Liczby kwadratowe i niekwadratowe modulo. Wybrane zagadnienia: Różnice pomiędzy wersjami
Linia 344: | Linia 344: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K10</span><br/> |
+ | Pokazać, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>r , s \in \mathbb{Z}</math>, to | ||
+ | |||
+ | ::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = | ||
+ | \begin{cases} | ||
+ | \;\;\:\, - 1 & \text{gdy } \, p \nmid (r^2 - 4 s) \\ | ||
+ | p - 1 & \text{gdy } \, p \mid (r^2 - 4 s) \\ | ||
+ | \end{cases}</math> | ||
+ | |||
+ | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
+ | |||
+ | ::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}}</math> | ||
+ | |||
+ | :::::::<math>\;\;\;\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{4 k^2 + 4 r k + 4 s}{p}} \right)_{\small{\!\! L}}</math> | ||
+ | |||
+ | :::::::<math>\;\;\;\, = \sum^{p - 1}_{k = 0} \left( {\small\frac{(2 k + r)^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}}</math> | ||
+ | |||
+ | Z twierdzenia C55 wiemy, że gdy <math>k</math> przebiega zbiór <math>T = \{ 0, 1, \ldots, p - 1 \}</math>, to <math>2 k + r</math> przebiega zbiór <math>T'</math> identyczny ze zbiorem <math>T</math> modulo <math>p</math>. Zatem | ||
+ | |||
+ | ::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}}</math> | ||
+ | |||
+ | Z twierdzenia K9 wynika natychmiast teza dowodzonego twierdzenia.<br/> | ||
+ | □ | ||
+ | {{\Spoiler}} | ||
+ | |||
+ | |||
+ | |||
+ | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K11</span><br/> | ||
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>p \nmid n</math>, to dla sumy | Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>p \nmid n</math>, to dla sumy | ||
Linia 495: | Linia 522: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K12</span><br/> |
Pokazać, że jeżeli <math>p \geqslant 7</math> jest liczbą pierwszą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieją: | Pokazać, że jeżeli <math>p \geqslant 7</math> jest liczbą pierwszą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieją: | ||
Linia 552: | Linia 579: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K13</span><br/> |
Wzmocnimy wynik uzyskany w poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem. | Wzmocnimy wynik uzyskany w poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem. | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K14</span><br/> |
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to | Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to | ||
Linia 659: | Linia 686: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K15</span><br/> |
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Słowo „trójka” oznacza tutaj trzy kolejne liczby kwadratowe (niekwadratowe) modulo <math>p</math>. | Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Słowo „trójka” oznacza tutaj trzy kolejne liczby kwadratowe (niekwadratowe) modulo <math>p</math>. | ||
Linia 732: | Linia 759: | ||
− | (zobacz K7, K8 i | + | (zobacz K7, K8 i K11). Oznaczenie <math>S(- 1)</math> nawiązuje do oznaczenia wprowadzonego w twierdzeniu K11. Wykorzystamy też znalezione w tym twierdzeniu oszacowanie <math>| S (- 1) |</math>. |
Zatem | Zatem | ||
Linia 813: | Linia 840: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K16</span><br/> |
− | Korzystając z twierdzenia | + | Korzystając z twierdzenia K15, łatwo można pokazać, że każda liczba pierwsza <math>p \geqslant 19</math> ma co najmniej dwie różne trójki kolejnych liczb kwadratowych modulo <math>p</math> i co najmniej dwie różne trójki kolejnych liczb niekwadratowych modulo <math>p</math>. |
Linia 822: | Linia 849: | ||
== Najmniejsze liczby niekwadratowe modulo == | == Najmniejsze liczby niekwadratowe modulo == | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K17</span><br/> |
Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i symbol Jacobiego. | Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i symbol Jacobiego. | ||
Linia 832: | Linia 859: | ||
|} | |} | ||
− | <span style="font-size: 110%; font-weight: bold;">Przykład | + | <span style="font-size: 110%; font-weight: bold;">Przykład K18</span><br/> |
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> | W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> | ||
Linia 845: | Linia 872: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K19</span><br/> |
Do wyszukiwania liczb <math>\mathbb{n} = \mathbb{n} (p)</math> Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP | Do wyszukiwania liczb <math>\mathbb{n} = \mathbb{n} (p)</math> Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP | ||
Linia 859: | Linia 886: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K20</span><br/> |
Niech <math>\mathbb{n} \in \mathbb{Z}_+</math> i niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, to jest liczbą pierwszą. | Niech <math>\mathbb{n} \in \mathbb{Z}_+</math> i niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, to jest liczbą pierwszą. | ||
Linia 879: | Linia 906: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K21</span><br/> |
Pokazać, że najmniejszą liczbą niekwadratową modulo <math>p</math> jest | Pokazać, że najmniejszą liczbą niekwadratową modulo <math>p</math> jest | ||
Linia 952: | Linia 979: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K22</span><br/> |
Dla każdej liczby pierwszej <math>p_n</math> istnieje nieskończenie wiele takich liczb pierwszych <math>q</math>, że <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>. | Dla każdej liczby pierwszej <math>p_n</math> istnieje nieskończenie wiele takich liczb pierwszych <math>q</math>, że <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>. | ||
Linia 993: | Linia 1020: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K23 (Sarvadaman Chowla)</span><br/> |
Istnieje niekończenie wiele liczb pierwszych <math>p</math> takich, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math>, gdzie <math>L</math> jest stałą Linnika. | Istnieje niekończenie wiele liczb pierwszych <math>p</math> takich, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math>, gdzie <math>L</math> jest stałą Linnika. | ||
Linia 1027: | Linia 1054: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K24</span><br/> |
− | W twierdzeniu | + | W twierdzeniu K22 pokazaliśmy, że dla każdej liczby pierwszej <math>\mathbb{n}</math> istnieją takie liczby pierwsze <math>p</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Zatem zbiór <math>S_\mathbb{n}</math> liczb pierwszych takich, że dla każdej liczby <math>p \in S_\mathbb{n}</math> liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> jest zbiorem niepustym. Wynika stąd, że zbiór <math>S_\mathbb{n}</math> ma element najmniejszy i możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w PARI/GP napisać proste polecenie |
<span style="font-size: 90%; color:black;">'''forprime'''(n = 2, 50, '''forprime'''(p = 2, 10^10, '''if'''( A(p) == n, '''print'''(n, " ", p); '''break'''() )))</span> | <span style="font-size: 90%; color:black;">'''forprime'''(n = 2, 50, '''forprime'''(p = 2, 10^10, '''if'''( A(p) == n, '''print'''(n, " ", p); '''break'''() )))</span> | ||
Linia 1045: | Linia 1072: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K25</span><br/> |
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Prawdziwe jest oszacowanie | Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Prawdziwe jest oszacowanie | ||
Linia 1087: | Linia 1114: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K26*</span><br/> |
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Dla <math>p \geqslant 5</math> prawdziwe jest oszacowanie<ref name="Norton1"/><ref name="Trevino1"/><ref name="Trevino2"/> | Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Dla <math>p \geqslant 5</math> prawdziwe jest oszacowanie<ref name="Norton1"/><ref name="Trevino1"/><ref name="Trevino2"/> | ||
Linia 1094: | Linia 1121: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K27</span><br/> |
Liczby <math>\mathbb{n} = \mathbb{n} (p)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (p)</math>, gdzie <math>p</math> są nieparzystymi liczbami pierwszymi, jest równa<ref name="Erdos1"/> | Liczby <math>\mathbb{n} = \mathbb{n} (p)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (p)</math>, gdzie <math>p</math> są nieparzystymi liczbami pierwszymi, jest równa<ref name="Erdos1"/> | ||
Linia 1101: | Linia 1128: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K28</span><br/> |
Możemy też badać najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>. | Możemy też badać najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>. | ||
Linia 1115: | Linia 1142: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K29</span><br/> |
Dla każdej liczby pierwszej <math>p \geqslant 5</math> najmniejsza '''nieparzysta''' liczba niekwadratowa modulo <math>p</math> jest liczbą pierwszą mniejszą od <math>p</math>. | Dla każdej liczby pierwszej <math>p \geqslant 5</math> najmniejsza '''nieparzysta''' liczba niekwadratowa modulo <math>p</math> jest liczbą pierwszą mniejszą od <math>p</math>. | ||
Linia 1139: | Linia 1166: | ||
|} | |} | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K30</span><br/> |
Najmniejsze liczby niekwadratowe modulo <math>m</math> są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo <math>p .</math> W jednym i drugim przypadku liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową w zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od <math>p</math> lub <math>m .</math> Dlatego będziemy je oznaczali również jako <math>\mathbb{n}(m) .</math> | Najmniejsze liczby niekwadratowe modulo <math>m</math> są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo <math>p .</math> W jednym i drugim przypadku liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową w zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od <math>p</math> lub <math>m .</math> Dlatego będziemy je oznaczali również jako <math>\mathbb{n}(m) .</math> | ||
− | <span style="font-size: 110%; font-weight: bold;">Definicja | + | <span style="font-size: 110%; font-weight: bold;">Definicja K31</span><br/> |
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Powiemy, że <math>\mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, gdy <math>\mathbb{n}</math> jest najmniejszą liczbą dodatnią względnie pierwszą z <math>m</math> taką, że kongruencja | Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Powiemy, że <math>\mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, gdy <math>\mathbb{n}</math> jest najmniejszą liczbą dodatnią względnie pierwszą z <math>m</math> taką, że kongruencja | ||
Linia 1153: | Linia 1180: | ||
− | <span style="font-size: 110%; font-weight: bold;">Przykład | + | <span style="font-size: 110%; font-weight: bold;">Przykład K32</span><br/> |
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> i najmniejsze liczby niekwadratowe modulo <math>m .</math> | W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> i najmniejsze liczby niekwadratowe modulo <math>m .</math> | ||
