Ciągi liczbowe: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Linia 2908: Linia 2908:
  
  
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład C74</span><br/>
 +
Rozwiązania równania
 +
 +
::<math>a x + b y = c</math>
 +
 +
gdzie <math>\gcd (a, b) = 1</math>, które omówiliśmy w poprzednim twierdzeniu, najłatwiej znaleźć korzystając w PARI/GP z funkcji <code>gcdext(a, b)</code>. Funkcja ta zwraca wektor liczb <code>[x<sub>0</sub>, y<sub>0</sub>, d]</code>, gdzie <math>d = \gcd (a, b)</math>, a liczby <math>x_0</math> i <math>y_0</math> są rozwiązaniami równania
 +
 +
::<math>a x_0 + b y_0 = \gcd (a, b)</math>
 +
 +
Ponieważ założyliśmy, że <math>\gcd (a, b) = 1</math>, to łatwo zauważmy, że
 +
 +
::<math>a(c x_0) + b (c y_0) = c</math>
 +
 +
Zatem para liczb całkowitych <math>(c x_0, c y_0)</math> jest jednym z rozwiązań równania
 +
 +
::<math>a x + b y = c</math>
 +
 +
i wszystkie pozostałe rozwiązania uzyskujemy ze wzorów
 +
 +
::<math>x = c x_0 + b t</math>
 +
 +
::<math>y = c y_0 - a t</math>
 +
 +
Niech <math>a = 7</math> i <math>b = 17</math>. Funkcja <code>gcdext(7,17)</code> zwraca wektor <code>[5, -2, 1]</code>, zatem rozwiązaniami równania <math>7 x + 17 y = 1</math> są liczby
 +
 +
::<math>x = 5 + 17 t</math>
 +
 +
::<math>y = - 2 - 7 t</math>
 +
 +
A rozwiązaniami równania <math>7 x + 17 y = 10</math> są liczby
 +
 +
::<math>x = 50 + 17 t</math>
 +
 +
::<math>y = - 20 - 7 t</math>
  
  

Wersja z 17:50, 9 lut 2023

12.03.2022



Ciągi nieskończone

Definicja C1
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli każdej liczbie [math]\displaystyle{ n }[/math] przypiszemy pewną liczbę rzeczywistą [math]\displaystyle{ a_n }[/math], to powiemy, że liczby [math]\displaystyle{ a_1, a_2, \ldots, a_n, \ldots }[/math] tworzą ciąg nieskończony.


Uwaga C2
Ciąg nieskończony [math]\displaystyle{ a_1, a_2, \ldots, a_n, \ldots }[/math] będziemy oznaczać [math]\displaystyle{ (a_n) }[/math]. Często, o ile nie będzie prowadziło to do nieporozumień, ciąg nieskończony będziemy nazywać po prostu ciągiem.


Definicja C3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Ciąg [math]\displaystyle{ (a_n) }[/math] będziemy nazywali

  • ciągiem rosnącym, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \geqslant a_n }[/math]
  • ciągiem malejącym, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \leqslant a_n }[/math]

Ciągi rosnące dzielimy na

  • ciągi silnie rosnące, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \gt a_n }[/math]
  • ciągi słabo rosnące, jeżeli istnieją takie [math]\displaystyle{ n }[/math], że [math]\displaystyle{ a_{n + 1} = a_n }[/math]

Ciągi malejące dzielimy na

  • ciągi silnie malejące, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \lt a_n }[/math]
  • ciągi słabo malejące, jeżeli istnieją takie [math]\displaystyle{ n }[/math], że [math]\displaystyle{ a_{n + 1} = a_n }[/math]


Definicja C4
Niech [math]\displaystyle{ \varepsilon \in \mathbb{R}_+ }[/math]. Liczbę [math]\displaystyle{ a }[/math] będziemy nazywali granicą ciągu [math]\displaystyle{ (a_n) }[/math], jeżeli dla dowolnego [math]\displaystyle{ \varepsilon }[/math] w przedziale [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] znajdują się prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] (to znaczy wszystkie poza co najwyżej skończoną ilością).


Uwaga C5
1) sens definicji jest taki: jeżeli liczba [math]\displaystyle{ a }[/math] jest granicą ciągu [math]\displaystyle{ (a_n) }[/math], to dla dowolnie małego [math]\displaystyle{ \varepsilon \gt 0 }[/math], poza przedziałem [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] może się znaleźć co najwyżej skończona ilość wyrazów ciągu [math]\displaystyle{ (a_n) }[/math]

2) słabsze żądanie, aby w przedziale [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] znajdowała się nieskończona ilość wyrazów ciągu nie prowadzi do poprawnej definicji granicy. Przykładowo, w przedziale [math]\displaystyle{ (1 - \varepsilon, 1 + \varepsilon) }[/math] znajduje się nieskończenie wiele wyrazów ciągu [math]\displaystyle{ a_n = (-1)^n }[/math], ale ani liczba [math]\displaystyle{ 1 }[/math], ani liczba [math]\displaystyle{ - 1 }[/math] nie są granicami tego ciągu. O ciągu [math]\displaystyle{ a_n = (- 1)^n }[/math] mówimy, że nie ma granicy.

