Różnica pomiędzy stronami "CRT, twierdzenia Lagrange'a, Wilsona i Fermata, kryterium Eulera, symbole Legendre'a i Jacobiego" i "Liczby kwadratowe i niekwadratowe modulo. Wybrane zagadnienia"

Z Henryk Dąbrowski
(Różnica między stronami)
Przejdź do nawigacji Przejdź do wyszukiwania
 
 
Linia 1: Linia 1:
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.03.2023</div>
+
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.04.2023</div>
  
 
__FORCETOC__
 
__FORCETOC__
Linia 5: Linia 5:
  
  
== Chińskie twierdzenie o&nbsp;resztach ==
+
== Przykłady sum symboli Legendre'a ==
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J1</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K1</span><br/>
Niech <math>a, u \in \mathbb{Z}</math> i <math>m, n \in \mathbb{Z}_+</math> i <math>\gcd (m, n) = 1</math>. Kongruencja
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, <math>a, d \in \mathbb{Z}</math> i <math>p \nmid d</math>. Pokazać, że
  
::<math>u \equiv a \pmod{m n}</math>
+
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0</math>
  
jest równoważna układowi kongruencji
+
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1</math>
  
::<math>\begin{align}
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = 0</math>
u &\equiv a \pmod{m} \\
 
u &\equiv a \pmod{n}
 
\end{align}</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
<math>\Large{\Longrightarrow}</math>
+
'''Punkt 1.'''
 +
 
 +
Wystarczy zauważyć, że wśród liczb <math>1, 2, \ldots, p - 1</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych modulo <math>p</math>. Zatem
 +
 
 +
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) = 0</math>
 +
 
 +
'''Punkt 2.'''
 +
 
 +
Wystarczy zauważyć, że
 +
 
 +
::<math>\left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2}</math>
 +
 
 +
oraz że wśród liczb <math>1, 2, \ldots, p - 1</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych modulo <math>p</math>. Zatem
  
Jeżeli liczba <math>u - a</math> jest podzielna przez iloczyn <math>m n</math>, to tym bardziej jest podzielna przez dowolny czynnik tego iloczynu, skąd wynika natychmiast wypisany układ kongruencji.
+
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1^2 + {\small\frac{p - 1}{2}} \cdot (- 1)^2 = p - 1</math>
  
<math>\Large{\Longleftarrow}</math>
+
'''Punkt 3.'''
  
Z kongruencji
+
Z założenia liczby <math>p</math> i <math>d</math> są względnie pierwsze. Z&nbsp;twierdzenia C57 wiemy, że reszty <math>r_1, r_2, \ldots, r_p</math> z&nbsp;dzielenia <math>p</math> kolejnych liczb postaci
  
::<math>u \equiv a \pmod{m}</math>
+
::<math>x_k = a + k d</math>
  
wynika, że <math>u - a = k m</math>, zaś z&nbsp;kongruencji
+
przez liczbę <math>p</math> są wszystkie różne i&nbsp;tworzą zbiór <math>S = \{ 0, 1, \ldots, p - 1 \}</math>. Czyli wśród reszt <math>r_1, r_2, \ldots, r_p</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math>, tyle samo liczb niekwadratowych modulo <math>p</math>, a&nbsp;jedna z&nbsp;tych reszt jest podzielna przez <math>p</math>. Z&nbsp;własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p. 2). Zatem możemy napisać
  
::<math>u \equiv a \pmod{n}</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{j = 0}^{p - 1} \left( {\small\frac{r_j}{p}} \right)_{\small{\!\! L}}
 +
= {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) + 0
 +
= 0</math>
  
otrzymujemy <math>n \mid (u - a)</math>, czyli <math>n \mid k m</math>. Ponieważ <math>\gcd (m, n) = 1</math>, zatem <math>n \mid k</math> (zobacz C74) i&nbsp;istnieje taka liczba całkowita <math>s</math>, że <math>k = s n</math>, czyli <math>u - a = s n m</math>, a&nbsp;stąd <math>u \equiv a \!\! \pmod{m n}</math>. Co kończy dowód.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 41: Linia 53:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J2</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K2* (George Pólya, Iwan Winogradow, 1918)</span><br/>
Dla dowolnych liczb <math>a, b \in \mathbb{Z}</math> i&nbsp;względnie pierwszych liczb <math>m, n \in \mathbb{Z}_+</math> istnieje dokładnie jedna taka liczba <math>c</math> (określona modulo <math>m n</math>), że prawdziwy jest układ kongruencji
+
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>m, n \in \mathbb{N}_0</math>, to prawdziwe jest oszacowanie
 +
 
 +
::<math>\left| \sum_{t = m}^{m + n} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}} \right| < \sqrt{p} \log p</math>
 +
 
 +
 
  
::<math>\begin{align}
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K3</span><br/>
c & \equiv a \pmod{m} \\
+
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>a, b \in \mathbb{Z}</math>, to
  c & \equiv b \pmod{n}
+
 
\end{align}</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 +
= \begin{cases}
 +
  \;\;\:\,      - 1 & \text{gdy } \, p \nmid (a - b) \\
 +
    p - 1 & \text{gdy } \, p \mid (a - b) \\
 +
\end{cases}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z&nbsp;założenia liczby <math>m</math> i <math>n</math> są względnie pierwsze, zatem na mocy lematu Bézouta (C.71) istnieją takie liczby <math>x, y \in \mathbb{Z}</math>, że
 
  
::<math>m x + n y = 1</math>
+
'''1. Przypadek, gdy <math>\boldsymbol{p \mid (a - b)}</math>'''
  
Niech <math>c = a n y + b m x</math>. Modulo <math>m</math> dostajemy
+
Z założenia <math>b \equiv a \!\! \pmod{p}</math>
  
::<math>c \equiv a n y \pmod{m}</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2}</math>
  
::<math>c \equiv a (1 - m x) \pmod{m}</math>
+
Z&nbsp;twierdzenia C57 wiemy, że reszty <math>r_1, r_2, \ldots, r_p</math> z&nbsp;dzielenia <math>p</math> kolejnych liczb postaci
  
::<math>c \equiv a \pmod{m}</math>
+
::<math>x_k = a + k</math>
  
Natomiast modulo <math>n</math> mamy
+
przez liczbę <math>p</math> są wszystkie różne i&nbsp;tworzą zbiór <math>S = \{ 0, 1, \ldots, p - 1 \}</math>. Czyli wśród reszt <math>r_1, r_2, \ldots, r_p</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math>, tyle samo liczb niekwadratowych modulo <math>p</math>, a&nbsp;jedna z&nbsp;tych reszt jest podzielna przez <math>p</math>. Z&nbsp;własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p. 2). Zatem możemy napisać
  
::<math>c \equiv b m x \pmod{n}</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2}
 +
= \sum_{k = 0}^{p - 1} \left( {\small\frac{r_k}{p}} \right)_{\small{\!\! L}}^{\! 2}
 +
= p - 1</math>
  
::<math>c \equiv b (1 - n y) \pmod{n}</math>
+
Co należało pokazać.
 +
 
 +
'''2. Przypadek, gdy <math>\boldsymbol{p \nmid (a - b)}</math>'''
 +
 
 +
Kładąc <math>j = k + a</math> i&nbsp;sumując od <math>a</math> do <math>p - 1 + a</math>, otrzymujemy
 +
 
 +
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{j = a}^{p - 1 + a} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}}</math>
  
::<math>c \equiv b \pmod{n}</math>
+
Wśród <math>p</math> kolejnych liczb <math>a, a + 1, \ldots, p - 1 + a</math> istnieje dokładnie jedna liczba podzielna przez <math>p</math>. Możemy ją pominąć, bo nie wnosi ona wkładu do wyliczanej sumy.
  
Pokazaliśmy tym samym istnienie szukanej liczby <math>c</math>. Przypuśćmy, że istnieją dwie takie liczby <math>c</math> i <math>d</math>. Z&nbsp;założenia <math>m \mid (d - a)</math> i <math>m \mid (c - a)</math>, zatem <math>m</math> dzieli różnicę tych liczb, czyli <math>m \mid (d - c)</math>. Podobnie pokazujemy, że <math>n \mid (d - c)</math>. Ponieważ liczby <math>m</math> i <math>n</math> są względnie pierwsze, to <math>m n \mid (d - c)</math> (zobacz C75), co oznacza, że
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 +
= \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}}</math>
  
::<math>d \equiv c \pmod{m n}</math>.
+
::::::::<math>\;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + (b - a) j j^{- 1}}{p}} \right)_{\small{\!\! L}}</math>
  
Czyli możemy powiedzieć, że wybrana przez nas liczba <math>c</math> jest określona modulo <math>m n</math> i&nbsp;tak rozumiana jest dokładnie jedna. W&nbsp;szczególności istnieje tylko jedna liczba <math>c</math> taka, że <math>1 \leqslant c \leqslant m n</math>.<br/>
+
::::::::<math>\;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::::::::<math>\;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik. Liczby <math>j = k + a</math>, gdzie <math>k = 0, 1, \ldots, p - 1</math>, są wszystkie różne modulo <math>p</math> (zobacz H14). Niech zbiór <math>S</math> będzie zbiorem wszystkich liczb <math>j = k + a</math>, które nie są podzielne przez <math>p</math>. Na mocy twierdzenia H19 zbiory <math>R = \{ 1, \ldots, p - 1 \}</math>, <math>S</math> oraz <math>T = \{ s^{- 1}_1, \ldots, s^{- 1}_{p - 1} \}</math>, gdzie <math>s_k \in S</math>, są równe modulo <math>p</math>. Zatem od sumowania po <math>j</math> możemy przejść do sumowania po <math>r \in R</math>.
 +
 
 +
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{r = 1}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::::::::<math>\;\;\, = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum_{r = 0}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::::::::<math>\;\;\, = - 1</math>
 +
 
 +
Ostatnia z&nbsp;wypisanych sum jest równa zero, co wynika z&nbsp;trzeciego wzoru twierdzenia K1 i&nbsp;faktu, że <math>p \nmid (b - a)</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 80: Linia 124:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J3 (chińskie twierdzenie o&nbsp;resztach)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K4</span><br/>
Niech <math>a, b, c, u \in \mathbb{Z}</math> i <math>m, n \in \mathbb{Z}_+</math> oraz niech <math>\gcd (m, n) = 1</math>. Istnieje dokładnie jedna liczba <math>c</math> (określona modulo <math>m n</math>) taka, że kongruencja
+
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>n \in \mathbb{Z}</math>, to
  
::<math>u \equiv c \pmod{m n}</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} =
 +
\begin{cases}
 +
\;\;\:\,      - 1 & \text{gdy } \, p \nmid n \\
 +
    p - 1 & \text{gdy } \, p \mid n \\
 +
\end{cases}</math>
  
jest równoważna układowi kongruencji
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
::<math>\begin{align}
+
'''Przypadek, gdy <math>\boldsymbol{p \mid n}</math>
u & \equiv a \pmod{m} \\
+
 
u & \equiv b \pmod{n}
+
Z drugiego wzoru twierdzenia K1 otrzymujemy
\end{align}</math>
+
 
 +
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1</math>
 +
 
 +
'''Przypadek, gdy <math>\boldsymbol{p \nmid n}</math>
 +
 
 +
Jeżeli liczby <math>a, b</math> są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo <math>p</math>, to istnieje taka liczba <math>r</math>, że
 +
 
 +
::<math>a \equiv b r^2 \!\! \pmod{p}</math>
 +
 
 +
(zobacz J34). Zatem
 +
 
 +
::<math>S(a) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + a}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
:::<math>\;\;\; = \sum^{p - 1}_{k = 0} \left( {\small\frac{k^2 + b r^2}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
:::<math>\;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^2 \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
:::<math>\;\;\; = \left( {\small\frac{r^2}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
:::<math>\;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
Z twierdzenia C57 wiemy, że gdy <math>k</math> przebiega zbiór <math>T = \{ 0, 1, \ldots, p - 1 \}</math>, to <math>k r^{- 1}</math> przebiega zbiór <math>T'</math> identyczny ze zbiorem <math>T</math> modulo <math>p</math>. Zatem
 +
 
 +
::<math>S(a) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + b}{p}} \right)_{\small{\!\! L}} = S (b)</math>
 +
 
 +
 
 +
Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo <math>p</math> wyrażenie <math>S(n)</math> ma taką samą wartość i&nbsp;jeśli wybierzemy liczby <math>a, b</math> tak, aby jedna była liczbą kwadratową, a&nbsp;druga liczbą niekwadratową modulo <math>p</math>, to możemy napisać
 +
 
 +
::<math>\sum_{n = 1}^{p - 1} S (n) = {\small\frac{p - 1}{2}} (S (a) + S (b))</math>
 +
 
 +
 
 +
Z drugiej strony
 +
 
 +
::<math>\sum_{n = 1}^{p - 1} S (n) = \sum_{n = 1}^{p - 1} \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::::<math>\;\;\;\: = \sum_{k = 0}^{p - 1} \sum_{n = 1}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::::<math>\;\;\;\: = \sum_{k = 0}^{p - 1} \left[ - \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{n = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} \right]</math>
Z&nbsp;twierdzenia J2 wiemy, że istnieje dokładnie jedna liczba <math>c</math> (określona modulo <math>m n</math>) taka, że prawdziwy jest układ kongruencji
 
  
::<math>\begin{align}
+
::::<math>\;\;\;\: = - \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2}</math>
c & \equiv a \pmod{m} \\
 
c & \equiv b \pmod{n}
 
\end{align}</math>
 
  
Korzystając z&nbsp;tego rezultatu i&nbsp;twierdzenia J1, otrzymujemy
+
::::<math>\;\;\;\: = - (p - 1)</math>
  
::<math>u \equiv c \pmod{m n} \qquad \Longleftrightarrow \qquad
+
bo z&nbsp;twierdzenia K1 wiemy, że
\begin{array}{l}
 
  u \equiv c \; \pmod{m} \\
 
  u \equiv c \; \pmod{n} \\
 
\end{array} \qquad \Longleftrightarrow \qquad
 
\begin{array}{l}
 
  u \equiv a \; \pmod{m} \\
 
  u \equiv b \:\, \pmod{n} \\
 
\end{array} </math>
 
  
Co należało pokazać.<br/>
+
::<math>\sum_{n = 0}^{p - 1} \left( {\small\frac{n + k^2}{p}} \right)_{\small{\!\! L}} = 0</math>
&#9633;
 
{{\Spoiler}}
 
  
  
 +
Łącząc uzyskane rezultaty, dostajemy
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J4</span><br/>
+
::<math>- (p - 1) = {\small\frac{p - 1}{2}} (S (a) + S (b))</math>
Chińskie twierdzenie o&nbsp;resztach<ref name="CRT1"/> (CRT<ref name="CRT2"/>) pozostaje prawdziwe w&nbsp;przypadku układu skończonej liczby kongruencji. Założenie, że moduły <math>m</math> i <math>n</math> są względnie pierwsze, jest istotne. Przykładowo układ kongruencji
 
  
::<math>\begin{align}
+
Zatem
u &\equiv 1 \pmod{4} \\
 
u &\equiv 3 \pmod{8}
 
\end{align}</math>
 
  
nie może być zapisany w&nbsp;postaci jednej równoważnej kongruencji, bo nie istnieją liczby, które spełniałyby powyższy układ jednocześnie. Łatwo zauważamy, że rozwiązaniem pierwszego równania jest <math>u = 4 k + 1</math>, które dla liczb <math>k</math> parzystych i&nbsp;nieparzystych ma postać
+
::<math>S(a) + S (b) = - 2</math>
  
::<math>u = 8 j + 1, \qquad u = 8 j + 5</math>
 
  
i nie może być <math>u \equiv 3 \!\! \pmod{8}</math>.
+
Z twierdzenia K3 mamy
  
 +
::<math>S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 - 1}{p}} \right)_{\small{\!\! L}}
 +
= \sum^{p - 1}_{k = 0} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
= - 1</math>
  
 +
bo <math>p \nmid 2</math>. Dla ustalenia uwagi przyjmijmy, że <math>a</math> jest liczbą kwadratową, a <math>b</math> jest liczbą niekwadratową modulo <math>p</math>. Jeżeli <math>- 1</math> jest liczbą kwadratową modulo <math>p</math>, to <math>S(a) = - 1</math> i&nbsp;natychmiast otrzymujemy, że <math>S(b) = - 1</math>. Jeżeli <math>- 1</math> jest liczbą niekwadratową modulo <math>p</math>, to <math>S(b) = - 1</math> i&nbsp;natychmiast otrzymujemy, że <math>S(a) = - 1</math>. Zatem bez względu na to, czy <math>n</math> jest liczbą kwadratową, czy liczbą niekwadratową modulo <math>p</math>, musi być <math>S(n) = - 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J5</span><br/>
 
Niech <math>u, a_1, \ldots, a_k \in \mathbb{Z}</math> i <math>m_1, \ldots, m_k \in \mathbb{Z}_+</math>. Pokazać, że jeżeli liczby <math>m_1, \ldots, m_k</math> są parami względnie pierwsze (czyli <math>\gcd (m_i, m_j) = 1</math> dla <math>i \neq j</math>), to istnieje dokładnie jedna liczba <math>c</math> (określona modulo <math>m_1 \cdot \ldots \cdot m_k</math>) taka, że układ kongruencji
 
  
::<math>\begin{align}
 
u & \equiv a_1 \pmod{m_1} \\
 
  & \cdots \\
 
u & \equiv a_k \pmod{m_k}
 
\end{align}</math>
 
  
można zapisać w&nbsp;sposób równoważny w&nbsp;postaci kongruencji
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K5</span><br/>
 +
Pokazać, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>r , s \in \mathbb{Z}</math>, to
  
::<math>u \equiv c \;\; \pmod{m_1 \cdot \ldots \cdot m_k}</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} =
 +
\begin{cases}
 +
\;\;\:\,      - 1 & \text{gdy } \, p \nmid (r^2 - 4 s) \\
 +
    p - 1 & \text{gdy } \, p \mid (r^2 - 4 s) \\
 +
\end{cases}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Indukcja matematyczna. Twierdzenie jest prawdziwe dla liczby <math>k = 2</math> (zobacz J3). Zakładając prawdziwość twierdzenia dla liczby naturalnej <math>k \geqslant 2</math>, dla liczby <math>k + 1</math> otrzymujemy układ kongruencji
 
  
::<math>\begin{align}
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}}</math>
u & \equiv c \quad \;\, \pmod{m_1 \cdot \ldots \cdot m_k} \\
+
 
u & \equiv a_{k + 1} \pmod{m_{k + 1}}
+
:::::::<math>\;\;\;\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{4 k^2 + 4 r k + 4 s}{p}} \right)_{\small{\!\! L}}</math>
\end{align}</math>
+
 
 +
:::::::<math>\;\;\;\, = \sum^{p - 1}_{k = 0} \left( {\small\frac{(2 k + r)^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}}</math>
  
gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego. Z&nbsp;twierdzenia J3 wynika, że układ ten można zapisać w&nbsp;sposób równoważny w&nbsp;postaci kongruencji
+
Z twierdzenia C57 wiemy, że gdy <math>k</math> przebiega zbiór <math>T = \{ 0, 1, \ldots, p - 1 \}</math>, to <math>2 k + r</math> przebiega zbiór <math>T'</math> identyczny ze zbiorem <math>T</math> modulo <math>p</math>. Zatem
  
::<math>u \equiv c' \pmod{m_1 \cdot \ldots \cdot m_k m_{k + 1}}</math>
+
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}}</math>
  
gdzie liczba <math>c'</math> jest dokładnie jedna i&nbsp;jest określona modulo <math>m_1 \cdot \ldots \cdot m_k m_{k + 1}</math>. Zatem twierdzenie jest prawdziwe dla <math>k + 1</math>. Co kończy dowód indukcyjny.<br/>
+
Z twierdzenia K4 wynika natychmiast teza dowodzonego twierdzenia.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 165: Linia 234:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład J6</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K6</span><br/>
Dysponujemy pewną ilością kulek. Grupując je po <math>5</math>, zostają nam <math>3</math>, a&nbsp;kiedy próbujemy ustawić je po <math>7</math>, zostają nam <math>4</math>. Jaka najmniejsza ilość kulek spełnia te warunki? Rozważmy układ kongruencji
+
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>n \in \mathbb{Z}</math>, to dla sumy
 +
 
 +
::<math>S(n) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
prawdziwe są następujące wzory
 +
 
 +
::(a) <math>\;\; S(n) = 0 \qquad \qquad \text{gdy } \; p = 4 k + 3</math>
 +
 
 +
::(b) <math>\;\; | S (n) | < 2 \sqrt{p} \qquad \text{gdy } \; p = 4 k + 1</math>
  
::<math>\begin{align}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
n &\equiv 3 \pmod{5} \\
+
 
  n &\equiv 4 \pmod{7}
+
'''Punkt (a)'''
\end{align}</math>
+
 
 +
Zauważmy, że zbiory <math>R = \{ 0, 1, 2, \ldots, p - 1 \}</math> oraz <math>T = \{ - p + 1, - p + 2, \ldots, - p + (p - 1), 0 \}</math> są identyczne modulo <math>p</math>. Z&nbsp;własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p.2). Zatem możemy sumowanie po <math>k \in R</math> zastąpić sumowaniem po <math>j \in T .</math> Otrzymujemy
 +
 
 +
::<math>S(n) = \sum_{j = - p + 1}^{0} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
Kładąc <math>j = - r</math> i&nbsp;sumując po <math>r</math> od <math>0</math> do <math>p - 1</math>, dostajemy
 +
 
 +
::<math>S(n) = \sum_{r = 0}^{p - 1} \left( {\small\frac{- r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{(- r)^2 + n}{p}} \right)_{\small{\!\! L}}
 +
  = \sum_{r = 0}^{p - 1} \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r^2 + n}{p}} \right)_{\small{\!\! L}} 
 +
= \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} S (n)</math>
 +
 
 +
Jeżeli <math>p = 4 k + 3</math>, to <math>S (n) = - S (n)</math>, czyli <math>S(n) = 0</math>.
 +
 
 +
'''Punkt (b)'''
 +
 
 +
Pomysł dowodu zaczerpnęliśmy z materiałów szkoleniowych Międzynarodowej Olimpiady Matematycznej<ref name="Dukic1"/>.
 +
 
 +
Jeżeli liczby <math>a, b</math> są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo <math>p</math>, to istnieje taka liczba <math>r</math>, że
 +
 
 +
::<math>a \equiv b r^2 \!\! \pmod{p}</math>
  
Z chińskiego twierdzenia o&nbsp;resztach wiemy, że powyższy układ możemy zapisać w&nbsp;postaci równoważnej kongruencji modulo <math>35</math>. Jeśli chcemy zaoszczędzić sobie trudu, to wystarczy skorzystać z&nbsp;PARI/GP. Wpisując proste polecenie
+
(zobacz J34). Zatem
  
<span style="font-size: 90%; color:black;">chinese( Mod(3,5), Mod(4,7) )</span>
+
::<math>S(a) = S (b r^2) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + b r^2)}{p}} \right)_{\small{\!\! L}}</math>
  
uzyskujemy wynik <code>Mod(18, 35)</code>, zatem równoważna kongruencja ma postać
+
::::::<math>\;\:\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^3 (k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
  
::<math>n \equiv 18 \pmod{35}</math>
+
::::::<math>\;\:\, = \left( {\small\frac{r^3}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
  
Jest to zarazem odpowiedź na postawione pytanie: najmniejsza liczba kulek wynosi <math>18</math>.
+
::::::<math>\;\:\, = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
  
Gdybyśmy chcieli rozważać bardziej rozbudowany układ kongruencji, przykładowo
+
Z twierdzenia C57 wiemy, że gdy <math>k</math> przebiega zbiór <math>T = \{ 0, 1, \ldots, p - 1 \}</math>, to <math>k r^{- 1}</math> przebiega zbiór <math>T'</math> identyczny ze zbiorem <math>T</math> modulo <math>p</math>. Zatem
  
::<math>\begin{align}
+
::<math>S(a) = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{x = 0}^{p - 1} \left( {\small\frac{x (x^2 + b)}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} S (b)</math>
n &\equiv 1 \pmod{2} \\
 
n &\equiv 2 \pmod{3} \\
 
n &\equiv 3 \pmod{5} \\
 
n &\equiv 4 \pmod{7} \\
 
n &\equiv 5 \pmod{11}
 
\end{align}</math>
 
  
to argumenty należy zapisać w&nbsp;postaci wektora
+
Czyli <math>S (a)^2 = S (b)^2</math>. Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo <math>p</math> wyrażenie <math>S (n)^2</math> ma taką samą wartość i&nbsp;jeśli wybierzemy liczby <math>a, b</math> tak, aby jedna była liczbą kwadratową, a&nbsp;druga liczbą niekwadratową modulo <math>p</math>, to prawdziwa jest równość
  
<span style="font-size: 90%; color:black;">chinese( [Mod(1,2), Mod(2,3), Mod(3,5), Mod(4,7), Mod(5,11)] )</span>
+
::<math>\sum_{n = 1}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2)</math>
  
Otrzymujemy <code>Mod(1523, 2310)</code>.
+
Jak łatwo zauważyć <math>S(0) = 0</math>, zatem możemy napisać
  
 +
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2)</math>
  
 +
Z drugiej strony
  
 +
::<math>S (n)^2 = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
  
 +
:::<math>\quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
  
== Wielomiany ==
+
:::<math>\quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J7</span><br/>
+
Zatem
Niech <math>W_n (x)</math> będzie dowolnym wielomianem stopnia <math>n</math>. Wielomian <math>W_n (x)</math> można przedstawić w&nbsp;postaci
 
  
::<math>W_n (x) = W_n (s) + (x - s) V_{n - 1} (x)</math>
+
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = \sum_{n = 0}^{p - 1} \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
  
gdzie <math>V_{n - 1} (x)</math> jest wielomianem stopnia <math>n - 1</math>, a&nbsp;współczynniki wiodące wielomianów <math>W_n (x)</math> i <math>V_{n - 1} (x)</math> są sobie równe.
+
:::::<math>\;\! = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z założenia <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math>, gdzie <math>a_n \neq 0</math>. Zauważmy, że
 
  
::<math>W_n (x) - W_n (s) = \sum_{k = 0}^{n} a_k x^k - \sum_{k = 0}^{n} a_k s^k</math>
+
Z twierdzenia K3 wiemy, że
  
::::::<math>\quad \; = \sum_{k = 1}^{n} a_k (x^k - s^k)</math>
+
::<math>\sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}} =
 +
\begin{cases}
 +
\;\;\:\,      - 1 & \text{gdy } \, p \nmid (k^2 - j^2) \\
 +
    p - 1 & \text{gdy } \, p \mid (k^2 - j^2) \\
 +
\end{cases}</math>
  
Dla <math>k \geqslant 1</math> prawdziwy jest wzór
 
  
::<math>x^k - s^k = (x - s) \sum_{j = 1}^{k} x^{k - j} s^{j - 1}</math>
+
Zbadajmy, kiedy <math>p \mid (k^2 - j^2)</math>, czyli kiedy <math>p \mid [(k - j) (k + j)]</math>. Mamy
  
::::<math>\;\,\, = (x - s) (x^{k - 1} + s x^{k - 2} + \ldots + s^{k - 2} x + s^{k - 1})</math>
+
::* <math>\; 0 \leqslant | k - j | \leqslant p - 2</math>
  
::::<math>\;\,\, = (x - s) U^{(k)} (x)</math>
+
::* <math>\; 2 \leqslant k + j \leqslant 2 p - 2</math>
  
Gdzie przez <math>U^{(k)} (x) = \sum_{j = 1}^{k} x^{k - j} s^{j - 1}</math> oznaczyliśmy wielomian, którego stopień jest równy <math>k - 1</math>. Zatem możemy napisać
+
Zatem <math>p \mid [(k - j) (k + j)]</math> gdy
  
::<math>W_n (x) - W_n (s) = (x - s) \sum_{k = 1}^{n} a_k U^{(k)} (x)</math>
+
::* <math>\; j = k</math>
  
Suma wypisana po prawej stronie jest pewnym wielomianem <math>V_{n - 1} (x)</math>. Ponieważ ze wszystkich wielomianów <math>a_k U^{(k)} (x)</math>, wielomian <math>a_n U^{(n)} (x)</math> ma największy stopień równy <math>n - 1</math>, to stopień wielomianu <math>V_{n - 1} (x)</math> jest równy <math>n - 1</math>. Czyli
+
::* <math>\; j = p - k</math>
  
::<math>W_n (x) - W_n (s) = (x - s) V_{n - 1} (x)</math>
 
  
Niech <math>V_{n - 1} (x) = \sum_{k = 0}^{n - 1} b_k x^k</math>. Mamy
+
Pozwala to zapisać rozpatrywaną sumę w&nbsp;postaci
  
::<math>\sum_{k = 0}^{n} a_k x^k - W_n (s) = \sum_{k = 0}^{n - 1} b_k x^{k + 1} - s \sum_{k = 0}^{n - 1} b_k x^k</math>
+
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \cdot
 +
\left\{ \begin{array}{rll}
 +
  - 1  & \text{gdy } \; j \neq k \;\;\;\; \text{ i } \;\;\;\; j \neq p - k \\
 +
  p - 1 & \text{gdy } \; j = k \;\; \text{ lub } \;\; j = p - k \\
 +
\end{array} \right\}</math>
  
Porównując wyrazy o&nbsp;największym stopniu, łatwo zauważamy, że <math>a_n = b_{n - 1}</math>. Czyli współczynnik wiodący wielomianu <math>V_{n - 1} (x)</math> jest równy <math>a_n</math>. Co należało pokazać.<br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
&#9633;
+
:::::<math>\:\! = (p - 1) \underset{j = k \; \text{ lub } \; j = p - k}{\sum^{p - 1}_{k = 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} - \underset{j \neq k \; \text{ i } \; j \neq p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}}</math>
{{\Spoiler}}
+
</div>
  
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::::<math>\:\! = (p - 1) \left[ \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} + \underset{j = k \; \text{ lub } \; j = p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}}</math>
 +
</div>
  
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::::<math>\:\! = (p - 1) \left[ (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}}</math>
 +
</div>
  
<span style="font-size: 110%; font-weight: bold;">Definicja J8</span><br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
Wielomian <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math>, gdzie <math>a_0, \ldots, a_n \in \mathbb{Z}</math> oraz <math>a_n \neq 0</math>, będziemy nazywali wielomianem całkowitym stopnia <math>n</math>.
+
:::::<math>\:\! = (p - 1) \left[ (p - 1) + \left( {\small\frac{-1}{p}} \right)_{\small{\!\! L}} \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} \right] + (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}}</math>
 +
</div>
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::::<math>\:\! = (p - 1) \cdot 2 (p - 1) + (p - 1) + (p - 1)</math>
 +
</div>
  
 +
:::::<math>\:\! = 2 p (p - 1)</math>
  
 +
Zauważmy, że <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} = 1</math>, bo <math>p = 4 k + 1</math>.
  
<span style="font-size: 110%; font-weight: bold;">Definicja J9</span><br/>
 
Powiemy, że wielomian całkowity <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> jest stopnia <math>n</math> modulo <math>p</math>, gdzie <math>p</math> jest liczbą pierwszą, jeżeli <math>p \nmid a_n</math>. Jeżeli każdy współczynnik <math>a_k</math>, gdzie <math>k = 0, 1, \ldots, n</math>, jest podzielny przez <math>p</math>, to stopień wielomianu <math>W_n (x)</math> modulo <math>p</math> jest nieokreślony.
 
  
 +
Ponieważ wcześniej pokazaliśmy, że
  
 +
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2)</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J10</span><br/>
+
to otrzymujemy
Niech <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> będzie wielomianem całkowitym i <math>m \in \mathbb{Z}_+</math>. Jeżeli prawdziwa jest kongruencja <math>x \equiv y \!\! \pmod{m}</math>, to
 
  
::<math>W_n (x) \equiv W_n (y) \pmod{m}</math>
+
::<math>{\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) = 2 p (p - 1)</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Czyli
Dla <math>k \geqslant 1</math> wyrażenie <math>x^k - y^k</math> jest podzielne przez <math>x - y</math>, co łatwo pokazać stosując indukcję matematyczną lub zauważając, że
 
  
::<math>x^k - y^k = (x - y) \sum_{j = 1}^{k} x^{k - j} y^{j - 1}</math>
+
::<math>S (a)^2 + S (b)^2 = 4 p</math>
  
Z założenia <math>m \mid (x - y)</math>, zatem dla <math>k \geqslant 1</math> mamy <math>m \mid (x^k - y^k)</math>. Wynika stąd, że prawdziwe są kongruencje
+
Wynika stąd, że bez względu na to, czy <math>n</math> jest liczbą kwadratową, czy liczbą niekwadratową modulo <math>p</math>, prawdziwe jest oszacowanie
  
::<math>\begin{align}
+
::<math>| S (n) | \leqslant 2 \sqrt{p}</math>
  a_0 & \equiv a_0 \;\;\:\, \pmod{m}\\
 
  a_1 x & \equiv a_1 y \;\, \pmod{m}\\
 
  a_2 x^2 & \equiv a_2 y^2 \pmod{m}\\
 
  & \cdots \\
 
  a_n x^n & \equiv a_n y^n \pmod{m}
 
\end{align}</math>
 
  
Dodając wypisane kongruencje stronami, otrzymujemy
+
Równość <math>S (n)^2 = 4 p</math> nie jest możliwa, bo dzielnik pierwszy <math>p</math> występuje po prawej stronie w&nbsp;potędze nieparzystej. Zatem mamy nieco silniejsze oszacowanie
  
::<math>W_n (x) \equiv W_n (y) \pmod{m}</math>
+
::<math>| S (n) | < 2 \sqrt{p}</math>
  
Co należało pokazać.<br/>
+
Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 285: Linia 387:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J11</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K7</span><br/>
Niech <math>W(x)</math> będzie wielomianem całkowitym. Rozważmy kongruencję
+
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>a, b \in \mathbb{Z}</math>, to dla sumy
 +
 
 +
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math>
  
::<math>W(x) \equiv 0 \pmod{m n} \qquad \qquad \qquad (1)</math>
+
prawdziwe są następujące wzory
  
gdzie liczby <math>m</math> i <math>n</math> są względnie pierwsze.
+
:: (a) <math>\;\; S(a, b) = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} \qquad \qquad \, \text{gdy } \; p \mid (4 a^3 + 27 b^2)</math>
  
Kongruencja ta jest równoważna układowi kongruencji
+
:: (b) <math>\;\; | S (a, b) | < 2 \sqrt{p}  \qquad \qquad \;\;\;\; \text{gdy } \; p \nmid (4 a^3 + 27 b^2)</math>
  
::<math>\begin{align}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  W (x) &\equiv 0 \pmod{m}\\
+
Niech <math>p \geqslant 5</math>. W&nbsp;ogólnym przypadku interesująca nas suma ma postać
  W (x) &\equiv 0 \pmod{n}
 
\end{align} \qquad \qquad \qquad \; (2)</math>
 
  
Zatem problem szukania rozwiązań kongruencji <math>(1)</math> możemy sprowadzić do szukania rozwiązań układu kongruencji <math>(2)</math>. W&nbsp;szczególności wynika stąd, że jeżeli któraś z&nbsp;kongruencji <math>(2)</math> nie ma rozwiązania, to kongruencja <math>W(x) \equiv 0 \!\! \pmod{m n}</math> również nie ma rozwiązania.
+
::<math>\sum_{t = 0}^{p - 1} \left( {\small\frac{a t^3 + b t^2 + c t + d}{p}} \right)_{\small{\!\! L}}</math>
  
Załóżmy, że każda z&nbsp;kongruencji <math>(2)</math> ma przynajmniej jedno rozwiązanie i&nbsp;niech
+
gdzie <math>p \nmid a</math>. Mnożąc licznik przez <math>a^2</math> nie zmieniamy wartości sumy
  
:* <math>x \equiv a \!\! \pmod{m}</math> będzie pierwiastkiem kongruencji <math>W (x) \equiv 0 \!\! \pmod{m}</math>
+
::<math>\sum_{t = 0}^{p - 1} \left( {\small\frac{a^3 t^3 + a^2 b t^2 + a^2 c t + a^2 d}{p}} \right)_{\small{\!\! L}}</math>
:* <math>x \equiv b \!\! \pmod{n}</math> będzie pierwiastkiem kongruencji <math>W (x) \equiv 0 \!\! \pmod{n}</math>
 
  
Pierwiastki te tworzą układ kongruencji
+
Podstawiając <math>x \equiv a t + r \!\! \pmod{p}</math>, dostajemy
  
::<math>\begin{align}
+
::<math>\sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x^2 (b - 3 r) + x [a c - r (2 b - 3 r)] + [a^2 d - a c r + r^2 (b - r)]}{p}} \right)_{\small{\!\! L}}</math>
x &\equiv a \pmod{m} \\
 
x &\equiv b \pmod{n}
 
\end{align} \qquad \qquad \qquad \qquad (3)</math>
 
  
Z chińskiego twierdzenia o&nbsp;resztach wiemy, że układ ten możemy zapisać w&nbsp;postaci równoważnej
+
bo, gdy <math>t</math> przebiega zbiór <math>\{ 0, 1, \ldots, p - 1 \}</math>, to (modulo <math>p</math>) liczby <math>a t + r</math> przebiegają taki sam zbiór (zobacz C57). Ponieważ <math>p \geqslant 5</math>, to liczbę <math>r</math> możemy wybrać tak, aby było
  
::<math>x \equiv c \pmod{m n}</math>
+
::<math>3 r \equiv b \!\! \pmod{p}</math>
  
Zauważmy, że liczba <math>c</math> określona modulo <math>m n</math> jest rozwiązaniem kongruencji <math>(1)</math>. Istotnie z&nbsp;twierdzenia J10 mamy
+
Ostatecznie otrzymujemy
  
::<math>\begin{align}
+
::<math>\sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x (a c - 3 r^2) + (a^2 d - a c r + 2 r^3)}{p}} \right)_{\small{\!\! L}}</math>
  W (c) &\equiv W (a) \equiv 0 \pmod{m} \\
 
  W (c) &\equiv W (b) \equiv 0 \pmod{n}
 
\end{align}</math>
 
  
ale liczby <math>m, n</math> są względnie pierwsze, zatem otrzymujemy, że
 
  
::<math>W (c) \equiv 0 \pmod{m n}</math>
+
Widzimy, że bez zmniejszania ogólności, możemy ograniczyć się do badania sumy postaci
  
Wynika stąd, że każdemu układowi rozwiązań <math>(3)</math> odpowiada dokładnie jedno rozwiązanie kongruencji <math>(1)</math>.
+
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math>
  
Podsumujmy: jeżeli kongruencje
+
Liczbę <math>- \left( 4 a^3 + 27 b^2 \right)</math> nazywamy wyróżnikiem wielomianu <math>x^3 + a x + b</math>.
  
::<math>\begin{align}
+
Pokażemy, że w&nbsp;przypadku, gdy <math>4 a^3 + 27 b^2 \equiv 0 \!\! \pmod{p}</math> i <math>p \geqslant 3</math> prawdziwy jest wzór
  W (x) &\equiv 0 \pmod{m}\\
 
  W (x) &\equiv 0 \pmod{n}
 
\end{align}</math>
 
  
mają odpowiednio <math>r</math> i <math>s</math> pierwiastków, to liczba różnych układów kongruencji <math>(3)</math> jest równa iloczynowi <math>r s</math> i&nbsp;istnieje <math>r s</math> różnych rozwiązań kongruencji
+
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}}</math>
  
::<math>W(x) \equiv 0 \pmod{m n}</math>
 
  
 +
W przypadku, gdy <math>p = 3</math> z&nbsp;warunku <math>4 a^3 + 27 b^2 \equiv 0 \pmod{3}</math> wynika, że <math>3 \mid a</math>. Zakładając, że reszta z&nbsp;dzielenia liczby <math>b</math> przez <math>3</math> wynosi <math>r</math>, otrzymujemy
  
 +
::<math>S(a, b) = \sum_{x = 0}^{2} \left( {\small\frac{x^3 + b}{3}} \right)_{\small{\!\! L}}
 +
= \left( {\small\frac{b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1 + b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{8 + b}{3}} \right)_{\small{\!\! L}}
 +
= \left( {\small\frac{r}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 2}{3}} \right)_{\small{\!\! L}}
 +
= \left( {\small\frac{0}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{2}{3}} \right)_{\small{\!\! L}}
 +
= 0</math>
  
  
 +
Jeżeli <math>p \geqslant 5</math> i <math>p \mid a</math>, to <math>p \mid b</math> i&nbsp;łatwo znajdujemy, że
  
== Twierdzenie Lagrange'a ==
+
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3}{p}} \right)_{\small{\!\! L}}
 +
= 0</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J12</span><br/>
 
Kongruencja
 
  
::<math>a_1 x + a_0 \equiv 0 \pmod{p}</math>
+
Jeżeli <math>p \geqslant 5</math> i <math>p \nmid a</math>, to
  
gdzie <math>p \nmid a_1</math>, ma dokładnie jedno rozwiązanie modulo <math>p</math>.
+
::<math>x^3 + a x + b \equiv (x - x_1) (x - x_2)^2 \!\! \pmod{p}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
gdzie
  
'''A. Istnienie rozwiązania'''
+
::<math>x_1 \equiv 3 b a^{- 1} \!\! \pmod{p}</math>
  
Ponieważ rozpatrywaną kongruencję możemy zapisać w&nbsp;postaci <math>a_1 x + a_0 = k p</math>, to istnienie liczb <math>x</math> i <math>k</math>, dla których ta równość jest prawdziwa, wynika z&nbsp;twierdzenia C76. Poniżej przedstawimy jeszcze jeden sposób znalezienia rozwiązania.
+
::<math>x_2 \equiv - 3 b 2^{- 1} a^{- 1} \!\! \pmod{p}</math>
  
Ponieważ <math>\gcd (a_1, p) = 1</math>, to istnieją takie liczby <math>r, s</math>, że <math>a_1 r + p s = 1</math> (zobacz C73 - lemat Bézouta). Zauważmy, że <math>p \nmid r</math>, bo gdyby tak było, to liczba pierwsza <math>p</math> dzieliłaby wyrażenie <math>a_1 r + p s</math>, ale jest to niemożliwe, bo <math>a_1 r + p s = 1</math>. Czyli modulo <math>p</math> mamy
+
Co Czytelnik może łatwo sprawdzić, pamiętając o&nbsp;tym, że <math>27 b^2 \cdot 2^{- 2} a^{- 3} \equiv - 1 \!\! \pmod{p}</math>. Mamy
  
::<math>a_1 r \equiv 1 \pmod{p}</math>
+
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x - x_2}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{x - x_1}{p}} \right)_{\small{\!\! L}}</math>
  
Mnożąc rozpatrywaną kongruencję przez <math>r</math>, otrzymujemy
+
Niech <math>t = x - x_2</math>. Jeżeli <math>x</math> przebiega zbiór <math>\{ 0, 1, \ldots, p - 1 \}</math>, to (modulo <math>p</math>) <math>t</math> przebiega taki sam zbiór (zobacz C57). Zatem
  
::<math>a_1 r x + a_0 r \equiv 0 \pmod{p}</math>
+
::<math>S(a, b) = \sum_{t = 0}^{p - 1} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{t = 1}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} + \sum_{t = 0}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}}</math>
  
Zatem
+
Uwzględniając, że
  
::<math>x \equiv - a_0 r \pmod{p}</math>
+
::<math>x_2 - x_1 \equiv - 3 b 2^{- 1} a^{- 1} - 3 b a^{- 1} \equiv - 3 b 2^{- 1} a^{- 1} - 6 b 2^{- 1} a^{- 1} \equiv - 9 b 2^{- 1} a^{- 1} \!\! \pmod{p}</math>
  
'''B. Brak innych rozwiązań'''
+
otrzymujemy
  
Przypuśćmy, że istnieją dwa różne rozwiązania kongruencji
+
::<math>S(a, b) = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{- 9 b 2^{- 1} a^{- 1}}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{- 2 a b}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{- 8 a^3 b}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{- 2 b \cdot (- 27 b^2)}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}}</math>
  
::<math>a_1 x + a_0 \equiv 0 \pmod{p}</math>
 
  
Jeśli oznaczymy je przez <math>x_1</math> i <math>x_2</math>, to otrzymamy
+
W przypadku, gdy <math>4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p}</math>, pokażemy, że wartość sumy
  
::<math>a_1 x_1 + a_0 \equiv 0 \equiv a_1 x_2 + a_0 \pmod{p}</math>
+
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math>
  
Czyli
+
jest ściśle związana z&nbsp;ilością rozwiązań kongruencji
  
::<math>a_1 x_1 \equiv a_1 x_2 \pmod{p}</math>
+
::<math>y^2 \equiv x^3 + a x + b \!\! \pmod{p}</math>
  
::<math>p \mid a_1 (x_1 - x_2)</math>
 
  
Ponieważ <math>p \nmid a_1</math>, to z&nbsp;lematu Euklidesa (C74) otrzymujemy natychmiast <math>p \mid (x_1 - x_2)</math>. Skąd wynika, że <math>x_1 \equiv x_2 \!\! \pmod{p}</math>, wbrew założeniu, że <math>x_1</math> i <math>x_2</math> są dwoma różnymi rozwiązaniami. Co kończy dowód.<br/>
+
Niech <math>N_p</math> oznacza ilość rozwiązań powyższej kongruencji i&nbsp;niech <math>N_+, N_0, N_-</math> oznaczają ilości liczb <math>k \in \{ 0, 1, \ldots, p - 1 \}</math>, dla których symbol Legendre'a <math>\left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math> jest równy odpowiednio <math>+ 1, 0, - 1</math>. Oczywiście
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>N_+ + N_0 + N_- = p</math>
  
 +
::<math>S(a, b) = N_+ - N_-</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J13 (Joseph Louis Lagrange, 1768)</span><br/>
+
Zauważmy, że jeżeli dla pewnego <math>x</math> jest <math>p \mid (x^3 + a x + b)</math>, to <math>\left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = 0</math> i&nbsp;mamy dokładnie jedno rozwiązanie rozważanej kongruencji
Jeżeli wielomian <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> ma stopień <math>n</math> modulo <math>p</math>, gdzie <math>n \geqslant 1</math>, to kongruencja
 
  
::<math>W_n (x) \equiv 0 \pmod{p}</math>
+
::<math>0^2 \equiv x^3 + a x + b \!\! \pmod{p}</math>
  
ma co najwyżej <math>n</math> rozwiązań.
+
Jeżeli dla pewnego <math>x</math> jest <math>\left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = + 1</math>, to <math>p \nmid (x^3 + a x + b)</math>, a&nbsp;liczba <math>x^3 + a x + b</math> jest liczbą kwadratową modulo <math>p</math>, czyli istnieje taka liczba <math>y \in \mathbb{Z}</math>, że
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>y^2 \equiv x^3 + a x + b \!\! \pmod{p}</math>
Indukcja matematyczna. Z&nbsp;J12 wiemy, że dowodzone twierdzenie jest prawdziwe dla <math>n = 1</math>. Załóżmy, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od <math>n - 1</math>. Niech wielomian <math>W_n (x)</math> ma stopień <math>n</math> modulo <math>p</math>. Jeżeli kongruencja
 
  
::<math>W_n (x) \equiv 0 \pmod{p}</math>
+
i mamy dwa rozwiązania rozpatrywanej kongruencji: jedno stanowi para <math>(x, y)</math>, a&nbsp;drugie para <math>(x, - y)</math>. Zatem
  
nie ma żadnego rozwiązania, to dowodzone twierdzenie jest prawdziwe dla <math>n</math>. Przypuśćmy teraz, że wypisana wyżej kongruencja ma przynajmniej jeden pierwiastek <math>x \equiv s \!\! \pmod{p}</math>. Korzystając z&nbsp;twierdzenia J7, możemy napisać
+
::<math>N_p = 2 N_+ + N_0</math>
  
::<math>W_n (x) - W_n (s) = (x - s) V_{n - 1} (x)</math>
+
Łatwo zauważamy, że
  
gdzie wielomian <math>V_{n - 1} (x)</math> ma stopień <math>n - 1</math> modulo <math>p</math>, bo wielomiany <math>W_n (x)</math> oraz <math>V_{n - 1} (x)</math> mają jednakowe współczynniki wiodące.
+
::<math>N_p - p = (2 N_+ + N_0) - (N_+ + N_0 + N_-) = N_+ - N_- = S (a, b)</math>
  
  
Z założenia <math>x \equiv s \!\! \pmod{p}</math> jest jednym z&nbsp;pierwiastków kongruencji <math>W_n (x) \equiv 0 \!\! \pmod{p}</math>, zatem modulo <math>p</math> otrzymujemy
+
W 1936 roku Helmut Hasse<ref name="Hasse1"/><ref name="Hasse2"/> udowodnił, że
  
::<math>W_n (x) \equiv (x - s) V_{n - 1} (x) \pmod{p}</math>
+
::<math>| N_p - p | < 2 \sqrt{p}</math>
  
Ponieważ <math>p</math> jest liczbą pierwszą, to z&nbsp;rozpatrywanej kongruencji
+
Elementarny dowód tego twierdzenia podał Jurij Manin<ref name="Manin1"/>.
  
