Ciągi liczbowe: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Linia 505: Linia 505:
  
 
<span style="font-size: 110%; font-weight: bold;">Zadanie C31</span><br/>
 
<span style="font-size: 110%; font-weight: bold;">Zadanie C31</span><br/>
 +
Pokazać, że z twierdzenia Linnika wynika istnienie takich stałych <math>c, L > 0</math>, że dla każdego <math>a \geqslant 2</math> prawdziwe jest oszacowanie
 +
 +
::<math>p(a) < c a^L</math>
 +
 +
gdzie
 +
 +
::<math>p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b < a}} p_{\min} (a, b)</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Oszacowanie podane w twierdzeniu Linnika
 +
 +
::<math>p_{\min} (a, b) < a^L</math>
 +
 +
jest prawdziwe dla dowolnej liczby <math>b \in [1, a - 1]</math> względnie pierwszej z <math>a</math>. Jeżeli zdefiniujemy funkcję
 +
 +
::<math>p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b < a}} p_{\min} (a, b)</math>
 +
 +
to możemy zapisać twierdzenie Linnika tak, aby po lewej stronie nie występowała liczba <math>b</math>, co czyni zapis bardziej przejrzystym. Mamy
 +
 +
::<math>p(a) < a^L</math>
 +
 +
dla wszystkich <math>a > a_0</math>. Ponieważ dla <math>a \in [2, a_0]</math> funkcja <math>p(a)</math> przyjmuje wartości skończone, a dla <math>a > a_0</math> jest <math>p(a) < a^L</math>, to funkcja <math>{\small\frac{p (a)}{a^L}}</math> jest ograniczona od góry, czyli istnieje taka stała <math>c</math>, że
 +
 +
::<math>{\small\frac{p (a)}{a^L}} < c</math>
 +
 +
dla dowolnego <math>a \geqslant 2</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Przykład C32</span><br/>
 +
Pokazaliśmy (zobacz C31), że istnieją takie stałe <math>c, L > 0</math>, że dla każdego <math>a \geqslant 2</math> prawdziwe jest oszacowanie
 +
 +
::<math>p(a) < c a^L</math>
 +
 +
gdzie
 +
 +
::<math>p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b < a}} p_{\min} (a, b)</math>
 +
 +
 +
Ponieważ <math>p(a) > a</math>, to prawdziwy jest ciąg nierówności
 +
 +
::<math>1 < {\small\frac{\log p (a)}{\log a}} < {\small\frac{\log c}{\log a}} + L \leqslant \left| {\small\frac{\log c}{\log a}} \right| +
 +
 +
L \leqslant {\small\frac{\left| \log c \right|}{\log 2}} + L</math>
 +
 +
Wynika stąd, że dla <math>a \geqslant 2</math> funkcja <math>{\small\frac{\log p (a)}{\log a}}</math> jest ograniczona.
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie C33</span><br/>
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...
  
Linia 514: Linia 566:
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja C32</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja C34</span><br/>
 
Niech <math>a \geqslant 2</math> będzie liczbą całkowitą. Wartość funkcji <math>\pi(n; a, b)</math> jest równa ilości liczb pierwszych nie większych od <math>n</math>, które przy dzieleniu przez <math>a</math> dają resztę <math>b</math>.
 
Niech <math>a \geqslant 2</math> będzie liczbą całkowitą. Wartość funkcji <math>\pi(n; a, b)</math> jest równa ilości liczb pierwszych nie większych od <math>n</math>, które przy dzieleniu przez <math>a</math> dają resztę <math>b</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C33</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C35</span><br/>
 
Zauważmy, że w&nbsp;twierdzeniu Dirichleta na liczby <math>a</math> oraz <math>b</math> nałożone są minimalne warunki: <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Sytuacja w&nbsp;przypadku funkcji <math>\pi (n ; a, b)</math> jest odmienna – tutaj mamy <math>a \geqslant 2</math> oraz <math>0 \leqslant b \leqslant a - 1</math>. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja <math>\pi (n ; a, b)</math> jest podziałem pierwotnym, a&nbsp;twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział
 
Zauważmy, że w&nbsp;twierdzeniu Dirichleta na liczby <math>a</math> oraz <math>b</math> nałożone są minimalne warunki: <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Sytuacja w&nbsp;przypadku funkcji <math>\pi (n ; a, b)</math> jest odmienna – tutaj mamy <math>a \geqslant 2</math> oraz <math>0 \leqslant b \leqslant a - 1</math>. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja <math>\pi (n ; a, b)</math> jest podziałem pierwotnym, a&nbsp;twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział
 
liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek
 
liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek
Linia 535: Linia 587:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C34</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C36</span><br/>
 
Pokazać, że dla dowolnej liczby całkowitej <math>m \geqslant 1</math>
 
Pokazać, że dla dowolnej liczby całkowitej <math>m \geqslant 1</math>
  
Linia 572: Linia 624:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C35</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C37</span><br/>
 
Rozważmy ciąg arytmetyczny <math>u_k = 3 k + 2</math> i&nbsp;wskaźnik
 
Rozważmy ciąg arytmetyczny <math>u_k = 3 k + 2</math> i&nbsp;wskaźnik
  
Linia 583: Linia 635:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C36</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C38</span><br/>
 
Jeżeli <math>n \geqslant 3</math>, to istnieje <math>n</math> kolejnych liczb naturalnych, wśród których znajduje się dokładnie <math>r \leqslant \pi (n)</math> liczb pierwszych.
 
Jeżeli <math>n \geqslant 3</math>, to istnieje <math>n</math> kolejnych liczb naturalnych, wśród których znajduje się dokładnie <math>r \leqslant \pi (n)</math> liczb pierwszych.
  
Linia 615: Linia 667:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C37</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C39</span><br/>
 
Czytelnik może łatwo sprawdzić, że ciąg <math>( 1308, \ldots, 1407 )</math> stu kolejnych liczb całkowitych zawiera dokładnie <math>8</math> liczb pierwszych.
 
Czytelnik może łatwo sprawdzić, że ciąg <math>( 1308, \ldots, 1407 )</math> stu kolejnych liczb całkowitych zawiera dokładnie <math>8</math> liczb pierwszych.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C38</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C40</span><br/>
Pokazać, nie korzystając z&nbsp;twierdzenia C36, że istnieje <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
+
Pokazać, nie korzystając z&nbsp;twierdzenia C38, że istnieje <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Linia 636: Linia 688:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C39</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C41</span><br/>
 
Pokazać, że istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których jest dokładnie <math>5</math> liczb pierwszych.
 
Pokazać, że istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których jest dokładnie <math>5</math> liczb pierwszych.
  
Linia 643: Linia 695:
  
 
:* wśród pierwszych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> jest <math>13</math> liczb pierwszych  
 
:* wśród pierwszych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> jest <math>13</math> liczb pierwszych  
:* w&nbsp;ciągu <math>6 k + 1</math> istnieją dowolnie długie przedziały pozbawione liczb pierwszych (zobacz zadanie C34), zatem istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których nie ma ani jednej liczby pierwszej
+
:* w&nbsp;ciągu <math>6 k + 1</math> istnieją dowolnie długie przedziały pozbawione liczb pierwszych (zobacz zadanie C36), zatem istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których nie ma ani jednej liczby pierwszej
  
 
Pierwsze spostrzeżenie pokazuje, że rozwiązanie problemu jest potencjalnie możliwe. Rozwiązanie mogłoby nie istnieć, gdybyśmy szukali <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> wśród których jest, powiedzmy, <math>15</math> liczb pierwszych.
 
Pierwsze spostrzeżenie pokazuje, że rozwiązanie problemu jest potencjalnie możliwe. Rozwiązanie mogłoby nie istnieć, gdybyśmy szukali <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> wśród których jest, powiedzmy, <math>15</math> liczb pierwszych.
Linia 688: Linia 740:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C40</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C42</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>a \geqslant 2</math> i <math>0 \leqslant b \leqslant a - 1</math>. Jeżeli liczby <math>a</math> oraz <math>b</math> są względnie pierwsze, to istnieje <math>n</math> kolejnych liczb postaci <math>a k + b</math>, wśród których znajduje się dokładnie <math>r \leqslant \pi (a (n - 1) + b ; a, b)</math> liczb pierwszych.
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>a \geqslant 2</math> i <math>0 \leqslant b \leqslant a - 1</math>. Jeżeli liczby <math>a</math> oraz <math>b</math> są względnie pierwsze, to istnieje <math>n</math> kolejnych liczb postaci <math>a k + b</math>, wśród których znajduje się dokładnie <math>r \leqslant \pi (a (n - 1) + b ; a, b)</math> liczb pierwszych.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Twierdzenie można udowodnić uogólniając dowód twierdzenia C36 lub wykorzystując metodę zastosowaną w&nbsp;rozwiązaniu zadania C39.<br/>
+
Twierdzenie można udowodnić uogólniając dowód twierdzenia C38 lub wykorzystując metodę zastosowaną w&nbsp;rozwiązaniu zadania C41.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 698: Linia 750:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C41</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C43</span><br/>
 
Niech <math>p \geqslant 5</math> będzie liczbą pierwszą. Pokazać, że w&nbsp;ciągu <math>6 k + 1</math> występują kwadraty wszystkich liczb pierwszych <math>p</math>.
 
Niech <math>p \geqslant 5</math> będzie liczbą pierwszą. Pokazać, że w&nbsp;ciągu <math>6 k + 1</math> występują kwadraty wszystkich liczb pierwszych <math>p</math>.
  