3) ze względu na równoważność warunków

  • [math]\displaystyle{ \quad a_n \in (a - \varepsilon, a + \varepsilon) }[/math]
  • [math]\displaystyle{ \quad a - \varepsilon \lt a_n \lt a + \varepsilon }[/math]
  • [math]\displaystyle{ \quad - \varepsilon \lt a_n - a \lt \varepsilon }[/math]
  • [math]\displaystyle{ \quad | a_n - a | \lt \varepsilon }[/math]

definicja C4 może być wypowiedziana następująco


Definicja C6
Liczbę [math]\displaystyle{ a }[/math] będziemy nazywali granicą ciągu [math]\displaystyle{ (a_n) }[/math], jeżeli dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ |a_n - a| \lt \varepsilon }[/math].


Definicja C7
Ciąg [math]\displaystyle{ (a_n) }[/math] mający granicę (w rozumieniu definicji C4 lub C6) będziemy nazywali ciągiem zbieżnym, a fakt ten zapisujemy symbolicznie następująco

[math]\displaystyle{ \lim_{n \to \infty} a_n = a }[/math]      lub      [math]\displaystyle{ a_n \longrightarrow a }[/math]

(od łacińskiego słowa limes oznaczającego granicę).


Zauważmy jeszcze, że wprost z definicji granicy wynika
Twierdzenie C8

1. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = a \quad \iff \quad \lim_{n \to \infty} (a_n - a) = 0 \quad \iff \quad \lim_{n \to \infty} | a_n - a | = 0 }[/math]
2. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = 0 \quad \iff \quad \lim_{n \to \infty} | a_n | = 0 }[/math]
3. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = a \quad \implies \quad \lim_{n \to \infty} | a_n | = | a | }[/math]
Dowód


Twierdzenie C9 (twierdzenie o trzech ciągach)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ n \gt N_0 }[/math] jest spełniony warunek

[math]\displaystyle{ a_n \leqslant x_n \leqslant b_n }[/math]

oraz

[math]\displaystyle{ \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = g }[/math]

to [math]\displaystyle{ \lim_{n \to \infty} x_n = g }[/math].

Dowód


Bez dowodu podamy kilka ważnych twierdzeń.
Twierdzenie C10*
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ n }[/math] i rzeczywista [math]\displaystyle{ M }[/math], że dla każdego [math]\displaystyle{ k \gt n }[/math] jest

[math]\displaystyle{ a_{k + 1}\geqslant a_k \qquad }[/math] oraz [math]\displaystyle{ \qquad a_k \leqslant M }[/math]

to ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny.
Inaczej mówiąc: ciąg rosnący i ograniczony od góry jest zbieżny.


Twierdzenie C11*
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ n }[/math] i rzeczywista [math]\displaystyle{ M }[/math], że dla każdego [math]\displaystyle{ k \gt n }[/math] jest

[math]\displaystyle{ a_{k + 1} \leqslant a_k \qquad }[/math] oraz [math]\displaystyle{ \qquad a_k \geqslant M }[/math]

to ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny.
Inaczej mówiąc: ciąg malejący i ograniczony od dołu jest zbieżny.


Twierdzenie C12*
Jeżeli [math]\displaystyle{ \lim_{n \to \infty} a_n = a }[/math] oraz [math]\displaystyle{ \lim_{n \to \infty} b_n = b }[/math], gdzie [math]\displaystyle{ a, b }[/math] są dowolnymi liczbami rzeczywistymi, to

  1. [math]\displaystyle{ \quad \lim_{n \to \infty} (a_n \pm b_n) = a \pm b }[/math]
  2. [math]\displaystyle{ \quad \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b }[/math]

Jeżeli dodatkowo dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ b_n \neq 0 }[/math] i [math]\displaystyle{ b \neq 0 }[/math], to

  3. [math]\displaystyle{ \quad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} }[/math]


Twierdzenie C13
Jeżeli [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math], zaś ciąg [math]\displaystyle{ (x_n) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ M \gt 0 }[/math], że dla każdej wartości [math]\displaystyle{ n }[/math] prawdziwa jest nierówność [math]\displaystyle{ | x_n | \lt M }[/math], to

[math]\displaystyle{ \lim_{n \to \infty} (x_n \cdot a_n) = 0 }[/math]
Dowód


Twierdzenie C14
Dla [math]\displaystyle{ a \geqslant 0 }[/math] i [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ (1 + a)^{1 / n} \leqslant 1 + \frac{a}{n} }[/math]
Dowód


Twierdzenie C15
Jeżeli [math]\displaystyle{ A \gt 0 }[/math], to [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{A} = 1 }[/math].

Dowód


Twierdzenie C16
Jeżeli prawie wszystkie wyrazy ciągu ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ 0 \lt m \lt a_n \lt M }[/math], to [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{a_n} = 1 }[/math]

Dowód


Twierdzenie C17
Następujące ciągi są silnie rosnące i zbieżne

Dowód


Twierdzenie C18
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe są następujące nierówności

Dowód



Liczby pierwsze w ciągach arytmetycznych

Twierdzenie C19
Każda liczba naturalna [math]\displaystyle{ n \geqslant 2 }[/math] jest liczbą pierwszą lub iloczynem liczb pierwszych.

