Twierdzenie Czebyszewa o funkcji π(n): Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Linia 1059: Linia 1059:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A38</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie A38</span><br/>
 +
Niech <math>x \in \mathbb{R}_+</math>. Pokazać, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla każdego <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
 +
Rozważmy ciąg nierówności
 +
 
 +
::<math>\log x < 2 n \cdot x^{1 / 2 n} < x^{1 / n}</math>
 +
 
 +
Z twierdzenia A37 wiemy, że pierwsza nierówność jest prawdziwa dla dowolnych <math>x \in \mathbb{R}_+</math> i <math>n \in \mathbb{Z}_+</math>. Podnosząc strony drugiej nierówności do potęgi <math>2 n</math> otrzymujemy <math>(2 n)^{2 n} \cdot x < x^2</math>, czyli nierówność ta jest prawdziwa dla <math>x > (2 n)^{2 n}</math>. Wynika stąd, że wystarczy przyjąć <math>x_0 = (2 n)^{2 n}</math>.
 +
 
 +
 
 +
<span style="border-bottom-style: double;">Drugi sposób</span><br/>
 +
Nierówność <math>\log x < x^{1 / n}</math> możemy równoważnie zapisać w postaci <math>x < \exp (x^{1 / n})</math>. Jeżeli położymy <math>x = t^n</math>, to otrzymamy nierówność <math>t^n {< e^t} </math>. Ponieważ<ref name="exp1"/>
 +
 
 +
::<math>e^t = \sum_{k = 0}^{\infty} \frac{t^k}{k!} = 1 + t + \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24} + \frac{t^5}{120} + \ldots</math>
 +
 
 +
to
 +
 
 +
::<math>e^t > \frac{t^{n + 1}}{(n + 1) !} > t^n</math>
 +
 
 +
Pierwsza nierówność jest prawdziwa dla <math>t > 0</math>, bo pomijamy wyrazy dodatnie, a druga dla <math>t > (n + 1) !</math> Wystarczy zatem przyjąć <math>x_0 = [(n + 1) !]^n</math>. Ponieważ <math>[(n + 1) !]^n > (2 n)^{2 n}</math> dla <math>n \geqslant 4</math>, to jest to gorsze oszacowanie wartości <math>x_0</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A39</span><br/>
 
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:
 
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:
  
Linia 1118: Linia 1145:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A39</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A40</span><br/>
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie
  
Linia 1144: Linia 1171:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie A40</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie A41</span><br/>
Korzystając z twierdzenia A39 pokazać, że
+
Korzystając z twierdzenia A40 pokazać, że
  
 
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4</math>
 
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4</math>
Linia 1172: Linia 1199:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A41</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A42</span><br/>
 
Każda liczba pierwsza <math>p</math>, taka że <math>p \in \left( \frac{n}{2}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
Każda liczba pierwsza <math>p</math>, taka że <math>p \in \left( \frac{n}{2}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
  
Linia 1188: Linia 1215:
  
  
Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia A42 i A44 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A43 i A45 to tylko twierdzenia A42 i A44 dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A42 i A44, to może je pominąć.
+
Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia A43 i A45 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A44 i A46 to tylko twierdzenia A43 i A45 dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A43 i A45, to może je pominąć.
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A42</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A43</span><br/>
 
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
  
Linia 1286: Linia 1313:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład A43</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład A44</span><br/>
 
Jeżeli <math>n \geqslant 6</math> i liczba pierwsza <math>p \in \left( \frac{n}{2}, \frac{2 n}{3} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
Jeżeli <math>n \geqslant 6</math> i liczba pierwsza <math>p \in \left( \frac{n}{2}, \frac{2 n}{3} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
  
Linia 1349: Linia 1376:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A44</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A45</span><br/>
 
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( \frac{n}{k + \tfrac{1}{2}}, \frac{n}{k} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
 
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( \frac{n}{k + \tfrac{1}{2}}, \frac{n}{k} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
  
Linia 1426: Linia 1453:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład A45</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład A46</span><br/>
 