Linia 1178: | Linia 1205: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K33</span><br/> |
Do wyszukiwania liczb <math>\mathbb{n} (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP | Do wyszukiwania liczb <math>\mathbb{n} (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP | ||
Linia 1222: | Linia 1249: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K34</span><br/> |
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to <math>\mathbb{n}</math> jest liczbą pierwszą. | Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to <math>\mathbb{n}</math> jest liczbą pierwszą. | ||
Linia 1242: | Linia 1269: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K35</span><br/> |
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli <math>m = 8 k \pm 3</math>, to <math>\mathbb{n} (m) = 2 .</math> | Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli <math>m = 8 k \pm 3</math>, to <math>\mathbb{n} (m) = 2 .</math> | ||
Linia 1252: | Linia 1279: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K36</span><br/> |
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli spełniony jest jeden z warunków | Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli spełniony jest jeden z warunków | ||
Linia 1291: | Linia 1318: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K37</span><br/> |
Niech <math>m = 24 k \pm 10 .</math> Pokazać, że <math>\mathbb{n} (m) = 3 .</math> | Niech <math>m = 24 k \pm 10 .</math> Pokazać, że <math>\mathbb{n} (m) = 3 .</math> | ||
Linia 1309: | Linia 1336: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K38</span><br/> |
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą nieparzystą podzielną przez <math>p \in S_2</math>, to <math>\mathbb{n} (m) = 2 .</math> | Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą nieparzystą podzielną przez <math>p \in S_2</math>, to <math>\mathbb{n} (m) = 2 .</math> | ||
Linia 1325: | Linia 1352: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K39</span><br/> |
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą parzystą niepodzielną przez <math>3</math> i podzielną przez <math>p \in S_3</math>, to <math>\mathbb{n} (m) = 3 .</math> | Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą parzystą niepodzielną przez <math>3</math> i podzielną przez <math>p \in S_3</math>, to <math>\mathbb{n} (m) = 3 .</math> | ||
Linia 1341: | Linia 1368: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K40</span><br/> |
Jeżeli <math>m</math> jest liczbą dodatnią podzielną przez <math>6</math> i niepodzielną przez <math>5</math>, to <math>\mathbb{n} (m) = 5 .</math> | Jeżeli <math>m</math> jest liczbą dodatnią podzielną przez <math>6</math> i niepodzielną przez <math>5</math>, to <math>\mathbb{n} (m) = 5 .</math> | ||
Linia 1355: | Linia 1382: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K41</span><br/> |
Niech <math>m \in \mathbb{Z}_+</math> i <math>p \geqslant 5</math> będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od <math>p</math> dzieli <math>m</math> i <math>p \nmid m</math>, to <math>\mathbb{n} (m) = p</math>. | Niech <math>m \in \mathbb{Z}_+</math> i <math>p \geqslant 5</math> będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od <math>p</math> dzieli <math>m</math> i <math>p \nmid m</math>, to <math>\mathbb{n} (m) = p</math>. | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Z twierdzenia | + | Z twierdzenia K73 wiemy, że istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> Z założenia <math>q \mid m</math>, zatem kongruencja |
::<math>x^2 \equiv p \pmod{m}</math> | ::<math>x^2 \equiv p \pmod{m}</math> | ||
Linia 1369: | Linia 1396: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K42</span><br/> |
Pokazać, że podanym w pierwszej kolumnie postaciom liczby <math>m</math> odpowiadają wymienione w drugiej kolumnie wartości <math>\mathbb{n} (m) .</math> | Pokazać, że podanym w pierwszej kolumnie postaciom liczby <math>m</math> odpowiadają wymienione w drugiej kolumnie wartości <math>\mathbb{n} (m) .</math> | ||
Linia 1376: | Linia 1403: | ||
! Postać liczby <math>\boldsymbol{m}</math> || <math>\boldsymbol{𝕟(m)}</math> || Uwagi | ! Postać liczby <math>\boldsymbol{m}</math> || <math>\boldsymbol{𝕟(m)}</math> || Uwagi | ||
|- | |- | ||
− | | <math>m=24k \pm 9</math> || style="text-align:center;" | <math>2</math> || rowspan="3" style="text-align:center;" | | + | | <math>m=24k \pm 9</math> || style="text-align:center;" | <math>2</math> || rowspan="3" style="text-align:center;" | K38 |
|- | |- | ||
| <math>m=120k \pm 25</math> || style="text-align:center;" | <math>2</math> | | <math>m=120k \pm 25</math> || style="text-align:center;" | <math>2</math> | ||
Linia 1382: | Linia 1409: | ||
| <math>m=120k \pm 55</math> || style="text-align:center;" | <math>2</math> | | <math>m=120k \pm 55</math> || style="text-align:center;" | <math>2</math> | ||
|- | |- | ||
− | | <math>m=120k \pm 50</math> || style="text-align:center;" | <math>3</math> || style="text-align:center;" | | + | | <math>m=120k \pm 50</math> || style="text-align:center;" | <math>3</math> || style="text-align:center;" | K39 |
|- | |- | ||
− | | <math>m=30k \pm 6</math> || style="text-align:center;" | <math>5</math> || rowspan="2" style="text-align:center;" | | + | | <math>m=30k \pm 6</math> || style="text-align:center;" | <math>5</math> || rowspan="2" style="text-align:center;" | K40, K41 |
|- | |- | ||
| <math>m=30k \pm 12</math> || style="text-align:center;" | <math>5</math> | | <math>m=30k \pm 12</math> || style="text-align:center;" | <math>5</math> | ||
|- | |- | ||
− | | <math>m=210k \pm 30</math> || style="text-align:center;" | <math>7</math> || rowspan="3" style="text-align:center;" | | + | | <math>m=210k \pm 30</math> || style="text-align:center;" | <math>7</math> || rowspan="3" style="text-align:center;" | K41 |
|- | |- | ||
| <math>m=210k \pm 60</math> || style="text-align:center;" | <math>7</math> | | <math>m=210k \pm 60</math> || style="text-align:center;" | <math>7</math> | ||
Linia 1397: | Linia 1424: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K43</span><br/> |
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy | Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy | ||
Linia 1448: | Linia 1475: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K44</span><br/> |
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy | Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy | ||
Linia 1460: | Linia 1487: | ||
'''Punkt 1.''' | '''Punkt 1.''' | ||
− | Z twierdzenia | + | Z twierdzenia K38 wynika, że w przypadku, gdy <math>3 \mid m</math>, to <math>\mathbb{n} (m) = 2 .</math> Ponieważ <math>2 \mid 4 m</math> i <math>3 \mid 4 m</math>, to <math>\mathbb{n} (4 m) \geqslant 5 .</math> |
'''Punkt 2.''' | '''Punkt 2.''' | ||
Linia 1474: | Linia 1501: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K45</span><br/> |
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>p \,</math> i <math>\, p \mid m</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m .</math> | Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>p \,</math> i <math>\, p \mid m</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m .</math> | ||
Linia 1496: | Linia 1523: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K46</span><br/> |
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to istnieje taki dzielnik pierwszy <math>p</math> liczby <math>m</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p .</math> | Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to istnieje taki dzielnik pierwszy <math>p</math> liczby <math>m</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p .</math> | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby <math>m</math>: <math>\{ p_1, \ldots, p_s \}</math> i powiązany z dzielnikami pierwszymi <math>p_k</math> zbiór najmniejszych liczb niekwadratowych modulo <math>p_k</math>: <math>\{ \mathbb{n}_1, \ldots, \mathbb{n}_s \}</math>, z których każda jest liczbą niekwadratową modulo <math>m</math> (zobacz | + | Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby <math>m</math>: <math>\{ p_1, \ldots, p_s \}</math> i powiązany z dzielnikami pierwszymi <math>p_k</math> zbiór najmniejszych liczb niekwadratowych modulo <math>p_k</math>: <math>\{ \mathbb{n}_1, \ldots, \mathbb{n}_s \}</math>, z których każda jest liczbą niekwadratową modulo <math>m</math> (zobacz K45). Wynika stąd, że liczba <math>\mathbb{n} = \mathbb{n} (m)</math> musi być mniejsza od każdej z liczb <math>\mathbb{n}_k .</math> |
Z definicji liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest liczbą niekwadratową modulo <math>m</math>, co oznacza, że kongruencja | Z definicji liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest liczbą niekwadratową modulo <math>m</math>, co oznacza, że kongruencja | ||
Linia 1520: | Linia 1547: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K47</span><br/> |
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to | Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to | ||
Linia 1528: | Linia 1555: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Twierdzenie to jest prostym wnioskiem z twierdzenia | + | Twierdzenie to jest prostym wnioskiem z twierdzenia K46, ale musimy jeszcze pokazać, że <math>\gcd (\mathbb{n} (m), m) = 1 .</math> Przypuśćmy, że <math>p_k |\mathbb{n} (m)</math> dla pewnego <math>1 \leqslant k \leqslant s .</math> Ponieważ <math>\mathbb{n} (m)</math> jest liczbą pierwszą, to musi być <math>\mathbb{n} (m) = p_k</math>, ale wtedy |
::<math>\mathbb{n} (p_k) < p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k)</math> | ::<math>\mathbb{n} (p_k) < p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k)</math> | ||
Linia 1538: | Linia 1565: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K48</span><br/> |
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>\mathbb{n}(m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m .</math> Prawdziwe są oszacowania | Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>\mathbb{n}(m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m .</math> Prawdziwe są oszacowania | ||
Linia 1546: | Linia 1573: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Niech <math>p</math> będzie dzielnikiem pierwszym liczby <math>m</math> takim, że <math>\mathbb{n}(m) = \mathbb{n} (p)</math> (z twierdzenia | + | Niech <math>p</math> będzie dzielnikiem pierwszym liczby <math>m</math> takim, że <math>\mathbb{n}(m) = \mathbb{n} (p)</math> (z twierdzenia K46 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie <math>\mathbb{n}(p) < F (p)</math>, gdzie <math>F(x)</math> jest funkcją rosnącą, to |
::<math>\mathbb{n}(m) = \mathbb{n} (p) < F (p) \leqslant F (m)</math> | ::<math>\mathbb{n}(m) = \mathbb{n} (p) < F (p) \leqslant F (m)</math> | ||
− | Podane w twierdzeniu oszacowania wynikają natychmiast z twierdzeń | + | Podane w twierdzeniu oszacowania wynikają natychmiast z twierdzeń K25 i K26.<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 1556: | Linia 1583: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K49</span><br/> |