Dowód


Twierdzenie C20 (Euklides, IV w. p.n.e.)
Istnieje nieskończenie wiele liczb pierwszych.

Dowód


Twierdzenie C21
Jeżeli liczba naturalna [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math][2], to ma dzielnik postaci [math]\displaystyle{ 4 k + 3 }[/math] będący liczbą pierwszą.

Dowód


Twierdzenie C22
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 4 k + 3 }[/math].

Dowód


Twierdzenie C23
Jeżeli liczba naturalna [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ 6 k + 5 }[/math], to ma dzielnik postaci [math]\displaystyle{ 6 k + 5 }[/math] będący liczbą pierwszą.

Dowód


Twierdzenie C24
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 6 k + 5 }[/math].

Dowód


Twierdzenie C25
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 3 k + 2 }[/math].

Dowód


Uwaga C26
Zauważmy, że liczby postaci [math]\displaystyle{ 2 k + 1 }[/math] to wszystkie liczby nieparzyste dodatnie. Ponieważ wszystkie liczby pierwsze (poza liczbą [math]\displaystyle{ 2 }[/math]) są liczbami nieparzystymi, to wśród liczb postaci [math]\displaystyle{ 2 k + 1 }[/math] występuje nieskończenie wiele liczb pierwszych.

Wszystkie omówione wyżej przypadki ciągów arytmetycznych: [math]\displaystyle{ 2 k + 1 }[/math], [math]\displaystyle{ 3 k + 2 }[/math], [math]\displaystyle{ 4 k + 3 }[/math] i [math]\displaystyle{ 6 k + 5 }[/math], w których występuje nieskończona ilość liczb pierwszych są szczególnymi przypadkami udowodnionego w 1837 roku twierdzenia


Twierdzenie C27* (Peter Gustav Lejeune Dirichlet, 1837)
Niech [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ b \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math] występuje nieskończenie wiele liczb pierwszych.


Uwaga C28
Dowód twierdzenia Dirichleta jest bardzo trudny. Natomiast bardzo łatwo można pokazać, że dowolny ciąg arytmetyczny [math]\displaystyle{ a k + b }[/math] zawiera nieskończenie wiele liczb złożonych. Istotnie, jeżeli liczby [math]\displaystyle{ a, b }[/math] nie są względnie pierwsze, to wszystkie wyrazy ciągu są liczbami złożonymi. Jeżeli [math]\displaystyle{ a, b }[/math] są względnie pierwsze i [math]\displaystyle{ b \gt 1 }[/math], to wystarczy przyjąć [math]\displaystyle{ k = b t }[/math]. Jeżeli są względnie pierwsze i [math]\displaystyle{ b = 1 }[/math], to wystarczy przyjąć [math]\displaystyle{ k = a t^2 + 2 t }[/math], wtedy

[math]\displaystyle{ a k + 1 = a^2 t^2 + 2 a t + 1 = (a t + 1)^2 }[/math]


Zadanie C29
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...

Rozwiązanie


Definicja C30
Niech [math]\displaystyle{ a \geqslant 2 }[/math] będzie liczbą całkowitą. Wartość funkcji [math]\displaystyle{ \pi(n; a, b) }[/math] jest równa ilości liczb pierwszych nie większych od [math]\displaystyle{ n }[/math], które przy dzieleniu przez [math]\displaystyle{ a }[/math] dają resztę [math]\displaystyle{ b }[/math].


Uwaga C31
Zauważmy, że w twierdzeniu Dirichleta na liczby [math]\displaystyle{ a }[/math] oraz [math]\displaystyle{ b }[/math] nałożone są minimalne warunki: [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ b \in \mathbb{Z} }[/math]. Sytuacja w przypadku funkcji [math]\displaystyle{ \pi (n ; a, b) }[/math] jest odmienna – tutaj mamy [math]\displaystyle{ a \geqslant 2 }[/math] oraz [math]\displaystyle{ 0 \leqslant b \leqslant a - 1 }[/math]. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja [math]\displaystyle{ \pi (n ; a, b) }[/math] jest podziałem pierwotnym, a twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek

[math]\displaystyle{ \sum_{b = 0}^{a - 1} \pi (n ; a, b) = \pi (n) }[/math]

Oczywiście nie przeszkadza to w liczeniu liczb pierwszych w dowolnym ciągu arytmetycznym. Niech na przykład

[math]\displaystyle{ u_k = 7 k + 101 = 7 (k + 14) + 3 \qquad }[/math] gdzie [math]\displaystyle{ k = 0, 1, \ldots }[/math]

Ilość liczb pierwszych w ciagu [math]\displaystyle{ (u_k) }[/math] jest równa

[math]\displaystyle{ \pi (n ; 7, 3) - \pi (7 \cdot 13 + 3 ; 7, 3) = \pi (n ; 7, 3) - 5 }[/math]


Zadanie C32
Pokazać, że dla dowolnej liczby całkowitej [math]\displaystyle{ m \geqslant 1 }[/math]