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( \frac{2 n}{5}, \frac{n}{2} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
 
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( \frac{2 n}{5}, \frac{n}{2} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
  
Linia 1491: Linia 1518:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga A46</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga A47</span><br/>
Z przykładu A43 nie wynika, że w&nbsp;przedziale <math>\left( \frac{n}{2}, \frac{2 n}{3} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;A45 oraz twierdzeń&nbsp;A42 i&nbsp;A44. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
+
Z przykładu A44 nie wynika, że w&nbsp;przedziale <math>\left( \frac{n}{2}, \frac{2 n}{3} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;A46 oraz twierdzeń&nbsp;A43 i&nbsp;A45. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład A47</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład A48</span><br/>
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń A42 i A44 do współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.
+
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń A43 i A45 do współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
 
Wybraliśmy współczynnik dwumianowy <math>\binom{2 \cdot 3284}{3284}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
 
Wybraliśmy współczynnik dwumianowy <math>\binom{2 \cdot 3284}{3284}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
  
Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;A42 i A44 nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
+
Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;A43 i A45 nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
  
  
Linia 1511: Linia 1538:
 
Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>
 
Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>
  
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A42, jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A44, jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;A42 i A44 można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
+
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A43, jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A45, jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;A43 i A45 można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
  
 
Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>
 
Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>

Wersja z 18:24, 17 maj 2024

07.11.2021



Oznaczenia

Będziemy stosowali następujące oznaczenia:

[math]\displaystyle{ \mathbb{Z} }[/math] — zbiór liczb całkowitych
[math]\displaystyle{ \mathbb{Z}_+ }[/math] — zbiór liczb całkowitych dodatnich
[math]\displaystyle{ \mathbb{N} }[/math] — zbiór liczb naturalnych [math]\displaystyle{ \mathbb{N} = \mathbb{Z}_{+}\cup \left \{ 0 \right \} }[/math]
[math]\displaystyle{ \mathbb{R} }[/math] — zbiór liczb rzeczywistych
[math]\displaystyle{ d \mid n }[/math] — czytaj: d dzieli n ([math]\displaystyle{ d }[/math] jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ d \nmid n }[/math] — czytaj: d nie dzieli n ([math]\displaystyle{ d }[/math] nie jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ p_n }[/math][math]\displaystyle{ n }[/math]-ta liczba pierwsza
[math]\displaystyle{ \pi (n) }[/math] — ilość liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ P(n) }[/math] — iloczyn liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ \lfloor x \rfloor }[/math] — największa liczba całkowita nie większa od [math]\displaystyle{ x }[/math]
[math]\displaystyle{ \binom{n}{m} }[/math] — współczynnik dwumianowy (symbol Newtona), [math]\displaystyle{ \binom{n}{m} = \frac{n!}{m! \cdot (n - m) !} }[/math]
[math]\displaystyle{ \log (x) }[/math] — logarytm naturalny liczby [math]\displaystyle{ x \gt 0 }[/math]
[math]\displaystyle{ W_p (n) }[/math] — wykładnik z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ n }[/math]
[math]\displaystyle{ n }[/math] — oznacza zawsze liczbę naturalną
[math]\displaystyle{ p }[/math] — oznacza zawsze liczbę pierwszą


Przykładowe wartości niektórych wypisanych wyżej funkcji:

[math]\displaystyle{ p_2 = 3 }[/math],   [math]\displaystyle{ p_{10} = 29 }[/math],   [math]\displaystyle{ p_{100} = 541 }[/math]
[math]\displaystyle{ \pi (10) = 4 }[/math],   [math]\displaystyle{ \pi (100) = 25 }[/math],   [math]\displaystyle{ \pi (541) = 100 }[/math]
[math]\displaystyle{ P(5) = 30 }[/math],   [math]\displaystyle{ P(10) = 210 }[/math],   [math]\displaystyle{ P(50) = 614889782588491410 }[/math]
[math]\displaystyle{ \lfloor 1.2 \rfloor = 1 }[/math],   [math]\displaystyle{ \lfloor 2.8 \rfloor = 2 }[/math],   [math]\displaystyle{ \lfloor - 1.5 \rfloor = - 2 }[/math]
[math]\displaystyle{ \binom{5}{2} = 10 }[/math],   [math]\displaystyle{ \binom{10}{5} = 252 }[/math],   [math]\displaystyle{ \binom{9}{3} = 84 }[/math]
[math]\displaystyle{ W_2 (8) = 3 }[/math],   [math]\displaystyle{ W_3 (18) = 2 }[/math],   [math]\displaystyle{ W_7 (28) = 1 }[/math]