Liczby <math>\mathbb{n} (m)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (m)</math> wynosi<ref name="Pollack1"/> | Liczby <math>\mathbb{n} (m)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (m)</math> wynosi<ref name="Pollack1"/> | ||
Linia 1569: | Linia 1596: | ||
|} | |} | ||
− | <span style="font-size: 110%; font-weight: bold;">Przykład | + | <span style="font-size: 110%; font-weight: bold;">Przykład K50</span><br/> |
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>, najmniejsze liczby niekwadratowe modulo <math>m</math> i najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>. | W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>, najmniejsze liczby niekwadratowe modulo <math>m</math> i najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>. | ||
Linia 1588: | Linia 1615: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K51</span><br/> |
Do wyszukiwania liczb <math>c = c (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP | Do wyszukiwania liczb <math>c = c (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP | ||
Linia 1600: | Linia 1627: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K52</span><br/> |
Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math> oznaczyliśmy jako <math>c(m)</math>. Zauważmy, że są to liczby inne od <math>\mathbb{n}(p)</math> i <math>\mathbb{n}(m)</math>. Wystarczy zwrócić uwagę na występujące w tabeli liczby <math>\mathbb{n}(p)</math>, <math>\mathbb{n}(m)</math> i <math>c(m)</math> dla <math>m = 15, 33, 39</math>. Różnice wynikają z innej definicji liczb <math>c(m)</math> – jeżeli liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> nie musi być równy <math>- 1</math>. I tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela. | Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math> oznaczyliśmy jako <math>c(m)</math>. Zauważmy, że są to liczby inne od <math>\mathbb{n}(p)</math> i <math>\mathbb{n}(m)</math>. Wystarczy zwrócić uwagę na występujące w tabeli liczby <math>\mathbb{n}(p)</math>, <math>\mathbb{n}(m)</math> i <math>c(m)</math> dla <math>m = 15, 33, 39</math>. Różnice wynikają z innej definicji liczb <math>c(m)</math> – jeżeli liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> nie musi być równy <math>- 1</math>. I tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela. | ||
Ponieważ <math>c(m)</math> nie zawsze będzie najmniejszą liczbą kwadratową modulo <math>m</math>, to mamy natychmiast oszacowanie: <math>c(m) \geqslant \mathbb{n} (m)</math> (poza przypadkami, gdy <math>m = n^2</math>). | Ponieważ <math>c(m)</math> nie zawsze będzie najmniejszą liczbą kwadratową modulo <math>m</math>, to mamy natychmiast oszacowanie: <math>c(m) \geqslant \mathbb{n} (m)</math> (poza przypadkami, gdy <math>m = n^2</math>). | ||
− | Dla <math>c(m)</math> nie są prawdziwe oszacowania podane w twierdzeniu | + | Dla <math>c(m)</math> nie są prawdziwe oszacowania podane w twierdzeniu K25. Łatwo zauważamy, że |
::<math>c = c (15) = 7 > \sqrt{15} + {\small\frac{1}{2}} \approx 4.37</math> | ::<math>c = c (15) = 7 > \sqrt{15} + {\small\frac{1}{2}} \approx 4.37</math> | ||
Linia 1619: | Linia 1646: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K53</span><br/> |
Niech <math>c, m \in \mathbb{Z}_+</math> i niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>c</math> będzie najmniejszą liczbą taką, że <math>\left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1</math>. Liczba <math>c</math> musi być liczbą pierwszą. | Niech <math>c, m \in \mathbb{Z}_+</math> i niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>c</math> będzie najmniejszą liczbą taką, że <math>\left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1</math>. Liczba <math>c</math> musi być liczbą pierwszą. | ||
Linia 1637: | Linia 1664: | ||
== Liczby pierwsze postaci <math>x^2 + n y^2</math> == | == Liczby pierwsze postaci <math>x^2 + n y^2</math> == | ||
− | <span style="font-size: 110%; font-weight: bold;">Przykład | + | <span style="font-size: 110%; font-weight: bold;">Przykład K54</span><br/> |
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>85</math> na sumę postaci <math>x^2 + y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. Rozkłady różniące się jedynie kolejnością liczb <math>x , y</math> nie zostały uwzględnione. | Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>85</math> na sumę postaci <math>x^2 + y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. Rozkłady różniące się jedynie kolejnością liczb <math>x , y</math> nie zostały uwzględnione. | ||
Linia 1656: | Linia 1683: | ||
− | <span style="font-size: 110%; font-weight: bold;">Przykład | + | <span style="font-size: 110%; font-weight: bold;">Przykład K55</span><br/> |
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>73</math> na sumę postaci <math>x^2 + 2 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. | Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>73</math> na sumę postaci <math>x^2 + 2 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. | ||
Linia 1677: | Linia 1704: | ||
− | <span style="font-size: 110%; font-weight: bold;">Przykład | + | <span style="font-size: 110%; font-weight: bold;">Przykład K56</span><br/> |
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>103</math> na sumę postaci <math>x^2 + 3 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. | Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>103</math> na sumę postaci <math>x^2 + 3 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. | ||
Linia 1699: | Linia 1726: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K57</span><br/> |
Jeżeli liczba nieparzysta postaci <math>Q = x^2 + n y^2</math>, gdzie <math>n \in \{ 1, 2, 3 \}</math>, ma dwa różne takie przedstawienia w liczbach całkowitych dodatnich, to jest liczbą złożoną. | Jeżeli liczba nieparzysta postaci <math>Q = x^2 + n y^2</math>, gdzie <math>n \in \{ 1, 2, 3 \}</math>, ma dwa różne takie przedstawienia w liczbach całkowitych dodatnich, to jest liczbą złożoną. | ||
Linia 1790: | Linia 1817: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K58</span><br/> |
Zauważmy, że iloczyn liczb postaci <math>x^2 + n y^2</math> jest liczbą tej samej postaci. | Zauważmy, że iloczyn liczb postaci <math>x^2 + n y^2</math> jest liczbą tej samej postaci. | ||
Linia 1799: | Linia 1826: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K59</span><br/> |
Niech <math>x, y, a, b \in \mathbb{Z}</math> i <math>n \in \{ 1, 2, 3 \}</math>. Jeżeli liczba parzysta <math>Q = x^2 + n y^2</math>, to <math>Q = 2^{\alpha} R</math>, gdzie <math>R = a^2 + n b^2</math> jest liczbą nieparzystą. | Niech <math>x, y, a, b \in \mathbb{Z}</math> i <math>n \in \{ 1, 2, 3 \}</math>. Jeżeli liczba parzysta <math>Q = x^2 + n y^2</math>, to <math>Q = 2^{\alpha} R</math>, gdzie <math>R = a^2 + n b^2</math> jest liczbą nieparzystą. | ||
Linia 1833: | Linia 1860: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K60</span><br/> |
Liczba pierwsza <math>p \geqslant 3</math> jest postaci | Liczba pierwsza <math>p \geqslant 3</math> jest postaci | ||
Linia 1969: | Linia 1996: | ||
'''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą parzystą''' | '''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą parzystą''' | ||
− | Jeżeli <math>m > 1</math> jest liczbą parzystą, to z twierdzenia | + | Jeżeli <math>m > 1</math> jest liczbą parzystą, to z twierdzenia K59 wiemy, że liczba <math>x^2 + n y^2</math> może być zapisana w postaci |
::<math>x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1)</math> | ::<math>x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1)</math> | ||
Linia 2023: | Linia 2050: | ||
::::<math>\;\; = (a x + n b y)^2 + n (a y - b x)^2</math> | ::::<math>\;\; = (a x + n b y)^2 + n (a y - b x)^2</math> | ||
− | (zobacz | + | (zobacz K58). Zauważmy teraz, że |
::<math>a x + n b y = (x - r m) x + n (y - s m) y</math> | ::<math>a x + n b y = (x - r m) x + n (y - s m) y</math> | ||
Linia 2065: | Linia 2092: | ||
'''D. Jednoznaczność rozkładu''' | '''D. Jednoznaczność rozkładu''' | ||
− | Z założenia <math>p</math> jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z twierdzenia | + | Z założenia <math>p</math> jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z twierdzenia K57. Co kończy dowód.<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 2071: | Linia 2098: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K61</span><br/> |
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej <math>p</math> postaci <math>4 k + 1</math> na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni. | Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej <math>p</math> postaci <math>4 k + 1</math> na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni. | ||
Linia 2099: | Linia 2126: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K62</span><br/> |
Niech liczby pierwsze <math>p, q</math> będą postaci <math>4 k + 1</math>, a liczba pierwsza <math>r</math> | Niech liczby pierwsze <math>p, q</math> będą postaci <math>4 k + 1</math>, a liczba pierwsza <math>r</math> | ||
będzie postaci <math>4 k + 3</math>. Pokazać, że | będzie postaci <math>4 k + 3</math>. Pokazać, że | ||
Linia 2126: | Linia 2153: | ||
'''Punkt 2.''' | '''Punkt 2.''' | ||
− | W przypadku liczby pierwszej <math>p</math> odpowiedzi udziela twierdzenie | + | W przypadku liczby pierwszej <math>p</math> odpowiedzi udziela twierdzenie K60. Niech <math>p = x^2 + y^2</math>, mamy |
::<math>2 p = (x + y)^2 + (x - y)^2</math> | ::<math>2 p = (x + y)^2 + (x - y)^2</math> | ||
Linia 2136: | Linia 2163: | ||
'''Punkt 3.''' | '''Punkt 3.''' | ||
− | Niech <math>p = x^2 + y^2</math> i <math>q = a^2 + b^2</math>. Ze wzorów podanych w uwadze | + | Niech <math>p = x^2 + y^2</math> i <math>q = a^2 + b^2</math>. Ze wzorów podanych w uwadze K58 mamy |
::<math>p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2</math> | ::<math>p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2</math> | ||
Linia 2152: | Linia 2179: | ||
== Twierdzenia o istnieniu liczb pierwszych kwadratowych i niekwadratowych modulo == | == Twierdzenia o istnieniu liczb pierwszych kwadratowych i niekwadratowych modulo == | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K63</span><br/> |
Niech <math>s = \pm 1</math>. Zbadać podzielność liczby <math>p - s a^2</math> | Niech <math>s = \pm 1</math>. Zbadać podzielność liczby <math>p - s a^2</math> | ||
Linia 2193: | Linia 2220: | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K64</span><br/> |
− | Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo <math>p</math>. Pomysł ujęcia problemu zaczerpnęliśmy z pracy Alexandru Gicy<ref name="Gica1"/>. Zadanie | + | Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo <math>p</math>. Pomysł ujęcia problemu zaczerpnęliśmy z pracy Alexandru Gicy<ref name="Gica1"/>. Zadanie K63 należy traktować jako uzupełnienie do dowodu twierdzenia K65. Z zadania łatwo widzimy, że powiązanie liczby <math>s</math> z postacią liczby pierwszej <math>p</math> nie jest przypadkowe. |