Linia 714: Linia 766:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C42</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C44</span><br/>
 
Dany jest ciąg arytmetyczny <math>a k + b</math>, gdzie liczby <math>a</math> i <math>b</math> są względnie pierwsze. Pokazać, że
 
Dany jest ciąg arytmetyczny <math>a k + b</math>, gdzie liczby <math>a</math> i <math>b</math> są względnie pierwsze. Pokazać, że
  
Linia 738: Linia 790:
 
::<math>p \mid a (j - i)</math>
 
::<math>p \mid a (j - i)</math>
  
Ponieważ <math>p \nmid a</math> to na mocy lematu Euklidesa (twierdzenie C72), mamy
+
Ponieważ <math>p \nmid a</math> to na mocy lematu Euklidesa (twierdzenie C74), mamy
  
 
::<math>p \mid (j - i)</math>
 
::<math>p \mid (j - i)</math>
Linia 756: Linia 808:
 
::<math>n p - a k = b</math>
 
::<math>n p - a k = b</math>
  
Zauważmy, że ponieważ <math>p \nmid a</math>, to liczby <math>a</math> i <math>p</math> są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba <math>1</math>. Na mocy twierdzenia C76 równanie to ma nieskończenie wiele rozwiązań w&nbsp;liczbach całkowitych
+
Zauważmy, że ponieważ <math>p \nmid a</math>, to liczby <math>a</math> i <math>p</math> są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba <math>1</math>. Na mocy twierdzenia C78 równanie to ma nieskończenie wiele rozwiązań w&nbsp;liczbach całkowitych
  
 
::<math>n = n_0 + p t</math>
 
::<math>n = n_0 + p t</math>
Linia 791: Linia 843:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C43</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C45</span><br/>
 
Łatwo możemy napisać w&nbsp;PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną <math>k_0</math>, dla której wyraz ciągu arytmetycznego <math>a k + b</math> jest podzielny przez <math>p</math> (przy założeniu, że liczby <math>a</math> i <math>p</math> są względnie pierwsze).
 
Łatwo możemy napisać w&nbsp;PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną <math>k_0</math>, dla której wyraz ciągu arytmetycznego <math>a k + b</math> jest podzielny przez <math>p</math> (przy założeniu, że liczby <math>a</math> i <math>p</math> są względnie pierwsze).
  
Linia 802: Linia 854:
 
== Ciągi nieskończone i&nbsp;liczby pierwsze ==
 
== Ciągi nieskończone i&nbsp;liczby pierwsze ==
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C44</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C46</span><br/>
 
Choć wiele ciągów jest dobrze znanych i&nbsp;równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo
 
Choć wiele ciągów jest dobrze znanych i&nbsp;równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo
  
Linia 848: Linia 900:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C45</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C47</span><br/>
 
Łatwo sprawdzić, że wartości wielomianu <math>W(n) = n^2 + n + 41</math> są liczbami pierwszymi dla <math>1 \leqslant n \leqslant 39</math>. Oczywiście <math>41 \mid W(41)</math>.
 
Łatwo sprawdzić, że wartości wielomianu <math>W(n) = n^2 + n + 41</math> są liczbami pierwszymi dla <math>1 \leqslant n \leqslant 39</math>. Oczywiście <math>41 \mid W(41)</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C46</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C48</span><br/>
 
Niech <math>a, n</math> będą liczbami całkowitymi takimi, że <math>a \geqslant 2</math> i <math>n \geqslant 1</math>. Jeżeli liczba <math>a^n + 1</math> jest liczbą pierwszą, to <math>a</math> jest liczbą parzystą i <math>n = 2^m</math>.
 
Niech <math>a, n</math> będą liczbami całkowitymi takimi, że <math>a \geqslant 2</math> i <math>n \geqslant 1</math>. Jeżeli liczba <math>a^n + 1</math> jest liczbą pierwszą, to <math>a</math> jest liczbą parzystą i <math>n = 2^m</math>.
  
Linia 879: Linia 931:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C47</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C49</span><br/>
 
Dla dowolnej liczby naturalnej <math>n \geqslant 1</math> liczba <math>x - y</math> jest dzielnikiem wyrażenia <math>x^n - y^n</math>.
 
Dla dowolnej liczby naturalnej <math>n \geqslant 1</math> liczba <math>x - y</math> jest dzielnikiem wyrażenia <math>x^n - y^n</math>.
  
Linia 899: Linia 951:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C48</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C50</span><br/>
 
Jeżeli <math>n \geqslant 2</math> oraz <math>a^n - 1</math> jest liczbą pierwszą, to <math>a = 2</math> i <math>n</math> jest liczbą pierwszą.
 
Jeżeli <math>n \geqslant 2</math> oraz <math>a^n - 1</math> jest liczbą pierwszą, to <math>a = 2</math> i <math>n</math> jest liczbą pierwszą.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia C47 wiemy, że <math>x - y \mid x^n - y^n</math>. W&nbsp;przypadku gdy <math>a > 2</math> mamy
+
Z twierdzenia C49 wiemy, że <math>x - y \mid x^n - y^n</math>. W&nbsp;przypadku gdy <math>a > 2</math> mamy
  
 
::<math>a - 1 \mid a^n - 1</math>
 
::<math>a - 1 \mid a^n - 1</math>
Linia 922: Linia 974:
 
== Ciągi arytmetyczne liczb pierwszych ==
 
== Ciągi arytmetyczne liczb pierwszych ==
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C49</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C51</span><br/>
 
Ciągi arytmetyczne liczb pierwszych<ref name="PAPWiki"/><ref name="PAPMathWorld"/> zbudowane z&nbsp;dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o&nbsp;długości <math>n \geqslant 3</math>.
 
Ciągi arytmetyczne liczb pierwszych<ref name="PAPWiki"/><ref name="PAPMathWorld"/> zbudowane z&nbsp;dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o&nbsp;długości <math>n \geqslant 3</math>.
  
Linia 933: Linia 985:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C50* (Ben Green i&nbsp;Terence Tao, 2004)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C52* (Ben Green i&nbsp;Terence Tao, 2004)</span><br/>
 
Dla dowolnej liczby naturalnej <math>n \geqslant 2</math> istnieje nieskończenie wiele <math>n</math>-wyrazowych ciągów arytmetycznych liczb pierwszych.
 
Dla dowolnej liczby naturalnej <math>n \geqslant 2</math> istnieje nieskończenie wiele <math>n</math>-wyrazowych ciągów arytmetycznych liczb pierwszych.
  
Linia 939: Linia 991:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C51</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C53</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 3</math> i <math>n = 4</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 3</math> i <math>n = 4</math>.
  
Linia 1287: Linia 1339:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C52</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C54</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 5</math> i <math>n = 6</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 5</math> i <math>n = 6</math>.
  
Linia 1579: Linia 1631:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C53</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C55</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 7</math> i <math>n = 8</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 7</math> i <math>n = 8</math>.
  
Linia 1843: Linia 1895:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C54</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C56</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 9</math> i <math>n = 10</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 9</math> i <math>n = 10</math>.
  
Linia 2275: Linia 2327:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C55</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C57</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math> oraz <math>a, d, k, k_0 \in \mathbb{Z}</math>. Jeżeli liczby <math>d</math> i <math>n</math> są względnie pierwsze, to reszty <math>r_1, r_2, \ldots, r_n</math> z&nbsp;dzielenia <math>n</math> liczb <math>x_k</math> postaci  
 
Niech <math>n \in \mathbb{Z}_+</math> oraz <math>a, d, k, k_0 \in \mathbb{Z}</math>. Jeżeli liczby <math>d</math> i <math>n</math> są względnie pierwsze, to reszty <math>r_1, r_2, \ldots, r_n</math> z&nbsp;dzielenia <math>n</math> liczb <math>x_k</math> postaci  
  
Linia 2291: Linia 2343:
 
::<math>n \mid d (j - i)</math>
 
::<math>n \mid d (j - i)</math>
  
Ponieważ liczby <math>d</math> i <math>n</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C72), mamy
+
Ponieważ liczby <math>d</math> i <math>n</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C74), mamy
  
 
::<math>n \mid (j - i)</math>
 
::<math>n \mid (j - i)</math>
Linia 2303: Linia 2355:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C56</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C58</span><br/>
 
Niech <math>d \in \mathbb{Z}_+</math> i&nbsp;niech będzie dany ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>
 
Niech <math>d \in \mathbb{Z}_+</math> i&nbsp;niech będzie dany ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>
  
Linia 2342: Linia 2394:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C57</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C59</span><br/>
 
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „''prime arithmetic progression''”. Konsekwentnie zapis PAP-<math>n</math> będzie oznaczał ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, a&nbsp;zapis PAP<math>(n, d, q)</math> ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, pierwszym wyrazie <math>q</math> i&nbsp;różnicy <math>d</math>.
 
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „''prime arithmetic progression''”. Konsekwentnie zapis PAP-<math>n</math> będzie oznaczał ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, a&nbsp;zapis PAP<math>(n, d, q)</math> ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, pierwszym wyrazie <math>q</math> i&nbsp;różnicy <math>d</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C58</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C60</span><br/>
 
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej <math>q</math> i&nbsp;o&nbsp;dowolnej długości <math>3 \leqslant n \leqslant q</math>, to obecnie jest to tylko nieudowodnione przypuszczenie.
 
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej <math>q</math> i&nbsp;o&nbsp;dowolnej długości <math>3 \leqslant n \leqslant q</math>, to obecnie jest to tylko nieudowodnione przypuszczenie.
  