  • wśród liczb naturalnych zawsze można wskazać [math]\displaystyle{ m }[/math] kolejnych liczb, które są złożone
  • w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math], gdzie liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, zawsze można wskazać [math]\displaystyle{ m }[/math] kolejnych wyrazów, które są złożone
Rozwiązanie


Przykład C33
Rozważmy ciąg arytmetyczny [math]\displaystyle{ u_k = 3 k + 2 }[/math] i wskaźnik

[math]\displaystyle{ k_0 = \prod^{12}_{j = 0} (3 j + 2) = 3091650738176000 }[/math]

Trzynaście wyrazów tego szeregu dla [math]\displaystyle{ k = k_0 + t }[/math], gdzie [math]\displaystyle{ t = 0, 1, \ldots, 12 }[/math] to oczywiście liczby złożone, ale wyrazy dla [math]\displaystyle{ k = k_0 - 1 }[/math] i [math]\displaystyle{ k = k_0 + 13 }[/math] są liczbami pierwszymi.

Przeszukując ciąg [math]\displaystyle{ u_k = 3 k + 2 }[/math] możemy łatwo znaleźć, że pierwsze trzynaście kolejnych wyrazów złożonych pojawia się już dla [math]\displaystyle{ k = 370, 371, \ldots, 382 }[/math].


Twierdzenie C34
Jeżeli [math]\displaystyle{ n \geqslant 3 }[/math], to istnieje [math]\displaystyle{ n }[/math] kolejnych liczb naturalnych, wśród których znajduje się dokładnie [math]\displaystyle{ r \leqslant \pi (n) }[/math] liczb pierwszych.

Dowód


Przykład C35
Czytelnik może łatwo sprawdzić, że ciąg [math]\displaystyle{ ( 1308, \ldots, 1407 ) }[/math] stu kolejnych liczb całkowitych zawiera dokładnie [math]\displaystyle{ 8 }[/math] liczb pierwszych.


Zadanie C36
Pokazać, nie korzystając z twierdzenia C34, że istnieje [math]\displaystyle{ 1000 }[/math] kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.

Rozwiązanie


Zadanie C37
Pokazać, że istnieje [math]\displaystyle{ 20 }[/math] kolejnych liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math], wśród których jest dokładnie [math]\displaystyle{ 5 }[/math] liczb pierwszych.

Rozwiązanie


Twierdzenie C38
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ 0 \leqslant b \leqslant a - 1 }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] oraz [math]\displaystyle{ b }[/math] są względnie pierwsze, to istnieje [math]\displaystyle{ n }[/math] kolejnych liczb postaci [math]\displaystyle{ a k + b }[/math], wśród których znajduje się dokładnie [math]\displaystyle{ r \leqslant \pi (a (n - 1) + b ; a, b) }[/math] liczb pierwszych.

Dowód


Zadanie C39
Niech [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Pokazać, że w ciągu [math]\displaystyle{ 6 k + 1 }[/math] występują kwadraty wszystkich liczb pierwszych [math]\displaystyle{ p }[/math].

Rozwiązanie


Zadanie C40
Dany jest ciąg arytmetyczny [math]\displaystyle{ a k + b }[/math], gdzie liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze. Pokazać, że

  • jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ a }[/math], to żaden wyraz ciągu [math]\displaystyle{ a k + b }[/math] nie jest podzielny przez [math]\displaystyle{ p }[/math]
  • jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] nie dzieli [math]\displaystyle{ a }[/math], to istnieje nieskończenie wiele wyrazów ciągu [math]\displaystyle{ a k + b }[/math], które są podzielne przez [math]\displaystyle{ p }[/math]
Rozwiązanie


Uwaga C41
Łatwo możemy napisać w PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną [math]\displaystyle{ k_0 }[/math], dla której wyraz ciągu arytmetycznego [math]\displaystyle{ a k + b }[/math] jest podzielny przez [math]\displaystyle{ p }[/math] (przy założeniu, że liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ p }[/math] są względnie pierwsze).

f(a,b,p) = lift( Mod(-b,p)*Mod(a,p)^(-1) )



Ciągi nieskończone i liczby pierwsze

Uwaga C42
Choć wiele ciągów jest dobrze znanych i równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo

Nie wiemy, czy istnieje wielomian całkowity [math]\displaystyle{ W(n) }[/math] stopnia większego niż jeden taki, że [math]\displaystyle{ W(n) }[/math] jest liczbą pierwszą dla nieskończenie wielu liczb [math]\displaystyle{ n }[/math].


Przykład C43
Łatwo sprawdzić, że wartości wielomianu [math]\displaystyle{ W(n) = n^2 + n + 41 }[/math] są liczbami pierwszymi dla [math]\displaystyle{ 1 \leqslant n \leqslant 39 }[/math]. Oczywiście [math]\displaystyle{ 41 | W(41) }[/math].


Twierdzenie C44
Niech [math]\displaystyle{ a, n }[/math] będą liczbami całkowitymi takimi, że [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ n \geqslant 1 }[/math]. Jeżeli liczba [math]\displaystyle{ a^n + 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a }[/math] jest liczbą parzystą i [math]\displaystyle{ n = 2^m }[/math].