Zauważmy, że twierdzenia ograniczają się do liczb pierwszych <math>p</math>, ponieważ dla liczb złożonych nieparzystych <math>m > 0</math> wynik <math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1</math> nie oznacza, że liczba pierwsza <math>q</math> jest liczbą kwadratową modulo <math>m</math>. | Zauważmy, że twierdzenia ograniczają się do liczb pierwszych <math>p</math>, ponieważ dla liczb złożonych nieparzystych <math>m > 0</math> wynik <math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1</math> nie oznacza, że liczba pierwsza <math>q</math> jest liczbą kwadratową modulo <math>m</math>. | ||
Linia 2223: | Linia 2250: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K65</span><br/> |
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 17</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> kwadratowa modulo <math>p</math>. | Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 17</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> kwadratowa modulo <math>p</math>. | ||
Linia 2292: | Linia 2319: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K66</span><br/> |
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>. | Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>. | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | W przypadku, gdy liczba pierwsza <math>p</math> jest postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieją takie liczby całkowite dodatnie <math>x, y</math>, że <math>p = x^2 + 2 y^2</math> (zobacz | + | W przypadku, gdy liczba pierwsza <math>p</math> jest postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieją takie liczby całkowite dodatnie <math>x, y</math>, że <math>p = x^2 + 2 y^2</math> (zobacz K60). Ponieważ z założenia <math>p \geqslant 11</math>, to musi być <math>x \neq y</math>. Z twierdzenia J22 wynika, że liczba <math>x^2 + y^2</math> ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 1</math>. Łatwo widzimy, że <math>q \leqslant x^2 + y^2 < x^2 + 2 y^2 = p</math>. |
Modulo <math>q</math> możemy napisać | Modulo <math>q</math> możemy napisać | ||
Linia 2316: | Linia 2343: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K67</span><br/> |
Jeżeli <math>p \geqslant 19</math> jest liczbą pierwszą postaci <math>12 k + 7</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>. | Jeżeli <math>p \geqslant 19</math> jest liczbą pierwszą postaci <math>12 k + 7</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>. | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Z założenia <math>p \equiv 1 \!\! \pmod{6}</math>, zatem istnieją takie liczby <math>x, y \in \mathbb{Z}_+</math>, że <math>p = x^2 + 3 y^2</math> (zobacz | + | Z założenia <math>p \equiv 1 \!\! \pmod{6}</math>, zatem istnieją takie liczby <math>x, y \in \mathbb{Z}_+</math>, że <math>p = x^2 + 3 y^2</math> (zobacz K60). |
Liczby <math>x, y</math> muszą mieć przeciwną parzystość i być względnie pierwsze. Gdyby liczba <math>x</math> była nieparzysta, to modulo <math>4</math> mielibyśmy | Liczby <math>x, y</math> muszą mieć przeciwną parzystość i być względnie pierwsze. Gdyby liczba <math>x</math> była nieparzysta, to modulo <math>4</math> mielibyśmy | ||
Linia 2353: | Linia 2380: | ||
− | Twierdzenia | + | Twierdzenia K66 i K67 można uogólnić na wszystkie liczby pierwsze.<ref name="Gica1"/><br/> |
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K68*</span><br/> |
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 13, 37</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>. | Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 13, 37</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>. | ||
− | <span style="font-size: 110%; font-weight: bold;">Uwaga | + | <span style="font-size: 110%; font-weight: bold;">Uwaga K69</span><br/> |
W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>. | W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>. | ||
Linia 2385: | Linia 2412: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K70</span><br/> |
Jeżeli <math>m \geqslant 7</math> jest liczbą całkowitą postaci <math>4 k + 3</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>. | Jeżeli <math>m \geqslant 7</math> jest liczbą całkowitą postaci <math>4 k + 3</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>. | ||
Linia 2403: | Linia 2430: | ||
Można też pokazać, że<ref name="Pollack2"/><br/> | Można też pokazać, że<ref name="Pollack2"/><br/> | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K71*</span><br/> |
'''A.''' Jeżeli <math>p \geqslant 13</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>p</math>. | '''A.''' Jeżeli <math>p \geqslant 13</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>p</math>. | ||
Linia 2410: | Linia 2437: | ||
− | Zauważmy, że twierdzenie | + | Zauważmy, że twierdzenie K71 można łatwo uogólnić na liczby całkowite dodatnie.<br/> |
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K72</span><br/> |
'''A.''' Jeżeli <math>m \geqslant 6</math> jest liczbą całkowitą i <math>m \neq 10 , 11</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>m</math>. | '''A.''' Jeżeli <math>m \geqslant 6</math> jest liczbą całkowitą i <math>m \neq 10 , 11</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>m</math>. | ||
Linia 2422: | Linia 2449: | ||
Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b</math>. | Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b</math>. | ||
− | Jeżeli <math>3 \mid m</math>, to <math>11</math> jest liczbą niekwadratową modulo <math>m</math>, bo <math>\left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J50 i | + | Jeżeli <math>3 \mid m</math>, to <math>11</math> jest liczbą niekwadratową modulo <math>m</math>, bo <math>\left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J50 i K45). |
Jeżeli <math>3 \nmid m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J50). | Jeżeli <math>3 \nmid m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J50). | ||
Linia 2434: | Linia 2461: | ||
:* jeśli liczba <math>m \geqslant 12</math> nie ma dzielnika pierwszego <math>p \geqslant 5</math>, czyli jest postaci <math>m = 2^a 3^b</math>, to liczba pierwsza <math>q = 11</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 3</math> i jest liczbą niekwadratową modulo <math>m</math>. | :* jeśli liczba <math>m \geqslant 12</math> nie ma dzielnika pierwszego <math>p \geqslant 5</math>, czyli jest postaci <math>m = 2^a 3^b</math>, to liczba pierwsza <math>q = 11</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 3</math> i jest liczbą niekwadratową modulo <math>m</math>. | ||
− | :* jeśli liczba <math>m \geqslant 12</math> ma dzielnik pierwszy <math>p \geqslant 5</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i jest liczbą niekwadratową modulo <math>m</math> (zobacz | + | :* jeśli liczba <math>m \geqslant 12</math> ma dzielnik pierwszy <math>p \geqslant 5</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i jest liczbą niekwadratową modulo <math>m</math> (zobacz K71 i K45). |
Linia 2472: | Linia 2499: | ||
:* jeśli liczba <math>m \geqslant 18</math> nie ma dzielnika pierwszego <math>p \geqslant 13</math>, czyli jest postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>, to liczba pierwsza <math>q = 5</math> lub <math>q = 17</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 1</math> i jest liczbą niekwadratową modulo <math>m</math>. | :* jeśli liczba <math>m \geqslant 18</math> nie ma dzielnika pierwszego <math>p \geqslant 13</math>, czyli jest postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>, to liczba pierwsza <math>q = 5</math> lub <math>q = 17</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 1</math> i jest liczbą niekwadratową modulo <math>m</math>. | ||
− | :* jeśli liczba <math>m \geqslant 18</math> ma dzielnik pierwszy <math>p \geqslant 13</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 1</math> i jest liczbą niekwadratową modulo <math>m</math> (zobacz | + | :* jeśli liczba <math>m \geqslant 18</math> ma dzielnik pierwszy <math>p \geqslant 13</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 1</math> i jest liczbą niekwadratową modulo <math>m</math> (zobacz K71 i K45). |
Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 17</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 1</math>. | Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 17</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 1</math>. | ||
Linia 2493: | Linia 2520: | ||
− | <span style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span style="font-size: 110%; font-weight: bold;">Twierdzenie K73</span><br/> |
Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> | Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> | ||
Linia 2505: | Linia 2532: | ||
'''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 1}</math> | '''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 1}</math> | ||
− | Niech liczba <math>q</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Z twierdzenia | + | Niech liczba <math>q</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Z twierdzenia K29 wiemy, że dla <math>p \geqslant 5</math> liczba <math>q</math> jest liczbą pierwszą i jest mniejsza od <math>p</math>. Ponieważ <math>p \equiv 1 \!\! \pmod{4}</math>, to z twierdzenia J36 p.9 otrzymujemy natychmiast |
<div style="margin-top: 1em; margin-bottom: 1em;"> | <div style="margin-top: 1em; margin-bottom: 1em;"> | ||
Linia 2513: | Linia 2540: | ||
'''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 3}</math> | '''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 3}</math> | ||
− | Z twierdzenia | + | Z twierdzenia K65 wynika, że dla każdej liczby pierwszej <math>p \geqslant 11</math> postaci <math>4 k + 3</math> istnieje liczba pierwsza <math>q < p</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i jest liczbą kwadratową modulo <math>p</math>. Ponieważ <math>p \equiv q \equiv 3 \!\! \pmod{4}</math>, to z twierdzenia J36 p.9 otrzymujemy natychmiast |
<div style="margin-top: 1em; margin-bottom: 1em;"> | <div style="margin-top: 1em; margin-bottom: 1em;"> | ||
Linia 2525: | Linia 2552: | ||
− | <span style="font-size: 110%; font-weight: bold;">Zadanie | + | <span style="font-size: 110%; font-weight: bold;">Zadanie K74</span><br/> |
− | Udowodnić twierdzenie | + | Udowodnić twierdzenie K73 w przypadku, gdy liczba pierwsza <math>p \geqslant 19</math> jest postaci <math>4 k + 3</math>, nie korzystając z twierdzenia K65. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} |
Wersja z 19:19, 1 cze 2023
Element odwrotny modulo [math]\displaystyle{ m }[/math]
Twierdzenie K1
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Dla liczby [math]\displaystyle{ k }[/math] istnieje taka liczba [math]\displaystyle{ x }[/math], że
- [math]\displaystyle{ x k \equiv 1 \!\! \pmod{m} }[/math]
wtedy i tylko wtedy, gdy [math]\displaystyle{ \gcd (k, m) = 1 }[/math].