::<math>W_n (x) \equiv 0 \pmod{p}</math>
 
  
wynika, że musi być (zobacz C74)
+
Wynika stąd, że w&nbsp;przypadku, gdy <math>4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p}</math> prawdziwe jest oszacowanie
  
::<math>x \equiv s \pmod{p} \qquad \qquad \text{lub} \qquad \qquad V_{n - 1} (x) \equiv 0 \pmod{p}</math>
+
::<math>| S (a, b) | = \left| \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} \right| < 2 \sqrt{p}</math>
  
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Z założenia indukcyjnego kongruencja
 
  
::<math>V_{n - 1} (x) \pmod{p}</math>
 
  
ma co najwyżej <math>n - 1</math> rozwiązań, zatem kongruencja
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K8</span><br/>
 +
Pokazać, że jeżeli <math>p \geqslant 7</math> jest liczbą pierwszą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieją:
  
::<math>W_n (x) \equiv 0 \pmod{p}</math>
+
:* dwie kolejne liczby będące liczbami kwadratowymi modulo <math>p</math>
 +
:* dwie kolejne liczby będące liczbami niekwadratowymi modulo <math>p</math>
  
ma nie więcej niż <math>n</math> rozwiązań. Co należało pokazać.<br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
&#9633;
+
Dla <math>p = 7</math> łatwo sprawdzamy, że twierdzenie jest prawdziwe.
{{\Spoiler}}
 
  
 +
'''Punkt 1.'''
  
 +
Zauważmy, że przynajmniej jedna z&nbsp;liczb <math>2, 5, 10</math> jest liczbą kwadratową. Zakładając, że tak nie jest, otrzymujemy natychmiast sprzeczność
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J14</span><br/>
+
::<math> -1 = \left( {\small\frac{10}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{5}{p}} \right)_{\small{\!\! L}} = (- 1) \cdot (- 1) = 1</math>
Jeżeli kongruencja
 
  
::<math>a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \equiv 0 \pmod{p}</math>
+
W zależności od tego, która z&nbsp;liczb <math>2, 5, 10</math> jest liczbą kwadratową, mamy następujące pary kolejnych liczb kwadratowych
  
ma więcej niż <math>n</math> rozwiązań, to wszystkie współczynniki <math>a_k</math>, gdzie <math>k = 0, \ldots, n</math>, muszą być podzielne przez <math>p</math>.
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
| <math>2</math> || <math>1, 2 \; \text{ oraz } \; 8, 9</math>
 +
|-
 +
| <math>5</math> || <math>4, 5</math>
 +
|-
 +
| <math>10</math> || <math>9, 10</math>
 +
|}
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
'''Punkt 2.'''
Niech <math>S \subset \{ 0, 1, \ldots, n \}</math> będzie zbiorem takim, że dla każdego <math>k \in S</math> jest <math>p \nmid a_k</math>. Przypuśćmy, że <math>S</math> jest zbiorem niepustym. Niech <math>j</math> oznacza największy element zbioru <math>S</math>. Jeżeli <math>j = 0</math>, to wielomian <math>W_n (x) = \sum_{k = 0}^{n} a_k x^k</math> jest stopnia <math>0</math> modulo <math>p</math> i
 
  
::<math>a_0 \not\equiv 0 \pmod{p}</math>
+
Rozważmy wszystkie możliwe wartości <math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}</math> dla <math>k = 1, 2, 3, 4</math> i <math>p \geqslant 11</math>. Zauważmy, że <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! L}}</math>.
  
Konsekwentnie, dla dowolnego <math>x \in \mathbb{Z}</math> jest
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{k}</math> || <math>\,\, \boldsymbol{1} \,\,</math> || <math>\boldsymbol{2}</math> || <math>\boldsymbol{3}</math> || <math>\,\, \boldsymbol{4} \,\,</math> || <math>\,\, \boldsymbol{5} \,\,</math> || <math>\boldsymbol{6}</math> || <math>\boldsymbol{(…)}</math> || <math>\boldsymbol{p-1}</math>
 +
|-
 +
! <math>\boldsymbol{A.}</math>
 +
| <math>1</math> || <math>1</math> || <math>1</math> || <math>1</math> || <math></math> || <math>1</math> || <math></math> || <math></math>
 +
|-
 +
! <math>\boldsymbol{B.}</math>
 +
| <math>1</math> || <math>1</math> || <math>-1</math> || <math>1</math> || <math></math> || <math>-1</math> || <math></math> || <math></math>
 +
|-
 +
! <math>\boldsymbol{C.}</math>
 +
| <math>1</math> || <math>-1</math> || <math>1</math> || <math>1</math> || <math></math> || <math>-1</math> || <math></math> || <math></math>
 +
|-
 +
! <math>\boldsymbol{D.}</math>  
 +
| <math>1</math> || <math>-1</math> || <math>-1</math> || <math>1</math> || <math></math> || <math>1</math> || <math></math> || <math></math>
 +
|}
  
::<math>a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \not\equiv 0 \pmod{p}</math>
+
'''A.''' W&nbsp;tym przypadku liczby <math>2, 3</math> są liczbami kwadratowymi modulo <math>p</math>. Gdyby w&nbsp;pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo <math>p</math>, to musielibyśmy <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych umieścić wśród pozostałych <math>p - 5</math> komórek tak, aby między nimi zawsze była liczba kwadratowa modulo <math>p</math>. Wartość <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}}</math> wymusza, aby liczby niekwadratowe modulo <math>p</math> umieszczać w&nbsp;komórkach „nieparzystych”. Po wypełnieniu tych komórek pozostaną nam dwie liczby, które będziemy zmuszeni umieścić w&nbsp;komórkach „parzystych”. Co oznacza, że muszą pojawić się dwie pary kolejnych liczb niekwadratowych modulo <math>p .</math>
  
bo dla każdego <math>1 \leqslant k \leqslant n</math> mamy <math>a_k \equiv 0 \!\! \pmod{p}</math>. Zatem rozpatrywana kongruencja nie ma ani jednego rozwiązania, czyli rozwiązań nie może być więcej niż <math>n</math>.
+
'''B. i&nbsp;C.''' W&nbsp;tym przypadku dokładnie jedna z&nbsp;liczb <math>2, 3</math> jest liczbą kwadratową modulo <math>p</math>. Gdyby w&nbsp;pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo <math>p</math>, to musielibyśmy <math>{\small\frac{p - 3}{2}}</math> liczb niekwadratowych umieścić wśród pozostałych <math>p - 5</math> komórek tak, aby między nimi zawsze była liczba kwadratowa modulo <math>p</math>. Wartość <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}}</math> wymusza, aby liczby niekwadratowe modulo <math>p</math> umieszczać w&nbsp;komórkach „parzystych”. Po wypełnieniu tych komórek pozostanie nam jedna liczba, którą będziemy zmuszeni umieścić w&nbsp;komórce „nieparzystej”. Co oznacza, że musi pojawić się jedna para kolejnych liczb niekwadratowych modulo <math>p .</math>
  
W przypadku gdy <math>j \neq 0</math>, z&nbsp;twierdzenia Lagrange'a wynika, że rozpatrywana kongruencja ma nie więcej niż <math>j \leqslant n</math> rozwiązań, ponownie wbrew założeniu, że kongruencja ta ma więcej niż <math>n</math> rozwiązań. Uczynione przypuszczenie, że <math>S</math> jest zbiorem niepustym, okazało się fałszywe, zatem zbiór <math>S</math> musi być zbiorem pustym. Co należało pokazać.<br/>
+
'''D.''' W&nbsp;tym przypadku nie musimy niczego dowodzić, bo liczby <math>2, 3</math> są kolejnymi liczbami niekwadratowymi modulo <math>p .</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 464: Linia 588:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład J15</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K9</span><br/>
Z twierdzenia Lagrange'a wynika, że kongruencja
+
Wzmocnimy wynik uzyskany w&nbsp;poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem.
  
::<math>x^p - x - 1 \equiv 0 \pmod{p}</math>
 
  
ma co najwyżej <math>p</math> rozwiązań. W&nbsp;rzeczywistości nie ma ani jednego rozwiązania, bo z&nbsp;twierdzenia Fermata wiemy, że dla dowolnej liczby pierwszej <math>p</math> jest
 
  
::<math>x^p \equiv x \pmod{p}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K10</span><br/>
 +
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to
  
 +
:* istnieje <math>\left\lfloor {\small\frac{p - 3}{4}} \right\rfloor</math> różnych par kolejnych liczb kwadratowych modulo <math>p</math>
 +
:* istnieje <math>\left\lfloor {\small\frac{p - 1}{4}} \right\rfloor</math> różnych par kolejnych liczb niekwadratowych modulo <math>p</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
<span style="font-size: 110%; font-weight: bold;">Przykład J16</span><br/>
+
'''Punkt 1.'''
Zauważmy, że w&nbsp;przypadku, gdy <math>n \geqslant p</math>, możemy zawsze wielomian przekształcić do postaci takiej, że <math>n < p</math>. Niech <math>p = 5</math> i
 
  
::<math>W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1</math>
+
Chcemy znaleźć ilość takich liczb <math>k \in \{ 1, 2, \ldots, p - 2 \}</math>, dla których
  
Ponieważ <math>x^5 \equiv x \!\! \pmod{5}</math>, to
+
::<math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = 1</math>
  
::<math>W(x) \equiv x^3 + 11 x^3 + 5 x + 2 x^2 + x + 1 \equiv 12 x^3 + 2 x^2 + 6 x + 1 \pmod{5}</math>
+
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
  
Co wynika również z&nbsp;faktu, że <math>W(x)</math> można zapisać w&nbsp;postaci
+
::<math>N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
  
::<math>W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1 = (x^5 - x) (x^{10} + 12 x^6 + 12 x^2 + 5) + 12 x^3 + 2 x^2 + 6 x + 1</math>
+
Tylko w&nbsp;przypadku, gdy obie liczby <math>k</math> i <math>k + 1</math> są liczbami kwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>4</math> (stąd czynnik <math>{\small\frac{1}{4}}</math> przed sumą).
  
ale <math>x^5 - x \equiv 0 \!\! \pmod{5}</math> na mocy twierdzenia Fermata.
+
::<math>4 N = \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
  
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\: = p - 2 + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}</math>
 +
</div>
  
 +
Po kolei wyliczamy sumy po prawej stronie
  
 +
<div style="margin-top: 0em; margin-bottom: 1em;">
 +
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{p - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}}</math>
 +
</div>
  
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
= - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum^{p - 1}_{k = 0} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
= - 1</math>
 +
</div>
  
== Twierdzenie Wilsona ==
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
= \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
= - 1</math>
 +
</div>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J17 (John Wilson, 1770)</span><br/>
+
(zobacz K1 i&nbsp;K3). Zatem
Liczba całkowita <math>p \geqslant 2</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy
 
  
::<math>(p - 1) ! \equiv - 1 \pmod{p}</math>
+
::<math>N = {\small\frac{1}{4}} \left[ p - 4 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right]</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Czyli
  
<math>\Large{\Longleftarrow}</math>
+
::<math>N =
 +
\begin{cases}
 +
  {\large\frac{p - 5}{4}} & \text{ gdy } \; p = 4 k + 1 \\
 +
  {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\
 +
\end{cases}</math>
  
Przypuśćmy, że prawdziwa jest kongruencja <math>(p - 1) ! \equiv - 1 \!\! \pmod{p}</math> oraz <math>p</math> jest liczbą złożoną. Zatem liczba <math>p</math> ma dzielnik <math>d</math> taki, że <math>2 \leqslant d \leqslant p - 1</math>. Ponieważ <math>d \mid p</math>, to prawdziwa jest kongruencja
+
Powyższy wynik można zapisać w&nbsp;postaci
  
::<math>(p - 1) ! \equiv - 1 \pmod{d}</math>
+
::<math>N = \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor</math>
  
czyli
+
'''Punkt 2.'''
  
::<math>0 \equiv - 1 \pmod{d}</math>
+
Chcemy znaleźć ilość takich liczb <math>k \in \{ 1, 2, \ldots, p - 2 \}</math>, dla których
  
co jest niemożliwe.
+
::<math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1</math>
  
<math>\Large{\Longrightarrow}</math>
+
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
  
Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>p = 2</math>. Niech teraz <math>p</math> będzie liczbą pierwszą nieparzystą. Rozważmy wielomiany
+
::<math>N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
  
::<math>W(x) = (x - 1) (x - 2) \cdot \ldots \cdot (x - (p - 1))</math>
+
Tylko w&nbsp;przypadku, gdy obie liczby <math>k</math> i <math>k + 1</math> są liczbami niekwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>4</math> (stąd czynnik <math>{\small\frac{1}{4}}</math> przed sumą).
  
oraz
+
::<math>4 N = \sum_{k = 1}^{p - 2} \left[ 1 - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
  
::<math>V(x) = x^{p - 1} - 1</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\: = p - 2 - \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}</math>
 +
</div>
  
Zauważmy, że
+
Wartości sum wyliczyliśmy już w&nbsp;punkcie 1. Zatem
  
:* stopnie tych wielomianów są równe <math>p - 1</math>
+
::<math>N = {\small\frac{1}{4}} \left[ p - 2 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right]</math>
:* współczynniki wiodące są równe <math>1</math>
 
:* wyrazy wolne są równe odpowiednio <math>(p - 1) !</math> oraz <math>- 1</math>
 
:* wielomiany mają <math>p - 1</math> rozwiązań modulo <math>p</math>
 
  
Niech
+
Czyli
  
::<math>U(x) = W (x) - V (x)</math>
+
::<math>N =  
 +
\begin{cases}
 +
  {\large\frac{p - 1}{4}} & \text{ gdy } \; p = 4 k + 1 \\
 +
  {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\
 +
\end{cases}</math>
  
Zauważmy, że
+
Powyższy wynik można zapisać w&nbsp;postaci
  
:* stopień wielomianu <math>U(x)</math> jest równy <math>p - 2 \geqslant 1</math>, ponieważ wyrazy o&nbsp;najwyższym stopniu uległy redukcji
+
::<math>N = \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor</math>
:* wielomian <math>U(x)</math> ma <math>p - 1</math> rozwiązań modulo <math>p</math>, bo dla każdego <math>k \in \{ 1, 2, \ldots, p - 1 \}</math> mamy <math>U(k) = W (k) - V (k) \equiv 0 \!\! \pmod{p}</math>
 
  
Z twierdzenia Lagrange'a wiemy, że wielomian <math>U(x)</math> nie może mieć więcej niż <math>p - 2</math> rozwiązań modulo <math>p</math>. Zatem z&nbsp;twierdzenia J14 wynika natychmiast, że liczba pierwsza <math>p</math> musi dzielić każdy współczynnik <math>a_k</math> wielomianu <math>U(x)</math> i&nbsp;w&nbsp;szczególności musi dzielić wyraz wolny, który jest równy <math>(p - 1) ! + 1</math>. Co należało pokazać.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 547: Linia 695:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J18</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K11</span><br/>
Liczba całkowita nieparzysta <math>p \geqslant 3</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Słowo „trójka” oznacza tutaj trzy kolejne liczby kwadratowe (niekwadratowe) modulo <math>p</math>.
 +
 
 +
Jeżeli <math>p = 4 k + 3</math>, to liczba różnych trójek liczb kwadratowych (niekwadratowych) jest równa
 +
 
 +
::<math>N = \left\lfloor {\small\frac{p - 3}{8}} \right\rfloor</math>
 +
 
 +
Jeżeli <math>p = 4 k + 1</math>, to liczba różnych trójek liczb niekwadratowych jest równa
 +
 
 +
::<math>N = {\small\frac{p - 3 - S (- 1)}{8}} > {\small\frac{p - 3 - 2 \sqrt{p}}{8}}</math>
  
::<math>\left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p}</math>
+
Jeżeli <math>p = 4 k + 1</math>, to liczba różnych trójek liczb kwadratowych jest równa
 +
 
 +
::<math>N = {\small\frac{p - 15 + S (- 1)}{8}} > {\small\frac{p - 15 - 2 \sqrt{p}}{8}} \qquad \quad \text{ gdy } \; p = 8 k + 1</math>
 +
 
 +
::<math>N = {\small\frac{p - 7 + S (- 1)}{8}} > {\small\frac{p - 7 - 2 \sqrt{p}}{8}} \qquad \quad \;\;\; \text{ gdy } \; p = 8 k + 5</math>
 +
 
 +
Gdzie przez <math>S(- 1)</math> oznaczyliśmy sumę
 +
 
 +
::<math>S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia Wilsona wiemy, że liczba całkowita <math>p \geqslant 2</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy
 
  
::<math>(p - 1) ! \equiv - 1 \pmod{p}</math>
+
'''Przypadek pierwszy: trójki liczb kwadratowych modulo''' <math>\boldsymbol{p}</math>
  
W przypadku, gdy liczba <math>p</math> jest liczbą nieparzystą możemy powyższy wzór łatwo przekształcić. Ponieważ czynniki w <math>(p - 1) !</math> są określone modulo <math>p</math>, to odejmując od każdego czynnika większego od <math>{\small\frac{p - 1}{2}}</math> liczbę <math>p</math>, otrzymujemy
+
Chcemy znaleźć ilość takich liczb <math>k \in \{ 2, 3, \ldots, p - 2 \}</math>, dla których
  
::<math>1 \cdot 2 \cdot \ldots \cdot {\small\frac{p - 3}{2}} \cdot {\small\frac{p - 1}{2}} \cdot \left( {\small\frac{p + 1}{2}} - p \right) \left( {\small\frac{p + 3}{2}} - p \right) \cdot \ldots \cdot (- 2) \cdot (- 1) \equiv - 1 \!\! \pmod{p}</math>
+
::<math>\left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = + 1</math>
  
::<math>(- 1)^{\tfrac{p - 1}{2}} \cdot \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv - 1 \!\! \pmod{p}</math>
+
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
  
::<math>\left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p}</math>
+
::<math>N = {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
  
Co należało pokazać.<br/>
+
Tylko w&nbsp;przypadku, gdy wszystkie trzy liczby <math>k - 1, k, k + 1</math> są liczbami kwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>8</math> (stąd czynnik <math>{\small\frac{1}{8}}</math> przed sumą).
&#9633;
+
 
{{\Spoiler}}
+
::<math>8 N = \sum_{k = 2}^{p - 2} \left[ 1
 +
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
\right]</math>
 +
 
 +
:::<math>\: = p - 3 + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
 
 +
Po kolei wyliczamy sumy po prawej stronie
 +
 
 +
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
 
 +
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}}</math>
 +
 
 +
 
 +
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{k = 0} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = S (- 1)</math>
 +
 
 +
 
 +
(zobacz K1, K3 i K6). Oznaczenie <math>S(- 1)</math> nawiązuje do oznaczenia wprowadzonego w&nbsp;twierdzeniu K6. Wykorzystamy też znalezione w&nbsp;tym twierdzeniu oszacowanie <math>| S (- 1) |</math>.
 +
 
 +
Zatem
 +
 
 +
::<math>8 N = p - 8 - 3 \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - 3 \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} + S (- 1)</math>
 +
 
 +
Jeżeli <math>p = 8 k + 1</math>
 +
 
 +
::<math>N = {\small\frac{p - 15 + S (- 1)}{8}} > {\small\frac{p - 15 - 2 \sqrt{p}}{8}}</math>
 +
 
 +
Jeżeli <math>p = 8 k + 3</math>
 +
 
 +
::<math>N = {\small\frac{p - 3}{8}}</math>
 +
 
 +
Jeżeli <math>p = 8 k + 5</math>
 +
 
 +
::<math>N = {\small\frac{p - 7 + S (- 1)}{8}} > {\small\frac{p - 7 - 2 \sqrt{p}}{8}}</math>
 +
 
 +
Jeżeli <math>p = 8 k + 7</math>
 +
 
 +
::<math>N = {\small\frac{p - 7}{8}}</math>
 +
 
 +
 
 +
'''Przypadek drugi: trójki liczb niekwadratowych modulo''' <math>\boldsymbol{p}</math>
 +
 
 +
Chcemy znaleźć ilość takich liczb <math>k \in \{ 2, 3, \ldots, p - 2 \}</math>, dla których
 +
 
 +
::<math>\left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1</math>
  
 +
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
  
 +
::<math>N = - {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ - 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
  
 +
Tylko w&nbsp;przypadku, gdy wszystkie trzy liczby <math>k - 1, k, k + 1</math> są liczbami niekwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>- 8</math> (stąd czynnik <math>- {\small\frac{1}{8}}</math> przed sumą).
  
 +
::<math>8 N = \sum_{k = 2}^{p - 2} \left[ 1
 +
- \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
 +
- \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
- \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
- \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
\right]</math>
  
== Twierdzenie Fermata ==
+
:::<math>\: = p - 3 - \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J19 (Pierre de Fermat, 1640)</span><br/>
+
- \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
Niech <math>a \in \mathbb{Z}</math>. Jeżeli <math>p</math> jest liczbą pierwszą
+
- \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 +
- \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}}</math>
  
:* to liczba <math>a^p - a</math> jest podzielna przez <math>p</math>, czyli <math>a^p \equiv a \!\! \pmod p</math>
 
:* i&nbsp;jeśli dodatkowo <math>p \nmid a</math>, to liczba <math>a^{p - 1} - 1</math> jest podzielna przez <math>p</math>, czyli <math>a^{p - 1} \equiv 1 \!\! \pmod p</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Wartości sum już policzyliśmy, rozpatrując przypadek liczb kwadratowych modulo <math>p</math>. Zatem
'''Punkt 1.'''
 
  
Zauważmy, że<br/>
+
::<math>8 N = p - 4 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} - S (- 1)</math>
a) twierdzenie jest prawdziwe dla <math>a = 0</math><br/>
 
b) w&nbsp;przypadku, gdy <math>p = 2</math> wyrażenie <math>a^p - a = a^2 - a = a (a - 1)</math> jest podzielne przez <math>2</math>, bo jedna z&nbsp;liczb <math>a - 1</math> i <math>a</math> jest liczbą parzystą<br/>
 
c) w&nbsp;przypadku, gdy <math>p</math> jest liczbą pierwszą nieparzystą i&nbsp;twierdzenie jest prawdziwe dla <math>a \geqslant 1</math>, to jest też prawdziwe dla <math>- a</math>, bo
 
::<math>(- a)^p - (- a) = (- 1)^p a^p + a = - a^p + a = - (a^p - a)</math><br/>
 
  
  
Zatem wystarczy pokazać, że dla ustalonej liczby pierwszej nieparzystej <math>p</math> twierdzenie jest prawdziwe dla każdego <math>a \in \mathbb{Z}_+</math>.
+
Jeżeli <math>p = 8 k + 1</math>
  
Indukcja matematyczna. Dla <math>a = 1</math> mamy <math>1^p - 1 = 0</math> zatem liczba pierwsza <math>p</math> jest dzielnikiem rozważanego wyrażenia. Zakładając, że twierdzenie jest prawdziwe dla <math>a</math>, czyli <math>p \mid a^p - a</math>, otrzymujmy dla <math>a + 1</math>
+
::<math>N = {\small\frac{p - 3 - S (- 1)}{8}} > {\small\frac{p - 3 - 2 \sqrt{p}}{8}}</math>
  
::<math>(a + 1)^p - (a + 1) = \sum_{k = 0}^{p} \binom{p}{k} \cdot a^k - a - 1</math>
+
Jeżeli <math>p = 8 k + 3</math>
  
:::::::<math>\;\;\,\, = 1 + \sum_{k = 1}^{p - 1} \binom{p}{k} \cdot a^k + a^p - a - 1</math>
+
::<math>N = {\small\frac{p - 3}{8}}</math>
  
:::::::<math>\;\;\,\, = a^p - a + \sum^{p - 1}_{k = 1} \binom{p}{k} \cdot a^k</math>
+
Jeżeli <math>p = 8 k + 5</math>
  
 +
::<math>N = {\small\frac{p - 3 - S (- 1)}{8}} > {\small\frac{p - 3 - 2 \sqrt{p}}{8}}</math>
  
Z założenia indukcyjnego <math>p \mid a^p - a</math>, zaś <math>\binom{p}{k} = {\small\frac{p!}{k! \cdot (p - k) !}}</math> dla <math>k = 1, 2, \ldots, p - 1</math> jest podzielne przez <math>p</math> (ponieważ <math>p</math> dzieli licznik, ale nie dzieli mianownika). Zatem <math>(a + 1)^p - (a + 1)</math> jest podzielne przez liczbę pierwszą <math>p</math>.
+
Jeżeli <math>p = 8 k + 7</math>
  
'''Punkt 2.'''
+
::<math>N = {\small\frac{p - 7}{8}}</math>
  
Z punktu 1. wiemy, że liczba pierwsza <math>p</math> dzieli <math>a^p - a = a (a^{p - 1} - 1)</math>. Jeżeli <math>p \nmid a</math>, to z&nbsp;lematu Euklidesa (zobacz twierdzenie C74) wynika natychmiast, że <math>p</math> dzieli <math>a^{p - 1} - 1</math>.<br/>
+
Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 611: Linia 849:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J20</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K12</span><br/>
Niech <math>x, y \in \mathbb{Z}</math>. Jeżeli <math>\gcd (x, y) = 1</math> i&nbsp;liczba pierwsza nieparzysta <math>p</math> dzieli <math>x^2 + y^2</math>, to <math>p</math> jest postaci <math>4 k + 1</math>.
+
Korzystając z&nbsp;twierdzenia K11, łatwo można pokazać, że każda liczba pierwsza <math>p \geqslant 19</math> ma co najmniej dwie różne trójki kolejnych liczb kwadratowych modulo <math>p</math> i&nbsp;co najmniej dwie różne trójki kolejnych liczb niekwadratowych modulo <math>p</math>.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
== Najmniejsze liczby niekwadratowe modulo ==
 +
 
 +
&nbsp;<br/>
 +
 
 +
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
 +
| &nbsp;'''A.''' Najmniejsze dodatnie liczby niekwadratowe modulo <math>p</math>&nbsp;
 +
|}
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Przykład K13</span><br/>
 +
W tabeli przedstawiliśmy najmniejsze dodatnie liczby niekwadratowe modulo <math>p</math>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 +
|-
 +
<math>\boldsymbol{\mathbb{n}( p )}</math>  
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 +
|}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga K14</span><br/>
 +
Do wyszukiwania liczb <math>\mathbb{n} = \mathbb{n} (p)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 +
 
 +
<span style="font-size: 90%; color:black;">A(p) =
 +
{
 +
'''if'''( p == 2, '''return'''(0) );
 +
'''if'''( !'''isprime'''(p), '''return'''(0) );
 +
'''forprime'''(q = 2, p, '''if'''( jacobi(q, p) == -1, '''return'''(q) ));
 +
}</span>
 +
 
 +
Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w&nbsp;rzeczywistości symbol Legendre'a, '''bo wiemy''', że liczba <math>p</math> jest liczbą pierwszą (w przypadku, gdy <math>p</math> jest liczbą złożoną, funkcja zwraca zero).
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K15</span><br/>
 +
Niech <math>\mathbb{n} \in \mathbb{Z}_+</math> i&nbsp;niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, to jest liczbą pierwszą.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z założenia
+
Przypuśćmy, że <math>\mathbb{n} = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < \mathbb{n}</math>. Z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, zatem liczby <math>a, b</math> są liczbami kwadratowymi modulo <math>p</math>. Z&nbsp;definicji liczb kwadratowych muszą istnieć takie liczby <math>r, s</math>, że
 +
 
 +
::<math>r^2 \equiv a \pmod{p}</math>
  
::<math>x^2 \equiv - y^2 \!\! \pmod{p}</math>
+
::<math>s^2 \equiv b \pmod{p}</math>
  
Przypuśćmy, że <math>p \mid y</math>. Wtedy z&nbsp;powyższej kongruencji mamy natychmiast, że <math>p \mid x</math>, wbrew założeniu, że <math>\gcd (x, y) = 1</math>. Zatem <math>p \nmid y</math> i&nbsp;z&nbsp;twierdzenia Fermata dostajemy
+
Skąd wynika, że
  
::<math>1 \equiv x^{p - 1} \equiv (x^2)^{\tfrac{p - 1}{2}} \equiv (- y^2)^{\tfrac{p - 1}{2}} \equiv y^{p - 1} \cdot (- 1)^{\tfrac{p - 1}{2}} \equiv (- 1)^{\tfrac{p - 1}{2}} \!\! \pmod{p}</math>
+
::<math>\mathbb{n} = a b \equiv (r s)^2 \pmod{p}</math>
  
Wynika stąd, że <math>{\small\frac{p - 1}{2}}</math> musi być liczbą parzystą, czyli <math>p = 4 k + 1</math>. Co należało pokazać.<br/>
+
Wbrew założeniu, że <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>p</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 629: Linia 911:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J21</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K16</span><br/>
Niech <math>x, y, n \geqslant 0</math>. Pokazać, że jedynymi rozwiązaniami równania
+
Pokazać, że najmniejszą liczbą niekwadratową modulo <math>p</math> jest
 +
 
 +
:* &nbsp;liczba <math>2</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 8 k \pm 3</math>
 +
:* &nbsp;liczba <math>3</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 24 k \pm 7</math>
 +
:* &nbsp;liczba <math>\geqslant 5</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 24 k \pm 1</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z właściwości symbolu Legendre'a (zobacz J33 p.7) wiemy, że
 +
 
 +
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, =
 +
\,\,
 +
  \begin{cases}
 +
\;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\
 +
      - 1 & \text{gdy } p \equiv 3, 5 \pmod{8}
 +
  \end{cases}</math>
 +
 
 +
Wynika stąd natychmiast, dla liczb pierwszych <math>p</math> postaci <math>8 k \pm 3</math> (i tylko dla takich liczb) liczba <math>2</math> jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo <math>p</math>.
 +
 
 +
Z zadania J46 wynika, że liczba <math>3</math> jest liczbą niekwadratową jedynie dla liczb pierwszych postaci <math>12 k \pm 5</math>. Zatem dla liczb pierwszych, które są jednocześnie postaci <math>p = 8 k \pm 1</math> i <math>p = 12 j \pm 5</math>, liczba <math>3</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Z&nbsp;czterech warunków
 +
 
 +
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5</math>
  
::<math>x^2 + y^2 = 2^n</math>
+
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 7</math>
  
są liczby
+
::<math>p = 8 k + 7 \quad \text{i} \quad p = 12 j + 5</math>
  
:* <math>x = 2^{n / 2} \,</math> i <math>\, y = 0 \,</math> lub <math>\, x = 0 \,</math> i <math>\, y = 2^{n / 2}</math>, gdy <math>2 \mid n</math>
+
::<math>p = 8 k + 7 \quad \text{i} \quad p = 12 j + 7</math>
:* <math>x = y = 2^{(n - 1) / 2}</math>, gdy <math>2 \nmid n</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Drugi i&nbsp;trzeci nie są możliwe, bo modulo <math>4</math> otrzymujemy
'''A.''' Gdy jedna z&nbsp;liczb <math>x, y</math> jest równa <math>0</math> (powiedzmy <math>y</math>), to mamy <math>x = 2^{n / 2}</math>, gdy <math>n</math> jest parzyste. Gdy <math>n</math> jest nieparzyste, to rozwiązanie nie istnieje. Od tej pory będziemy zakładali, że <math>x, y \geqslant 1</math>
+
 
 +
::<math>p \equiv 1 \pmod{4} \quad \text{i} \quad p \equiv 3 \pmod{4}</math>
 +
 
 +
::<math>p \equiv 3 \pmod{4} \quad \text{i} \quad p \equiv 1 \pmod{4}</math>
 +
 
 +
a z&nbsp;pierwszego i&nbsp;czwartego mamy
 +
 
 +
::<math>3 p = 24 k + 3 \quad \text{i} \quad 2 p = 24 j + 10 \qquad \;\: \Longrightarrow \qquad p = 24 (k - j) - 7 \qquad \Longrightarrow \qquad p \equiv - 7 \pmod{24}</math>
 +
 
 +
::<math>3 p = 24 k + 21 \quad \text{i} \quad 2 p = 24 j + 14 \qquad \Longrightarrow \qquad p = 24 (k - j) + 7 \qquad \Longrightarrow \qquad p \equiv 7 \pmod{24}</math>
 +
 
 +
Zauważmy, że problem mogliśmy zapisać w&nbsp;postaci układu kongruencji
 +
 
 +
::<math>p \equiv \pm 1 \pmod{8}</math>
 +
 
 +
::<math>p \equiv \pm 5 \pmod{12}</math>
  
'''B.''' Wiemy, że kwadrat liczby nieparzystej przystaje do <math>1</math> modulo <math>4</math>. Gdy obie liczby <math>x, y</math> nieparzyste, to modulo <math>4</math> mamy
+
Gdyby moduły tych kongruencji były względnie pierwsze, to każdemu wyborowi znaków odpowiadałaby pewna kongruencja równoważna (zobacz J3). Widzimy, że w&nbsp;przypadku, gdy moduły nie względnie pierwsze, kongruencja równoważna może istnieć, ale nie musi. Rozwiązując taki problem, wygodnie jest skorzystać z&nbsp;programu PARI/GP. Wystarczy wpisać
  
::<math>2 \equiv 2^n \!\! \pmod{4}</math>
+
chinese(Mod(1, 8), Mod(5, 12)) = Mod(17, 24)
 +
chinese(Mod(1, 8), Mod(-5, 12)) - błąd
 +
chinese(Mod(-1, 8), Mod(5, 12)) - błąd
 +
chinese(Mod(-1, 8), Mod(-5, 12)) = Mod(7, 24)
  
Kongruencja ta jest prawdziwa tylko dla <math>n = 1</math> i&nbsp;w&nbsp;tym przypadku mamy <math>(x, y) = (1, 1)</math>.
+
Ostatni punkt zadania rozwiążemy tą metodą. Liczba większa lub równa <math>5</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy liczby <math>2</math> i <math>3</math> są liczbami kwadratowymi modulo <math>p</math>, co oznacza, że liczba pierwsza <math>p</math> spełnia kongruencje
  
'''C.''' W&nbsp;przypadku, gdy obie liczby są parzyste, możemy napisać <math>x = 2^a u</math>, <math>y = 2^b w</math>, gdzie liczby <math>u, w</math> są nieparzyste. Nie zmniejszając ogólności możemy założyć, że <math>1 \leqslant a \leqslant b < {\small\frac{n}{2}}</math>. Dostajemy
+
::<math>p \equiv \pm 1 \pmod{8}</math>
  
::<math>u^2 + 2^{2 b - 2 a} w^2 = 2^{n - 2 a}</math>
+
::<math>p \equiv \pm 1 \pmod{12}</math>
  
Widzimy, że nie może być <math>a < b</math>, bo suma liczby nieparzystej i&nbsp;parzystej nie jest liczbą parzystą. Zatem <math>a = b</math> i&nbsp;otrzymujemy równanie
+
Postępując jak wyżej, otrzymujemy
  
::<math>u^2 + w^2 = 2^{n - 2 a}</math>
+
chinese(Mod(1, 8), Mod(1, 12)) = Mod(1, 24)
 +
chinese(Mod(1, 8), Mod(-1, 12)) - błąd
 +
chinese(Mod(-1, 8), Mod(1, 12)) - błąd
 +
chinese(Mod(-1, 8), Mod(-1, 12)) = Mod(23, 24)
  
które ma rozwiązanie w&nbsp;liczbach nieparzystych tylko dla wykładnika <math>n - 2 a = 1</math>. Mamy <math>u = w = 1</math>, zatem <math>x = y = 2^{(n - 1) / 2}</math> i <math>n</math> musi być liczbą nieparzystą.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 662: Linia 984:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J22</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K17</span><br/>
Niech <math>x, y \in \mathbb{Z}_+</math>. Jeżeli <math>x \neq y</math>, to liczba <math>x^2 + y^2</math> ma dzielnik pierwszy postaci <math>4 k + 1</math>.
+
Dla każdej liczby pierwszej <math>p_n</math> istnieje nieskończenie wiele takich liczb pierwszych <math>q</math>, że <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W&nbsp;przypadku, gdy <math>x = y</math> mamy <math>x^2 + y^2 = 2 y^2</math> i&nbsp;jeśli liczba <math>y</math> nie ma dzielnika pierwszego postaci <math>4 k + 1</math>, to nie ma go również liczba <math>2 y^2</math>. Przykładowo <math>x^2 + y^2 = 2 y^2 = 2^{2 r + 1}, 2 \cdot 3^{2 r}, 2 \cdot 7^{2 r}</math>. Dlatego zakładamy, że <math>x \neq y</math>. Analogiczna sytuacja ma miejsce, gdy jedna z&nbsp;liczb <math>x, y</math> jest równa zero. Dlatego zakładamy, że <math>x, y \in \mathbb{Z}_+</math>.
+
Niech <math>2, p_2, \ldots, p_{n - 1}, p_n</math> będą kolejnymi liczbami pierwszymi. Wybierzmy liczbę <math>u</math> tak, aby spełniała układ kongruencji
 +
 
 +
::<math>\begin{align}
 +
u & \equiv 1 \pmod{8 p_2 \cdot \ldots \cdot p_{n - 1}} \\
 +
u & \equiv a \pmod{p_n}
 +
\end{align}</math>
 +
 
 +
gdzie <math>a</math> oznacza dowolną liczbą niekwadratową modulo <math>p_n</math>. Na podstawie chińskiego twierdzenia o&nbsp;resztach (zobacz J3) powyższy układ kongruencji może być zapisany w&nbsp;postaci kongruencji równoważnej
 +
 
 +
::<math>u \equiv c \pmod{8 p_2 \cdot \ldots \cdot p_n}</math>
 +
 
 +
 
 +
Zauważmy, że żadna z&nbsp;liczb pierwszych <math>p_k</math>, gdzie <math>1 \leqslant k \leqslant n</math> nie dzieli liczby <math>c</math>, bo mielibyśmy
 +
 
 +
::<math>u \equiv 0 \pmod{p_k}</math>
 +
 
 +
wbrew wypisanemu wyżej układowi kongruencji. Zatem <math>\gcd (c, 8 p_2 \cdot \ldots \cdot p_n) = 1</math> i&nbsp;z&nbsp;twierdzenia Dirichleta (zobacz C27) wiemy, że wśród liczb <math>u</math> spełniających kongruencję <math>u \equiv c \!\! \pmod{8 p_2 \cdot \ldots \cdot p_n}</math> występuje nieskończenie wiele liczb pierwszych (bo wśród tych liczb są liczby postaci <math>8 p_2 \cdot \ldots \cdot p_n \cdot k + c</math>, gdzie <math>k \in \mathbb{Z}_+</math>). Oznaczmy przez <math>q</math> dowolną z&nbsp;tych liczb pierwszych.
 +
 
 +
 
 +
Ponieważ <math>q \equiv 1 \!\! \pmod{8}</math>, to <math>\left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1</math> (zobacz J33), a&nbsp;dla wszystkich liczb pierwszych nieparzystych <math>p_k < p_n</math> mamy
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p_k}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_k - 1}{2}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{p_k}} \right)_{\small{\!\! L}} = 1</math>
 +
</div>
 +
 
 +
bo <math>8 \mid (q - 1)</math>. Dla liczby pierwszej <math>p_n</math> jest
  
Niech <math>\gcd (x, y) = d</math>, zatem mamy <math>x = a d</math>, <math>y = b d</math>. Wynika stąd, że <math>x^2 + y^2 = d^2 (a^2 + b^2)</math>, gdzie <math>\gcd (a, b) = 1 \,</math> i <math>\, a \neq b</math>. Ponieważ <math>\, a \neq b</math>, to liczba <math>a^2 + b^2</math> musi mieć dzielnik pierwszy nieparzysty (zobacz J21). Z&nbsp;twierdzenia J20 zastosowanego do liczby <math>a^2 + b^2</math> wynika, że <math>a^2 + b^2</math> musi mieć dzielnik pierwszy postaci <math>4 k + 1</math>.<br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p_n}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_n - 1}{2}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p_n}} \right)_{\small{\!\! L}} = - 1</math>
 +
</div>
 +
 