Funkcje te są zaimplementowane w PARI/GP[1]

[math]\displaystyle{ p_n }[/math] = prime(n)
[math]\displaystyle{ \pi (n) }[/math] = primepi(n)
[math]\displaystyle{ P(n) }[/math] = prodeuler(p=2, n, p)
[math]\displaystyle{ \lfloor x \rfloor }[/math] = floor(x)
[math]\displaystyle{ \binom{n}{m} }[/math] = binomial(n, m)
[math]\displaystyle{ W_p (n) }[/math] = valuation(n, p)



Twierdzenie Czebyszewa

W 1852 roku rosyjski matematyk Czebyszew[2][3] udowodnił, że dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ a \cdot \frac{n}{\log n} \: \underset{n \geqslant 11}{\lt } \: \pi (n) \: \underset{n \geqslant 96098}{\lt } \: b \cdot \frac{n}{\log n} }[/math]

gdzie

[math]\displaystyle{ a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022 \qquad \quad b = \tfrac{6}{5} a = 1.105550428 }[/math]


Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z nierównościami udowodnionymi przez Czebyszewa w teorii prawdopodobieństwa), a twierdzeniem Czebyszewa nazywany jest łatwy wniosek z tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math]

Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] nabrało nowego życia, gdy w 1936 Erdos[4] zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.


Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami[5][6][7][8] funkcji [math]\displaystyle{ \pi (n) }[/math] oraz [math]\displaystyle{ p_n }[/math]


[math]\displaystyle{ \frac{n}{\log n} \left( 1 + \frac{1}{\log n} \right) \underset{n \geqslant 599}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } \frac{n}{\log n} \left( 1 + \frac{1.28}{\log n} \right) }[/math]


[math]\displaystyle{ n (\log n + \log \log n - 1) \underset{n \geqslant 2}{\lt } p_n \underset{n \geqslant 6}{\lt } n (\log n + \log \log n) }[/math]


Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] oraz analogiczne oszacowanie dla funkcji [math]\displaystyle{ p_n }[/math].


Twierdzenie A1
Prawdziwe są następujące oszacowania:


[math]\displaystyle{ 0.72 \cdot n \log n \underset{n \geqslant 1}{\lt } p_n \underset{n \geqslant 3}{\lt } 2n \log n }[/math]


[math]\displaystyle{ \frac{2}{3} \cdot \frac{n}{\log n} \underset{n \geqslant 3}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } \frac{2 n}{\log n} }[/math]


Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.



Oszacowanie [math]\displaystyle{ p_n }[/math] od dołu i [math]\displaystyle{ \pi (n) }[/math] od góry

Rozpoczniemy od oszacowania liczby [math]\displaystyle{ \binom{2n}{n} }[/math]. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.

Twierdzenie A2
Niech [math]\displaystyle{ n, k \in \mathbb{N} }[/math]. Współczynnik dwumianowy [math]\displaystyle{ \binom{n}{k} }[/math] jest zawsze liczbą całkowitą dodatnią.

Dowód


Twierdzenie A3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Współczynnik dwumianowy [math]\displaystyle{ \binom{2 n}{n} }[/math] jest liczbą parzystą.

Dowód


Twierdzenie A4
Prawdziwe są następujące oszacowania współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math]

[math]\displaystyle{ 3.8^{n + 1} \underset{n \geqslant 80}{\lt } \binom{2 n}{n} \underset{n \geqslant 5}{\lt } 4^{n - 1} }[/math]
Dowód


Twierdzenie A5
Dla [math]\displaystyle{ n \geqslant 12 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt 3 n }[/math].