Dowód


Twierdzenie C45
Dla dowolnej liczby naturalnej [math]\displaystyle{ n \geqslant 1 }[/math] liczba [math]\displaystyle{ x - y }[/math] jest dzielnikiem wyrażenia [math]\displaystyle{ x^n - y^n }[/math].

Dowód


Twierdzenie C46
Jeżeli [math]\displaystyle{ n \geqslant 2 }[/math] oraz [math]\displaystyle{ a^n - 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a = 2 }[/math] i [math]\displaystyle{ n }[/math] jest liczbą pierwszą.

Dowód




Ciągi arytmetyczne liczb pierwszych

Uwaga C47
Ciągi arytmetyczne liczb pierwszych[3][4] zbudowane z dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math].

Ponieważ nie da się zbudować ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math], w którym pierwszym wyrazem jest liczba [math]\displaystyle{ p_0 = 2 }[/math], to będą nas interesowały ciągi rozpoczynające się od liczby pierwszej [math]\displaystyle{ p_0 \geqslant 3 }[/math]

Jeżeli do liczby pierwszej nieparzystej dodamy dodatnią liczbę nieparzystą, to otrzymamy liczbę parzystą złożoną, zatem różnica ciągu arytmetycznego [math]\displaystyle{ d }[/math] musi być liczbą parzystą, aby zbudowanie jakiegokolwiek ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math] było możliwe.

Istnienie nieskończenie wiele ciągów arytmetycznych liczb pierwszych o długości [math]\displaystyle{ n = 3 }[/math] pokazano już wiele lat temu[5]. Temat ciągów arytmetycznych liczb pierwszych zyskał na popularności[6] po udowodnieniu przez Bena Greena i Terence'a Tao twierdzenia o istnieniu dowolnie długich (ale skończonych) ciągów arytmetycznych liczb pierwszych[7].


Twierdzenie C48* (Ben Green i Terence Tao, 2004)
Dla dowolnej liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] istnieje nieskończenie wiele [math]\displaystyle{ n }[/math]-wyrazowych ciągów arytmetycznych liczb pierwszych.



Przykład C49
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 3 }[/math] i [math]\displaystyle{ n = 4 }[/math].

Pokaż tabele


Przykład C50
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 5 }[/math] i [math]\displaystyle{ n = 6 }[/math].

Pokaż tabele


Przykład C51
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] i [math]\displaystyle{ n = 8 }[/math].

Pokaż tabele


Przykład C52
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 9 }[/math] i [math]\displaystyle{ n = 10 }[/math].

Pokaż tabele


Twierdzenie C53
Niech [math]\displaystyle{ d, k, k_0, n \in \mathbb{Z}_+ }[/math] oraz [math]\displaystyle{ a \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ d }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, to reszty [math]\displaystyle{ r_1, r_2, \ldots, r_n }[/math] z dzielenia [math]\displaystyle{ n }[/math] kolejnych wyrazów ciągu arytmetycznego

[math]\displaystyle{ x_k = a + k d \qquad }[/math] dla [math]\displaystyle{ \; k = k_0 + 1, \ldots, k_0 + n }[/math]

przez liczbę [math]\displaystyle{ n }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, n - 1 \} }[/math]. W szczególności wynika stąd, że wśród [math]\displaystyle{ n }[/math] kolejnych wyrazów ciągu arytmetycznego [math]\displaystyle{ (x_k) }[/math] jeden z tych wyrazów jest podzielny przez [math]\displaystyle{ n }[/math].

Dowód


Twierdzenie C54
Niech [math]\displaystyle{ d \in \mathbb{Z}_+ }[/math] i niech będzie dany ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math]

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Z żądania, aby dany ciąg arytmetyczny był ciągiem arytmetycznym liczb pierwszych, wynika, że muszą być spełnione następujące warunki

  • [math]\displaystyle{ p_0 \nmid d }[/math]
  • [math]\displaystyle{ n \leqslant p_0 }[/math]
  • [math]\displaystyle{ P(n - 1) |d }[/math]
  • jeżeli liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], to [math]\displaystyle{ n \leqslant q }[/math]

gdzie [math]\displaystyle{ P(t) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ t }[/math].

Dowód


Uwaga C55
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „prime arithmetic progression”. Konsekwentnie zapis PAP-[math]\displaystyle{ n }[/math] będzie oznaczał ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math], a zapis PAP[math]\displaystyle{ (n, d, q) }[/math] ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math], pierwszym wyrazie [math]\displaystyle{ q }[/math] i różnicy [math]\displaystyle{ d }[/math].


Uwaga C56
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej [math]\displaystyle{ q }[/math] i o dowolnej długości [math]\displaystyle{ 3 \leqslant n \leqslant q }[/math], to obecnie jest to tylko nieudowodnione przypuszczenie.

Dlatego nawet dla najmniejszej liczby pierwszej [math]\displaystyle{ q }[/math] takiej, że [math]\displaystyle{ q \nmid d }[/math] nierówność [math]\displaystyle{ n \leqslant q }[/math], pokazana w twierdzeniu C54, pozostaje nadal tylko oszacowaniem. W szczególności nie możemy z góry przyjmować, że dla liczby [math]\displaystyle{ n = q }[/math] znajdziemy taką liczbę [math]\displaystyle{ d }[/math] będącą wielokrotnością liczby [math]\displaystyle{ P(q - 1) }[/math] i niepodzielną przez [math]\displaystyle{ q }[/math], że będzie istniał PAP[math]\displaystyle{ (q, d, q) }[/math].