Definicja K2
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Liczbę [math]\displaystyle{ x }[/math] taką, że
- [math]\displaystyle{ x \cdot k \equiv 1 \!\! \pmod{m} }[/math]
będziemy nazywali elementem odwrotnym liczby [math]\displaystyle{ k }[/math] modulo [math]\displaystyle{ m }[/math] i oznaczali jako [math]\displaystyle{ k^{- 1} }[/math].
Uwaga K3
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli [math]\displaystyle{ b \mid a }[/math] oraz [math]\displaystyle{ b }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], to prawdziwa jest kongruencja
- [math]\displaystyle{ {\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m} }[/math]
Istotnie
- [math]\displaystyle{ {\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1}\!\! \pmod{m} }[/math]
W PARI/GP odwrotność liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] znajdujemy, wpisując Mod(a, m)^(-1)
.
Twierdzenie K4
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a liczby [math]\displaystyle{ a, b }[/math] będą względnie pierwsze z [math]\displaystyle{ p }[/math]. Jeżeli liczby [math]\displaystyle{ a, b }[/math] są różne modulo [math]\displaystyle{ p }[/math], to ich elementy odwrotne [math]\displaystyle{ a^{-1}, b^{- 1} }[/math] też są różne modulo [math]\displaystyle{ p }[/math].
Twierdzenie K5
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, zbiór [math]\displaystyle{ R = \{ 1, 2, \ldots, p - 1 \} }[/math], a zbiór [math]\displaystyle{ S }[/math] będzie identyczny ze zbiorem [math]\displaystyle{ R }[/math] modulo [math]\displaystyle{ p }[/math]. Jeżeli liczby [math]\displaystyle{ x_k \in S }[/math] przebiegają cały zbiór [math]\displaystyle{ S }[/math], to liczby [math]\displaystyle{ x^{- 1}_k }[/math] przebiegają zbiór [math]\displaystyle{ T }[/math] identyczny ze zbiorem [math]\displaystyle{ R }[/math] modulo [math]\displaystyle{ p }[/math].
Twierdzenie K6
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą.
Jeżeli [math]\displaystyle{ a }[/math] jest liczbą kwadratową (odpowiednio niekwadratową) modulo [math]\displaystyle{ p }[/math], to element odwrotny liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ p }[/math] istnieje i jest liczbą kwadratową (odpowiednio niekwadratową) modulo [math]\displaystyle{ p }[/math].
Jeżeli [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi (odpowiednio niekwadratowymi) modulo [math]\displaystyle{ p }[/math], to istnieje taka liczba [math]\displaystyle{ r }[/math], że [math]\displaystyle{ a \equiv b r^2 \!\! \pmod{p} }[/math]
Przykłady sum symboli Legendre'a
Twierdzenie K7
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, [math]\displaystyle{ a, d \in \mathbb{Z} }[/math] i [math]\displaystyle{ p \nmid d }[/math]. Pokazać, że
- [math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
- [math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1 }[/math]
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
Twierdzenie K8
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], to
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (a - b) \\ p - 1 & \text{gdy } \, p \mid (a - b) \\ \end{cases} }[/math]
Twierdzenie K9
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ n \in \mathbb{Z} }[/math], to
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid n \\ p - 1 & \text{gdy } \, p \mid n \\ \end{cases} }[/math]
Zadanie K10
Pokazać, że jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ r , s \in \mathbb{Z} }[/math], to
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (r^2 - 4 s) \\ p - 1 & \text{gdy } \, p \mid (r^2 - 4 s) \\ \end{cases} }[/math]
Twierdzenie K11
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ p \nmid n }[/math], to dla sumy
- [math]\displaystyle{ S(n) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
prawdziwe są następujące wzory
- (a) [math]\displaystyle{ \;\; S(n) = 0 \qquad \qquad \text{gdy } \; p = 4 k + 3 }[/math]
- (b) [math]\displaystyle{ \;\; | S (n) | \lt 2 \sqrt{p} \qquad \text{gdy } \; p = 4 k + 1 }[/math]
Zadanie K12
Pokazać, że jeżeli [math]\displaystyle{ p \geqslant 7 }[/math] jest liczbą pierwszą, to wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] istnieją:
- dwie kolejne liczby będące liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]
- dwie kolejne liczby będące liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math]
Uwaga K13
Wzmocnimy wynik uzyskany w poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem.
Twierdzenie K14
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to
- istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor }[/math] różnych par kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math]
- istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor }[/math] różnych par kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]
Twierdzenie K15
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Słowo „trójka” oznacza tutaj trzy kolejne liczby kwadratowe (niekwadratowe) modulo [math]\displaystyle{ p }[/math].
Jeżeli [math]\displaystyle{ p = 4 k + 3 }[/math], to liczba różnych trójek liczb kwadratowych (niekwadratowych) jest równa
- [math]\displaystyle{ N = \left\lfloor {\small\frac{p - 3}{8}} \right\rfloor }[/math]
Jeżeli [math]\displaystyle{ p = 4 k + 1 }[/math], to liczba różnych trójek liczb niekwadratowych jest równa
- [math]\displaystyle{ N = {\small\frac{p - 3 - S (- 1)}{8}} \gt {\small\frac{p - 3 - 2 \sqrt{p}}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 4 k + 1 }[/math], to liczba różnych trójek liczb kwadratowych jest równa
- [math]\displaystyle{ N = {\small\frac{p - 15 + S (- 1)}{8}} \gt {\small\frac{p - 15 - 2 \sqrt{p}}{8}} \qquad \quad \text{ gdy } \; p = 8 k + 1 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 7 + S (- 1)}{8}} \gt {\small\frac{p - 7 - 2 \sqrt{p}}{8}} \qquad \quad \;\;\; \text{ gdy } \; p = 8 k + 5 }[/math]
Gdzie przez [math]\displaystyle{ S(- 1) }[/math] oznaczyliśmy sumę
- [math]\displaystyle{ S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} }[/math]
Uwaga K16
Korzystając z twierdzenia K15, łatwo można pokazać, że każda liczba pierwsza [math]\displaystyle{ p \geqslant 19 }[/math] ma co najmniej dwie różne trójki kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i co najmniej dwie różne trójki kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].
Najmniejsze liczby niekwadratowe modulo
Uwaga K17
Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i symbol Jacobiego.
A. Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] |
Przykład K18
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( p )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math]
Uwaga K19
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP
A(p) =
{
if( p == 2, return(0) );
if( !isprime(p), return(0) );
forprime(q = 2, p, if( jacobi(q, p) == -1, return(q) ));
}
Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w rzeczywistości symbol Legendre'a, bo wiemy, że liczba [math]\displaystyle{ p }[/math] jest liczbą pierwszą (w przypadku, gdy [math]\displaystyle{ p }[/math] jest liczbą złożoną, funkcja zwraca zero).
Twierdzenie K20
Niech [math]\displaystyle{ \mathbb{n} \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to jest liczbą pierwszą.
Zadanie K21
Pokazać, że najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest
- liczba [math]\displaystyle{ 2 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 8 k \pm 3 }[/math]
- liczba [math]\displaystyle{ 3 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 7 }[/math]
- liczba [math]\displaystyle{ \geqslant 5 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 1 }[/math]
Twierdzenie K22
Dla każdej liczby pierwszej [math]\displaystyle{ p_n }[/math] istnieje nieskończenie wiele takich liczb pierwszych [math]\displaystyle{ q }[/math], że [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math].
Twierdzenie K23 (Sarvadaman Chowla)
Istnieje niekończenie wiele liczb pierwszych [math]\displaystyle{ p }[/math] takich, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math], gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika.
Uwaga K24
W twierdzeniu K22 pokazaliśmy, że dla każdej liczby pierwszej [math]\displaystyle{ \mathbb{n} }[/math] istnieją takie liczby pierwsze [math]\displaystyle{ p }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Zatem zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] liczb pierwszych takich, że dla każdej liczby [math]\displaystyle{ p \in S_\mathbb{n} }[/math] liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest zbiorem niepustym. Wynika stąd, że zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] ma element najmniejszy i możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w PARI/GP napisać proste polecenie
forprime(n = 2, 50, forprime(p = 2, 10^10, if( A(p) == n, print(n, " ", p); break() )))
W tabeli przedstawiamy uzyskane rezultaty (zobacz też A000229).
