiennej a, uwzględniając, że (2|n) = -1, gdy n ≡ 3,5 (mod 8)
       \\ teraz zmienne a oraz n są nieparzyste
       r = a; \\ zmienna r tylko przechowuje wartość a
       a = n;
       n = r;
       if( a % 4 == 3 && n % 4 == 3, w = -w );
       \\ zamieniliśmy zmienne, uwzględniając, że (a|n) = - (n|a), gdy a ≡ n ≡ 3 (mod 4)
       a = a % n;
     );
if( n == 1, return(w), return(0) ); \\ n jest teraz równe gcd(a, n)
}


Uwaga J49
Jeżeli [math]\displaystyle{ m }[/math] jest liczbą pierwszą, to symbol Jacobiego jest symbolem Legendre'a, czyli [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}} }[/math]. Jeżeli [math]\displaystyle{ m }[/math] jest liczbą złożoną, to symbol Legendre'a [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}} }[/math] nie istnieje, a symbol Jacobiego [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math] dostarcza jedynie ograniczonych informacji.

W przyszłości symbol Legendre'a / Jacobiego będziemy zapisywali w formie uproszczonej [math]\displaystyle{ (a \mid m) }[/math] i nie będziemy rozróżniali tych symboli. Interpretacja zapisu jest prosta:

  • jeżeli wiemy, że [math]\displaystyle{ m }[/math] jest liczbą pierwszą, to symbol [math]\displaystyle{ (a \mid m) }[/math] jest symbolem Legendre'a
  • jeżeli wiemy, że [math]\displaystyle{ m }[/math] jest liczbą złożoną, to symbol [math]\displaystyle{ (a \mid m) }[/math] jest symbolem Jacobiego
  • jeżeli nie wiemy, czy [math]\displaystyle{ m }[/math] jest liczbą pierwszą, czy złożoną, to symbol [math]\displaystyle{ (a \mid m) }[/math] jest symbolem Jacobiego



Rozwiązywanie kongruencji [math]\displaystyle{ x^2 \equiv a \!\! \pmod{m} }[/math]

Twierdzenie J50
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, zaś [math]\displaystyle{ a }[/math] liczbą całkowitą taką, że [math]\displaystyle{ \gcd (a, p) = 1 }[/math]. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p^n} }[/math]

ma rozwiązanie wtedy i tylko wtedy, gdy kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

ma rozwiązanie.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{p^n} }[/math] ma rozwiązanie. Zatem istnieje taka liczba [math]\displaystyle{ r \in \mathbb{Z} }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{p^n} }[/math]

Ponieważ [math]\displaystyle{ p^n \mid (r^2 - a) }[/math], to tym bardziej [math]\displaystyle{ p \mid (r^2 - a) }[/math], co oznacza, że prawdziwa jest kongruencja

[math]\displaystyle{ r^2 \equiv a \pmod{p} }[/math]

Skąd wynika natychmiast, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{p} }[/math] ma rozwiązanie.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Indukcja matematyczna. Z uczynionego w twierdzeniu założenia wiemy, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{p} }[/math] ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Załóżmy teraz (założenie indukcyjne), że kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p^n} }[/math]

ma rozwiązanie [math]\displaystyle{ x \equiv u_n \!\! \pmod{p^n} }[/math] i pokażmy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n + 1 }[/math], czyli że rozwiązanie ma kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p^{n + 1}} }[/math]

Wiemy, że liczba [math]\displaystyle{ u_n }[/math] jest określona modulo [math]\displaystyle{ p^n }[/math]. Nie tracąc ogólności, możemy założyć, że [math]\displaystyle{ 1 \leqslant u_n \lt p^n }[/math]. Wartość [math]\displaystyle{ u_n }[/math] może zostać wybrana dowolnie (modulo [math]\displaystyle{ p^n }[/math]), ale musi zostać ustalona — wymaga tego precyzja i czytelność dowodu. Zatem

[math]\displaystyle{ u^2_n - a = k p^n }[/math]

Zauważmy, że liczba [math]\displaystyle{ k }[/math] jest jednoznacznie określona, bo wartość [math]\displaystyle{ u_n }[/math] została ustalona. Ponieważ [math]\displaystyle{ \gcd (2 u_n, p) = 1 }[/math], to równanie

[math]\displaystyle{ 2 u_n \cdot s - p \cdot l = - k }[/math]

ma rozwiązanie (zobacz C74). Niech liczby [math]\displaystyle{ s_0 }[/math] i [math]\displaystyle{ l_0 }[/math] będą rozwiązaniem tego równania. Zatem

[math]\displaystyle{ 2 u_n \cdot s_0 - p \cdot l_0 = - k }[/math]
[math]\displaystyle{ 2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - k p^n }[/math]
[math]\displaystyle{ 2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - ( u^2_n - a ) }[/math]
[math]\displaystyle{ u^2_n + 2 u_n \cdot s_0 p^n = a + l_0 \cdot p^{n + 1} }[/math]

Modulo [math]\displaystyle{ p^{n + 1} }[/math] dostajemy

[math]\displaystyle{ u^2_n + 2 u_n \cdot s_0 p^n \equiv a \pmod{p^{n + 1}} }[/math]
[math]\displaystyle{ (u_n + s_0 p^n)^2 \equiv a \pmod{p^{n + 1}} }[/math]

bo [math]\displaystyle{ p^{n + 1} \mid p^{2 n} }[/math]. Zatem liczba [math]\displaystyle{ u_{n + 1} = u_n + s_0 p^n }[/math] jest rozwiązaniem kongruencji

[math]\displaystyle{ x^2 \equiv a \pmod{p^{n + 1}} }[/math]

Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.


Uwaga J51
Dla niewielkich modułów rozwiązania dowolnej kongruencji możemy znaleźć przez bezpośrednie sprawdzenie. Omówimy teraz rozwiązania kongruencji [math]\displaystyle{ x^2 \equiv a \!\! \pmod{2^n} }[/math] dla [math]\displaystyle{ n = 1, 2, 3 }[/math]. Ponieważ zakładamy, że [math]\displaystyle{ \gcd (a, m) = \gcd (a, 2^n) = 1 }[/math], to [math]\displaystyle{ a }[/math] musi być liczbą nieparzystą, zaś [math]\displaystyle{ x }[/math] nie może być liczbą parzystą. Istotnie, gdyby tak było, to mielibyśmy [math]\displaystyle{ 0 \equiv 1 \!\! \pmod{2} }[/math], bo [math]\displaystyle{ 2 \mid 2^n }[/math].

Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2} }[/math]

ma dokładnie jedno rozwiązanie [math]\displaystyle{ x \equiv 1 \!\! \pmod{2} }[/math].

Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{4} }[/math]

ma dwa rozwiązania, gdy [math]\displaystyle{ a \equiv 1 \!\! \pmod{4} }[/math]. Rozwiązaniami są: [math]\displaystyle{ x \equiv 1, 3 \!\! \pmod{4} }[/math]. W przypadku, gdy [math]\displaystyle{ a \equiv 3 \!\! \pmod{4} }[/math] kongruencja nie ma rozwiązań.

Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{8} }[/math]

ma cztery rozwiązania, gdy [math]\displaystyle{ a \equiv 1 \!\! \pmod{8} }[/math]. Rozwiązaniami są: [math]\displaystyle{ x \equiv 1, 3, 5, 7 \!\! \pmod{8} }[/math]. W przypadku, gdy [math]\displaystyle{ a \equiv 3, 5, 7 \!\! \pmod{8} }[/math] kongruencja nie ma rozwiązań.


Twierdzenie J52
Niech [math]\displaystyle{ n \geqslant 3 }[/math] i [math]\displaystyle{ a }[/math] będzie liczbą nieparzystą. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2^n} }[/math]

ma rozwiązanie wtedy i tylko wtedy, gdy kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{8} }[/math]

ma rozwiązanie.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{2^n} }[/math] ma rozwiązanie, zatem istnieje taka liczba [math]\displaystyle{ r \in \mathbb{Z} }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{2^n} }[/math]

Ponieważ [math]\displaystyle{ 2^n \mid (r^2 - a) }[/math], gdzie [math]\displaystyle{ n \geqslant 3 }[/math], to tym bardziej [math]\displaystyle{ 2^3 \mid (r^2 - a) }[/math]. Co oznacza, że prawdziwa jest kongruencja

[math]\displaystyle{ r^2 \equiv a \pmod{2^3} }[/math]

Skąd wynika natychmiast, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{8} }[/math] ma rozwiązanie.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Indukcja matematyczna. Z uczynionego w twierdzeniu założenia wiemy, że kongruencja [math]\displaystyle{ x^2 \equiv a \pmod{8} }[/math] ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 3 }[/math]. Załóżmy teraz (założenie indukcyjne), że kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2^n} }[/math]

ma rozwiązanie [math]\displaystyle{ x \equiv u_n \!\! \pmod{2^n} }[/math] i pokażemy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n + 1 }[/math], czyli że rozwiązanie ma kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2^{n + 1}} }[/math]

Z założenia istnieje taka liczba [math]\displaystyle{ k }[/math], że [math]\displaystyle{ u^2_n - a = k \cdot 2^n }[/math]. Niech

[math]\displaystyle{ r = \begin{cases} 0 & \text{gdy } k \text{ jest liczbą parzystą}\\ 1 & \text{gdy } k \text{ jest liczbą nieparzystą} \end{cases} }[/math]

Zauważmy, że

[math]\displaystyle{ (u_n + r \cdot 2^{n - 1})^2 - a = u^2_n - a + 2^n r + r^2 \cdot 2^{2 n - 2} }[/math]
[math]\displaystyle{ \;\! = k \cdot 2^n + 2^n r + r^2 \cdot 2^{2 n - 2} }[/math]
[math]\displaystyle{ \;\! = 2^n (k + r) + r^2 \cdot 2^{2 n - 2} }[/math]
[math]\displaystyle{ \;\! \equiv 0 \pmod{2^{n + 1}} }[/math]

bo [math]\displaystyle{ k + r }[/math] jest liczbą parzystą, a dla [math]\displaystyle{ n \geqslant 3 }[/math] mamy [math]\displaystyle{ 2 n - 2 \geqslant n + 1 }[/math]. Zatem liczba [math]\displaystyle{ u_{n + 1} = u_n + r \cdot 2^{n - 1} }[/math] jest rozwiązaniem kongruencji

[math]\displaystyle{ x^2 \equiv a \pmod{2^{n + 1}} }[/math]

Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.


Wniosek J53
Jeżeli [math]\displaystyle{ a }[/math] jest liczbą nieparzystą, to kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{2^n} }[/math] ma rozwiązanie wtedy i tylko wtedy, gdy [math]\displaystyle{ a }[/math] jest postaci [math]\displaystyle{ 2 k + 1 }[/math], [math]\displaystyle{ 4 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 1 }[/math] w zależności od tego, czy [math]\displaystyle{ n = 1 }[/math], czy [math]\displaystyle{ n = 2 }[/math], czy [math]\displaystyle{ n \geqslant 3 }[/math].


Uwaga J54
Niech [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math] i [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Z chińskiego twierdzenia o resztach (zobacz J3 i J11) wynika, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{m} }[/math] ma rozwiązanie wtedy i tylko wtedy, gdy ma rozwiązanie każda z kongruencji

[math]\displaystyle{ \begin{align} x^2 & \equiv a \pmod{p^{\alpha_1}_1} \\ & \,\,\,\cdots \\ x^2 & \equiv a \pmod{p^{\alpha_s}_s} \\ \end{align} }[/math]

Z definicji J27, twierdzeń J50 i J52, uwagi J51 i wniosku J53 otrzymujemy


Twierdzenie J55
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

ma rozwiązanie wtedy i tylko wtedy, gdy

●    dla każdego nieparzystego dzielnika pierwszego [math]\displaystyle{ p }[/math] liczby [math]\displaystyle{ m }[/math] jest  [math]\displaystyle{ \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = 1 }[/math]
●    jeżeli  [math]\displaystyle{ 8 \mid m }[/math],  to  [math]\displaystyle{ 8 \mid ( a - 1 ) }[/math]
●    jeżeli  [math]\displaystyle{ 8 \nmid m }[/math],  ale  [math]\displaystyle{ 4 \mid m }[/math],  to  [math]\displaystyle{ 4 \mid ( a - 1 ) }[/math]


Twierdzenie J56
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

nie ma rozwiązania wtedy i tylko wtedy, gdy spełniony jest co najmniej jeden z warunków

●    jeżeli dla dowolnego nieparzystego dzielnika [math]\displaystyle{ d }[/math] liczby [math]\displaystyle{ m }[/math] jest [math]\displaystyle{ \left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1 }[/math]
●    jeżeli  [math]\displaystyle{ 8 \mid m }[/math]  i  [math]\displaystyle{ 8 \nmid ( a - 1 ) }[/math]
●    jeżeli  [math]\displaystyle{ 8 \nmid m }[/math],  ale  [math]\displaystyle{ 4 \mid m }[/math]  i  [math]\displaystyle{ 4 \nmid ( a - 1 ) }[/math]
Dowód

Punkt 1.