Dlatego '''nawet dla najmniejszej''' liczby pierwszej <math>q</math> takiej, że <math>q \nmid d</math> nierówność <math>n \leqslant q</math>, pokazana w&nbsp;twierdzeniu C56, pozostaje nadal tylko oszacowaniem. W&nbsp;szczególności nie możemy z&nbsp;góry przyjmować, że dla liczby <math>n = q</math> znajdziemy taką liczbę <math>d</math> będącą wielokrotnością liczby <math>P(q - 1)</math> i&nbsp;niepodzielną przez <math>q</math>, że będzie istniał PAP<math>(q, d, q)</math>.
+
Dlatego '''nawet dla najmniejszej''' liczby pierwszej <math>q</math> takiej, że <math>q \nmid d</math> nierówność <math>n \leqslant q</math>, pokazana w&nbsp;twierdzeniu C58, pozostaje nadal tylko oszacowaniem. W&nbsp;szczególności nie możemy z&nbsp;góry przyjmować, że dla liczby <math>n = q</math> znajdziemy taką liczbę <math>d</math> będącą wielokrotnością liczby <math>P(q - 1)</math> i&nbsp;niepodzielną przez <math>q</math>, że będzie istniał PAP<math>(q, d, q)</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C59</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C61</span><br/>
 
Rozważmy dwie różnice <math>d_1 = 6 = 2 \cdot 3</math> oraz <math>d_2 = 42 = 2 \cdot 3 \cdot 7</math>. Zauważmy, że liczba pierwsza <math>5</math> nie dzieli ani <math>d_1</math>, ani <math>d_2</math>. Co więcej, liczba pierwsza <math>5</math> jest '''najmniejszą''' liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność <math>n \leqslant 5</math> zapewnia najmocniejsze oszacowanie długości ciągu <math>n</math>. Łatwo sprawdzamy w&nbsp;zamieszczonych tabelach, że dla <math>d = 6</math> oraz dla <math>d = 42</math> są ciągi o&nbsp;długości <math>3, 4, 5</math>, ale nie ma ciągów o&nbsp;długości <math>6, 7, \ldots</math>
 
Rozważmy dwie różnice <math>d_1 = 6 = 2 \cdot 3</math> oraz <math>d_2 = 42 = 2 \cdot 3 \cdot 7</math>. Zauważmy, że liczba pierwsza <math>5</math> nie dzieli ani <math>d_1</math>, ani <math>d_2</math>. Co więcej, liczba pierwsza <math>5</math> jest '''najmniejszą''' liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność <math>n \leqslant 5</math> zapewnia najmocniejsze oszacowanie długości ciągu <math>n</math>. Łatwo sprawdzamy w&nbsp;zamieszczonych tabelach, że dla <math>d = 6</math> oraz dla <math>d = 42</math> są ciągi o&nbsp;długości <math>3, 4, 5</math>, ale nie ma ciągów o&nbsp;długości <math>6, 7, \ldots</math>
  
W szczególności z&nbsp;twierdzenia C56 wynika, że szukając ciągów arytmetycznych liczb pierwszych o&nbsp;określonej długości <math>n</math>, należy szukać ich tylko dla różnic <math>d</math> będących wielokrotnością liczby <math>P(n - 1)</math>.
+
W szczególności z&nbsp;twierdzenia C58 wynika, że szukając ciągów arytmetycznych liczb pierwszych o&nbsp;określonej długości <math>n</math>, należy szukać ich tylko dla różnic <math>d</math> będących wielokrotnością liczby <math>P(n - 1)</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C60</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C62</span><br/>
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że jeżeli <math>p_0 = 3</math>, to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że jeżeli <math>p_0 = 3</math>, to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Ponieważ <math>p_0 = 3</math>, a&nbsp;rozpatrywany PAP jest rosnący, to kolejne wyrazy ciągu są większe od liczby <math>3</math> i&nbsp;mogą być przedstawione w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Z&nbsp;twierdzenia C56 wiemy, że musi być <math>n \leqslant p_0 = 3</math>, czyli długość rozpatrywanego ciągu arytmetycznego liczb pierwszych wynosi dokładnie <math>3</math> i&nbsp;istnieją tylko dwa następne wyrazy.
+
Ponieważ <math>p_0 = 3</math>, a&nbsp;rozpatrywany PAP jest rosnący, to kolejne wyrazy ciągu są większe od liczby <math>3</math> i&nbsp;mogą być przedstawione w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Z&nbsp;twierdzenia C58 wiemy, że musi być <math>n \leqslant p_0 = 3</math>, czyli długość rozpatrywanego ciągu arytmetycznego liczb pierwszych wynosi dokładnie <math>3</math> i&nbsp;istnieją tylko dwa następne wyrazy.
  
 
Rozważmy ciąg arytmetyczny liczb pierwszych składający się z&nbsp;trzech wyrazów <math>p, q, r</math> takich, że <math>p = 3</math>. Mamy
 
Rozważmy ciąg arytmetyczny liczb pierwszych składający się z&nbsp;trzech wyrazów <math>p, q, r</math> takich, że <math>p = 3</math>. Mamy
Linia 2381: Linia 2433:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C61</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C63</span><br/>
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych <math>p_0, p_1, \ldots, p_{n - 1}</math>, gdzie <math>p_0 \geqslant 5</math> i <math>n \geqslant 3</math> muszą być jednakowej postaci.
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych <math>p_0, p_1, \ldots, p_{n - 1}</math>, gdzie <math>p_0 \geqslant 5</math> i <math>n \geqslant 3</math> muszą być jednakowej postaci.
  
Linia 2403: Linia 2455:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C62</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C64</span><br/>
 
Niech <math>d > 0</math> będzie różnicą ciągu arytmetycznego liczb pierwszych o&nbsp;długości <math>n</math>
 
Niech <math>d > 0</math> będzie różnicą ciągu arytmetycznego liczb pierwszych o&nbsp;długości <math>n</math>
  
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
  
Pokazać, nie korzystając z&nbsp;twierdzenia C56, że jeżeli liczba pierwsza <math>q</math> nie dzieli <math>d</math>, to <math>n \leqslant q</math>.
+
Pokazać, nie korzystając z&nbsp;twierdzenia C58, że jeżeli liczba pierwsza <math>q</math> nie dzieli <math>d</math>, to <math>n \leqslant q</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Linia 2415: Linia 2467:
 
::<math>q < p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
 
::<math>q < p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
  
Ponieważ <math>q \nmid d</math>, to na mocy twierdzenia C55 wśród <math>q</math> kolejnych wyrazów <math>p_0, p_1, \ldots, p_{q - 1}</math> (zauważmy, że <math>q - 1 < n - 1</math>) jedna liczba pierwsza <math>p_k</math> musi być podzielna przez <math>q</math>, zatem musi być równa <math>q</math>. Jednak jest to niemożliwe, bo <math>q < p_k</math> dla wszystkich <math>k = 0, 1, \ldots, n - 1</math>. Zatem nie może być <math>n > q</math>.<br/>
+
Ponieważ <math>q \nmid d</math>, to na mocy twierdzenia C57 wśród <math>q</math> kolejnych wyrazów <math>p_0, p_1, \ldots, p_{q - 1}</math> (zauważmy, że <math>q - 1 < n - 1</math>) jedna liczba pierwsza <math>p_k</math> musi być podzielna przez <math>q</math>, zatem musi być równa <math>q</math>. Jednak jest to niemożliwe, bo <math>q < p_k</math> dla wszystkich <math>k = 0, 1, \ldots, n - 1</math>. Zatem nie może być <math>n > q</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2421: Linia 2473:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C63</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C65</span><br/>
 
Niech <math>q</math> będzie liczbą pierwszą, a&nbsp;liczby pierwsze
 
Niech <math>q</math> będzie liczbą pierwszą, a&nbsp;liczby pierwsze
  
Linia 2443: Linia 2495:
  
 
<math>\Longleftarrow</math><br/>
 
<math>\Longleftarrow</math><br/>
Ponieważ <math>q</math> jest długością rozpatrywanego ciągu arytmetycznego liczb pierwszych, to z&nbsp;twierdzenia C56 wynika, że musi być <math>q \leqslant p_0</math>.
+
Ponieważ <math>q</math> jest długością rozpatrywanego ciągu arytmetycznego liczb pierwszych, to z&nbsp;twierdzenia C58 wynika, że musi być <math>q \leqslant p_0</math>.
  
Z założenia liczba pierwsza <math>q</math> nie dzieli <math>d</math>, zatem z&nbsp;twierdzenia C55 wiemy, że <math>q</math> musi dzielić jedną z&nbsp;liczb <math>p_0, p_1, \ldots, p_{q - 1}</math>.
+
Z założenia liczba pierwsza <math>q</math> nie dzieli <math>d</math>, zatem z&nbsp;twierdzenia C57 wiemy, że <math>q</math> musi dzielić jedną z&nbsp;liczb <math>p_0, p_1, \ldots, p_{q - 1}</math>.
  
 
Jeżeli <math>q \mid p_k</math>, to <math>p_k = q</math>. Ponieważ <math>q \leqslant p_0</math>, to możliwe jest jedynie <math>q \mid p_0</math> i&nbsp;musi być <math>p_0 = q</math>.<br/>
 
Jeżeli <math>q \mid p_k</math>, to <math>p_k = q</math>. Ponieważ <math>q \leqslant p_0</math>, to możliwe jest jedynie <math>q \mid p_0</math> i&nbsp;musi być <math>p_0 = q</math>.<br/>
Linia 2453: Linia 2505:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C64</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C66</span><br/>
 
Niech ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math> ma postać
 
Niech ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math> ma postać
  
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
  
Z udowodnionych wyżej twierdzeń C56 i&nbsp;C63 wynika, że ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n</math> można podzielić na dwie grupy
+
Z udowodnionych wyżej twierdzeń C58 i&nbsp;C65 wynika, że ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n</math> można podzielić na dwie grupy
  
 
:* jeżeli <math>n</math> jest liczbą pierwszą i <math>n \nmid d</math>, to <math>P(n - 1) \mid d</math> oraz <math>p_0 = n</math> (dla ustalonego <math>d</math> może istnieć tylko jeden ciąg)
 
:* jeżeli <math>n</math> jest liczbą pierwszą i <math>n \nmid d</math>, to <math>P(n - 1) \mid d</math> oraz <math>p_0 = n</math> (dla ustalonego <math>d</math> może istnieć tylko jeden ciąg)
Linia 2467: Linia 2519:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C65</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C67</span><br/>
 
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi <math>d = 10^t</math>, gdzie <math>t \geqslant 1</math>. Zauważmy, że dla dowolnego <math>t</math> liczba <math>3</math> jest najmniejszą liczbą pierwszą, która nie dzieli <math>d</math>. Z&nbsp;oszacowania <math>n \leqslant 3</math> wynika, że musi być <math>n = 3</math>.
 
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi <math>d = 10^t</math>, gdzie <math>t \geqslant 1</math>. Zauważmy, że dla dowolnego <math>t</math> liczba <math>3</math> jest najmniejszą liczbą pierwszą, która nie dzieli <math>d</math>. Z&nbsp;oszacowania <math>n \leqslant 3</math> wynika, że musi być <math>n = 3</math>.
  