[math]\displaystyle{ \boldsymbol{\mathbb{n}} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ \boldsymbol{p} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 71 }[/math] [math]\displaystyle{ 311 }[/math] [math]\displaystyle{ 479 }[/math] [math]\displaystyle{ 1559 }[/math] [math]\displaystyle{ 5711 }[/math] [math]\displaystyle{ 10559 }[/math] [math]\displaystyle{ 18191 }[/math] [math]\displaystyle{ 31391 }[/math] [math]\displaystyle{ 422231 }[/math] [math]\displaystyle{ 701399 }[/math] [math]\displaystyle{ 366791 }[/math] [math]\displaystyle{ 3818929 }[/math]
Twierdzenie K25
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Prawdziwe jest oszacowanie
- [math]\displaystyle{ \mathbb{n} (p) \lt \sqrt{p} + {\small\frac{1}{2}} }[/math]
Twierdzenie K26*
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Dla [math]\displaystyle{ p \geqslant 5 }[/math] prawdziwe jest oszacowanie[1][2][3]
- [math]\displaystyle{ \mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p }[/math]
Uwaga K27
Liczby [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math], gdzie [math]\displaystyle{ p }[/math] są nieparzystymi liczbami pierwszymi, jest równa[4]
- [math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots }[/math]
Uwaga K28
Możemy też badać najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}_1( p )} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math]
Twierdzenie K29
Dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 5 }[/math] najmniejsza nieparzysta liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest liczbą pierwszą mniejszą od [math]\displaystyle{ p }[/math].
B. Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] |
Uwaga K30
Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math] W jednym i drugim przypadku liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową w zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od [math]\displaystyle{ p }[/math] lub [math]\displaystyle{ m . }[/math] Dlatego będziemy je oznaczali również jako [math]\displaystyle{ \mathbb{n}(m) . }[/math]
Definicja K31
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Powiemy, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], gdy [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą dodatnią względnie pierwszą z [math]\displaystyle{ m }[/math] taką, że kongruencja
- [math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]
nie ma rozwiązania.
Przykład K32
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] i najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m . }[/math]
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( p )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( m )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math]
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 18 }[/math] [math]\displaystyle{ 20 }[/math] [math]\displaystyle{ 22 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 26 }[/math] [math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 30 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 34 }[/math] [math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 38 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 42 }[/math] [math]\displaystyle{ 44 }[/math] [math]\displaystyle{ 46 }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ 50 }[/math] [math]\displaystyle{ 52 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( m )} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math]
Uwaga K33
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP
B(m) =
{
local(p, res);
p = 1;
while( p < m,
p = nextprime(p + 1);
if( m%p == 0, next() );
res = -1;
for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
if( res == -1, return(p) );
);
}
Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby [math]\displaystyle{ m . }[/math] Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.
Twierdzenie K34
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą pierwszą.
Zadanie K35
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli [math]\displaystyle{ m = 8 k \pm 3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]
Zadanie K36
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli spełniony jest jeden z warunków
- [math]\displaystyle{ 4 \mid m \; }[/math] i [math]\displaystyle{ \; \gcd (3, m) = 1 }[/math]
- [math]\displaystyle{ m = 12 k \pm 4 }[/math]
to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
Zadanie K37
Niech [math]\displaystyle{ m = 24 k \pm 10 . }[/math] Pokazać, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
Twierdzenie K38
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą nieparzystą podzielną przez [math]\displaystyle{ p \in S_2 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]
Twierdzenie K39
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą parzystą niepodzielną przez [math]\displaystyle{ 3 }[/math] i podzielną przez [math]\displaystyle{ p \in S_3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
Twierdzenie K40
Jeżeli [math]\displaystyle{ m }[/math] jest liczbą dodatnią podzielną przez [math]\displaystyle{ 6 }[/math] i niepodzielną przez [math]\displaystyle{ 5 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]
Twierdzenie K41
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ p \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math].
Zadanie K42
Pokazać, że podanym w pierwszej kolumnie postaciom liczby [math]\displaystyle{ m }[/math] odpowiadają wymienione w drugiej kolumnie wartości [math]\displaystyle{ \mathbb{n} (m) . }[/math]
Postać liczby [math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ \boldsymbol{𝕟(m)} }[/math] Uwagi [math]\displaystyle{ m=24k \pm 9 }[/math] [math]\displaystyle{ 2 }[/math] K38 [math]\displaystyle{ m=120k \pm 25 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ m=120k \pm 55 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ m=120k \pm 50 }[/math] [math]\displaystyle{ 3 }[/math] K39 [math]\displaystyle{ m=30k \pm 6 }[/math] [math]\displaystyle{ 5 }[/math] K40, K41 [math]\displaystyle{ m=30k \pm 12 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ m=210k \pm 30 }[/math] [math]\displaystyle{ 7 }[/math] K41 [math]\displaystyle{ m=210k \pm 60 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ m=210k \pm 90 }[/math] [math]\displaystyle{ 7 }[/math]
Twierdzenie K43
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy
- [math]\displaystyle{ \begin{array}{lll} \mathbb{n} (2 m) \gt \mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) = 2 \\ \mathbb{n} (2 m) =\mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) \gt 2 \end{array} }[/math]
Twierdzenie K44
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy
- [math]\displaystyle{ \begin{array}{lllll} \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2 & & \text{gdy } \;\; 3 \mid m \\ \mathbb{n} (4 m) = 3 & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\ \end{array} }[/math]
Twierdzenie K45
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p \, }[/math] i [math]\displaystyle{ \, p \mid m }[/math], to [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]
Twierdzenie K46
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to istnieje taki dzielnik pierwszy [math]\displaystyle{ p }[/math] liczby [math]\displaystyle{ m }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]
Twierdzenie K47
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to
- [math]\displaystyle{ \mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) ) }[/math]
gdzie [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], a [math]\displaystyle{ \mathbb{n}(p_k) }[/math] są najmniejszymi liczbami kwadratowymi modulo [math]\displaystyle{ p_k . }[/math]
Twierdzenie K48
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Prawdziwe są oszacowania
- [math]\displaystyle{ \mathbb{n}(m) \lt \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3 }[/math]
- [math]\displaystyle{ \mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5 }[/math]
Uwaga K49
Liczby [math]\displaystyle{ \mathbb{n} (m) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] wynosi[5]
- [math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots }[/math]
C. Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] |
Przykład K50
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math], najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] i najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( p )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( m )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ \boldsymbol{c( m )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math]
Uwaga K51
Do wyszukiwania liczb [math]\displaystyle{ c = c (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP
C(m) =
{
if( m%2 == 0, return(0) );
if( issquare(m), return(0) );
forprime(p = 2, m, if( jacobi(p, m) == -1, return(p) ));
}
Uwaga K52
Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] oznaczyliśmy jako [math]\displaystyle{ c(m) }[/math]. Zauważmy, że są to liczby inne od [math]\displaystyle{ \mathbb{n}(p) }[/math] i [math]\displaystyle{ \mathbb{n}(m) }[/math]. Wystarczy zwrócić uwagę na występujące w tabeli liczby [math]\displaystyle{ \mathbb{n}(p) }[/math], [math]\displaystyle{ \mathbb{n}(m) }[/math] i [math]\displaystyle{ c(m) }[/math] dla [math]\displaystyle{ m = 15, 33, 39 }[/math]. Różnice wynikają z innej definicji liczb [math]\displaystyle{ c(m) }[/math] – jeżeli liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to symbol Jacobiego [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math] nie musi być równy [math]\displaystyle{ - 1 }[/math]. I tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.
Ponieważ [math]\displaystyle{ c(m) }[/math] nie zawsze będzie najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], to mamy natychmiast oszacowanie: [math]\displaystyle{ c(m) \geqslant \mathbb{n} (m) }[/math] (poza przypadkami, gdy [math]\displaystyle{ m = n^2 }[/math]).
Dla [math]\displaystyle{ c(m) }[/math] nie są prawdziwe oszacowania podane w twierdzeniu K25. Łatwo zauważamy, że
- [math]\displaystyle{ c = c (15) = 7 \gt \sqrt{15} + {\small\frac{1}{2}} \approx 4.37 }[/math]
- [math]\displaystyle{ c = c (39) = 7 \gt \sqrt{39} + {\small\frac{1}{2}} \approx 6.74 }[/math]
- [math]\displaystyle{ c = c (105) = 11 \gt \sqrt{105} + {\small\frac{1}{2}} \approx 10.75 }[/math]
- [math]\displaystyle{ c = c (231) = 17 \gt \sqrt{231} + {\small\frac{1}{2}} \approx 15.7 }[/math]
Nie ma więcej takich przypadków dla [math]\displaystyle{ m \lt 10^9 }[/math].
Twierdzenie K53
Niech [math]\displaystyle{ c, m \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ c }[/math] będzie najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1 }[/math]. Liczba [math]\displaystyle{ c }[/math] musi być liczbą pierwszą.
Liczby pierwsze postaci [math]\displaystyle{ x^2 + n y^2 }[/math]
Przykład K54
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 85 }[/math] na sumę postaci [math]\displaystyle{ x^2 + y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math]. Rozkłady różniące się jedynie kolejnością liczb [math]\displaystyle{ x , y }[/math] nie zostały uwzględnione.