Z założenia [math]\displaystyle{ d \mid m }[/math]. Gdyby kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

miała rozwiązanie, to również kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{d} }[/math]

miałaby rozwiązanie, ale jest to niemożliwe, bo założyliśmy, że [math]\displaystyle{ \left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1 }[/math], co oznacza, że [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ d }[/math].

Punkty 2. i 3. wynikają wprost z twierdzenia J55.


Przykład J57
Zauważmy, że [math]\displaystyle{ \left( {\small\frac{17}{19}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{19}} \right)_{\small{\!\! J}} = 1 }[/math] oraz [math]\displaystyle{ \left( {\small\frac{17}{23}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{23}} \right)_{\small{\!\! J}} = - 1 }[/math]. W tabelach zestawiliśmy kongruencje i ich rozwiązania.


Zadanie J58
Rozwiązać kongruencję, gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą

[math]\displaystyle{ x^2 + rx + s \equiv 0 \pmod{p} }[/math]
Rozwiązanie

Ponieważ [math]\displaystyle{ \gcd (2, p) = 1 }[/math], to nie zmniejszając ogólności kongruencję powyższą możemy zapisać w postaci

[math]\displaystyle{ 4 x^2 + 4 rx + 4 s \equiv 0 \pmod{p} }[/math]
[math]\displaystyle{ (2 x + r)^2 - r^2 + 4 s \equiv 0 \pmod{p} }[/math]
[math]\displaystyle{ (2 x + r)^2 \equiv r^2 - 4 s \pmod{p} }[/math]

Widzimy, że rozpatrywana kongruencja ma rozwiązanie wtedy i tylko wtedy, gdy liczba [math]\displaystyle{ r^2 - 4 s }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Istotnie, jeśli jest liczbą kwadratową, to istnieje taka liczba [math]\displaystyle{ b }[/math], że [math]\displaystyle{ b^2 \equiv r^2 - 4 s \!\! \pmod{p} }[/math], zatem otrzymujemy

[math]\displaystyle{ (2 x + r)^2 \equiv b^2 \pmod{p} }[/math]
[math]\displaystyle{ 2 x + r \equiv \pm b \pmod{p} }[/math]
[math]\displaystyle{ x \equiv {\small\frac{p + 1}{2}} \cdot (- r \pm b) \pmod{p} }[/math]

Jeśli [math]\displaystyle{ r^2 - 4 s }[/math] nie jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], to kongruencja

[math]\displaystyle{ (2 x + r)^2 \equiv r^2 - 4 s \pmod{p} }[/math]

nie ma rozwiązania. Wynika stąd, że równoważna jej kongruencja

[math]\displaystyle{ x^2 + rx + s \equiv 0 \pmod{p} }[/math]

również nie ma rozwiązania.


Zadanie J59
Rozwiązać kongruencję

[math]\displaystyle{ 5 x^2 + 6 x + 8 \equiv 0 \pmod{19} }[/math]
Rozwiązanie

Rozwiązywanie kongruencji w przypadku konkretnych wartości liczb [math]\displaystyle{ r, s }[/math] jest łatwiejsze niż w przypadku ogólnym. Mnożąc obie strony kongruencji przez [math]\displaystyle{ 4 }[/math], otrzymujemy

[math]\displaystyle{ x^2 + 24 x + 32 \equiv 0 \pmod{19} }[/math]
[math]\displaystyle{ x^2 + 24 x + 13 \equiv 0 \pmod{19} }[/math]

Celowo zostawiliśmy parzysty współczynnik przy [math]\displaystyle{ x }[/math]. Gdyby był nieparzysty, to zawsze możemy dodać do niego nieparzysty moduł.

[math]\displaystyle{ (x + 12)^2 - 144 + 13 \equiv 0 \pmod{19} }[/math]
[math]\displaystyle{ (x + 12)^2 + 2 \equiv 0 \pmod{19} }[/math]
[math]\displaystyle{ (x + 12)^2 \equiv - 2 \pmod{19} }[/math]
[math]\displaystyle{ (x + 12)^2 \equiv 6^2 \pmod{19} }[/math]
[math]\displaystyle{ x + 12 \equiv \pm 6 \pmod{19} }[/math]

Otrzymujemy: [math]\displaystyle{ x \equiv 1 \!\! \pmod{19} }[/math] lub [math]\displaystyle{ x \equiv 13 \!\! \pmod{19} }[/math].


Nieco spostrzegawczości pozwala znaleźć rozwiązanie kongruencji natychmiast. W naszym przypadku wystarczyło zauważyć, że

[math]\displaystyle{ x^2 + 24 x + 13 \equiv x^2 - 14 x + 13 \equiv (x - 1) (x - 13) \equiv 0 \pmod{19} }[/math]



Najmniejsze liczby niekwadratowe modulo

Uwaga J60
Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i symbol Jacobiego.



 A. Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] 

Przykład J61
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]


Uwaga J62
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

A(p) = 
{
if( p == 2, return(0) );
if( !isprime(p), return(0) );
forprime(q = 2, p, if( jacobi(q, p) == -1, return(q) ));
}

Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w rzeczywistości symbol Legendre'a, bo wiemy, że liczba [math]\displaystyle{ p }[/math] jest liczbą pierwszą (w przypadku, gdy [math]\displaystyle{ p }[/math] jest liczbą złożoną, funkcja zwraca zero).


Twierdzenie J63
Niech [math]\displaystyle{ \mathbb{n} \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to jest liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} }[/math]. Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{p} }[/math]
[math]\displaystyle{ s^2 \equiv b \pmod{p} }[/math]

Skąd wynika, że

[math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{p} }[/math]

Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].


Zadanie J64
Pokazać, że najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest

  •  liczba [math]\displaystyle{ 2 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 8 k \pm 3 }[/math]
  •  liczba [math]\displaystyle{ 3 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 7 }[/math]
  •  liczba [math]\displaystyle{ \geqslant 5 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 1 }[/math]
Rozwiązanie

Z właściwości symbolu Legendre'a (zobacz J29 p.7) wiemy, że

[math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, \begin{cases} \;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\ - 1 & \text{gdy } p \equiv 3, 5 \pmod{8} \end{cases} }[/math]

Wynika stąd natychmiast, dla liczb pierwszych [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (i tylko dla takich liczb) liczba [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].

Z zadania J47 wynika, że liczba [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową jedynie dla liczb pierwszych postaci [math]\displaystyle{ 12 k \pm 5 }[/math]. Zatem dla liczb pierwszych, które są jednocześnie postaci [math]\displaystyle{ p = 8 k \pm 1 }[/math] i [math]\displaystyle{ p = 12 j \pm 5 }[/math], liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z czterech warunków

[math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5 }[/math]
[math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 7 }[/math]
[math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 5 }[/math]
[math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 7 }[/math]

Drugi i trzeci nie są możliwe, bo modulo [math]\displaystyle{ 4 }[/math] otrzymujemy

[math]\displaystyle{ p \equiv 1 \pmod{4} \quad \text{i} \quad p \equiv 3 \pmod{4} }[/math]
[math]\displaystyle{ p \equiv 3 \pmod{4} \quad \text{i} \quad p \equiv 1 \pmod{4} }[/math]

a z pierwszego i czwartego mamy

[math]\displaystyle{ 3 p = 24 k + 3 \quad \text{i} \quad 2 p = 24 j + 10 \qquad \;\: \Longrightarrow \qquad p = 24 (k - j) - 7 \qquad \Longrightarrow \qquad p \equiv - 7 \pmod{24} }[/math]
[math]\displaystyle{ 3 p = 24 k + 21 \quad \text{i} \quad 2 p = 24 j + 14 \qquad \Longrightarrow \qquad p = 24 (k - j) + 7 \qquad \Longrightarrow \qquad p \equiv 7 \pmod{24} }[/math]

Zauważmy, że problem mogliśmy zapisać w postaci układu kongruencji

[math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
[math]\displaystyle{ p \equiv \pm 5 \pmod{12} }[/math]

Gdyby moduły tych kongruencji były względnie pierwsze, to każdemu wyborowi znaków odpowiadałaby pewna kongruencja równoważna (zobacz J3). Widzimy, że w przypadku, gdy moduły nie są względnie pierwsze, kongruencja równoważna może istnieć, ale nie musi. Rozwiązując taki problem, wygodnie jest skorzystać z programu PARI/GP. Wystarczy wpisać

chinese(Mod(1, 8), Mod(5, 12)) = Mod(17, 24)
chinese(Mod(1, 8), Mod(-5, 12)) - błąd 
chinese(Mod(-1, 8), Mod(5, 12)) - błąd 
chinese(Mod(-1, 8), Mod(-5, 12)) = Mod(7, 24)

Ostatni punkt zadania rozwiążemy tą metodą. Liczba większa lub równa [math]\displaystyle{ 5 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy liczby [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ 3 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], co oznacza, że liczba pierwsza [math]\displaystyle{ p }[/math] spełnia kongruencje

[math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
[math]\displaystyle{ p \equiv \pm 1 \pmod{12} }[/math]

Postępując jak wyżej, otrzymujemy

chinese(Mod(1, 8), Mod(1, 12)) = Mod(1, 24)
chinese(Mod(1, 8), Mod(-1, 12)) - błąd 
chinese(Mod(-1, 8), Mod(1, 12)) - błąd 
chinese(Mod(-1, 8), Mod(-1, 12)) = Mod(23, 24)

Co należało pokazać.


Twierdzenie J65
Dla każdej liczby pierwszej [math]\displaystyle{ p_n }[/math] istnieje nieskończenie wiele takich liczb pierwszych [math]\displaystyle{ q }[/math], że [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math].

Dowód

Niech [math]\displaystyle{ 2, p_2, \ldots, p_{n - 1}, p_n }[/math] będą kolejnymi liczbami pierwszymi. Wybierzmy liczbę [math]\displaystyle{ u }[/math] tak, aby spełniała układ kongruencji

[math]\displaystyle{ \begin{align} u & \equiv 1 \pmod{8 p_2 \cdot \ldots \cdot p_{n - 1}} \\ u & \equiv a \pmod{p_n} \end{align} }[/math]

gdzie [math]\displaystyle{ a }[/math] oznacza dowolną liczbą niekwadratową modulo [math]\displaystyle{ p_n }[/math]. Na podstawie chińskiego twierdzenia o resztach (zobacz J3) powyższy układ kongruencji może być zapisany w postaci kongruencji równoważnej

[math]\displaystyle{ u \equiv c \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math]


Zauważmy, że żadna z liczb pierwszych [math]\displaystyle{ p_k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math] nie dzieli liczby [math]\displaystyle{ c }[/math], bo mielibyśmy

[math]\displaystyle{ u \equiv 0 \pmod{p_k} }[/math]

wbrew wypisanemu wyżej układowi kongruencji. Zatem [math]\displaystyle{ \gcd (c, 8 p_2 \cdot \ldots \cdot p_n) = 1 }[/math] i z twierdzenia Dirichleta wiemy, że wśród liczb [math]\displaystyle{ u }[/math] spełniających kongruencję [math]\displaystyle{ u \equiv c \!\! \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math] występuje nieskończenie wiele liczb pierwszych (bo wśród tych liczb są liczby postaci [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]). Oznaczmy przez [math]\displaystyle{ q }[/math] dowolną z tych liczb pierwszych.