 +
Zatem wszystkie liczby pierwsze mniejsze od <math>p_n</math> są liczbami kwadratowymi modulo <math>q</math>, a&nbsp;liczba pierwsza <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>. Zauważmy, że <math>q</math> była dowolnie wybraną liczbą pierwszą z&nbsp;nieskończenie wielu liczb pierwszych występujących w&nbsp;ciągu arytmetycznym <math>8 p_2 \cdot \ldots \cdot p_n \cdot k + c</math>, gdzie <math>k \in \mathbb{Z}_+</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 674: Linia 1025:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J23</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K18 (Sarvadaman Chowla)</span><br/>
Pokazać, że jeżeli <math>m \in \mathbb{Z}_+</math>, to <math>m \geqslant 2</math> nie jest dzielnikiem liczby <math>2^m - 1</math>.
+
Istnieje niekończenie wiele liczb pierwszych <math>p</math> takich, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math>, gdzie <math>L</math> jest stałą Linnika.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ liczby parzyste nie mogą dzielić liczby nieparzystej <math>2^m - 1</math>, to możemy założyć, że <math>m</math> jest liczbą nieparzystą. Zatem <math>\gcd (m, 2) = 1</math> i liczba <math>2</math> ma element odwrotny modulo <math>m</math>.
+
Niech <math>a = 4 P (m)</math>, gdzie <math>P(m)</math> jest iloczynem wszystkich liczb pierwszych nie większych od <math>m</math>. Z&nbsp;twierdzenia Dirichleta (zobacz C27) wiemy, że w&nbsp;ciągu arytmetycznym <math>u_k = a k + 1</math> występuje nieskończenie wiele liczb pierwszych. Niech <math>p</math> oznacza dowolną z&nbsp;nich.
 +
 
 +
Ponieważ <math>p \equiv 1 \!\! \pmod{8}</math>, to
 +
 
 +
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1</math>
 +
 
 +
(zobacz J33 p.7). Oczywiście <math>p \equiv 1 \!\! \pmod{4}</math>, zatem dla dowolnej liczby pierwszej nieparzystej <math>q_i \leqslant m</math> z&nbsp;twierdzenia J33 p.9 otrzymujemy
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{q_i}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{p}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{a k + 1}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{q_i}} \right)_{\small{\!\! L}} = 1</math>
 +
</div>
  
Niech <math>p</math> będzie najmniejszym dzielnikiem pierwszym liczby nieparzystej <math>m</math>, wtedy <math>\gcd (m, p - 1) = 1</math> i z lematu Bezout'a (zobacz C73) istnieją takie liczby całkowite <math>x, y</math>, że
+
Wynika stąd, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>m</math>. Wiemy też, że (zobacz A9)
  
::<math>m x + (p - 1) y = 1</math>
+
::<math>a = 4 P (m) < 4 \cdot 4^m = 4^{m + 1}</math>
  
Załóżmy, dla uzyskania sprzeczności, że <math>m \mid (2^m - 1)</math>. Zatem
+
Załóżmy teraz, że <math>p</math> jest najmniejszą liczbą pierwszą w&nbsp;ciągu arytmetycznym <math>u_k = a k + 1</math>, a&nbsp;liczba <math>m</math> została wybrana tak, że liczba <math>a = 4 P (m)</math> jest dostatecznie duża i&nbsp;możliwe jest skorzystanie z&nbsp;twierdzenia Linnika (zobacz C30). Dostajemy natychmiast oszacowanie
  
::<math>2^m \equiv 1 \!\! \pmod{p}</math>
+
::<math>p = p_{\min} (a, 1) < a^L</math>
  
i dostajemy
+
gdzie <math>L</math> jest stałą Linnika (możemy przyjąć <math>L = 5</math>). Łącząc powyższe oszacowania, łatwo otrzymujemy oszacowanie najmniejszej liczby niekwadratowej modulo <math>p</math>
  
::<math>2 = 2^1 = 2^{m x + (p - 1) y} \equiv (2^m)^x \cdot (2^{p - 1})^y \equiv 1 \!\! \pmod{p}</math>
+
::<math>\mathbb{n}(p) \geqslant m + 1 > \log_4 a = {\small\frac{\log a}{\log 4}} = {\small\frac{\log a^L}{2 L \log 2}} > {\small\frac{\log p}{2 L \log 2}}</math>
  
Co jest niemożliwe.<br/>
+
Każdemu wyborowi innej liczby <math>m' > m</math> takiej, że <math>P(m') > P (m)</math> odpowiada inna liczba pierwsza <math>p'</math> taka, że <math>\mathbb{n}(p') > {\small\frac{\log p'}{2 L \log 2}}</math>, zatem liczb pierwszych <math>p</math> dla których najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math> jest nieskończenie wiele.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
  
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga K19</span><br/>
 +
W twierdzeniu K17 pokazaliśmy, że dla każdej liczby pierwszej <math>\mathbb{n}</math> istnieją takie liczby pierwsze <math>p</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Zatem zbiór <math>S_\mathbb{n}</math> liczb pierwszych takich, że dla każdej liczby <math>p \in S_\mathbb{n}</math> liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> jest zbiorem niepustym. Wynika stąd, że zbiór <math>S_\mathbb{n}</math> ma element najmniejszy i&nbsp;możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w&nbsp;PARI/GP napisać proste polecenie
 +
 +
<span style="font-size: 90%; color:black;">'''forprime'''(n = 2, 50, '''forprime'''(p = 2, 10^10, '''if'''( A(p) == n, '''print'''(n, "  ", p); '''break'''() )))</span>
 +
 +
W tabeli przedstawiamy uzyskane rezultaty (zobacz też [https://oeis.org/A000229 A000229]).
 +
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{\mathbb{n}}</math>
 +
| <math>2</math> || <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math>
 +
|-
 +
! <math>\boldsymbol{p}</math>
 +
| <math>3</math> || <math>7</math> || <math>23</math> || <math>71</math> || <math>311</math> || <math>479</math> || <math>1559</math> || <math>5711</math> || <math>10559</math> || <math>18191</math> || <math>31391</math> || <math>422231</math> || <math>701399</math> || <math>366791</math> || <math>3818929</math>
 +
|}
  
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga K20</span><br/>
 +
Z nierówności Pólyi-Winogradowa (zobacz K2) wynika natychmiast oszacowanie najmniejszej liczby niekwadratowej modulo <math>p</math>. Ponieważ najdłuższy ciąg kolejnych liczb kwadratowych modulo <math>p</math> nie może być dłuższy od <math>\left\lfloor \sqrt{p} \log p \right\rfloor</math>, to
  
== Twierdzenie Eulera ==
+
::<math>\mathbb{n} (p) \leqslant \left\lfloor \sqrt{p} \log p \right\rfloor + 1 < \sqrt{p} \log p + 1</math>
  
Twierdzenie Eulera jest uogólnieniem twierdzenia Fermata.<br/>
+
Pokażemy, że powyższe oszacowanie można łatwo wzmocnić.
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J24 (Leonhard Euler, 1763)</span><br/>
 
Niech <math>a \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math> oraz <math>\gcd (a, m) = 1</math>, wtedy
 
  
::<math>a^{\varphi (m)} \equiv 1 \!\! \pmod{m}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Łatwo zauważyć, że twierdzenie jest prawdziwe dla <math>m = 1, 2</math>, zatem będziemy rozpatrywali przypadek, gdy <math>m \geqslant 3</math>.
 
  
Niech <math>R = \{ r_1, r_2, \ldots, r_{\varphi (m)} \}</math> będzie zbiorem wszystkich liczb całkowitych dodatnich nie większych od <math>m</math> i względnie pierwszych z <math>m</math>. Niech <math>S = \{ a r_1, a r_2, \ldots, a r_{\varphi (m)} \}</math>. Prosta analiza właściwości zbiorów <math>R</math> i <math>S</math> stanowi podstawę dowodu twierdzenia.
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K21</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Prawdziwe jest oszacowanie
  
'''1. Wszystkie elementy w <math>\boldsymbol{R}</math> są różne modulo <math>\boldsymbol{m}</math>'''
+
::<math>\mathbb{n} (p) < \sqrt{p} + {\small\frac{1}{2}}</math>
  
Nie może być <math>r_i \equiv r_j \!\! \pmod{m}</math> dla różnych <math>i, j</math>, bo dla <math>m \geqslant 3</math> mamy oszacowanie <math>1 \leqslant r_i, r_j \leqslant m - 1</math>, skąd otrzymujemy <math>0 \leqslant | r_i - r_j | \leqslant m - 2</math>. Wynika stąd, że <math>m \mid (r_i - r_j)</math> tylko w przypadku, gdy <math>r_i = r_j</math>, czyli gdy <math>i = j</math>.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ <math>\mathbb{n} \nmid p</math>, to z&nbsp;oszacowania <math>x - 1 < \lfloor x \rfloor \leqslant x</math> wynika, że
  
'''2. Wszystkie elementy w <math>\boldsymbol{S}</math> są względnie pierwsze z <math>\boldsymbol{m}</math>'''
+
::<math>{\small\frac{p}{\mathbb{n}}} - 1 < \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor < {\small\frac{p}{\mathbb{n}}}</math>
  
Z definicji dowolna liczba <math>r_i \in R</math> jest względnie pierwsza z <math>m</math> oraz z założenia <math>\gcd (a, m) = 1</math>. Z twierdzenia H5 otrzymujemy natychmiast, że <math>\gcd (a r_i, m) = 1</math>.
+
::<math>p < \mathbb{n} \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + \mathbb{n} < p + \mathbb{n}</math>
  
'''3. Wszystkie elementy w <math>\boldsymbol{S}</math> są różne modulo <math>m</math>'''
+
Niech <math>u = \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1</math>, mamy
  
Załóżmy, dla uzyskania sprzeczności, że dla różnych wskaźników <math>i, j</math> jest <math>a r_i \equiv a r_j \!\! \pmod{m}</math>. Ponieważ <math>\gcd (a, m) = 1</math>, to liczba <math>a</math> ma element odwrotny modulo <math>m</math>. Mnożąc obie strony kongruencji przez <math>a^{- 1}</math> otrzymujemy <math>r_i \equiv r_j \!\! \pmod{m}</math> dla różnych <math>i, j</math>, co jest niemożliwe (zobacz punkt 1).
+
::<math>0 < \mathbb{n} u - p < \mathbb{n}</math>
  
'''4. Każdy element w <math>\boldsymbol{S}</math> jest równy modulo <math>\boldsymbol{m}</math> pewnemu elementowi w <math>\boldsymbol{R}</math>'''
+
Liczba <math>\mathbb{n} u - p</math> musi być liczbą kwadratową modulo <math>p</math>, zatem
  
Dla każdego <math>i = 1, \ldots, \varphi (m)</math> liczba <math>a r_i \in S</math> może być zapisana w postaci <math>a r_i = k m + r</math>, gdzie <math>k \in \mathbb{Z} \;</math> i <math>\; 0 \leqslant r < m</math>. Ponieważ
+
::<math>1 = \left( {\small\frac{\mathbb{n} u - p}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}}</math>
  
::<math>\gcd (a r_i, m) = 1 = \gcd (k m + r, m) = \gcd (r, m)</math>
+
Ale z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą taką, że <math>\left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} = - 1</math>. Wynika stąd, że musi być <math>\mathbb{n} \leqslant u</math> i&nbsp;łatwo znajdujemy, że
  
to <math>r \in R</math> i musi być <math>a r_i \equiv r_j \!\! \pmod{m}</math> dla pewnego <math>r_j \in R</math>.
+
::<math>\mathbb{n} \leqslant \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 < {\small\frac{p}{\mathbb{n}}} + 1</math>
  
 +
::<math>\mathbb{n}^2 < p + \mathbb{n}</math>
  
Z punktów 1., 2. i 4. wynika natychmiast, że zbiory <math>R</math> i <math>S</math> równe modulo <math>m</math> (zobacz H17), zatem
+
Ponieważ wypisane liczby liczbami całkowitymi, to ostatnią nierówność możemy zapisać w&nbsp;postaci
  
::<math>a r_1 \cdot a r_2 \cdot \ldots \cdot a r_{\varphi (m)} \equiv r_1 \cdot r_2 \cdot \ldots \cdot r_{\varphi (m)} \!\! \pmod{m}</math>
+
::<math>\mathbb{n}^2 \leqslant p + \mathbb{n} - 1</math>
  
::<math>r_1 \cdot r_2 \cdot \ldots \cdot r_{\varphi (m)} \cdot a^{\varphi (m)} \equiv r_1 \cdot r_2 \cdot \ldots \cdot r_{\varphi (m)} \!\! \pmod{m}</math>
+
Skąd otrzymujemy
  
Ale <math>\gcd (r_1 r_2 \cdot \ldots \cdot r_{\varphi (m)}, m) = 1</math> i mnożąc obie strony powyższej kongruencji przez element odwrotny do <math>r_1 r_2 \cdot \ldots \cdot r_{\varphi (m)}</math> modulo <math>m</math>, otrzymujemy
+
::<math>\left( \mathbb{n} - {\small\frac{1}{2}} \right)^2 \leqslant p - {\small\frac{3}{4}}</math>
  
::<math>a^{\varphi (m)} \equiv 1 \!\! \pmod{m}</math>
+
::<math>\mathbb{n} \leqslant {\small\frac{1}{2}} + \sqrt{p - {\small\frac{3}{4}}} < {\small\frac{1}{2}} + \sqrt{p}</math>
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 750: Linia 1128:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J25</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K22*</span><br/>
Niech <math>m \in \mathbb{Z}_+</math>, zaś <math>a, b \in \mathbb{Z}</math>. Pokazać, że jeżeli <math>\gcd (a, m) = 1</math>, to kongruencja <math>a x \equiv b \!\! \pmod{m}</math> ma jednoznaczne rozwiązanie równe
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Dla <math>p \geqslant 5</math> prawdziwe jest oszacowanie<ref name="Norton1"/><ref name="Trevino1"/><ref name="Trevino2"/>
 +
 
 +
::<math>\mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p</math>
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga K23</span><br/>
 +
Liczby <math>\mathbb{n} = \mathbb{n} (p)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (p)</math>, gdzie <math>p</math> są nieparzystymi liczbami pierwszymi, jest równa<ref name="Erdos1"/>
  
::<math>x \equiv a^{\varphi (m) - 1} \cdot b \!\! \pmod{m}</math>
+
::<math>\lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots</math>
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga K24</span><br/>
 +
Możemy też badać najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>.
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{m}</math>
 +
| <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 +
|-
 +
! <math>\boldsymbol{\mathbb{n}_1( p )}</math>  
 +
| <math>3</math> || <math>3</math> || <math>-</math> || <math>7</math> || <math>5</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 +
|}
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Z twierdzenia Eulera wynika, że jeżeli <math>\gcd (a, m) = 1</math>, to elementem odwrotnym do <math>a</math> modulo <math>m</math> jest <math>a^{\varphi (m) - 1}</math>. Istotnie
 
  
::<math>a^{\varphi (m) - 1} \cdot a = a^{\varphi (m)} \equiv 1 \!\! \pmod{m}</math>
 
  
Zatem mnożąc obie strony kongruencji <math>a x \equiv b \!\! \pmod{m}</math> przez <math>a^{\varphi (m) - 1}</math>, otrzymujemy
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K25</span><br/>
 +
Dla każdej liczby pierwszej <math>p \geqslant 5</math> najmniejsza '''nieparzysta''' liczba niekwadratowa modulo <math>p</math> jest liczbą pierwszą mniejszą od <math>p</math>.
  
::<math>a^{\varphi (m) - 1} \cdot a x = a^{\varphi (m)} \cdot x \equiv x \equiv a^{\varphi (m) - 1} \cdot b \!\! \pmod{m}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>S \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich '''nieparzystych''' liczb niekwadratowych modulo <math>p</math>. Z&nbsp;twierdzenia J29 wiemy, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to w&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> jest dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>. W&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> mamy też dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb parzystych i&nbsp;tyle samo liczb nieparzystych.
  
::<math>x \equiv a^{\varphi (m) - 1} \cdot b \!\! \pmod{m}</math>
+
Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo <math>p</math>, bo <math>4 = 2^2 < 5 \leqslant p</math> jest parzystą liczbą kwadratową modulo <math>p</math>, czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo <math>p</math>. Wynika stąd, że zbiór <math>S</math> nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru <math>S</math> jest liczbą pierwszą.
  
Co było do pokazania.<br/>
+
Niech <math>3 \leqslant \mathbb{n}_\boldsymbol{1} \leqslant p - 2</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Wynika stąd, że każda liczba <math>a < \mathbb{n}_\boldsymbol{1}</math> musi być liczbą parzystą lub liczbą kwadratową modulo <math>p</math>. Przypuśćmy, że <math>\mathbb{n}_\boldsymbol{1}</math> jest liczbą złożoną, czyli <math>\mathbb{n}_\boldsymbol{1} = a b</math>, gdzie <math>1 < a, b < \mathbb{n}_\boldsymbol{1}</math>. Zauważmy, że żadna z&nbsp;liczb <math>a, b</math> nie może być liczbą parzystą, bo wtedy liczba <math>\mathbb{n}_\boldsymbol{1}</math> również byłaby liczbą parzystą wbrew określeniu liczby <math>\mathbb{n}_\boldsymbol{1}</math>. Zatem obie liczby <math>a, b</math> muszą być nieparzystymi liczbami kwadratowymi, co jest niemożliwe, bo
 +
 
 +
::<math>- 1 = \left( {\small\frac{\mathbb{n}_\boldsymbol{1}}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! J}}</math>
 +
 
 +
i jeden z&nbsp;czynników po prawej stronie musi być ujemny. Co oznacza, że jedna z&nbsp;liczb <math>a, b</math> jest nieparzystą liczbą niekwadratową modulo <math>p</math> mniejszą od <math>\mathbb{n}_\boldsymbol{1}</math> wbrew określeniu liczby <math>\mathbb{n}_\boldsymbol{1}</math>. Uzyskana sprzeczność pokazuje, że liczba <math>\mathbb{n}_\boldsymbol{1}</math> jest liczbą pierwszą. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 774: Linia 1176:
  
  
== Kryterium Eulera ==
+
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
 +
| &nbsp;'''B.''' Najmniejsze dodatnie liczby niekwadratowe modulo <math>m</math>
 +
|}
  
<span style="font-size: 110%; font-weight: bold;">Definicja J26</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K26</span><br/>
Niech <math>p</math> będzie liczbą pierwszą i <math>a \in \mathbb{Z}</math>. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math>, jeżeli kongruencja
+
Najmniejsze liczby niekwadratowe modulo <math>m</math> są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo <math>p .</math> W&nbsp;jednym i&nbsp;drugim przypadku liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową w&nbsp;zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od <math>p</math> lub <math>m .</math> Dlatego będziemy je oznaczali również jako <math>\mathbb{n}(m) .</math>
  
::<math>x^2 \equiv a \pmod{p}</math>
 
  
ma rozwiązanie, czyli istnieje taka liczba <math>k \in \mathbb{Z}</math>, że <math>p \mid (k^2 - a)</math>.
 
  
Powiemy, że liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math>, jeżeli kongruencja
+
<span style="font-size: 110%; font-weight: bold;">Definicja K27</span><br/>
 +
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Powiemy, że <math>\mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, gdy <math>\mathbb{n}</math> jest najmniejszą liczbą dodatnią względnie pierwszą z <math>m</math> taką, że kongruencja
  
::<math>x^2 \equiv a \pmod{p}</math>
+
::<math>x^2 \equiv \mathbb{n} \pmod{m}</math>
  
 
nie ma rozwiązania.
 
nie ma rozwiązania.
Linia 791: Linia 1194:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J27</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład K28</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieje dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>.
+
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> i&nbsp;najmniejsze liczby niekwadratowe modulo <math>m .</math>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 +
|-
 +
! <math>\boldsymbol{\mathbb{n}( p )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 +
|-
 +
! <math>\boldsymbol{\mathbb{n}( m )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>3</math> || <math>2</math>
 +
|}
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{m}</math>
 +
| <math>4</math> || <math>6</math> || <math>8</math> || <math>10</math> || <math>12</math> || <math>14</math> || <math>16</math> || <math>18</math> || <math>20</math> || <math>22</math> || <math>24</math> || <math>26</math> || <math>28</math> || <math>30</math> || <math>32</math> || <math>34</math> || <math>36</math> || <math>38</math> || <math>40</math> || <math>42</math> || <math>44</math> || <math>46</math> || <math>48</math> || <math>50</math> || <math>52</math>
 +
|-
 +
! <math>\boldsymbol{\mathbb{n}( m )}</math>  
 +
| <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>7</math> || <math>5</math> || <math>5</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>5</math> || <math>5</math> || <math>3</math> || <math>3</math>
 +
|}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga K29</span><br/>
 +
Do wyszukiwania liczb <math>\mathbb{n} (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
<span style="font-size: 90%; color:black;">B(m) =
Zauważmy, że w&nbsp;rozważanym zbiorze liczb <math>\{ 1, 2, \ldots, p - 1 \}</math>, kwadraty liczb <math>k</math> i <math>p - k</math> są takimi samymi liczbami modulo <math>p</math>, co wynika z&nbsp;oczywistej kongruencji
+
{
 +
'''local'''(p, res);
 +
p = 1;
 +
'''while'''( p < m,
 +
        p = '''nextprime'''(p + 1);
 +
        '''if'''( m%p == 0, '''next'''() );
 +
        res = -1;
 +
        '''for'''( k = 2, '''floor'''(m/2), '''if'''( k^2%m == p, res = 1; '''break'''() ) );
 +
        '''if'''( res == -1, '''return'''(p) );
 +
      );
 +
}</span>
  
::<math>k^2 \equiv (p - k)^2 \pmod{p}</math>
+
Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby <math>m .</math> Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.
  
Pozwala to wypisać pary liczb, których kwadraty są identyczne modulo <math>p</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 +
<span style="font-size: 90%; color:black;">B(m) =
 +
{
 +
'''local'''(p, res, t);
 +
t = m%8;
 +
'''if'''( t == 3 || t == 5, '''return'''(2) );
 +
t = m%12;
 +
'''if'''( t == 4 || t == 8, '''return'''(3) );
 +
t = m%24;
 +
'''if'''( t == 9 || t == 15, '''return'''(2) );
 +
'''if'''( t == 10 || t == 14, '''return'''(3) );
 +
t = m%30;
 +
'''if'''( t == 6 || t == 12 || t == 18 || t == 24, '''return'''(5) );
 +
p = 1;
 +
'''while'''( p < m,
 +
        p = '''nextprime'''(p + 1);
 +
        '''if'''( m%p == 0, '''next'''() );
 +
        res = -1;
 +
        '''for'''( k = 2, '''floor'''(m/2), '''if'''( k^2%m == p, res = 1; '''break'''() ) );
 +
        '''if'''( res == -1, '''return'''(p) );
 +
      );
 +
}</span>
 +
{{\Spoiler}}
  
::<math>(1, p - 1), (2, p - 2), \ldots, \left( {\small\frac{p - 1}{2}}, p - {\small\frac{p - 1}{2}} \right)</math>
 
  
Ponieważ
 
  
::<math>p - {\small\frac{p - 1}{2}} = {\small\frac{p + 1}{2}} = {\small\frac{p - 1}{2}} + 1</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K30</span><br/>
 +
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to <math>\mathbb{n}</math> jest liczbą pierwszą.
  
to wypisane pary wyczerpują cały zbiór <math>\{ 1, 2, \ldots, p - 1 \}</math>. Co więcej, liczby <math>1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2</math> są wszystkie różne modulo <math>p</math>. Istotnie, przypuśćmy, że <math>1 \leqslant i, j \leqslant {\small\frac{p - 1}{2}}</math> oraz <math>i \neq j</math>, a&nbsp;jednocześnie <math>i^2 \equiv j^2 \!\! \pmod{p}</math>. Gdyby tak było, to mielibyśmy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Przypuśćmy, że <math>\mathbb{n} = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < \mathbb{n} .</math> Z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, zatem liczby <math>a, b</math> są liczbami kwadratowymi modulo <math>m .</math> Z&nbsp;definicji liczb kwadratowych muszą istnieć takie liczby <math>r, s</math>, że
  
::<math>(i - j) (i + j) \equiv 0 \pmod{p}</math>
+
::<math>r^2 \equiv a \pmod{m}</math>
  
Łatwo zauważamy, że jest to niemożliwe, bo żaden z&nbsp;czynników nie jest podzielny przez <math>p</math>, co wynika z&nbsp;prostych oszacowań
+
::<math>s^2 \equiv b \pmod{m}</math>
  
::<math>1 \leqslant | i - j | \leqslant i + j < p - 1</math>
+
Skąd wynika, że
  
::<math>2 < i + j < p - 1</math>
+
::<math>\mathbb{n} = a b \equiv (r s)^2 \pmod{m}</math>
  
 +
Wbrew założeniu, że <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>m .</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Ponieważ (z definicji) liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math>, jeżeli kongruencja
 
  
::<math>x^2 \equiv a \pmod{p}</math>
 
  
ma rozwiązanie, to liczba kwadratowa modulo <math>p</math> musi przystawać do pewnego kwadratu modulo <math>p</math>.
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K31</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli <math>m = 8 k \pm 3</math>, to <math>\mathbb{n} (m) = 2 .</math>
  
Wynika stąd, że różnych liczb kwadratowych modulo <math>p</math> jest tyle samo, co kwadratów <math>1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2</math>. Czyli jest ich dokładnie <math>{\small\frac{p - 1}{2}}</math>. Pozostałe liczby w&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> to liczby niekwadratowe modulo <math>p</math> i&nbsp;jest ich również <math>{\small\frac{p - 1}{2}}</math>. Co należało pokazać.<br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z twierdzenia J41 wiemy, że <math>\left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1</math>, gdy <math>m = 8 k \pm 3 .</math> Wynika stąd, że <math>2</math> jest liczbą niekwadratową modulo <math>m</math>, a&nbsp;jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo <math>m .</math> Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 830: Linia 1293:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J28 (kryterium Eulera, 1748)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K32</span><br/>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>p \nmid a</math>. Modulo <math>p</math> mamy
+
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli spełniony jest jeden z&nbsp;warunków
 +
 
 +
:*&nbsp;&nbsp;<math>4 \mid m \;</math> i <math>\; \gcd (3, m) = 1</math>
 +
:*&nbsp;&nbsp;<math>m = 12 k \pm 4</math>
 +
 
 +
to <math>\mathbb{n} (m) = 3 .</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m</math>, bo <math>2 \mid m .</math> Rozważmy kongruencję
 +
 
 +
::<math>x^2 \equiv 3 \pmod{m}</math>
 +
 
 +
Z założenia <math>4 \mid m</math>, co nie wyklucza możliwości, że również <math>8 \mid m .</math> Ponieważ <math>4 \nmid (3 - 1)</math> i <math>8 \nmid (3 - 1)</math>, to z&nbsp;twierdzenia J55 wynika, że kongruencja <math>x^2 \equiv 3 \!\! \pmod{m}</math> nie ma rozwiązania. Jeśli tylko <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math> W&nbsp;pierwszym punkcie jest to założone wprost, w&nbsp;drugim łatwo widzimy, że <math>3 \nmid (12 k \pm 4) .</math>
 +
 
 +
Można też zauważyć, że żądanie, aby <math>\gcd (3, m) = 1</math>, prowadzi do dwóch układów kongruencji
 +
 
 +
::<math>\begin{align}
 +
m &\equiv 0 \pmod{4} \\
 +
m &\equiv 1 \pmod{3}
 +
\end{align}</math>
 +
 
 +
oraz
 +
 
 +
::<math>\begin{align}
 +
m &\equiv 0 \pmod{4} \\
 +
m &\equiv 2 \pmod{3}
 +
\end{align}</math>
  
::{| border="0"
+
którym, na mocy chińskiego twierdzenia o&nbsp;resztach, odpowiadają dwie kongruencje równoważne
|-style=height:2.5em
 
| &#9679;&nbsp;&nbsp;&nbsp; || liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv 1 \pmod{p}</math>
 
|-style=height:2.5em
 
| &#9679;&nbsp;&nbsp;&nbsp; || liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv - 1 \pmod{p}</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>m \equiv \pm 4 \pmod{12}</math>
  
'''Punkt 1.'''
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Niech <math>Q \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich liczb kwadratowych modulo <math>p</math>, a <math>S \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich rozwiązań kongruencji
 
  
::<math>x^{(p - 1) / 2} \equiv 1 \pmod{p}</math>
 
  
Zauważmy, że
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K33</span><br/>
 +
Niech <math>m = 24 k \pm 10 .</math> Pokazać, że <math>\mathbb{n} (m) = 3 .</math>
  
::{| border=1 style="border-collapse: collapse;"
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
|-style=height:2.5em
+
Zapiszmy <math>m</math> w&nbsp;postaci <math>m = 2 m'</math>, gdzie <math>m' = 12 k \pm 5 .</math> Gdyby kongruencja
| &nbsp;&nbsp;&nbsp;'''A'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| Q | = {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz J27
 
|-style=height:2.5em
 
| &nbsp;&nbsp;&nbsp;'''B'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| S | \leqslant {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz twierdzenie Lagrange'a J13
 
|-style=height:2.5em
 
| &nbsp;&nbsp;&nbsp;'''C'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;jeżeli <math>a \in Q</math>, to <math>a \in S \qquad </math> || &nbsp;&nbsp;&nbsp;wynika z&nbsp;ciągu implikacji:<br/> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a \in Q \qquad \Longrightarrow \qquad a \equiv k^2 \pmod{p}</math><br/> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a \equiv k^2 \pmod{p} \qquad \Longrightarrow \qquad a^{(p - 1) / 2} \equiv (k^2)^{(p - 1) / 2} \equiv k^{p - 1} \equiv 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;<br/> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a^{(p - 1) / 2} \equiv 1 \pmod{p} \qquad \Longrightarrow \qquad a \in S</math>
 
|-style=height:2.5em
 
| &nbsp;&nbsp;&nbsp;'''D'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>Q \subseteq S</math> || &nbsp;&nbsp;&nbsp;z punktu '''C''' wynika, że '''każdy''' element zbioru <math>Q</math> należy do zbioru <math>S</math>
 
|}
 
  
 +
::<math>x^2 \equiv 3 \pmod{2 m'}</math>
  
Łącząc rezultaty z&nbsp;tabeli, otrzymujemy
+
miała rozwiązanie, to również kongruencja
  
::<math>{\small\frac{p - 1}{2}} = | Q | \leqslant | S | \leqslant {\small\frac{p - 1}{2}}</math>
+
::<math>x^2 \equiv 3 \pmod{m'}</math>
  
Skąd łatwo widzimy, że
+
miałaby rozwiązanie, ale jest to niemożliwe, bo <math>\left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J46), czyli <math>3</math> jest liczbą niekwadratową modulo <math>m' .</math> Ponieważ <math>2 \mid m</math>, to <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m .</math> Wynika stąd, że <math>\mathbb{n} (m) = 3 .</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>| Q | = | S | = {\small\frac{p - 1}{2}}</math>
 
  
Ponieważ <math>Q \subseteq S</math>, a&nbsp;zbiory <math>Q</math> i <math>S</math> są równoliczne, to zbiory te są równe (zobacz H16). Prostą konsekwencją równości zbiorów <math>Q</math> i <math>S</math> jest stwierdzenie
 
  
::{| border=0 style="background: #EEEEEE;"
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K34</span><br/>
|-style=height:2.0em
+
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą nieparzystą podzielną przez <math>p \in S_2</math>, to <math>\mathbb{n} (m) = 2 .</math>
|&nbsp;&nbsp;&nbsp;liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;
 
|}
 
  
Co kończy dowód punktu pierwszego.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>p \mid m \;</math> i <math>\; \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
  
'''Punkt 2.'''
+
::<math>x^2 \equiv 2 \pmod{m}</math>
  
Z udowodnionego już punktu pierwszego wynika<ref name="logic1"/>, że
+
nie ma rozwiązania (zobacz J55). Ponieważ <math>2 \nmid m</math>, to <math>\mathbb{n} (m) = 2 .</math>
  
::{| border=0 style="background: #EEEEEE;"
+
Uwaga: zbiór <math>S_2</math> tworzą liczby pierwsze postaci <math>8 k \pm 3</math> (zobacz J41).<br/>
|-style=height:2.0em
+
&#9633;
|&nbsp;&nbsp;&nbsp;liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \not\equiv 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;
+
{{\Spoiler}}
|}
 
  
Z twierdzenia Fermata
 
  
::<math>a^{p - 1} - 1 = (a^{(p - 1) / 2} - 1) \cdot (a^{(p - 1) / 2} + 1) \equiv 0 \pmod{p}</math>
 
  
wynika natychmiast, że jeżeli <math>a^{(p - 1) / 2} - 1 \not\equiv 0 \pmod{p}</math>, to musi być
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K35</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą parzystą niepodzielną przez <math>3</math> i&nbsp;podzielną przez <math>p \in S_3</math>, to <math>\mathbb{n} (m) = 3 .</math>
  
::<math>a^{(p - 1) / 2} + 1 \equiv 0 \pmod{p}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>p \mid m \;</math> i <math>\; \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
  
Fakt ten pozwala sformułować uzyskaną równoważność bardziej precyzyjnie
+
::<math>x^2 \equiv 3 \pmod{m}</math>
  
::{| border=0 style="background: #EEEEEE;"
+
nie ma rozwiązania (zobacz J55). Ponieważ <math>2 \mid m</math> i <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math>
|-style=height:2.0em
 
|&nbsp;&nbsp;&nbsp;liczba <math>a</math> jest liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy <math>a^{(p - 1) / 2} \equiv - 1 \pmod{p}</math>&nbsp;&nbsp;&nbsp;
 
|}
 
  
Co należało pokazać.<br/>
+
Uwaga: zbiór <math>S_3</math> tworzą liczby pierwsze postaci <math>12 k \pm 5</math> (zobacz J46).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 909: Linia 1382:
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K36</span><br/>
 +
Jeżeli <math>m</math> jest liczbą dodatnią podzielną przez <math>6</math> i&nbsp;niepodzielną przez <math>5</math>, to <math>\mathbb{n} (m) = 5 .</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>3 \mid m \;</math> i <math>\; \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
  
 +
::<math>x^2 \equiv 5 \pmod{m}</math>
  
== Symbol Legendre'a ==
+
nie ma rozwiązania (zobacz J55). Ponieważ <math>2 \mid m</math>, <math>3 \mid m</math> i <math>5 \nmid m</math>, to <math>\mathbb{n} (m) = 5 .</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span style="font-size: 110%; font-weight: bold;">Definicja J29</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>a \in \mathbb{Z}</math>. Symbolem Legendre'a<ref name="legendre1"/> nazywamy funkcję <math>a</math> i <math>p</math> zdefiniowaną następująco
 
  
::<math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = \left\{ \begin{array}{rl}
 
  1 & \text{gdy } \, a \, \text{ jest liczbą kwadratową modulo } \, p \,  \text{ oraz } \, p \nmid a \\
 
- 1 & \text{gdy } \, a \, \text{ jest liczbą niekwadratową modulo } \, p \\
 
  0 & \text{gdy } \, p \mid a
 
\end{array} \right.</math>
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K37</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math> i <math>p \geqslant 5</math> będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od <math>p</math> dzieli <math>m</math> i <math>p \nmid m</math>, to <math>\mathbb{n} (m) = p</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia K69 wiemy, że istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> Z&nbsp;założenia <math>q \mid m</math>, zatem kongruencja
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J30</span><br/>
+
::<math>x^2 \equiv p \pmod{m}</math>
Powyższa definicja pozwala nam zapisać kryterium Eulera w&nbsp;zwartej formie, która obejmuje również przypadek, gdy <math>p \mid a</math>
 
  
::<math>a^{(p - 1) / 2} \equiv \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \pmod{p}</math>
+
nie ma rozwiązania (zobacz J55). Ponieważ wszystkie liczby pierwsze mniejsze od <math>p</math> dzielą <math>m</math>, to <math>\mathbb{n} (m) = p</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J31*</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K38</span><br/>
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>p, q</math> będą nieparzystymi liczbami pierwszymi. Symbol Legendre'a ma następujące właściwości
+
Pokazać, że podanym w&nbsp;pierwszej kolumnie postaciom liczby <math>m</math> odpowiadają wymienione w&nbsp;drugiej kolumnie wartości <math>\mathbb{n} (m) .</math>
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: left; margin-right: auto;"
 
|-
 
|-
| &nbsp;&nbsp;1.&nbsp;&nbsp; || <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \,\, = \,\, 0 \quad \Longleftrightarrow \quad \gcd (a, p) > 1</math>
+
! Postać liczby <math>\boldsymbol{m}</math> || <math>\boldsymbol{𝕟(m)}</math> || Uwagi
 
|-
 
|-
| &nbsp;&nbsp;2.&nbsp;&nbsp; || <math>a \equiv b \pmod p \quad \Longrightarrow \quad \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}}</math>
+
| <math>m=24k \pm 9</math> || style="text-align:center;" | <math>2</math> || rowspan="3" style="text-align:center;" | K34
 
|-
 
|-
| &nbsp;&nbsp;3.&nbsp;&nbsp; || <math>\left( {\small\frac{a b}{p}} \right)_{\small{\!\! L}} \,\, = \,\, \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \cdot  \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}}</math>
+
| <math>m=120k \pm 25</math> || style="text-align:center;" | <math>2</math>
 
|-
 
|-
| &nbsp;&nbsp;4.&nbsp;&nbsp; || <math>a^{(p - 1) / 2} \equiv \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \pmod{p}</math>
+
| <math>m=120k \pm 55</math> || style="text-align:center;" | <math>2</math>
 
|-
 
|-
| &nbsp;&nbsp;5.&nbsp;&nbsp; || <math>\left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} \,\, = \,\, 1</math>
+
| <math>m=120k \pm 50</math> || style="text-align:center;" | <math>3</math> || style="text-align:center;" | K35
 
|-
 
|-
| &nbsp;&nbsp;6.&nbsp;&nbsp; || <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \,\, = \,\, (- 1)^{\tfrac{p - 1}{2}} \,\, = \,\,  
+
| <math>m=30k \pm 6</math> || style="text-align:center;" | <math>5</math> || rowspan="2" style="text-align:center;" | K36, K37
  \begin{cases}
+
|-
\;\;\: 1 & \text{gdy } p \equiv 1 \pmod{4} \\
+
| <math>m=30k \pm 12</math> || style="text-align:center;" | <math>5</math>
      - 1 & \text{gdy } p \equiv 3 \pmod{4}
 
  \end{cases}</math>
 
 
|-
 
|-
| &nbsp;&nbsp;7.&nbsp;&nbsp; || <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, (- 1)^{\tfrac{p^2 - 1}{8}} \,\, = \,\,
+
| <math>m=210k \pm 30</math> || style="text-align:center;" | <math>7</math> || rowspan="3" style="text-align:center;" | K37
  \begin{cases}
 
\;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\
 
      - 1 & \text{gdy } p \equiv 3, 5 \pmod{8}
 
  \end{cases}</math>
 
 
|-
 
|-
| &nbsp;&nbsp;8.&nbsp;&nbsp; || <math>\left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, (- 1)^{\tfrac{(p - 1)(p - 3)}{8}} \,\, = \,\,
+
| <math>m=210k \pm 60</math> || style="text-align:center;" | <math>7</math>  
  \begin{cases}
 
\;\;\: 1 & \text{gdy } p \equiv 1, 3 \pmod{8} \\
 
      - 1 & \text{gdy } p \equiv 5, 7 \pmod{8}
 
  \end{cases}</math>
 
 
|-
 
|-
| &nbsp;&nbsp;9.&nbsp;&nbsp; || <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! L}} \,\, = \,\, \left( {\small\frac{q}{p}} \right)_{\small{\!\! L}} \cdot (-1)^{\tfrac{q - 1}{2} \cdot \tfrac{p - 1}{2}} \,\, = \,\, \left( {\small\frac{q}{p}} \right)_{\small{\!\! L}} \cdot
+
| <math>m=210k \pm 90</math> || style="text-align:center;" | <math>7</math>  
\begin{cases}
 
\;\;\: 1 & \text{gdy } p \equiv 1 \pmod{4} \;\;\; \text{lub} \;\;\; q \equiv 1 \pmod{4} \\
 
      - 1 & \text{gdy } p \equiv q \equiv 3 \pmod{4}
 
  \end{cases}</math>
 
 
|}
 
|}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J32</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K39</span><br/>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Pokazać, że
+
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
  
:*&nbsp;&nbsp;jeżeli <math>a</math> jest liczbą kwadratową (niekwadratową) modulo <math>p</math>, to element odwrotny liczby <math>a</math> modulo <math>p</math> istnieje i jest liczbą kwadratową (niekwadratową) modulo <math>p</math>
+
::<math>\begin{array}{lll}
 +
  \mathbb{n} (2 m) >\mathbb{n} (m) &  & \text{gdy} \;\; \mathbb{n} (m) = 2 \\
 +
  \mathbb{n} (2 m) =\mathbb{n} (m) &  & \text{gdy} \;\; \mathbb{n} (m) > 2
 +
\end{array}</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
:*&nbsp;&nbsp;jeżeli <math>a, b</math> są liczbami kwadratowymi (niekwadratowymi) modulo <math>p</math>, to istnieje taka liczba <math>r</math>, że <math>a \equiv b r^2 \!\! \pmod{p}</math>
+
'''Punkt 1.'''
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
W przypadku, gdy <math>\mathbb{n} (m) = 2</math>, mamy <math>\mathbb{n} (2 m) > 2 = \mathbb{n} (m)</math>, bo <math>\mathbb{n} (2 m)</math> musi być liczbą względnie pierwszą z <math>2 m .</math>
Z założenia <math>a</math> jest liczbą kwadratową (niekwadratową) modulo <math>p</math>, zatem <math>\gcd (a, p) = 1</math>, czyli element odwrotny (zobacz H11) liczby <math>a</math> modulo <math>p</math> istnieje. Mamy
 
  
::<math>1 = \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}}
+
'''Punkt 2.'''
= \left( {\small\frac{a a^{- 1}}{p}} \right)_{\small{\!\! L}}
 
= \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{a^{- 1}}{p}} \right)_{\small{\!\! L}}</math>
 
  
Zatem musi być
+
Z definicji najmniejszej liczby niekwadratowej modulo <math>m</math> wiemy, że kongruencja
  
::<math>\left( {\small\frac{a^{- 1}}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>x^2 \equiv \mathbb{n} (m) \pmod{m}</math>
  
Co należało pokazać.
+
nie ma rozwiązania. Oznacza to, że istnieje liczba pierwsza nieparzysta <math>p</math> taka, że <math>p \mid m \;</math> i <math>\; \left( {\small\frac{\mathbb{n} (m)}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Ponieważ <math>p \mid 2 m</math>, to wynika stąd natychmiast, że kongruencja
  
 +
::<math>x^2 \equiv \mathbb{n} (m) \pmod{2 m}</math>
  
Niech <math>a, b</math> będą liczbami kwadratowymi (niekwadratowymi). Iloczyn <math>a b^{- 1}</math> jest liczbą kwadratową, bo
+
również nie ma rozwiązania (zobacz J55).
  