[math]\displaystyle{ \boldsymbol{n} }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 5 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 9 }[/math] | [math]\displaystyle{ 10 }[/math] | [math]\displaystyle{ 13 }[/math] | [math]\displaystyle{ 16 }[/math] | [math]\displaystyle{ 17 }[/math] | [math]\displaystyle{ 18 }[/math] | [math]\displaystyle{ 20 }[/math] | [math]\displaystyle{ 25 }[/math] | [math]\displaystyle{ 26 }[/math] | [math]\displaystyle{ 29 }[/math] | [math]\displaystyle{ 32 }[/math] | [math]\displaystyle{ 34 }[/math] | [math]\displaystyle{ 36 }[/math] | [math]\displaystyle{ 37 }[/math] | [math]\displaystyle{ 40 }[/math] | [math]\displaystyle{ 41 }[/math] | [math]\displaystyle{ 45 }[/math] | [math]\displaystyle{ 49 }[/math] | [math]\displaystyle{ 50 }[/math] | [math]\displaystyle{ 52 }[/math] | [math]\displaystyle{ 53 }[/math] | [math]\displaystyle{ 58 }[/math] | [math]\displaystyle{ 61 }[/math] | [math]\displaystyle{ 64 }[/math] | [math]\displaystyle{ 65 }[/math] | [math]\displaystyle{ 68 }[/math] | [math]\displaystyle{ 72 }[/math] | [math]\displaystyle{ 73 }[/math] | [math]\displaystyle{ 74 }[/math] | [math]\displaystyle{ 80 }[/math] | [math]\displaystyle{ 81 }[/math] | [math]\displaystyle{ 82 }[/math] | [math]\displaystyle{ 85 }[/math] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ 1,0 }[/math] | [math]\displaystyle{ 1,1 }[/math] | [math]\displaystyle{ 2,0 }[/math] | [math]\displaystyle{ 2,1 }[/math] | [math]\displaystyle{ 2,2 }[/math] | [math]\displaystyle{ 3,0 }[/math] | [math]\displaystyle{ 3,1 }[/math] | [math]\displaystyle{ 3,2 }[/math] | [math]\displaystyle{ 4,0 }[/math] | [math]\displaystyle{ 4,1 }[/math] | [math]\displaystyle{ 3,3 }[/math] | [math]\displaystyle{ 4,2 }[/math] | [math]\displaystyle{ 5,0 }[/math] | [math]\displaystyle{ 5,1 }[/math] | [math]\displaystyle{ 5,2 }[/math] | [math]\displaystyle{ 4,4 }[/math] | [math]\displaystyle{ 5,3 }[/math] | [math]\displaystyle{ 6,0 }[/math] | [math]\displaystyle{ 6,1 }[/math] | [math]\displaystyle{ 6,2 }[/math] | [math]\displaystyle{ 5,4 }[/math] | [math]\displaystyle{ 6,3 }[/math] | [math]\displaystyle{ 7,0 }[/math] | [math]\displaystyle{ 7,1 }[/math] | [math]\displaystyle{ 6,4 }[/math] | [math]\displaystyle{ 7,2 }[/math] | [math]\displaystyle{ 7,3 }[/math] | [math]\displaystyle{ 6,5 }[/math] | [math]\displaystyle{ 8,0 }[/math] | [math]\displaystyle{ 8,1 }[/math] | [math]\displaystyle{ 8,2 }[/math] | [math]\displaystyle{ 6,6 }[/math] | [math]\displaystyle{ 8,3 }[/math] | [math]\displaystyle{ 7,5 }[/math] | [math]\displaystyle{ 8,4 }[/math] | [math]\displaystyle{ 9,0 }[/math] | [math]\displaystyle{ 9,1 }[/math] | [math]\displaystyle{ 9,2 }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 5,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 7,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 7,6 }[/math] |
Zauważmy, że liczba złożona [math]\displaystyle{ 21 }[/math] nie ma rozkładu na sumę kwadratów, a liczba złożona [math]\displaystyle{ 65 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 4 k + 1 }[/math].
Przykład K55
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 73 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].
[math]\displaystyle{ \boldsymbol{n} }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 3 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 6 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 9 }[/math] | [math]\displaystyle{ 11 }[/math] | [math]\displaystyle{ 12 }[/math] | [math]\displaystyle{ 16 }[/math] | [math]\displaystyle{ 17 }[/math] | [math]\displaystyle{ 18 }[/math] | [math]\displaystyle{ 19 }[/math] | [math]\displaystyle{ 22 }[/math] | [math]\displaystyle{ 24 }[/math] | [math]\displaystyle{ 25 }[/math] | [math]\displaystyle{ 27 }[/math] | [math]\displaystyle{ 32 }[/math] | [math]\displaystyle{ 33 }[/math] | [math]\displaystyle{ 34 }[/math] | [math]\displaystyle{ 36 }[/math] | [math]\displaystyle{ 38 }[/math] | [math]\displaystyle{ 41 }[/math] | [math]\displaystyle{ 43 }[/math] | [math]\displaystyle{ 44 }[/math] | [math]\displaystyle{ 48 }[/math] | [math]\displaystyle{ 49 }[/math] | [math]\displaystyle{ 50 }[/math] | [math]\displaystyle{ 51 }[/math] | [math]\displaystyle{ 54 }[/math] | [math]\displaystyle{ 57 }[/math] | [math]\displaystyle{ 59 }[/math] | [math]\displaystyle{ 64 }[/math] | [math]\displaystyle{ 66 }[/math] | [math]\displaystyle{ 67 }[/math] | [math]\displaystyle{ 68 }[/math] | [math]\displaystyle{ 72 }[/math] | [math]\displaystyle{ 73 }[/math] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ 1,0 }[/math] | [math]\displaystyle{ 0,1 }[/math] | [math]\displaystyle{ 1,1 }[/math] | [math]\displaystyle{ 2,0 }[/math] | [math]\displaystyle{ 2,1 }[/math] | [math]\displaystyle{ 0,2 }[/math] | [math]\displaystyle{ 3,0 }[/math] | [math]\displaystyle{ 3,1 }[/math] | [math]\displaystyle{ 2,2 }[/math] | [math]\displaystyle{ 4,0 }[/math] | [math]\displaystyle{ 3,2 }[/math] | [math]\displaystyle{ 4,1 }[/math] | [math]\displaystyle{ 1,3 }[/math] | [math]\displaystyle{ 2,3 }[/math] | [math]\displaystyle{ 4,2 }[/math] | [math]\displaystyle{ 5,0 }[/math] | [math]\displaystyle{ 5,1 }[/math] | [math]\displaystyle{ 0,4 }[/math] | [math]\displaystyle{ 5,2 }[/math] | [math]\displaystyle{ 4,3 }[/math] | [math]\displaystyle{ 6,0 }[/math] | [math]\displaystyle{ 6,1 }[/math] | [math]\displaystyle{ 3,4 }[/math] | [math]\displaystyle{ 5,3 }[/math] | [math]\displaystyle{ 6,2 }[/math] | [math]\displaystyle{ 4,4 }[/math] | [math]\displaystyle{ 7,0 }[/math] | [math]\displaystyle{ 0,5 }[/math] | [math]\displaystyle{ 7,1 }[/math] | [math]\displaystyle{ 6,3 }[/math] | [math]\displaystyle{ 7,2 }[/math] | [math]\displaystyle{ 3,5 }[/math] | [math]\displaystyle{ 8,0 }[/math] | [math]\displaystyle{ 8,1 }[/math] | [math]\displaystyle{ 7,3 }[/math] | [math]\displaystyle{ 6,4 }[/math] | [math]\displaystyle{ 8,2 }[/math] | [math]\displaystyle{ 1,6 }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 3,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 2,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,5 }[/math] | [math]\displaystyle{ 2,5 }[/math] | [math]\displaystyle{ 5,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,6 }[/math] | [math]\displaystyle{ }[/math] |
Zauważmy, że liczba złożona [math]\displaystyle{ 65 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 33 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 1 }[/math].
Zauważmy też, że liczba złożona [math]\displaystyle{ 35 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 27 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 3 }[/math].
Przykład K56
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 103 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].
[math]\displaystyle{ \boldsymbol{n} }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 3 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 7 }[/math] | [math]\displaystyle{ 9 }[/math] | [math]\displaystyle{ 12 }[/math] | [math]\displaystyle{ 13 }[/math] | [math]\displaystyle{ 16 }[/math] | [math]\displaystyle{ 19 }[/math] | [math]\displaystyle{ 21 }[/math] | [math]\displaystyle{ 25 }[/math] | [math]\displaystyle{ 27 }[/math] | [math]\displaystyle{ 28 }[/math] | [math]\displaystyle{ 31 }[/math] | [math]\displaystyle{ 36 }[/math] | [math]\displaystyle{ 37 }[/math] | [math]\displaystyle{ 39 }[/math] | [math]\displaystyle{ 43 }[/math] | [math]\displaystyle{ 48 }[/math] | [math]\displaystyle{ 49 }[/math] | [math]\displaystyle{ 52 }[/math] | [math]\displaystyle{ 57 }[/math] | [math]\displaystyle{ 61 }[/math] | [math]\displaystyle{ 63 }[/math] | [math]\displaystyle{ 64 }[/math] | [math]\displaystyle{ 67 }[/math] | [math]\displaystyle{ 73 }[/math] | [math]\displaystyle{ 75 }[/math] | [math]\displaystyle{ 76 }[/math] | [math]\displaystyle{ 79 }[/math] | [math]\displaystyle{ 81 }[/math] | [math]\displaystyle{ 84 }[/math] | [math]\displaystyle{ 91 }[/math] | [math]\displaystyle{ 93 }[/math] | [math]\displaystyle{ 97 }[/math] | [math]\displaystyle{ 100 }[/math] | [math]\displaystyle{ 103 }[/math] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ 1,0 }[/math] | [math]\displaystyle{ 0,1 }[/math] | [math]\displaystyle{ 2,0 }[/math] | [math]\displaystyle{ 2,1 }[/math] | [math]\displaystyle{ 3,0 }[/math] | [math]\displaystyle{ 3,1 }[/math] | [math]\displaystyle{ 1,2 }[/math] | [math]\displaystyle{ 4,0 }[/math] | [math]\displaystyle{ 4,1 }[/math] | [math]\displaystyle{ 3,2 }[/math] | [math]\displaystyle{ 5,0 }[/math] | [math]\displaystyle{ 0,3 }[/math] | [math]\displaystyle{ 5,1 }[/math] | [math]\displaystyle{ 2,3 }[/math] | [math]\displaystyle{ 6,0 }[/math] | [math]\displaystyle{ 5,2 }[/math] | [math]\displaystyle{ 6,1 }[/math] | [math]\displaystyle{ 4,3 }[/math] | [math]\displaystyle{ 6,2 }[/math] | [math]\displaystyle{ 7,0 }[/math] | [math]\displaystyle{ 7,1 }[/math] | [math]\displaystyle{ 3,4 }[/math] | [math]\displaystyle{ 7,2 }[/math] | [math]\displaystyle{ 6,3 }[/math] | [math]\displaystyle{ 8,0 }[/math] | [math]\displaystyle{ 8,1 }[/math] | [math]\displaystyle{ 5,4 }[/math] | [math]\displaystyle{ 0,5 }[/math] | [math]\displaystyle{ 8,2 }[/math] | [math]\displaystyle{ 2,5 }[/math] | [math]\displaystyle{ 9,0 }[/math] | [math]\displaystyle{ 9,1 }[/math] | [math]\displaystyle{ 8,3 }[/math] | [math]\displaystyle{ 9,2 }[/math] | [math]\displaystyle{ 7,4 }[/math] | [math]\displaystyle{ 10,0 }[/math] | [math]\displaystyle{ 10,1 }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,1 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 2,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 3,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,4 }[/math] | [math]\displaystyle{ 1,4 }[/math] | [math]\displaystyle{ 5,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 7,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 6,4 }[/math] | [math]\displaystyle{ 4,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 5,5 }[/math] | [math]\displaystyle{ }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 2,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 3,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] |
Zauważmy, że liczba złożona [math]\displaystyle{ 55 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], a liczba złożona [math]\displaystyle{ 91 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 6 k + 1 }[/math].