Dowód


Twierdzenie A6
Ciąg [math]\displaystyle{ a_n = \left( 1 + \frac{1}{n} \right)^n }[/math] jest rosnący i ograniczony. Dla wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math].

Dowód


Twierdzenie A7
Prawdziwe są następujące oszacowania:

[math]\displaystyle{ n^n \underset{n \geqslant 13}{\lt } p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{\lt } (n \log n)^n }[/math]
Dowód


Twierdzenie A8
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \frac{P (2 n)}{P (n)} \lt 4^{n - 1} }[/math], gdzie [math]\displaystyle{ P (n) }[/math] oznacza iloczyn wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math].

Dowód


Twierdzenie A9
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ P(n) \lt 4^n }[/math]

Dowód


Twierdzenie A10
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt \frac{1}{2 \log 2} \cdot n \log n }[/math].

Dowód


Twierdzenie A11
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (2 n) - \pi (n) \lt 2 \log 2 \cdot \frac{n}{\log n} }[/math].

Dowód


Twierdzenie A12
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \lt 2 \cdot \frac{n}{\log n} }[/math].

Dowód



Wykładnik z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} }[/math].


Definicja A13
Funkcję [math]\displaystyle{ \lfloor x \rfloor }[/math] (czytaj: całość z [math]\displaystyle{ x }[/math]) definiujemy jako największą liczbę całkowitą nie większą od [math]\displaystyle{ x }[/math]. Operacyjnie możemy ją zdefiniować następująco: niech liczby [math]\displaystyle{ x, \varepsilon \in \mathbb{R} }[/math], liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math], jeżeli [math]\displaystyle{ x = k + \varepsilon }[/math], to [math]\displaystyle{ \lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k }[/math].


Twierdzenie A14
Dla [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], [math]\displaystyle{ x \in \mathbb{R} }[/math] jest [math]\displaystyle{ \left \lfloor \frac{x}{n} \right\rfloor = \left \lfloor \frac{\left \lfloor x \right \rfloor}{n} \right \rfloor }[/math].

Dowód


Twierdzenie A15
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Liczba [math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor }[/math] przyjmuje wartości [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math].

Dowód


Bardzo istotnym rezultatem (z punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n! }[/math]


Definicja A16
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą, zaś [math]\displaystyle{ a }[/math] dowolną liczbą naturalną. Jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ a }[/math], to powiemy, że funkcja [math]\displaystyle{ W_p (n) }[/math] przyjmuje wartość [math]\displaystyle{ a }[/math]. Fakt ten możemy zapisać następująco

[math]\displaystyle{ W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n }[/math]


Przykład A17
[math]\displaystyle{ W_5 (100) = 2 }[/math],   [math]\displaystyle{ W_7 (42) = 1 }[/math],   ponieważ [math]\displaystyle{ 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11 }[/math], to [math]\displaystyle{ W_3 (11!) = 4 }[/math]


Wprost z definicji funkcji [math]\displaystyle{ W_p (n) }[/math] wynikają następujące właściwości:


Twierdzenie A18

Podstawowe własności funkcji [math]\displaystyle{ W_p (n) }[/math]

  1. [math]\displaystyle{ \;\; W_p (n \cdot m) = W_p (n) + W_p (m) }[/math]
  2. [math]\displaystyle{ \;\; W_p (n \cdot p^a) = a + W_p (n) }[/math]
  3. [math]\displaystyle{ \;\; W_{p}\left ( \frac{n}{m} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad \frac{n}{m}\in \mathbb{Z}_{+} }[/math]
  4. [math]\displaystyle{ \;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0 }[/math]


Twierdzenie A19
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Ilość liczb podzielnych przez [math]\displaystyle{ p }[/math] i występujących w ciągu [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] wynosi [math]\displaystyle{ r = \left\lfloor \frac{n}{p} \right\rfloor }[/math].