Ponieważ [math]\displaystyle{ q \equiv 1 \!\! \pmod{8} }[/math], to [math]\displaystyle{ \left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1 }[/math] (zobacz J29), a dla wszystkich liczb pierwszych nieparzystych [math]\displaystyle{ p_k \lt p_n }[/math] mamy

[math]\displaystyle{ \left( {\small\frac{p_k}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_k - 1}{2}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{p_k}} \right)_{\small{\!\! L}} = 1 }[/math]

bo [math]\displaystyle{ 8 \mid (q - 1) }[/math]. Dla liczby pierwszej [math]\displaystyle{ p_n }[/math] jest

[math]\displaystyle{ \left( {\small\frac{p_n}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_n - 1}{2}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p_n}} \right)_{\small{\!\! L}} = - 1 }[/math]

Zatem wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p_n }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ q }[/math], a liczba pierwsza [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math]. Zauważmy, że [math]\displaystyle{ q }[/math] była dowolnie wybraną liczbą pierwszą z nieskończenie wielu liczb pierwszych występujących w ciągu arytmetycznym [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Co kończy dowód.


Twierdzenie J66 (Sarvadaman Chowla)
Istnieje niekończenie wiele liczb pierwszych [math]\displaystyle{ p }[/math] takich, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math], gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika.

Dowód

Niech [math]\displaystyle{ a = 4 P (m) }[/math], gdzie [math]\displaystyle{ P(m) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ m }[/math]. Z twierdzenia Dirichleta wiemy, że w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math] występuje nieskończenie wiele liczb pierwszych. Niech [math]\displaystyle{ p }[/math] oznacza dowolną z nich.

Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{8} }[/math], to

[math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1 }[/math]

(zobacz J29 p.7). Oczywiście [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], zatem dla dowolnej liczby pierwszej nieparzystej [math]\displaystyle{ q_i \leqslant m }[/math] z twierdzenia J29 p.9 otrzymujemy

[math]\displaystyle{ \left( {\small\frac{q_i}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{p}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{a k + 1}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{q_i}} \right)_{\small{\!\! L}} = 1 }[/math]

Wynika stąd, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ m }[/math]. Wiemy też, że (zobacz A9)

[math]\displaystyle{ a = 4 P (m) \lt 4 \cdot 4^m = 4^{m + 1} }[/math]

Załóżmy teraz, że [math]\displaystyle{ p }[/math] jest najmniejszą liczbą pierwszą w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math], a liczba [math]\displaystyle{ m }[/math] została wybrana tak, że liczba [math]\displaystyle{ a = 4 P (m) }[/math] jest dostatecznie duża i możliwe jest skorzystanie z twierdzenia Linnika (zobacz C30). Dostajemy natychmiast oszacowanie

[math]\displaystyle{ p = p_{\min} (a, 1) \lt a^L }[/math]

gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika (możemy przyjąć [math]\displaystyle{ L = 5 }[/math]). Łącząc powyższe oszacowania, łatwo otrzymujemy oszacowanie najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ p }[/math]

[math]\displaystyle{ \mathbb{n}(p) \geqslant m + 1 \gt \log_4 a = {\small\frac{\log a}{\log 4}} = {\small\frac{\log a^L}{2 L \log 2}} \gt {\small\frac{\log p}{2 L \log 2}} }[/math]

Każdemu wyborowi innej liczby [math]\displaystyle{ m' \gt m }[/math] takiej, że [math]\displaystyle{ P(m') \gt P (m) }[/math] odpowiada inna liczba pierwsza [math]\displaystyle{ p' }[/math] taka, że [math]\displaystyle{ \mathbb{n}(p') \gt {\small\frac{\log p'}{2 L \log 2}} }[/math], zatem liczb pierwszych [math]\displaystyle{ p }[/math] dla których najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math] jest nieskończenie wiele.


Uwaga J67
W twierdzeniu J65 pokazaliśmy, że dla każdej liczby pierwszej [math]\displaystyle{ \mathbb{n} }[/math] istnieją takie liczby pierwsze [math]\displaystyle{ p }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Zatem zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] liczb pierwszych takich, że dla każdej liczby [math]\displaystyle{ p \in S_\mathbb{n} }[/math] liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest zbiorem niepustym. Wynika stąd, że zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] ma element najmniejszy i możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w PARI/GP napisać proste polecenie

forprime(n = 2, 50, forprime(p = 2, 10^10, if( A(p) == n, print(n, "   ", p); break() )))

W tabeli przedstawiamy uzyskane rezultaty (zobacz też A000229).


Twierdzenie J68
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Prawdziwe jest oszacowanie

[math]\displaystyle{ \mathbb{n} (p) \lt \sqrt{p} + {\small\frac{1}{2}} }[/math]
Dowód

Ponieważ [math]\displaystyle{ \mathbb{n} \nmid p }[/math], to z oszacowania [math]\displaystyle{ x - 1 \lt \lfloor x \rfloor \leqslant x }[/math] wynika, że

[math]\displaystyle{ {\small\frac{p}{\mathbb{n}}} - 1 \lt \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor \lt {\small\frac{p}{\mathbb{n}}} }[/math]
[math]\displaystyle{ p \lt \mathbb{n} \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + \mathbb{n} \lt p + \mathbb{n} }[/math]

Niech [math]\displaystyle{ u = \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 }[/math], mamy

[math]\displaystyle{ 0 \lt \mathbb{n} u - p \lt \mathbb{n} }[/math]

Liczba [math]\displaystyle{ \mathbb{n} u - p }[/math] musi być liczbą kwadratową modulo [math]\displaystyle{ p }[/math], zatem

[math]\displaystyle{ 1 = \left( {\small\frac{\mathbb{n} u - p}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} }[/math]

Ale z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]. Wynika stąd, że musi być [math]\displaystyle{ \mathbb{n} \leqslant u }[/math] i łatwo znajdujemy, że

[math]\displaystyle{ \mathbb{n} \leqslant \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 \lt {\small\frac{p}{\mathbb{n}}} + 1 }[/math]
[math]\displaystyle{ \mathbb{n}^2 \lt p + \mathbb{n} }[/math]

Ponieważ wypisane liczby są liczbami całkowitymi, to ostatnią nierówność możemy zapisać w postaci

[math]\displaystyle{ \mathbb{n}^2 \leqslant p + \mathbb{n} - 1 }[/math]

Skąd otrzymujemy

[math]\displaystyle{ \left( \mathbb{n} - {\small\frac{1}{2}} \right)^2 \leqslant p - {\small\frac{3}{4}} }[/math]
[math]\displaystyle{ \mathbb{n} \leqslant {\small\frac{1}{2}} + \sqrt{p - {\small\frac{3}{4}}} \lt {\small\frac{1}{2}} + \sqrt{p} }[/math]

Co należało pokazać.


Twierdzenie J69*
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Dla [math]\displaystyle{ p \geqslant 5 }[/math] prawdziwe jest oszacowanie[7][8][9]

[math]\displaystyle{ \mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p }[/math]


Uwaga J70
Liczby [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math], gdzie [math]\displaystyle{ p }[/math] są nieparzystymi liczbami pierwszymi, jest równa[10]

[math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots }[/math]


Uwaga J71
Możemy też badać najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math].


Twierdzenie J72
Dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 5 }[/math] najmniejsza nieparzysta liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest liczbą pierwszą mniejszą od [math]\displaystyle{ p }[/math].

Dowód

Niech [math]\displaystyle{ S \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich nieparzystych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Z twierdzenia J24 wiemy, że jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to w zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] jest dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. W zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] mamy też dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb parzystych i tyle samo liczb nieparzystych.

Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], bo [math]\displaystyle{ 4 = 2^2 \lt 5 \leqslant p }[/math] jest parzystą liczbą kwadratową modulo [math]\displaystyle{ p }[/math], czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że zbiór [math]\displaystyle{ S }[/math] nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru [math]\displaystyle{ S }[/math] jest liczbą pierwszą.

Niech [math]\displaystyle{ 3 \leqslant \mathbb{n}_\boldsymbol{1} \leqslant p - 2 }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że każda liczba [math]\displaystyle{ a \lt \mathbb{n}_\boldsymbol{1} }[/math] musi być liczbą parzystą lub liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Przypuśćmy, że [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] jest liczbą złożoną, czyli [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n}_\boldsymbol{1} }[/math]. Zauważmy, że żadna z liczb [math]\displaystyle{ a, b }[/math] nie może być liczbą parzystą, bo wtedy liczba [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] również byłaby liczbą parzystą wbrew określeniu liczby [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math]. Zatem obie liczby [math]\displaystyle{ a, b }[/math] muszą być nieparzystymi liczbami kwadratowymi, co jest niemożliwe, bo

[math]\displaystyle{ - 1 = \left( {\small\frac{\mathbb{n}_\boldsymbol{1}}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! J}} }[/math]

i jeden z czynników po prawej stronie musi być ujemny. Co oznacza, że jedna z liczb [math]\displaystyle{ a, b }[/math] jest nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] mniejszą od [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] wbrew określeniu liczby [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math]. Uzyskana sprzeczność pokazuje, że liczba [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] jest liczbą pierwszą. Co kończy dowód.



 B. Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math]

Uwaga J73
Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math] W jednym i drugim przypadku liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową w zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od [math]\displaystyle{ p }[/math] lub [math]\displaystyle{ m . }[/math] Dlatego będziemy je oznaczali również jako [math]\displaystyle{ \mathbb{n}(m) . }[/math]


Definicja J74
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Powiemy, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], gdy [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą dodatnią względnie pierwszą z [math]\displaystyle{ m }[/math] taką, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]

nie ma rozwiązania.


Przykład J75
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] i najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m . }[/math]


Uwaga J76
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

B(m) = 
{
local(p, res);
p = 1;
while( p < m,
       p = nextprime(p + 1);
       if( m%p == 0, next() );
       res = -1;
       for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
       if( res == -1, return(p) );
     );
}

Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby [math]\displaystyle{ m . }[/math] Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.

Pokaż kod
B(m) = 
{
local(p, res, t);
t = m%8;
if( t == 3 || t == 5, return(2) );
t = m%12;
if( t == 4 || t == 8, return(3) );
t = m%24;
if( t == 9 || t == 15, return(2) );
if( t == 10 || t == 14, return(3) );
t = m%30;
if( t == 6 || t == 12 || t == 18 || t == 24, return(5) );
p = 1;
while( p < m,
       p = nextprime(p + 1);
       if( m%p == 0, next() );
       res = -1;
       for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
       if( res == -1, return(p) );
     );
}


Twierdzenie J77
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} . }[/math] Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ m . }[/math] Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{m} }[/math]
[math]\displaystyle{ s^2 \equiv b \pmod{m} }[/math]

Skąd wynika, że

[math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{m} }[/math]

Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]


Zadanie J78
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli [math]\displaystyle{ m = 8 k \pm 3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Rozwiązanie

Z twierdzenia J42 wiemy, że [math]\displaystyle{ \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1 }[/math], gdy [math]\displaystyle{ m = 8 k \pm 3 . }[/math] Wynika stąd, że [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], a jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Co należało pokazać.


Zadanie J79
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli spełniony jest jeden z warunków

  •   [math]\displaystyle{ 4 \mid m \; }[/math] i [math]\displaystyle{ \; \gcd (3, m) = 1 }[/math]
  •   [math]\displaystyle{ m = 12 k \pm 4 }[/math]

to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Rozwiązanie

Zauważmy, że [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ 2 \mid m . }[/math] Rozważmy kongruencję

[math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]

Z założenia [math]\displaystyle{ 4 \mid m }[/math], co nie wyklucza możliwości, że również [math]\displaystyle{ 8 \mid m . }[/math] Ponieważ [math]\displaystyle{ 4 \nmid (3 - 1) }[/math] i [math]\displaystyle{ 8 \nmid (3 - 1) }[/math], to z twierdzenia J56 wynika, że kongruencja [math]\displaystyle{ x^2 \equiv 3 \!\! \pmod{m} }[/math] nie ma rozwiązania. Jeśli tylko [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math] W pierwszym punkcie jest to założone wprost, w drugim łatwo widzimy, że [math]\displaystyle{ 3 \nmid (12 k \pm 4) . }[/math]

Można też zauważyć, że żądanie, aby [math]\displaystyle{ \gcd (3, m) = 1 }[/math], prowadzi do dwóch układów kongruencji

[math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 1 \pmod{3} \end{align} }[/math]

oraz

[math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 2 \pmod{3} \end{align} }[/math]

którym, na mocy chińskiego twierdzenia o resztach, odpowiadają dwie kongruencje równoważne

[math]\displaystyle{ m \equiv \pm 4 \pmod{12} }[/math]

Co należało pokazać.