::<math>\left( {\small\frac{a b^{- 1}}{p}} \right)_{\small{\!\! L}}
+
Zatem <math>\mathbb{n} (2 m) \leqslant \mathbb{n} (m) .</math> Niech <math>q</math> będzie liczbą pierwszą taką, że <math>2 < q <\mathbb{n} (m) .</math> Kongruencję
= \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{b^{- 1}}{p}} \right)_{\small{\!\! L}}
 
= \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! L}}
 
= \left( \pm 1 \right) \cdot \left( \pm 1 \right)
 
= \left( \pm 1 \right)^2
 
= 1</math>
 
  
Zatem istnieje taka liczba <math>r</math>, że
+
::<math>x^2 \equiv q \pmod{2 m} \qquad \qquad (1)</math>
  
::<math>a b^{- 1} \equiv r^2 \!\! \pmod{p}</math>
+
możemy zapisać w&nbsp;postaci układu kongruencji równoważnych (zobacz J1)
  
Czyli
+
::<math>\begin{align}
 +
x^2 & \equiv q \pmod{m} \qquad \qquad \;\: (2) \\
 +
x^2 & \equiv q \pmod{2} \qquad \qquad \;\;\,\, (3) \\
 +
\end{align}</math>
 +
 
 +
Z definicji <math>q</math> jest liczbą kwadratową modulo <math>m</math>, zatem kongruencja <math>(2)</math> ma rozwiązanie – oznaczmy to rozwiązanie przez <math>x_0 .</math> Łatwo zauważamy, że liczba
  
::<math>a \equiv b r^2 \!\! \pmod{p}</math>
+
::<math>x'_0 =
 +
  \begin{cases}
 +
  \;\;\;\; x_0 & \text{gdy} \quad x_0 \equiv 1 \pmod{2} \\
 +
  x_0 + m & \text{gdy} \quad x_0 \equiv 0 \pmod{2} \\
 +
  \end{cases}</math>
  
Co należało pokazać.<br/>
+
jest rozwiązaniem układu kongruencji <math>(2)</math> i <math>(3)</math>, a&nbsp;tym samym kongruencja <math>(1)</math> ma rozwiązanie dla każdego <math>2 < q <\mathbb{n} (m) .</math> Wynika stąd, że <math>\mathbb{n} (2 m) =\mathbb{n} (m) .</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1017: Linia 1489:
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K40</span><br/>
 +
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
  
 +
::<math>\begin{array}{lllll}
 +
  \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2        & & \text{gdy } \;\; 3 \mid m \\
 +
  \mathbb{n} (4 m) = 3        & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\
 +
\end{array}</math>
  
== Symbol Jacobiego ==
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
<span style="font-size: 110%; font-weight: bold;">Definicja J33</span><br/>
+
'''Punkt 1.'''
Niech liczby <math>a \in \mathbb{Z}</math> i <math>m \in \mathbb{Z}_+</math> będą względnie pierwsze. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math>, jeżeli kongruencja
+
 
 +
Z twierdzenia K34 wynika, że w&nbsp;przypadku, gdy <math>3 \mid m</math>, to <math>\mathbb{n} (m) = 2 .</math> Ponieważ <math>2 \mid 4 m</math> i <math>3 \mid 4 m</math>, to <math>\mathbb{n} (4 m) \geqslant 5 .</math>
 +
 
 +
'''Punkt 2.'''
 +
 
 +
Ponieważ <math>m</math> jest liczbą nieparzystą, to <math>8 \nmid 4 m</math>, ale <math>4 \mid 4 m \;</math> i <math>\; 4 \nmid (3 - 1)</math>, zatem z&nbsp;twierdzenia J55 wynika, że kongruencja
 +
 
 +
::<math>x^2 \equiv 3 \pmod{4 m}</math>
 +
 
 +
nie ma rozwiązania. Ponieważ <math>2 \mid 4 m \;</math> i <math>\; 3 \nmid 4 m</math>, to <math>\mathbb{n} (4 m) = 3 .</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K41</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>p \,</math> i <math>\, p \mid m</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m .</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Wiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy kongruencja
  
 
::<math>x^2 \equiv a \pmod{m}</math>
 
::<math>x^2 \equiv a \pmod{m}</math>
  
ma rozwiązanie, czyli istnieje taka liczba <math>k \in \mathbb{Z}</math>, że <math>m \mid (k^2 - a)</math>.
+
ma rozwiązanie. Przypuśćmy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m .</math> Zatem istnieje taka liczba <math>k \in \mathbb{Z}</math>, że
 +
 
 +
::<math>k^2 \equiv a \pmod{m}</math>
 +
 
 +
Ponieważ z&nbsp;założenia <math>p \mid m</math>, to prawdziwa jest też kongruencja
 +
 
 +
::<math>k^2 \equiv a \pmod{p}</math>
 +
 
 +
co przeczy założeniu, że liczba <math>a</math> jest liczbą niekwadratową modulo <math>p .</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K42</span><br/>
 +
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to istnieje taki dzielnik pierwszy <math>p</math> liczby <math>m</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p .</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby <math>m</math>: <math>\{ p_1, \ldots, p_s \}</math> i&nbsp;powiązany z&nbsp;dzielnikami pierwszymi <math>p_k</math> zbiór najmniejszych liczb niekwadratowych modulo <math>p_k</math>: <math>\{ \mathbb{n}_1, \ldots, \mathbb{n}_s \}</math>, z&nbsp;których każda jest liczbą niekwadratową modulo <math>m</math> (zobacz K41). Wynika stąd, że liczba <math>\mathbb{n} = \mathbb{n} (m)</math> musi być mniejsza od każdej z&nbsp;liczb <math>\mathbb{n}_k .</math>
 +
 
 +
Z definicji liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest liczbą niekwadratową modulo <math>m</math>, co oznacza, że kongruencja
 +
 
 +
::<math>x^2 \equiv \mathbb{n} \pmod{m}</math>
 +
 
 +
nie ma rozwiązania. Niech <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s .</math> Zatem przynajmniej jedna z&nbsp;kongruencji
 +
 
 +
::<math>x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k}</math>
 +
 
 +
musi nie mieć rozwiązania (zobacz J11). Z&nbsp;twierdzenia J49 wiemy, że wtedy kongruencja
 +
 
 +
::<math>x^2 \equiv \mathbb{n} \pmod{p_k}</math>
 +
 
 +
również nie ma rozwiązania. Zatem <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>p_k \,</math> i <math>\, \mathbb{n} < \mathbb{n}_k</math>, co przeczy definicji liczby <math>\mathbb{n}_k .</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K43</span><br/>
 +
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
 +
 
 +
::<math>\mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) )</math>
 +
 
 +
gdzie <math>\mathbb{n}(m)</math> jest najmniejszą liczbą kwadratową modulo <math>m</math>, a <math>\mathbb{n}(p_k)</math> są najmniejszymi liczbami kwadratowymi modulo <math>p_k .</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Twierdzenie to jest prostym wnioskiem z&nbsp;twierdzenia K42, ale musimy jeszcze pokazać, że <math>\gcd (\mathbb{n} (m), m) = 1 .</math> Przypuśćmy, że <math>p_k |\mathbb{n} (m)</math> dla pewnego <math>1 \leqslant k \leqslant s .</math> Ponieważ <math>\mathbb{n} (m)</math> jest liczbą pierwszą, to musi być <math>\mathbb{n} (m) = p_k</math>, ale wtedy
 +
 
 +
::<math>\mathbb{n} (p_k) < p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k)</math>
 +
 
 +
Otrzymana sprzeczność dowodzi, że <math>\mathbb{n} (m)</math> jest względnie pierwsza z&nbsp;każdą z&nbsp;liczb pierwszych <math>p_i</math>, gdzie <math>1 \leqslant i \leqslant s .</math> Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
  
Powiemy, że liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, jeżeli kongruencja
 
  
::<math>x^2 \equiv a \pmod{m}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K44</span><br/>
 +
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>\mathbb{n}(m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m .</math> Prawdziwe są oszacowania
 +
 
 +
::<math>\mathbb{n}(m) < \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3</math>
 +
 
 +
::<math>\mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>p</math> będzie dzielnikiem pierwszym liczby <math>m</math> takim, że <math>\mathbb{n}(m) = \mathbb{n} (p)</math> (z twierdzenia K42 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie <math>\mathbb{n}(p) < F (p)</math>, gdzie <math>F(x)</math> jest funkcją rosnącą, to
 +
 
 +
::<math>\mathbb{n}(m) = \mathbb{n} (p) < F (p) \leqslant F (m)</math>
 +
 
 +
Podane w&nbsp;twierdzeniu oszacowania wynikają natychmiast z&nbsp;twierdzeń K21 i&nbsp;K22.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga K45</span><br/>
 +
Liczby <math>\mathbb{n} (m)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (m)</math> wynosi<ref name="Pollack1"/>
 +
 
 +
::<math>\lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots</math>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
 +
| &nbsp;'''C.''' Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>&nbsp;
 +
|}
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Przykład K46</span><br/>
 +
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>, najmniejsze liczby niekwadratowe modulo <math>m</math> i&nbsp;najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>.
  
nie ma rozwiązania.
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 +
|-
 +
!  <math>\boldsymbol{\mathbb{n}( p )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 +
|-
 +
!  <math>\boldsymbol{\mathbb{n}( m )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>3</math> || <math>2</math>
 +
|-
 +
!  <math>\boldsymbol{c( m )}</math>
 +
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>7</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>7</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>-</math> || <math>2</math>
 +
|}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J34</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K47</span><br/>
Prosta funkcja pozwala łatwo sprawdzić, czy liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math>.
+
Do wyszukiwania liczb <math>c = c (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
  
  <span style="font-size: 90%; color:black;">isQR(a, m) =  
+
  <span style="font-size: 90%; color:black;">C(m) =  
\\ funkcja zwraca 1, gdy a jest liczbą kwadratową modulo m,
 
\\ -1, gdy a jest liczbą niekwadratową i 0, gdy gcd(a, m) > 1
 
 
  {
 
  {
  '''local'''(w);
+
  '''if'''( m%2 == 0, '''return'''(0) );
  '''if'''( '''gcd'''(a, m) > 1, '''return'''(0) ); \\ liczba nie jest ani QR, ani QNR
+
  '''if'''( '''issquare'''(m), '''return'''(0) );
w = -1;
+
  '''forprime'''(p = 2, m, '''if'''( jacobi(p, m) == -1, '''return'''(p) ));
  '''for'''(k = 1, '''floor'''(m/2), '''if'''( (k^2 - a)%m == 0, w = 1; '''break'''() ));
 
'''return'''(w);
 
 
  }</span>
 
  }</span>
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J35</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K48</span><br/>
Ponieważ często można spotkać definicję liczb kwadratowych i&nbsp;niekwadratowych modulo <math>m</math>, w&nbsp;której warunek <math>\gcd (a, m) = 1</math> zostaje pominięty, to Czytelnik powinien zawsze upewnić się, jaka definicja jest stosowana. Najczęściej w&nbsp;takim przypadku liczba <math>0</math> nie jest uznawana za liczbę kwadratową modulo <math>m</math>.
+
Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math> oznaczyliśmy jako <math>c(m)</math>. Zauważmy, że są to liczby inne od <math>\mathbb{n}(p)</math> i <math>\mathbb{n}(m)</math>. Wystarczy zwrócić uwagę na występujące w&nbsp;tabeli liczby <math>\mathbb{n}(p)</math>, <math>\mathbb{n}(m)</math> i <math>c(m)</math> dla <math>m = 15, 33, 39</math>. Różnice wynikają z&nbsp;innej definicji liczb <math>c(m)</math> – jeżeli liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> nie musi być równy <math>- 1</math>. I&nbsp;tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.
  
Przykładowo:
+
Ponieważ <math>c(m)</math> nie zawsze będzie najmniejszą liczbą kwadratową modulo <math>m</math>, to mamy natychmiast oszacowanie: <math>c(m) \geqslant \mathbb{n} (m)</math> (poza przypadkami, gdy <math>m = n^2</math>).
  
::<math>\left\{ 0^2, 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2 \right\} \equiv \left\{ 0, 1, 4, 9, 6, 5, 6, 9, 4, 1 \right\} \pmod{10}</math>
+
Dla <math>c(m)</math> nie są prawdziwe oszacowania podane w&nbsp;twierdzeniu K21. Łatwo zauważamy, że
  
Liczby kwadratowe modulo <math>10</math> to <math>\left\{ 1, 9 \right\}</math>, a&nbsp;niekwadratowe to <math>\left\{ 3, 7 \right\}</math>. Liczby <math>\left\{ 0, 2, 4, 5, 6, 8 \right\}</math> nie są ani liczbami kwadratowymi, ani liczbami niekwadratowymi modulo <math>10</math>.
+
::<math>c = c (15) = 7 > \sqrt{15} + {\small\frac{1}{2}} \approx 4.37</math>
  
Jeśli odrzucimy warunek <math>\gcd (a, m) = 1</math>, to liczbami kwadratowymi modulo <math>10</math> będą <math>\left\{ 0, 1, 4, 5, 6, 9 \right\}</math>, a&nbsp;niekwadratowymi <math>\left\{ 2, 3, 7, 8 \right\}</math>.
+
::<math>c = c (39) = 7 > \sqrt{39} + {\small\frac{1}{2}} \approx 6.74</math>
  
Inny przykład. Niech <math>m = 210 = 2 \cdot 3 \cdot 5 \cdot 7</math>. W&nbsp;zależności od przyjętej definicji najmniejszą liczbą niekwadratową modulo <math>m</math> będzie albo <math>11</math>, albo <math>2</math>.
+
::<math>c = c (105) = 11 > \sqrt{105} + {\small\frac{1}{2}} \approx 10.75</math>
  
 +
::<math>c = c (231) = 17 > \sqrt{231} + {\small\frac{1}{2}} \approx 15.7</math>
  
 +
Nie ma więcej takich przypadków dla <math>m < 10^9</math>.
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J36</span><br/>
 
Niech liczby <math>m, n \in \mathbb{Z}_+</math> i <math>\gcd (m, n) = 1</math>. Pokazać, że liczba <math>a \in \mathbb{Z}</math> jest liczbą kwadratową modulo <math>m n</math> wtedy i&nbsp;tylko wtedy, gdy jest liczbą kwadratową modulo <math>m</math> i&nbsp;modulo <math>n</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
 
Niech <math>W(x) = x^2 - a</math>. Zauważmy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy kongruencja <math>W(x) \equiv 0 \!\! \pmod{m}</math> ma rozwiązanie. Dalsza analiza problemu przebiega dokładnie tak, jak to zostało przedstawione w&nbsp;uwadze J11.<br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K49</span><br/>
 +
Niech <math>c, m \in \mathbb{Z}_+</math> i&nbsp;niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>c</math> będzie najmniejszą liczbą taką, że <math>\left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1</math>. Liczba <math>c</math> musi być liczbą pierwszą.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Przypuśćmy, że <math>c = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < c</math>. Mamy
 +
 
 +
::<math>- 1 = \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math><math>\left( {\small\frac{b}{m}} \right)_{\small{\!\! J}}</math>
 +
 
 +
Zatem jeden z&nbsp;czynników po prawej stronie musi być równy <math>- 1</math> wbrew definicji liczby <math>c</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1077: Linia 1674:
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja J37</span><br/>
 
Symbol Jacobiego<ref name="jacobi1"/> <math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}}</math> jest uogólnieniem symbolu Legendre'a <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}}</math> dla dodatnich liczb nieparzystych.
 
Niech <math>n = \prod_i p_i^{\alpha_i}</math> będzie rozkładem liczby <math>n</math> na czynniki pierwsze, wtedy
 
  
::<math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} = \prod_i \left( {\small\frac{a}{p_i}} \right)_{\small{\!\! L}}^{\!\! \alpha_i}</math>
 
  
 +
== Liczby pierwsze postaci <math>x^2 + n y^2</math> ==
  
 +
<span style="font-size: 110%; font-weight: bold;">Przykład K50</span><br/>
 +
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>85</math> na sumę postaci <math>x^2 + y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. Rozkłady różniące się jedynie kolejnością liczb <math>x , y</math> nie zostały uwzględnione.
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J38</span><br/>
+
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
Zauważmy, że w&nbsp;przypadku gdy <math>n = 1</math>, po prawej stronie mamy „pusty” iloczyn (bez jakiegokolwiek czynnika). Podobnie jak „pustej” sumie przypisujemy wartość zero, tak „pustemu” iloczynowi przypisujemy wartość jeden. Zatem dla dowolnego <math>a \in \mathbb{Z}</math> jest <math>\left( {\small\frac{a}{1}} \right)_{\small{\!\! J}} = 1</math>.
+
|-
 +
! <math>\boldsymbol{n}</math>  
 +
| <math>1</math> || style="background-color: #99cc66" | <math>2</math> || <math>4</math> || style="background-color: #99cc66" | <math>5</math> || <math>8</math> || <math>9</math> || <math>10</math> || style="background-color: #99cc66" | <math>13</math> || <math>16</math> || style="background-color: #99cc66" | <math>17</math> || <math>18</math> || <math>20</math> || <math>25</math> || <math>26</math> || style="background-color: #99cc66" | <math>29</math> || <math>32</math> || <math>34</math> || <math>36</math> || style="background-color: #99cc66" | <math>37</math> || <math>40</math> || style="background-color: #99cc66" | <math>41</math> || <math>45</math> || <math>49</math> || <math>50</math> || <math>52</math> || style="background-color: #99cc66" | <math>53</math> || <math>58</math> ||style="background-color: #99cc66" | <math>61</math> || <math>64</math> || <math>65</math> || <math>68</math> || <math>72</math> || style="background-color: #99cc66" | <math>73</math> || <math>74</math> || <math>80</math> || <math>81</math> || <math>82</math> || <math>85</math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>  
 +
| <math>1,0</math> || <math>1,1</math> || <math>2,0</math> || <math>2,1</math> || <math>2,2</math> || <math>3,0</math> || <math>3,1</math> || <math>3,2</math> || <math>4,0</math> || <math>4,1</math> || <math>3,3</math> || <math>4,2</math> || <math>5,0</math> || <math>5,1</math> || <math>5,2</math> || <math>4,4</math> || <math>5,3</math> || <math>6,0</math> || <math>6,1</math> || <math>6,2</math> || <math>5,4</math> || <math>6,3</math> || <math>7,0</math> || <math>7,1</math> || <math>6,4</math> || <math>7,2</math> || <math>7,3</math> || <math>6,5</math> || <math>8,0</math> || <math>8,1</math> || <math>8,2</math> || <math>6,6</math> || <math>8,3</math> || <math>7,5</math> || <math>8,4</math> || <math>9,0</math> || <math>9,1</math> || <math>9,2</math>
 +
|-
 +
! <math>\boldsymbol{x,y}</math>  
 +
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>4,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>5,5</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>7,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>7,6</math>
 +
|}
  
 +
Zauważmy, że liczba złożona <math>21</math> nie ma rozkładu na sumę kwadratów, a&nbsp;liczba złożona <math>65</math> ma dwa takie rozkłady. Obie liczby są postaci <math>4 k + 1</math>.
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J39*</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>m, n \in \mathbb{Z}_+</math> i <math>m, n</math> będą liczbami nieparzystymi. Symbol Jacobiego ma następujące właściwości
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
<span style="font-size: 110%; font-weight: bold;">Przykład K51</span><br/>
 +
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>73</math> na sumę postaci <math>x^2 + 2 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>.
 +
 
 +
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 
|-
 
|-
| &nbsp;&nbsp;1.&nbsp;&nbsp; || <math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} \,\, = \,\, 0 \quad \Longleftrightarrow \quad \gcd (a, n) > 1</math>
+
! <math>\boldsymbol{n}</math>
 +
| <math>1</math> || style="background-color: #99cc66" | <math>2</math> || style="background-color: #99cc66" | <math>3</math> || <math>4</math> || <math>6</math> || <math>8</math> || <math>9</math> || style="background-color: #99cc66" | <math>11</math> || <math>12</math> || <math>16</math> || style="background-color: #99cc66" | <math>17</math> || <math>18</math> || style="background-color: #99cc66" | <math>19</math> || <math>22</math> || <math>24</math> || <math>25</math> || <math>27</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>36</math> || <math>38</math> || style="background-color: #99cc66" | <math>41</math> || style="background-color: #99cc66" | <math>43</math> || <math>44</math> || <math>48</math> || <math>49</math> || <math>50</math> || <math>51</math> || <math>54</math> || <math>57</math> || style="background-color: #99cc66" | <math>59</math> || <math>64</math> || <math>66</math> || style="background-color: #99cc66" | <math>67</math> || <math>68</math> || <math>72</math> || style="background-color: #99cc66" | <math>73</math>
 
|-
 
|-
| &nbsp;&nbsp;2.&nbsp;&nbsp; || <math>a \equiv b \pmod n \quad \Longrightarrow \quad \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} = \left( {\small\frac{b}{n}} \right)_{\small{\!\! J}}</math>
+
! <math>\boldsymbol{x,y}</math>
 +
| <math>1,0</math> || <math>0,1</math> || <math>1,1</math> || <math>2,0</math> || <math>2,1</math> || <math>0,2</math> || <math>3,0</math> || <math>3,1</math> || <math>2,2</math> || <math>4,0</math> || <math>3,2</math> || <math>4,1</math> || <math>1,3</math> || <math>2,3</math> || <math>4,2</math> || <math>5,0</math> || <math>5,1</math> || <math>0,4</math> || <math>5,2</math> || <math>4,3</math> || <math>6,0</math> || <math>6,1</math> || <math>3,4</math> || <math>5,3</math> || <math>6,2</math> || <math>4,4</math> || <math>7,0</math> || <math>0,5</math> || <math>7,1</math> || <math>6,3</math> || <math>7,2</math> || <math>3,5</math> || <math>8,0</math> || <math>8,1</math> || <math>7,3</math> || <math>6,4</math> || <math>8,2</math> || <math>1,6</math>
 
|-
 
|-
| &nbsp;&nbsp;3.&nbsp;&nbsp; || <math>\left( {\small\frac{a b}{n}} \right)_{\small{\!\! J}} \,\, = \,\, \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} \cdot  \left( {\small\frac{b}{n}} \right)_{\small{\!\! J}}</math>
+
! <math>\boldsymbol{x,y}</math>
|-
+
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,2</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>0,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>3,3</math> || <math></math> || <math>1,4</math> || <math></math> || <math>2,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,5</math> || <math>2,5</math> || <math>5,4</math> || <math></math> || <math></math> || <math>4,5</math> || <math></math> || <math></math> || <math>0,6</math> || <math></math>
| &nbsp;&nbsp;4.&nbsp;&nbsp; || <math>\left( {\small\frac{a}{m n}} \right)_{\small{\!\! J}} \,\, = \,\, \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} \cdot  \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}}</math>
+
|}
|-
+
 
| &nbsp;&nbsp;5.&nbsp;&nbsp; || <math>\left( {\small\frac{1}{n}} \right)_{\small{\!\! J}} \,\, = \,\, 1</math>
+
Zauważmy, że liczba złożona <math>65</math> nie ma rozkładu na sumę postaci <math>x^2 + 2 y^2</math>, a&nbsp;liczba złożona <math>33</math> ma dwa takie rozkłady. Obie liczby są postaci <math>8 k + 1</math>.
 +
 
 +
Zauważmy też, że liczba złożona <math>35</math> nie ma rozkładu na sumę postaci <math>x^2 + 2 y^2</math>, a&nbsp;liczba złożona <math>27</math> ma dwa takie rozkłady. Obie liczby są postaci <math>8 k + 3</math>.
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Przykład K52</span><br/>
 +
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>103</math> na sumę postaci <math>x^2 + 3 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>.
 +
 
 +
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 
|-
 
|-
| &nbsp;&nbsp;6.&nbsp;&nbsp; || <math>\left( {\small\frac{- 1}{n}} \right)_{\small{\!\! J}} \,\, = \,\, (- 1)^{\tfrac{n - 1}{2}} \,\, = \,\,
+
! <math>\boldsymbol{n}</math>
  \begin{cases}
+
| <math>1</math> || style="background-color: #99cc66" | <math>3</math> || <math>4</math> || style="background-color: #99cc66" | <math>7</math> || <math>9</math> || <math>12</math> || style="background-color: #99cc66" | <math>13</math> || <math>16</math> || style="background-color: #99cc66" | <math>19</math> || <math>21</math> || <math>25</math> || <math>27</math> || <math>28</math> || style="background-color: #99cc66" | <math>31</math> || <math>36</math> || style="background-color: #99cc66" | <math>37</math> || <math>39</math> || style="background-color: #99cc66" | <math>43</math> || <math>48</math> || <math>49</math> || <math>52</math> || <math>57</math> || style="background-color: #99cc66" | <math>61</math> || <math>63</math> || <math>64</math> || style="background-color: #99cc66" | <math>67</math> || style="background-color: #99cc66" | <math>73</math> || <math>75</math> || <math>76</math> || style="background-color: #99cc66" | <math>79</math> || <math>81</math> || <math>84</math> || <math>91</math> || <math>93</math> || style="background-color: #99cc66" | <math>97</math> || <math>100</math> || style="background-color: #99cc66" | <math>103</math>
\;\;\: 1 & \text{gdy } n \equiv 1 \pmod{4} \\
 
      - 1 & \text{gdy } n \equiv 3 \pmod{4}
 
  \end{cases}</math>
 
 
|-
 
|-
| &nbsp;&nbsp;7.&nbsp;&nbsp; || <math>\left( {\small\frac{2}{n}} \right)_{\small{\!\! J}} \,\, = \,\, (- 1)^{\tfrac{n^2 - 1}{8}} \,\, = \,\,  
+
! <math>\boldsymbol{x,y}</math>
  \begin{cases}
+
| <math>1,0</math> || <math>0,1</math> || <math>2,0</math> || <math>2,1</math> || <math>3,0</math> || <math>3,1</math> || <math>1,2</math> || <math>4,0</math> || <math>4,1</math> || <math>3,2</math> || <math>5,0</math> || <math>0,3</math> || <math>5,1</math> || <math>2,3</math> || <math>6,0</math> || <math>5,2</math> || <math>6,1</math> || <math>4,3</math> || <math>6,2</math> || <math>7,0</math> || <math>7,1</math> || <math>3,4</math> || <math>7,2</math> || <math>6,3</math> || <math>8,0</math> || <math>8,1</math> || <math>5,4</math> || <math>0,5</math> || <math>8,2</math> || <math>2,5</math> || <math>9,0</math> || <math>9,1</math> || <math>8,3</math> || <math>9,2</math> || <math>7,4</math> || <math>10,0</math> || <math>10,1</math>
\;\;\: 1 & \text{gdy } n \equiv 1, 7 \pmod{8} \\
 
      - 1 & \text{gdy } n \equiv 3, 5 \pmod{8}
 
  \end{cases}</math>
 
 
|-
 
|-
| &nbsp;&nbsp;8.&nbsp;&nbsp; || <math>\left( {\small\frac{- 2}{n}} \right)_{\small{\!\! J}} \,\, = \,\, (- 1)^{\tfrac{(n - 1)(n - 3)}{8}} \,\, = \,\,  
+
! <math>\boldsymbol{x,y}</math>
  \begin{cases}
+
| <math></math> || <math></math> || <math>1,1</math> || <math></math> || <math></math> || <math>0,2</math> || <math></math> || <math>2,2</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>4,2</math> || <math></math> || <math>3,3</math> || <math></math> || <math></math> || <math></math> || <math>0,4</math> || <math>1,4</math> || <math>5,3</math> || <math></math> || <math></math> || <math></math> || <math>4,4</math> || <math></math> || <math></math> || <math></math> || <math>7,3</math> || <math></math> || <math></math> || <math>6,4</math> || <math>4,5</math> || <math></math> || <math></math> || <math>5,5</math> || <math></math>
\;\;\: 1 & \text{gdy } n \equiv 1, 3 \pmod{8} \\
 
      - 1 & \text{gdy } n \equiv 5, 7 \pmod{8}
 
  \end{cases}</math>
 
 
|-
 
|-
| &nbsp;&nbsp;9.&nbsp;&nbsp; || <math>\left( {\small\frac{m}{n}} \right)_{\small{\!\! J}} \,\, = \,\, \left( {\small\frac{n}{m}} \right)_{\small{\!\! J}} \cdot (-1)^{\tfrac{n - 1}{2} \cdot \tfrac{m - 1}{2}} \,\, = \,\, \left( {\small\frac{n}{m}} \right)_{\small{\!\! J}} \cdot
+
! <math>\boldsymbol{x,y}</math>
\begin{cases}
+
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>2,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,5</math> || <math></math> || <math></math> || <math>3,5</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math>
\;\;\: 1 & \text{gdy } m \equiv 1 \pmod{4} \;\;\; \text{lub} \;\;\; n \equiv 1 \pmod{4} \\
 
      - 1 & \text{gdy } m \equiv n \equiv 3 \pmod{4}
 
  \end{cases}</math>
 
 
|}
 
|}
  
 +
Zauważmy, że liczba złożona <math>55</math> nie ma rozkładu na sumę postaci <math>x^2 + 3 y^2</math>, a&nbsp;liczba złożona <math>91</math> ma dwa takie rozkłady. Obie liczby są postaci <math>6 k + 1</math>.
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K53</span><br/>
 +
Jeżeli liczba nieparzysta postaci <math>Q = x^2 + n y^2</math>, gdzie <math>n \in \{ 1, 2, 3 \}</math>, ma dwa różne takie przedstawienia w&nbsp;liczbach całkowitych dodatnich, to jest liczbą złożoną.
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W dowodzie wyróżniliśmy miejsca, które wymagają oddzielnej analizy ze względu na wartość liczby <math>n</math>.
 +
 +
Niech
 +
 +
::<math>Q = x^2 + n y^2 = a^2 + n b^2</math>
 +
 +
<div style="border: thin solid black; padding-top: 0em; margin-top: 0.5em; padding-bottom: 0em; margin-bottom: 0.5em;">
 +
<math>\boldsymbol{n = 1}</math>
 +
 +
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby występujące w&nbsp;rozkładach <math>x^2 + y^2 = a^2 + b^2</math> muszą mieć przeciwną parzystość. Nie zmniejszając ogólności, możemy założyć, że liczby <math>x, a</math> są nieparzyste, a&nbsp;liczby <math>y, b</math> parzyste.
 +
 +
<math>\boldsymbol{n = 2}</math>
 +
 +
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby <math>x, a</math> występująca w&nbsp;rozkładach <math>x^2 + 2 y^2 = a^2 + 2 b^2</math> muszą być nieparzyste. Pokażemy, że liczby <math>y, b</math> muszą mieć taką samą parzystość. Przypuśćmy, że <math>y</math> jest parzysta, a <math>b</math> nieparzysta, wtedy modulo <math>4</math> dostajemy
 +
 +
::<math>1 + 2 \cdot 0 \equiv 1 + 2 \cdot 1 \!\! \pmod{4}</math>
 +
 +
Co jest niemożliwe.
 +
 +
<math>\boldsymbol{n = 3}</math>
 +
 +
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby występujące w&nbsp;rozkładach <math>x^2 + 3 y^2 = a^2 + 3 b^2</math> muszą mieć przeciwną parzystość. Pokażemy, że liczby <math>x, a</math> muszą mieć taką samą parzystość. Gdyby liczba <math>x</math> była nieparzysta, a&nbsp;liczba <math>a</math> parzysta, to modulo <math>4</math> mielibyśmy
 +
 +
::<math>1 + 3 \cdot 0 \equiv 0 + 3 \cdot 1 \!\! \pmod{4}</math>
 +
 +
Co jest niemożliwe.
 +
</div>
 +
Z powyższego zestawienia wynika, że liczby <math>x, a</math> i liczby <math>y, b</math> mają taką samą parzystość. Mamy
 +
 +
::<math>x^2 - a^2 = n (b^2 - y^2)</math>
 +
 +
::<math>(x - a) (x + a) = n (b - y) (b + y)</math>
 +
 +
Niech <math>f = \gcd (x - a, b - y)</math>, zatem <math>f</math> jest liczbą parzystą i
  
 +
::<math>x - a = f r , \qquad \qquad b - y = f s , \qquad \qquad \gcd (r, s) = 1</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J40</span><br/>
+
Czyli
Zauważmy, że poza zmienionym założeniem tabela z&nbsp;powyższego twierdzenia i&nbsp;tabela z&nbsp;twierdzenia J31 różnią się jedynie punktem czwartym. Oczywiście jest to tylko podobieństwo formalne – symbol Legendre'a i&nbsp;symbol Jacobiego są różnymi funkcjami.
 
  
 +
::<math>r(x + a) = n s (y + b)</math>
  
 +
ale liczby <math>r, s</math> są względnie pierwsze, zatem <math>s \mid (x + a)</math> i&nbsp;musi być
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J41</span><br/>
+
::<math>x + a = k s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = k r</math>
Zauważmy, że w&nbsp;przypadku, gdy <math>m</math> jest liczbą nieparzystą
 
  
:* jeżeli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m</math>
+
Gdyby <math>k</math> było liczbą nieparzystą, to liczby <math>r, s</math> musiałyby być parzyste, co jest niemożliwe, bo <math>\gcd (r, s) = 1</math>. Zatem <math>k</math> jest liczbą parzystą i <math>2 s \mid (x + a)</math>, czyli możemy pokazać więcej. Musi być
:* jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to '''nie musi być''' <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>
 
:* jeżeli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1</math>, to <math>a</math> '''nie musi być''' liczbą kwadratową modulo <math>m</math>
 
:* jeżeli <math>a</math> jest liczbą kwadratową modulo <math>m</math>, to jest <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1</math>
 
  
Przykład: jeżeli <math>\gcd (a, m) = 1</math>, to <math>\left( {\small\frac{a}{m^2}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}^2 = + 1</math>, ale <math>a</math> może być liczbą niekwadratową modulo <math>m^2</math>.
+
::<math>x + a = 2 l s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = 2 l r</math>
  
Modulo <math>9</math> liczbami niekwadratowymi są: <math>2, 5, 8</math>. Modulo <math>25</math> liczbami niekwadratowymi są: <math>2, 3, 7, 8, 12, 13, 17, 18, 22, 23</math>.
+
W przypadku gdy <math>n = 2</math> lub <math>n = 3</math>, zauważmy, że <math>n \mid l</math> lub <math>n \mid r</math>.
  
 +
Łatwo otrzymujemy
  
 +
::<math>x = {\small\frac{1}{2}} (2 l s + f r)</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J42</span><br/>
+
::<math>y = {\small\frac{1}{2 n}} (2 l r - n f s)</math>
Wszystkie liczby kwadratowe i&nbsp;niekwadratowe modulo <math>m</math> można łatwo znaleźć, wykorzystując prosty program:
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
Ostatecznie
<span style="font-size: 90%; color:black;">QRandQNR(m) =
+
 
{
+
::<math>Q = x^2 + n y^2</math>
'''local'''(k, S, V);
+
 
S = [];
+
::<math>\;\;\;\: = \left[ {\small\frac{1}{2}} (2 l s + f r) \right]^2 + n \left[ {\small\frac{1}{2 n}} (2 l r - n f s) \right]^2</math>
V = [];
+
 
'''for'''(k = 1, m - 1, '''if'''( '''gcd'''(k, m) > 1, '''next'''() ); S = '''concat'''(S, k));
+
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s + f r)^2 + (2 l r - n f s)^2]</math>
S = '''Set'''(S); \\ zbiór liczb względnie pierwszych z m
+
 
'''for'''(k = 1,  m - 1, '''if'''( '''gcd'''(k, m) > 1, '''next'''() ); V = '''concat'''(V, k^2 % m));
+
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s)^2 + n (f r)^2 + (2 l r)^2 + (n f s)^2]</math>
V = '''Set'''(V); \\ zbiór liczb kwadratowych modulo m
+
 
'''print'''("QR: ", V);
+
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2)</math>
'''print'''("QNR: ", '''setminus'''(S, V)); \\ różnica zbiorów S i V
+
 
}</span>
+
<div style="border: thin solid black; padding-top: 0em; margin-top: 0.5em; padding-bottom: 0em; margin-bottom: 0.5em;">
<br/>
+
<math>\boldsymbol{n = 1}</math>
 +
 
 +
::<math>Q = {\small\frac{1}{4}} [(2 l)^2 + f^2] (r^2 + s^2) = \left[ l^2 + \left( {\small\frac{f}{2}} \right)^2 \right] (r^2 + s^2)</math>
 +
 
 +
<math>\boldsymbol{n = 2 , 3}</math>
 +
 
 +
W zależności od tego, która z&nbsp;liczb <math>l, r</math> jest podzielna przez <math>n</math>, możemy napisać
 +
 
 +
::<math>Q = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4 n}} \right] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4}} \right] \left( {\small\frac{r^2 + n s^2}{n}} \right)</math>
 +
</div>
 +
 
 +
Co kończy dowód.<br/>
 +
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J43</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K54</span><br/>
Pokazać, że
+
Zauważmy, że iloczyn liczb postaci <math>x^2 + n y^2</math> jest liczbą tej samej postaci.
 
 
::<math>\left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} =
 
\begin{cases}
 
\;\;\: 1 & \text{gdy } m = 6 k + 1 \\
 
\;\;\: 0 & \text{gdy } m = 6 k + 3 \\
 
      - 1 & \text{gdy } m = 6 k + 5
 
\end{cases}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>(a^2 + n b^2) (x^2 + n y^2) = (a x + n b y)^2 + n (a y - b x)^2</math>
Zauważmy, że
 
  
::<math>\left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}}</math>
+
::::::::<math>\;\;\;\:\, = (a x - n b y)^2 + n (a y + b x)^2</math>
  
::::<math>\; = (- 1)^{\tfrac{m - 1}{2}} \cdot (- 1)^{\tfrac{m - 1}{2} \cdot \tfrac{3 - 1}{2}} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
 
  
::::<math>\; = (- 1)^{m - 1} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
 
  
::::<math>\; = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K55</span><br/>
 +
Niech <math>x, y, a, b \in \mathbb{Z}</math> i <math>n \in \{ 1, 2, 3 \}</math>. Jeżeli liczba parzysta <math>Q = x^2 + n y^2</math>, to <math>Q = 2^{\alpha} R</math>, gdzie <math>R = a^2 + n b^2</math> jest liczbą nieparzystą.
  
bo <math>m</math> jest liczbą nieparzystą.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W szczególnym przypadku, gdy <math>R = 1</math>, mamy <math>R = 1^2 + n \cdot 0^2</math>.
  
Rozważmy liczby nieparzyste <math>m</math> postaci <math>6 k + r</math>, gdzie <math>r = 1, 3, 5</math>. Mamy
+
Dowód sprowadza się do podania wzorów, które pozwalają obniżyć wykładnik, z&nbsp;jakim liczba <math>2</math> występuje w&nbsp;rozwinięciu na czynniki pierwsze liczby <math>Q</math>. Zauważmy, że wynik jest zawsze liczbą, której postać jest taka sama, jak postać liczby <math>Q</math>. Stosując te wzory odpowiednią ilość razy, otrzymujmy rozkład <math>Q = 2^{\alpha} R</math>, gdzie <math>R</math> jest liczbą nieparzystą postaci <math>a^2 + n b^2</math>.
  