Dowód


Przykład A20
Ilość liczb całkowitych dodatnich podzielnych przez [math]\displaystyle{ 5 }[/math] i nie większych od [math]\displaystyle{ 63 }[/math] wynosi [math]\displaystyle{ \left\lfloor \frac{63}{5} \right\rfloor = 12 }[/math]. Liczby te to [math]\displaystyle{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 }[/math].


Twierdzenie A19 umożliwi nam określenie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Twierdzenie A21
Liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor }[/math]

Dowód


Uwaga A22
Należy zauważyć, że liczba sumowań jest skończona, bowiem bardziej precyzyjnie możemy powyższy wzór zapisać w postaci

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^B \left\lfloor \frac{n}{p^k} \right\rfloor }[/math]

gdzie [math]\displaystyle{ B = \lfloor \log_2 (n) \rfloor }[/math]. Jest tak dlatego, że jeżeli [math]\displaystyle{ k }[/math] przekroczy [math]\displaystyle{ \lfloor \log_2 (n) \rfloor }[/math], to dla liczby pierwszej [math]\displaystyle{ p = 2 }[/math], jak również dla wszystkich innych liczb pierwszych mamy

[math]\displaystyle{ \frac{n}{p^k} \lt 1 }[/math]

czyli dla [math]\displaystyle{ k \gt B }[/math] sumujemy same zera.


Przykład A23
Niech [math]\displaystyle{ n = 30 }[/math], [math]\displaystyle{ p = 3 }[/math]

[math]\displaystyle{ W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3 \cdot 6 \cdot 9) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + 1 = }[/math]
[math]\displaystyle{ \quad = 14 }[/math]

Co jest zgodne ze wzorem:

[math]\displaystyle{ W_3 (30!) = \left\lfloor \frac{30}{3} \right\rfloor + \left\lfloor \frac{30}{3^2} \right\rfloor + \left\lfloor \frac{30}{3^3} \right\rfloor = 10 + 3 + 1 = 14 }[/math]



Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci [math]\displaystyle{ \binom{2 n}{n} }[/math]. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.


Twierdzenie A24
Liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] z wykładnikiem

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left( \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right) }[/math]
Dowód


Twierdzenie A25
Liczby pierwsze spełniające warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math] występują w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].

Dowód


Twierdzenie A26
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Jeżeli [math]\displaystyle{ p^a \biggr\rvert \binom{2 n}{n} }[/math], to [math]\displaystyle{ p^a \leqslant 2 n }[/math].

Dowód



Oszacowanie [math]\displaystyle{ p_n }[/math] od góry i [math]\displaystyle{ \pi (n) }[/math] od dołu

Z twierdzenia A26 wynika natychmiast


Twierdzenie A27
Niech [math]\displaystyle{ \binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math] będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej [math]\displaystyle{ q_i }[/math], [math]\displaystyle{ i = 1, \ldots, s }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ q^{\alpha_i}_i \leqslant 2 n }[/math].

Uwaga: w powyższym twierdzeniu [math]\displaystyle{ q_i }[/math] nie oznacza [math]\displaystyle{ i }[/math]-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie [math]\displaystyle{ i }[/math] ze zboru liczb pierwszych [math]\displaystyle{ q_1, \ldots q_s }[/math], które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera.


Twierdzenie A28
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest następujące oszacowanie współczynnika dwumianowego [math]\displaystyle{ \binom{2 n}{n} }[/math]

[math]\displaystyle{ \binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]
Dowód


Twierdzenie A29
Dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \pi (n) \gt \frac{2}{3} \cdot \frac{n}{\log n} }[/math]
Dowód


Twierdzenie A30
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 2 n \log n }[/math]

Dowód






Dowód twierdzenia A30 kończy dowód całego twierdzenia A1. Możemy teraz dokończyć dowód twierdzenia A7 i pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n \lt (n \log n)^n }[/math]
Dowód



Uwagi do dowodu

Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i udowodnić


Twierdzenie A31
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 1.875 \cdot n \log n }[/math]