Przykład C57
Rozważmy dwie różnice [math]\displaystyle{ d_1 = 6 = 2 \cdot 3 }[/math] oraz [math]\displaystyle{ d_2 = 42 = 2 \cdot 3 \cdot 7 }[/math]. Zauważmy, że liczba pierwsza [math]\displaystyle{ 5 }[/math] nie dzieli ani [math]\displaystyle{ d_1 }[/math], ani [math]\displaystyle{ d_2 }[/math]. Co więcej, liczba pierwsza [math]\displaystyle{ 5 }[/math] jest najmniejszą liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność [math]\displaystyle{ n \leqslant 5 }[/math] zapewnia najmocniejsze oszacowanie długości ciągu [math]\displaystyle{ n }[/math]. Łatwo sprawdzamy w zamieszczonych tabelach, że dla [math]\displaystyle{ d = 6 }[/math] oraz dla [math]\displaystyle{ d = 42 }[/math] są ciągi o długości [math]\displaystyle{ 3, 4, 5 }[/math], ale nie ma ciągów o długości [math]\displaystyle{ 6, 7, \ldots }[/math]

W szczególności z twierdzenia C54 wynika, że szukając ciągów arytmetycznych liczb pierwszych o określonej długości [math]\displaystyle{ n }[/math], należy szukać ich tylko dla różnic [math]\displaystyle{ d }[/math] będących wielokrotnością liczby [math]\displaystyle{ P(n - 1) }[/math].


Zadanie C58
Wiemy, że liczby pierwsze [math]\displaystyle{ p \gt 3 }[/math] można przedstawić w jednej z postaci [math]\displaystyle{ 6 k - 1 }[/math] lub [math]\displaystyle{ 6 k + 1 }[/math]. Pokazać, że jeżeli [math]\displaystyle{ p_0 = 3 }[/math], to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.

Rozwiązanie


Zadanie C59
Wiemy, że liczby pierwsze [math]\displaystyle{ p \gt 3 }[/math] można przedstawić w jednej z postaci [math]\displaystyle{ 6 k - 1 }[/math] lub [math]\displaystyle{ 6 k + 1 }[/math]. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych [math]\displaystyle{ p_0, p_1, \ldots, p_{n - 1} }[/math], gdzie [math]\displaystyle{ p_0 \geqslant 5 }[/math] i [math]\displaystyle{ n \geqslant 3 }[/math] muszą być jednakowej postaci.

Rozwiązanie


Zadanie C60
Niech [math]\displaystyle{ d \gt 0 }[/math] będzie różnicą ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n }[/math]

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Pokazać, nie korzystając z twierdzenia C54, że jeżeli liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], to [math]\displaystyle{ n \leqslant q }[/math].

Rozwiązanie


Twierdzenie C61
Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą, a liczby pierwsze

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] gdzie [math]\displaystyle{ \; k = 0, 1, \ldots, q - 1 }[/math]

tworzą ciąg arytmetyczny o długości [math]\displaystyle{ q }[/math] i różnicy [math]\displaystyle{ d \gt 0 }[/math].

Równość [math]\displaystyle{ p_0 = q }[/math] zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ q \nmid d }[/math].

Dowód


Uwaga C62
Niech ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math] ma postać

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Z udowodnionych wyżej twierdzeń C54 i C61 wynika, że ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n }[/math] można podzielić na dwie grupy

  • jeżeli [math]\displaystyle{ n }[/math] jest liczbą pierwszą i [math]\displaystyle{ n \nmid d }[/math], to [math]\displaystyle{ P(n - 1) |d }[/math] oraz [math]\displaystyle{ p_0 = n }[/math] (dla ustalonego [math]\displaystyle{ d }[/math] może istnieć tylko jeden ciąg)
  • jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną lub [math]\displaystyle{ n|d }[/math], to [math]\displaystyle{ P(n) |d }[/math] oraz [math]\displaystyle{ p_0 \gt n }[/math]

Funkcja [math]\displaystyle{ P(t) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ t }[/math].


Przykład C63
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi [math]\displaystyle{ d = 10^t }[/math], gdzie [math]\displaystyle{ t \geqslant 1 }[/math]. Zauważmy, że dla dowolnego [math]\displaystyle{ t }[/math] liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą pierwszą, która nie dzieli [math]\displaystyle{ d }[/math]. Z oszacowania [math]\displaystyle{ n \leqslant 3 }[/math] wynika, że musi być [math]\displaystyle{ n = 3 }[/math].

Jeżeli długość ciągu [math]\displaystyle{ n = 3 }[/math] i [math]\displaystyle{ n \nmid d }[/math], to musi być [math]\displaystyle{ p_0 = n = 3 }[/math] i może istnieć tylko jeden PAP dla każdego [math]\displaystyle{ d }[/math]. W przypadku [math]\displaystyle{ t \leqslant 10000 }[/math] jedynie dla [math]\displaystyle{ t = 1, 5, 6, 17 }[/math] wszystkie liczby ciągu arytmetycznego [math]\displaystyle{ (3, 3 + 10^t, 3 + 2 \cdot 10^t) }[/math] są pierwsze.