::<math>\left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}}</math>
+
'''1.''' <math>\boldsymbol{Q = x^2 + y^2}</math>
  
::::<math>\; = \left( {\small\frac{6 k + r}{3}} \right)_{\small{\!\! J}}</math>
+
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + \left( {\small\frac{y}{2}} \right)^2</math>
  
::::<math>\; = \left( {\small\frac{r}{3}} \right)_{\small{\!\! J}}</math>
+
b) jeżeli liczby <math>x, y</math> są nieparzyste, to <math>{\small\frac{Q}{2}} = \left( {\small\frac{x + y}{2}} \right)^2 + \left( {\small\frac{x - y}{2}} \right)^2</math>
  
::::<math>\; =
+
'''2.''' <math>\boldsymbol{Q = x^2 + 2 y^2}</math>
\begin{cases}
 
\;\;\: 1 & \text{gdy } r = 1 \\
 
\;\;\: 0 & \text{gdy } r = 3 \\
 
      - 1 & \text{gdy } r = 5
 
\end{cases}</math>
 
  
bo odpowiednio dla <math>r = 1, 3, 5</math> jest
+
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 2 \left( {\small\frac{y}{2}} \right)^2</math>
  
::<math>\left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1</math>
+
b) jeżeli liczba <math>x</math> jest parzysta, a <math>y</math> nieparzysta, to <math>{\small\frac{Q}{2}} = y^2 + 2 \left( {\small\frac{x}{2}} \right)^2</math>
  
::<math>\left( {\small\frac{3}{3}} \right)_{\small{\!\! J}} = 0</math>
+
'''3.''' <math>\boldsymbol{Q = x^2 + 3 y^2}</math>
  
::<math>\left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{9 - 1}{8}} = - 1</math>
+
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 3 \left( {\small\frac{y}{2}} \right)^2</math>
  
Łatwo zauważamy, że
+
b) jeżeli liczby <math>x, y</math> są nieparzyste i <math>4 \mid (x + y)</math>, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x - 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x + y}{4}} \right)^2</math>
  
::<math>\left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3 \cdot 2^2}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}}^{\! 2} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}}</math>
+
c) jeżeli liczby <math>x, y</math> są nieparzyste i <math>4 \mid (x - y)</math>, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x + 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x - y}{4}} \right)^2</math>
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 1228: Linia 1874:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J44</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K56</span><br/>
Pokazać, że
+
Liczba pierwsza <math>p \geqslant 3</math> jest postaci
  
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} =
+
:(a)&nbsp;&nbsp;<math>4 k + 1</math>
\begin{cases}
+
 
\;\;\: 1 & \text{gdy } m = 12 k \pm 1 \\
+
:(b)&nbsp;&nbsp;<math>8 k + 1 \,</math> lub <math>\: 8 k + 3</math>
\;\;\: 0 & \text{gdy } m = 12 k \pm 3 \\
 
      - 1 & \text{gdy } m = 12 k \pm 5
 
\end{cases}</math>
 
  
 +
:(c)&nbsp;&nbsp;<math>6 k + 1</math>
  
::<math>\left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} =
+
wtedy i&nbsp;tylko wtedy, gdy istnieje dokładnie jedna para liczb całkowitych dodatnich <math>x, y</math>, że
\begin{cases}
 
\;\;\: 1 & \text{gdy } m = 10 k \pm 1 \\
 
\;\;\: 0 & \text{gdy } m = 10 k + 5 \\
 
      - 1 & \text{gdy } m = 10 k \pm 3
 
\end{cases}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
:(a)&nbsp;&nbsp;<math>p = x^2 + y^2</math>
  
'''Punkt 1.'''
+
:(b)&nbsp;&nbsp;<math>p = x^2 + 2 y^2</math>
  
Przy wyliczaniu symboli Legendre'a i&nbsp;Jacobiego, zawsze warto sprawdzić, czy da się ustalić przystawanie liczb modulo <math>4</math>. W&nbsp;tym przypadku mamy
+
:(c)&nbsp;&nbsp;<math>p = x^2 + 3 y^2</math>
  
::<math>3 \equiv 3 \pmod{4}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
i odpowiednio dla różnych postaci liczby <math>m</math> jest
+
<math>\Large{\Longleftarrow}</math>
  
::<math>m = 12 k + 1 \equiv 1 \pmod{4}</math>
+
Niech <math>n = 1, 2, 3</math>. Z&nbsp;założenia liczba pierwsza <math>p \geqslant 3</math> może być przedstawiona w&nbsp;postaci <math>p = x_0^2 + n y_0^2</math>, gdzie <math>x_0, y_0</math> są liczbami takimi, że <math>1 \leqslant x_0, y_0 < p</math>. Zatem <math>p \nmid x_0</math> i <math>p \nmid y_0</math>, a&nbsp;rozpatrując równanie <math>p = x_0^2 + n y_0^2</math> modulo <math>p</math> dostajemy
  
::<math>m = 12 k + 5 \equiv 1 \pmod{4}</math>
+
::<math>x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p}</math>
  
::<math>m = 12 k + 7 \equiv 3 \pmod{4}</math>
+
Zauważmy, że liczba <math>x_0</math> jest rozwiązaniem kongruencji
  
::<math>m = 12 k + 11 \equiv 3 \pmod{4}</math>
+
::<math>x^2 \equiv - n y_0^2 \!\! \pmod{p}</math>
  
Ułatwi nam to znacznie wykonywanie przekształceń (zobacz J39 p.9)
+
Wynika stąd, że liczba <math>- n y_0^2</math> jest liczbą kwadratową modulo <math>p</math>. Zatem
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 1}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 1}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1</math>
+
::<math>\left( {\small\frac{- n y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1</math>
 
</div>
 
</div>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Z twierdzenia J41 i&nbsp;zadania J45 otrzymujemy natychmiast
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 5}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1</math>
+
 
</div>
+
:(a) jeżeli <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>4 k + 1</math>
 +
 
 +
:(b) jeżeli <math>\left( {\small\frac{- 2}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>8 k + 1</math> lub <math>8 k + 3</math>
 +
 
 +
:(c) jeżeli <math>\left( {\small\frac{- 3}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>6 k + 1</math>
 +
 
 +
Co należało pokazać.
 +
 
 +
 
 +
<math>\Large{\Longrightarrow}</math>
 +
 
 +
'''A. Istnienie rozwiązania kongruencji''' <math>\boldsymbol{x^2 + n y^2 \equiv 0 \!\! \pmod{p}}</math>
 +
 
 +
Z założenia liczba pierwsza <math>p \geqslant 3</math> jest postaci
 +
 
 +
:(a)&nbsp;&nbsp;<math>4 k + 1</math>
 +
 
 +
:(b)&nbsp;&nbsp;<math>8 k + 1 \,</math> lub <math>\: 8 k + 3</math>
 +
 
 +
:(c)&nbsp;&nbsp;<math>6 k + 1</math>
 +
 
 +
Wynika stąd, że dla (a) <math>n = 1</math>, (b) <math>n = 2</math>, (c) <math>n = 3</math> mamy
 +
 
 +
::<math>\left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1</math>
 +
 
 +
(zobacz J41 i&nbsp;J45) i&nbsp;liczba <math>- n</math> jest liczbą kwadratową modulo <math>p</math>. Zatem kongruencja
 +
 
 +
::<math>x^2 \equiv - n \!\! \pmod{p}</math>
 +
 
 +
ma rozwiązanie, czyli istnieje taka liczba <math>k</math>, że
 +
 
 +
::<math>k^2 + n \equiv 0 \!\! \pmod{p}</math>
 +
 
 +
Zauważmy, że liczby <math>x_0 = k</math> i <math>y_0 = 1</math> są szczególnymi przypadkami rozwiązania kongruencji
 +
 
 +
::<math>x^2 + n y^2 \equiv 0 \!\! \pmod{p}</math>
 +
 
 +
W przypadku (a), korzystając z&nbsp;twierdzenia Wilsona (zobacz J18), liczbę <math>x_0</math> możemy jawnie wypisać: <math>x_0 = \left( {\small\frac{p - 1}{2}} \right) !</math>
 +
 
 +
 
 +
'''B. Zmniejszenie rozwiązania początkowego'''
 +
 
 +
Niech liczby <math>x_0, y_0</math> takie, że <math>p \nmid x_0 \,</math> i <math>\, p \nmid y_0</math> spełniają kongruencję
 +
 
 +
::<math>x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p}</math>
 +
 
 +
Wybierzmy liczby <math>r, s</math> tak, aby były najbliższymi liczbami całkowitymi odpowiednio dla liczb <math>{\small\frac{x_0}{p}} \,</math> i <math>\, {\small\frac{y_0}{p}}</math>. Z&nbsp;definicji mamy
 +
 
 +
::<math>\left| {\small\frac{x_0}{p}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y_0}{p}} - s \right| \leqslant {\small\frac{1}{2}}</math>
 +
 
 +
Zatem
 +
 
 +
::<math>| x_0 - r p | \leqslant {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \leqslant {\small\frac{p}{2}}</math>
 +
 
 +
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie <math>{\small\frac{p}{2}}</math>, gdzie <math>p</math> jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
 +
 
 +
::<math>| x_0 - r p | < {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | < {\small\frac{p}{2}}</math>
 +
 
 +
Wynika stąd, że dla dowolnego rozwiązania początkowego <math>x_0, y_0</math> możemy wybrać liczby
 +
 
 +
::<math>x = x_0 - r p \qquad \qquad \text{i} \qquad \qquad y = y_0 - s p</math>
 +
 
 +
takie, że <math>p \nmid x</math> oraz <math>p \nmid y</math> i&nbsp;dla których
 +
 
 +
::<math>0 < x^2 + n y^2 < \left( {\small\frac{p}{2}} \right)^2 + n \left( {\small\frac{p}{2}} \right)^2 = {\small\frac{(n + 1) p}{4}} \cdot p</math>
 +
 
 +
Ponieważ modulo <math>p</math> jest <math>x \equiv x_0 \,</math> i <math>\, y \equiv y_0</math>, to liczby <math>x, y</math> spełniają kongruencję
 +
 
 +
::<math>x^2 + n y^2 \equiv 0 \!\! \pmod{p}</math>
 +
 
 +
Zatem wynikające z&nbsp;powyższej kongruencji równanie
 +
 
 +
::<math>x^2 + n y^2 = m p</math>
 +
 
 +
ma rozwiązanie dla liczb
 +
 
 +
::<math>| x | < {\small\frac{p}{2}} , \qquad \qquad | y | < {\small\frac{p}{2}}, \qquad \qquad 1 \leqslant m < {\small\frac{(n + 1) p}{4}}</math>
 +
 
 +
Pomysł ze zmniejszaniem liczb stanowiących rozwiązanie za chwilę wykorzystamy ponownie i&nbsp;będzie to istotny element dowodu.
 +
 
 +
 
 +
'''C. Metoda nieskończonego schodzenia Fermata'''<ref name="InfiniteDescent1"/><ref name="Bussey1"/>
 +
 
 +
Pomysł dowodu został zaczerpnięty z&nbsp;książki Hardy'ego i&nbsp;Wrighta<ref name="HardyWright1"/>.
 +
 
 +
Jeżeli w&nbsp;rozwiązaniu <math>m = 1</math>, to <math>p = x^2 + n y^2</math> i&nbsp;twierdzenie jest udowodnione. W&nbsp;przypadku gdy <math>m > 1</math> wskażemy sposób postępowania, który pozwoli nam z&nbsp;istniejącego rozwiązania równania
 +
 
 +
::<math>x^2 + n y^2 = m p</math>
 +
 
 +
otrzymać nowe rozwiązanie tej samej postaci
 +
 
 +
::<math>x_1^2 + n y_1^2 = m_1 p</math>
 +
 
 +
takie, że <math>1 \leqslant m_1 < m</math>. Powtarzając tę procedurę odpowiednią ilość razy, otrzymamy rozwiązanie <math>x_k, y_k, m_k</math>, gdzie <math>m_k = 1</math>. Istnienie takiej procedury stanowi dowód prawdziwości twierdzenia.
 +
 
 +
Zauważmy, że podział na parzyste i&nbsp;nieparzyste liczby <math>m</math> jest konieczny tylko w&nbsp;przypadku gdy <math>n = 3</math>. W&nbsp;pozostałych przypadkach nie musimy wzmacniać nierówności, aby prawdziwe było oszacowanie <math>1 \leqslant m_1 < m</math>.
 +
 
 +
'''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą parzystą'''
 +
 
 +
Jeżeli <math>m > 1</math> jest liczbą parzystą, to z&nbsp;twierdzenia K55 wiemy, że liczba <math>x^2 + n y^2</math> może być zapisana w&nbsp;postaci
 +
 
 +
::<math>x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1)</math>
 +
 
 +
gdzie <math>x^2_1 + n y^2_1</math> jest liczbą nieparzystą. Wystarczy położyć <math>m_1 = {\small\frac{m}{2^{\alpha}}}</math>, aby z&nbsp;istniejącego rozwiązania otrzymać nowe rozwiązanie tej samej postaci
 +
 
 +
::<math>x_1^2 + n y_1^2 = m_1 p</math>
 +
 
 +
gdzie <math>m_1</math> jest liczbą nieparzystą i <math>1 \leqslant m_1 < m</math>.
 +
 
 +
'''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą nieparzystą'''
 +
 
 +
Niech liczby <math>r, s</math> będą liczbami całkowitymi najbliższymi liczbom <math>{\small\frac{x}{m}} \,</math> i <math>\, {\small\frac{y}{m}}</math>. Z&nbsp;definicji mamy
 +
 
 +
::<math>\left| {\small\frac{x}{m}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y}{m}} - s \right| \leqslant {\small\frac{1}{2}}</math>
 +
 
 +
Zatem
 +
 
 +
::<math>| x - r m | \leqslant {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \leqslant {\small\frac{m}{2}}</math>
 +
 
 +
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie <math>{\small\frac{m}{2}}</math>, gdzie <math>m</math> jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
 +
 
 +
::<math>| x - r m | < {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | < {\small\frac{m}{2}}</math>
 +
 
 +
Połóżmy
 +
 
 +
::<math>a = x - r m \qquad \qquad \text{i} \qquad \qquad b = y - s m</math>
 +
 
 +
Zauważmy, że liczba <math>m</math> nie może jednocześnie dzielić liczb <math>x</math> i <math>y</math>, bo mielibyśmy <math>m^2 \mid (x^2 + n y^2)</math>, czyli <math>m \mid p</math>, co jest niemożliwe. Zatem przynajmniej jedna z&nbsp;liczb <math>a, b</math> musi być różna od <math>0</math>.
 +
 
 +
Rozpatrując równanie <math>x^2 + n y^2 = m p</math> modulo <math>m</math> i&nbsp;uwzględniając, że
 +
 
 +
::<math>x \equiv a \!\! \pmod{m}</math>
 +
 
 +
::<math>y \equiv b \!\! \pmod{m}</math>
 +
 
 +
otrzymujemy
 +
 
 +
::<math>a^2 + n b^2 \equiv 0 \pmod{m}</math>
 +
 
 +
Mamy też oszacowanie
 +
 
 +
::<math>0 < a^2 + n b^2 < \left( {\small\frac{m}{2}} \right)^2 + n \cdot \left( {\small\frac{m}{2}} \right)^2 = {\small\frac{(n + 1) m^2}{4}} = {\small\frac{(n + 1) m}{4}} \cdot m</math>
 +
 
 +
Wynika stąd, że istnieje taka liczba <math>m_1</math> spełniająca warunek <math>1 \leqslant m_1 < {\small\frac{(n + 1) m}{4}}</math>, że
 +
 
 +
::<math>a^2 + n b^2 = m_1 m</math>
 +
 
 +
Mnożąc stronami powyższe równanie i&nbsp;równanie <math>x^2 + n y^2 = m p</math>, otrzymujemy
 +
 
 +
::<math>m_1 m^2 p = (a^2 + n b^2) (x^2 + n y^2)</math>
 +
 
 +
::::<math>\;\; = (a x + n b y)^2 + n (a y - b x)^2</math>
 +
 
 +
(zobacz K54). Zauważmy teraz, że
 +
 
 +
::<math>a x + n b y = (x - r m) x + n (y - s m) y</math>
 +
 
 +
::::<math>\quad \; = x^2 - r m x + n y^2 - n s m y</math>
 +
 
 +
::::<math>\quad \; = m (p - r x - n s y)</math>
 +
 
 +
::::<math>\quad \; = m x_1</math>
 +
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::<math>a y - b x = (x - r m) y - (y - s m) x</math>
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 7}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = - 1</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::::<math>\;\;\, = x y - r m y - y x + s m x</math>
::<math>\left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 11}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = 1</math>
 
</div>
 
  
'''Punkt 2.'''
+
::::<math>\;\;\, = m (s x - r y)</math>
  
Ponieważ <math>5 \equiv 1 \!\! \pmod{4}</math>, to nie ma już znaczenia, czy <math>m \equiv 1 \!\! \pmod{4}</math>, czy też <math>m \equiv 3 \!\! \pmod{4}</math>. Otrzymujemy natychmiast (zobacz J39 p.9)
+
::::<math>\;\;\, = m y_1</math>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Gdzie oznaczyliśmy
::<math>\left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}}</math>
 
</div>
 
  
Rozważmy liczby nieparzyste <math>m</math> postaci <math>10 k + r</math>, gdzie <math>r = 1, 3, 5, 7, 9</math>. Mamy
+
::<math>x_1 = p - r x - n s y</math>
  
::<math>\left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}}</math>
+
::<math>y_1 = s x - r y</math>
  
:::<math>\:\, \quad = \left( {\small\frac{10 k + r}{5}} \right)_{\small{\!\! J}}</math>
+
Wynika stąd, że
  
:::<math>\:\, \quad = \left( {\small\frac{r}{5}} \right)_{\small{\!\! J}}</math>
+
::<math>m_1 m^2 p = (m x_1)^2 + n (m y_1)^2</math>
  
:::<math>\:\, \quad =
+
Zatem
\begin{cases}
 
\;\;\: 1 & \text{gdy } r = 1 \\
 
      - 1 & \text{gdy } r = 3 \\
 
\;\;\: 0 & \text{gdy } r = 5 \\
 
      - 1 & \text{gdy } r = 7 \\
 
\;\;\: 1 & \text{gdy } r = 9
 
\end{cases}</math>
 
  
bo odpowiednio dla <math>r = 1, 3, 5, 7, 9</math> jest
+
::<math>x^2_1 + n y^2_1 = m_1 p</math>
  
::<math>\left( {\small\frac{1}{5}} \right)_{\small{\!\! J}} = 1</math>
+
gdzie
  
::<math>\left( {\small\frac{3}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{-2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{(5 - 1)(5 - 3)}{8}} = -1</math>
+
::<math>1 \leqslant m_1 < {\small\frac{(n + 1) m}{4}}</math>
  
::<math>\left( {\small\frac{5}{5}} \right)_{\small{\!\! J}} = 0</math>
+
Czyli powtarzając odpowiednią ilość razy opisaną powyżej procedurę, otrzymamy <math>m_k = 1</math>.
  
::<math>\left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{25 - 1}{8}} = - 1</math>
 
  
::<math>\left( {\small\frac{9}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{5}} \right)_{\small{\!\! J}}^{\! 2} = 1</math>
+
'''D. Jednoznaczność rozkładu'''
  
Co należało pokazać.<br/>
+
Z założenia <math>p</math> jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z&nbsp;twierdzenia K53. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1325: Linia 2112:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J45</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K57</span><br/>
Wykorzystując podane w&nbsp;twierdzeniu J39 właściwości symbolu Jacobiego, możemy napisać prostą funkcję w&nbsp;PARI/GP znajdującą jego wartość. Zauważmy, że nie potrzebujemy znać rozkładu liczby <math>n</math> na czynniki pierwsze.
+
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej <math>p</math> postaci <math>4 k + 1</math> na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni.
  
  <span style="font-size: 90%; color:black;">jacobi(a, n) =  
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 +
  <span style="font-size: 90%; color:black;">SumOfTwoSquares(p) =  
 
  {
 
  {
  '''local'''(r, w);
+
  '''local'''(m, r, s, x, y, x1, y1);
  '''if'''( n <= 0 || n % 2 == 0, '''return'''("Error") );
+
  '''if'''( p%4 <> 1 || !'''isprime'''(p), '''return'''("Error") );
  a = a % n; \\ korzystamy ze wzoru (a|n) = (b|n), gdy a &equiv; b (mod n)
+
  x = 1;
  w = 1;
+
'''for'''(k = 2, (p-1)/2, x = (x*k)%p); \\ x = { [(p-1)/2]! } % p
  '''while'''( a <> 0,
+
x = x - '''round'''(x/p)*p;
         '''while'''( a % 2 == 0, a = a/2; r = n % 8; '''if'''( r == 3 || r == 5, w = -w ) );
+
  y = 1;
         \\ usunęliśmy czynnik 2 ze zmiennej a, uwzględniając, że (2|n) = -1, gdy n &equiv; 3,5 (mod 8)
+
m = (x^2 + y^2)/p;
        \\ teraz zmienne a oraz n są nieparzyste
+
  '''while'''( m > 1,
         r = a; \\ zmienna r tylko przechowuje wartość a
+
         r = '''round'''(x/m);
        a = n;
+
        s = '''round'''(y/m);
         n = r;
+
         x1 = p - r*x - s*y;
         '''if'''( a % 4 == 3 && n % 4 == 3, w = -w );
+
         y1 = r*y - s*x;
         \\ zamieniliśmy zmienne, uwzględniając, że (a|n) = - (n|a), gdy a &equiv; n &equiv; 3 (mod 4)
+
         x = x1;
        a = a % n;
+
         y = y1;
 +
         m = (x^2 + y^2)/p;
 
       );
 
       );
  '''if'''( n == 1, '''return'''(w), '''return'''(0) ); \\ n jest teraz równe gcd(a, n)
+
  '''return'''([ '''abs'''(x), '''abs'''(y), p ]);
 
  }</span>
 
  }</span>
 +
{{\Spoiler}}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J46</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K58</span><br/>
Jeżeli <math>m</math> jest liczbą pierwszą, to symbol Jacobiego jest symbolem Legendre'a, czyli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math>. Jeżeli <math>m</math> jest liczbą złożoną, to symbol Legendre'a <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math> nie istnieje, a&nbsp;symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> dostarcza jedynie ograniczonych informacji.
+
Niech liczby pierwsze <math>p, q</math> będą postaci <math>4 k + 1</math>, a&nbsp;liczba pierwsza <math>r</math>
 +
będzie postaci <math>4 k + 3</math>. Pokazać, że
 +
:*&nbsp;&nbsp;liczby <math>r, p r \,</math> i <math>\, r^2</math> nie rozkładają się na sumę dwóch kwadratów liczb całkowitych dodatnich
 +
:*&nbsp;&nbsp;liczby <math>p</math>, <math>2 p</math>, <math>p^2 \,</math> i <math>\, p r^2</math> mają jeden rozkład na sumę dwóch kwadratów liczb całkowitych dodatnich
 +
:*&nbsp;&nbsp;liczba <math>p q</math>, <math>p \neq q</math> ma dwa rozkłady na sumę dwóch kwadratów liczb całkowitych dodatnich
  
W przyszłości symbol Legendre'a / Jacobiego będziemy zapisywali w&nbsp;formie uproszczonej <math>(a \mid m)</math> i&nbsp;nie będziemy rozróżniali tych symboli. Interpretacja zapisu jest prosta:
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
:* jeżeli '''wiemy''', że <math>m</math> jest liczbą pierwszą, to symbol <math>(a \mid m)</math> jest symbolem Legendre'a
+
'''Punkt 1.'''
:* jeżeli '''wiemy''', że <math>m</math> jest liczbą złożoną, to symbol <math>(a \mid m)</math> jest symbolem Jacobiego
 
:* jeżeli '''nie wiemy''', czy <math>m</math> jest liczbą pierwszą, czy złożoną, to symbol <math>(a \mid m)</math> jest symbolem Jacobiego
 
  
 +
Ponieważ liczby <math>r \,</math> i <math>\, p r</math> są postaci <math>4 k + 3</math>, to modulo <math>4</math> mamy
  
 +
::<math>r, p r \equiv 3 \!\! \pmod{4}</math>
  
 +
Suma <math>x^2 + y^2</math> musi być liczbą nieparzystą, zatem liczby <math>x, y</math> muszą mieć przeciwną parzystość i&nbsp;modulo <math>4</math> mamy
  
 +
::<math>x^2 + y^2 \equiv 1 \!\! \pmod{4}</math>
  
== Rozwiązywanie kongruencji <math>x^2 \equiv a \!\! \pmod{m}</math> ==
+
Przypuśćmy, że
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J47</span><br/>
+
::<math>r^2 = x^2 + y^2</math>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, zaś <math>a</math> liczbą całkowitą taką, że <math>\gcd (a, p) = 1</math>. Kongruencja
 
  
::<math>x^2 \equiv a \pmod{p^n}</math>
+
gdzie <math>x, y \in \mathbb{Z}_+</math>. Liczby <math>x, y</math> muszą mieć przeciwną parzystość, zatem <math>x \neq y</math>. Z&nbsp;twierdzenia J24 wynika, że liczba <math>x^2 + y^2</math> musi mieć dzielnik pierwszy postaci <math>4 k + 1</math>, co w&nbsp;sposób oczywisty jest niemożliwe.
  
ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy kongruencja
+
'''Punkt 2.'''
 
 
::<math>x^2 \equiv a \pmod{p}</math>
 
  
ma rozwiązanie.
+
W przypadku liczby pierwszej <math>p</math> odpowiedzi udziela twierdzenie K56. Niech <math>p = x^2 + y^2</math>, mamy
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
  
<math>\Large{\Longrightarrow}</math>
+
::<math>2 p = (x + y)^2 + (x - y)^2</math>
  
Z założenia kongruencja <math>x^2 \equiv a \!\! \pmod{p^n}</math> ma rozwiązanie. Zatem istnieje taka liczba <math>r \in \mathbb{Z}</math>, że
+
::<math>p^2 = (x^2 - y^2)^2 + (2 x y)^2</math>
  
::<math>r^2 \equiv a \pmod{p^n}</math>
+
::<math>p r^2 = (r x)^2 + (r y)^2</math>
  
Ponieważ <math>p^n \mid (r^2 - a)</math>, to tym bardziej <math>p \mid (r^2 - a)</math>, co oznacza, że prawdziwa jest kongruencja
+
'''Punkt 3.'''
  
::<math>r^2 \equiv a \pmod{p}</math>
+
Niech <math>p = x^2 + y^2</math> i <math>q = a^2 + b^2</math>. Ze wzorów podanych w&nbsp;uwadze K54 mamy
  
Skąd wynika natychmiast, że kongruencja <math>x^2 \equiv a \!\! \pmod{p}</math> ma rozwiązanie.
+
::<math>p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2</math>
  
<math>\Large{\Longleftarrow}</math>
+
:::::::::<math>\:\, = (a x - b y)^2 + (a y + b x)^2</math>
  
Indukcja matematyczna. Z&nbsp;uczynionego w&nbsp;twierdzeniu założenia wiemy, że kongruencja <math>x^2 \equiv a \!\! \pmod{p}</math> ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla <math>n = 1</math>. Załóżmy teraz (założenie indukcyjne), że kongruencja
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>x^2 \equiv a \pmod{p^n}</math>
 
  
ma rozwiązanie <math>x \equiv u_n \!\! \pmod{p^n}</math> i&nbsp;pokażmy, że twierdzenie jest prawdziwe dla <math>n + 1</math>, czyli że rozwiązanie ma kongruencja
 
  
::<math>x^2 \equiv a \pmod{p^{n + 1}}</math>
 
  
Wiemy, że liczba <math>u_n</math> jest określona modulo <math>p^n</math>. Nie tracąc ogólności, możemy założyć, że <math>1 \leqslant u_n < p^n</math>. Wartość <math>u_n</math> może zostać wybrana dowolnie (modulo <math>p^n</math>), ale musi zostać ustalona — wymaga tego precyzja i&nbsp;czytelność dowodu. Zatem
 
  
::<math>u^2_n - a = k p^n</math>
+
== Twierdzenia o&nbsp;istnieniu liczb pierwszych kwadratowych i&nbsp;niekwadratowych modulo ==
  
Zauważmy, że liczba <math>k</math> jest jednoznacznie określona, bo wartość <math>u_n</math> została ustalona. Ponieważ <math>\gcd (2 u_n, p) = 1</math>, to równanie
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K59</span><br/>
 +
Niech <math>s = \pm 1</math>. Zbadać podzielność liczby <math>p - s a^2</math>
  
::<math>2 u_n \cdot s - p \cdot l = - k</math>
+
:* przez <math>4</math>, gdy <math>p = 4 k + r</math>, gdzie <math>r = 1, 3</math>
 +
:* przez <math>8</math>, gdy <math>p = 8 k + r</math>, gdzie <math>r = 1, 3, 5, 7</math>
  
ma rozwiązanie (zobacz C76). Niech liczby <math>s_0</math> i <math>l_0</math> będą rozwiązaniem tego równania. Zatem
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Problem sprowadza się do uzyskania odpowiedzi, kiedy kongruencja
  
::<math>2 u_n \cdot s_0 - p \cdot l_0 = - k</math>
+
::<math>p - s a^2 \equiv 0 \pmod{2^n}</math>
  
::<math>2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - k p^n</math>
+
gdzie <math>n = 2, 3</math>, ma rozwiązanie. Podstawiając, dostajemy
  
::<math>2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - ( u^2_n - a )</math>
+
::<math>2^n k + r \equiv s a^2 \pmod{2^n}</math>
  
::<math>u^2_n + 2 u_n \cdot s_0 p^n = a + l_0 \cdot p^{n + 1}</math>
+
::<math>s a^2 \equiv r \pmod{2^n}</math>
  
Modulo <math>p^{n + 1}</math> dostajemy
+
::<math>a^2 \equiv s r \pmod{2^n}</math>
  
::<math>u^2_n + 2 u_n \cdot s_0 p^n \equiv a \pmod{p^{n + 1}}</math>
+
Z twierdzenia J54 wiemy, że aby powyższa kongruencja miała rozwiązanie, musi być <math>2^n \mid (s r - 1)</math>, co jest możliwe tylko, gdy
  
::<math>(u_n + s_0 p^n)^2 \equiv a \pmod{p^{n + 1}}</math>
+
::<math>s =
 +
\begin{cases}
 +
\;\;\: 1 & \text{gdy } r = 1 \\
 +
      - 1 & \text{gdy } r = 3 \\
 +
\end{cases}</math>
  
bo <math>p^{n + 1} \mid p^{2 n}</math>. Zatem liczba <math>u_{n + 1} = u_n + s_0 p^n</math> jest rozwiązaniem kongruencji
+
dla <math>2^n = 4</math> i&nbsp;gdy
  
::<math>x^2 \equiv a \pmod{p^{n + 1}}</math>
+
::<math>s =
 +
\begin{cases}
 +
\;\;\: 1 & \text{gdy } r = 1 \\
 +
      - 1 & \text{gdy } r = 7 \\
 +
\end{cases}</math>
  
Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.<br/>
+
dla <math>2^n = 8</math>. Dla <math>2^n = 8</math> i <math>r = 3, 5</math> rozpatrywana kongruencja nie ma rozwiązania.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1434: Linia 2234:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J48</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K60</span><br/>
Dla niewielkich modułów rozwiązania dowolnej kongruencji możemy znaleźć przez bezpośrednie sprawdzenie. Omówimy teraz rozwiązania kongruencji <math>x^2 \equiv a \!\! \pmod{2^n}</math> dla <math>n = 1, 2, 3</math>. Ponieważ zakładamy, że <math>\gcd (a, m) = \gcd (a, 2^n) = 1</math>, to <math>a</math> musi być liczbą nieparzystą, zaś <math>x</math> nie może być liczbą parzystą. Istotnie, gdyby tak było, to mielibyśmy <math>0 \equiv 1 \!\! \pmod{2}</math>, bo <math>2 \mid 2^n</math>.
+
Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo <math>p</math>. Pomysł ujęcia problemu zaczerpnęliśmy z&nbsp;pracy Alexandru Gicy<ref name="Gica1"/>. Zadanie K59 należy traktować jako uzupełnienie do dowodu twierdzenia K61. Z&nbsp;zadania łatwo widzimy, że powiązanie liczby <math>s</math> z&nbsp;postacią liczby pierwszej <math>p</math> nie jest przypadkowe.
  
Kongruencja
+
Zauważmy, że twierdzenia ograniczają się do liczb pierwszych <math>p</math>, ponieważ dla liczb złożonych nieparzystych <math>m > 0</math> wynik <math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1</math> nie oznacza, że liczba pierwsza <math>q</math> jest liczbą kwadratową modulo <math>m</math>.
  
::<math>x^2 \equiv a \pmod{2}</math>
+
W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> kwadratowe modulo <math>p</math>.
  
ma dokładnie jedno rozwiązanie <math>x \equiv 1 \!\! \pmod{2}</math>.
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{p}</math>
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math> || <math>53</math> || <math>59</math> || <math>61</math> || <math>67</math> || <math>71</math> || <math>73</math> || <math>79</math> || <math>83</math> || <math>89</math> || <math>97</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>  
 +
| style="background-color: red" | <math>13</math> || style="background-color: red" | <math>29</math> || style="background-color: red" | <math>29</math> || <math>5</math> || style="background-color: red" | <math>17</math> || <math>13</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>41</math> || <math>5</math> || <math>13</math> || <math>17</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>17</math> || <math>5</math> || <math>37</math> || <math>5</math> || <math>17</math> || <math>5</math> || <math>53</math>
 +
|}
  
Kongruencja
 
  
::<math>x^2 \equiv a \pmod{4}</math>
+
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 3</math> kwadratowe modulo <math>p</math>.
  
ma dwa rozwiązania, gdy <math>a \equiv 1 \!\! \pmod{4}</math>. Rozwiązaniami są: <math>x \equiv 1, 3 \!\! \pmod{4}</math>. W&nbsp;przypadku, gdy <math>a \equiv 3 \!\! \pmod{4}</math> kongruencja nie ma rozwiązań.
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{p}</math>  
 +
| <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math> || <math>53</math> || <math>59</math> || <math>61</math> || <math>67</math> || <math>71</math> || <math>73</math> || <math>79</math> || <math>83</math> || <math>89</math> || <math>97</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>  
 +
| style="background-color: red" | <math>7</math> || style="background-color: red" | <math>11</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>19</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>23</math> || <math>11</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>19</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>3</math> || <math>11</math> || <math>3</math>
 +
|}
  
Kongruencja
 
  
::<math>x^2 \equiv a \pmod{8}</math>
 
  
ma cztery rozwiązania, gdy <math>a \equiv 1 \!\! \pmod{8}</math>. Rozwiązaniami są: <math>x \equiv 1, 3, 5, 7 \!\! \pmod{8}</math>. W&nbsp;przypadku, gdy <math>a \equiv 3, 5, 7 \!\! \pmod{8}</math> kongruencja nie ma rozwiązań.
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K61</span><br/>
 +
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 17</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> kwadratowa modulo <math>p</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech
 +
::<math>s =
 +
\begin{cases}
 +
\;\;\: 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 1 \\
 +
      - 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 3 \\
 +
\end{cases}</math>
  
 +
Dla ustalonych liczb <math>n</math> i <math>s</math> rozważmy liczbę <math>u(a) = {\small\frac{p - s a^2}{2^n}}</math> taką, że <math>3 \leqslant u (a) < p</math>. Jeżeli liczba ta jest postaci <math>4 k + 3</math>, to ma dzielnik pierwszy <math>q < p</math> postaci <math>4 k + 3</math> (zobacz C21). Zatem możemy napisać <math>u (a) = t q</math>, co oznacza, że
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J49</span><br/>
+
::<math>p - s a^2 = 2^n u (a) = 2^n t q</math>
Niech <math>n \geqslant 3</math> i <math>a</math> będzie liczbą nieparzystą. Kongruencja
 
  
::<math>x^2 \equiv a \pmod{2^n}</math>
+
Czyli
  
ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy kongruencja
+
::<math>p \equiv s a^2 \pmod{q}</math>
  
::<math>x^2 \equiv a \pmod{8}</math>
+
i otrzymujemy
  
ma rozwiązanie.
+
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s a^2}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{a^2}{q}} \right)_{\small{\!\! J}} =s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} = 1</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Zatem liczba <math>q < p</math> jest liczbą kwadratową modulo <math>p</math>.
  
<math>\Large{\Longrightarrow}</math>
+
Pomysł dowodu polega na wskazaniu kilku liczb <math>u(a_1), \ldots, u(a_r)</math> takich, że
  
Z założenia kongruencja <math>x^2 \equiv a \!\! \pmod{2^n}</math> ma rozwiązanie, zatem istnieje taka liczba <math>r \in \mathbb{Z}</math>, że
+
::<math>3 \leqslant u(a_1) < \ldots < u(a_r) < p</math>
  
::<math>r^2 \equiv a \pmod{2^n}</math>
+
z których jedna musi być postaci <math>4 k + 3</math>.
  
Ponieważ <math>2^n \mid (r^2 - a)</math>, gdzie <math>n \geqslant 3</math>, to tym bardziej <math>2^3 \mid (r^2 - a)</math>. Co oznacza, że prawdziwa jest kongruencja
+
'''Przypadek pierwszy:''' <math>\boldsymbol{p \equiv 3 \!\! \pmod{8}}</math>
  
::<math>r^2 \equiv a \pmod{2^3}</math>
+
Mamy <math>s = - 1</math> i&nbsp;przyjmujemy <math>n = 2</math>. Rozważmy liczby
  
Skąd wynika natychmiast, że kongruencja <math>x^2 \equiv a \!\! \pmod{8}</math> ma rozwiązanie.
+
::<math>3 \leqslant {\small\frac{p + 1}{4}} < {\small\frac{p + 9}{4}} < p</math>
  
<math>\Large{\Longleftarrow}</math>
+
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 11</math>. Z&nbsp;założenia <math>p = 8 k + 3</math>, zatem rozpatrywane liczby to <math>\{ 2 k + 1, 2 k + 3 \}</math>. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z&nbsp;nich jest postaci <math>4 k + 3</math>.
  
Indukcja matematyczna. Z&nbsp;uczynionego w&nbsp;twierdzeniu założenia wiemy, że kongruencja <math>x^2 \equiv a \pmod{8}</math> ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla <math>n = 3</math>. Załóżmy teraz (założenie indukcyjne), że kongruencja
+
'''Przypadek drugi:''' <math>\boldsymbol{p \equiv 5 \!\! \pmod{8}}</math>
  
::<math>x^2 \equiv a \pmod{2^n}</math>
+
Mamy <math>s = + 1</math> i&nbsp;przyjmujemy <math>n = 2</math>. Rozważmy liczby
  
ma rozwiązanie <math>x \equiv u_n \!\! \pmod{2^n}</math> i&nbsp;pokażemy, że twierdzenie jest prawdziwe dla <math>n + 1</math>, czyli że rozwiązanie ma kongruencja
+
::<math>3 \leqslant {\small\frac{p - 9}{4}} < {\small\frac{p - 1}{4}} < p</math>
  
::<math>x^2 \equiv a \pmod{2^{n + 1}}</math>
+
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 21</math>. Z&nbsp;założenia <math>p = 8 k + 5</math>, zatem rozpatrywane liczby to <math>\{ 2 k - 1, 2 k + 1 \}</math>. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z&nbsp;nich jest postaci <math>4 k + 3</math>.
  
Z założenia istnieje taka liczba <math>k</math>, że <math>u^2_n - a = k \cdot 2^n</math>. Niech
+
'''Przypadek trzeci:''' <math>\boldsymbol{p \equiv 7 \!\! \pmod{8}}</math>
  
::<math>r =  
+
Mamy <math>s = - 1</math> i&nbsp;przyjmujemy <math>n = 3</math>. Rozważmy liczby
  \begin{cases}
 
  0 & \text{gdy } k \text{ jest liczbą parzystą}\\
 
  1 & \text{gdy } k \text{ jest liczbą nieparzystą}
 
  \end{cases}</math>
 
  
Zauważmy, że
+
::<math>3 \leqslant {\small\frac{p + 1}{8}} < {\small\frac{p + 9}{8}} < {\small\frac{p + 25}{8}} < {\small\frac{p + 49}{8}} < p</math>
  
::<math>(u_n + r \cdot 2^{n - 1})^2 - a = u^2_n - a + 2^n r + r^2 \cdot 2^{2 n - 2}</math>
+
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 23</math>. Z&nbsp;założenia <math>p = 8 k + 7</math>, zatem rozpatrywane liczby to <math>\{ k + 1, k + 2, k + 4, k + 7 \}</math>. Jeżeli <math>k \equiv r \!\! \pmod{4}</math>, to modulo <math>4</math> mamy zbiór <math>\{ r + 1, r + 2, r, r + 3 \}</math>. Zatem jedna z&nbsp;liczb w&nbsp;tym zbiorze jest postaci <math>4 k + 3</math>.
  
::::::::<math>\;\! = k \cdot 2^n + 2^n r + r^2 \cdot 2^{2 n - 2}</math>
+
'''Przypadek czwarty:''' <math>\boldsymbol{p \equiv 1 \!\! \pmod{8}}</math>
  
::::::::<math>\;\! = 2^n (k + r) + r^2 \cdot 2^{2 n - 2}</math>
+
Mamy <math>s = + 1</math> i&nbsp;przyjmujemy <math>n = 3</math>. Rozważmy liczby
  
::::::::<math>\;\! \equiv 0 \pmod{2^{n + 1}}</math>
+
::<math>3 \leqslant {\small\frac{p - 49}{8}} < {\small\frac{p - 25}{8}} < {\small\frac{p - 9}{8}} < {\small\frac{p - 1}{8}} < p</math>
  
bo <math>k + r</math> jest liczbą parzystą, a&nbsp;dla <math>n \geqslant 3</math> mamy <math>2 n - 2 \geqslant n + 1</math>. Zatem liczba <math>u_{n + 1} = u_n + r \cdot 2^{n - 1}</math> jest rozwiązaniem kongruencji
+
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 73</math>. Z&nbsp;założenia <math>p = 8 k + 1</math>, zatem rozpatrywane liczby to <math>\{ k - 6, k - 3, k - 1, k \}</math>. Jeżeli <math>k \equiv r \!\! \pmod{4}</math>, to modulo <math>4</math> mamy zbiór <math>\{ r + 2, r + 1, r + 3, r \}</math>. Zatem jedna z&nbsp;liczb w&nbsp;tym zbiorze jest postaci <math>4 k + 3</math>.
  
::<math>x^2 \equiv a \pmod{2^{n + 1}}</math>
+
Pozostaje sprawdzić twierdzenie dla liczb pierwszych <math>p < 73</math>. Co kończy dowód.<br/>
 
 
Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Wniosek J50</span><br/>
 
Jeżeli <math>a</math> jest liczbą nieparzystą, to kongruencja <math>x^2 \equiv a \!\! \pmod{2^n}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy <math>a</math> jest postaci <math>2 k + 1</math>, <math>4 k + 1</math> lub <math>8 k + 1</math> w&nbsp;zależności od tego, czy <math>n = 1</math>, czy <math>n = 2</math>, czy <math>n \geqslant 3</math>.
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K62</span><br/>
 +
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
W przypadku, gdy liczba pierwsza <math>p</math> jest postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieją takie liczby całkowite dodatnie <math>x, y</math>, że <math>p = x^2 + 2 y^2</math> (zobacz K56). Ponieważ z&nbsp;założenia <math>p \geqslant 11</math>, to musi być <math>x \neq y</math>. Z&nbsp;twierdzenia J24 wynika, że liczba <math>x^2 + y^2</math> ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 1</math>. Łatwo widzimy, że <math>q \leqslant x^2 + y^2 < x^2 + 2 y^2 = p</math>.
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J51</span><br/>
+
Modulo <math>q</math> możemy napisać
Niech <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> i <math>\gcd (a, m) = 1</math>. Z&nbsp;chińskiego twierdzenia o&nbsp;resztach (zobacz J3 i&nbsp;J11) wynika, że kongruencja <math>x^2 \equiv a \!\! \pmod{m}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy ma rozwiązanie każda z&nbsp;kongruencji
 
  
::<math>\begin{align}
+
::<math>x^2 + y^2 \equiv 0 \!\! \pmod{q}</math>
x^2 & \equiv a \pmod{p^{\alpha_1}_1} \\
 
    & \,\,\,\cdots \\
 
x^2 & \equiv a \pmod{p^{\alpha_s}_s} \\
 
\end{align}</math>
 
  
Z definicji J29, twierdzeń J47 i&nbsp;J49, uwagi J48 i&nbsp;wniosku J50 otrzymujemy
+
Liczba pierwsza <math>q < p</math> nie może dzielić <math>y</math>, bo mielibyśmy <math>q \mid x</math>, czyli <math>q \mid p</math>, co jest niemożliwe. Rozpatrując równość <math>p = x^2 + 2 y^2</math> modulo <math>q</math>, dostajemy
  
 +
::<math>p \equiv y^2 \!\! \pmod{q}</math>
  
 +
Wynika stąd natychmiast (zobacz J41 p.9)
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J52</span><br/>
+
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = 1</math>
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
 
  
::<math>x^2 \equiv a \pmod{m}</math>
+
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy
 
  
::{| border="0"
 
|-style=height:1em
 
| &#9679;&nbsp;&nbsp;&nbsp; dla każdego nieparzystego dzielnika pierwszego <math>p</math> liczby <math>m</math> jest&nbsp; <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = 1</math>
 
|-style=height:1em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \mid m</math>, &nbsp;to&nbsp; <math>8 \mid ( a - 1 )</math>
 
|-style=height:2.5em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \nmid m</math>, &nbsp;ale&nbsp; <math>4 \mid m</math>, &nbsp;to&nbsp; <math>4 \mid ( a - 1 )</math>
 
|}
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K63</span><br/>
 +
Jeżeli <math>p \geqslant 19</math> jest liczbą pierwszą postaci <math>12 k + 7</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>p \equiv 1 \!\! \pmod{6}</math>, zatem istnieją takie liczby <math>x, y \in \mathbb{Z}_+</math>, że <math>p = x^2 + 3 y^2</math> (zobacz K56).
 +
Liczby <math>x, y</math> muszą mieć przeciwną parzystość i&nbsp;być względnie pierwsze. Gdyby liczba <math>x</math> była nieparzysta, to modulo <math>4</math> mielibyśmy
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J53</span><br/>
+
::<math>1 + 3 \cdot 0 \equiv 3 \!\! \pmod{4}</math>
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
 
 
 
::<math>x^2 \equiv a \pmod{m}</math>
 
  
nie ma rozwiązania wtedy i&nbsp;tylko wtedy, gdy spełniony jest co najmniej jeden z&nbsp;warunków
+
Co jest niemożliwe. Zatem <math>x = 2 k</math>, a&nbsp;liczba <math>y</math> musi być nieparzysta. Otrzymujemy
  
::{| border="0"
+
::<math>p = 4 k^2 + 3 y^2 = 4 (k^2 + y^2) - y^2</math>
|-style=height:1em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli dla dowolnego nieparzystego dzielnika <math>d</math> liczby <math>m</math> jest <math>\left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1</math>
 
|-style=height:1em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \mid m</math> &nbsp;i&nbsp; <math>8 \nmid ( a - 1 )</math>
 
|-style=height:2.5em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli&nbsp; <math>8 \nmid m</math>, &nbsp;ale&nbsp; <math>4 \mid m</math> &nbsp;i&nbsp; <math>4 \nmid ( a - 1 )</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ <math>p</math> jest liczbą pierwszą, to jedynie w&nbsp;przypadku gdy <math>k = y = 1</math> możliwa jest sytuacja, że <math>k = y</math>. Mielibyśmy wtedy <math>p = 7</math>, ale z&nbsp;założenia musi być <math>p \geqslant 19</math>. Wynika stąd, że <math>k \neq y</math>, zatem liczba <math>k^2 + y^2</math> ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 1</math> (zobacz J24). Oczywiście <math>q \leqslant k^2 + y^2 < 4 k^2 + 3 y^2 = p</math>.
  
