Szeregi liczbowe: Różnice pomiędzy wersjami
Linia 201: | Linia 201: | ||
− | <span id="D11" style="font-size: 110%; font-weight: bold;">Twierdzenie | + | <span id="D11" style="font-size: 110%; font-weight: bold;">Definicja D11</span><br/> |
+ | Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''bezwzględnie zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest zbieżny. | ||
+ | |||
+ | Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''warunkowo zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest zbieżny, ale szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest rozbieżny. | ||
+ | |||
+ | |||
+ | |||
+ | <span id="D12" style="font-size: 110%; font-weight: bold;">Twierdzenie D12</span><br/> | ||
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w jednej z postaci | Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w jednej z postaci | ||
Linia 239: | Linia 246: | ||
− | <span id=" | + | <span id="D13" style="font-size: 110%; font-weight: bold;">Twierdzenie D13</span><br/> |
Następujące szeregi są zbieżne | Następujące szeregi są zbieżne | ||
Linia 290: | Linia 297: | ||
− | <span id=" | + | <span id="D14" style="font-size: 110%; font-weight: bold;">Twierdzenie D14</span><br/> |
Następujące szeregi są zbieżne | Następujące szeregi są zbieżne | ||
Linia 395: | Linia 402: | ||
− | Rezultat ten wykorzystamy w pełni w przykładzie [[# | + | Rezultat ten wykorzystamy w pełni w przykładzie [[#D15|D15]], a do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy |
::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math> | ::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math> | ||
Linia 409: | Linia 416: | ||
− | <span id=" | + | <span id="D15" style="font-size: 110%; font-weight: bold;">Przykład D15</span><br/> |
Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu. | Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu. | ||
Linia 419: | Linia 426: | ||
Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie. | Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie. | ||
− | Dowodząc twierdzenie [[# | + | Dowodząc twierdzenie [[#D14|D14]], w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności |
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math> | ::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math> | ||
Linia 483: | Linia 490: | ||
== Szeregi nieskończone i całka oznaczona == | == Szeregi nieskończone i całka oznaczona == | ||
− | <span id=" | + | <span id="D16" style="font-size: 110%; font-weight: bold;">Twierdzenie D16</span><br/> |
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i malejąca w przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności | Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i malejąca w przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności | ||
Linia 518: | Linia 525: | ||
− | <span id=" | + | <span id="D17" style="font-size: 110%; font-weight: bold;">Przykład D17</span><br/> |
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>. | Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>. | ||
Linia 542: | Linia 549: | ||
− | <span id=" | + | <span id="D18" style="font-size: 110%; font-weight: bold;">Twierdzenie D18 (kryterium całkowe zbieżności szeregów)</span><br/> |
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i malejąca w przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie. | Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i malejąca w przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie. | ||
Linia 555: | Linia 562: | ||
− | Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w twierdzeniu [[# | + | Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w twierdzeniu [[#D16|D16]] i przechodząc z <math>n</math> do nieskończoności, dostajemy |
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math> | ::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math> | ||
Linia 570: | Linia 577: | ||
− | <span id=" | + | <span id="D19" style="font-size: 110%; font-weight: bold;">Przykład D19</span><br/> |
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha]. | Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha]. | ||
Linia 603: | Linia 610: | ||
− | <span id=" | + | <span id="D20" style="font-size: 110%; font-weight: bold;">Twierdzenie D20</span><br/> |
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i malejąca w przedziale <math>[m, \infty)</math> oraz | Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i malejąca w przedziale <math>[m, \infty)</math> oraz | ||
Linia 615: | Linia 622: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Korzystając ze wzoru udowodnionego w twierdzeniu [[# | + | Korzystając ze wzoru udowodnionego w twierdzeniu [[#D16|D16]] i przechodząc z <math>n</math> do nieskończoności, dostajemy |
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math> | ::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math> | ||
Linia 633: | Linia 640: | ||
− | <span id=" | + | <span id="D21" style="font-size: 110%; font-weight: bold;">Przykład D21</span><br/> |
− | Twierdzenie [[# | + | Twierdzenie [[#D20|D20]] umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy |
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math> | ::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math> | ||
Linia 684: | Linia 691: | ||
− | Prostym wnioskiem z twierdzenia [[# | + | Prostym wnioskiem z twierdzenia [[#D16|D16]] jest następujące<br/> |
− | <span id=" | + | <span id="D22" style="font-size: 110%; font-weight: bold;">Twierdzenie D22</span><br/> |
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i malejącą w przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>. | Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i malejącą w przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>. | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Korzystając ze wzoru z twierdzenia [[# | + | Korzystając ze wzoru z twierdzenia [[#D16|D16]] i przechodząc z <math>n</math> do nieskończoności, otrzymujemy |
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math> | ::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math> | ||
Linia 711: | Linia 718: | ||
− | <span id=" | + | <span id="D23" style="font-size: 110%; font-weight: bold;">Twierdzenie D23</span><br/> |
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i malejącą w przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math> | Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i malejącą w przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math> | ||
Linia 723: | Linia 730: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Z twierdzenia [[# | + | Z twierdzenia [[#D16|D16]] mamy |
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math> | ::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math> | ||
Linia 743: | Linia 750: | ||
− | <span id=" | + | <span id="D24" style="font-size: 110%; font-weight: bold;">Uwaga D24</span><br/> |
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i malejącą w przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że: | Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i malejącą w przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że: | ||
* korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny | * korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny | ||
− | * jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[# | + | * jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D23|D23]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math> |
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w górę do wygodnej dla nas wartości. | Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w górę do wygodnej dla nas wartości. | ||
Linia 754: | Linia 761: | ||
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna. | Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna. | ||
− | Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie [[# | + | Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie [[#D23|D23]]. |
− | <span id=" | + | <span id="D25" style="font-size: 110%; font-weight: bold;">Zadanie D25</span><br/> |
− | Korzystając z twierdzenia [[# | + | Korzystając z twierdzenia [[#D23|D23]], znaleźć oszacowania sumy częściowej szeregów |
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> | ::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> | ||
Linia 789: | Linia 796: | ||
− | <span id=" | + | <span id="D26" style="font-size: 110%; font-weight: bold;">Zadanie D26</span><br/> |
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny. | Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny. | ||
Linia 815: | Linia 822: | ||
− | <span id=" | + | <span id="D27" style="font-size: 110%; font-weight: bold;">Zadanie D27</span><br/> |
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny. | Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny. | ||
Linia 855: | Linia 862: | ||
== Szeregi nieskończone i liczby pierwsze == | == Szeregi nieskończone i liczby pierwsze == | ||
− | <span id=" | + | <span id="D28" style="font-size: 110%; font-weight: bold;">Twierdzenie D28</span><br/> |
Następujące szeregi są zbieżne | Następujące szeregi są zbieżne | ||
Linia 896: | Linia 903: | ||
− | <span id=" | + | <span id="D29" style="font-size: 110%; font-weight: bold;">Twierdzenie D29</span><br/> |
Następujące szeregi są zbieżne | Następujące szeregi są zbieżne | ||
Linia 940: | Linia 947: | ||
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math> | ::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math> | ||
− | Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[# | + | Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D14|D14]] p. 4 lub przykład [[#D19|D19]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math> |
'''Punkt 2.'''<br/> | '''Punkt 2.'''<br/> | ||
Linia 961: | Linia 968: | ||
− | <span id=" | + | <span id="D30" style="font-size: 110%; font-weight: bold;">Twierdzenie D30</span><br/> |
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny. | Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny. | ||
Linia 979: | Linia 986: | ||
− | <span id=" | + | <span id="D31" style="font-size: 110%; font-weight: bold;">Uwaga D31</span><br/> |
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat. | Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat. | ||
− | <span id=" | + | <span id="D32" style="font-size: 110%; font-weight: bold;">Twierdzenie D32</span><br/> |
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności | Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności | ||
Linia 1036: | Linia 1043: | ||
− | <span id=" | + | <span id="D33" style="font-size: 110%; font-weight: bold;">Twierdzenie D33</span><br/> |
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z jakim liczba pierwsza <math>p</math> występuje w rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania | Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z jakim liczba pierwsza <math>p</math> występuje w rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania | ||
Linia 1085: | Linia 1092: | ||
− | <span id=" | + | <span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34</span><br/> |
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | ||
Linia 1095: | Linia 1102: | ||
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math> | ::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math> | ||
− | Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[# | + | Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D32|D32]]), to |
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math> | ::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math> | ||
Linia 1109: | Linia 1116: | ||
− | <span id=" | + | <span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/> |
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | ||
Linia 1120: | Linia 1127: | ||
− | to z twierdzenia [[# | + | to z twierdzenia [[#D34|D34]] dostajemy |
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math> | ::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math> | ||
Linia 1134: | Linia 1141: | ||
::::::<math>\quad \;\: > - 1.755367</math> | ::::::<math>\quad \;\: > - 1.755367</math> | ||
− | Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[# | + | Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D29|D29]] p. 3).<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 1140: | Linia 1147: | ||
− | <span id=" | + | <span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/> |
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | ||
Linia 1185: | Linia 1192: | ||
− | <span id=" | + | <span id="D37" style="font-size: 110%; font-weight: bold;">Twierdzenie D37</span><br/> |
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie | ||
Linia 1195: | Linia 1202: | ||
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math> | ::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math> | ||
− | to z twierdzenia [[# | + | to z twierdzenia [[#D36|D36]] dostajemy |
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math> | ::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math> | ||
Linia 1213: | Linia 1220: | ||
− | <span id=" | + | <span id="D38" style="font-size: 110%; font-weight: bold;">Uwaga D38</span><br/> |
{| class="wikitable" | {| class="wikitable" | ||
| | | | ||
Linia 1230: | Linia 1237: | ||
− | <span id=" | + | <span id="D39" style="font-size: 110%; font-weight: bold;">Uwaga D39</span><br/> |
{| class="wikitable" | {| class="wikitable" | ||
| | | | ||
Linia 1247: | Linia 1254: | ||
− | <span id=" | + | <span id="D40" style="font-size: 110%; font-weight: bold;">Uwaga D40</span><br/> |
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń | Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń | ||
Linia 1258: | Linia 1265: | ||
− | <span id=" | + | <span id="D41" style="font-size: 110%; font-weight: bold;">Twierdzenie D41</span><br/> |
Prawdziwy jest następujący związek | Prawdziwy jest następujący związek | ||
Linia 1299: | Linia 1306: | ||
− | <span id=" | + | <span id="D42" style="font-size: 110%; font-weight: bold;">Twierdzenie D42</span><br/> |
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie | Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie | ||
Linia 1336: | Linia 1343: | ||
− | Z twierdzenia [[# | + | Z twierdzenia [[#D41|D41]] wiemy, że |
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math> | ::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math> | ||
Linia 1377: | Linia 1384: | ||
− | Korzystając kolejno z twierdzeń [[# | + | Korzystając kolejno z twierdzeń [[#D16|D16]] i [[Ciągi liczbowe#C18|C18]], dostajemy |
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math> | ::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math> | ||