Zadanie C64
Znaleźć wszystkie PAP[math]\displaystyle{ (n, d, p) }[/math] dla [math]\displaystyle{ d = 2, 4, 8, 10, 14, 16 }[/math].

Rozwiązanie


Zadanie C65
Znaleźć wszystkie PAP[math]\displaystyle{ (n, d, p) }[/math] dla [math]\displaystyle{ n = 3, 5, 7, 11 }[/math] i [math]\displaystyle{ d = P (n - 1) }[/math].

Rozwiązanie


Przykład C66
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych, takie że [math]\displaystyle{ n = p_0 }[/math] dla [math]\displaystyle{ n = 3, 5, 7, 11, 13 }[/math]. Zauważmy, że wypisane w tabeli wartości [math]\displaystyle{ d }[/math] są wielokrotnościami liczby [math]\displaystyle{ P(n - 1) }[/math].

Pokaż tabelę


Przykład C67
Liczby [math]\displaystyle{ 3, 5, 7 }[/math] są najprostszym przykładem ciągu arytmetycznego kolejnych liczb pierwszych. Zauważmy, że tylko w przypadku [math]\displaystyle{ n = 3 }[/math] możliwa jest sytuacja, że [math]\displaystyle{ n = p_0 = 3 }[/math]. Istotnie, łatwo stwierdzamy, że

  • ponieważ [math]\displaystyle{ p_0 }[/math] i [math]\displaystyle{ p_1 }[/math]kolejnymi liczbami pierwszymi, to [math]\displaystyle{ p_1 - p_0 \lt p_0 }[/math] (zobacz zadanie B22)
  • dla dowolnej liczby pierwszej [math]\displaystyle{ q \geqslant 5 }[/math] jest [math]\displaystyle{ q \lt P (q - 1) }[/math] (zobacz zadanie B26)

Przypuśćmy teraz, że istnieje ciąg arytmetyczny kolejnych liczb pierwszych, taki że [math]\displaystyle{ n = p_0 \geqslant 5 }[/math]. Mamy

[math]\displaystyle{ d = p_1 - p_0 \lt p_0 \lt P (p_0 - 1) = P (n - 1) }[/math]

Zatem [math]\displaystyle{ P(n - 1) \nmid d }[/math], co jest niemożliwe.

Wynika stąd, że poza przypadkiem [math]\displaystyle{ n = p_0 = 3 }[/math] ciąg arytmetyczny kolejnych liczb pierwszych musi spełniać warunek [math]\displaystyle{ P(n)|d }[/math], czyli [math]\displaystyle{ P(n)|(p_1 - p_0) }[/math].

Poniższe tabele przedstawiają przykładowe ciągi arytmetyczne kolejnych liczb pierwszych o długościach [math]\displaystyle{ n = 3, 4, 5, 6 }[/math] dla rosnących wartości [math]\displaystyle{ p_0 }[/math]. Nie istnieje ciąg arytmetyczny kolejnych liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] dla [math]\displaystyle{ p_0 \lt 10^{13} }[/math]. Prawdopodobnie CPAP-7 pojawią się dopiero dla [math]\displaystyle{ p_0 \sim 10^{20} }[/math].

Znane są ciągi arytmetyczne kolejnych liczb pierwszych o długościach [math]\displaystyle{ n \leqslant 10 }[/math][8].

Pokaż tabele


Zadanie C68
Uzasadnij przypuszczenie, że ciągów arytmetycznych kolejnych liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] możemy oczekiwać dopiero dla [math]\displaystyle{ p_0 \sim 10^{20} }[/math].

Rozwiązanie



Uzupełnienie

Twierdzenie C69 (lemat Bézouta)
Jeżeli liczby całkowite [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] nie są jednocześnie równe zeru, a największy wspólny dzielnik tych liczb jest równy [math]\displaystyle{ D }[/math], to istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ a x + b y = D }[/math]
Dowód


Twierdzenie C70 (lemat Euklidesa)
Niech [math]\displaystyle{ a, b, d \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ d|a b }[/math] i liczba [math]\displaystyle{ d }[/math] jest względnie pierwsza z [math]\displaystyle{ a }[/math], to [math]\displaystyle{ d|b }[/math].

Dowód


Twierdzenie C71
Niech [math]\displaystyle{ a, b, c \in \mathbb{Z} }[/math]. Równanie [math]\displaystyle{ a x + b y = c }[/math] ma rozwiązanie wtedy i tylko wtedy, gdy największy wspólny dzielnik liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] jest dzielnikiem liczby [math]\displaystyle{ c }[/math].