'''Punkt 1.'''
+
Modulo <math>q</math> możemy napisać
  
Z założenia <math>d \mid m</math>. Gdyby kongruencja
+
::<math>k^2 + y^2 \equiv 0 \!\! \pmod{q}</math>
  
::<math>x^2 \equiv a \pmod{m}</math>
+
Liczba pierwsza <math>q</math> nie może dzielić <math>y</math>, bo mielibyśmy <math>q \mid k</math>, czyli <math>q \mid p</math>, co jest niemożliwe. Rozpatrując równość <math>p = 4 (k^2 + y^2) - y^2</math> modulo <math>q</math>, dostajemy
  
miała rozwiązanie, to również kongruencja
+
::<math>p \equiv - y^2 \!\! \pmod{q}</math>
  
::<math>x^2 \equiv a \pmod{d}</math>
+
Wynika stąd natychmiast (zobacz J41 p.9 i&nbsp;p.6)
  
miałaby rozwiązanie, ale jest to niemożliwe, bo założyliśmy, że <math>\left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1</math>, co oznacza, że <math>a</math> jest liczbą niekwadratową modulo <math>d</math>.
+
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}}  
 +
= \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{- y^2}{q}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} = 1</math>
  
Punkty 2. i 3. wynikają wprost z&nbsp;twierdzenia J52.<br/>
+
Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1591: Linia 2394:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład J54</span><br/>
+
Twierdzenia K62 i&nbsp;K63 można uogólnić na wszystkie liczby pierwsze.<ref name="Gica1"/><br/>
Zauważmy, że <math>\left( {\small\frac{17}{19}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{19}} \right)_{\small{\!\! J}} = 1</math> oraz <math>\left( {\small\frac{17}{23}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{23}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;tabelach zestawiliśmy kongruencje i&nbsp;ich rozwiązania.
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K64*</span><br/>
 +
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 13, 37</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
 +
 
 +
 
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 60px; margin-right: 50px; font-size: 90%; text-align: left;"
+
<span style="font-size: 110%; font-weight: bold;">Uwaga K65</span><br/>
 +
W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>.
 +
 
 +
:{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
 
|-
 
|-
! Kongruencje || Rozwiązania
+
! <math>\boldsymbol{m}</math>
 +
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math> || <math>21</math> || <math>22</math> || <math>23</math> || <math>24</math> || <math>25</math> || <math>26</math> || <math>27</math> || <math>28</math> || <math>29</math> || <math>30</math> || <math>31</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>35</math> || <math>36</math> || <math>37</math> || <math>38</math> || <math>39</math> || <math>40</math>
 
|-
 
|-
| <math>x^2 \equiv 17 \pmod{16 \cdot 19}</math> || <math>25, 63, 89, 127, 177, 215, 241, 279</math>
+
! <math>\boldsymbol{q}</math>
 +
| style="background-color: red" | <math>-</math> || style="background-color: red" | <math>5</math> || style="background-color: red" | <math>-</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>13</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>13</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>17</math> || <math>13</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>13</math>
 +
|}
 +
 
 +
 
 +
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 3</math> niekwadratowe modulo <math>m</math>.
 +
 
 +
:{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
 
|-
 
|-
| <math>x^2 \equiv 17 \pmod{8 \cdot 19}</math> || <math>13, 25, 51, 63, 89, 101, 127, 139</math>
+
! <math>\boldsymbol{m}</math>
 +
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math> || <math>21</math> || <math>22</math> || <math>23</math> || <math>24</math> || <math>25</math> || <math>26</math> || <math>27</math> || <math>28</math> || <math>29</math> || <math>30</math> || <math>31</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>35</math> || <math>36</math> || <math>37</math> || <math>38</math> || <math>39</math> || <math>40</math>
 
|-
 
|-
| <math>x^2 \equiv 5 \;\, \pmod{8 \cdot 19}</math> || <math>\text{brak}</math>
+
! <math>\boldsymbol{q}</math>
|-
+
| style="background-color: red" | <math>-</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>11</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>19</math> || <math>3</math> || <math>7</math> || <math>3</math>
| <math>x^2 \equiv 5 \;\, \pmod{4 \cdot 19}</math> || <math>9, 29, 47, 67</math>
 
 
|}
 
|}
{| class="wikitable plainlinks" style="display: inline-table; margin-left: 5px; margin-right: 5px; font-size: 90%; text-align: left;"
+
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K66</span><br/>
 +
Jeżeli <math>m \geqslant 7</math> jest liczbą całkowitą postaci <math>4 k + 3</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ liczba <math>m - 4 \geqslant 3</math> jest postaci <math>4 k + 3</math>, to ma dzielnik pierwszy <math>q < m</math> postaci <math>4 k + 3</math> (zobacz C21). Czyli <math>m - 4 = k q</math> i&nbsp;z&nbsp;twierdzenia J41 p.9 dostajemy
 +
 
 +
::<math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} =
 +
- \left( {\small\frac{m}{q}} \right)_{\small{\!\! J}} =
 +
- \left( {\small\frac{k q + 4}{q}} \right)_{\small{\!\! J}} =
 +
- \left( {\small\frac{4}{q}} \right)_{\small{\!\! J}} = - 1</math>
 +
 
 +
Zatem <math>q</math> jest liczbą niekwadratową modulo <math>m</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
Można też pokazać, że<ref name="Pollack2"/><br/>
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K67*</span><br/>
 +
'''A.''' Jeżeli <math>p \geqslant 13</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>p</math>.
 +
 
 +
'''B.''' Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>p</math>.
 +
 
 +
 
 +
 
 +
Zauważmy, że twierdzenie K67 można łatwo uogólnić na liczby całkowite dodatnie.<br/>
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K68</span><br/>
 +
'''A.''' Jeżeli <math>m \geqslant 6</math> jest liczbą całkowitą i <math>m \neq 10 , 11</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>m</math>.
 +
 
 +
'''B.''' Jeżeli <math>m \geqslant 4</math> jest liczbą całkowitą i <math>m \neq 6 , 9</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 
 +
'''Punkt B'''
 +
 
 +
Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b</math>.
 +
 
 +
Jeżeli <math>3 \mid m</math>, to <math>11</math> jest liczbą niekwadratową modulo <math>m</math>, bo <math>\left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J55 i&nbsp;K41).
 +
 
 +
Jeżeli <math>3 \nmid m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J55).
 +
 
 +
Jeżeli <math>3 \nmid m</math> i <math>8 \nmid m</math>, ale <math>4 \mid m</math>, to <math>4 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J55).
 +
 
 +
Jeżeli <math>m = 2</math>, to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo <math>2</math>.
 +
 
 +
 
 +
Zbierając:
 +
 
 +
:* jeśli liczba <math>m \geqslant 12</math> nie ma dzielnika pierwszego <math>p \geqslant 5</math>, czyli jest postaci <math>m = 2^a 3^b</math>, to liczba pierwsza <math>q = 11</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math>.
 +
:* jeśli liczba <math>m \geqslant 12</math> ma dzielnik pierwszy <math>p \geqslant 5</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math> (zobacz K67 i&nbsp;K41).
 +
 
 +
 
 +
Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 11</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 3</math>.
 +
 
 +
<span style="font-size: 90%; color:black;">'''for'''(m = 3, 15, '''forprimestep'''(q = 3, 100, 4, '''if'''( isQR(q,m) == -1, '''print'''(m, "  ", q); '''break'''() )))</span>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
|-
! Kongruencje || Rozwiązania
+
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math>
 
|-
 
|-
| <math>x^2 \equiv 17 \pmod{16 \cdot 23}</math> || <math>\text{brak}</math>
+
! <math>\boldsymbol{q}</math>  
|-
+
| style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math>
| <math>x^2 \equiv 17 \pmod{8 \cdot 23}</math> || <math>\text{brak}</math>
 
|-
 
| <math>x^2 \equiv 5 \;\, \pmod{8 \cdot 23}</math> || <math>\text{brak}</math>
 
|-
 
| <math>x^2 \equiv 5 \;\, \pmod{4 \cdot 23}</math> || <math>\text{brak}</math>
 
 
|}
 
|}
  
 +
Widzimy, że twierdzenie jest prawdziwe dla <math>m \geqslant 4</math>, o ile <math>m \neq 6 , 9</math>.
 +
 +
'''Punkt A'''
 +
 +
Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>.
 +
 +
Jeżeli jedna z&nbsp;liczb <math>3, 5, 7, 11</math> dzieli <math>m</math>, to <math>17</math> jest liczbą niekwadratową modulo <math>m</math>, bo
 +
<math>\left( {\small\frac{17}{3}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{17}{5}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{17}{7}} \right)_{\small{\!\! J}}
 +
= \left( {\small\frac{17}{11}} \right)_{\small{\!\! J}}
 +
= - 1</math>.
 +
 +
Jeżeli żadna z&nbsp;liczb <math>3, 5, 7, 11</math> nie dzieli <math>m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (5 - 1)</math>, zatem liczba <math>5</math> jest liczbą niekwadratową modulo <math>m</math>.
 +
 +
Jeżeli żadna z&nbsp;liczb <math>3, 5, 7, 11</math> nie dzieli <math>m</math> i <math>8 \nmid m</math>, ale <math>4 \mid m</math>, to nie istnieją liczby pierwsze postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>, bo <math>4 \mid [(4 k + 1) - 1]</math>
  
 +
Jeżeli <math>m = 2</math>, to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo <math>2</math>.
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J55</span><br/>
+
Zbierając:
Rozwiązać kongruencję, gdzie <math>p</math> jest liczbą pierwszą nieparzystą
 
  
::<math>x^2 + rx + s \equiv 0 \pmod{p}</math>
+
:* jeśli liczba <math>m \geqslant 18</math> nie ma dzielnika pierwszego <math>p \geqslant 13</math>, czyli jest postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>, to liczba pierwsza <math>q = 5</math> lub <math>q = 17</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 1</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math>.
 +
:* jeśli liczba <math>m \geqslant 18</math> ma dzielnik pierwszy <math>p \geqslant 13</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 1</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math> (zobacz K67 i&nbsp;K41).
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 17</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 1</math>.
Ponieważ <math>\gcd (2, p) = 1</math>, to nie zmniejszając ogólności kongruencję powyższą możemy zapisać w&nbsp;postaci
 
  
::<math>4 x^2 + 4 rx + 4 s \equiv 0 \pmod{p}</math>
+
<span style="font-size: 90%; color:black;">'''for'''(m = 3, 20, '''forprimestep'''(q = 1, 100, 4, '''if'''( isQR(q,m) == -1, '''print'''(m, "  ", q); '''break'''() )))</span>
  
::<math>(2 x + r)^2 - r^2 + 4 s \equiv 0 \pmod{p}</math>
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{m}</math>
 +
| <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math>
 +
|-
 +
! <math>\boldsymbol{q}</math>  
 +
| style="background-color: red" | <math>5</math> || style="background-color: red" | <math>-</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>13</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>13</math>
 +
|}
  
::<math>(2 x + r)^2 \equiv r^2 - 4 s \pmod{p}</math>
+
Widzimy, że twierdzenie jest prawdziwe dla <math>m \geqslant 6</math>, o ile <math>m \neq 10 , 11</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Widzimy, że rozpatrywana kongruencja ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy liczba <math>r^2 - 4 s</math> jest liczbą kwadratową modulo <math>p</math>. Istotnie, jeśli jest liczbą kwadratową, to istnieje taka liczba <math>b</math>, że <math>b^2 \equiv r^2 - 4 s \!\! \pmod{p}</math>, zatem otrzymujemy
 
  
::<math>(2 x + r)^2 \equiv b^2 \pmod{p}</math>
 
  
::<math>2 x + r \equiv \pm b \pmod{p}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K69</span><br/>
 +
Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math>
  
::<math>x \equiv {\small\frac{p + 1}{2}} \cdot (- r \pm b) \pmod{p}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Łatwo sprawdzamy, że
  
Jeśli <math>r^2 - 4 s</math> nie jest liczbą kwadratową modulo <math>p</math>, to kongruencja
+
::<math>\left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math>
  
::<math>(2 x + r)^2 \equiv r^2 - 4 s \pmod{p}</math>
+
(zobacz J41&nbsp;p.7). Zatem dowód wystarczy przeprowadzić dla <math>p \geqslant 13</math>.
  
nie ma rozwiązania. Wynika stąd, że równoważna jej kongruencja
+
'''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 1}</math>
  
::<math>x^2 + rx + s \equiv 0 \pmod{p}</math>
+
Niech liczba <math>q</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Z&nbsp;twierdzenia K25 wiemy, że dla <math>p \geqslant 5</math> liczba <math>q</math> jest liczbą pierwszą i&nbsp;jest mniejsza od <math>p</math>. Ponieważ <math>p \equiv 1 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J41&nbsp;p.9 otrzymujemy natychmiast
  
również nie ma rozwiązania.<br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
&#9633;
+
::<math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1</math>
{{\Spoiler}}
+
</div>
  
 +
'''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 3}</math>
  
 +
Z twierdzenia K61 wynika, że dla każdej liczby pierwszej <math>p \geqslant 11</math> postaci <math>4 k + 3</math> istnieje liczba pierwsza <math>q < p</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą kwadratową modulo <math>p</math>. Ponieważ <math>p \equiv q \equiv 3 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J41 p.9 otrzymujemy natychmiast
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J56</span><br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
Rozwiązać kongruencję
+
::<math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1</math>
 +
</div>
  
::<math>5 x^2 + 6 x + 8 \equiv 0 \pmod{19}</math>
+
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Rozwiązywanie kongruencji w&nbsp;przypadku konkretnych wartości liczb <math>r, s</math> jest łatwiejsze niż w&nbsp;przypadku ogólnym. Mnożąc obie strony kongruencji przez <math>4</math>, otrzymujemy
 
  
::<math>x^2 + 24 x + 32 \equiv 0 \pmod{19}</math>
 
  
::<math>x^2 + 24 x + 13 \equiv 0 \pmod{19}</math>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie K70</span><br/>
 +
Udowodnić twierdzenie K69 w&nbsp;przypadku, gdy liczba pierwsza <math>p \geqslant 19</math> jest postaci <math>4 k + 3</math>, nie korzystając z&nbsp;twierdzenia K61.
  
Celowo zostawiliśmy parzysty współczynnik przy <math>x</math>. Gdyby był nieparzysty, to zawsze możemy dodać do niego nieparzysty moduł.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z założenia <math>p = 4 k + 3</math>. Liczba <math>k</math> może być postaci <math>k = 3 j</math>, <math>k = 3 j + 1</math> i <math>k = 3 j + 2</math>. Odpowiada to liczbom pierwszym postaci <math>p = 12 j + 3</math>, <math>p = 12 j + 7</math> i <math>p = 12 j + 11</math>.
  
::<math>(x + 12)^2 - 144 + 13 \equiv 0 \pmod{19}</math>
+
Ponieważ nie ma liczb pierwszych <math>p \geqslant 19</math> i&nbsp;będących postaci <math>p = 12 j + 3</math>, to pozostaje rozważyć przypadki <math>p = 12 j + 7</math> i <math>p = 12 j + 11</math>.
  
::<math>(x + 12)^2 + 2 \equiv 0 \pmod{19}</math>
+
'''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{12 j + 11}</math>
  
::<math>(x + 12)^2 \equiv - 2 \pmod{19}</math>
+
Wiemy, że w&nbsp;tym przypadku <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1</math> (zobacz J46). Mamy
  
::<math>(x + 12)^2 \equiv 6^2 \pmod{19}</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math>
 +
</div>
  
::<math>x + 12 \equiv \pm 6 \pmod{19}</math>
+
Czyli wystarczy przyjąć <math>q = 3</math>.
  
Otrzymujemy: <math>x \equiv 1 \!\! \pmod{19}</math> lub <math>x \equiv 13 \!\! \pmod{19}</math>.
+
'''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{12 j + 7}</math>
  
 +
Wiemy, że w&nbsp;tym przypadku <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J41&nbsp;p.6 oraz J46). Otrzymujemy
  
Nieco spostrzegawczości pozwala znaleźć rozwiązanie kongruencji natychmiast. W&nbsp;naszym przypadku wystarczyło zauważyć, że
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = - \left( {\small\frac{p - 12}{p}} \right)_{\small{\!\! J}} = - \left( {\small\frac{- 12}{p}} \right)_{\small{\!\! J}} = \left[ - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} \right] \cdot \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = -1</math>
 +
</div>
  
::<math>x^2 + 24 x + 13 \equiv x^2 - 14 x + 13 \equiv (x - 1) (x - 13) \equiv 0 \pmod{19}</math><br/>
+
Ponieważ liczba <math>p - 12 \geqslant 7</math> jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy <math>q < p</math> liczby <math>p - 12</math> taki, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;przeciwnym razie z&nbsp;twierdzenia J41&nbsp;p.4 mielibyśmy <math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1707: Linia 2613:
 
<references>
 
<references>
  
<ref name="CRT1">Wikipedia, ''Chińskie twierdzenie o&nbsp;resztach'', ([https://pl.wikipedia.org/wiki/Chi%C5%84skie_twierdzenie_o_resztach Wiki-pl]), ([https://en.wikipedia.org/wiki/Chinese_remainder_theorem Wiki-en])</ref>
+
<ref name="Dukic1">Dušan Đukić, ''Quadratic Congruences'', International Mathematical Olympiad training materials, ([https://imomath.com/index.cgi?page=quadraticCongruencesSumsLegendreSymbols IMOmath.com])</ref>
 +
 
 +
<ref name="Hasse1">Helmut Hasse, ''Zur Theorie der abstrakten elliptischen Funktionenkörper. I. Die Struktur der Gruppe der Divisisorenklassen endlicher Ordnung. II. Automorphismen und Meromorphismen. Das Additionstheorem. III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung'', Journal für die reine und angewandte Mathematik 175 (1936) 55–62, 69–88, 193–207.</ref>
 +
 
 +
<ref name="Hasse2">Wikipedia, ''Hasse's theorem on elliptic curves'', ([https://en.wikipedia.org/wiki/Hasse%27s_theorem_on_elliptic_curves Wiki-en]), ([https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A5%D0%B0%D1%81%D1%81%D0%B5 Wiki-ru])</ref>
 +
 
 +
<ref name="Manin1">Yu. I. Manin, ''On cubic congruences to a prime modulus'', Izv. Akad. Nauk SSSR Ser. Mat., 1956, Volume 20, Issue 5, 673–678</ref>
 +
 
 +
<ref name="Norton1">Karl K. Norton, ''Numbers with Small Prime Factors, and the Least ''k''th Power Non-Residue'', Memoirs of the American Mathematical Society, No. 106 (1971)</ref>
 +
 
 +
<ref name="Trevino1">Enrique Treviño, ''The least k-th power non-residue'', Journal of Number Theory, Volume 149 (2015)</ref>
 +
 
 +
<ref name="Trevino2">Kevin J. McGown and Enrique Treviño, ''The least quadratic non-residue'', Mexican Mathematicians in the World (2021)</ref>
 +
 
 +
<ref name="Erdos1">Paul Erdős, ''Számelméleti megjegyzések I'', Afar. Lapok, v. 12 (1961)</ref>
 +
 
 +
<ref name="Pollack1">Paul Pollack, ''The average least quadratic nonresidue modulo <math>m</math> and other variations on a&nbsp;theme of Erdős'', Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.</ref>
  
<ref name="CRT2">CRT to często używany skrót od angielskiej nazwy twierdzenia: ''Chinese remainder theorem''</ref>
+
<ref name="InfiniteDescent1">Wikipedia, ''Proof by infinite descent'', ([https://en.wikipedia.org/wiki/Proof_by_infinite_descent Wiki-en])</ref>
  
<ref name="logic1">Wikipedia, ''Logical equivalence'', ([https://en.wikipedia.org/wiki/Logical_equivalence Wiki-en])</ref>
+
<ref name="Bussey1">W. H. Bussey, ''Fermat's Method of Infinite Descent'', The American Mathematical Monthly, Vol. 25, No. 8 (1918)</ref>
  
<ref name="jacobi1">Wikipedia, ''Symbol Jacobiego'', ([https://pl.wikipedia.org/wiki/Symbol_Jacobiego Wiki-pl]), ([https://en.wikipedia.org/wiki/Jacobi_symbol Wiki-en])</ref>
+
<ref name="HardyWright1">G. H. Hardy and Edward M. Wright, ''An Introduction to the Theory of Numbers'', New York: Oxford University Press, 5th Edition, zobacz dowód Twierdzenia 366 w&nbsp;sekcji 20.4 na stronie 301.</ref>
  
<ref name="legendre1">Wikipedia, ''Symbol Legendre’a'', ([https://pl.wikipedia.org/wiki/Symbol_Legendre%E2%80%99a Wiki-pl]), ([https://en.wikipedia.org/wiki/Legendre_symbol Wiki-en])</ref>
+
<ref name="Gica1">Alexandru Gica, ''Quadratic Residues of Certain Types'', Rocky Mountain J. Math. 36 (2006), no. 6, 1867-1871.</ref>
 +
 
 +
<ref name="Pollack2">Paul Pollack, ''The least prime quadratic nonresidue in a&nbsp;prescribed residue class mod 4'', Journal of Number Theory 187 (2018), 403-414</ref>
  
 
</references>
 
</references>
 +
  
  

Wersja z 14:56, 30 gru 2023

22.04.2023



Przykłady sum symboli Legendre'a

Twierdzenie K1
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, [math]\displaystyle{ a, d \in \mathbb{Z} }[/math] i [math]\displaystyle{ p \nmid d }[/math]. Pokazać, że

[math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
[math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1 }[/math]
[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
Dowód

Punkt 1.

Wystarczy zauważyć, że wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) = 0 }[/math]

Punkt 2.

Wystarczy zauważyć, że

[math]\displaystyle{ \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2} }[/math]

oraz że wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1^2 + {\small\frac{p - 1}{2}} \cdot (- 1)^2 = p - 1 }[/math]

Punkt 3.

Z założenia liczby [math]\displaystyle{ p }[/math] i [math]\displaystyle{ d }[/math] są względnie pierwsze. Z twierdzenia C57 wiemy, że reszty [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] z dzielenia [math]\displaystyle{ p }[/math] kolejnych liczb postaci

[math]\displaystyle{ x_k = a + k d }[/math]

przez liczbę [math]\displaystyle{ p }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, p - 1 \} }[/math]. Czyli wśród reszt [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math], tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], a jedna z tych reszt jest podzielna przez [math]\displaystyle{ p }[/math]. Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p. 2). Zatem możemy napisać

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = \sum_{j = 0}^{p - 1} \left( {\small\frac{r_j}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) + 0 = 0 }[/math]

Co należało pokazać.


Twierdzenie K2* (George Pólya, Iwan Winogradow, 1918)
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ m, n \in \mathbb{N}_0 }[/math], to prawdziwe jest oszacowanie

[math]\displaystyle{ \left| \sum_{t = m}^{m + n} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}} \right| \lt \sqrt{p} \log p }[/math]


Twierdzenie K3
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], to

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (a - b) \\ p - 1 & \text{gdy } \, p \mid (a - b) \\ \end{cases} }[/math]
Dowód

1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \mid (a - b)} }[/math]

Z założenia [math]\displaystyle{ b \equiv a \!\! \pmod{p} }[/math]

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2} }[/math]

Z twierdzenia C57 wiemy, że reszty [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] z dzielenia [math]\displaystyle{ p }[/math] kolejnych liczb postaci

[math]\displaystyle{ x_k = a + k }[/math]

przez liczbę [math]\displaystyle{ p }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, p - 1 \} }[/math]. Czyli wśród reszt [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math], tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], a jedna z tych reszt jest podzielna przez [math]\displaystyle{ p }[/math]. Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p. 2). Zatem możemy napisać

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2} = \sum_{k = 0}^{p - 1} \left( {\small\frac{r_k}{p}} \right)_{\small{\!\! L}}^{\! 2} = p - 1 }[/math]

Co należało pokazać.

2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \nmid (a - b)} }[/math]

Kładąc [math]\displaystyle{ j = k + a }[/math] i sumując od [math]\displaystyle{ a }[/math] do [math]\displaystyle{ p - 1 + a }[/math], otrzymujemy

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \sum_{j = a}^{p - 1 + a} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}} }[/math]

Wśród [math]\displaystyle{ p }[/math] kolejnych liczb [math]\displaystyle{ a, a + 1, \ldots, p - 1 + a }[/math] istnieje dokładnie jedna liczba podzielna przez [math]\displaystyle{ p }[/math]. Możemy ją pominąć, bo nie wnosi ona wkładu do wyliczanej sumy.

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + (b - a) j j^{- 1}}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}} }[/math]

Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik. Liczby [math]\displaystyle{ j = k + a }[/math], gdzie [math]\displaystyle{ k = 0, 1, \ldots, p - 1 }[/math], są wszystkie różne modulo [math]\displaystyle{ p }[/math] (zobacz H14). Niech zbiór [math]\displaystyle{ S }[/math] będzie zbiorem wszystkich liczb [math]\displaystyle{ j = k + a }[/math], które nie są podzielne przez [math]\displaystyle{ p }[/math]. Na mocy twierdzenia H19 zbiory [math]\displaystyle{ R = \{ 1, \ldots, p - 1 \} }[/math], [math]\displaystyle{ S }[/math] oraz [math]\displaystyle{ T = \{ s^{- 1}_1, \ldots, s^{- 1}_{p - 1} \} }[/math], gdzie [math]\displaystyle{ s_k \in S }[/math], są równe modulo [math]\displaystyle{ p }[/math]. Zatem od sumowania po [math]\displaystyle{ j }[/math] możemy przejść do sumowania po [math]\displaystyle{ r \in R }[/math].

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \sum_{r = 1}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\, = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum_{r = 0}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\, = - 1 }[/math]

Ostatnia z wypisanych sum jest równa zero, co wynika z trzeciego wzoru twierdzenia K1 i faktu, że [math]\displaystyle{ p \nmid (b - a) }[/math]. Co należało pokazać.


Twierdzenie K4
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ n \in \mathbb{Z} }[/math], to

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid n \\ p - 1 & \text{gdy } \, p \mid n \\ \end{cases} }[/math]
Dowód

Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \mid n} }[/math]

Z drugiego wzoru twierdzenia K1 otrzymujemy

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1 }[/math]

Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \nmid n} }[/math]

Jeżeli liczby [math]\displaystyle{ a, b }[/math] są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], to istnieje taka liczba [math]\displaystyle{ r }[/math], że

[math]\displaystyle{ a \equiv b r^2 \!\! \pmod{p} }[/math]

(zobacz J34). Zatem

[math]\displaystyle{ S(a) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + a}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\; = \sum^{p - 1}_{k = 0} \left( {\small\frac{k^2 + b r^2}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^2 \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\; = \left( {\small\frac{r^2}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}} }[/math]

Z twierdzenia C57 wiemy, że gdy [math]\displaystyle{ k }[/math] przebiega zbiór [math]\displaystyle{ T = \{ 0, 1, \ldots, p - 1 \} }[/math], to [math]\displaystyle{ k r^{- 1} }[/math] przebiega zbiór [math]\displaystyle{ T' }[/math] identyczny ze zbiorem [math]\displaystyle{ T }[/math] modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ S(a) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + b}{p}} \right)_{\small{\!\! L}} = S (b) }[/math]


Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo [math]\displaystyle{ p }[/math] wyrażenie [math]\displaystyle{ S(n) }[/math] ma taką samą wartość i jeśli wybierzemy liczby [math]\displaystyle{ a, b }[/math] tak, aby jedna była liczbą kwadratową, a druga liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to możemy napisać

[math]\displaystyle{ \sum_{n = 1}^{p - 1} S (n) = {\small\frac{p - 1}{2}} (S (a) + S (b)) }[/math]


Z drugiej strony

[math]\displaystyle{ \sum_{n = 1}^{p - 1} S (n) = \sum_{n = 1}^{p - 1} \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\: = \sum_{k = 0}^{p - 1} \sum_{n = 1}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\: = \sum_{k = 0}^{p - 1} \left[ - \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{n = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} \right] }[/math]
[math]\displaystyle{ \;\;\;\: = - \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2} }[/math]
[math]\displaystyle{ \;\;\;\: = - (p - 1) }[/math]

bo z twierdzenia K1 wiemy, że

[math]\displaystyle{ \sum_{n = 0}^{p - 1} \left( {\small\frac{n + k^2}{p}} \right)_{\small{\!\! L}} = 0 }[/math]


Łącząc uzyskane rezultaty, dostajemy

[math]\displaystyle{ - (p - 1) = {\small\frac{p - 1}{2}} (S (a) + S (b)) }[/math]

Zatem

[math]\displaystyle{ S(a) + S (b) = - 2 }[/math]


Z twierdzenia K3 mamy

[math]\displaystyle{ S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 - 1}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{k = 0} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]

bo [math]\displaystyle{ p \nmid 2 }[/math]. Dla ustalenia uwagi przyjmijmy, że [math]\displaystyle{ a }[/math] jest liczbą kwadratową, a [math]\displaystyle{ b }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Jeżeli [math]\displaystyle{ - 1 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], to [math]\displaystyle{ S(a) = - 1 }[/math] i natychmiast otrzymujemy, że [math]\displaystyle{ S(b) = - 1 }[/math]. Jeżeli [math]\displaystyle{ - 1 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to [math]\displaystyle{ S(b) = - 1 }[/math] i natychmiast otrzymujemy, że [math]\displaystyle{ S(a) = - 1 }[/math]. Zatem bez względu na to, czy [math]\displaystyle{ n }[/math] jest liczbą kwadratową, czy liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], musi być [math]\displaystyle{ S(n) = - 1 }[/math]. Co należało pokazać.


Zadanie K5
Pokazać, że jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ r , s \in \mathbb{Z} }[/math], to

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (r^2 - 4 s) \\ p - 1 & \text{gdy } \, p \mid (r^2 - 4 s) \\ \end{cases} }[/math]
Rozwiązanie
[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{4 k^2 + 4 r k + 4 s}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\;\;\, = \sum^{p - 1}_{k = 0} \left( {\small\frac{(2 k + r)^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}} }[/math]

Z twierdzenia C57 wiemy, że gdy [math]\displaystyle{ k }[/math] przebiega zbiór [math]\displaystyle{ T = \{ 0, 1, \ldots, p - 1 \} }[/math], to [math]\displaystyle{ 2 k + r }[/math] przebiega zbiór [math]\displaystyle{ T' }[/math] identyczny ze zbiorem [math]\displaystyle{ T }[/math] modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}} }[/math]

Z twierdzenia K4 wynika natychmiast teza dowodzonego twierdzenia.


Twierdzenie K6
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ n \in \mathbb{Z} }[/math], to dla sumy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]

prawdziwe są następujące wzory

(a) [math]\displaystyle{ \;\; S(n) = 0 \qquad \qquad \text{gdy } \; p = 4 k + 3 }[/math]
(b) [math]\displaystyle{ \;\; | S (n) | \lt 2 \sqrt{p} \qquad \text{gdy } \; p = 4 k + 1 }[/math]
Dowód

Punkt (a)

Zauważmy, że zbiory [math]\displaystyle{ R = \{ 0, 1, 2, \ldots, p - 1 \} }[/math] oraz [math]\displaystyle{ T = \{ - p + 1, - p + 2, \ldots, - p + (p - 1), 0 \} }[/math] są identyczne modulo [math]\displaystyle{ p }[/math]. Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p.2). Zatem możemy sumowanie po [math]\displaystyle{ k \in R }[/math] zastąpić sumowaniem po [math]\displaystyle{ j \in T . }[/math] Otrzymujemy

[math]\displaystyle{ S(n) = \sum_{j = - p + 1}^{0} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]

Kładąc [math]\displaystyle{ j = - r }[/math] i sumując po [math]\displaystyle{ r }[/math] od [math]\displaystyle{ 0 }[/math] do [math]\displaystyle{ p - 1 }[/math], dostajemy

[math]\displaystyle{ S(n) = \sum_{r = 0}^{p - 1} \left( {\small\frac{- r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{(- r)^2 + n}{p}} \right)_{\small{\!\! L}} = \sum_{r = 0}^{p - 1} \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r^2 + n}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} S (n) }[/math]

Jeżeli [math]\displaystyle{ p = 4 k + 3 }[/math], to [math]\displaystyle{ S (n) = - S (n) }[/math], czyli [math]\displaystyle{ S(n) = 0 }[/math].

Punkt (b)

Pomysł dowodu zaczerpnęliśmy z materiałów szkoleniowych Międzynarodowej Olimpiady Matematycznej[1].

Jeżeli liczby [math]\displaystyle{ a, b }[/math] są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], to istnieje taka liczba [math]\displaystyle{ r }[/math], że

[math]\displaystyle{ a \equiv b r^2 \!\! \pmod{p} }[/math]

(zobacz J34). Zatem

[math]\displaystyle{ S(a) = S (b r^2) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + b r^2)}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\:\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^3 (k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\:\, = \left( {\small\frac{r^3}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\:\, = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]

Z twierdzenia C57 wiemy, że gdy [math]\displaystyle{ k }[/math] przebiega zbiór [math]\displaystyle{ T = \{ 0, 1, \ldots, p - 1 \} }[/math], to [math]\displaystyle{ k r^{- 1} }[/math] przebiega zbiór [math]\displaystyle{ T' }[/math] identyczny ze zbiorem [math]\displaystyle{ T }[/math] modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ S(a) = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{x = 0}^{p - 1} \left( {\small\frac{x (x^2 + b)}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} S (b) }[/math]

Czyli [math]\displaystyle{ S (a)^2 = S (b)^2 }[/math]. Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo [math]\displaystyle{ p }[/math] wyrażenie [math]\displaystyle{ S (n)^2 }[/math] ma taką samą wartość i jeśli wybierzemy liczby [math]\displaystyle{ a, b }[/math] tak, aby jedna była liczbą kwadratową, a druga liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to prawdziwa jest równość

[math]\displaystyle{ \sum_{n = 1}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) }[/math]

Jak łatwo zauważyć [math]\displaystyle{ S(0) = 0 }[/math], zatem możemy napisać

[math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) }[/math]

Z drugiej strony

[math]\displaystyle{ S (n)^2 = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]

Zatem

[math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = \sum_{n = 0}^{p - 1} \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \;\! = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}} }[/math]


Z twierdzenia K3 wiemy, że

[math]\displaystyle{ \sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (k^2 - j^2) \\ p - 1 & \text{gdy } \, p \mid (k^2 - j^2) \\ \end{cases} }[/math]


Zbadajmy, kiedy [math]\displaystyle{ p \mid (k^2 - j^2) }[/math], czyli kiedy [math]\displaystyle{ p \mid [(k - j) (k + j)] }[/math]. Mamy

  • [math]\displaystyle{ \; 0 \leqslant | k - j | \leqslant p - 2 }[/math]
  • [math]\displaystyle{ \; 2 \leqslant k + j \leqslant 2 p - 2 }[/math]

Zatem [math]\displaystyle{ p \mid [(k - j) (k + j)] }[/math] gdy

  • [math]\displaystyle{ \; j = k }[/math]
  • [math]\displaystyle{ \; j = p - k }[/math]


Pozwala to zapisać rozpatrywaną sumę w postaci

[math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \cdot \left\{ \begin{array}{rll} - 1 & \text{gdy } \; j \neq k \;\;\;\; \text{ i } \;\;\;\; j \neq p - k \\ p - 1 & \text{gdy } \; j = k \;\; \text{ lub } \;\; j = p - k \\ \end{array} \right\} }[/math]
[math]\displaystyle{ \:\! = (p - 1) \underset{j = k \; \text{ lub } \; j = p - k}{\sum^{p - 1}_{k = 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} - \underset{j \neq k \; \text{ i } \; j \neq p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \:\! = (p - 1) \left[ \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} + \underset{j = k \; \text{ lub } \; j = p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \:\! = (p - 1) \left[ (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \:\! = (p - 1) \left[ (p - 1) + \left( {\small\frac{-1}{p}} \right)_{\small{\!\! L}} \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} \right] + (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \:\! = (p - 1) \cdot 2 (p - 1) + (p - 1) + (p - 1) }[/math]
[math]\displaystyle{ \:\! = 2 p (p - 1) }[/math]

Zauważmy, że [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} = 1 }[/math], bo [math]\displaystyle{ p = 4 k + 1 }[/math].


Ponieważ wcześniej pokazaliśmy, że

[math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) }[/math]

to otrzymujemy

[math]\displaystyle{ {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) = 2 p (p - 1) }[/math]

Czyli

[math]\displaystyle{ S (a)^2 + S (b)^2 = 4 p }[/math]

Wynika stąd, że bez względu na to, czy [math]\displaystyle{ n }[/math] jest liczbą kwadratową, czy liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], prawdziwe jest oszacowanie

[math]\displaystyle{ | S (n) | \leqslant 2 \sqrt{p} }[/math]

Równość [math]\displaystyle{ S (n)^2 = 4 p }[/math] nie jest możliwa, bo dzielnik pierwszy [math]\displaystyle{ p }[/math] występuje po prawej stronie w potędze nieparzystej. Zatem mamy nieco silniejsze oszacowanie

[math]\displaystyle{ | S (n) | \lt 2 \sqrt{p} }[/math]

Co kończy dowód.


Twierdzenie K7
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], to dla sumy

[math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math]

prawdziwe są następujące wzory

(a) [math]\displaystyle{ \;\; S(a, b) = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} \qquad \qquad \, \text{gdy } \; p \mid (4 a^3 + 27 b^2) }[/math]
(b) [math]\displaystyle{ \;\; | S (a, b) | \lt 2 \sqrt{p} \qquad \qquad \;\;\;\; \text{gdy } \; p \nmid (4 a^3 + 27 b^2) }[/math]
Dowód

Niech [math]\displaystyle{ p \geqslant 5 }[/math]. W ogólnym przypadku interesująca nas suma ma postać

[math]\displaystyle{ \sum_{t = 0}^{p - 1} \left( {\small\frac{a t^3 + b t^2 + c t + d}{p}} \right)_{\small{\!\! L}} }[/math]

gdzie [math]\displaystyle{ p \nmid a }[/math]. Mnożąc licznik przez [math]\displaystyle{ a^2 }[/math] nie zmieniamy wartości sumy

[math]\displaystyle{ \sum_{t = 0}^{p - 1} \left( {\small\frac{a^3 t^3 + a^2 b t^2 + a^2 c t + a^2 d}{p}} \right)_{\small{\!\! L}} }[/math]

Podstawiając [math]\displaystyle{ x \equiv a t + r \!\! \pmod{p} }[/math], dostajemy

[math]\displaystyle{ \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x^2 (b - 3 r) + x [a c - r (2 b - 3 r)] + [a^2 d - a c r + r^2 (b - r)]}{p}} \right)_{\small{\!\! L}} }[/math]

bo, gdy [math]\displaystyle{ t }[/math] przebiega zbiór [math]\displaystyle{ \{ 0, 1, \ldots, p - 1 \} }[/math], to (modulo [math]\displaystyle{ p }[/math]) liczby [math]\displaystyle{ a t + r }[/math] przebiegają taki sam zbiór (zobacz C57). Ponieważ [math]\displaystyle{ p \geqslant 5 }[/math], to liczbę [math]\displaystyle{ r }[/math] możemy wybrać tak, aby było

[math]\displaystyle{ 3 r \equiv b \!\! \pmod{p} }[/math]

Ostatecznie otrzymujemy

[math]\displaystyle{ \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x (a c - 3 r^2) + (a^2 d - a c r + 2 r^3)}{p}} \right)_{\small{\!\! L}} }[/math]


Widzimy, że bez zmniejszania ogólności, możemy ograniczyć się do badania sumy postaci

[math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math]

Liczbę [math]\displaystyle{ - \left( 4 a^3 + 27 b^2 \right) }[/math] nazywamy wyróżnikiem wielomianu [math]\displaystyle{ x^3 + a x + b }[/math].

Pokażemy, że w przypadku, gdy [math]\displaystyle{ 4 a^3 + 27 b^2 \equiv 0 \!\! \pmod{p} }[/math] i [math]\displaystyle{ p \geqslant 3 }[/math] prawdziwy jest wzór

[math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} }[/math]


W przypadku, gdy [math]\displaystyle{ p = 3 }[/math] z warunku [math]\displaystyle{ 4 a^3 + 27 b^2 \equiv 0 \pmod{3} }[/math] wynika, że [math]\displaystyle{ 3 \mid a }[/math]. Zakładając, że reszta z dzielenia liczby [math]\displaystyle{ b }[/math] przez [math]\displaystyle{ 3 }[/math] wynosi [math]\displaystyle{ r }[/math], otrzymujemy

[math]\displaystyle{ S(a, b) = \sum_{x = 0}^{2} \left( {\small\frac{x^3 + b}{3}} \right)_{\small{\!\! L}} = \left( {\small\frac{b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1 + b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{8 + b}{3}} \right)_{\small{\!\! L}} = \left( {\small\frac{r}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 2}{3}} \right)_{\small{\!\! L}} = \left( {\small\frac{0}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{2}{3}} \right)_{\small{\!\! L}} = 0 }[/math]


Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] i [math]\displaystyle{ p \mid a }[/math], to [math]\displaystyle{ p \mid b }[/math] i łatwo znajdujemy, że

[math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3}{p}} \right)_{\small{\!\! L}} = 0 }[/math]


Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] i [math]\displaystyle{ p \nmid a }[/math], to

[math]\displaystyle{ x^3 + a x + b \equiv (x - x_1) (x - x_2)^2 \!\! \pmod{p} }[/math]

gdzie

[math]\displaystyle{ x_1 \equiv 3 b a^{- 1} \!\! \pmod{p} }[/math]
[math]\displaystyle{ x_2 \equiv - 3 b 2^{- 1} a^{- 1} \!\! \pmod{p} }[/math]

Co Czytelnik może łatwo sprawdzić, pamiętając o tym, że [math]\displaystyle{ 27 b^2 \cdot 2^{- 2} a^{- 3} \equiv - 1 \!\! \pmod{p} }[/math]. Mamy

[math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x - x_2}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{x - x_1}{p}} \right)_{\small{\!\! L}} }[/math]

Niech [math]\displaystyle{ t = x - x_2 }[/math]. Jeżeli [math]\displaystyle{ x }[/math] przebiega zbiór [math]\displaystyle{ \{ 0, 1, \ldots, p - 1 \} }[/math], to (modulo [math]\displaystyle{ p }[/math]) [math]\displaystyle{ t }[/math] przebiega taki sam zbiór (zobacz C57). Zatem

[math]\displaystyle{ S(a, b) = \sum_{t = 0}^{p - 1} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}} = \sum_{t = 1}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} + \sum_{t = 0}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} }[/math]

Uwzględniając, że

[math]\displaystyle{ x_2 - x_1 \equiv - 3 b 2^{- 1} a^{- 1} - 3 b a^{- 1} \equiv - 3 b 2^{- 1} a^{- 1} - 6 b 2^{- 1} a^{- 1} \equiv - 9 b 2^{- 1} a^{- 1} \!\! \pmod{p} }[/math]

otrzymujemy

[math]\displaystyle{ S(a, b) = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 9 b 2^{- 1} a^{- 1}}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 2 a b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 8 a^3 b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 2 b \cdot (- 27 b^2)}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} }[/math]


W przypadku, gdy [math]\displaystyle{ 4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p} }[/math], pokażemy, że wartość sumy

[math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math]

jest ściśle związana z ilością rozwiązań kongruencji

[math]\displaystyle{ y^2 \equiv x^3 + a x + b \!\! \pmod{p} }[/math]


Niech [math]\displaystyle{ N_p }[/math] oznacza ilość rozwiązań powyższej kongruencji i niech [math]\displaystyle{ N_+, N_0, N_- }[/math] oznaczają ilości liczb [math]\displaystyle{ k \in \{ 0, 1, \ldots, p - 1 \} }[/math], dla których symbol Legendre'a [math]\displaystyle{ \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math] jest równy odpowiednio [math]\displaystyle{ + 1, 0, - 1 }[/math]. Oczywiście

[math]\displaystyle{ N_+ + N_0 + N_- = p }[/math]
[math]\displaystyle{ S(a, b) = N_+ - N_- }[/math]

Zauważmy, że jeżeli dla pewnego [math]\displaystyle{ x }[/math] jest [math]\displaystyle{ p \mid (x^3 + a x + b) }[/math], to [math]\displaystyle{ \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = 0 }[/math] i mamy dokładnie jedno rozwiązanie rozważanej kongruencji

[math]\displaystyle{ 0^2 \equiv x^3 + a x + b \!\! \pmod{p} }[/math]

Jeżeli dla pewnego [math]\displaystyle{ x }[/math] jest [math]\displaystyle{ \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = + 1 }[/math], to [math]\displaystyle{ p \nmid (x^3 + a x + b) }[/math], a liczba [math]\displaystyle{ x^3 + a x + b }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], czyli istnieje taka liczba [math]\displaystyle{ y \in \mathbb{Z} }[/math], że

[math]\displaystyle{ y^2 \equiv x^3 + a x + b \!\! \pmod{p} }[/math]

i mamy dwa rozwiązania rozpatrywanej kongruencji: jedno stanowi para [math]\displaystyle{ (x, y) }[/math], a drugie para [math]\displaystyle{ (x, - y) }[/math]. Zatem

[math]\displaystyle{ N_p = 2 N_+ + N_0 }[/math]

Łatwo zauważamy, że

[math]\displaystyle{ N_p - p = (2 N_+ + N_0) - (N_+ + N_0 + N_-) = N_+ - N_- = S (a, b) }[/math]


W 1936 roku Helmut Hasse[2][3] udowodnił, że

[math]\displaystyle{ | N_p - p | \lt 2 \sqrt{p} }[/math]

Elementarny dowód tego twierdzenia podał Jurij Manin[4].


Wynika stąd, że w przypadku, gdy [math]\displaystyle{ 4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p} }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ | S (a, b) | = \left| \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} \right| \lt 2 \sqrt{p} }[/math]

Co należało pokazać.


Zadanie K8
Pokazać, że jeżeli [math]\displaystyle{ p \geqslant 7 }[/math] jest liczbą pierwszą, to wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] istnieją:

  • dwie kolejne liczby będące liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]
  • dwie kolejne liczby będące liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math]
Rozwiązanie

Dla [math]\displaystyle{ p = 7 }[/math] łatwo sprawdzamy, że twierdzenie jest prawdziwe.

Punkt 1.

Zauważmy, że przynajmniej jedna z liczb [math]\displaystyle{ 2, 5, 10 }[/math] jest liczbą kwadratową. Zakładając, że tak nie jest, otrzymujemy natychmiast sprzeczność

[math]\displaystyle{ -1 = \left( {\small\frac{10}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{5}{p}} \right)_{\small{\!\! L}} = (- 1) \cdot (- 1) = 1 }[/math]

W zależności od tego, która z liczb [math]\displaystyle{ 2, 5, 10 }[/math] jest liczbą kwadratową, mamy następujące pary kolejnych liczb kwadratowych

Punkt 2.