Linia 2474: Linia 2526:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C66</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C68</span><br/>
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>d = 2, 4, 8, 10, 14, 16</math>.
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>d = 2, 4, 8, 10, 14, 16</math>.
  
Linia 2490: Linia 2542:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C67</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C69</span><br/>
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>n = 3, 5, 7, 11</math> i <math>d = P (n - 1)</math>.
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>n = 3, 5, 7, 11</math> i <math>d = P (n - 1)</math>.
  
Linia 2508: Linia 2560:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C68</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C70</span><br/>
 
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych, takie że <math>n = p_0</math> dla <math>n = 3, 5, 7, 11, 13</math>. Zauważmy, że wypisane w&nbsp;tabeli wartości <math>d</math> są wielokrotnościami liczby <math>P(n - 1)</math>.
 
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych, takie że <math>n = p_0</math> dla <math>n = 3, 5, 7, 11, 13</math>. Zauważmy, że wypisane w&nbsp;tabeli wartości <math>d</math> są wielokrotnościami liczby <math>P(n - 1)</math>.
  
Linia 2536: Linia 2588:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C69</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C71</span><br/>
 
Liczby <math>3, 5, 7</math> są najprostszym przykładem ciągu arytmetycznego '''kolejnych''' liczb pierwszych. Zauważmy, że tylko w&nbsp;przypadku <math>n = 3</math> możliwa jest sytuacja, że <math>n = p_0 = 3</math>. Istotnie, łatwo stwierdzamy, że
 
Liczby <math>3, 5, 7</math> są najprostszym przykładem ciągu arytmetycznego '''kolejnych''' liczb pierwszych. Zauważmy, że tylko w&nbsp;przypadku <math>n = 3</math> możliwa jest sytuacja, że <math>n = p_0 = 3</math>. Istotnie, łatwo stwierdzamy, że
  
Linia 2688: Linia 2740:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C70</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie C72</span><br/>
 
Uzasadnij przypuszczenie, że ciągów arytmetycznych '''kolejnych''' liczb pierwszych o&nbsp;długości <math>n = 7</math> możemy oczekiwać dopiero dla <math>p_0 \sim 10^{20}</math>.
 
Uzasadnij przypuszczenie, że ciągów arytmetycznych '''kolejnych''' liczb pierwszych o&nbsp;długości <math>n = 7</math> możemy oczekiwać dopiero dla <math>p_0 \sim 10^{20}</math>.
  
Linia 2768: Linia 2820:
 
== Uzupełnienie ==
 
== Uzupełnienie ==
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C71 (lemat Bézouta)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C73 (lemat Bézouta)</span><br/>
 
Jeżeli liczby całkowite <math>a</math> i <math>b</math> nie są jednocześnie równe zeru, a&nbsp;największy wspólny dzielnik tych liczb jest równy <math>D</math>, to istnieją takie liczby całkowite <math>x, y</math>, że
 
Jeżeli liczby całkowite <math>a</math> i <math>b</math> nie są jednocześnie równe zeru, a&nbsp;największy wspólny dzielnik tych liczb jest równy <math>D</math>, to istnieją takie liczby całkowite <math>x, y</math>, że
  
Linia 2795: Linia 2847:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C72 (lemat Euklidesa)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C74 (lemat Euklidesa)</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą oraz <math>a, b, d \in \mathbb{Z}</math>.
 
Niech <math>p</math> będzie liczbą pierwszą oraz <math>a, b, d \in \mathbb{Z}</math>.
  
Linia 2806: Linia 2858:
 
'''Punkt 1.'''
 
'''Punkt 1.'''
  
Z założenia liczby <math>d</math> i <math>a</math> są względnie pierwsze, zatem na mocy lematu Bézouta (twierdzenie C71) istnieją takie liczby całkowite <math>x</math> i <math>y</math>, że
+
Z założenia liczby <math>d</math> i <math>a</math> są względnie pierwsze, zatem na mocy lematu Bézouta (twierdzenie C73) istnieją takie liczby całkowite <math>x</math> i <math>y</math>, że
  
 
::<math>d x + a y = 1</math>
 
::<math>d x + a y = 1</math>
Linia 2828: Linia 2880:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C73</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C75</span><br/>
 
Niech <math>a, b, m \in \mathbb{Z}</math>. Jeżeli <math>a \mid m</math> i <math>b \mid m</math> oraz <math>\gcd (a, b) = 1</math>, to <math>a b \mid m</math>.
 
Niech <math>a, b, m \in \mathbb{Z}</math>. Jeżeli <math>a \mid m</math> i <math>b \mid m</math> oraz <math>\gcd (a, b) = 1</math>, to <math>a b \mid m</math>.
  
Linia 2837: Linia 2889:
 
::<math>a x + b y = 1</math>
 
::<math>a x + b y = 1</math>
  
(zobacz C71). Zatem
+
(zobacz C73). Zatem
  
 
::<math>m = m (a x + b y)</math>
 
::<math>m = m (a x + b y)</math>
Linia 2853: Linia 2905:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C74</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C76</span><br/>
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Równanie <math>a x + b y = c</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest dzielnikiem liczby <math>c</math>.
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Równanie <math>a x + b y = c</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest dzielnikiem liczby <math>c</math>.
  
Linia 2873: Linia 2925:
 
::<math>a x + b y = k D</math>
 
::<math>a x + b y = k D</math>
  
Lemat Bézouta (twierdzenie C71) zapewnia istnienie liczb całkowitych <math>x_0</math> i <math>y_0</math> takich, że
+
Lemat Bézouta (twierdzenie C73) zapewnia istnienie liczb całkowitych <math>x_0</math> i <math>y_0</math> takich, że
  
 
::<math>a x_0 + b y_0 = D</math>
 
::<math>a x_0 + b y_0 = D</math>
Linia 2891: Linia 2943:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C75</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga C77</span><br/>
Z twierdzenia C74 wynika, że szukając rozwiązań równania <math>A x + B y = C</math> w&nbsp;liczbach całkowitych, powinniśmy
+
Z twierdzenia C76 wynika, że szukając rozwiązań równania <math>A x + B y = C</math> w&nbsp;liczbach całkowitych, powinniśmy
  
 
:* obliczyć największy wspólny dzielnik <math>D</math> liczb <math>A</math> i <math>B</math>
 
:* obliczyć największy wspólny dzielnik <math>D</math> liczb <math>A</math> i <math>B</math>
Linia 2901: Linia 2953:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C76</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C78</span><br/>
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to równanie
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to równanie
  
Linia 2916: Linia 2968:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z założenia liczby <math>a</math> i <math>b</math> są względnie pierwsze, zatem największy wspólny dzielnik tych liczb jest równy <math>1</math> i&nbsp;dzieli liczbę <math>c</math>. Na mocy twierdzenia C74 równanie
+
Z założenia liczby <math>a</math> i <math>b</math> są względnie pierwsze, zatem największy wspólny dzielnik tych liczb jest równy <math>1</math> i&nbsp;dzieli liczbę <math>c</math>. Na mocy twierdzenia C76 równanie
  
 
::<math>a x + b y = c</math>
 
::<math>a x + b y = c</math>
Linia 2946: Linia 2998:
 
::<math>a(x - x_0) = b (y_0 - y)</math>
 
::<math>a(x - x_0) = b (y_0 - y)</math>
  
Ponieważ liczby <math>a</math> i <math>b</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C72) <math>b|(x - x_0)</math>. Skąd mamy
+
Ponieważ liczby <math>a</math> i <math>b</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C74) <math>b|(x - x_0)</math>. Skąd mamy
  
 
::<math>x - x_0 = b t</math>
 
::<math>x - x_0 = b t</math>
Linia 2960: Linia 3012:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C77</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład C79</span><br/>
 
Rozwiązania równania
 
Rozwiązania równania
  

Wersja z 12:45, 8 lip 2023

12.03.2022



Ciągi nieskończone

Definicja C1
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli każdej liczbie [math]\displaystyle{ n }[/math] przypiszemy pewną liczbę rzeczywistą [math]\displaystyle{ a_n }[/math], to powiemy, że liczby [math]\displaystyle{ a_1, a_2, \ldots, a_n, \ldots }[/math] tworzą ciąg nieskończony.


Uwaga C2
Ciąg nieskończony [math]\displaystyle{ a_1, a_2, \ldots, a_n, \ldots }[/math] będziemy oznaczać [math]\displaystyle{ (a_n) }[/math]. Często, o ile nie będzie prowadziło to do nieporozumień, ciąg nieskończony będziemy nazywać po prostu ciągiem.


Definicja C3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Ciąg [math]\displaystyle{ (a_n) }[/math] będziemy nazywali

  • ciągiem rosnącym, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \geqslant a_n }[/math]
  • ciągiem malejącym, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \leqslant a_n }[/math]

Ciągi rosnące dzielimy na

  • ciągi silnie rosnące, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \gt a_n }[/math]
  • ciągi słabo rosnące, jeżeli istnieją takie [math]\displaystyle{ n }[/math], że [math]\displaystyle{ a_{n + 1} = a_n }[/math]

Ciągi malejące dzielimy na

  • ciągi silnie malejące, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \lt a_n }[/math]
  • ciągi słabo malejące, jeżeli istnieją takie [math]\displaystyle{ n }[/math], że [math]\displaystyle{ a_{n + 1} = a_n }[/math]


Definicja C4
Niech [math]\displaystyle{ \varepsilon \in \mathbb{R}_+ }[/math]. Liczbę [math]\displaystyle{ a }[/math] będziemy nazywali granicą ciągu [math]\displaystyle{ (a_n) }[/math], jeżeli dla dowolnego [math]\displaystyle{ \varepsilon }[/math] w przedziale [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] znajdują się prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] (to znaczy wszystkie poza co najwyżej skończoną ilością).