Twierdzenie K57
Jeżeli liczba nieparzysta postaci [math]\displaystyle{ Q = x^2 + n y^2 }[/math], gdzie [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math], ma dwa różne takie przedstawienia w liczbach całkowitych dodatnich, to jest liczbą złożoną.
Uwaga K58
Zauważmy, że iloczyn liczb postaci [math]\displaystyle{ x^2 + n y^2 }[/math] jest liczbą tej samej postaci.
- [math]\displaystyle{ (a^2 + n b^2) (x^2 + n y^2) = (a x + n b y)^2 + n (a y - b x)^2 }[/math]
- [math]\displaystyle{ \;\;\;\:\, = (a x - n b y)^2 + n (a y + b x)^2 }[/math]
Twierdzenie K59
Niech [math]\displaystyle{ x, y, a, b \in \mathbb{Z} }[/math] i [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math]. Jeżeli liczba parzysta [math]\displaystyle{ Q = x^2 + n y^2 }[/math], to [math]\displaystyle{ Q = 2^{\alpha} R }[/math], gdzie [math]\displaystyle{ R = a^2 + n b^2 }[/math] jest liczbą nieparzystą.
Twierdzenie K60
Liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] jest postaci
- (a) [math]\displaystyle{ 4 k + 1 }[/math]
- (b) [math]\displaystyle{ 8 k + 1 \, }[/math] lub [math]\displaystyle{ \: 8 k + 3 }[/math]
- (c) [math]\displaystyle{ 6 k + 1 }[/math]
wtedy i tylko wtedy, gdy istnieje dokładnie jedna para liczb całkowitych dodatnich [math]\displaystyle{ x, y }[/math], że
- (a) [math]\displaystyle{ p = x^2 + y^2 }[/math]
- (b) [math]\displaystyle{ p = x^2 + 2 y^2 }[/math]
- (c) [math]\displaystyle{ p = x^2 + 3 y^2 }[/math]
Uwaga K61
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni.
Zadanie K62
Niech liczby pierwsze [math]\displaystyle{ p, q }[/math] będą postaci [math]\displaystyle{ 4 k + 1 }[/math], a liczba pierwsza [math]\displaystyle{ r }[/math]
będzie postaci [math]\displaystyle{ 4 k + 3 }[/math]. Pokazać, że
- liczby [math]\displaystyle{ r, p r \, }[/math] i [math]\displaystyle{ \, r^2 }[/math] nie rozkładają się na sumę dwóch kwadratów liczb całkowitych dodatnich
- liczby [math]\displaystyle{ p }[/math], [math]\displaystyle{ 2 p }[/math], [math]\displaystyle{ p^2 \, }[/math] i [math]\displaystyle{ \, p r^2 }[/math] mają jeden rozkład na sumę dwóch kwadratów liczb całkowitych dodatnich
- liczba [math]\displaystyle{ p q }[/math], [math]\displaystyle{ p \neq q }[/math] ma dwa rozkłady na sumę dwóch kwadratów liczb całkowitych dodatnich
Twierdzenia o istnieniu liczb pierwszych kwadratowych i niekwadratowych modulo
Zadanie K63
Niech [math]\displaystyle{ s = \pm 1 }[/math]. Zbadać podzielność liczby [math]\displaystyle{ p - s a^2 }[/math]
- przez [math]\displaystyle{ 4 }[/math], gdy [math]\displaystyle{ p = 4 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3 }[/math]
- przez [math]\displaystyle{ 8 }[/math], gdy [math]\displaystyle{ p = 8 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5, 7 }[/math]
Uwaga K64
Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Pomysł ujęcia problemu zaczerpnęliśmy z pracy Alexandru Gicy[9]. Zadanie K63 należy traktować jako uzupełnienie do dowodu twierdzenia K65. Z zadania łatwo widzimy, że powiązanie liczby [math]\displaystyle{ s }[/math] z postacią liczby pierwszej [math]\displaystyle{ p }[/math] nie jest przypadkowe.
Zauważmy, że twierdzenia ograniczają się do liczb pierwszych [math]\displaystyle{ p }[/math], ponieważ dla liczb złożonych nieparzystych [math]\displaystyle{ m \gt 0 }[/math] wynik [math]\displaystyle{ \left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1 }[/math] nie oznacza, że liczba pierwsza [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math].
W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].
[math]\displaystyle{ \boldsymbol{p} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 53 }[/math] [math]\displaystyle{ 59 }[/math] [math]\displaystyle{ 61 }[/math] [math]\displaystyle{ 67 }[/math] [math]\displaystyle{ 71 }[/math] [math]\displaystyle{ 73 }[/math] [math]\displaystyle{ 79 }[/math] [math]\displaystyle{ 83 }[/math] [math]\displaystyle{ 89 }[/math] [math]\displaystyle{ 97 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 53 }[/math]
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].
[math]\displaystyle{ \boldsymbol{p} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 53 }[/math] [math]\displaystyle{ 59 }[/math] [math]\displaystyle{ 61 }[/math] [math]\displaystyle{ 67 }[/math] [math]\displaystyle{ 71 }[/math] [math]\displaystyle{ 73 }[/math] [math]\displaystyle{ 79 }[/math] [math]\displaystyle{ 83 }[/math] [math]\displaystyle{ 89 }[/math] [math]\displaystyle{ 97 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math]
Twierdzenie K65
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 17 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
Twierdzenie K66
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
Twierdzenie K67
Jeżeli [math]\displaystyle{ p \geqslant 19 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 12 k + 7 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
Twierdzenia K66 i K67 można uogólnić na wszystkie liczby pierwsze.[9]
Twierdzenie K68*
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 13, 37 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
Uwaga K69
W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 18 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 20 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 22 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 26 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 30 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 34 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 38 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math]
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 18 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 20 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 22 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 26 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 30 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 34 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 38 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math]
Twierdzenie K70
Jeżeli [math]\displaystyle{ m \geqslant 7 }[/math] jest liczbą całkowitą postaci [math]\displaystyle{ 4 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].
Można też pokazać, że[10]
Twierdzenie K71*
A. Jeżeli [math]\displaystyle{ p \geqslant 13 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].
B. Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].
Zauważmy, że twierdzenie K71 można łatwo uogólnić na liczby całkowite dodatnie.
Twierdzenie K72
A. Jeżeli [math]\displaystyle{ m \geqslant 6 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 10 , 11 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].
B. Jeżeli [math]\displaystyle{ m \geqslant 4 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 6 , 9 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].
Twierdzenie K73
Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math]
Zadanie K74
Udowodnić twierdzenie K73 w przypadku, gdy liczba pierwsza [math]\displaystyle{ p \geqslant 19 }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math], nie korzystając z twierdzenia K65.
Przypisy
- ↑ Karl K. Norton, Numbers with Small Prime Factors, and the Least kth Power Non-Residue, Memoirs of the American Mathematical Society, No. 106 (1971)
- ↑ Enrique Treviño, The least k-th power non-residue, Journal of Number Theory, Volume 149 (2015)
- ↑ Kevin J. McGown and Enrique Treviño, The least quadratic non-residue, Mexican Mathematicians in the World (2021)
- ↑ Paul Erdős, Számelméleti megjegyzések I, Afar. Lapok, v. 12 (1961)
- ↑ Paul Pollack, The average least quadratic nonresidue modulo [math]\displaystyle{ m }[/math] and other variations on a theme of Erdős, Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.
- ↑ Wikipedia, Proof by infinite descent, (Wiki-en)
- ↑ W. H. Bussey, Fermat's Method of Infinite Descent, The American Mathematical Monthly, Vol. 25, No. 8 (1918)
- ↑ G. H. Hardy and Edward M. Wright, An Introduction to the Theory of Numbers, New York: Oxford University Press, 5th Edition, zobacz dowód Twierdzenia 366 w sekcji 20.4 na stronie 301.
- ↑ Skocz do: 9,0 9,1 Alexandru Gica, Quadratic Residues of Certain Types, Rocky Mountain J. Math. 36 (2006), no. 6, 1867-1871.
- ↑ Paul Pollack, The least prime quadratic nonresidue in a prescribed residue class mod 4, Journal of Number Theory 187 (2018), 403-414