Zadanie J80
Niech [math]\displaystyle{ m = 24 k \pm 10 . }[/math] Pokazać, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Rozwiązanie

Zapiszmy [math]\displaystyle{ m }[/math] w postaci [math]\displaystyle{ m = 2 m' }[/math], gdzie [math]\displaystyle{ m' = 12 k \pm 5 . }[/math] Gdyby kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{2 m'} }[/math]

miała rozwiązanie, to również kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{m'} }[/math]

miałaby rozwiązanie, ale jest to niemożliwe, bo [math]\displaystyle{ \left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J47), czyli [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m' . }[/math] Ponieważ [math]\displaystyle{ 2 \mid m }[/math], to [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]


Twierdzenie J81
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą nieparzystą podzielną przez [math]\displaystyle{ p \in S_2 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Dowód

Z założenia [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 2 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J56). Ponieważ [math]\displaystyle{ 2 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Uwaga: zbiór [math]\displaystyle{ S_2 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (zobacz J42).


Twierdzenie J82
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą parzystą niepodzielną przez [math]\displaystyle{ 3 }[/math] i podzielną przez [math]\displaystyle{ p \in S_3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Dowód

Z założenia [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J56). Ponieważ [math]\displaystyle{ 2 \mid m }[/math] i [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Uwaga: zbiór [math]\displaystyle{ S_3 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 12 k \pm 5 }[/math] (zobacz J47).


Twierdzenie J83
Jeżeli [math]\displaystyle{ m }[/math] jest liczbą dodatnią podzielną przez [math]\displaystyle{ 6 }[/math] i niepodzielną przez [math]\displaystyle{ 5 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]

Dowód

Z założenia [math]\displaystyle{ 3 \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 5 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J56). Ponieważ [math]\displaystyle{ 2 \mid m }[/math], [math]\displaystyle{ 3 \mid m }[/math] i [math]\displaystyle{ 5 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]


Twierdzenie J84
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ p \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math].

Dowód

Z twierdzenia J113 wiemy, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math] Z założenia [math]\displaystyle{ q \mid m }[/math], zatem kongruencja

[math]\displaystyle{ x^2 \equiv p \pmod{m} }[/math]

nie ma rozwiązania (zobacz J56). Ponieważ wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p }[/math] dzielą [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math]. Co należało pokazać.


Zadanie J85
Pokazać, że podanym w pierwszej kolumnie postaciom liczby [math]\displaystyle{ m }[/math] odpowiadają wymienione w drugiej kolumnie wartości [math]\displaystyle{ \mathbb{n} (m) . }[/math]


Twierdzenie J86
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy

[math]\displaystyle{ \begin{array}{lll} \mathbb{n} (2 m) \gt \mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) = 2 \\ \mathbb{n} (2 m) =\mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) \gt 2 \end{array} }[/math]
Dowód

Punkt 1.

W przypadku, gdy [math]\displaystyle{ \mathbb{n} (m) = 2 }[/math], mamy [math]\displaystyle{ \mathbb{n} (2 m) \gt 2 = \mathbb{n} (m) }[/math], bo [math]\displaystyle{ \mathbb{n} (2 m) }[/math] musi być liczbą względnie pierwszą z [math]\displaystyle{ 2 m . }[/math]

Punkt 2.

Z definicji najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ m }[/math] wiemy, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{m} }[/math]

nie ma rozwiązania. Oznacza to, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{\mathbb{n} (m)}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Ponieważ [math]\displaystyle{ p \mid 2 m }[/math], to wynika stąd natychmiast, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{2 m} }[/math]

również nie ma rozwiązania (zobacz J56).

Zatem [math]\displaystyle{ \mathbb{n} (2 m) \leqslant \mathbb{n} (m) . }[/math] Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą taką, że [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Kongruencję

[math]\displaystyle{ x^2 \equiv q \pmod{2 m} \qquad \qquad (1) }[/math]

możemy zapisać w postaci układu kongruencji równoważnych (zobacz J1)

[math]\displaystyle{ \begin{align} x^2 & \equiv q \pmod{m} \qquad \qquad \;\: (2) \\ x^2 & \equiv q \pmod{2} \qquad \qquad \;\;\,\, (3) \\ \end{align} }[/math]

Z definicji [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], zatem kongruencja [math]\displaystyle{ (2) }[/math] ma rozwiązanie – oznaczmy to rozwiązanie przez [math]\displaystyle{ x_0 . }[/math] Łatwo zauważamy, że liczba

[math]\displaystyle{ x'_0 = \begin{cases} \;\;\;\; x_0 & \text{gdy} \quad x_0 \equiv 1 \pmod{2} \\ x_0 + m & \text{gdy} \quad x_0 \equiv 0 \pmod{2} \\ \end{cases} }[/math]

jest rozwiązaniem układu kongruencji [math]\displaystyle{ (2) }[/math] i [math]\displaystyle{ (3) }[/math], a tym samym kongruencja [math]\displaystyle{ (1) }[/math] ma rozwiązanie dla każdego [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (2 m) =\mathbb{n} (m) . }[/math]


Twierdzenie J87
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy

[math]\displaystyle{ \begin{array}{lllll} \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2 & & \text{gdy } \;\; 3 \mid m \\ \mathbb{n} (4 m) = 3 & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\ \end{array} }[/math]
Dowód

Punkt 1.

Z twierdzenia J81 wynika, że w przypadku, gdy [math]\displaystyle{ 3 \mid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math] Ponieważ [math]\displaystyle{ 2 \mid 4 m }[/math] i [math]\displaystyle{ 3 \mid 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) \geqslant 5 . }[/math]

Punkt 2.

Ponieważ [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 8 \nmid 4 m }[/math], ale [math]\displaystyle{ 4 \mid 4 m \; }[/math] i [math]\displaystyle{ \; 4 \nmid (3 - 1) }[/math], zatem z twierdzenia J56 wynika, że kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{4 m} }[/math]

nie ma rozwiązania. Ponieważ [math]\displaystyle{ 2 \mid 4 m \; }[/math] i [math]\displaystyle{ \; 3 \nmid 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) = 3 . }[/math]


Twierdzenie J88
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p \, }[/math] i [math]\displaystyle{ \, p \mid m }[/math], to [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]

Dowód

Wiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

ma rozwiązanie. Przypuśćmy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m . }[/math] Zatem istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że

[math]\displaystyle{ k^2 \equiv a \pmod{m} }[/math]

Ponieważ z założenia [math]\displaystyle{ p \mid m }[/math], to prawdziwa jest też kongruencja

[math]\displaystyle{ k^2 \equiv a \pmod{p} }[/math]

co przeczy założeniu, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]


Twierdzenie J89
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to istnieje taki dzielnik pierwszy [math]\displaystyle{ p }[/math] liczby [math]\displaystyle{ m }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]

Dowód

Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby [math]\displaystyle{ m }[/math]: [math]\displaystyle{ \{ p_1, \ldots, p_s \} }[/math] i powiązany z dzielnikami pierwszymi [math]\displaystyle{ p_k }[/math] zbiór najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p_k }[/math]: [math]\displaystyle{ \{ \mathbb{n}_1, \ldots, \mathbb{n}_s \} }[/math], z których każda jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J88). Wynika stąd, że liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] musi być mniejsza od każdej z liczb [math]\displaystyle{ \mathbb{n}_k . }[/math]

Z definicji liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], co oznacza, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]

nie ma rozwiązania. Niech [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s . }[/math] Zatem przynajmniej jedna z kongruencji

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k} }[/math]

musi nie mieć rozwiązania (zobacz J11). Z twierdzenia J50 wiemy, że wtedy kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p_k} }[/math]

również nie ma rozwiązania. Zatem [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p_k \, }[/math] i [math]\displaystyle{ \, \mathbb{n} \lt \mathbb{n}_k }[/math], co przeczy definicji liczby [math]\displaystyle{ \mathbb{n}_k . }[/math]


Twierdzenie J90
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to

[math]\displaystyle{ \mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) ) }[/math]

gdzie [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], a [math]\displaystyle{ \mathbb{n}(p_k) }[/math] są najmniejszymi liczbami kwadratowymi modulo [math]\displaystyle{ p_k . }[/math]

Dowód

Twierdzenie to jest prostym wnioskiem z twierdzenia J89, ale musimy jeszcze pokazać, że [math]\displaystyle{ \gcd (\mathbb{n} (m), m) = 1 . }[/math] Przypuśćmy, że [math]\displaystyle{ p_k |\mathbb{n} (m) }[/math] dla pewnego [math]\displaystyle{ 1 \leqslant k \leqslant s . }[/math] Ponieważ [math]\displaystyle{ \mathbb{n} (m) }[/math] jest liczbą pierwszą, to musi być [math]\displaystyle{ \mathbb{n} (m) = p_k }[/math], ale wtedy

[math]\displaystyle{ \mathbb{n} (p_k) \lt p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k) }[/math]

Otrzymana sprzeczność dowodzi, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest względnie pierwsza z każdą z liczb pierwszych [math]\displaystyle{ p_i }[/math], gdzie [math]\displaystyle{ 1 \leqslant i \leqslant s . }[/math] Co kończy dowód.


Twierdzenie J91
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Prawdziwe są oszacowania

[math]\displaystyle{ \mathbb{n}(m) \lt \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3 }[/math]
[math]\displaystyle{ \mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5 }[/math]
Dowód

Niech [math]\displaystyle{ p }[/math] będzie dzielnikiem pierwszym liczby [math]\displaystyle{ m }[/math] takim, że [math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) }[/math] (z twierdzenia J89 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ \mathbb{n}(p) \lt F (p) }[/math], gdzie [math]\displaystyle{ F(x) }[/math] jest funkcją rosnącą, to

[math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) \lt F (p) \leqslant F (m) }[/math]

Podane w twierdzeniu oszacowania wynikają natychmiast z twierdzeń J68 i J69.


Uwaga J92
Liczby [math]\displaystyle{ \mathbb{n} (m) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] wynosi[11]

[math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots }[/math]



 C. Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] 

Przykład J93
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math], najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] i najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math].


Uwaga J94
Do wyszukiwania liczb [math]\displaystyle{ c = c (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

C(m) = 
{
if( m%2 == 0, return(0) );
if( issquare(m), return(0) );
forprime(p = 2, m, if( jacobi(p, m) == -1, return(p) ));
}


Uwaga J95
Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] oznaczyliśmy jako [math]\displaystyle{ c(m) }[/math]. Zauważmy, że są to liczby inne od [math]\displaystyle{ \mathbb{n}(p) }[/math] i [math]\displaystyle{ \mathbb{n}(m) }[/math]. Wystarczy zwrócić uwagę na występujące w tabeli liczby [math]\displaystyle{ \mathbb{n}(p) }[/math], [math]\displaystyle{ \mathbb{n}(m) }[/math] i [math]\displaystyle{ c(m) }[/math] dla [math]\displaystyle{ m = 15, 33, 39 }[/math]. Różnice wynikają z innej definicji liczb [math]\displaystyle{ c(m) }[/math] – jeżeli liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to symbol Jacobiego [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math] nie musi być równy [math]\displaystyle{ - 1 }[/math]. I tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.

Ponieważ [math]\displaystyle{ c(m) }[/math] nie zawsze będzie najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], to mamy natychmiast oszacowanie: [math]\displaystyle{ c(m) \geqslant \mathbb{n} (m) }[/math] (poza przypadkami, gdy [math]\displaystyle{ m = n^2 }[/math]).