Rozważmy wszystkie możliwe wartości [math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} }[/math] dla [math]\displaystyle{ k = 1, 2, 3, 4 }[/math] i [math]\displaystyle{ p \geqslant 11 }[/math]. Zauważmy, że [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! L}} }[/math].

A. W tym przypadku liczby [math]\displaystyle{ 2, 3 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Gdyby w pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], to musielibyśmy [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych umieścić wśród pozostałych [math]\displaystyle{ p - 5 }[/math] komórek tak, aby między nimi zawsze była liczba kwadratowa modulo [math]\displaystyle{ p }[/math]. Wartość [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} }[/math] wymusza, aby liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] umieszczać w komórkach „nieparzystych”. Po wypełnieniu tych komórek pozostaną nam dwie liczby, które będziemy zmuszeni umieścić w komórkach „parzystych”. Co oznacza, że muszą pojawić się dwie pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math]

B. i C. W tym przypadku dokładnie jedna z liczb [math]\displaystyle{ 2, 3 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Gdyby w pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], to musielibyśmy [math]\displaystyle{ {\small\frac{p - 3}{2}} }[/math] liczb niekwadratowych umieścić wśród pozostałych [math]\displaystyle{ p - 5 }[/math] komórek tak, aby między nimi zawsze była liczba kwadratowa modulo [math]\displaystyle{ p }[/math]. Wartość [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} }[/math] wymusza, aby liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] umieszczać w komórkach „parzystych”. Po wypełnieniu tych komórek pozostanie nam jedna liczba, którą będziemy zmuszeni umieścić w komórce „nieparzystej”. Co oznacza, że musi pojawić się jedna para kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math]

D. W tym przypadku nie musimy niczego dowodzić, bo liczby [math]\displaystyle{ 2, 3 }[/math] są kolejnymi liczbami niekwadratowymi modulo [math]\displaystyle{ p . }[/math]


Uwaga K9
Wzmocnimy wynik uzyskany w poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem.


Twierdzenie K10
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to

  • istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor }[/math] różnych par kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math]
  • istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor }[/math] różnych par kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]
Dowód

Punkt 1.

Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 2 \} }[/math], dla których

[math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = 1 }[/math]

Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a

[math]\displaystyle{ N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Tylko w przypadku, gdy obie liczby [math]\displaystyle{ k }[/math] i [math]\displaystyle{ k + 1 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 4 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{4}} }[/math] przed sumą).

[math]\displaystyle{ 4 N = \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
[math]\displaystyle{ \: = p - 2 + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} }[/math]

Po kolei wyliczamy sumy po prawej stronie

[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{p - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum^{p - 1}_{k = 0} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
[math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]

(zobacz K1 i K3). Zatem

[math]\displaystyle{ N = {\small\frac{1}{4}} \left[ p - 4 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Czyli

[math]\displaystyle{ N = \begin{cases} {\large\frac{p - 5}{4}} & \text{ gdy } \; p = 4 k + 1 \\ {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\ \end{cases} }[/math]

Powyższy wynik można zapisać w postaci

[math]\displaystyle{ N = \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor }[/math]

Punkt 2.

Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 2 \} }[/math], dla których

[math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]

Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a

[math]\displaystyle{ N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Tylko w przypadku, gdy obie liczby [math]\displaystyle{ k }[/math] i [math]\displaystyle{ k + 1 }[/math] są liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 4 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{4}} }[/math] przed sumą).

[math]\displaystyle{ 4 N = \sum_{k = 1}^{p - 2} \left[ 1 - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
[math]\displaystyle{ \: = p - 2 - \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} }[/math]

Wartości sum wyliczyliśmy już w punkcie 1. Zatem

[math]\displaystyle{ N = {\small\frac{1}{4}} \left[ p - 2 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Czyli

[math]\displaystyle{ N = \begin{cases} {\large\frac{p - 1}{4}} & \text{ gdy } \; p = 4 k + 1 \\ {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\ \end{cases} }[/math]

Powyższy wynik można zapisać w postaci

[math]\displaystyle{ N = \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor }[/math]

Co należało pokazać.


Twierdzenie K11
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Słowo „trójka” oznacza tutaj trzy kolejne liczby kwadratowe (niekwadratowe) modulo [math]\displaystyle{ p }[/math].

Jeżeli [math]\displaystyle{ p = 4 k + 3 }[/math], to liczba różnych trójek liczb kwadratowych (niekwadratowych) jest równa

[math]\displaystyle{ N = \left\lfloor {\small\frac{p - 3}{8}} \right\rfloor }[/math]

Jeżeli [math]\displaystyle{ p = 4 k + 1 }[/math], to liczba różnych trójek liczb niekwadratowych jest równa

[math]\displaystyle{ N = {\small\frac{p - 3 - S (- 1)}{8}} \gt {\small\frac{p - 3 - 2 \sqrt{p}}{8}} }[/math]

Jeżeli [math]\displaystyle{ p = 4 k + 1 }[/math], to liczba różnych trójek liczb kwadratowych jest równa

[math]\displaystyle{ N = {\small\frac{p - 15 + S (- 1)}{8}} \gt {\small\frac{p - 15 - 2 \sqrt{p}}{8}} \qquad \quad \text{ gdy } \; p = 8 k + 1 }[/math]
[math]\displaystyle{ N = {\small\frac{p - 7 + S (- 1)}{8}} \gt {\small\frac{p - 7 - 2 \sqrt{p}}{8}} \qquad \quad \;\;\; \text{ gdy } \; p = 8 k + 5 }[/math]

Gdzie przez [math]\displaystyle{ S(- 1) }[/math] oznaczyliśmy sumę

[math]\displaystyle{ S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} }[/math]
Dowód

Przypadek pierwszy: trójki liczb kwadratowych modulo [math]\displaystyle{ \boldsymbol{p} }[/math]

Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 2, 3, \ldots, p - 2 \} }[/math], dla których

[math]\displaystyle{ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = + 1 }[/math]

Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a

[math]\displaystyle{ N = {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Tylko w przypadku, gdy wszystkie trzy liczby [math]\displaystyle{ k - 1, k, k + 1 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 8 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{8}} }[/math] przed sumą).

[math]\displaystyle{ 8 N = \sum_{k = 2}^{p - 2} \left[ 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
[math]\displaystyle{ \: = p - 3 + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} }[/math]


Po kolei wyliczamy sumy po prawej stronie

[math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} }[/math]


[math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} }[/math]


[math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{k = 0} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = S (- 1) }[/math]


(zobacz K1, K3 i K6). Oznaczenie [math]\displaystyle{ S(- 1) }[/math] nawiązuje do oznaczenia wprowadzonego w twierdzeniu K6. Wykorzystamy też znalezione w tym twierdzeniu oszacowanie [math]\displaystyle{ | S (- 1) | }[/math].

Zatem

[math]\displaystyle{ 8 N = p - 8 - 3 \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - 3 \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} + S (- 1) }[/math]

Jeżeli [math]\displaystyle{ p = 8 k + 1 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 15 + S (- 1)}{8}} \gt {\small\frac{p - 15 - 2 \sqrt{p}}{8}} }[/math]

Jeżeli [math]\displaystyle{ p = 8 k + 3 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 3}{8}} }[/math]

Jeżeli [math]\displaystyle{ p = 8 k + 5 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 7 + S (- 1)}{8}} \gt {\small\frac{p - 7 - 2 \sqrt{p}}{8}} }[/math]

Jeżeli [math]\displaystyle{ p = 8 k + 7 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 7}{8}} }[/math]


Przypadek drugi: trójki liczb niekwadratowych modulo [math]\displaystyle{ \boldsymbol{p} }[/math]

Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 2, 3, \ldots, p - 2 \} }[/math], dla których

[math]\displaystyle{ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]

Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a

[math]\displaystyle{ N = - {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ - 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]

Tylko w przypadku, gdy wszystkie trzy liczby [math]\displaystyle{ k - 1, k, k + 1 }[/math] są liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ - 8 }[/math] (stąd czynnik [math]\displaystyle{ - {\small\frac{1}{8}} }[/math] przed sumą).

[math]\displaystyle{ 8 N = \sum_{k = 2}^{p - 2} \left[ 1 - \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
[math]\displaystyle{ \: = p - 3 - \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} - \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} - \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} }[/math]


Wartości sum już policzyliśmy, rozpatrując przypadek liczb kwadratowych modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ 8 N = p - 4 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} - S (- 1) }[/math]


Jeżeli [math]\displaystyle{ p = 8 k + 1 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 3 - S (- 1)}{8}} \gt {\small\frac{p - 3 - 2 \sqrt{p}}{8}} }[/math]

Jeżeli [math]\displaystyle{ p = 8 k + 3 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 3}{8}} }[/math]

Jeżeli [math]\displaystyle{ p = 8 k + 5 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 3 - S (- 1)}{8}} \gt {\small\frac{p - 3 - 2 \sqrt{p}}{8}} }[/math]

Jeżeli [math]\displaystyle{ p = 8 k + 7 }[/math]

[math]\displaystyle{ N = {\small\frac{p - 7}{8}} }[/math]

Co kończy dowód.


Uwaga K12
Korzystając z twierdzenia K11, łatwo można pokazać, że każda liczba pierwsza [math]\displaystyle{ p \geqslant 19 }[/math] ma co najmniej dwie różne trójki kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i co najmniej dwie różne trójki kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].



Najmniejsze liczby niekwadratowe modulo

 

 A. Najmniejsze dodatnie liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] 

Przykład K13
W tabeli przedstawiliśmy najmniejsze dodatnie liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]


Uwaga K14
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

A(p) = 
{
if( p == 2, return(0) );
if( !isprime(p), return(0) );
forprime(q = 2, p, if( jacobi(q, p) == -1, return(q) ));
}

Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w rzeczywistości symbol Legendre'a, bo wiemy, że liczba [math]\displaystyle{ p }[/math] jest liczbą pierwszą (w przypadku, gdy [math]\displaystyle{ p }[/math] jest liczbą złożoną, funkcja zwraca zero).


Twierdzenie K15
Niech [math]\displaystyle{ \mathbb{n} \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to jest liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} }[/math]. Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{p} }[/math]
[math]\displaystyle{ s^2 \equiv b \pmod{p} }[/math]

Skąd wynika, że

[math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{p} }[/math]

Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].


Zadanie K16
Pokazać, że najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest

  •  liczba [math]\displaystyle{ 2 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 8 k \pm 3 }[/math]
  •  liczba [math]\displaystyle{ 3 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 7 }[/math]
  •  liczba [math]\displaystyle{ \geqslant 5 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 1 }[/math]
Rozwiązanie

Z właściwości symbolu Legendre'a (zobacz J33 p.7) wiemy, że

[math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, \begin{cases} \;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\ - 1 & \text{gdy } p \equiv 3, 5 \pmod{8} \end{cases} }[/math]

Wynika stąd natychmiast, dla liczb pierwszych [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (i tylko dla takich liczb) liczba [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].

Z zadania J46 wynika, że liczba [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową jedynie dla liczb pierwszych postaci [math]\displaystyle{ 12 k \pm 5 }[/math]. Zatem dla liczb pierwszych, które są jednocześnie postaci [math]\displaystyle{ p = 8 k \pm 1 }[/math] i [math]\displaystyle{ p = 12 j \pm 5 }[/math], liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z czterech warunków

[math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5 }[/math]
[math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 7 }[/math]
[math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 5 }[/math]
[math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 7 }[/math]

Drugi i trzeci nie są możliwe, bo modulo [math]\displaystyle{ 4 }[/math] otrzymujemy

[math]\displaystyle{ p \equiv 1 \pmod{4} \quad \text{i} \quad p \equiv 3 \pmod{4} }[/math]
[math]\displaystyle{ p \equiv 3 \pmod{4} \quad \text{i} \quad p \equiv 1 \pmod{4} }[/math]

a z pierwszego i czwartego mamy

[math]\displaystyle{ 3 p = 24 k + 3 \quad \text{i} \quad 2 p = 24 j + 10 \qquad \;\: \Longrightarrow \qquad p = 24 (k - j) - 7 \qquad \Longrightarrow \qquad p \equiv - 7 \pmod{24} }[/math]
[math]\displaystyle{ 3 p = 24 k + 21 \quad \text{i} \quad 2 p = 24 j + 14 \qquad \Longrightarrow \qquad p = 24 (k - j) + 7 \qquad \Longrightarrow \qquad p \equiv 7 \pmod{24} }[/math]

Zauważmy, że problem mogliśmy zapisać w postaci układu kongruencji

[math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
[math]\displaystyle{ p \equiv \pm 5 \pmod{12} }[/math]

Gdyby moduły tych kongruencji były względnie pierwsze, to każdemu wyborowi znaków odpowiadałaby pewna kongruencja równoważna (zobacz J3). Widzimy, że w przypadku, gdy moduły nie są względnie pierwsze, kongruencja równoważna może istnieć, ale nie musi. Rozwiązując taki problem, wygodnie jest skorzystać z programu PARI/GP. Wystarczy wpisać

chinese(Mod(1, 8), Mod(5, 12)) = Mod(17, 24)
chinese(Mod(1, 8), Mod(-5, 12)) - błąd 
chinese(Mod(-1, 8), Mod(5, 12)) - błąd 
chinese(Mod(-1, 8), Mod(-5, 12)) = Mod(7, 24)

Ostatni punkt zadania rozwiążemy tą metodą. Liczba większa lub równa [math]\displaystyle{ 5 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy liczby [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ 3 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], co oznacza, że liczba pierwsza [math]\displaystyle{ p }[/math] spełnia kongruencje

[math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
[math]\displaystyle{ p \equiv \pm 1 \pmod{12} }[/math]

Postępując jak wyżej, otrzymujemy

chinese(Mod(1, 8), Mod(1, 12)) = Mod(1, 24)
chinese(Mod(1, 8), Mod(-1, 12)) - błąd 
chinese(Mod(-1, 8), Mod(1, 12)) - błąd 
chinese(Mod(-1, 8), Mod(-1, 12)) = Mod(23, 24)

Co należało pokazać.


Twierdzenie K17
Dla każdej liczby pierwszej [math]\displaystyle{ p_n }[/math] istnieje nieskończenie wiele takich liczb pierwszych [math]\displaystyle{ q }[/math], że [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math].

Dowód

Niech [math]\displaystyle{ 2, p_2, \ldots, p_{n - 1}, p_n }[/math] będą kolejnymi liczbami pierwszymi. Wybierzmy liczbę [math]\displaystyle{ u }[/math] tak, aby spełniała układ kongruencji

[math]\displaystyle{ \begin{align} u & \equiv 1 \pmod{8 p_2 \cdot \ldots \cdot p_{n - 1}} \\ u & \equiv a \pmod{p_n} \end{align} }[/math]

gdzie [math]\displaystyle{ a }[/math] oznacza dowolną liczbą niekwadratową modulo [math]\displaystyle{ p_n }[/math]. Na podstawie chińskiego twierdzenia o resztach (zobacz J3) powyższy układ kongruencji może być zapisany w postaci kongruencji równoważnej

[math]\displaystyle{ u \equiv c \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math]


Zauważmy, że żadna z liczb pierwszych [math]\displaystyle{ p_k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math] nie dzieli liczby [math]\displaystyle{ c }[/math], bo mielibyśmy

[math]\displaystyle{ u \equiv 0 \pmod{p_k} }[/math]

wbrew wypisanemu wyżej układowi kongruencji. Zatem [math]\displaystyle{ \gcd (c, 8 p_2 \cdot \ldots \cdot p_n) = 1 }[/math] i z twierdzenia Dirichleta (zobacz C27) wiemy, że wśród liczb [math]\displaystyle{ u }[/math] spełniających kongruencję [math]\displaystyle{ u \equiv c \!\! \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math] występuje nieskończenie wiele liczb pierwszych (bo wśród tych liczb są liczby postaci [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]). Oznaczmy przez [math]\displaystyle{ q }[/math] dowolną z tych liczb pierwszych.


Ponieważ [math]\displaystyle{ q \equiv 1 \!\! \pmod{8} }[/math], to [math]\displaystyle{ \left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1 }[/math] (zobacz J33), a dla wszystkich liczb pierwszych nieparzystych [math]\displaystyle{ p_k \lt p_n }[/math] mamy

[math]\displaystyle{ \left( {\small\frac{p_k}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_k - 1}{2}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{p_k}} \right)_{\small{\!\! L}} = 1 }[/math]

bo [math]\displaystyle{ 8 \mid (q - 1) }[/math]. Dla liczby pierwszej [math]\displaystyle{ p_n }[/math] jest

[math]\displaystyle{ \left( {\small\frac{p_n}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_n - 1}{2}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p_n}} \right)_{\small{\!\! L}} = - 1 }[/math]

Zatem wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p_n }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ q }[/math], a liczba pierwsza [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math]. Zauważmy, że [math]\displaystyle{ q }[/math] była dowolnie wybraną liczbą pierwszą z nieskończenie wielu liczb pierwszych występujących w ciągu arytmetycznym [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Co kończy dowód.


Twierdzenie K18 (Sarvadaman Chowla)
Istnieje niekończenie wiele liczb pierwszych [math]\displaystyle{ p }[/math] takich, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math], gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika.

Dowód

Niech [math]\displaystyle{ a = 4 P (m) }[/math], gdzie [math]\displaystyle{ P(m) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ m }[/math]. Z twierdzenia Dirichleta (zobacz C27) wiemy, że w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math] występuje nieskończenie wiele liczb pierwszych. Niech [math]\displaystyle{ p }[/math] oznacza dowolną z nich.

Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{8} }[/math], to

[math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1 }[/math]

(zobacz J33 p.7). Oczywiście [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], zatem dla dowolnej liczby pierwszej nieparzystej [math]\displaystyle{ q_i \leqslant m }[/math] z twierdzenia J33 p.9 otrzymujemy

[math]\displaystyle{ \left( {\small\frac{q_i}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{p}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{a k + 1}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{q_i}} \right)_{\small{\!\! L}} = 1 }[/math]

Wynika stąd, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ m }[/math]. Wiemy też, że (zobacz A9)

[math]\displaystyle{ a = 4 P (m) \lt 4 \cdot 4^m = 4^{m + 1} }[/math]

Załóżmy teraz, że [math]\displaystyle{ p }[/math] jest najmniejszą liczbą pierwszą w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math], a liczba [math]\displaystyle{ m }[/math] została wybrana tak, że liczba [math]\displaystyle{ a = 4 P (m) }[/math] jest dostatecznie duża i możliwe jest skorzystanie z twierdzenia Linnika (zobacz C30). Dostajemy natychmiast oszacowanie

[math]\displaystyle{ p = p_{\min} (a, 1) \lt a^L }[/math]

gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika (możemy przyjąć [math]\displaystyle{ L = 5 }[/math]). Łącząc powyższe oszacowania, łatwo otrzymujemy oszacowanie najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ p }[/math]

[math]\displaystyle{ \mathbb{n}(p) \geqslant m + 1 \gt \log_4 a = {\small\frac{\log a}{\log 4}} = {\small\frac{\log a^L}{2 L \log 2}} \gt {\small\frac{\log p}{2 L \log 2}} }[/math]

Każdemu wyborowi innej liczby [math]\displaystyle{ m' \gt m }[/math] takiej, że [math]\displaystyle{ P(m') \gt P (m) }[/math] odpowiada inna liczba pierwsza [math]\displaystyle{ p' }[/math] taka, że [math]\displaystyle{ \mathbb{n}(p') \gt {\small\frac{\log p'}{2 L \log 2}} }[/math], zatem liczb pierwszych [math]\displaystyle{ p }[/math] dla których najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math] jest nieskończenie wiele.


Uwaga K19
W twierdzeniu K17 pokazaliśmy, że dla każdej liczby pierwszej [math]\displaystyle{ \mathbb{n} }[/math] istnieją takie liczby pierwsze [math]\displaystyle{ p }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Zatem zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] liczb pierwszych takich, że dla każdej liczby [math]\displaystyle{ p \in S_\mathbb{n} }[/math] liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest zbiorem niepustym. Wynika stąd, że zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] ma element najmniejszy i możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w PARI/GP napisać proste polecenie

forprime(n = 2, 50, forprime(p = 2, 10^10, if( A(p) == n, print(n, "   ", p); break() )))

W tabeli przedstawiamy uzyskane rezultaty (zobacz też A000229).


Uwaga K20
Z nierówności Pólyi-Winogradowa (zobacz K2) wynika natychmiast oszacowanie najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ p }[/math]. Ponieważ najdłuższy ciąg kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math] nie może być dłuższy od [math]\displaystyle{ \left\lfloor \sqrt{p} \log p \right\rfloor }[/math], to

[math]\displaystyle{ \mathbb{n} (p) \leqslant \left\lfloor \sqrt{p} \log p \right\rfloor + 1 \lt \sqrt{p} \log p + 1 }[/math]

Pokażemy, że powyższe oszacowanie można łatwo wzmocnić.


Twierdzenie K21
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Prawdziwe jest oszacowanie

[math]\displaystyle{ \mathbb{n} (p) \lt \sqrt{p} + {\small\frac{1}{2}} }[/math]
Dowód

Ponieważ [math]\displaystyle{ \mathbb{n} \nmid p }[/math], to z oszacowania [math]\displaystyle{ x - 1 \lt \lfloor x \rfloor \leqslant x }[/math] wynika, że

[math]\displaystyle{ {\small\frac{p}{\mathbb{n}}} - 1 \lt \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor \lt {\small\frac{p}{\mathbb{n}}} }[/math]
[math]\displaystyle{ p \lt \mathbb{n} \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + \mathbb{n} \lt p + \mathbb{n} }[/math]

Niech [math]\displaystyle{ u = \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 }[/math], mamy

[math]\displaystyle{ 0 \lt \mathbb{n} u - p \lt \mathbb{n} }[/math]

Liczba [math]\displaystyle{ \mathbb{n} u - p }[/math] musi być liczbą kwadratową modulo [math]\displaystyle{ p }[/math], zatem

[math]\displaystyle{ 1 = \left( {\small\frac{\mathbb{n} u - p}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} }[/math]

Ale z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]. Wynika stąd, że musi być [math]\displaystyle{ \mathbb{n} \leqslant u }[/math] i łatwo znajdujemy, że

[math]\displaystyle{ \mathbb{n} \leqslant \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 \lt {\small\frac{p}{\mathbb{n}}} + 1 }[/math]
[math]\displaystyle{ \mathbb{n}^2 \lt p + \mathbb{n} }[/math]

Ponieważ wypisane liczby są liczbami całkowitymi, to ostatnią nierówność możemy zapisać w postaci

[math]\displaystyle{ \mathbb{n}^2 \leqslant p + \mathbb{n} - 1 }[/math]

Skąd otrzymujemy

[math]\displaystyle{ \left( \mathbb{n} - {\small\frac{1}{2}} \right)^2 \leqslant p - {\small\frac{3}{4}} }[/math]
[math]\displaystyle{ \mathbb{n} \leqslant {\small\frac{1}{2}} + \sqrt{p - {\small\frac{3}{4}}} \lt {\small\frac{1}{2}} + \sqrt{p} }[/math]

Co należało pokazać.


Twierdzenie K22*
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Dla [math]\displaystyle{ p \geqslant 5 }[/math] prawdziwe jest oszacowanie[5][6][7]

[math]\displaystyle{ \mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p }[/math]


Uwaga K23
Liczby [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math], gdzie [math]\displaystyle{ p }[/math] są nieparzystymi liczbami pierwszymi, jest równa[8]

[math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots }[/math]


Uwaga K24
Możemy też badać najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math].


Twierdzenie K25
Dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 5 }[/math] najmniejsza nieparzysta liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest liczbą pierwszą mniejszą od [math]\displaystyle{ p }[/math].

Dowód

Niech [math]\displaystyle{ S \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich nieparzystych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Z twierdzenia J29 wiemy, że jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to w zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] jest dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. W zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] mamy też dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb parzystych i tyle samo liczb nieparzystych.

Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], bo [math]\displaystyle{ 4 = 2^2 \lt 5 \leqslant p }[/math] jest parzystą liczbą kwadratową modulo [math]\displaystyle{ p }[/math], czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że zbiór [math]\displaystyle{ S }[/math] nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru [math]\displaystyle{ S }[/math] jest liczbą pierwszą.

Niech [math]\displaystyle{ 3 \leqslant \mathbb{n}_\boldsymbol{1} \leqslant p - 2 }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że każda liczba [math]\displaystyle{ a \lt \mathbb{n}_\boldsymbol{1} }[/math] musi być liczbą parzystą lub liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Przypuśćmy, że [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] jest liczbą złożoną, czyli [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n}_\boldsymbol{1} }[/math]. Zauważmy, że żadna z liczb [math]\displaystyle{ a, b }[/math] nie może być liczbą parzystą, bo wtedy liczba [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] również byłaby liczbą parzystą wbrew określeniu liczby [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math]. Zatem obie liczby [math]\displaystyle{ a, b }[/math] muszą być nieparzystymi liczbami kwadratowymi, co jest niemożliwe, bo

[math]\displaystyle{ - 1 = \left( {\small\frac{\mathbb{n}_\boldsymbol{1}}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! J}} }[/math]

i jeden z czynników po prawej stronie musi być ujemny. Co oznacza, że jedna z liczb [math]\displaystyle{ a, b }[/math] jest nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] mniejszą od [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] wbrew określeniu liczby [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math]. Uzyskana sprzeczność pokazuje, że liczba [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] jest liczbą pierwszą. Co kończy dowód.



 B. Najmniejsze dodatnie liczby niekwadratowe modulo [math]\displaystyle{ m }[/math]

Uwaga K26
Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math] W jednym i drugim przypadku liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową w zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od [math]\displaystyle{ p }[/math] lub [math]\displaystyle{ m . }[/math] Dlatego będziemy je oznaczali również jako [math]\displaystyle{ \mathbb{n}(m) . }[/math]


Definicja K27
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Powiemy, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], gdy [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą dodatnią względnie pierwszą z [math]\displaystyle{ m }[/math] taką, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]

nie ma rozwiązania.


Przykład K28
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] i najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m . }[/math]


Uwaga K29
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

B(m) = 
{
local(p, res);
p = 1;
while( p < m,
       p = nextprime(p + 1);
       if( m%p == 0, next() );
       res = -1;
       for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
       if( res == -1, return(p) );
     );
}

Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby [math]\displaystyle{ m . }[/math] Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.

Pokaż kod
B(m) = 
{
local(p, res, t);
t = m%8;
if( t == 3 || t == 5, return(2) );
t = m%12;
if( t == 4 || t == 8, return(3) );
t = m%24;
if( t == 9 || t == 15, return(2) );
if( t == 10 || t == 14, return(3) );
t = m%30;
if( t == 6 || t == 12 || t == 18 || t == 24, return(5) );
p = 1;
while( p < m,
       p = nextprime(p + 1);
       if( m%p == 0, next() );
       res = -1;
       for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
       if( res == -1, return(p) );
     );
}


Twierdzenie K30
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} . }[/math] Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ m . }[/math] Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{m} }[/math]
[math]\displaystyle{ s^2 \equiv b \pmod{m} }[/math]

Skąd wynika, że

[math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{m} }[/math]

Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]


Zadanie K31
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli [math]\displaystyle{ m = 8 k \pm 3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Rozwiązanie

Z twierdzenia J41 wiemy, że [math]\displaystyle{ \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1 }[/math], gdy [math]\displaystyle{ m = 8 k \pm 3 . }[/math] Wynika stąd, że [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], a jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Co należało pokazać.


Zadanie K32
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli spełniony jest jeden z warunków

  •   [math]\displaystyle{ 4 \mid m \; }[/math] i [math]\displaystyle{ \; \gcd (3, m) = 1 }[/math]
  •   [math]\displaystyle{ m = 12 k \pm 4 }[/math]

to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Rozwiązanie

Zauważmy, że [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ 2 \mid m . }[/math] Rozważmy kongruencję

[math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]

Z założenia [math]\displaystyle{ 4 \mid m }[/math], co nie wyklucza możliwości, że również [math]\displaystyle{ 8 \mid m . }[/math] Ponieważ [math]\displaystyle{ 4 \nmid (3 - 1) }[/math] i [math]\displaystyle{ 8 \nmid (3 - 1) }[/math], to z twierdzenia J55 wynika, że kongruencja [math]\displaystyle{ x^2 \equiv 3 \!\! \pmod{m} }[/math] nie ma rozwiązania. Jeśli tylko [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math] W pierwszym punkcie jest to założone wprost, w drugim łatwo widzimy, że [math]\displaystyle{ 3 \nmid (12 k \pm 4) . }[/math]

Można też zauważyć, że żądanie, aby [math]\displaystyle{ \gcd (3, m) = 1 }[/math], prowadzi do dwóch układów kongruencji

[math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 1 \pmod{3} \end{align} }[/math]

oraz

[math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 2 \pmod{3} \end{align} }[/math]

którym, na mocy chińskiego twierdzenia o resztach, odpowiadają dwie kongruencje równoważne

[math]\displaystyle{ m \equiv \pm 4 \pmod{12} }[/math]

Co należało pokazać.


Zadanie K33
Niech [math]\displaystyle{ m = 24 k \pm 10 . }[/math] Pokazać, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Rozwiązanie

Zapiszmy [math]\displaystyle{ m }[/math] w postaci [math]\displaystyle{ m = 2 m' }[/math], gdzie [math]\displaystyle{ m' = 12 k \pm 5 . }[/math] Gdyby kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{2 m'} }[/math]

miała rozwiązanie, to również kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{m'} }[/math]

miałaby rozwiązanie, ale jest to niemożliwe, bo [math]\displaystyle{ \left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J46), czyli [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m' . }[/math] Ponieważ [math]\displaystyle{ 2 \mid m }[/math], to [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]


Twierdzenie K34
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą nieparzystą podzielną przez [math]\displaystyle{ p \in S_2 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Dowód

Z założenia [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 2 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J55). Ponieważ [math]\displaystyle{ 2 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Uwaga: zbiór [math]\displaystyle{ S_2 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (zobacz J41).


Twierdzenie K35
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą parzystą niepodzielną przez [math]\displaystyle{ 3 }[/math] i podzielną przez [math]\displaystyle{ p \in S_3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Dowód

Z założenia [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J55). Ponieważ [math]\displaystyle{ 2 \mid m }[/math] i [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Uwaga: zbiór [math]\displaystyle{ S_3 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 12 k \pm 5 }[/math] (zobacz J46).


Twierdzenie K36
Jeżeli [math]\displaystyle{ m }[/math] jest liczbą dodatnią podzielną przez [math]\displaystyle{ 6 }[/math] i niepodzielną przez [math]\displaystyle{ 5 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]

Dowód

Z założenia [math]\displaystyle{ 3 \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 5 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J55). Ponieważ [math]\displaystyle{ 2 \mid m }[/math], [math]\displaystyle{ 3 \mid m }[/math] i [math]\displaystyle{ 5 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]


Twierdzenie K37
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ p \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math].

Dowód

Z twierdzenia K69 wiemy, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math] Z założenia [math]\displaystyle{ q \mid m }[/math], zatem kongruencja

[math]\displaystyle{ x^2 \equiv p \pmod{m} }[/math]

nie ma rozwiązania (zobacz J55). Ponieważ wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p }[/math] dzielą [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math]. Co należało pokazać.


Zadanie K38
Pokazać, że podanym w pierwszej kolumnie postaciom liczby [math]\displaystyle{ m }[/math] odpowiadają wymienione w drugiej kolumnie wartości [math]\displaystyle{ \mathbb{n} (m) . }[/math]


Twierdzenie K39
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy

[math]\displaystyle{ \begin{array}{lll} \mathbb{n} (2 m) \gt \mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) = 2 \\ \mathbb{n} (2 m) =\mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) \gt 2 \end{array} }[/math]
Dowód

Punkt 1.

W przypadku, gdy [math]\displaystyle{ \mathbb{n} (m) = 2 }[/math], mamy [math]\displaystyle{ \mathbb{n} (2 m) \gt 2 = \mathbb{n} (m) }[/math], bo [math]\displaystyle{ \mathbb{n} (2 m) }[/math] musi być liczbą względnie pierwszą z [math]\displaystyle{ 2 m . }[/math]

Punkt 2.

Z definicji najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ m }[/math] wiemy, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{m} }[/math]

nie ma rozwiązania. Oznacza to, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{\mathbb{n} (m)}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Ponieważ [math]\displaystyle{ p \mid 2 m }[/math], to wynika stąd natychmiast, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{2 m} }[/math]

również nie ma rozwiązania (zobacz J55).

Zatem [math]\displaystyle{ \mathbb{n} (2 m) \leqslant \mathbb{n} (m) . }[/math] Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą taką, że [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Kongruencję

[math]\displaystyle{ x^2 \equiv q \pmod{2 m} \qquad \qquad (1) }[/math]

możemy zapisać w postaci układu kongruencji równoważnych (zobacz J1)

[math]\displaystyle{ \begin{align} x^2 & \equiv q \pmod{m} \qquad \qquad \;\: (2) \\ x^2 & \equiv q \pmod{2} \qquad \qquad \;\;\,\, (3) \\ \end{align} }[/math]

Z definicji [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], zatem kongruencja [math]\displaystyle{ (2) }[/math] ma rozwiązanie – oznaczmy to rozwiązanie przez [math]\displaystyle{ x_0 . }[/math] Łatwo zauważamy, że liczba

[math]\displaystyle{ x'_0 = \begin{cases} \;\;\;\; x_0 & \text{gdy} \quad x_0 \equiv 1 \pmod{2} \\ x_0 + m & \text{gdy} \quad x_0 \equiv 0 \pmod{2} \\ \end{cases} }[/math]

jest rozwiązaniem układu kongruencji [math]\displaystyle{ (2) }[/math] i [math]\displaystyle{ (3) }[/math], a tym samym kongruencja [math]\displaystyle{ (1) }[/math] ma rozwiązanie dla każdego [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (2 m) =\mathbb{n} (m) . }[/math]


Twierdzenie K40
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy

[math]\displaystyle{ \begin{array}{lllll} \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2 & & \text{gdy } \;\; 3 \mid m \\ \mathbb{n} (4 m) = 3 & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\ \end{array} }[/math]
Dowód

Punkt 1.

Z twierdzenia K34 wynika, że w przypadku, gdy [math]\displaystyle{ 3 \mid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math] Ponieważ [math]\displaystyle{ 2 \mid 4 m }[/math] i [math]\displaystyle{ 3 \mid 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) \geqslant 5 . }[/math]

Punkt 2.

Ponieważ [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 8 \nmid 4 m }[/math], ale [math]\displaystyle{ 4 \mid 4 m \; }[/math] i [math]\displaystyle{ \; 4 \nmid (3 - 1) }[/math], zatem z twierdzenia J55 wynika, że kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{4 m} }[/math]

nie ma rozwiązania. Ponieważ [math]\displaystyle{ 2 \mid 4 m \; }[/math] i [math]\displaystyle{ \; 3 \nmid 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) = 3 . }[/math]


Twierdzenie K41
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p \, }[/math] i [math]\displaystyle{ \, p \mid m }[/math], to [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]

Dowód

Wiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

ma rozwiązanie. Przypuśćmy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m . }[/math] Zatem istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że

[math]\displaystyle{ k^2 \equiv a \pmod{m} }[/math]

Ponieważ z założenia [math]\displaystyle{ p \mid m }[/math], to prawdziwa jest też kongruencja

[math]\displaystyle{ k^2 \equiv a \pmod{p} }[/math]

co przeczy założeniu, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]


Twierdzenie K42
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to istnieje taki dzielnik pierwszy [math]\displaystyle{ p }[/math] liczby [math]\displaystyle{ m }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]

Dowód

Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby [math]\displaystyle{ m }[/math]: [math]\displaystyle{ \{ p_1, \ldots, p_s \} }[/math] i powiązany z dzielnikami pierwszymi [math]\displaystyle{ p_k }[/math] zbiór najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p_k }[/math]: [math]\displaystyle{ \{ \mathbb{n}_1, \ldots, \mathbb{n}_s \} }[/math], z których każda jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz K41). Wynika stąd, że liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] musi być mniejsza od każdej z liczb [math]\displaystyle{ \mathbb{n}_k . }[/math]

Z definicji liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], co oznacza, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]

nie ma rozwiązania. Niech [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s . }[/math] Zatem przynajmniej jedna z kongruencji

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k} }[/math]

musi nie mieć rozwiązania (zobacz J11). Z twierdzenia J49 wiemy, że wtedy kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p_k} }[/math]

również nie ma rozwiązania. Zatem [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p_k \, }[/math] i [math]\displaystyle{ \, \mathbb{n} \lt \mathbb{n}_k }[/math], co przeczy definicji liczby [math]\displaystyle{ \mathbb{n}_k . }[/math]


Twierdzenie K43
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to

[math]\displaystyle{ \mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) ) }[/math]

gdzie [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], a [math]\displaystyle{ \mathbb{n}(p_k) }[/math] są najmniejszymi liczbami kwadratowymi modulo [math]\displaystyle{ p_k . }[/math]

Dowód

Twierdzenie to jest prostym wnioskiem z twierdzenia K42, ale musimy jeszcze pokazać, że [math]\displaystyle{ \gcd (\mathbb{n} (m), m) = 1 . }[/math] Przypuśćmy, że [math]\displaystyle{ p_k |\mathbb{n} (m) }[/math] dla pewnego [math]\displaystyle{ 1 \leqslant k \leqslant s . }[/math] Ponieważ [math]\displaystyle{ \mathbb{n} (m) }[/math] jest liczbą pierwszą, to musi być [math]\displaystyle{ \mathbb{n} (m) = p_k }[/math], ale wtedy

[math]\displaystyle{ \mathbb{n} (p_k) \lt p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k) }[/math]

Otrzymana sprzeczność dowodzi, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest względnie pierwsza z każdą z liczb pierwszych [math]\displaystyle{ p_i }[/math], gdzie [math]\displaystyle{ 1 \leqslant i \leqslant s . }[/math] Co kończy dowód.


Twierdzenie K44
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Prawdziwe są oszacowania

[math]\displaystyle{ \mathbb{n}(m) \lt \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3 }[/math]
[math]\displaystyle{ \mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5 }[/math]
Dowód

Niech [math]\displaystyle{ p }[/math] będzie dzielnikiem pierwszym liczby [math]\displaystyle{ m }[/math] takim, że [math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) }[/math] (z twierdzenia K42 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ \mathbb{n}(p) \lt F (p) }[/math], gdzie [math]\displaystyle{ F(x) }[/math] jest funkcją rosnącą, to

[math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) \lt F (p) \leqslant F (m) }[/math]

Podane w twierdzeniu oszacowania wynikają natychmiast z twierdzeń K21 i K22.


Uwaga K45
Liczby [math]\displaystyle{ \mathbb{n} (m) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] wynosi[9]

[math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots }[/math]



 C. Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] 

Przykład K46
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math], najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] i najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math].


Uwaga K47
Do wyszukiwania liczb [math]\displaystyle{ c = c (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

C(m) = 
{
if( m%2 == 0, return(0) );
if( issquare(m), return(0) );
forprime(p = 2, m, if( jacobi(p, m) == -1, return(p) ));
}


Uwaga K48
Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] oznaczyliśmy jako [math]\displaystyle{ c(m) }[/math]. Zauważmy, że są to liczby inne od [math]\displaystyle{ \mathbb{n}(p) }[/math] i [math]\displaystyle{ \mathbb{n}(m) }[/math]. Wystarczy zwrócić uwagę na występujące w tabeli liczby [math]\displaystyle{ \mathbb{n}(p) }[/math], [math]\displaystyle{ \mathbb{n}(m) }[/math] i [math]\displaystyle{ c(m) }[/math] dla [math]\displaystyle{ m = 15, 33, 39 }[/math]. Różnice wynikają z innej definicji liczb [math]\displaystyle{ c(m) }[/math] – jeżeli liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to symbol Jacobiego [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math] nie musi być równy [math]\displaystyle{ - 1 }[/math]. I tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.

Ponieważ [math]\displaystyle{ c(m) }[/math] nie zawsze będzie najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], to mamy natychmiast oszacowanie: [math]\displaystyle{ c(m) \geqslant \mathbb{n} (m) }[/math] (poza przypadkami, gdy [math]\displaystyle{ m = n^2 }[/math]).

Dla [math]\displaystyle{ c(m) }[/math] nie są prawdziwe oszacowania podane w twierdzeniu K21. Łatwo zauważamy, że

[math]\displaystyle{ c = c (15) = 7 \gt \sqrt{15} + {\small\frac{1}{2}} \approx 4.37 }[/math]
[math]\displaystyle{ c = c (39) = 7 \gt \sqrt{39} + {\small\frac{1}{2}} \approx 6.74 }[/math]
[math]\displaystyle{ c = c (105) = 11 \gt \sqrt{105} + {\small\frac{1}{2}} \approx 10.75 }[/math]
[math]\displaystyle{ c = c (231) = 17 \gt \sqrt{231} + {\small\frac{1}{2}} \approx 15.7 }[/math]

Nie ma więcej takich przypadków dla [math]\displaystyle{ m \lt 10^9 }[/math].


Twierdzenie K49
Niech [math]\displaystyle{ c, m \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ c }[/math] będzie najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1 }[/math]. Liczba [math]\displaystyle{ c }[/math] musi być liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ c = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt c }[/math]. Mamy

[math]\displaystyle{ - 1 = \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math][math]\displaystyle{ \left( {\small\frac{b}{m}} \right)_{\small{\!\! J}} }[/math]

Zatem jeden z czynników po prawej stronie musi być równy [math]\displaystyle{ - 1 }[/math] wbrew definicji liczby [math]\displaystyle{ c }[/math].



Liczby pierwsze postaci [math]\displaystyle{ x^2 + n y^2 }[/math]

Przykład K50
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 85 }[/math] na sumę postaci [math]\displaystyle{ x^2 + y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math]. Rozkłady różniące się jedynie kolejnością liczb [math]\displaystyle{ x , y }[/math] nie zostały uwzględnione.

Zauważmy, że liczba złożona [math]\displaystyle{ 21 }[/math] nie ma rozkładu na sumę kwadratów, a liczba złożona [math]\displaystyle{ 65 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 4 k + 1 }[/math].


Przykład K51
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 73 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].

Zauważmy, że liczba złożona [math]\displaystyle{ 65 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 33 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 1 }[/math].

Zauważmy też, że liczba złożona [math]\displaystyle{ 35 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 27 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 3 }[/math].


Przykład K52
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 103 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].

Zauważmy, że liczba złożona [math]\displaystyle{ 55 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], a liczba złożona [math]\displaystyle{ 91 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 6 k + 1 }[/math].


Twierdzenie K53
Jeżeli liczba nieparzysta postaci [math]\displaystyle{ Q = x^2 + n y^2 }[/math], gdzie [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math], ma dwa różne takie przedstawienia w liczbach całkowitych dodatnich, to jest liczbą złożoną.

Dowód

W dowodzie wyróżniliśmy miejsca, które wymagają oddzielnej analizy ze względu na wartość liczby [math]\displaystyle{ n }[/math].

Niech

[math]\displaystyle{ Q = x^2 + n y^2 = a^2 + n b^2 }[/math]

[math]\displaystyle{ \boldsymbol{n = 1} }[/math]

Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby występujące w rozkładach [math]\displaystyle{ x^2 + y^2 = a^2 + b^2 }[/math] muszą mieć przeciwną parzystość. Nie zmniejszając ogólności, możemy założyć, że liczby [math]\displaystyle{ x, a }[/math] są nieparzyste, a liczby [math]\displaystyle{ y, b }[/math] parzyste.

[math]\displaystyle{ \boldsymbol{n = 2} }[/math]

Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby [math]\displaystyle{ x, a }[/math] występująca w rozkładach [math]\displaystyle{ x^2 + 2 y^2 = a^2 + 2 b^2 }[/math] muszą być nieparzyste. Pokażemy, że liczby [math]\displaystyle{ y, b }[/math] muszą mieć taką samą parzystość. Przypuśćmy, że [math]\displaystyle{ y }[/math] jest parzysta, a [math]\displaystyle{ b }[/math] nieparzysta, wtedy modulo [math]\displaystyle{ 4 }[/math] dostajemy

[math]\displaystyle{ 1 + 2 \cdot 0 \equiv 1 + 2 \cdot 1 \!\! \pmod{4} }[/math]

Co jest niemożliwe.