Linia 1400: | Linia 1407: | ||
− | <span id=" | + | <span id="D43" style="font-size: 110%; font-weight: bold;">Zadanie D43</span><br/> |
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z nierówności prawdziwej dla <math>x \geqslant 32</math> | Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z nierówności prawdziwej dla <math>x \geqslant 32</math> | ||
Linia 1408: | Linia 1415: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
− | Z twierdzenia [[# | + | Z twierdzenia [[#D42|D42]] wiemy, że dla <math>x \geqslant 318</math> jest |
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math> | ::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math> | ||
Linia 1419: | Linia 1426: | ||
− | Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z twierdzenia [[# | + | Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z twierdzenia [[#D33|D33]], łatwo znajdujemy oszacowanie |
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math> | ::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math> | ||
Linia 1449: | Linia 1456: | ||
− | Jednocześnie z twierdzenia [[# | + | Jednocześnie z twierdzenia [[#D32|D32]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem |
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math> | ::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math> | ||
Linia 1496: | Linia 1503: | ||
− | <span id=" | + | <span id="D44" style="font-size: 110%; font-weight: bold;">Definicja D44</span><br/> |
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math> | Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math> | ||
− | <span id=" | + | <span id="D45" style="font-size: 110%; font-weight: bold;">Twierdzenie D45* (Viggo Brun, 1919)</span><br/> |
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona | Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona | ||
Linia 1511: | Linia 1518: | ||
− | <span id=" | + | <span id="D46" style="font-size: 110%; font-weight: bold;">Zadanie D46</span><br/> |
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych. | Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych. | ||
Linia 1539: | Linia 1546: | ||
== Dowód z Księgi. Rozbieżność sumy <math>\textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}}</math> == | == Dowód z Księgi. Rozbieżność sumy <math>\textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}}</math> == | ||
− | <span id=" | + | <span id="D47" style="font-size: 110%; font-weight: bold;">Twierdzenie D47</span><br/> |
Suma odwrotności liczb pierwszych jest rozbieżna. | Suma odwrotności liczb pierwszych jest rozbieżna. | ||
Linia 1596: | Linia 1603: | ||
== Sumowanie przez części == | == Sumowanie przez części == | ||
− | <span id=" | + | <span id="D48" style="font-size: 110%; font-weight: bold;">Uwaga D48</span><br/> |
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja | Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja | ||
Linia 1618: | Linia 1625: | ||
− | <span id=" | + | <span id="D49" style="font-size: 110%; font-weight: bold;">Twierdzenie D49</span><br/> |
Niech <math>n \in \mathbb{Z}_+</math> i niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek | Niech <math>n \in \mathbb{Z}_+</math> i niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek | ||
Linia 1652: | Linia 1659: | ||
− | <span id=" | + | <span id="D50" style="font-size: 110%; font-weight: bold;">Zadanie D50</span><br/> |
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>. | Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>. | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
− | Z twierdzenia [[# | + | Z twierdzenia [[#D49|D49]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór |
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math> | ::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math> | ||
Linia 1674: | Linia 1681: | ||
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math> | :::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math> | ||
− | Korzystając z twierdzenia [[# | + | Korzystając z twierdzenia [[#D16|D16]], otrzymujemy |
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math> | ::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math> | ||
Linia 1690: | Linia 1697: | ||
− | <span id=" | + | <span id="D51" style="font-size: 110%; font-weight: bold;">Zadanie D51</span><br/> |
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych. | Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych. | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
− | Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[# | + | Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D49|D49]]) |
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math> | ::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math> | ||
Linia 1716: | Linia 1723: | ||
:::<math>\quad \; = C_3</math> | :::<math>\quad \; = C_3</math> | ||
− | Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[# | + | Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D47|D47]], [[#D50|D50]]).<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 1722: | Linia 1729: | ||
− | <span id=" | + | <span id="D52" style="font-size: 110%; font-weight: bold;">Twierdzenie D52 (sumowanie przez części)</span><br/> |
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór | Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór | ||
Linia 1769: | Linia 1776: | ||
− | <span id=" | + | <span id="D53" style="font-size: 110%; font-weight: bold;">Zadanie D53</span><br/> |
Pokazać, że <math>\sum_{k = 1}^{n} k 2^k = (n - 1) 2^{n + 1} + 2</math>. | Pokazać, że <math>\sum_{k = 1}^{n} k 2^k = (n - 1) 2^{n + 1} + 2</math>. | ||
Linia 1807: | Linia 1814: | ||
− | <span id=" | + | <span id="D54" style="font-size: 110%; font-weight: bold;">Twierdzenie D54 (kryterium Dirichleta)</span><br/> |
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli | Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli | ||
Linia 1837: | Linia 1844: | ||
::::::::<math>\;\;\; = M (a_1 - a_n)</math> | ::::::::<math>\;\;\; = M (a_1 - a_n)</math> | ||
− | (zobacz [[# | + | (zobacz [[#D12|D12]]). Jeżeli ciąg <math>(a_k)</math> jest rosnący, to |
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math> | ::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math> | ||
Linia 1855: | Linia 1862: | ||
− | <span id=" | + | <span id="D55" style="font-size: 110%; font-weight: bold;">Zadanie D55</span><br/> |
Udowodnić następujące wzory | Udowodnić następujące wzory | ||
Linia 1923: | Linia 1930: | ||
− | <span id=" | + | <span id="D56" style="font-size: 110%; font-weight: bold;">Zadanie D56</span><br/> |
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny. | Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny. | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
− | W zadaniu [[# | + | W zadaniu [[#D55|D55]] p.1 pokazaliśmy, że prawdziwy jest wzór |
::<math>\sum_{j = 1}^{k} \sin j = | ::<math>\sum_{j = 1}^{k} \sin j = | ||
Linia 1951: | Linia 1958: | ||
− | <span id=" | + | <span id="D57" style="font-size: 110%; font-weight: bold;">Zadanie D57</span><br/> |
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a suma tego szeregu jest w przybliżeniu równa <math>0.6839137864 \ldots</math> | Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a suma tego szeregu jest w przybliżeniu równa <math>0.6839137864 \ldots</math> | ||