Dla [math]\displaystyle{ c(m) }[/math] nie są prawdziwe oszacowania podane w twierdzeniu J68. Łatwo zauważamy, że

[math]\displaystyle{ c = c (15) = 7 \gt \sqrt{15} + {\small\frac{1}{2}} \approx 4.37 }[/math]
[math]\displaystyle{ c = c (39) = 7 \gt \sqrt{39} + {\small\frac{1}{2}} \approx 6.74 }[/math]
[math]\displaystyle{ c = c (105) = 11 \gt \sqrt{105} + {\small\frac{1}{2}} \approx 10.75 }[/math]
[math]\displaystyle{ c = c (231) = 17 \gt \sqrt{231} + {\small\frac{1}{2}} \approx 15.7 }[/math]

Nie ma więcej takich przypadków dla [math]\displaystyle{ m \lt 10^9 }[/math].


Twierdzenie J96
Niech [math]\displaystyle{ c, m \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ c }[/math] będzie najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1 }[/math]. Liczba [math]\displaystyle{ c }[/math] musi być liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ c = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt c }[/math]. Mamy

[math]\displaystyle{ - 1 = \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math][math]\displaystyle{ \left( {\small\frac{b}{m}} \right)_{\small{\!\! J}} }[/math]

Zatem jeden z czynników po prawej stronie musi być równy [math]\displaystyle{ - 1 }[/math] wbrew definicji liczby [math]\displaystyle{ c }[/math].



Liczby pierwsze postaci [math]\displaystyle{ x^2 + n y^2 }[/math]

Przykład J97
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 85 }[/math] na sumę postaci [math]\displaystyle{ x^2 + y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math]. Rozkłady różniące się jedynie kolejnością liczb [math]\displaystyle{ x , y }[/math] nie zostały uwzględnione.

Zauważmy, że liczba złożona [math]\displaystyle{ 21 }[/math] nie ma rozkładu na sumę kwadratów, a liczba złożona [math]\displaystyle{ 65 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 4 k + 1 }[/math].


Przykład J98
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 73 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].

Zauważmy, że liczba złożona [math]\displaystyle{ 65 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 33 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 1 }[/math].

Zauważmy też, że liczba złożona [math]\displaystyle{ 35 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 27 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 3 }[/math].


Przykład J99
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 103 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].

Zauważmy, że liczba złożona [math]\displaystyle{ 55 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], a liczba złożona [math]\displaystyle{ 91 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 6 k + 1 }[/math].


Twierdzenie J100
Jeżeli liczba nieparzysta postaci [math]\displaystyle{ Q = x^2 + n y^2 }[/math], gdzie [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math], ma dwa różne takie przedstawienia w liczbach całkowitych dodatnich, to jest liczbą złożoną.

Dowód

W dowodzie wyróżniliśmy miejsca, które wymagają oddzielnej analizy ze względu na wartość liczby [math]\displaystyle{ n }[/math].

Niech

[math]\displaystyle{ Q = x^2 + n y^2 = a^2 + n b^2 }[/math]

[math]\displaystyle{ \boldsymbol{n = 1} }[/math]

Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby występujące w rozkładach [math]\displaystyle{ x^2 + y^2 = a^2 + b^2 }[/math] muszą mieć przeciwną parzystość. Nie zmniejszając ogólności, możemy założyć, że liczby [math]\displaystyle{ x, a }[/math] są parzyste, a liczby [math]\displaystyle{ y, b }[/math] nieparzyste.

[math]\displaystyle{ \boldsymbol{n = 2} }[/math]

Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby [math]\displaystyle{ x, a }[/math] występująca w rozkładach [math]\displaystyle{ x^2 + 2 y^2 = a^2 + 2 b^2 }[/math] muszą być nieparzyste. Pokażemy, że liczby [math]\displaystyle{ y, b }[/math] muszą mieć taką samą parzystość. Przypuśćmy, że [math]\displaystyle{ y }[/math] jest parzysta, a [math]\displaystyle{ b }[/math] nieparzysta, wtedy modulo [math]\displaystyle{ 4 }[/math] dostajemy

[math]\displaystyle{ 1 + 2 \cdot 0 \equiv 1 + 2 \cdot 1 \!\! \pmod{4} }[/math]

Co jest niemożliwe.

[math]\displaystyle{ \boldsymbol{n = 3} }[/math]

Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby występujące w rozkładach [math]\displaystyle{ x^2 + 3 y^2 = a^2 + 3 b^2 }[/math] muszą mieć przeciwną parzystość. Pokażemy, że liczby [math]\displaystyle{ x, a }[/math] muszą mieć taką samą parzystość. Gdyby liczba [math]\displaystyle{ x }[/math] była nieparzysta, a liczba [math]\displaystyle{ a }[/math] parzysta, to modulo [math]\displaystyle{ 4 }[/math] mielibyśmy

[math]\displaystyle{ 1 + 3 \cdot 0 \equiv 0 + 3 \cdot 1 \!\! \pmod{4} }[/math]

Co jest niemożliwe.

Mamy

[math]\displaystyle{ x^2 - a^2 = n (b^2 - y^2) }[/math]
[math]\displaystyle{ (x - a) (x + a) = n (b - y) (b + y) }[/math]

Niech [math]\displaystyle{ f = \gcd (x - a, b - y) }[/math], zatem [math]\displaystyle{ f }[/math] jest liczbą parzystą i

[math]\displaystyle{ x - a = f r , \qquad \qquad b - y = f s , \qquad \qquad \gcd (r, s) = 1 }[/math]

Czyli

[math]\displaystyle{ r(x + a) = n s (y + b) }[/math]

ale liczby [math]\displaystyle{ r, s }[/math] są względnie pierwsze, zatem [math]\displaystyle{ s \mid (x + a) }[/math] i musi być

[math]\displaystyle{ x + a = k s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = k r }[/math]

Gdyby [math]\displaystyle{ k }[/math] było liczbą nieparzystą, to liczby [math]\displaystyle{ r, s }[/math] musiałyby być parzyste, co jest niemożliwe, bo [math]\displaystyle{ \gcd (r, s) = 1 }[/math]. Zatem [math]\displaystyle{ k }[/math] jest liczbą parzystą i [math]\displaystyle{ 2 s \mid (x + a) }[/math], czyli możemy pokazać więcej. Musi być

[math]\displaystyle{ x + a = 2 l s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = 2 l r }[/math]

W przypadku gdy [math]\displaystyle{ n = 2 }[/math] lub [math]\displaystyle{ n = 3 }[/math], zauważmy, że [math]\displaystyle{ n \mid l }[/math] lub [math]\displaystyle{ n \mid r }[/math].

Łatwo otrzymujemy

[math]\displaystyle{ x = {\small\frac{1}{2}} (2 l s + f r) }[/math]
[math]\displaystyle{ y = {\small\frac{1}{2 n}} (2 l r - n f s) }[/math]

Ostatecznie

[math]\displaystyle{ Q = x^2 + n y^2 }[/math]
[math]\displaystyle{ \;\;\;\: = \left[ {\small\frac{1}{2}} (2 l s + f r) \right]^2 + n \left[ {\small\frac{1}{2 n}} (2 l r - n f s) \right]^2 }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s + f r)^2 + (2 l r - n f s)^2] }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s)^2 + n (f r)^2 + (2 l r)^2 + (n f s)^2] }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) }[/math]

[math]\displaystyle{ \boldsymbol{n = 1} }[/math]

[math]\displaystyle{ Q = {\small\frac{1}{4}} [(2 l)^2 + f^2] (r^2 + s^2) = \left[ l^2 + \left( {\small\frac{f}{2}} \right)^2 \right] (r^2 + s^2) }[/math]

[math]\displaystyle{ \boldsymbol{n = 2 , 3} }[/math]

W zależności od tego, która z liczb [math]\displaystyle{ l, r }[/math] jest podzielna przez [math]\displaystyle{ n }[/math], możemy napisać

[math]\displaystyle{ Q = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4 n}} \right] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4}} \right] \left( {\small\frac{r^2 + n s^2}{n}} \right) }[/math]

Co kończy dowód.


Uwaga J101
Zauważmy, że iloczyn liczb postaci [math]\displaystyle{ x^2 + n y^2 }[/math] jest liczbą tej samej postaci.

[math]\displaystyle{ (a^2 + n b^2) (x^2 + n y^2) = (a x + n b y)^2 + n (a y - b x)^2 }[/math]
[math]\displaystyle{ \;\;\;\:\, = (a x - n b y)^2 + n (a y + b x)^2 }[/math]


Twierdzenie J102
Niech [math]\displaystyle{ x, y, a, b \in \mathbb{Z} }[/math] i [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math]. Jeżeli liczba parzysta [math]\displaystyle{ Q = x^2 + n y^2 }[/math], to [math]\displaystyle{ Q = 2^{\alpha} R }[/math], gdzie [math]\displaystyle{ R = a^2 + n b^2 }[/math] jest liczbą nieparzystą.

Dowód

W szczególnym przypadku, gdy [math]\displaystyle{ R = 1 }[/math], mamy [math]\displaystyle{ R = 1^2 + n \cdot 0^2 }[/math].

Dowód sprowadza się do podania wzorów, które pozwalają obniżyć wykładnik, z jakim liczba [math]\displaystyle{ 2 }[/math] występuje w rozwinięciu na czynniki pierwsze liczby [math]\displaystyle{ Q }[/math]. Zauważmy, że wynik jest zawsze liczbą, której postać jest taka sama, jak postać liczby [math]\displaystyle{ Q }[/math]. Stosując te wzory odpowiednią ilość razy, otrzymujmy rozkład [math]\displaystyle{ Q = 2^{\alpha} R }[/math], gdzie [math]\displaystyle{ R }[/math] jest liczbą nieparzystą postaci [math]\displaystyle{ a^2 + n b^2 }[/math].

1. [math]\displaystyle{ \boldsymbol{Q = x^2 + y^2} }[/math]

a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + \left( {\small\frac{y}{2}} \right)^2 }[/math]

b) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste, to [math]\displaystyle{ {\small\frac{Q}{2}} = \left( {\small\frac{x + y}{2}} \right)^2 + \left( {\small\frac{x - y}{2}} \right)^2 }[/math]

2. [math]\displaystyle{ \boldsymbol{Q = x^2 + 2 y^2} }[/math]

a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 2 \left( {\small\frac{y}{2}} \right)^2 }[/math]

b) jeżeli liczba [math]\displaystyle{ x }[/math] jest parzysta, a [math]\displaystyle{ y }[/math] nieparzysta, to [math]\displaystyle{ {\small\frac{Q}{2}} = y^2 + 2 \left( {\small\frac{x}{2}} \right)^2 }[/math]

3. [math]\displaystyle{ \boldsymbol{Q = x^2 + 3 y^2} }[/math]

a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 3 \left( {\small\frac{y}{2}} \right)^2 }[/math]

b) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste i [math]\displaystyle{ 4| (x + y) }[/math], to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x - 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x + y}{4}} \right)^2 }[/math]

c) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste i [math]\displaystyle{ 4| (x - y) }[/math], to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x + 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x - y}{4}} \right)^2 }[/math]

Co należało pokazać.


Twierdzenie J103
Liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] jest postaci

(a)  [math]\displaystyle{ 4 k + 1 }[/math]
(b)  [math]\displaystyle{ 8 k + 1 \, }[/math] lub [math]\displaystyle{ \: 8 k + 3 }[/math]
(c)  [math]\displaystyle{ 6 k + 1 }[/math]

wtedy i tylko wtedy, gdy istnieje dokładnie jedna para liczb całkowitych dodatnich [math]\displaystyle{ x, y }[/math], że

(a)  [math]\displaystyle{ p = x^2 + y^2 }[/math]
(b)  [math]\displaystyle{ p = x^2 + 2 y^2 }[/math]
(c)  [math]\displaystyle{ p = x^2 + 3 y^2 }[/math]
Dowód

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Niech [math]\displaystyle{ n = 1, 2, 3 }[/math]. Z założenia liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] może być przedstawiona w postaci [math]\displaystyle{ p = x_0^2 + n y_0^2 }[/math], gdzie [math]\displaystyle{ x_0, y_0 }[/math] są liczbami takimi, że [math]\displaystyle{ 1 \leqslant x_0, y_0 \lt p }[/math]. Zatem [math]\displaystyle{ p \nmid x_0 }[/math] i [math]\displaystyle{ p \nmid y_0 }[/math], a rozpatrując równanie [math]\displaystyle{ p = x_0^2 + n y_0^2 }[/math] modulo [math]\displaystyle{ p }[/math] dostajemy

[math]\displaystyle{ x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p} }[/math]

Zauważmy, że liczba [math]\displaystyle{ x_0 }[/math] jest rozwiązaniem kongruencji

[math]\displaystyle{ x^2 \equiv - n y_0^2 \!\! \pmod{p} }[/math]

Wynika stąd, że liczba [math]\displaystyle{ - n y_0^2 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ \left( {\small\frac{- n y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1 }[/math]

Z twierdzenia J42 i zadania J46 otrzymujemy natychmiast

(a) jeżeli [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 4 k + 1 }[/math]
(b) jeżeli [math]\displaystyle{ \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math]
(c) jeżeli [math]\displaystyle{ \left( {\small\frac{- 3}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 6 k + 1 }[/math]

Co należało pokazać.