[math]\displaystyle{ \boldsymbol{n = 3} }[/math]

Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby występujące w rozkładach [math]\displaystyle{ x^2 + 3 y^2 = a^2 + 3 b^2 }[/math] muszą mieć przeciwną parzystość. Pokażemy, że liczby [math]\displaystyle{ x, a }[/math] muszą mieć taką samą parzystość. Gdyby liczba [math]\displaystyle{ x }[/math] była nieparzysta, a liczba [math]\displaystyle{ a }[/math] parzysta, to modulo [math]\displaystyle{ 4 }[/math] mielibyśmy

[math]\displaystyle{ 1 + 3 \cdot 0 \equiv 0 + 3 \cdot 1 \!\! \pmod{4} }[/math]

Co jest niemożliwe.

Z powyższego zestawienia wynika, że liczby [math]\displaystyle{ x, a }[/math] i liczby [math]\displaystyle{ y, b }[/math] mają taką samą parzystość. Mamy

[math]\displaystyle{ x^2 - a^2 = n (b^2 - y^2) }[/math]
[math]\displaystyle{ (x - a) (x + a) = n (b - y) (b + y) }[/math]

Niech [math]\displaystyle{ f = \gcd (x - a, b - y) }[/math], zatem [math]\displaystyle{ f }[/math] jest liczbą parzystą i

[math]\displaystyle{ x - a = f r , \qquad \qquad b - y = f s , \qquad \qquad \gcd (r, s) = 1 }[/math]

Czyli

[math]\displaystyle{ r(x + a) = n s (y + b) }[/math]

ale liczby [math]\displaystyle{ r, s }[/math] są względnie pierwsze, zatem [math]\displaystyle{ s \mid (x + a) }[/math] i musi być

[math]\displaystyle{ x + a = k s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = k r }[/math]

Gdyby [math]\displaystyle{ k }[/math] było liczbą nieparzystą, to liczby [math]\displaystyle{ r, s }[/math] musiałyby być parzyste, co jest niemożliwe, bo [math]\displaystyle{ \gcd (r, s) = 1 }[/math]. Zatem [math]\displaystyle{ k }[/math] jest liczbą parzystą i [math]\displaystyle{ 2 s \mid (x + a) }[/math], czyli możemy pokazać więcej. Musi być

[math]\displaystyle{ x + a = 2 l s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = 2 l r }[/math]

W przypadku gdy [math]\displaystyle{ n = 2 }[/math] lub [math]\displaystyle{ n = 3 }[/math], zauważmy, że [math]\displaystyle{ n \mid l }[/math] lub [math]\displaystyle{ n \mid r }[/math].

Łatwo otrzymujemy

[math]\displaystyle{ x = {\small\frac{1}{2}} (2 l s + f r) }[/math]
[math]\displaystyle{ y = {\small\frac{1}{2 n}} (2 l r - n f s) }[/math]

Ostatecznie

[math]\displaystyle{ Q = x^2 + n y^2 }[/math]
[math]\displaystyle{ \;\;\;\: = \left[ {\small\frac{1}{2}} (2 l s + f r) \right]^2 + n \left[ {\small\frac{1}{2 n}} (2 l r - n f s) \right]^2 }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s + f r)^2 + (2 l r - n f s)^2] }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s)^2 + n (f r)^2 + (2 l r)^2 + (n f s)^2] }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) }[/math]

[math]\displaystyle{ \boldsymbol{n = 1} }[/math]

[math]\displaystyle{ Q = {\small\frac{1}{4}} [(2 l)^2 + f^2] (r^2 + s^2) = \left[ l^2 + \left( {\small\frac{f}{2}} \right)^2 \right] (r^2 + s^2) }[/math]

[math]\displaystyle{ \boldsymbol{n = 2 , 3} }[/math]

W zależności od tego, która z liczb [math]\displaystyle{ l, r }[/math] jest podzielna przez [math]\displaystyle{ n }[/math], możemy napisać

[math]\displaystyle{ Q = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4 n}} \right] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4}} \right] \left( {\small\frac{r^2 + n s^2}{n}} \right) }[/math]

Co kończy dowód.


Uwaga K54
Zauważmy, że iloczyn liczb postaci [math]\displaystyle{ x^2 + n y^2 }[/math] jest liczbą tej samej postaci.

[math]\displaystyle{ (a^2 + n b^2) (x^2 + n y^2) = (a x + n b y)^2 + n (a y - b x)^2 }[/math]
[math]\displaystyle{ \;\;\;\:\, = (a x - n b y)^2 + n (a y + b x)^2 }[/math]


Twierdzenie K55
Niech [math]\displaystyle{ x, y, a, b \in \mathbb{Z} }[/math] i [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math]. Jeżeli liczba parzysta [math]\displaystyle{ Q = x^2 + n y^2 }[/math], to [math]\displaystyle{ Q = 2^{\alpha} R }[/math], gdzie [math]\displaystyle{ R = a^2 + n b^2 }[/math] jest liczbą nieparzystą.

Dowód

W szczególnym przypadku, gdy [math]\displaystyle{ R = 1 }[/math], mamy [math]\displaystyle{ R = 1^2 + n \cdot 0^2 }[/math].

Dowód sprowadza się do podania wzorów, które pozwalają obniżyć wykładnik, z jakim liczba [math]\displaystyle{ 2 }[/math] występuje w rozwinięciu na czynniki pierwsze liczby [math]\displaystyle{ Q }[/math]. Zauważmy, że wynik jest zawsze liczbą, której postać jest taka sama, jak postać liczby [math]\displaystyle{ Q }[/math]. Stosując te wzory odpowiednią ilość razy, otrzymujmy rozkład [math]\displaystyle{ Q = 2^{\alpha} R }[/math], gdzie [math]\displaystyle{ R }[/math] jest liczbą nieparzystą postaci [math]\displaystyle{ a^2 + n b^2 }[/math].

1. [math]\displaystyle{ \boldsymbol{Q = x^2 + y^2} }[/math]

a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + \left( {\small\frac{y}{2}} \right)^2 }[/math]

b) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste, to [math]\displaystyle{ {\small\frac{Q}{2}} = \left( {\small\frac{x + y}{2}} \right)^2 + \left( {\small\frac{x - y}{2}} \right)^2 }[/math]

2. [math]\displaystyle{ \boldsymbol{Q = x^2 + 2 y^2} }[/math]

a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 2 \left( {\small\frac{y}{2}} \right)^2 }[/math]

b) jeżeli liczba [math]\displaystyle{ x }[/math] jest parzysta, a [math]\displaystyle{ y }[/math] nieparzysta, to [math]\displaystyle{ {\small\frac{Q}{2}} = y^2 + 2 \left( {\small\frac{x}{2}} \right)^2 }[/math]

3. [math]\displaystyle{ \boldsymbol{Q = x^2 + 3 y^2} }[/math]

a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 3 \left( {\small\frac{y}{2}} \right)^2 }[/math]

b) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste i [math]\displaystyle{ 4 \mid (x + y) }[/math], to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x - 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x + y}{4}} \right)^2 }[/math]

c) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste i [math]\displaystyle{ 4 \mid (x - y) }[/math], to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x + 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x - y}{4}} \right)^2 }[/math]

Co należało pokazać.


Twierdzenie K56
Liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] jest postaci

(a)  [math]\displaystyle{ 4 k + 1 }[/math]
(b)  [math]\displaystyle{ 8 k + 1 \, }[/math] lub [math]\displaystyle{ \: 8 k + 3 }[/math]
(c)  [math]\displaystyle{ 6 k + 1 }[/math]

wtedy i tylko wtedy, gdy istnieje dokładnie jedna para liczb całkowitych dodatnich [math]\displaystyle{ x, y }[/math], że

(a)  [math]\displaystyle{ p = x^2 + y^2 }[/math]
(b)  [math]\displaystyle{ p = x^2 + 2 y^2 }[/math]
(c)  [math]\displaystyle{ p = x^2 + 3 y^2 }[/math]
Dowód

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Niech [math]\displaystyle{ n = 1, 2, 3 }[/math]. Z założenia liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] może być przedstawiona w postaci [math]\displaystyle{ p = x_0^2 + n y_0^2 }[/math], gdzie [math]\displaystyle{ x_0, y_0 }[/math] są liczbami takimi, że [math]\displaystyle{ 1 \leqslant x_0, y_0 \lt p }[/math]. Zatem [math]\displaystyle{ p \nmid x_0 }[/math] i [math]\displaystyle{ p \nmid y_0 }[/math], a rozpatrując równanie [math]\displaystyle{ p = x_0^2 + n y_0^2 }[/math] modulo [math]\displaystyle{ p }[/math] dostajemy

[math]\displaystyle{ x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p} }[/math]

Zauważmy, że liczba [math]\displaystyle{ x_0 }[/math] jest rozwiązaniem kongruencji

[math]\displaystyle{ x^2 \equiv - n y_0^2 \!\! \pmod{p} }[/math]

Wynika stąd, że liczba [math]\displaystyle{ - n y_0^2 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Zatem

[math]\displaystyle{ \left( {\small\frac{- n y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1 }[/math]

Z twierdzenia J41 i zadania J45 otrzymujemy natychmiast

(a) jeżeli [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 4 k + 1 }[/math]
(b) jeżeli [math]\displaystyle{ \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math]
(c) jeżeli [math]\displaystyle{ \left( {\small\frac{- 3}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 6 k + 1 }[/math]

Co należało pokazać.


[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

A. Istnienie rozwiązania kongruencji [math]\displaystyle{ \boldsymbol{x^2 + n y^2 \equiv 0 \!\! \pmod{p}} }[/math]

Z założenia liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] jest postaci

(a)  [math]\displaystyle{ 4 k + 1 }[/math]
(b)  [math]\displaystyle{ 8 k + 1 \, }[/math] lub [math]\displaystyle{ \: 8 k + 3 }[/math]
(c)  [math]\displaystyle{ 6 k + 1 }[/math]

Wynika stąd, że dla (a) [math]\displaystyle{ n = 1 }[/math], (b) [math]\displaystyle{ n = 2 }[/math], (c) [math]\displaystyle{ n = 3 }[/math] mamy

[math]\displaystyle{ \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1 }[/math]

(zobacz J41 i J45) i liczba [math]\displaystyle{ - n }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Zatem kongruencja

[math]\displaystyle{ x^2 \equiv - n \!\! \pmod{p} }[/math]

ma rozwiązanie, czyli istnieje taka liczba [math]\displaystyle{ k }[/math], że

[math]\displaystyle{ k^2 + n \equiv 0 \!\! \pmod{p} }[/math]

Zauważmy, że liczby [math]\displaystyle{ x_0 = k }[/math] i [math]\displaystyle{ y_0 = 1 }[/math] są szczególnymi przypadkami rozwiązania kongruencji

[math]\displaystyle{ x^2 + n y^2 \equiv 0 \!\! \pmod{p} }[/math]

W przypadku (a), korzystając z twierdzenia Wilsona (zobacz J18), liczbę [math]\displaystyle{ x_0 }[/math] możemy jawnie wypisać: [math]\displaystyle{ x_0 = \left( {\small\frac{p - 1}{2}} \right) ! }[/math]


B. Zmniejszenie rozwiązania początkowego

Niech liczby [math]\displaystyle{ x_0, y_0 }[/math] takie, że [math]\displaystyle{ p \nmid x_0 \, }[/math] i [math]\displaystyle{ \, p \nmid y_0 }[/math] spełniają kongruencję

[math]\displaystyle{ x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p} }[/math]

Wybierzmy liczby [math]\displaystyle{ r, s }[/math] tak, aby były najbliższymi liczbami całkowitymi odpowiednio dla liczb [math]\displaystyle{ {\small\frac{x_0}{p}} \, }[/math] i [math]\displaystyle{ \, {\small\frac{y_0}{p}} }[/math]. Z definicji mamy

[math]\displaystyle{ \left| {\small\frac{x_0}{p}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y_0}{p}} - s \right| \leqslant {\small\frac{1}{2}} }[/math]

Zatem

[math]\displaystyle{ | x_0 - r p | \leqslant {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \leqslant {\small\frac{p}{2}} }[/math]

Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie [math]\displaystyle{ {\small\frac{p}{2}} }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.

[math]\displaystyle{ | x_0 - r p | \lt {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \lt {\small\frac{p}{2}} }[/math]

Wynika stąd, że dla dowolnego rozwiązania początkowego [math]\displaystyle{ x_0, y_0 }[/math] możemy wybrać liczby

[math]\displaystyle{ x = x_0 - r p \qquad \qquad \text{i} \qquad \qquad y = y_0 - s p }[/math]

takie, że [math]\displaystyle{ p \nmid x }[/math] oraz [math]\displaystyle{ p \nmid y }[/math] i dla których

[math]\displaystyle{ 0 \lt x^2 + n y^2 \lt \left( {\small\frac{p}{2}} \right)^2 + n \left( {\small\frac{p}{2}} \right)^2 = {\small\frac{(n + 1) p}{4}} \cdot p }[/math]

Ponieważ modulo [math]\displaystyle{ p }[/math] jest [math]\displaystyle{ x \equiv x_0 \, }[/math] i [math]\displaystyle{ \, y \equiv y_0 }[/math], to liczby [math]\displaystyle{ x, y }[/math] spełniają kongruencję

[math]\displaystyle{ x^2 + n y^2 \equiv 0 \!\! \pmod{p} }[/math]

Zatem wynikające z powyższej kongruencji równanie

[math]\displaystyle{ x^2 + n y^2 = m p }[/math]

ma rozwiązanie dla liczb

[math]\displaystyle{ | x | \lt {\small\frac{p}{2}} , \qquad \qquad | y | \lt {\small\frac{p}{2}}, \qquad \qquad 1 \leqslant m \lt {\small\frac{(n + 1) p}{4}} }[/math]

Pomysł ze zmniejszaniem liczb stanowiących rozwiązanie za chwilę wykorzystamy ponownie i będzie to istotny element dowodu.


C. Metoda nieskończonego schodzenia Fermata[10][11]

Pomysł dowodu został zaczerpnięty z książki Hardy'ego i Wrighta[12].

Jeżeli w rozwiązaniu [math]\displaystyle{ m = 1 }[/math], to [math]\displaystyle{ p = x^2 + n y^2 }[/math] i twierdzenie jest udowodnione. W przypadku gdy [math]\displaystyle{ m \gt 1 }[/math] wskażemy sposób postępowania, który pozwoli nam z istniejącego rozwiązania równania

[math]\displaystyle{ x^2 + n y^2 = m p }[/math]

otrzymać nowe rozwiązanie tej samej postaci

[math]\displaystyle{ x_1^2 + n y_1^2 = m_1 p }[/math]

takie, że [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math]. Powtarzając tę procedurę odpowiednią ilość razy, otrzymamy rozwiązanie [math]\displaystyle{ x_k, y_k, m_k }[/math], gdzie [math]\displaystyle{ m_k = 1 }[/math]. Istnienie takiej procedury stanowi dowód prawdziwości twierdzenia.

Zauważmy, że podział na parzyste i nieparzyste liczby [math]\displaystyle{ m }[/math] jest konieczny tylko w przypadku gdy [math]\displaystyle{ n = 3 }[/math]. W pozostałych przypadkach nie musimy wzmacniać nierówności, aby prawdziwe było oszacowanie [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math].

Przypadek, gdy [math]\displaystyle{ \boldsymbol{m \gt 1} }[/math] jest liczbą parzystą

Jeżeli [math]\displaystyle{ m \gt 1 }[/math] jest liczbą parzystą, to z twierdzenia K55 wiemy, że liczba [math]\displaystyle{ x^2 + n y^2 }[/math] może być zapisana w postaci

[math]\displaystyle{ x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1) }[/math]

gdzie [math]\displaystyle{ x^2_1 + n y^2_1 }[/math] jest liczbą nieparzystą. Wystarczy położyć [math]\displaystyle{ m_1 = {\small\frac{m}{2^{\alpha}}} }[/math], aby z istniejącego rozwiązania otrzymać nowe rozwiązanie tej samej postaci

[math]\displaystyle{ x_1^2 + n y_1^2 = m_1 p }[/math]

gdzie [math]\displaystyle{ m_1 }[/math] jest liczbą nieparzystą i [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math].

Przypadek, gdy [math]\displaystyle{ \boldsymbol{m \gt 1} }[/math] jest liczbą nieparzystą

Niech liczby [math]\displaystyle{ r, s }[/math] będą liczbami całkowitymi najbliższymi liczbom [math]\displaystyle{ {\small\frac{x}{m}} \, }[/math] i [math]\displaystyle{ \, {\small\frac{y}{m}} }[/math]. Z definicji mamy

[math]\displaystyle{ \left| {\small\frac{x}{m}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y}{m}} - s \right| \leqslant {\small\frac{1}{2}} }[/math]

Zatem

[math]\displaystyle{ | x - r m | \leqslant {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \leqslant {\small\frac{m}{2}} }[/math]

Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie [math]\displaystyle{ {\small\frac{m}{2}} }[/math], gdzie [math]\displaystyle{ m }[/math] jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.

[math]\displaystyle{ | x - r m | \lt {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \lt {\small\frac{m}{2}} }[/math]

Połóżmy

[math]\displaystyle{ a = x - r m \qquad \qquad \text{i} \qquad \qquad b = y - s m }[/math]

Zauważmy, że liczba [math]\displaystyle{ m }[/math] nie może jednocześnie dzielić liczb [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ m^2 \mid (x^2 + n y^2) }[/math], czyli [math]\displaystyle{ m \mid p }[/math], co jest niemożliwe. Zatem przynajmniej jedna z liczb [math]\displaystyle{ a, b }[/math] musi być różna od [math]\displaystyle{ 0 }[/math].

Rozpatrując równanie [math]\displaystyle{ x^2 + n y^2 = m p }[/math] modulo [math]\displaystyle{ m }[/math] i uwzględniając, że

[math]\displaystyle{ x \equiv a \!\! \pmod{m} }[/math]
[math]\displaystyle{ y \equiv b \!\! \pmod{m} }[/math]

otrzymujemy

[math]\displaystyle{ a^2 + n b^2 \equiv 0 \pmod{m} }[/math]

Mamy też oszacowanie

[math]\displaystyle{ 0 \lt a^2 + n b^2 \lt \left( {\small\frac{m}{2}} \right)^2 + n \cdot \left( {\small\frac{m}{2}} \right)^2 = {\small\frac{(n + 1) m^2}{4}} = {\small\frac{(n + 1) m}{4}} \cdot m }[/math]

Wynika stąd, że istnieje taka liczba [math]\displaystyle{ m_1 }[/math] spełniająca warunek [math]\displaystyle{ 1 \leqslant m_1 \lt {\small\frac{(n + 1) m}{4}} }[/math], że

[math]\displaystyle{ a^2 + n b^2 = m_1 m }[/math]

Mnożąc stronami powyższe równanie i równanie [math]\displaystyle{ x^2 + n y^2 = m p }[/math], otrzymujemy

[math]\displaystyle{ m_1 m^2 p = (a^2 + n b^2) (x^2 + n y^2) }[/math]
[math]\displaystyle{ \;\; = (a x + n b y)^2 + n (a y - b x)^2 }[/math]

(zobacz K54). Zauważmy teraz, że

[math]\displaystyle{ a x + n b y = (x - r m) x + n (y - s m) y }[/math]
[math]\displaystyle{ \quad \; = x^2 - r m x + n y^2 - n s m y }[/math]
[math]\displaystyle{ \quad \; = m (p - r x - n s y) }[/math]
[math]\displaystyle{ \quad \; = m x_1 }[/math]


[math]\displaystyle{ a y - b x = (x - r m) y - (y - s m) x }[/math]
[math]\displaystyle{ \;\;\, = x y - r m y - y x + s m x }[/math]
[math]\displaystyle{ \;\;\, = m (s x - r y) }[/math]
[math]\displaystyle{ \;\;\, = m y_1 }[/math]

Gdzie oznaczyliśmy

[math]\displaystyle{ x_1 = p - r x - n s y }[/math]
[math]\displaystyle{ y_1 = s x - r y }[/math]

Wynika stąd, że

[math]\displaystyle{ m_1 m^2 p = (m x_1)^2 + n (m y_1)^2 }[/math]

Zatem

[math]\displaystyle{ x^2_1 + n y^2_1 = m_1 p }[/math]

gdzie

[math]\displaystyle{ 1 \leqslant m_1 \lt {\small\frac{(n + 1) m}{4}} }[/math]

Czyli powtarzając odpowiednią ilość razy opisaną powyżej procedurę, otrzymamy [math]\displaystyle{ m_k = 1 }[/math].


D. Jednoznaczność rozkładu

Z założenia [math]\displaystyle{ p }[/math] jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z twierdzenia K53. Co kończy dowód.


Uwaga K57
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni.

Pokaż kod
SumOfTwoSquares(p) = 
{
local(m, r, s, x, y, x1, y1);
if( p%4 <> 1 || !isprime(p), return("Error") );
x = 1;
for(k = 2, (p-1)/2, x = (x*k)%p); \\ x = { [(p-1)/2]! } % p
x = x - round(x/p)*p;
y = 1;
m = (x^2 + y^2)/p;
while( m > 1,
       r = round(x/m);
       s = round(y/m);
       x1 = p - r*x - s*y;
       y1 = r*y - s*x;
       x = x1;
       y = y1;
       m = (x^2 + y^2)/p;
     );
return([ abs(x), abs(y), p ]);
}


Zadanie K58
Niech liczby pierwsze [math]\displaystyle{ p, q }[/math] będą postaci [math]\displaystyle{ 4 k + 1 }[/math], a liczba pierwsza [math]\displaystyle{ r }[/math] będzie postaci [math]\displaystyle{ 4 k + 3 }[/math]. Pokazać, że

  •   liczby [math]\displaystyle{ r, p r \, }[/math] i [math]\displaystyle{ \, r^2 }[/math] nie rozkładają się na sumę dwóch kwadratów liczb całkowitych dodatnich
  •   liczby [math]\displaystyle{ p }[/math], [math]\displaystyle{ 2 p }[/math], [math]\displaystyle{ p^2 \, }[/math] i [math]\displaystyle{ \, p r^2 }[/math] mają jeden rozkład na sumę dwóch kwadratów liczb całkowitych dodatnich
  •   liczba [math]\displaystyle{ p q }[/math], [math]\displaystyle{ p \neq q }[/math] ma dwa rozkłady na sumę dwóch kwadratów liczb całkowitych dodatnich
Rozwiązanie

Punkt 1.

Ponieważ liczby [math]\displaystyle{ r \, }[/math] i [math]\displaystyle{ \, p r }[/math] są postaci [math]\displaystyle{ 4 k + 3 }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy

[math]\displaystyle{ r, p r \equiv 3 \!\! \pmod{4} }[/math]

Suma [math]\displaystyle{ x^2 + y^2 }[/math] musi być liczbą nieparzystą, zatem liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość i modulo [math]\displaystyle{ 4 }[/math] mamy

[math]\displaystyle{ x^2 + y^2 \equiv 1 \!\! \pmod{4} }[/math]

Przypuśćmy, że

[math]\displaystyle{ r^2 = x^2 + y^2 }[/math]

gdzie [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math]. Liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość, zatem [math]\displaystyle{ x \neq y }[/math]. Z twierdzenia J24 wynika, że liczba [math]\displaystyle{ x^2 + y^2 }[/math] musi mieć dzielnik pierwszy postaci [math]\displaystyle{ 4 k + 1 }[/math], co w sposób oczywisty jest niemożliwe.

Punkt 2.

W przypadku liczby pierwszej [math]\displaystyle{ p }[/math] odpowiedzi udziela twierdzenie K56. Niech [math]\displaystyle{ p = x^2 + y^2 }[/math], mamy

[math]\displaystyle{ 2 p = (x + y)^2 + (x - y)^2 }[/math]
[math]\displaystyle{ p^2 = (x^2 - y^2)^2 + (2 x y)^2 }[/math]
[math]\displaystyle{ p r^2 = (r x)^2 + (r y)^2 }[/math]

Punkt 3.

Niech [math]\displaystyle{ p = x^2 + y^2 }[/math] i [math]\displaystyle{ q = a^2 + b^2 }[/math]. Ze wzorów podanych w uwadze K54 mamy

[math]\displaystyle{ p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2 }[/math]
[math]\displaystyle{ \:\, = (a x - b y)^2 + (a y + b x)^2 }[/math]

Co należało pokazać.



Twierdzenia o istnieniu liczb pierwszych kwadratowych i niekwadratowych modulo

Zadanie K59
Niech [math]\displaystyle{ s = \pm 1 }[/math]. Zbadać podzielność liczby [math]\displaystyle{ p - s a^2 }[/math]

  • przez [math]\displaystyle{ 4 }[/math], gdy [math]\displaystyle{ p = 4 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3 }[/math]
  • przez [math]\displaystyle{ 8 }[/math], gdy [math]\displaystyle{ p = 8 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5, 7 }[/math]
Rozwiązanie

Problem sprowadza się do uzyskania odpowiedzi, kiedy kongruencja

[math]\displaystyle{ p - s a^2 \equiv 0 \pmod{2^n} }[/math]

gdzie [math]\displaystyle{ n = 2, 3 }[/math], ma rozwiązanie. Podstawiając, dostajemy

[math]\displaystyle{ 2^n k + r \equiv s a^2 \pmod{2^n} }[/math]
[math]\displaystyle{ s a^2 \equiv r \pmod{2^n} }[/math]
[math]\displaystyle{ a^2 \equiv s r \pmod{2^n} }[/math]

Z twierdzenia J54 wiemy, że aby powyższa kongruencja miała rozwiązanie, musi być [math]\displaystyle{ 2^n \mid (s r - 1) }[/math], co jest możliwe tylko, gdy

[math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 3 \\ \end{cases} }[/math]

dla [math]\displaystyle{ 2^n = 4 }[/math] i gdy

[math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 7 \\ \end{cases} }[/math]

dla [math]\displaystyle{ 2^n = 8 }[/math]. Dla [math]\displaystyle{ 2^n = 8 }[/math] i [math]\displaystyle{ r = 3, 5 }[/math] rozpatrywana kongruencja nie ma rozwiązania.


Uwaga K60
Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Pomysł ujęcia problemu zaczerpnęliśmy z pracy Alexandru Gicy[13]. Zadanie K59 należy traktować jako uzupełnienie do dowodu twierdzenia K61. Z zadania łatwo widzimy, że powiązanie liczby [math]\displaystyle{ s }[/math] z postacią liczby pierwszej [math]\displaystyle{ p }[/math] nie jest przypadkowe.

Zauważmy, że twierdzenia ograniczają się do liczb pierwszych [math]\displaystyle{ p }[/math], ponieważ dla liczb złożonych nieparzystych [math]\displaystyle{ m \gt 0 }[/math] wynik [math]\displaystyle{ \left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1 }[/math] nie oznacza, że liczba pierwsza [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math].

W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].


W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].


Twierdzenie K61
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 17 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].

Dowód

Niech

[math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 1 \\ - 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 3 \\ \end{cases} }[/math]

Dla ustalonych liczb [math]\displaystyle{ n }[/math] i [math]\displaystyle{ s }[/math] rozważmy liczbę [math]\displaystyle{ u(a) = {\small\frac{p - s a^2}{2^n}} }[/math] taką, że [math]\displaystyle{ 3 \leqslant u (a) \lt p }[/math]. Jeżeli liczba ta jest postaci [math]\displaystyle{ 4 k + 3 }[/math], to ma dzielnik pierwszy [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] (zobacz C21). Zatem możemy napisać [math]\displaystyle{ u (a) = t q }[/math], co oznacza, że

[math]\displaystyle{ p - s a^2 = 2^n u (a) = 2^n t q }[/math]

Czyli

[math]\displaystyle{ p \equiv s a^2 \pmod{q} }[/math]

i otrzymujemy

[math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s a^2}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{a^2}{q}} \right)_{\small{\!\! J}} =s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} = 1 }[/math]

Zatem liczba [math]\displaystyle{ q \lt p }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math].

Pomysł dowodu polega na wskazaniu kilku liczb [math]\displaystyle{ u(a_1), \ldots, u(a_r) }[/math] takich, że

[math]\displaystyle{ 3 \leqslant u(a_1) \lt \ldots \lt u(a_r) \lt p }[/math]

z których jedna musi być postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek pierwszy: [math]\displaystyle{ \boldsymbol{p \equiv 3 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = - 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 2 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p + 1}{4}} \lt {\small\frac{p + 9}{4}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 11 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 3 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ 2 k + 1, 2 k + 3 \} }[/math]. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z nich jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek drugi: [math]\displaystyle{ \boldsymbol{p \equiv 5 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = + 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 2 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p - 9}{4}} \lt {\small\frac{p - 1}{4}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 21 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 5 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ 2 k - 1, 2 k + 1 \} }[/math]. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z nich jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek trzeci: [math]\displaystyle{ \boldsymbol{p \equiv 7 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = - 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 3 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p + 1}{8}} \lt {\small\frac{p + 9}{8}} \lt {\small\frac{p + 25}{8}} \lt {\small\frac{p + 49}{8}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 23 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 7 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ k + 1, k + 2, k + 4, k + 7 \} }[/math]. Jeżeli [math]\displaystyle{ k \equiv r \!\! \pmod{4} }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy zbiór [math]\displaystyle{ \{ r + 1, r + 2, r, r + 3 \} }[/math]. Zatem jedna z liczb w tym zbiorze jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Przypadek czwarty: [math]\displaystyle{ \boldsymbol{p \equiv 1 \!\! \pmod{8}} }[/math]

Mamy [math]\displaystyle{ s = + 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 3 }[/math]. Rozważmy liczby

[math]\displaystyle{ 3 \leqslant {\small\frac{p - 49}{8}} \lt {\small\frac{p - 25}{8}} \lt {\small\frac{p - 9}{8}} \lt {\small\frac{p - 1}{8}} \lt p }[/math]

Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 73 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 1 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ k - 6, k - 3, k - 1, k \} }[/math]. Jeżeli [math]\displaystyle{ k \equiv r \!\! \pmod{4} }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy zbiór [math]\displaystyle{ \{ r + 2, r + 1, r + 3, r \} }[/math]. Zatem jedna z liczb w tym zbiorze jest postaci [math]\displaystyle{ 4 k + 3 }[/math].

Pozostaje sprawdzić twierdzenie dla liczb pierwszych [math]\displaystyle{ p \lt 73 }[/math]. Co kończy dowód.


Twierdzenie K62
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].

Dowód

W przypadku, gdy liczba pierwsza [math]\displaystyle{ p }[/math] jest postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math], to istnieją takie liczby całkowite dodatnie [math]\displaystyle{ x, y }[/math], że [math]\displaystyle{ p = x^2 + 2 y^2 }[/math] (zobacz K56). Ponieważ z założenia [math]\displaystyle{ p \geqslant 11 }[/math], to musi być [math]\displaystyle{ x \neq y }[/math]. Z twierdzenia J24 wynika, że liczba [math]\displaystyle{ x^2 + y^2 }[/math] ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math]. Łatwo widzimy, że [math]\displaystyle{ q \leqslant x^2 + y^2 \lt x^2 + 2 y^2 = p }[/math].

Modulo [math]\displaystyle{ q }[/math] możemy napisać

[math]\displaystyle{ x^2 + y^2 \equiv 0 \!\! \pmod{q} }[/math]

Liczba pierwsza [math]\displaystyle{ q \lt p }[/math] nie może dzielić [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ q \mid x }[/math], czyli [math]\displaystyle{ q \mid p }[/math], co jest niemożliwe. Rozpatrując równość [math]\displaystyle{ p = x^2 + 2 y^2 }[/math] modulo [math]\displaystyle{ q }[/math], dostajemy

[math]\displaystyle{ p \equiv y^2 \!\! \pmod{q} }[/math]

Wynika stąd natychmiast (zobacz J41 p.9)

[math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = 1 }[/math]

Co kończy dowód.


Twierdzenie K63
Jeżeli [math]\displaystyle{ p \geqslant 19 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 12 k + 7 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].

Dowód

Z założenia [math]\displaystyle{ p \equiv 1 \!\! \pmod{6} }[/math], zatem istnieją takie liczby [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math], że [math]\displaystyle{ p = x^2 + 3 y^2 }[/math] (zobacz K56). Liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość i być względnie pierwsze. Gdyby liczba [math]\displaystyle{ x }[/math] była nieparzysta, to modulo [math]\displaystyle{ 4 }[/math] mielibyśmy

[math]\displaystyle{ 1 + 3 \cdot 0 \equiv 3 \!\! \pmod{4} }[/math]

Co jest niemożliwe. Zatem [math]\displaystyle{ x = 2 k }[/math], a liczba [math]\displaystyle{ y }[/math] musi być nieparzysta. Otrzymujemy

[math]\displaystyle{ p = 4 k^2 + 3 y^2 = 4 (k^2 + y^2) - y^2 }[/math]

Ponieważ [math]\displaystyle{ p }[/math] jest liczbą pierwszą, to jedynie w przypadku gdy [math]\displaystyle{ k = y = 1 }[/math] możliwa jest sytuacja, że [math]\displaystyle{ k = y }[/math]. Mielibyśmy wtedy [math]\displaystyle{ p = 7 }[/math], ale z założenia musi być [math]\displaystyle{ p \geqslant 19 }[/math]. Wynika stąd, że [math]\displaystyle{ k \neq y }[/math], zatem liczba [math]\displaystyle{ k^2 + y^2 }[/math] ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] (zobacz J24). Oczywiście [math]\displaystyle{ q \leqslant k^2 + y^2 \lt 4 k^2 + 3 y^2 = p }[/math].

Modulo [math]\displaystyle{ q }[/math] możemy napisać

[math]\displaystyle{ k^2 + y^2 \equiv 0 \!\! \pmod{q} }[/math]

Liczba pierwsza [math]\displaystyle{ q }[/math] nie może dzielić [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ q \mid k }[/math], czyli [math]\displaystyle{ q \mid p }[/math], co jest niemożliwe. Rozpatrując równość [math]\displaystyle{ p = 4 (k^2 + y^2) - y^2 }[/math] modulo [math]\displaystyle{ q }[/math], dostajemy

[math]\displaystyle{ p \equiv - y^2 \!\! \pmod{q} }[/math]

Wynika stąd natychmiast (zobacz J41 p.9 i p.6)

[math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- y^2}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} = 1 }[/math]

Co kończy dowód.


Twierdzenia K62 i K63 można uogólnić na wszystkie liczby pierwsze.[13]
Twierdzenie K64*
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 13, 37 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].


Uwaga K65
W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].


W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].


Twierdzenie K66
Jeżeli [math]\displaystyle{ m \geqslant 7 }[/math] jest liczbą całkowitą postaci [math]\displaystyle{ 4 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].

Dowód

Ponieważ liczba [math]\displaystyle{ m - 4 \geqslant 3 }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math], to ma dzielnik pierwszy [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] (zobacz C21). Czyli [math]\displaystyle{ m - 4 = k q }[/math] i z twierdzenia J41 p.9 dostajemy

[math]\displaystyle{ \left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = - \left( {\small\frac{m}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{k q + 4}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{4}{q}} \right)_{\small{\!\! J}} = - 1 }[/math]

Zatem [math]\displaystyle{ q }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math]. Co należało pokazać.


Można też pokazać, że[14]
Twierdzenie K67*
A. Jeżeli [math]\displaystyle{ p \geqslant 13 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].

B. Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].


Zauważmy, że twierdzenie K67 można łatwo uogólnić na liczby całkowite dodatnie.
Twierdzenie K68
A. Jeżeli [math]\displaystyle{ m \geqslant 6 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 10 , 11 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].

B. Jeżeli [math]\displaystyle{ m \geqslant 4 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 6 , 9 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].

Dowód

Punkt B

Rozważmy liczby [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ m = 2^a 3^b }[/math].

Jeżeli [math]\displaystyle{ 3 \mid m }[/math], to [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J55 i K41).

Jeżeli [math]\displaystyle{ 3 \nmid m }[/math], ale [math]\displaystyle{ 8 \mid m }[/math], to [math]\displaystyle{ 8 \nmid (11 - 1) }[/math], zatem liczba [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J55).

Jeżeli [math]\displaystyle{ 3 \nmid m }[/math] i [math]\displaystyle{ 8 \nmid m }[/math], ale [math]\displaystyle{ 4 \mid m }[/math], to [math]\displaystyle{ 4 \nmid (11 - 1) }[/math], zatem liczba [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J55).

Jeżeli [math]\displaystyle{ m = 2 }[/math], to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo [math]\displaystyle{ 2 }[/math].


Zbierając:

  • jeśli liczba [math]\displaystyle{ m \geqslant 12 }[/math] nie ma dzielnika pierwszego [math]\displaystyle{ p \geqslant 5 }[/math], czyli jest postaci [math]\displaystyle{ m = 2^a 3^b }[/math], to liczba pierwsza [math]\displaystyle{ q = 11 }[/math] jest mniejsza od [math]\displaystyle{ m }[/math], jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].
  • jeśli liczba [math]\displaystyle{ m \geqslant 12 }[/math] ma dzielnik pierwszy [math]\displaystyle{ p \geqslant 5 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p \leqslant m }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz K67 i K41).


Pozostaje wypisać dla liczb [math]\displaystyle{ 3 \leqslant m \leqslant 11 }[/math] najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci [math]\displaystyle{ 4 k + 3 }[/math].

for(m = 3, 15, forprimestep(q = 3, 100, 4, if( isQR(q,m) == -1, print(m, "  ", q); break() )))

Widzimy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ m \geqslant 4 }[/math], o ile [math]\displaystyle{ m \neq 6 , 9 }[/math].

Punkt A

Rozważmy liczby [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ m = 2^a 3^b 5^c 7^d 11^e }[/math].

Jeżeli jedna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] dzieli [math]\displaystyle{ m }[/math], to [math]\displaystyle{ 17 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ \left( {\small\frac{17}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{7}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{11}} \right)_{\small{\!\! J}} = - 1 }[/math].

Jeżeli żadna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] nie dzieli [math]\displaystyle{ m }[/math], ale [math]\displaystyle{ 8 \mid m }[/math], to [math]\displaystyle{ 8 \nmid (5 - 1) }[/math], zatem liczba [math]\displaystyle{ 5 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].

Jeżeli żadna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] nie dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ 8 \nmid m }[/math], ale [math]\displaystyle{ 4 \mid m }[/math], to nie istnieją liczby pierwsze postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ 4 \mid [(4 k + 1) - 1] }[/math]

Jeżeli [math]\displaystyle{ m = 2 }[/math], to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo [math]\displaystyle{ 2 }[/math].

Zbierając:

  • jeśli liczba [math]\displaystyle{ m \geqslant 18 }[/math] nie ma dzielnika pierwszego [math]\displaystyle{ p \geqslant 13 }[/math], czyli jest postaci [math]\displaystyle{ m = 2^a 3^b 5^c 7^d 11^e }[/math], to liczba pierwsza [math]\displaystyle{ q = 5 }[/math] lub [math]\displaystyle{ q = 17 }[/math] jest mniejsza od [math]\displaystyle{ m }[/math], jest postaci [math]\displaystyle{ 4 k + 1 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].
  • jeśli liczba [math]\displaystyle{ m \geqslant 18 }[/math] ma dzielnik pierwszy [math]\displaystyle{ p \geqslant 13 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p \leqslant m }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 1 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz K67 i K41).

Pozostaje wypisać dla liczb [math]\displaystyle{ 3 \leqslant m \leqslant 17 }[/math] najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci [math]\displaystyle{ 4 k + 1 }[/math].

for(m = 3, 20, forprimestep(q = 1, 100, 4, if( isQR(q,m) == -1, print(m, "  ", q); break() )))

Widzimy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ m \geqslant 6 }[/math], o ile [math]\displaystyle{ m \neq 10 , 11 }[/math].


Twierdzenie K69
Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math]

Dowód

Łatwo sprawdzamy, że

[math]\displaystyle{ \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]

(zobacz J41 p.7). Zatem dowód wystarczy przeprowadzić dla [math]\displaystyle{ p \geqslant 13 }[/math].

A. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{4 k + 1} }[/math]

Niech liczba [math]\displaystyle{ q }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z twierdzenia K25 wiemy, że dla [math]\displaystyle{ p \geqslant 5 }[/math] liczba [math]\displaystyle{ q }[/math] jest liczbą pierwszą i jest mniejsza od [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], to z twierdzenia J41 p.9 otrzymujemy natychmiast

[math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

B. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{4 k + 3} }[/math]

Z twierdzenia K61 wynika, że dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 11 }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ p \equiv q \equiv 3 \!\! \pmod{4} }[/math], to z twierdzenia J41 p.9 otrzymujemy natychmiast

[math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

Co kończy dowód.


Zadanie K70
Udowodnić twierdzenie K69 w przypadku, gdy liczba pierwsza [math]\displaystyle{ p \geqslant 19 }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math], nie korzystając z twierdzenia K61.

Rozwiązanie

Z założenia [math]\displaystyle{ p = 4 k + 3 }[/math]. Liczba [math]\displaystyle{ k }[/math] może być postaci [math]\displaystyle{ k = 3 j }[/math], [math]\displaystyle{ k = 3 j + 1 }[/math] i [math]\displaystyle{ k = 3 j + 2 }[/math]. Odpowiada to liczbom pierwszym postaci [math]\displaystyle{ p = 12 j + 3 }[/math], [math]\displaystyle{ p = 12 j + 7 }[/math] i [math]\displaystyle{ p = 12 j + 11 }[/math].

Ponieważ nie ma liczb pierwszych [math]\displaystyle{ p \geqslant 19 }[/math] i będących postaci [math]\displaystyle{ p = 12 j + 3 }[/math], to pozostaje rozważyć przypadki [math]\displaystyle{ p = 12 j + 7 }[/math] i [math]\displaystyle{ p = 12 j + 11 }[/math].

A. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{12 j + 11} }[/math]

Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1 }[/math] (zobacz J46). Mamy

[math]\displaystyle{ \left( {\small\frac{p}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

Czyli wystarczy przyjąć [math]\displaystyle{ q = 3 }[/math].

B. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{12 j + 7} }[/math]

Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J41 p.6 oraz J46). Otrzymujemy

[math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = - \left( {\small\frac{p - 12}{p}} \right)_{\small{\!\! J}} = - \left( {\small\frac{- 12}{p}} \right)_{\small{\!\! J}} = \left[ - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} \right] \cdot \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = -1 }[/math]

Ponieważ liczba [math]\displaystyle{ p - 12 \geqslant 7 }[/math] jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy [math]\displaystyle{ q \lt p }[/math] liczby [math]\displaystyle{ p - 12 }[/math] taki, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 }[/math]. W przeciwnym razie z twierdzenia J41 p.4 mielibyśmy [math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1 }[/math]. Co kończy dowód.








Przypisy

  1. Dušan Đukić, Quadratic Congruences, International Mathematical Olympiad training materials, (IMOmath.com)
  2. Helmut Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper. I. Die Struktur der Gruppe der Divisisorenklassen endlicher Ordnung. II. Automorphismen und Meromorphismen. Das Additionstheorem. III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung, Journal für die reine und angewandte Mathematik 175 (1936) 55–62, 69–88, 193–207.
  3. Wikipedia, Hasse's theorem on elliptic curves, (Wiki-en), (Wiki-ru)
  4. Yu. I. Manin, On cubic congruences to a prime modulus, Izv. Akad. Nauk SSSR Ser. Mat., 1956, Volume 20, Issue 5, 673–678
  5. Karl K. Norton, Numbers with Small Prime Factors, and the Least kth Power Non-Residue, Memoirs of the American Mathematical Society, No. 106 (1971)
  6. Enrique Treviño, The least k-th power non-residue, Journal of Number Theory, Volume 149 (2015)
  7. Kevin J. McGown and Enrique Treviño, The least quadratic non-residue, Mexican Mathematicians in the World (2021)
  8. Paul Erdős, Számelméleti megjegyzések I, Afar. Lapok, v. 12 (1961)
  9. Paul Pollack, The average least quadratic nonresidue modulo [math]\displaystyle{ m }[/math] and other variations on a theme of Erdős, Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.
  10. Wikipedia, Proof by infinite descent, (Wiki-en)
  11. W. H. Bussey, Fermat's Method of Infinite Descent, The American Mathematical Monthly, Vol. 25, No. 8 (1918)
  12. G. H. Hardy and Edward M. Wright, An Introduction to the Theory of Numbers, New York: Oxford University Press, 5th Edition, zobacz dowód Twierdzenia 366 w sekcji 20.4 na stronie 301.
  13. 13,0 13,1 Alexandru Gica, Quadratic Residues of Certain Types, Rocky Mountain J. Math. 36 (2006), no. 6, 1867-1871.
  14. Paul Pollack, The least prime quadratic nonresidue in a prescribed residue class mod 4, Journal of Number Theory 187 (2018), 403-414