Linia 1959: | Linia 1966: | ||
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math> | ::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math> | ||
− | Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w zadaniu [[# | + | Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w zadaniu [[#D55|D55]] p.1, otrzymujemy |
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math> | ::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math> | ||
Linia 1981: | Linia 1988: | ||
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math> | ::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math> | ||
− | Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[# | + | Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[#D12|D12]]). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum |
::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math> | ::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math> | ||
Linia 1998: | Linia 2005: | ||
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math> | ::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math> | ||
− | We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w zadaniu [[# | + | We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w zadaniu [[#D55|D55]] p.2, otrzymujemy |
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math> | ::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math> | ||
Linia 2079: | Linia 2086: | ||
− | <span id=" | + | <span id="D58" style="font-size: 110%; font-weight: bold;">Zadanie D58</span><br/> |
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że | Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że | ||
Linia 2105: | Linia 2112: | ||
− | <span id=" | + | <span id="D59" style="font-size: 110%; font-weight: bold;">Twierdzenie D59</span><br/> |
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica | Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica | ||
Linia 2123: | Linia 2130: | ||
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math> | ::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math> | ||
− | (zobacz [[# | + | (zobacz [[#D58|D58]]) otrzymujemy |
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math> | ::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math> | ||
Linia 2173: | Linia 2180: | ||
− | <span id=" | + | <span id="D60" style="font-size: 110%; font-weight: bold;">Uwaga D60</span><br/> |
Funkcja <math>\theta (n)</math> jest ściśle związana z dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to | Funkcja <math>\theta (n)</math> jest ściśle związana z dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to | ||
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>. | ::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>. | ||
− | Z twierdzenia [[# | + | Z twierdzenia [[#D59|D59]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C12|C12]] p.3). |
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/> | Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/> | ||
Linia 2186: | Linia 2193: | ||
− | <span id=" | + | <span id="D61" style="font-size: 110%; font-weight: bold;">Zadanie D61</span><br/> |
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że | Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że | ||
Linia 2192: | Linia 2199: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
− | Kładąc we wzorze na sumowanie przez części (zobacz [[# | + | Kładąc we wzorze na sumowanie przez części (zobacz [[#D52|D52]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy |
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math> | ::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math> | ||
Linia 2220: | Linia 2227: | ||
== Iloczyn Cauchy'ego szeregów == | == Iloczyn Cauchy'ego szeregów == | ||
− | <span id=" | + | <span id="D62" style="font-size: 110%; font-weight: bold;">Twierdzenie D62 (kryterium d'Alemberta)</span><br/> |
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i istnieje granica | Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i istnieje granica | ||
Linia 2271: | Linia 2278: | ||
− | <span id=" | + | <span id="D64" style="font-size: 110%; font-weight: bold;">Przykład D64</span><br/> |
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu | Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu | ||
Linia 2284: | Linia 2291: | ||
− | <span id=" | + | <span id="D65" style="font-size: 110%; font-weight: bold;">Zadanie D65</span><br/> |
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny. | Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny. | ||
Linia 2298: | Linia 2305: | ||
− | <span id=" | + | <span id="D66" style="font-size: 110%; font-weight: bold;">Uwaga D66</span><br/> |
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A37|A37]], korzystając z następującej definicji funkcji <math>e^x</math> | W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A37|A37]], korzystając z następującej definicji funkcji <math>e^x</math> | ||
Linia 2371: | Linia 2378: | ||
− | <span id=" | + | <span id="D67" style="font-size: 110%; font-weight: bold;">Definicja D67</span><br/> |
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie | Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie | ||
Linia 2382: | Linia 2389: | ||
− | <span id=" | + | <span id="D68" style="font-size: 110%; font-weight: bold;">Zadanie D68</span><br/> |
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że | Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że | ||
Linia 2447: | Linia 2454: | ||
− | <span id=" | + | <span id="D69" style="font-size: 110%; font-weight: bold;">Uwaga D69</span><br/> |
− | W związku z definicją [[# | + | W związku z definicją [[#D67|D67]] pojawia się natychmiast pytanie: czy zawsze prawdziwa jest równość |
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math> | ::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math> | ||
Linia 2456: | Linia 2463: | ||
− | <span id=" | + | <span id="D70" style="font-size: 110%; font-weight: bold;">Zadanie D70</span><br/> |
Podać przykład szeregów, z których jeden jest zbieżny, a drugi rozbieżny i których iloczyn Cauchy'ego jest zbieżny. | Podać przykład szeregów, z których jeden jest zbieżny, a drugi rozbieżny i których iloczyn Cauchy'ego jest zbieżny. | ||
Linia 2480: | Linia 2487: | ||
− | <span id=" | + | <span id="D71" style="font-size: 110%; font-weight: bold;">Zadanie D71</span><br/> |
Podać przykład szeregów rozbieżnych, których iloczyn Cauchy'ego jest zbieżny. | Podać przykład szeregów rozbieżnych, których iloczyn Cauchy'ego jest zbieżny. | ||
Linia 2518: | Linia 2525: | ||
− | <span id=" | + | <span id="D72" style="font-size: 110%; font-weight: bold;">Zadanie D72</span><br/> |
Podać przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. | Podać przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. | ||
Linia 2546: | Linia 2553: | ||
− | <span id=" | + | <span id="D73" style="font-size: 110%; font-weight: bold;">Uwaga D73</span><br/> |
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych | Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych | ||
Linia 2585: | Linia 2592: | ||
− | <span id=" | + | <span id="D74" style="font-size: 110%; font-weight: bold;">Twierdzenie D74 (Franciszek Mertens)</span><br/> |