Dowód


Twierdzenie A32
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) \lt 1.733 \cdot \frac{n}{\log n} }[/math]
Dowód


Uwaga A33
Dowód twierdzenia A31 wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja prime(n). Analogiczna sytuacja miała miejsce w przypadku twierdzenia A32 – tam musieliśmy wielokrotnie wywoływać funkcję primepi(n). Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy Test1(n) i Test2(n) wywołane z parametrami n = 520000 i odpowiednio n = 8*10^6 odpowiadają poleceniom

for(s = 1, 520000, if( prime(s) >= s^(5/4), print(s) ))
for(n = 2, 8 * 10^6, if( primepi(n) >= 1.733 * n / log(n), print(n) ))

ale wykonywane są znacznie szybciej.

Test1(n) = 
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
{
local(p, k);
k = 1;
p = 2;
while( k <= n,
       if( p >= k^(5/4), print(k) );
       k = k + 1;
       p = nextprime(p + 1);  \\ liczba p ma wartość prime(k)
     );
}
Test2(n) = 
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
local(s, k);
s = 1;
k = 2;
while( k <= n,
       if( s >= 1.733 * k / log(k), print(k) );
       k = k + 1;
       s = s + isprime(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
     );
}


Uwaga A34
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] lub [math]\displaystyle{ p_n }[/math]. Już osiągnięcie tą drogą oszacowania [math]\displaystyle{ p_n \lt 1.6 \cdot n \log n }[/math] przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność

[math]\displaystyle{ \log x \lt \frac{2}{3} \cdot x^{1 / 16} }[/math]

jest prawdziwa dla [math]\displaystyle{ x \gt 7.671 \cdot 10^{32} }[/math].



Zastosowania

Ciekawy rezultat wynika z twierdzenia A7, ale wcześniej musimy udowodnić twierdzenie o średniej arytmetycznej i geometrycznej.

Twierdzenie A35
Dla dowolnych liczb dodatnich [math]\displaystyle{ a_1, a_2, \ldots, a_n }[/math] średnia arytmetyczna jest nie mniejsza od średniej geometrycznej

[math]\displaystyle{ \frac{a_1 + a_2 + \ldots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n} }[/math]
Dowód


Twierdzenie A36
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność [math]\displaystyle{ p_1 + p_2 + \ldots + p_n \gt n^2 }[/math].

Dowód


Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] i [math]\displaystyle{ p_n }[/math], które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] istnieje takie [math]\displaystyle{ n_0 }[/math], że dla każdego [math]\displaystyle{ n \gt n_0 }[/math] prawdziwa jest nierówność [math]\displaystyle{ \log x \lt x^{\varepsilon} }[/math]. Inaczej mówiąc, funkcja [math]\displaystyle{ \log x }[/math] rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.


Twierdzenie A37
Prawdziwe są następujące nierówności:

1.    [math]\displaystyle{ e^x \gt x \qquad \qquad \qquad \quad \:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
2.    [math]\displaystyle{ e^x \gt 2 x \qquad \qquad \qquad \;\;\,\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
3.    [math]\displaystyle{ \log x \lt n \cdot x^{1 / n} \qquad \quad \;\;\: }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
4.    [math]\displaystyle{ \log x \leqslant n (x^{1 / n} - 1) \qquad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
Dowód


Zadanie A38
Niech [math]\displaystyle{ x \in \mathbb{R}_+ }[/math]. Pokazać, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla każdego [math]\displaystyle{ x \gt x_0 }[/math] jest [math]\displaystyle{ \log x \lt x^{1 / n} }[/math].