Uwaga C5
1) sens definicji jest taki: jeżeli liczba [math]\displaystyle{ a }[/math] jest granicą ciągu [math]\displaystyle{ (a_n) }[/math], to dla dowolnie małego [math]\displaystyle{ \varepsilon \gt 0 }[/math], poza przedziałem [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] może się znaleźć co najwyżej skończona ilość wyrazów ciągu [math]\displaystyle{ (a_n) }[/math]

2) słabsze żądanie, aby w przedziale [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] znajdowała się nieskończona ilość wyrazów ciągu nie prowadzi do poprawnej definicji granicy. Przykładowo, w przedziale [math]\displaystyle{ (1 - \varepsilon, 1 + \varepsilon) }[/math] znajduje się nieskończenie wiele wyrazów ciągu [math]\displaystyle{ a_n = (-1)^n }[/math], ale ani liczba [math]\displaystyle{ 1 }[/math], ani liczba [math]\displaystyle{ - 1 }[/math] nie są granicami tego ciągu. O ciągu [math]\displaystyle{ a_n = (- 1)^n }[/math] mówimy, że nie ma granicy.

3) ze względu na równoważność warunków

  • [math]\displaystyle{ \quad a_n \in (a - \varepsilon, a + \varepsilon) }[/math]
  • [math]\displaystyle{ \quad a - \varepsilon \lt a_n \lt a + \varepsilon }[/math]
  • [math]\displaystyle{ \quad - \varepsilon \lt a_n - a \lt \varepsilon }[/math]
  • [math]\displaystyle{ \quad | a_n - a | \lt \varepsilon }[/math]

definicja C4 może być wypowiedziana następująco


Definicja C6
Liczbę [math]\displaystyle{ a }[/math] będziemy nazywali granicą ciągu [math]\displaystyle{ (a_n) }[/math], jeżeli dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ |a_n - a| \lt \varepsilon }[/math].


Definicja C7
Ciąg [math]\displaystyle{ (a_n) }[/math] mający granicę (w rozumieniu definicji C4 lub C6) będziemy nazywali ciągiem zbieżnym, a fakt ten zapisujemy symbolicznie następująco

[math]\displaystyle{ \lim_{n \to \infty} a_n = a }[/math]      lub      [math]\displaystyle{ a_n \longrightarrow a }[/math]

(od łacińskiego słowa limes oznaczającego granicę).


Zauważmy jeszcze, że wprost z definicji granicy wynika
Twierdzenie C8

1. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = a \quad \iff \quad \lim_{n \to \infty} (a_n - a) = 0 \quad \iff \quad \lim_{n \to \infty} | a_n - a | = 0 }[/math]
2. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = 0 \quad \iff \quad \lim_{n \to \infty} | a_n | = 0 }[/math]
3. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = a \quad \implies \quad \lim_{n \to \infty} | a_n | = | a | }[/math]
Dowód


Twierdzenie C9 (twierdzenie o trzech ciągach)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ n \gt N_0 }[/math] jest spełniony warunek

[math]\displaystyle{ a_n \leqslant x_n \leqslant b_n }[/math]

oraz

[math]\displaystyle{ \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = g }[/math]

to [math]\displaystyle{ \lim_{n \to \infty} x_n = g }[/math].

Dowód


Bez dowodu podamy kilka ważnych twierdzeń.
Twierdzenie C10*
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ n }[/math] i rzeczywista [math]\displaystyle{ M }[/math], że dla każdego [math]\displaystyle{ k \gt n }[/math] jest

[math]\displaystyle{ a_{k + 1}\geqslant a_k \qquad }[/math] oraz [math]\displaystyle{ \qquad a_k \leqslant M }[/math]

to ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny.
Inaczej mówiąc: ciąg rosnący i ograniczony od góry jest zbieżny.


Twierdzenie C11*
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ n }[/math] i rzeczywista [math]\displaystyle{ M }[/math], że dla każdego [math]\displaystyle{ k \gt n }[/math] jest

[math]\displaystyle{ a_{k + 1} \leqslant a_k \qquad }[/math] oraz [math]\displaystyle{ \qquad a_k \geqslant M }[/math]

to ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny.
Inaczej mówiąc: ciąg malejący i ograniczony od dołu jest zbieżny.


Twierdzenie C12*
Jeżeli [math]\displaystyle{ \lim_{n \to \infty} a_n = a }[/math] oraz [math]\displaystyle{ \lim_{n \to \infty} b_n = b }[/math], gdzie [math]\displaystyle{ a, b }[/math] są dowolnymi liczbami rzeczywistymi, to

  1. [math]\displaystyle{ \quad \lim_{n \to \infty} (a_n \pm b_n) = a \pm b }[/math]
  2. [math]\displaystyle{ \quad \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b }[/math]

Jeżeli dodatkowo dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ b_n \neq 0 }[/math] i [math]\displaystyle{ b \neq 0 }[/math], to

  3. [math]\displaystyle{ \quad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} }[/math]


Twierdzenie C13
Jeżeli [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math], zaś ciąg [math]\displaystyle{ (x_n) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ M \gt 0 }[/math], że dla każdej wartości [math]\displaystyle{ n }[/math] prawdziwa jest nierówność [math]\displaystyle{ | x_n | \lt M }[/math], to

[math]\displaystyle{ \lim_{n \to \infty} (x_n \cdot a_n) = 0 }[/math]
Dowód


Twierdzenie C14
Dla [math]\displaystyle{ a \geqslant 0 }[/math] i [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ (1 + a)^{1 / n} \leqslant 1 + \frac{a}{n} }[/math]
Dowód


Twierdzenie C15
Jeżeli [math]\displaystyle{ A \gt 0 }[/math], to [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{A} = 1 }[/math].

Dowód


Twierdzenie C16
Jeżeli prawie wszystkie wyrazy ciągu ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ 0 \lt m \lt a_n \lt M }[/math], to [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{a_n} = 1 }[/math]

Dowód


Twierdzenie C17
Następujące ciągi są silnie rosnące i zbieżne

Dowód


Twierdzenie C18
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe są następujące nierówności

Dowód



Liczby pierwsze w ciągach arytmetycznych

Twierdzenie C19
Każda liczba naturalna [math]\displaystyle{ n \geqslant 2 }[/math] jest liczbą pierwszą lub iloczynem liczb pierwszych.

Dowód


Twierdzenie C20 (Euklides, IV w. p.n.e.)
Istnieje nieskończenie wiele liczb pierwszych.

Dowód


Twierdzenie C21
Jeżeli liczba naturalna [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math][2], to ma dzielnik postaci [math]\displaystyle{ 4 k + 3 }[/math] będący liczbą pierwszą.

Dowód


Twierdzenie C22
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 4 k + 3 }[/math].

Dowód


Twierdzenie C23
Jeżeli liczba naturalna [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ 6 k + 5 }[/math], to ma dzielnik postaci [math]\displaystyle{ 6 k + 5 }[/math] będący liczbą pierwszą.

Dowód


Twierdzenie C24
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 6 k + 5 }[/math].

Dowód


Twierdzenie C25
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 3 k + 2 }[/math].

Dowód


Uwaga C26
Zauważmy, że liczby postaci [math]\displaystyle{ 2 k + 1 }[/math] to wszystkie liczby nieparzyste dodatnie. Ponieważ wszystkie liczby pierwsze (poza liczbą [math]\displaystyle{ 2 }[/math]) są liczbami nieparzystymi, to wśród liczb postaci [math]\displaystyle{ 2 k + 1 }[/math] występuje nieskończenie wiele liczb pierwszych.

Wszystkie omówione wyżej przypadki ciągów arytmetycznych: [math]\displaystyle{ 2 k + 1 }[/math], [math]\displaystyle{ 3 k + 2 }[/math], [math]\displaystyle{ 4 k + 3 }[/math] i [math]\displaystyle{ 6 k + 5 }[/math], w których występuje nieskończona ilość liczb pierwszych są szczególnymi przypadkami udowodnionego w 1837 roku twierdzenia


Twierdzenie C27* (Peter Gustav Lejeune Dirichlet, 1837)
Niech [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ b \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math] występuje nieskończenie wiele liczb pierwszych.


Uwaga C28
Dowód twierdzenia Dirichleta jest bardzo trudny. Natomiast bardzo łatwo można pokazać, że dowolny ciąg arytmetyczny [math]\displaystyle{ a k + b }[/math] zawiera nieskończenie wiele liczb złożonych. Istotnie, jeżeli liczby [math]\displaystyle{ a, b }[/math] nie są względnie pierwsze, to wszystkie wyrazy ciągu są liczbami złożonymi. Jeżeli [math]\displaystyle{ a, b }[/math] są względnie pierwsze i [math]\displaystyle{ b \gt 1 , }[/math] to wystarczy przyjąć [math]\displaystyle{ k = b t }[/math]. Jeżeli są względnie pierwsze i [math]\displaystyle{ b = 1 }[/math], to wystarczy przyjąć [math]\displaystyle{ k = a t^2 + 2 t }[/math], wtedy

[math]\displaystyle{ a k + 1 = a^2 t^2 + 2 a t + 1 = (a t + 1)^2 }[/math]


Uwaga C29
Wiemy już, że w przypadku gdy liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math] występuje nieskończenie wiele liczb pierwszych. Pojawia się pytanie o to, czy możliwe jest oszacowanie najmniejszej liczby pierwszej [math]\displaystyle{ p }[/math] w takim ciągu. Jakkolwiek przypuszczamy, że prawdziwe jest oszacowanie [math]\displaystyle{ p \lt a^2 }[/math], to stan naszej obecnej wiedzy ujmuje twierdzenie Linnika[3][4][5][6], które podajemy niżej. Trzeba było ponad pół wieku wysiłku wielu matematyków, aby pokazać, że w twierdzeniu Linnika możemy przyjąć [math]\displaystyle{ L = 5 }[/math][7]. Bombieri, Friedlander i Iwaniec udowodnili[8], że dla prawie wszystkich liczb [math]\displaystyle{ a }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ L \leqslant 2 }[/math].