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>. | Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>. | ||
Linia 2599: | Linia 2606: | ||
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math> | :::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math> | ||
− | Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[# | + | Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]). |
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math> | ::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math> | ||
Linia 2652: | Linia 2659: | ||
− | <span id=" | + | <span id="D75" style="font-size: 110%; font-weight: bold;">Zadanie D75</span><br/> |
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny. | Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny. | ||
Linia 2660: | Linia 2667: | ||
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math> | ::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math> | ||
− | Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[# | + | Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]). |
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math> | ::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math> | ||
Linia 2682: | Linia 2689: | ||
− | <span id=" | + | <span id="D76" style="font-size: 110%; font-weight: bold;">Uwaga D76</span><br/> |
− | Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[# | + | Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D78|D78]] pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład. |
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa]) | Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa]) | ||
Linia 2693: | Linia 2700: | ||
− | <span id=" | + | <span id="D77" style="font-size: 110%; font-weight: bold;">Twierdzenie D77</span><br/> |
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. | Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. | ||
Linia 2725: | Linia 2732: | ||
− | <span id=" | + | <span id="D78" style="font-size: 110%; font-weight: bold;">Twierdzenie D78</span><br/> |
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy. | Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy. | ||
Linia 2744: | Linia 2751: | ||
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math> | ::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math> | ||
− | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[# | + | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[#D77|D77]] i twierdzenia o trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy |
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math> | ::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math> | ||
Linia 2754: | Linia 2761: | ||
− | <span id=" | + | <span id="D79" style="font-size: 110%; font-weight: bold;">Twierdzenie D79</span><br/> |
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>. | Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>. | ||
Linia 2765: | Linia 2772: | ||
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math> | ::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math> | ||
− | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[# | + | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[#D77|D77]] i twierdzenia o trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy |
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math> | ::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math> | ||
Linia 2782: | Linia 2789: | ||
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math> | :::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math> | ||
− | W granicy, gdy <math>n \longrightarrow \infty</math>, z twierdzenia [[# | + | W granicy, gdy <math>n \longrightarrow \infty</math>, z twierdzenia [[#D78|D78]] i udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy |
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math> | ::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math> | ||
Linia 2793: | Linia 2800: | ||
− | <span id=" | + | <span id="D80" style="font-size: 110%; font-weight: bold;">Twierdzenie D80 (Niels Henrik Abel)</span><br/> |
Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>. | Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>. | ||
Linia 2811: | Linia 2818: | ||
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math> | ::::<math>\;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math> | ||
− | Od sumowania wyrazów <math>a_k b_{n - k}</math> po <math>m + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[# | + | Od sumowania wyrazów <math>a_k b_{n - k}</math> po <math>m + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]). |
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math> | ::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math> | ||
Linia 2821: | Linia 2828: | ||
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k}</math> | ::::<math>\;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k}</math> | ||
− | Od sumowania wyrazów <math>a_k B_{m - k}</math> po <math>L + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>L + 1</math> kolejnych liniach pionowych (zobacz [[# | + | Od sumowania wyrazów <math>a_k B_{m - k}</math> po <math>L + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>L + 1</math> kolejnych liniach pionowych (zobacz [[#D73|D73]]). |
::<math>\sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i</math> | ::<math>\sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i</math> | ||
Linia 2833: | Linia 2840: | ||
::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math> | ::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math> | ||
− | W granicy, gdy <math>L \longrightarrow \infty</math>, z twierdzeń [[# | + | W granicy, gdy <math>L \longrightarrow \infty</math>, z twierdzeń [[#D78|D78]] i [[#D79|D79]] otrzymujemy <math>C = A B</math>. Co należało pokazać.<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 2867: | Linia 2874: | ||
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref> | <ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref> | ||
− | <ref name="twierdzenie">Zobacz twierdzenie [[# | + | <ref name="twierdzenie">Zobacz twierdzenie [[#D42|D42]].</ref> |
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref> | <ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref> |
Wersja z 15:09, 22 cze 2024
Szeregi nieskończone
Definicja D1
Sumę wszystkich wyrazów ciągu nieskończonego [math]\displaystyle{ (a_n) }[/math]
- [math]\displaystyle{ a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{k = 1}^{\infty} a_k }[/math]
nazywamy szeregiem nieskończonym o wyrazach [math]\displaystyle{ a_n }[/math].
Definicja D2
Ciąg [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] nazywamy ciągiem sum częściowych szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math].
Definicja D3
Szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będziemy nazywali zbieżnym, jeżeli ciąg sum częściowych [math]\displaystyle{ \left ( S_n \right ) }[/math] jest zbieżny.
Twierdzenie D4 (warunek konieczny zbieżności szeregu)
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny, to [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math].
Okazuje się, że bardzo łatwo podać przykład szeregów, dla których warunek [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math] jest warunkiem wystarczającym. Opisany w poniższym twierdzeniu rodzaj szeregów nazywamy szeregami naprzemiennymi.