Rozwiązanie


Twierdzenie A39
Dla funkcji [math]\displaystyle{ p_n }[/math] i [math]\displaystyle{ \pi (n) }[/math] prawdziwe są następujące oszacowania:

[math]\displaystyle{ 10 n \underset{n \geqslant 6473}{\lt } p_n \underset{n \geqslant 2}{\lt } n^2 }[/math]
[math]\displaystyle{ \sqrt{n} \underset{n \geqslant 5}{\lt } \pi (n) \underset{n \geqslant 64721}{\lt } \frac{n}{10} }[/math]
Dowód


Twierdzenie A40
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n^2})^{n / 3} }[/math]
Dowód


Zadanie A41
Korzystając z twierdzenia A40 pokazać, że

  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4 }[/math]
  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{2 n})^3 \qquad \qquad \;\; \text{dla } \; n \geqslant 7 }[/math]
Rozwiązanie


Twierdzenie A42
Każda liczba pierwsza [math]\displaystyle{ p }[/math], taka że [math]\displaystyle{ p \in \left( \frac{n}{2}, n \right] }[/math] występuje w rozwinięciu [math]\displaystyle{ n! }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód


Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza [math]\displaystyle{ p }[/math], aby występowała w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia A43 i A45 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A44 i A46 to tylko twierdzenia A43 i A45 dla wybranych wartości liczby [math]\displaystyle{ k }[/math]. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A43 i A45, to może je pominąć.


Twierdzenie A43
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą naturalną. Jeżeli [math]\displaystyle{ n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right) }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód


Przykład A44
Jeżeli [math]\displaystyle{ n \geqslant 6 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( \frac{n}{2}, \frac{2 n}{3} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód


Twierdzenie A45
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza [math]\displaystyle{ p \in \left( \frac{n}{k + \tfrac{1}{2}}, \frac{n}{k} \right] }[/math], to dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math] liczba [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze.

Dowód


Przykład A46
Jeżeli [math]\displaystyle{ n \geqslant 8 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( \frac{2 n}{5}, \frac{n}{2} \right] }[/math], to [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ \binom{2 n}{n} }[/math] na czynniki pierwsze.

Dowód


Uwaga A47
Z przykładu A44 nie wynika, że w przedziale [math]\displaystyle{ \left( \frac{n}{2}, \frac{2 n}{3} \right] }[/math] znajduje się choćby jedna liczba pierwsza [math]\displaystyle{ p }[/math]. Analogiczna uwaga jest prawdziwa w przypadku przykładu A46 oraz twierdzeń A43 i A45. Istnienie liczby pierwszej w określonym przedziale będzie tematem kolejnego artykułu.


Przykład A48
Pokazujemy i omawiamy wynik zastosowania twierdzeń A43 i A45 do współczynnika dwumianowego [math]\displaystyle{ \binom{2 \cdot 3284}{3284} }[/math]. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math], co w naszym przypadku daje [math]\displaystyle{ p \gt \sqrt{2 \cdot 3284} \approx 81.04 }[/math].

Pokaż przykład








Przypisy

  1. Wikipedia, PARI/GP, (Wiki-en)
  2. Wikipedia, Pafnuty Czebyszew (1821 - 1893), (Wiki-pl), (Wiki-ru)
  3. P. L. Chebyshev, Mémoire sur les nombres premiers, J. de Math. Pures Appl. (1) 17 (1852), 366-390, (LINK)
  4. P. Erdos, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198, (LINK1), (LINK2)
  5. P. Dusart, The [math]\displaystyle{ k^{th} }[/math] prime is greater than [math]\displaystyle{ k (\ln k + \ln \ln k - 1) }[/math] for [math]\displaystyle{ k \geqslant 2 }[/math], Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.
  6. P. Dusart, Sharper bounds for [math]\displaystyle{ \psi }[/math], [math]\displaystyle{ \theta }[/math], [math]\displaystyle{ \pi }[/math], [math]\displaystyle{ p_k }[/math], Rapport de recherche no. 1998-06, Université de Limoges
  7. P. Dusart, Estimates of some functions over primes without R.H., (2010), (LINK)
  8. P. Dusart, Explicit estimates of some functions over primes, Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.
  9. Wikipedia, Twierdzenie o zbieżności ciągu monotonicznego, (LINK)
  10. Skocz do: 10,0 10,1 Wikipedia, Characterizations of the exponential function, (Wiki-en)