Twierdzenie C30* (Jurij Linnik, 1944)
Niech [math]\displaystyle{ a, b \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ p_{\min} (a, b) }[/math] oznacza najmniejszą liczbę pierwszą w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ \gcd (a, b) = 1 }[/math] i [math]\displaystyle{ b \in [1, a - 1] }[/math], to istnieją takie stałe [math]\displaystyle{ L \gt 0 }[/math] i [math]\displaystyle{ a_0 \geqslant 2 }[/math], że dla wszystkich [math]\displaystyle{ a \gt a_0 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_{\min} (a, b) \lt a^L }[/math]


Zadanie C31
Pokazać, że z twierdzenia Linnika wynika istnienie takich stałych [math]\displaystyle{ c, L \gt 0 }[/math], że dla każdego [math]\displaystyle{ a \geqslant 2 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p(a) \lt c a^L }[/math]

gdzie

[math]\displaystyle{ p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b \lt a}} p_{\min} (a, b) }[/math]
Rozwiązanie


Przykład C32
Pokazaliśmy (zobacz C31), że istnieją takie stałe [math]\displaystyle{ c, L \gt 0 }[/math], że dla każdego [math]\displaystyle{ a \geqslant 2 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p(a) \lt c a^L }[/math]

gdzie

[math]\displaystyle{ p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b \lt a}} p_{\min} (a, b) }[/math]


Ponieważ [math]\displaystyle{ p(a) \gt a }[/math], to prawdziwy jest ciąg nierówności

[math]\displaystyle{ 1 \lt {\small\frac{\log p (a)}{\log a}} \lt {\small\frac{\log c}{\log a}} + L \leqslant \left| {\small\frac{\log c}{\log a}} \right| + L \leqslant {\small\frac{\left| \log c \right|}{\log 2}} + L }[/math]

Wynika stąd, że dla [math]\displaystyle{ a \geqslant 2 }[/math] funkcja [math]\displaystyle{ {\small\frac{\log p (a)}{\log a}} }[/math] jest ograniczona.


Zadanie C33
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...

Rozwiązanie


Definicja C34
Niech [math]\displaystyle{ a \geqslant 2 }[/math] będzie liczbą całkowitą. Wartość funkcji [math]\displaystyle{ \pi(n; a, b) }[/math] jest równa ilości liczb pierwszych nie większych od [math]\displaystyle{ n }[/math], które przy dzieleniu przez [math]\displaystyle{ a }[/math] dają resztę [math]\displaystyle{ b }[/math].


Uwaga C35
Zauważmy, że w twierdzeniu Dirichleta na liczby [math]\displaystyle{ a }[/math] oraz [math]\displaystyle{ b }[/math] nałożone są minimalne warunki: [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ b \in \mathbb{Z} }[/math]. Sytuacja w przypadku funkcji [math]\displaystyle{ \pi (n ; a, b) }[/math] jest odmienna – tutaj mamy [math]\displaystyle{ a \geqslant 2 }[/math] oraz [math]\displaystyle{ 0 \leqslant b \leqslant a - 1 }[/math]. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja [math]\displaystyle{ \pi (n ; a, b) }[/math] jest podziałem pierwotnym, a twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek

[math]\displaystyle{ \sum_{b = 0}^{a - 1} \pi (n ; a, b) = \pi (n) }[/math]

Oczywiście nie przeszkadza to w liczeniu liczb pierwszych w dowolnym ciągu arytmetycznym. Niech na przykład

[math]\displaystyle{ u_k = 7 k + 101 = 7 (k + 14) + 3 \qquad }[/math] gdzie [math]\displaystyle{ k = 0, 1, \ldots }[/math]

Ilość liczb pierwszych w ciagu [math]\displaystyle{ (u_k) }[/math] jest równa

[math]\displaystyle{ \pi (n ; 7, 3) - \pi (7 \cdot 13 + 3 ; 7, 3) = \pi (n ; 7, 3) - 5 }[/math]


Zadanie C36
Pokazać, że dla dowolnej liczby całkowitej [math]\displaystyle{ m \geqslant 1 }[/math]

  • wśród liczb naturalnych zawsze można wskazać [math]\displaystyle{ m }[/math] kolejnych liczb, które są złożone
  • w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math], gdzie liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, zawsze można wskazać [math]\displaystyle{ m }[/math] kolejnych wyrazów, które są złożone
Rozwiązanie


Przykład C37
Rozważmy ciąg arytmetyczny [math]\displaystyle{ u_k = 3 k + 2 }[/math] i wskaźnik

[math]\displaystyle{ k_0 = \prod^{12}_{j = 0} (3 j + 2) = 3091650738176000 }[/math]

Trzynaście wyrazów tego szeregu dla [math]\displaystyle{ k = k_0 + t }[/math], gdzie [math]\displaystyle{ t = 0, 1, \ldots, 12 }[/math] to oczywiście liczby złożone, ale wyrazy dla [math]\displaystyle{ k = k_0 - 1 }[/math] i [math]\displaystyle{ k = k_0 + 13 }[/math] są liczbami pierwszymi.

Przeszukując ciąg [math]\displaystyle{ u_k = 3 k + 2 }[/math] możemy łatwo znaleźć, że pierwsze trzynaście kolejnych wyrazów złożonych pojawia się już dla [math]\displaystyle{ k = 370, 371, \ldots, 382 }[/math].


Twierdzenie C38
Jeżeli [math]\displaystyle{ n \geqslant 3 }[/math], to istnieje [math]\displaystyle{ n }[/math] kolejnych liczb naturalnych, wśród których znajduje się dokładnie [math]\displaystyle{ r \leqslant \pi (n) }[/math] liczb pierwszych.

Dowód


Przykład C39
Czytelnik może łatwo sprawdzić, że ciąg [math]\displaystyle{ ( 1308, \ldots, 1407 ) }[/math] stu kolejnych liczb całkowitych zawiera dokładnie [math]\displaystyle{ 8 }[/math] liczb pierwszych.


Zadanie C40
Pokazać, nie korzystając z twierdzenia C38, że istnieje [math]\displaystyle{ 1000 }[/math] kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.

Rozwiązanie


Zadanie C41
Pokazać, że istnieje [math]\displaystyle{ 20 }[/math] kolejnych liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math], wśród których jest dokładnie [math]\displaystyle{ 5 }[/math] liczb pierwszych.

Rozwiązanie


Twierdzenie C42
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ 0 \leqslant b \leqslant a - 1 }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] oraz [math]\displaystyle{ b }[/math] są względnie pierwsze, to istnieje [math]\displaystyle{ n }[/math] kolejnych liczb postaci [math]\displaystyle{ a k + b }[/math], wśród których znajduje się dokładnie [math]\displaystyle{ r \leqslant \pi (a (n - 1) + b ; a, b) }[/math] liczb pierwszych.

Dowód


Zadanie C43
Niech [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Pokazać, że w ciągu [math]\displaystyle{ 6 k + 1 }[/math] występują kwadraty wszystkich liczb pierwszych [math]\displaystyle{ p }[/math].

Rozwiązanie


Zadanie C44
Dany jest ciąg arytmetyczny [math]\displaystyle{ a k + b }[/math], gdzie liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze. Pokazać, że

  • jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ a }[/math], to żaden wyraz ciągu [math]\displaystyle{ a k + b }[/math] nie jest podzielny przez [math]\displaystyle{ p }[/math]
  • jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] nie dzieli [math]\displaystyle{ a }[/math], to istnieje nieskończenie wiele wyrazów ciągu [math]\displaystyle{ a k + b }[/math], które są podzielne przez [math]\displaystyle{ p }[/math]
Rozwiązanie


Uwaga C45
Łatwo możemy napisać w PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną [math]\displaystyle{ k_0 }[/math], dla której wyraz ciągu arytmetycznego [math]\displaystyle{ a k + b }[/math] jest podzielny przez [math]\displaystyle{ p }[/math] (przy założeniu, że liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ p }[/math] są względnie pierwsze).

f(a,b,p) = lift( Mod(-b,p)*Mod(a,p)^(-1) )



Ciągi nieskończone i liczby pierwsze

Uwaga C46
Choć wiele ciągów jest dobrze znanych i równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo

Nie wiemy, czy istnieje wielomian całkowity [math]\displaystyle{ W(n) }[/math] stopnia większego niż jeden taki, że [math]\displaystyle{ W(n) }[/math] jest liczbą pierwszą dla nieskończenie wielu liczb [math]\displaystyle{ n }[/math].


Przykład C47
Łatwo sprawdzić, że wartości wielomianu [math]\displaystyle{ W(n) = n^2 + n + 41 }[/math] są liczbami pierwszymi dla [math]\displaystyle{ 1 \leqslant n \leqslant 39 }[/math]. Oczywiście [math]\displaystyle{ 41 \mid W(41) }[/math].


Twierdzenie C48
Niech [math]\displaystyle{ a, n }[/math] będą liczbami całkowitymi takimi, że [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ n \geqslant 1 }[/math]. Jeżeli liczba [math]\displaystyle{ a^n + 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a }[/math] jest liczbą parzystą i [math]\displaystyle{ n = 2^m }[/math].

Dowód


Twierdzenie C49
Dla dowolnej liczby naturalnej [math]\displaystyle{ n \geqslant 1 }[/math] liczba [math]\displaystyle{ x - y }[/math] jest dzielnikiem wyrażenia [math]\displaystyle{ x^n - y^n }[/math].

Dowód


Twierdzenie C50
Jeżeli [math]\displaystyle{ n \geqslant 2 }[/math] oraz [math]\displaystyle{ a^n - 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a = 2 }[/math] i [math]\displaystyle{ n }[/math] jest liczbą pierwszą.

Dowód




Ciągi arytmetyczne liczb pierwszych

Uwaga C51
Ciągi arytmetyczne liczb pierwszych[9][10] zbudowane z dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math].

Ponieważ nie da się zbudować ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math], w którym pierwszym wyrazem jest liczba [math]\displaystyle{ p_0 = 2 }[/math], to będą nas interesowały ciągi rozpoczynające się od liczby pierwszej [math]\displaystyle{ p_0 \geqslant 3 }[/math]

Jeżeli do liczby pierwszej nieparzystej dodamy dodatnią liczbę nieparzystą, to otrzymamy liczbę parzystą złożoną, zatem różnica ciągu arytmetycznego [math]\displaystyle{ d }[/math] musi być liczbą parzystą, aby zbudowanie jakiegokolwiek ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math] było możliwe.