Twierdzenie D5 (kryterium Leibniza)
Niech ciąg [math]\displaystyle{ (a_n) }[/math] będzie ciągiem malejącym o wyrazach nieujemnych. Jeżeli
- [math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} a_n = 0 }[/math]
to szereg [math]\displaystyle{ \underset{k = 1}{\overset{\infty}{\sum}} (- 1)^{k + 1} \cdot a_k }[/math] jest zbieżny.
Twierdzenie D6
Dla [math]\displaystyle{ s \gt 1 }[/math] prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Przykład D7
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta[1], którą definiuje szereg naprzemienny
- [math]\displaystyle{ \eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math]
lub funkcja dzeta Riemanna[2], którą definiuje inny szereg
- [math]\displaystyle{ \zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Na podstawie twierdzenia D6 funkcje te są związane wzorem
- [math]\displaystyle{ \eta (s) = (1 - 2^{1 - s}) \zeta (s) }[/math]
Dla [math]\displaystyle{ s \in \mathbb{R}_+ }[/math] funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math].
[math]\displaystyle{ s = {\small\frac{1}{2}} }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{\sqrt{k}}} = 0.604898643421 \ldots }[/math] WolframAlpha [math]\displaystyle{ s = 1 }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 = 0.693147180559 \ldots }[/math] WolframAlpha [math]\displaystyle{ s = 2 }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^2}} = {\small\frac{\pi^2}{12}} = 0.822467033424 \ldots }[/math] WolframAlpha
Twierdzenie D8
Niech [math]\displaystyle{ N \in \mathbb{Z}_+ }[/math]. Szeregi [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N}^{\infty} a_k }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. W przypadku zbieżności zachodzi związek
- [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k }[/math]
Twierdzenie D9 (kryterium porównawcze)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ k \gt N_0 }[/math] jest spełniony warunek
- [math]\displaystyle{ 0 \leqslant a_k \leqslant b_k }[/math]
to
- zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] pociąga za sobą zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]
- rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] pociąga za sobą rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]
Twierdzenie D10
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} \left | a_k \right | }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest również zbieżny.
Definicja D11
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest zbieżny.
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest warunkowo zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest zbieżny, ale szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest rozbieżny.
Twierdzenie D12
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] można zapisać w jednej z postaci
- [math]\displaystyle{ \quad a_k = f_k - f_{k + 1} }[/math]
- [math]\displaystyle{ \quad a_k = f_{k - 1} - f_k }[/math]
to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa
- [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1} }[/math]
- [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n }[/math]
Twierdzenie D13
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1 }[/math] 2. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{1}{k (k - 1)}} = 1 }[/math] 3. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} = {\small\frac{3}{4}} }[/math] 4. [math]\displaystyle{ \quad \sum^{\infty}_{k = 1} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} = 1.644934066848 \ldots }[/math] A013661, WolframAlpha
Twierdzenie D14
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} = 1.860025079221 \ldots }[/math] 2. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} = 0.788530565911 \ldots }[/math] A085361 3. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k - 1)}} = 1.257746886944 \ldots }[/math] A131688 4. [math]\displaystyle{ \quad \sum^{\infty}_{k = 3} {\small\frac{1}{k \cdot \log^2 \! k}} = 1.069058310734 \ldots }[/math] A115563
Przykład D15
Na przykładzie szeregu [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math] pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
Ponieważ nie jesteśmy w stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części
- [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math]
Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
Dowodząc twierdzenie D14, w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
- [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]
Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy
- [math]\displaystyle{ \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right) }[/math]
Ponieważ szeregi po lewej i po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}} }[/math]
Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy oszacowanie
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} \lt \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} }[/math]
Teraz pozostaje dodać sumę wyrazów szeregu od [math]\displaystyle{ k = 3 }[/math] do [math]\displaystyle{ k = m }[/math]
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} }[/math]
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości [math]\displaystyle{ m }[/math]. Wystarczy proste polecenie
for(n = 1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print( "n= ", n, " a= ", s + 1/log(10^n+1), " b= ", s + 1/log(10^n) ))
[math]\displaystyle{ m = 10^1 }[/math] [math]\displaystyle{ 1.06 }[/math] [math]\displaystyle{ 1.07 }[/math] [math]\displaystyle{ m = 10^2 }[/math] [math]\displaystyle{ 1.068 }[/math] [math]\displaystyle{ 1.069 }[/math] [math]\displaystyle{ m = 10^3 }[/math] [math]\displaystyle{ 1.06904 }[/math] [math]\displaystyle{ 1.06906 }[/math] [math]\displaystyle{ m = 10^4 }[/math] [math]\displaystyle{ 1.069057 }[/math] [math]\displaystyle{ 1.069058 }[/math] [math]\displaystyle{ m = 10^5 }[/math] [math]\displaystyle{ 1.0690582 }[/math] [math]\displaystyle{ 1.0690583 }[/math] [math]\displaystyle{ m = 10^6 }[/math] [math]\displaystyle{ 1.06905830 }[/math] [math]\displaystyle{ 1.06905831 }[/math] [math]\displaystyle{ m = 10^7 }[/math] [math]\displaystyle{ 1.0690583105 }[/math] [math]\displaystyle{ 1.0690583109 }[/math] [math]\displaystyle{ m = 10^8 }[/math] [math]\displaystyle{ 1.06905831071 }[/math] [math]\displaystyle{ 1.06905831074 }[/math]
Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z dokładnością 10 miejsc po przecinku.