[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

A. Istnienie rozwiązania kongruencji [math]\displaystyle{ \boldsymbol{x^2 + n y^2 \equiv 0 \!\! \pmod{p}} }[/math]

Z założenia liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] jest postaci

(a)  [math]\displaystyle{ 4 k + 1 }[/math]
(b)  [math]\displaystyle{ 8 k + 1 \, }[/math] lub [math]\displaystyle{ \: 8 k + 3 }[/math]
(c)  [math]\displaystyle{ 6 k + 1 }[/math]

Wynika stąd, że dla (a) [math]\displaystyle{ n = 1 }[/math], (b) [math]\displaystyle{ n = 2 }[/math], (c) [math]\displaystyle{ n = 3 }[/math] mamy

[math]\displaystyle{ \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1 }[/math]

(zobacz J42 i J46) i liczba [math]\displaystyle{ - n }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Zatem kongruencja

[math]\displaystyle{ x^2 \equiv - n \!\! \pmod{p} }[/math]

ma rozwiązanie, czyli istnieje taka liczba [math]\displaystyle{ k }[/math], że

[math]\displaystyle{ k^2 + n \equiv 0 \!\! \pmod{p} }[/math]

Zauważmy, że liczby [math]\displaystyle{ x_0 = k }[/math] i [math]\displaystyle{ y_0 = 1 }[/math] są szczególnymi przypadkami rozwiązania kongruencji

[math]\displaystyle{ x^2 + n y^2 \equiv 0 \!\! \pmod{p} }[/math]

W przypadku (a), korzystając z twierdzenia Wilsona (zobacz J18), liczbę [math]\displaystyle{ x_0 }[/math] możemy jawnie wypisać: [math]\displaystyle{ x_0 = \left( {\small\frac{p - 1}{2}} \right) ! }[/math]


B. Zmniejszenie rozwiązania początkowego

Niech liczby [math]\displaystyle{ x_0, y_0 }[/math] takie, że [math]\displaystyle{ p \nmid x_0 \, }[/math] i [math]\displaystyle{ \, p \nmid y_0 }[/math] spełniają kongruencję

[math]\displaystyle{ x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p} }[/math]

Wybierzmy liczby [math]\displaystyle{ r, s }[/math] tak, aby były najbliższymi liczbami całkowitymi odpowiednio dla liczb [math]\displaystyle{ {\small\frac{x_0}{p}} \, }[/math] i [math]\displaystyle{ \, {\small\frac{y_0}{p}} }[/math]. Z definicji mamy

[math]\displaystyle{ \left| {\small\frac{x_0}{p}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y_0}{p}} - s \right| \leqslant {\small\frac{1}{2}} }[/math]

Zatem

[math]\displaystyle{ | x_0 - r p | \leqslant {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \leqslant {\small\frac{p}{2}} }[/math]

Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie [math]\displaystyle{ {\small\frac{p}{2}} }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.

[math]\displaystyle{ | x_0 - r p | \lt {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \lt {\small\frac{p}{2}} }[/math]

Wynika stąd, że dla dowolnego rozwiązania początkowego [math]\displaystyle{ x_0, y_0 }[/math] możemy wybrać liczby

[math]\displaystyle{ x = x_0 - r p \qquad \qquad \text{i} \qquad \qquad y = y_0 - s p }[/math]

takie, że [math]\displaystyle{ p \nmid x }[/math] oraz [math]\displaystyle{ p \nmid y }[/math] i dla których

[math]\displaystyle{ 0 \lt x^2 + n y^2 \lt \left( {\small\frac{p}{2}} \right)^2 + n \left( {\small\frac{p}{2}} \right)^2 = {\small\frac{(n + 1) p}{4}} \cdot p }[/math]

Ponieważ modulo [math]\displaystyle{ p }[/math] jest [math]\displaystyle{ x \equiv x_0 \, }[/math] i [math]\displaystyle{ \, y \equiv y_0 }[/math], to liczby [math]\displaystyle{ x, y }[/math] spełniają kongruencję

[math]\displaystyle{ x^2 + n y^2 \equiv 0 \!\! \pmod{p} }[/math]

Zatem wynikające z powyższej kongruencji równanie

[math]\displaystyle{ x^2 + n y^2 = m p }[/math]

ma rozwiązanie dla liczb

[math]\displaystyle{ | x | \lt {\small\frac{p}{2}} , \qquad \qquad | y | \lt {\small\frac{p}{2}}, \qquad \qquad 1 \leqslant m \lt {\small\frac{(n + 1) p}{4}} }[/math]

Pomysł ze zmniejszaniem liczb stanowiących rozwiązanie za chwilę wykorzystamy ponownie i będzie to istotny element dowodu.


C. Metoda nieskończonego schodzenia Fermata[12][13]

Pomysł dowodu został zaczerpnięty z książki Hardy'ego i Wrighta[14].

Jeżeli w rozwiązaniu [math]\displaystyle{ m = 1 }[/math], to [math]\displaystyle{ p = x^2 + n y^2 }[/math] i twierdzenie jest udowodnione. W przypadku gdy [math]\displaystyle{ m \gt 1 }[/math] wskażemy sposób postępowania, który pozwoli nam z istniejącego rozwiązania równania

[math]\displaystyle{ x^2 + n y^2 = m p }[/math]

otrzymać nowe rozwiązanie tej samej postaci

[math]\displaystyle{ x_1^2 + n y_1^2 = m_1 p }[/math]

takie, że [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math]. Powtarzając tę procedurę odpowiednią ilość razy, otrzymamy rozwiązanie [math]\displaystyle{ x_k, y_k, m_k }[/math], gdzie [math]\displaystyle{ m_k = 1 }[/math]. Istnienie takiej procedury stanowi dowód prawdziwości twierdzenia.

Zauważmy, że podział na parzyste i nieparzyste liczby [math]\displaystyle{ m }[/math] jest konieczny tylko w przypadku gdy [math]\displaystyle{ n = 3 }[/math]. W pozostałych przypadkach nie musimy wzmacniać nierówności, aby prawdziwe było oszacowanie [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math].

Przypadek, gdy [math]\displaystyle{ \boldsymbol{m \gt 1} }[/math] jest liczbą parzystą

Jeżeli [math]\displaystyle{ m \gt 1 }[/math] jest liczbą parzystą, to z twierdzenia J102 wiemy, że liczba [math]\displaystyle{ x^2 + n y^2 }[/math] może być zapisana w postaci

[math]\displaystyle{ x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1) }[/math]

gdzie [math]\displaystyle{ x^2_1 + n y^2_1 }[/math] jest liczbą nieparzystą. Wystarczy położyć [math]\displaystyle{ m_1 = {\small\frac{m}{2^{\alpha}}} }[/math], aby z istniejącego rozwiązania otrzymać nowe rozwiązanie tej samej postaci

[math]\displaystyle{ x_1^2 + n y_1^2 = m_1 p }[/math]

gdzie [math]\displaystyle{ m_1 }[/math] jest liczbą nieparzystą i [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math].

Przypadek, gdy [math]\displaystyle{ \boldsymbol{m \gt 1} }[/math] jest liczbą nieparzystą

Niech liczby [math]\displaystyle{ r, s }[/math] będą liczbami całkowitymi najbliższymi liczbom [math]\displaystyle{ {\small\frac{x}{m}} \, }[/math] i [math]\displaystyle{ \, {\small\frac{y}{m}} }[/math]. Z definicji mamy

[math]\displaystyle{ \left| {\small\frac{x}{m}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y}{m}} - s \right| \leqslant {\small\frac{1}{2}} }[/math]

Zatem

[math]\displaystyle{ | x - r m | \leqslant {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \leqslant {\small\frac{m}{2}} }[/math]

Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie [math]\displaystyle{ {\small\frac{m}{2}} }[/math], gdzie [math]\displaystyle{ m }[/math] jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.

[math]\displaystyle{ | x - r m | \lt {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \lt {\small\frac{m}{2}} }[/math]

Połóżmy

[math]\displaystyle{ a = x - r m \qquad \qquad \text{i} \qquad \qquad b = y - s m }[/math]

Zauważmy, że liczba [math]\displaystyle{ m }[/math] nie może jednocześnie dzielić liczb [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ m^2 \mid (x^2 + n y^2) }[/math], czyli [math]\displaystyle{ m \mid p }[/math], co jest niemożliwe. Zatem przynajmniej jedna z liczb [math]\displaystyle{ a, b }[/math] musi być różna od [math]\displaystyle{ 0 }[/math].

Rozpatrując równanie [math]\displaystyle{ x^2 + n y^2 = m p }[/math] modulo [math]\displaystyle{ m }[/math] i uwzględniając, że

[math]\displaystyle{ x \equiv a \!\! \pmod{m} }[/math]
[math]\displaystyle{ y \equiv b \!\! \pmod{m} }[/math]

otrzymujemy

[math]\displaystyle{ a^2 + n b^2 \equiv 0 \pmod{m} }[/math]

Mamy też oszacowanie

[math]\displaystyle{ 0 \lt a^2 + n b^2 \lt \left( {\small\frac{m}{2}} \right)^2 + n \cdot \left( {\small\frac{m}{2}} \right)^2 = {\small\frac{(n + 1) m^2}{4}} = {\small\frac{(n + 1) m}{4}} \cdot m }[/math]

Wynika stąd, że istnieje taka liczba [math]\displaystyle{ m_1 }[/math] spełniająca warunek [math]\displaystyle{ 1 \leqslant m_1 \lt {\small\frac{(n + 1) m}{4}} }[/math], że

[math]\displaystyle{ a^2 + n b^2 = m_1 m }[/math]

Mnożąc stronami powyższe równanie i równanie [math]\displaystyle{ x^2 + n y^2 = m p }[/math], otrzymujemy

[math]\displaystyle{ m_1 m^2 p = (a^2 + n b^2) (x^2 + n y^2) }[/math]
[math]\displaystyle{ \;\; = (a x + n b y)^2 + n (a y - b x)^2 }[/math]

(zobacz J101). Zauważmy teraz, że

[math]\displaystyle{ a x + n b y = (x - r m) x + n (y - s m) y }[/math]
[math]\displaystyle{ \quad \; = x^2 - r m x + n y^2 - n s m y }[/math]
[math]\displaystyle{ \quad \; = m (p - r x - n s y) }[/math]
[math]\displaystyle{ \quad \; = m x_1 }[/math]


[math]\displaystyle{ a y - b x = (x - r m) y - (y - s m) x }[/math]
[math]\displaystyle{ \;\;\, = x y - r m y - y x + s m x }[/math]
[math]\displaystyle{ \;\;\, = m (s x - r y) }[/math]
[math]\displaystyle{ \;\;\, = m y_1 }[/math]

Gdzie oznaczyliśmy

[math]\displaystyle{ x_1 = p - r x - n s y }[/math]
[math]\displaystyle{ y_1 = s x - r y }[/math]

Wynika stąd, że

[math]\displaystyle{ m_1 m^2 p = (m x_1)^2 + n (m y_1)^2 }[/math]

Zatem

[math]\displaystyle{ x^2_1 + n y^2_1 = m_1 p }[/math]

gdzie

[math]\displaystyle{ 1 \leqslant m_1 \lt {\small\frac{(n + 1) m}{4}} }[/math]

Czyli powtarzając odpowiednią ilość razy opisaną powyżej procedurę, otrzymamy [math]\displaystyle{ m_k = 1 }[/math].