Dowód


Uwaga C72
Z twierdzenia C71 wynika, że szukając rozwiązań równania [math]\displaystyle{ A x + B y = C }[/math] w liczbach całkowitych, powinniśmy

  • obliczyć największy wspólny dzielnik [math]\displaystyle{ D }[/math] liczb [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math]
  • jeżeli [math]\displaystyle{ D \gt 1 }[/math], należy sprawdzić, czy [math]\displaystyle{ D|C }[/math]
  • jeżeli [math]\displaystyle{ D \nmid C }[/math], to równanie [math]\displaystyle{ A x + B y = C }[/math] nie ma rozwiązań w liczbach całkowitych
  • jeżeli [math]\displaystyle{ D|C }[/math], należy podzielić obie strony równania [math]\displaystyle{ A x + B y = C }[/math] przez [math]\displaystyle{ D }[/math] i przejść do rozwiązywania równania równoważnego [math]\displaystyle{ a x + b y = c }[/math], gdzie [math]\displaystyle{ a = \frac{A}{D} }[/math], [math]\displaystyle{ b = \frac{B}{D} }[/math], [math]\displaystyle{ c = \frac{C}{D} }[/math], zaś największy wspólny dzielnik liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] jest równy [math]\displaystyle{ 1 }[/math].


Twierdzenie C73
Niech [math]\displaystyle{ a, b, c \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to równanie

[math]\displaystyle{ a x + b y = c }[/math]

ma nieskończenie wiele rozwiązań w liczbach całkowitych.

Jeżeli para liczb całkowitych [math]\displaystyle{ (x_0, y_0) }[/math] jest jednym z tych rozwiązań, to wszystkie pozostałe rozwiązania całkowite można otrzymać ze wzorów

[math]\displaystyle{ x = x_0 + b t }[/math]
[math]\displaystyle{ y = y_0 - a t }[/math]

gdzie [math]\displaystyle{ t }[/math] jest dowolną liczbą całkowitą.

Dowód


Przykład C74
Rozwiązania równania

[math]\displaystyle{ a x + b y = c }[/math]

gdzie [math]\displaystyle{ \gcd (a, b) = 1 }[/math], które omówiliśmy w poprzednim twierdzeniu, najłatwiej znaleźć korzystając w PARI/GP z funkcji gcdext(a, b). Funkcja ta zwraca wektor liczb [x0, y0, d], gdzie [math]\displaystyle{ d = \gcd (a, b) }[/math], a liczby [math]\displaystyle{ x_0 }[/math] i [math]\displaystyle{ y_0 }[/math] są rozwiązaniami równania

[math]\displaystyle{ a x_0 + b y_0 = \gcd (a, b) }[/math]

Ponieważ założyliśmy, że [math]\displaystyle{ \gcd (a, b) = 1 }[/math], to łatwo zauważmy, że

[math]\displaystyle{ a(c x_0) + b (c y_0) = c }[/math]

Zatem para liczb całkowitych [math]\displaystyle{ (c x_0, c y_0) }[/math] jest jednym z rozwiązań równania

[math]\displaystyle{ a x + b y = c }[/math]

i wszystkie pozostałe rozwiązania uzyskujemy ze wzorów

[math]\displaystyle{ x = c x_0 + b t }[/math]
[math]\displaystyle{ y = c y_0 - a t }[/math]

Niech [math]\displaystyle{ a = 7 }[/math] i [math]\displaystyle{ b = 17 }[/math]. Funkcja gcdext(7,17) zwraca wektor [5, -2, 1], zatem rozwiązaniami równania [math]\displaystyle{ 7 x + 17 y = 1 }[/math] są liczby

[math]\displaystyle{ x = 5 + 17 t }[/math]
[math]\displaystyle{ y = - 2 - 7 t }[/math]

A rozwiązaniami równania [math]\displaystyle{ 7 x + 17 y = 10 }[/math] są liczby

[math]\displaystyle{ x = 50 + 17 t }[/math]
[math]\displaystyle{ y = - 20 - 7 t }[/math]








Przypisy

  1. Korzystamy w tym momencie z zasady dobrego uporządkowania zbioru liczb naturalnych, która stwierdza, że każdy niepusty podzbiór zbioru liczb naturalnych zawiera element najmniejszy. (Wiki-pl), (Wiki-en)
  2. Określenie, że „liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ a k + b }[/math]”, jest jedynie bardziej czytelnym (obrazowym) zapisem stwierdzenia, że reszta z dzielenia liczby [math]\displaystyle{ n }[/math] przez [math]\displaystyle{ a }[/math] wynosi [math]\displaystyle{ b }[/math]. Zapis „liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ a k - 1 }[/math]” oznacza, że reszta z dzielenia liczby [math]\displaystyle{ n }[/math] przez [math]\displaystyle{ a }[/math] wynosi [math]\displaystyle{ a - 1 }[/math].
  3. Wikipedia, Primes in arithmetic progression, (Wiki-en)
  4. MathWorld, Prime Arithmetic Progression, (LINK)
  5. J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Mathematische Annalen, 116 (1939) 1-50, (LINK)
  6. Wikipedia, Largest known primes in AP, (Wiki-en)
  7. Ben Green and Terence Tao, The Primes Contain Arbitrarily Long Arithmetic Progressions., Ann. of Math. (2) 167 (2008), 481-547, (LINK1), Preprint. 8 Apr 2004, (LINK2)
  8. Wikipedia, Primes in arithmetic progression - Largest known consecutive primes in AP, (Wiki-en)
  9. Henryk Dąbrowski, Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n - Uwagi do twierdzenia, (LINK)