Natomiast samo zsumowanie [math]\displaystyle{ 10^8 }[/math] wyrazów szeregu daje wynik
- [math]\displaystyle{ \sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots }[/math]
Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.
Rozpatrywana wyżej sytuacja pokazuje, że w przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.
Szeregi nieskończone i całka oznaczona
Twierdzenie D16
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, n + 1] }[/math], to prawdziwy jest następujący ciąg nierówności
- [math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x }[/math]
Przykład D17
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math].
Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math] jest ciągła, dodatnia i silnie malejąca w przedziale [math]\displaystyle{ (0, + \infty) }[/math], zatem dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ \int_{1}^{n + 1} {\small\frac{d x}{x}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \int_{1}^{n} {\small\frac{d x}{x}} }[/math]
Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony WolframAlpha.
- [math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]
Ponieważ
- [math]\displaystyle{ \log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) \gt \log n + {\small\frac{1}{n + 1}} }[/math]
to dostajemy
- [math]\displaystyle{ {\small\frac{1}{n + 1}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \lt 1 }[/math]
Zauważmy: nie tylko wiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o zbieżności szeregów.
Twierdzenie D18 (kryterium całkowe zbieżności szeregów)
Załóżmy, że funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna [math]\displaystyle{ F(x) = \int f (x) d x }[/math] ma dla [math]\displaystyle{ x \rightarrow \infty }[/math] granicę skończoną, czy nie.
Przykład D19
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony WolframAlpha.
szereg [math]\displaystyle{ \sum_{k = m}^{\infty} a_k }[/math] funkcja [math]\displaystyle{ f(x) }[/math] całka [math]\displaystyle{ F(x) = \int f(x) d x }[/math] granica [math]\displaystyle{ \lim_{x \to \infty} F(x) }[/math] wynik 1. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x}} }[/math] [math]\displaystyle{ \log x }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 2. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{\sqrt{k}}} }[/math] [math]\displaystyle{ {\small\frac{1}{\sqrt{x}}} }[/math] [math]\displaystyle{ 2 \sqrt{x} }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 3. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] [math]\displaystyle{ {\small\frac{1}{x^2}} }[/math] [math]\displaystyle{ - {\small\frac{1}{x}} }[/math] [math]\displaystyle{ 0 }[/math] szereg zbieżny 4. [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x \log x}} }[/math] [math]\displaystyle{ \log \log x }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 5. [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^2 \! k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x \log^2 \! x}} }[/math] [math]\displaystyle{ - {\small\frac{1}{\log x}} }[/math] [math]\displaystyle{ 0 }[/math] szereg zbieżny
Stosując kryterium całkowe, można łatwo pokazać, że szeregi
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}} }[/math]
są zbieżne dla [math]\displaystyle{ s \gt 1 }[/math] i rozbieżne dla [math]\displaystyle{ s \leqslant 1 }[/math].
Twierdzenie D20
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, \infty) }[/math] oraz
- [math]\displaystyle{ R(m) = \int_{m}^{\infty} f(x) d x }[/math]
- [math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math]
gdzie [math]\displaystyle{ a \lt m }[/math], to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math]
- [math]\displaystyle{ S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m) }[/math]
Przykład D21
Twierdzenie D20 umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]. Mamy
- [math]\displaystyle{ S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
- [math]\displaystyle{ \int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right) }[/math]
- [math]\displaystyle{ R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right) }[/math]
Zatem
- [math]\displaystyle{ S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m) }[/math]
Dla kolejnych wartości [math]\displaystyle{ m }[/math] otrzymujemy
[math]\displaystyle{ m }[/math] [math]\displaystyle{ S(m) + R(m) - f(m) }[/math] [math]\displaystyle{ S(m) + R(m) }[/math] [math]\displaystyle{ 10^1 }[/math] [math]\displaystyle{ 1.84 }[/math] [math]\displaystyle{ 1.87 }[/math] [math]\displaystyle{ 10^2 }[/math] [math]\displaystyle{ 1.85 }[/math] [math]\displaystyle{ 1.86 }[/math] [math]\displaystyle{ 10^3 }[/math] [math]\displaystyle{ 1.86000 }[/math] [math]\displaystyle{ 1.86004 }[/math] [math]\displaystyle{ 10^4 }[/math] [math]\displaystyle{ 1.860024 }[/math] [math]\displaystyle{ 1.860025 }[/math] [math]\displaystyle{ 10^5 }[/math] [math]\displaystyle{ 1.86002506 }[/math] [math]\displaystyle{ 1.86002509 }[/math] [math]\displaystyle{ 10^6 }[/math] [math]\displaystyle{ 1.860025078 }[/math] [math]\displaystyle{ 1.860025079 }[/math] [math]\displaystyle{ 10^7 }[/math] [math]\displaystyle{ 1.86002507920 }[/math] [math]\displaystyle{ 1.86002507923 }[/math] [math]\displaystyle{ 10^8 }[/math] [math]\displaystyle{ 1.860025079220 }[/math] [math]\displaystyle{ 1.860025079221 }[/math] [math]\displaystyle{ 10^9 }[/math] [math]\displaystyle{ 1.8600250792211 }[/math] [math]\displaystyle{ 1.8600250792212 }[/math]
W programie PARI/GP wystarczy napisać:
f(k) = 1.0 / (k+1) / sqrt(k) S(m) = sum( k = 1, m, f(k) ) R(m) = Pi - 2*atan( sqrt(m) ) for(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); print( "j= ", j, " a= ", suma + reszta - f(m), " b= ", suma + reszta ))
Prostym wnioskiem z twierdzenia D16 jest następujące
Twierdzenie D22
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli przy wyliczaniu sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math] (gdzie [math]\displaystyle{ a \lt m }[/math]) zastąpimy sumę [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] całką [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math], to błąd wyznaczenia sumy szeregu nie przekroczy [math]\displaystyle{ f(m) }[/math].