D. Jednoznaczność rozkładu

Z założenia [math]\displaystyle{ p }[/math] jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z twierdzenia J100. Co kończy dowód.


Uwaga J104
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni.

Pokaż kod
SumOfTwoSquares(p) = 
{
local(m, r, s, x, y, x1, y1);
if( p%4 <> 1 || !isprime(p), return("Error") );
x = 1;
for(k = 2, (p-1)/2, x = (x*k)%p); \\ x = { [(p-1)/2]! } % p
x = x - round(x/p)*p;
y = 1;
m = (x^2 + y^2)/p;
while( m > 1,
       r = round(x/m);
       s = round(y/m);
       x1 = p - r*x - s*y;
       y1 = r*y - s*x;
       x = x1;
       y = y1;
       m = (x^2 + y^2)/p;
     );
return([ abs(x), abs(y), p ]);
}


Zadanie J105
Niech liczby pierwsze [math]\displaystyle{ p, q }[/math] będą postaci [math]\displaystyle{ 4 k + 1 }[/math], a liczba pierwsza [math]\displaystyle{ r }[/math] będzie postaci [math]\displaystyle{ 4 k + 3 }[/math]. Pokazać, że

  •   liczby [math]\displaystyle{ r, p r \, }[/math] i [math]\displaystyle{ \, r^2 }[/math] nie rozkładają się na sumę dwóch kwadratów liczb całkowitych dodatnich
  •   liczby [math]\displaystyle{ p }[/math], [math]\displaystyle{ 2 p }[/math], [math]\displaystyle{ p^2 \, }[/math] i [math]\displaystyle{ \, p r^2 }[/math] mają jeden rozkład na sumę dwóch kwadratów liczb całkowitych dodatnich
  •   liczba [math]\displaystyle{ p q }[/math], [math]\displaystyle{ p \neq q }[/math] ma dwa rozkłady na sumę dwóch kwadratów liczb całkowitych dodatnich
Rozwiązanie

Punkt 1.

Ponieważ liczby [math]\displaystyle{ r \, }[/math] i [math]\displaystyle{ \, p r }[/math] są postaci [math]\displaystyle{ 4 k + 3 }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy

[math]\displaystyle{ r, p r \equiv 3 \!\! \pmod{4} }[/math]

Suma [math]\displaystyle{ x^2 + y^2 }[/math] musi być liczbą nieparzystą, zatem liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość i modulo [math]\displaystyle{ 4 }[/math] mamy

[math]\displaystyle{ x^2 + y^2 \equiv 1 \!\! \pmod{4} }[/math]

Przypuśćmy, że

[math]\displaystyle{ r^2 = x^2 + y^2 }[/math]

gdzie [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math]. Liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość, zatem [math]\displaystyle{ x \neq y }[/math]. Z twierdzenia J22 wynika, że liczba [math]\displaystyle{ x^2 + y^2 }[/math] musi mieć dzielnik pierwszy postaci [math]\displaystyle{ 4 k + 1 }[/math], co w sposób oczywisty jest niemożliwe.

Punkt 2.

W przypadku liczby pierwszej [math]\displaystyle{ p }[/math] odpowiedzi udziela twierdzenie J103. Niech [math]\displaystyle{ p = x^2 + y^2 }[/math], mamy

[math]\displaystyle{ 2 p = (x + y)^2 + (x - y)^2 }[/math]
[math]\displaystyle{ p^2 = (x^2 - y^2)^2 + (2 x y)^2 }[/math]
[math]\displaystyle{ p r^2 = (r x)^2 + (r y)^2 }[/math]

Punkt 3.

Niech [math]\displaystyle{ p = x^2 + y^2 }[/math] i [math]\displaystyle{ q = a^2 + b^2 }[/math]. Ze wzorów podanych w uwadze J101 mamy

[math]\displaystyle{ p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2 }[/math]
[math]\displaystyle{ \:\, = (a x - b y)^2 + (a y + b x)^2 }[/math]

Co należało pokazać.



Twierdzenia o istnieniu liczb pierwszych kwadratowych i niekwadratowych modulo

Zadanie J106
Niech [math]\displaystyle{ s = \pm 1 }[/math]. Zbadać podzielność liczby [math]\displaystyle{ p - s a^2 }[/math]

  • przez [math]\displaystyle{ 4 }[/math], gdy [math]\displaystyle{ p = 4 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3 }[/math]
  • przez [math]\displaystyle{ 8 }[/math], gdy [math]\displaystyle{ p = 8 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5, 7 }[/math]
Rozwiązanie

Problem sprowadza się do uzyskania odpowiedzi, kiedy kongruencja

[math]\displaystyle{ p - s a^2 \equiv 0 \pmod{2^n} }[/math]

gdzie [math]\displaystyle{ n = 2, 3 }[/math], ma rozwiązanie. Podstawiając, dostajemy

[math]\displaystyle{ 2^n k + r \equiv s a^2 \pmod{2^n} }[/math]
[math]\displaystyle{ s a^2 \equiv r \pmod{2^n} }[/math]
[math]\displaystyle{ a^2 \equiv s r \pmod{2^n} }[/math]

Z twierdzenia J55 wiemy, że aby powyższa kongruencja miała rozwiązanie, musi być [math]\displaystyle{ 2^n \mid (s r - 1) }[/math], co jest możliwe tylko, gdy

[math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 3 \\ \end{cases} }[/math]

dla [math]\displaystyle{ 2^n = 4 }[/math] i gdy

[math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 7 \\ \end{cases} }[/math]

dla [math]\displaystyle{ 2^n = 8 }[/math]. Dla [math]\displaystyle{ 2^n = 8 }[/math] i [math]\displaystyle{ r = 3, 5 }[/math] rozpatrywana kongruencja nie ma rozwiązania.


Uwaga J107
Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Pomysł ujęcia problemu zaczerpnęliśmy z pracy Alexandru Gicy[15]. Zadanie J106 należy traktować jako uzupełnienie do dowodu twierdzenia J108. Z zadania łatwo widzimy, że powiązanie liczby [math]\displaystyle{ s }[/math] z postacią liczby pierwszej [math]\displaystyle{ p }[/math] nie jest przypadkowe.

Zauważmy, że twierdzenia ograniczają się do liczb pierwszych [math]\displaystyle{ p }[/math], ponieważ dla liczb złożonych nieparzystych [math]\displaystyle{ m \gt 0 }[/math] wynik [math]\displaystyle{ \left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1 }[/math] nie oznacza, że liczba pierwsza [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math].

W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].


W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].


Twierdzenie J108
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 17 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].

Dowód

Niech

[math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 1 \\ - 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 3 \\ \end{cases} }[/math]

Dla ustalonych liczb [math]\displaystyle{ n }[/math] i [math]\displaystyle{ s }[/math] rozważmy liczbę [math]\displaystyle{ u(a) = {\small\frac{p - s a^2}{2^n}} }[/math] taką, że [math]\displaystyle{ 3 \leqslant u (a) \lt p }[/math]. Jeżeli liczba ta jest postaci [math]\displaystyle{ 4 k + 3 }[/math], to ma dzielnik pierwszy [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] (zobacz C21). Zatem możemy napisać [math]\displaystyle{ u (a) = t q }[/math], co oznacza, że

[math]\displaystyle{ p - s a^2 = 2^n u (a) = 2^n t q }[/math]

Czyli

[math]\displaystyle{ p \equiv s a^2 \pmod{q} }[/math]

i otrzymujemy

[math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s a^2}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{a^2}{q}} \right)_{\small{\!\! J}} =s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} = 1 }[/math]

Zatem liczba [math]\displaystyle{ q \lt p }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math].

Pomysł dowodu polega na wskazaniu kilku liczb [math]\displaystyle{ u(a_1), \ldots, u(a_r) }[/math] takich, że

[math]\displaystyle{ 3 \leqslant u(a_1) \lt \ldots \lt u(a_r) \lt p }[/math]

z których jedna musi być postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek pierwszy: [math]\displaystyle{ \boldsymbol{p \equiv 3 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = - 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 2 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p + 1}{4}} \lt {\small\frac{p + 9}{4}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 11 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 3 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ 2 k + 1, 2 k + 3 \} }[/math]. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z nich jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek drugi: [math]\displaystyle{ \boldsymbol{p \equiv 5 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = + 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 2 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p - 9}{4}} \lt {\small\frac{p - 1}{4}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 21 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 5 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ 2 k - 1, 2 k + 1 \} }[/math]. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z nich jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek trzeci: [math]\displaystyle{ \boldsymbol{p \equiv 7 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = - 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 3 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p + 1}{8}} \lt {\small\frac{p + 9}{8}} \lt {\small\frac{p + 25}{8}} \lt {\small\frac{p + 49}{8}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 23 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 7 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ k + 1, k + 2, k + 4, k + 7 \} }[/math]. Jeżeli [math]\displaystyle{ k \equiv r \!\! \pmod{4} }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy zbiór [math]\displaystyle{ \{ r + 1, r + 2, r, r + 3 \} }[/math]. Zatem jedna z liczb w tym zbiorze jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek czwarty: [math]\displaystyle{ \boldsymbol{p \equiv 1 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = + 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 3 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p - 49}{8}} \lt {\small\frac{p - 25}{8}} \lt {\small\frac{p - 9}{8}} \lt {\small\frac{p - 1}{8}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 73 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 1 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ k - 6, k - 3, k - 1, k \} }[/math]. Jeżeli [math]\displaystyle{ k \equiv r \!\! \pmod{4} }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy zbiór [math]\displaystyle{ \{ r + 2, r + 1, r + 3, r \} }[/math]. Zatem jedna z liczb w tym zbiorze jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Pozostaje sprawdzić twierdzenie dla liczb pierwszych [math]\displaystyle{ p \lt 73 }[/math]. Co kończy dowód.


Twierdzenie J109
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].

Dowód

W przypadku, gdy liczba pierwsza [math]\displaystyle{ p }[/math] jest postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math], to istnieją takie liczby całkowite dodatnie [math]\displaystyle{ x, y }[/math], że [math]\displaystyle{ p = x^2 + 2 y^2 }[/math] (zobacz J103). Ponieważ z założenia [math]\displaystyle{ p \geqslant 11 }[/math], to musi być [math]\displaystyle{ x \neq y }[/math]. Z twierdzenia J22 wynika, że liczba [math]\displaystyle{ x^2 + y^2 }[/math] ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math]. Łatwo widzimy, że [math]\displaystyle{ q \leqslant x^2 + y^2 \lt x^2 + 2 y^2 = p }[/math].

Modulo [math]\displaystyle{ q }[/math] możemy napisać

[math]\displaystyle{ x^2 + y^2 \equiv 0 \!\! \pmod{q} }[/math]

Liczba pierwsza [math]\displaystyle{ q \lt p }[/math] nie może dzielić [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ q \mid x }[/math], czyli [math]\displaystyle{ q \mid p }[/math], co jest niemożliwe. Rozpatrując równość [math]\displaystyle{ p = x^2 + 2 y^2 }[/math] modulo [math]\displaystyle{ q }[/math], dostajemy

[math]\displaystyle{ p \equiv y^2 \!\! \pmod{q} }[/math]

Wynika stąd natychmiast (zobacz J42 p.9)

[math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = 1 }[/math]

Co kończy dowód.


Twierdzenie J110
Jeżeli [math]\displaystyle{ p \geqslant 19 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 12 k + 7 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].