Istnienie nieskończenie wiele ciągów arytmetycznych liczb pierwszych o długości [math]\displaystyle{ n = 3 }[/math] pokazano już wiele lat temu[11]. Temat ciągów arytmetycznych liczb pierwszych zyskał na popularności[12] po udowodnieniu przez Bena Greena i Terence'a Tao twierdzenia o istnieniu dowolnie długich (ale skończonych) ciągów arytmetycznych liczb pierwszych[13].


Twierdzenie C52* (Ben Green i Terence Tao, 2004)
Dla dowolnej liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] istnieje nieskończenie wiele [math]\displaystyle{ n }[/math]-wyrazowych ciągów arytmetycznych liczb pierwszych.



Przykład C53
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 3 }[/math] i [math]\displaystyle{ n = 4 }[/math].

Pokaż tabele


Przykład C54
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 5 }[/math] i [math]\displaystyle{ n = 6 }[/math].

Pokaż tabele


Przykład C55
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] i [math]\displaystyle{ n = 8 }[/math].

Pokaż tabele


Przykład C56
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 9 }[/math] i [math]\displaystyle{ n = 10 }[/math].

Pokaż tabele


Twierdzenie C57
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] oraz [math]\displaystyle{ a, d, k, k_0 \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ d }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, to reszty [math]\displaystyle{ r_1, r_2, \ldots, r_n }[/math] z dzielenia [math]\displaystyle{ n }[/math] liczb [math]\displaystyle{ x_k }[/math] postaci

[math]\displaystyle{ x_k = a + k d \qquad }[/math] dla [math]\displaystyle{ \; k = k_0 + 1, \ldots, k_0 + n }[/math]

przez liczbę [math]\displaystyle{ n }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, n - 1 \} }[/math]. W szczególności wynika stąd, że wśród liczb [math]\displaystyle{ x_k }[/math] jedna jest podzielna przez [math]\displaystyle{ n }[/math].

Dowód


Twierdzenie C58
Niech [math]\displaystyle{ d \in \mathbb{Z}_+ }[/math] i niech będzie dany ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math]

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Z żądania, aby dany ciąg arytmetyczny był ciągiem arytmetycznym liczb pierwszych, wynika, że muszą być spełnione następujące warunki

  • [math]\displaystyle{ p_0 \nmid d }[/math]
  • [math]\displaystyle{ n \leqslant p_0 }[/math]
  • [math]\displaystyle{ P(n - 1) \mid d }[/math]
  • jeżeli liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], to [math]\displaystyle{ n \leqslant q }[/math]

gdzie [math]\displaystyle{ P(t) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ t }[/math].

Dowód


Uwaga C59
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „prime arithmetic progression”. Konsekwentnie zapis PAP-[math]\displaystyle{ n }[/math] będzie oznaczał ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math], a zapis PAP[math]\displaystyle{ (n, d, q) }[/math] ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math], pierwszym wyrazie [math]\displaystyle{ q }[/math] i różnicy [math]\displaystyle{ d }[/math].


Uwaga C60
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej [math]\displaystyle{ q }[/math] i o dowolnej długości [math]\displaystyle{ 3 \leqslant n \leqslant q }[/math], to obecnie jest to tylko nieudowodnione przypuszczenie.

Dlatego nawet dla najmniejszej liczby pierwszej [math]\displaystyle{ q }[/math] takiej, że [math]\displaystyle{ q \nmid d }[/math] nierówność [math]\displaystyle{ n \leqslant q }[/math], pokazana w twierdzeniu C58, pozostaje nadal tylko oszacowaniem. W szczególności nie możemy z góry przyjmować, że dla liczby [math]\displaystyle{ n = q }[/math] znajdziemy taką liczbę [math]\displaystyle{ d }[/math] będącą wielokrotnością liczby [math]\displaystyle{ P(q - 1) }[/math] i niepodzielną przez [math]\displaystyle{ q }[/math], że będzie istniał PAP[math]\displaystyle{ (q, d, q) }[/math].


Przykład C61
Rozważmy dwie różnice [math]\displaystyle{ d_1 = 6 = 2 \cdot 3 }[/math] oraz [math]\displaystyle{ d_2 = 42 = 2 \cdot 3 \cdot 7 }[/math]. Zauważmy, że liczba pierwsza [math]\displaystyle{ 5 }[/math] nie dzieli ani [math]\displaystyle{ d_1 }[/math], ani [math]\displaystyle{ d_2 }[/math]. Co więcej, liczba pierwsza [math]\displaystyle{ 5 }[/math] jest najmniejszą liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność [math]\displaystyle{ n \leqslant 5 }[/math] zapewnia najmocniejsze oszacowanie długości ciągu [math]\displaystyle{ n }[/math]. Łatwo sprawdzamy w zamieszczonych tabelach, że dla [math]\displaystyle{ d = 6 }[/math] oraz dla [math]\displaystyle{ d = 42 }[/math] są ciągi o długości [math]\displaystyle{ 3, 4, 5 }[/math], ale nie ma ciągów o długości [math]\displaystyle{ 6, 7, \ldots }[/math]

W szczególności z twierdzenia C58 wynika, że szukając ciągów arytmetycznych liczb pierwszych o określonej długości [math]\displaystyle{ n }[/math], należy szukać ich tylko dla różnic [math]\displaystyle{ d }[/math] będących wielokrotnością liczby [math]\displaystyle{ P(n - 1) }[/math].


Zadanie C62
Wiemy, że liczby pierwsze [math]\displaystyle{ p \gt 3 }[/math] można przedstawić w jednej z postaci [math]\displaystyle{ 6 k - 1 }[/math] lub [math]\displaystyle{ 6 k + 1 }[/math]. Pokazać, że jeżeli [math]\displaystyle{ p_0 = 3 }[/math], to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.

Rozwiązanie


Zadanie C63
Wiemy, że liczby pierwsze [math]\displaystyle{ p \gt 3 }[/math] można przedstawić w jednej z postaci [math]\displaystyle{ 6 k - 1 }[/math] lub [math]\displaystyle{ 6 k + 1 }[/math]. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych [math]\displaystyle{ p_0, p_1, \ldots, p_{n - 1} }[/math], gdzie [math]\displaystyle{ p_0 \geqslant 5 }[/math] i [math]\displaystyle{ n \geqslant 3 }[/math] muszą być jednakowej postaci.

Rozwiązanie


Zadanie C64
Niech [math]\displaystyle{ d \gt 0 }[/math] będzie różnicą ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n }[/math]

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Pokazać, nie korzystając z twierdzenia C58, że jeżeli liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], to [math]\displaystyle{ n \leqslant q }[/math].

Rozwiązanie


Twierdzenie C65
Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą, a liczby pierwsze

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] gdzie [math]\displaystyle{ \; k = 0, 1, \ldots, q - 1 }[/math]

tworzą ciąg arytmetyczny o długości [math]\displaystyle{ q }[/math] i różnicy [math]\displaystyle{ d \gt 0 }[/math].

Równość [math]\displaystyle{ p_0 = q }[/math] zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ q \nmid d }[/math].

Dowód


Uwaga C66
Niech ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math] ma postać

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Z udowodnionych wyżej twierdzeń C58 i C65 wynika, że ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n }[/math] można podzielić na dwie grupy

  • jeżeli [math]\displaystyle{ n }[/math] jest liczbą pierwszą i [math]\displaystyle{ n \nmid d }[/math], to [math]\displaystyle{ P(n - 1) \mid d }[/math] oraz [math]\displaystyle{ p_0 = n }[/math] (dla ustalonego [math]\displaystyle{ d }[/math] może istnieć tylko jeden ciąg)
  • jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną lub [math]\displaystyle{ n \mid d }[/math], to [math]\displaystyle{ P(n) \mid d }[/math] oraz [math]\displaystyle{ p_0 \gt n }[/math]

Funkcja [math]\displaystyle{ P(t) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ t }[/math].


Przykład C67
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi [math]\displaystyle{ d = 10^t }[/math], gdzie [math]\displaystyle{ t \geqslant 1 }[/math]. Zauważmy, że dla dowolnego [math]\displaystyle{ t }[/math] liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą pierwszą, która nie dzieli [math]\displaystyle{ d }[/math]. Z oszacowania [math]\displaystyle{ n \leqslant 3 }[/math] wynika, że musi być [math]\displaystyle{ n = 3 }[/math].

Jeżeli długość ciągu [math]\displaystyle{ n = 3 }[/math] i [math]\displaystyle{ n \nmid d }[/math], to musi być [math]\displaystyle{ p_0 = n = 3 }[/math] i może istnieć tylko jeden PAP dla każdego [math]\displaystyle{ d }[/math]. W przypadku [math]\displaystyle{ t \leqslant 10000 }[/math] jedynie dla [math]\displaystyle{ t = 1, 5, 6, 17 }[/math] wszystkie liczby ciągu arytmetycznego [math]\displaystyle{ (3, 3 + 10^t, 3 + 2 \cdot 10^t) }[/math] są pierwsze.


Zadanie C68
Znaleźć wszystkie PAP[math]\displaystyle{ (n, d, p) }[/math] dla [math]\displaystyle{ d = 2, 4, 8, 10, 14, 16 }[/math].

Rozwiązanie


Zadanie C69
Znaleźć wszystkie PAP[math]\displaystyle{ (n, d, p) }[/math] dla [math]\displaystyle{ n = 3, 5, 7, 11 }[/math] i [math]\displaystyle{ d = P (n - 1) }[/math].

Rozwiązanie


Przykład C70
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych, takie że [math]\displaystyle{ n = p_0 }[/math] dla [math]\displaystyle{ n = 3, 5, 7, 11, 13 }[/math]. Zauważmy, że wypisane w tabeli wartości [math]\displaystyle{ d }[/math] są wielokrotnościami liczby [math]\displaystyle{ P(n - 1) }[/math].