Dowód

Z założenia [math]\displaystyle{ p \equiv 1 \!\! \pmod{6} }[/math], zatem istnieją takie liczby [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math], że [math]\displaystyle{ p = x^2 + 3 y^2 }[/math] (zobacz J103). Liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość i być względnie pierwsze. Gdyby liczba [math]\displaystyle{ x }[/math] była nieparzysta, to modulo [math]\displaystyle{ 4 }[/math] mielibyśmy

[math]\displaystyle{ 1 + 3 \cdot 0 \equiv 3 \!\! \pmod{4} }[/math]

Co jest niemożliwe. Zatem [math]\displaystyle{ x = 2 k }[/math], a liczba [math]\displaystyle{ y }[/math] musi być nieparzysta. Otrzymujemy

[math]\displaystyle{ p = 4 k^2 + 3 y^2 = 4 (k^2 + y^2) - y^2 }[/math]

Ponieważ [math]\displaystyle{ p }[/math] jest liczbą pierwszą, to jedynie w przypadku gdy [math]\displaystyle{ k = y = 1 }[/math] możliwa jest sytuacja, że [math]\displaystyle{ k = y }[/math]. Mielibyśmy wtedy [math]\displaystyle{ p = 7 }[/math], ale z założenia musi być [math]\displaystyle{ p \geqslant 19 }[/math]. Wynika stąd, że [math]\displaystyle{ k \neq y }[/math], zatem liczba [math]\displaystyle{ k^2 + y^2 }[/math] ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] (zobacz J22). Oczywiście [math]\displaystyle{ q \leqslant k^2 + y^2 \lt 4 k^2 + 3 y^2 = p }[/math].

Modulo [math]\displaystyle{ q }[/math] możemy napisać

[math]\displaystyle{ k^2 + y^2 \equiv 0 \!\! \pmod{q} }[/math]

Liczba pierwsza [math]\displaystyle{ q }[/math] nie może dzielić [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ q \mid k }[/math], czyli [math]\displaystyle{ q \mid p }[/math], co jest niemożliwe. Rozpatrując równość [math]\displaystyle{ p = 4 (k^2 + y^2) - y^2 }[/math] modulo [math]\displaystyle{ q }[/math], dostajemy

[math]\displaystyle{ p \equiv - y^2 \!\! \pmod{q} }[/math]

Wynika stąd natychmiast (zobacz J42 p.9 i p.6)

[math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- y^2}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} = 1 }[/math]

Co kończy dowód.


Twierdzenia J109 i J110 można uogólnić na wszystkie liczby pierwsze.[15]
Twierdzenie J111*
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 13, 37 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].


Uwaga J112
W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].


W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].


Twierdzenie J113
Jeżeli [math]\displaystyle{ m \geqslant 7 }[/math] jest liczbą całkowitą postaci [math]\displaystyle{ 4 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].

Dowód

Ponieważ liczba [math]\displaystyle{ m - 4 \geqslant 3 }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math], to ma dzielnik pierwszy [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] (zobacz C21). Czyli [math]\displaystyle{ m - 4 = k q }[/math] i z twierdzenia J42 p.9 dostajemy

[math]\displaystyle{ \left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = - \left( {\small\frac{m}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{k q + 4}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{4}{q}} \right)_{\small{\!\! J}} = - 1 }[/math]

Zatem [math]\displaystyle{ q }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math]. Co należało pokazać.


Można też pokazać, że[16]
Twierdzenie J114*
A. Jeżeli [math]\displaystyle{ p \geqslant 13 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].

B. Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].


Zauważmy, że twierdzenie J114 można łatwo uogólnić na liczby całkowite dodatnie.
Twierdzenie J115
A. Jeżeli [math]\displaystyle{ m \geqslant 6 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 10 , 11 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].

B. Jeżeli [math]\displaystyle{ m \geqslant 4 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 6 , 9 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].

Dowód

Punkt B

Rozważmy liczby [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ m = 2^a 3^b }[/math].

Jeżeli [math]\displaystyle{ 3 \mid m }[/math], to [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J56 i J88).

Jeżeli [math]\displaystyle{ 3 \nmid m }[/math], ale [math]\displaystyle{ 8 \mid m }[/math], to [math]\displaystyle{ 8 \nmid (11 - 1) }[/math], zatem liczba [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J56).

Jeżeli [math]\displaystyle{ 3 \nmid m }[/math] i [math]\displaystyle{ 8 \nmid m }[/math], ale [math]\displaystyle{ 4 \mid m }[/math], to [math]\displaystyle{ 4 \nmid (11 - 1) }[/math], zatem liczba [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J56).

Jeżeli [math]\displaystyle{ m = 2 }[/math], to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo [math]\displaystyle{ 2 }[/math].


Zbierając:

  • jeśli liczba [math]\displaystyle{ m \geqslant 12 }[/math] nie ma dzielnika pierwszego [math]\displaystyle{ p \geqslant 5 }[/math], czyli jest postaci [math]\displaystyle{ m = 2^a 3^b }[/math], to liczba pierwsza [math]\displaystyle{ q = 11 }[/math] jest mniejsza od [math]\displaystyle{ m }[/math], jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].
  • jeśli liczba [math]\displaystyle{ m \geqslant 12 }[/math] ma dzielnik pierwszy [math]\displaystyle{ p \geqslant 5 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p \leqslant m }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J114 i J88).


Pozostaje wypisać dla liczb [math]\displaystyle{ 3 \leqslant m \leqslant 11 }[/math] najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci [math]\displaystyle{ 4 k + 3 }[/math].

for(m = 3, 15, forprimestep(q = 3, 100, 4, if( isQR(q,m) == -1, print(m, "  ", q); break() )))

Widzimy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ m \geqslant 4 }[/math], o ile [math]\displaystyle{ m \neq 6 , 9 }[/math].

Punkt A

Rozważmy liczby [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ m = 2^a 3^b 5^c 7^d 11^e }[/math].

Jeżeli jedna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] dzieli [math]\displaystyle{ m }[/math], to [math]\displaystyle{ 17 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ \left( {\small\frac{17}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{7}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{11}} \right)_{\small{\!\! J}} = - 1 }[/math].

Jeżeli żadna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] nie dzieli [math]\displaystyle{ m }[/math], ale [math]\displaystyle{ 8 \mid m }[/math], to [math]\displaystyle{ 8 \nmid (5 - 1) }[/math], zatem liczba [math]\displaystyle{ 5 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].

Jeżeli żadna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] nie dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ 8 \nmid m }[/math], ale [math]\displaystyle{ 4 \mid m }[/math], to nie istnieją liczby pierwsze postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ 4 \mid [(4 k + 1) - 1] }[/math]

Jeżeli [math]\displaystyle{ m = 2 }[/math], to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo [math]\displaystyle{ 2 }[/math].

Zbierając:

  • jeśli liczba [math]\displaystyle{ m \geqslant 18 }[/math] nie ma dzielnika pierwszego [math]\displaystyle{ p \geqslant 13 }[/math], czyli jest postaci [math]\displaystyle{ m = 2^a 3^b 5^c 7^d 11^e }[/math], to liczba pierwsza [math]\displaystyle{ q = 5 }[/math] lub [math]\displaystyle{ q = 17 }[/math] jest mniejsza od [math]\displaystyle{ m }[/math], jest postaci [math]\displaystyle{ 4 k + 1 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].
  • jeśli liczba [math]\displaystyle{ m \geqslant 18 }[/math] ma dzielnik pierwszy [math]\displaystyle{ p \geqslant 13 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p \leqslant m }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 1 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J114 i J88).

Pozostaje wypisać dla liczb [math]\displaystyle{ 3 \leqslant m \leqslant 17 }[/math] najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci [math]\displaystyle{ 4 k + 1 }[/math].

for(m = 3, 20, forprimestep(q = 1, 100, 4, if( isQR(q,m) == -1, print(m, "  ", q); break() )))

Widzimy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ m \geqslant 6 }[/math], o ile [math]\displaystyle{ m \neq 10 , 11 }[/math].


Twierdzenie J116
Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math]

Dowód

Łatwo sprawdzamy, że

[math]\displaystyle{ \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]

(zobacz J42 p.7). Zatem dowód wystarczy przeprowadzić dla [math]\displaystyle{ p \geqslant 13 }[/math].

A. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{4 k + 1} }[/math]

Niech liczba [math]\displaystyle{ q }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z twierdzenia J72 wiemy, że dla [math]\displaystyle{ p \geqslant 5 }[/math] liczba [math]\displaystyle{ q }[/math] jest liczbą pierwszą i jest mniejsza od [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], to z twierdzenia J42 p.9 otrzymujemy natychmiast

[math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

B. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{4 k + 3} }[/math]

Z twierdzenia J108 wynika, że dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 11 }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ p \equiv q \equiv 3 \!\! \pmod{4} }[/math], to z twierdzenia J42 p.9 otrzymujemy natychmiast

[math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

Co kończy dowód.


Zadanie J117
Udowodnić twierdzenie J116 w przypadku, gdy liczba pierwsza [math]\displaystyle{ p \geqslant 19 }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math], nie korzystając z twierdzenia J108.

Rozwiązanie

Z założenia [math]\displaystyle{ p = 4 k + 3 }[/math]. Liczba [math]\displaystyle{ k }[/math] może być postaci [math]\displaystyle{ k = 3 j }[/math], [math]\displaystyle{ k = 3 j + 1 }[/math] i [math]\displaystyle{ k = 3 j + 2 }[/math]. Odpowiada to liczbom pierwszym postaci [math]\displaystyle{ p = 12 j + 3 }[/math], [math]\displaystyle{ p = 12 j + 7 }[/math] i [math]\displaystyle{ p = 12 j + 11 }[/math].

Ponieważ nie ma liczb pierwszych [math]\displaystyle{ p \geqslant 19 }[/math] i będących postaci [math]\displaystyle{ p = 12 j + 3 }[/math], to pozostaje rozważyć przypadki [math]\displaystyle{ p = 12 j + 7 }[/math] i [math]\displaystyle{ p = 12 j + 11 }[/math].

A. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{12 j + 11} }[/math]

Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1 }[/math] (zobacz J47). Mamy

[math]\displaystyle{ \left( {\small\frac{p}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

Czyli wystarczy przyjąć [math]\displaystyle{ q = 3 }[/math].

B. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{12 j + 7} }[/math]

Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J42 p.6 oraz J47). Otrzymujemy

[math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = - \left( {\small\frac{p - 12}{p}} \right)_{\small{\!\! J}} = - \left( {\small\frac{- 12}{p}} \right)_{\small{\!\! J}} = \left[ - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} \right] \cdot \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = -1 }[/math]

Ponieważ liczba [math]\displaystyle{ p - 12 \geqslant 7 }[/math] jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy [math]\displaystyle{ q \lt p }[/math] liczby [math]\displaystyle{ p - 12 }[/math] taki, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 }[/math]. W przeciwnym razie z twierdzenia J42 p.4 mielibyśmy [math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1 }[/math]. Co kończy dowód.








Przypisy

  1. Wikipedia, Chińskie twierdzenie o resztach, (Wiki-pl), (Wiki-en)
  2. CRT to często używany skrót od angielskiej nazwy twierdzenia: Chinese remainder theorem
  3. Wikipedia, Logical equivalence, (Wiki-en)
  4. Wikipedia, Zasada włączeń i wyłączeń, (Wiki-pl), (Wiki-en)
  5. Wikipedia, Symbol Legendre’a, (Wiki-pl), (Wiki-en)
  6. Wikipedia, Symbol Jacobiego, (Wiki-pl), (Wiki-en)
  7. Karl K. Norton, Numbers with Small Prime Factors, and the Least kth Power Non-Residue, Memoirs of the American Mathematical Society, No. 106 (1971)
  8. Enrique Treviño, The least k-th power non-residue, Journal of Number Theory, Volume 149 (2015)
  9. Kevin J. McGown and Enrique Treviño, The least quadratic non-residue, Mexican Mathematicians in the World (2021)
  10. Paul Erdős, Számelméleti megjegyzések I, Afar. Lapok, v. 12 (1961)
  11. Paul Pollack, The average least quadratic nonresidue modulo [math]\displaystyle{ m }[/math] and other variations on a theme of Erdős, Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.
  12. Wikipedia, Proof by infinite descent, (Wiki-en)
  13. W. H. Bussey, Fermat's Method of Infinite Descent, The American Mathematical Monthly, Vol. 25, No. 8 (1918)
  14. G. H. Hardy and Edward M. Wright, An Introduction to the Theory of Numbers, New York: Oxford University Press, 5th Edition, zobacz dowód Twierdzenia 366 w sekcji 20.4 na stronie 301.
  15. 15,0 15,1 Alexandru Gica, Quadratic Residues of Certain Types, Rocky Mountain J. Math. 36 (2006), no. 6, 1867-1871.
  16. Paul Pollack, The least prime quadratic nonresidue in a prescribed residue class mod 4, Journal of Number Theory 187 (2018), 403-414