Pokaż tabelę


Przykład C71
Liczby [math]\displaystyle{ 3, 5, 7 }[/math] są najprostszym przykładem ciągu arytmetycznego kolejnych liczb pierwszych. Zauważmy, że tylko w przypadku [math]\displaystyle{ n = 3 }[/math] możliwa jest sytuacja, że [math]\displaystyle{ n = p_0 = 3 }[/math]. Istotnie, łatwo stwierdzamy, że

  • ponieważ [math]\displaystyle{ p_0 }[/math] i [math]\displaystyle{ p_1 }[/math]kolejnymi liczbami pierwszymi, to [math]\displaystyle{ p_1 - p_0 \lt p_0 }[/math] (zobacz zadanie B22)
  • dla dowolnej liczby pierwszej [math]\displaystyle{ q \geqslant 5 }[/math] jest [math]\displaystyle{ q \lt P (q - 1) }[/math] (zobacz zadanie B26)

Przypuśćmy teraz, że istnieje ciąg arytmetyczny kolejnych liczb pierwszych, taki że [math]\displaystyle{ n = p_0 \geqslant 5 }[/math]. Mamy

[math]\displaystyle{ d = p_1 - p_0 \lt p_0 \lt P (p_0 - 1) = P (n - 1) }[/math]

Zatem [math]\displaystyle{ P(n - 1) \nmid d }[/math], co jest niemożliwe.

Wynika stąd, że poza przypadkiem [math]\displaystyle{ n = p_0 = 3 }[/math] ciąg arytmetyczny kolejnych liczb pierwszych musi spełniać warunek [math]\displaystyle{ P(n)|d }[/math], czyli [math]\displaystyle{ P(n)|(p_1 - p_0) }[/math].

Poniższe tabele przedstawiają przykładowe ciągi arytmetyczne kolejnych liczb pierwszych o długościach [math]\displaystyle{ n = 3, 4, 5, 6 }[/math] dla rosnących wartości [math]\displaystyle{ p_0 }[/math]. Nie istnieje ciąg arytmetyczny kolejnych liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] dla [math]\displaystyle{ p_0 \lt 10^{13} }[/math]. Prawdopodobnie CPAP-7 pojawią się dopiero dla [math]\displaystyle{ p_0 \sim 10^{20} }[/math].

Znane są ciągi arytmetyczne kolejnych liczb pierwszych o długościach [math]\displaystyle{ n \leqslant 10 }[/math][14].

Pokaż tabele


Zadanie C72
Uzasadnij przypuszczenie, że ciągów arytmetycznych kolejnych liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] możemy oczekiwać dopiero dla [math]\displaystyle{ p_0 \sim 10^{20} }[/math].

Rozwiązanie



Uzupełnienie

Twierdzenie C73 (lemat Bézouta)
Jeżeli liczby całkowite [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] nie są jednocześnie równe zeru, a największy wspólny dzielnik tych liczb jest równy [math]\displaystyle{ D }[/math], to istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ a x + b y = D }[/math]
Dowód


Twierdzenie C74 (lemat Euklidesa)
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą oraz [math]\displaystyle{ a, b, d \in \mathbb{Z} }[/math].

  • jeżeli [math]\displaystyle{ d \mid a b }[/math] i liczba [math]\displaystyle{ d }[/math] jest względnie pierwsza z [math]\displaystyle{ a }[/math], to [math]\displaystyle{ d \mid b }[/math]
  • jeżeli [math]\displaystyle{ p \mid a b }[/math], to [math]\displaystyle{ p \mid a }[/math] lub [math]\displaystyle{ p \mid b }[/math]
Dowód


Twierdzenie C75
Niech [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ a \mid m }[/math] i [math]\displaystyle{ b \mid m }[/math] oraz [math]\displaystyle{ \gcd (a, b) = 1 }[/math], to [math]\displaystyle{ a b \mid m }[/math].

Dowód


Twierdzenie C76
Niech [math]\displaystyle{ a, b, c \in \mathbb{Z} }[/math]. Równanie [math]\displaystyle{ a x + b y = c }[/math] ma rozwiązanie wtedy i tylko wtedy, gdy największy wspólny dzielnik liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] jest dzielnikiem liczby [math]\displaystyle{ c }[/math].

Dowód


Uwaga C77
Z twierdzenia C76 wynika, że szukając rozwiązań równania [math]\displaystyle{ A x + B y = C }[/math] w liczbach całkowitych, powinniśmy

  • obliczyć największy wspólny dzielnik [math]\displaystyle{ D }[/math] liczb [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math]
  • jeżeli [math]\displaystyle{ D \gt 1 }[/math], należy sprawdzić, czy [math]\displaystyle{ D|C }[/math]
  • jeżeli [math]\displaystyle{ D \nmid C }[/math], to równanie [math]\displaystyle{ A x + B y = C }[/math] nie ma rozwiązań w liczbach całkowitych
  • jeżeli [math]\displaystyle{ D|C }[/math], należy podzielić obie strony równania [math]\displaystyle{ A x + B y = C }[/math] przez [math]\displaystyle{ D }[/math] i przejść do rozwiązywania równania równoważnego [math]\displaystyle{ a x + b y = c }[/math], gdzie [math]\displaystyle{ a = \frac{A}{D} }[/math], [math]\displaystyle{ b = \frac{B}{D} }[/math], [math]\displaystyle{ c = \frac{C}{D} }[/math], zaś największy wspólny dzielnik liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] jest równy [math]\displaystyle{ 1 }[/math].


Twierdzenie C78
Niech [math]\displaystyle{ a, b, c \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to równanie

[math]\displaystyle{ a x + b y = c }[/math]

ma nieskończenie wiele rozwiązań w liczbach całkowitych.

Jeżeli para liczb całkowitych [math]\displaystyle{ (x_0, y_0) }[/math] jest jednym z tych rozwiązań, to wszystkie pozostałe rozwiązania całkowite można otrzymać ze wzorów

[math]\displaystyle{ x = x_0 + b t }[/math]
[math]\displaystyle{ y = y_0 - a t }[/math]

gdzie [math]\displaystyle{ t }[/math] jest dowolną liczbą całkowitą.

Dowód


Przykład C79
Rozwiązania równania

[math]\displaystyle{ a x + b y = c }[/math]

gdzie [math]\displaystyle{ \gcd (a, b) = 1 }[/math], które omówiliśmy w poprzednim twierdzeniu, najłatwiej znaleźć korzystając w PARI/GP z funkcji gcdext(a, b). Funkcja ta zwraca wektor liczb [x0, y0, d], gdzie [math]\displaystyle{ d = \gcd (a, b) }[/math], a liczby [math]\displaystyle{ x_0 }[/math] i [math]\displaystyle{ y_0 }[/math] są rozwiązaniami równania

[math]\displaystyle{ a x_0 + b y_0 = \gcd (a, b) }[/math]

Ponieważ założyliśmy, że [math]\displaystyle{ \gcd (a, b) = 1 }[/math], to łatwo zauważmy, że

[math]\displaystyle{ a(c x_0) + b (c y_0) = c }[/math]

Zatem para liczb całkowitych [math]\displaystyle{ (c x_0, c y_0) }[/math] jest jednym z rozwiązań równania

[math]\displaystyle{ a x + b y = c }[/math]

i wszystkie pozostałe rozwiązania uzyskujemy ze wzorów

[math]\displaystyle{ x = c x_0 + b t }[/math]
[math]\displaystyle{ y = c y_0 - a t }[/math]

Niech [math]\displaystyle{ a = 7 }[/math] i [math]\displaystyle{ b = 17 }[/math]. Funkcja gcdext(7,17) zwraca wektor [5, -2, 1], zatem rozwiązaniami równania [math]\displaystyle{ 7 x + 17 y = 1 }[/math] są liczby

[math]\displaystyle{ x = 5 + 17 t }[/math]
[math]\displaystyle{ y = - 2 - 7 t }[/math]

A rozwiązaniami równania [math]\displaystyle{ 7 x + 17 y = 10 }[/math] są liczby

[math]\displaystyle{ x = 50 + 17 t }[/math]
[math]\displaystyle{ y = - 20 - 7 t }[/math]








Przypisy

  1. Korzystamy w tym momencie z zasady dobrego uporządkowania zbioru liczb naturalnych, która stwierdza, że każdy niepusty podzbiór zbioru liczb naturalnych zawiera element najmniejszy. (Wiki-pl), (Wiki-en)
  2. Określenie, że „liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ a k + b }[/math]”, jest jedynie bardziej czytelnym (obrazowym) zapisem stwierdzenia, że reszta z dzielenia liczby [math]\displaystyle{ n }[/math] przez [math]\displaystyle{ a }[/math] wynosi [math]\displaystyle{ b }[/math]. Zapis „liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ a k - 1 }[/math]” oznacza, że reszta z dzielenia liczby [math]\displaystyle{ n }[/math] przez [math]\displaystyle{ a }[/math] wynosi [math]\displaystyle{ a - 1 }[/math].
  3. Wikipedia, Linnik's theorem, (Wiki-en)
  4. MathWorld, Linnik's Theorem. (MathWorld)
  5. Yuri Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Mat. Sb. (N.S.) 15 (1944) 139–178.
  6. Yuri Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Mat. Sb. (N.S.) 15 (1944) 347–368.
  7. Triantafyllos Xylouris, Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression, Bonner Mathematische Schriften, vol. 404, Univ. Bonn, 2011, Diss.
  8. Enrico Bombieri, John B. Friedlander and Henryk Iwaniec, Primes in Arithmetic Progressions to Large Moduli. III, Journal of the American Mathematical Society 2 (1989) 215-224
  9. Wikipedia, Primes in arithmetic progression, (Wiki-en)
  10. MathWorld, Prime Arithmetic Progression, (LINK)
  11. J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Mathematische Annalen, 116 (1939) 1-50, (LINK)
  12. Wikipedia, Largest known primes in AP, (Wiki-en)
  13. Ben Green and Terence Tao, The Primes Contain Arbitrarily Long Arithmetic Progressions., Ann. of Math. (2) 167 (2008), 481-547, (LINK1), Preprint. 8 Apr 2004, (LINK2)
  14. Wikipedia, Primes in arithmetic progression - Largest known consecutive primes in AP, (Wiki-en)
  15. Henryk Dąbrowski, Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n - Uwagi do twierdzenia, (LINK)