Twierdzenie D23
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny, to dla każdego [math]\displaystyle{ n \geqslant m }[/math] prawdziwe jest następujące oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) }[/math]
- [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]
gdzie [math]\displaystyle{ B }[/math] oraz [math]\displaystyle{ C }[/math] są dowolnymi stałymi spełniającymi nierówności
- [math]\displaystyle{ B \geqslant 1 }[/math]
- [math]\displaystyle{ C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x }[/math]
Uwaga D24
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, \infty) }[/math]. Rozważmy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math]. Zauważmy, że:
- korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny
- jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie D23), możemy znaleźć oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math]
Jednak dysponując już oszacowaniem sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math], możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math]. Zauważmy, że wybór większego [math]\displaystyle{ B }[/math] ułatwia dowód indukcyjny. Stałą [math]\displaystyle{ C }[/math] najlepiej zaokrąglić w górę do wygodnej dla nas wartości.
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna.
Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie D23.
Zadanie D25
Korzystając z twierdzenia D23, znaleźć oszacowania sumy częściowej szeregów
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad }[/math] oraz [math]\displaystyle{ \qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]
Zadanie D26
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest zbieżny.
Zadanie D27
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest zbieżny.
Szeregi nieskończone i liczby pierwsze
Twierdzenie D28
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{p_k}} = 0.269605966 \ldots }[/math] 2. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p^2}} = 0.452247420041 \ldots }[/math] A085548 3. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{(p - 1)^2}} = 1.375064994748 \ldots }[/math] A086242 4. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p (p - 1)}} = 0.773156669049 \ldots }[/math] A136141
Twierdzenie D29
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = 1.636616323351 \ldots }[/math] A137245 2. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p^2 \log p}} = 0.507782187859 \ldots }[/math] A221711 3. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = 0.755366610831 \ldots }[/math] A138312 4. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{\log p}{p^2}} = 0.493091109368 \ldots }[/math] A136271
Twierdzenie D30
Szereg [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] jest rozbieżny.
Uwaga D31
Moglibyśmy oszacować rozbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] podobnie, jak to uczyniliśmy w przypadku twierdzenia B37, ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
Twierdzenie D32
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Prawdziwe są następujące nierówności
[math]\displaystyle{ \quad 1. \quad }[/math] [math]\displaystyle{ n! \gt n^n e^{- n} }[/math] [math]\displaystyle{ \text{dla} \;\; n \geqslant 1 }[/math] [math]\displaystyle{ \quad 2. \quad }[/math] [math]\displaystyle{ n! \lt n^{n + 1} e^{- n} }[/math] [math]\displaystyle{ \text{dla} \;\; n \geqslant 7 }[/math]
Twierdzenie D33
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, prawdziwe są oszacowania
[math]\displaystyle{ \quad 1. \quad }[/math] [math]\displaystyle{ {\small\frac{n}{p}} - 1 \lt W_p (n!) \lt {\small\frac{n}{p - 1}} }[/math] [math]\displaystyle{ \quad 2. \quad }[/math] [math]\displaystyle{ {\small\frac{n + 1}{p}} - 1 \leqslant W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}} }[/math]
Twierdzenie D34
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - 1 }[/math]
Twierdzenie D35 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1.755367 }[/math]
Twierdzenie D36 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt 0.386295 }[/math]
Twierdzenie D37
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt 1.141661 }[/math]
Uwaga D38
Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} }[/math] jest dane wzorem
gdzie [math]\displaystyle{ E = 1.332582275733 \ldots }[/math] Dla [math]\displaystyle{ n \geqslant 319 }[/math] mamy też[7]
|
Uwaga D39
Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math] jest dane wzorem
gdzie [math]\displaystyle{ \gamma = 0.5772156649 \ldots }[/math] jest stałą Eulera. Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie[8]
|
Uwaga D40
Dla [math]\displaystyle{ n \leqslant 10^{10} }[/math] wartości wyrażeń
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E }[/math]
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma }[/math]
są liczbami dodatnimi.
Twierdzenie D41
Prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma }[/math]
gdzie
- [math]\displaystyle{ \quad \gamma = 0.577215664901532 \ldots }[/math] jest stałą Eulera[9]
- [math]\displaystyle{ \quad E = 1.332582275733220 \ldots }[/math][10]
- [math]\displaystyle{ \quad E - \gamma = 0.755366610831688 \ldots }[/math][11]
Twierdzenie D42
Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]
Zadanie D43
Niech [math]\displaystyle{ r = 1 - \log (2) \approx 0.30685281944 }[/math]. Pokazać, że z nierówności prawdziwej dla [math]\displaystyle{ x \geqslant 32 }[/math]
- [math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]
wynika twierdzenie Czebyszewa.
Definicja D44
Powiemy, że liczby pierwsze [math]\displaystyle{ p, q }[/math] są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli [math]\displaystyle{ \left | p - q \right | = 2 }[/math]
Twierdzenie D45* (Viggo Brun, 1919)
Suma odwrotności par liczb pierwszych [math]\displaystyle{ p }[/math] i [math]\displaystyle{ p + 2 }[/math], takich że liczba [math]\displaystyle{ p + 2 }[/math] jest również pierwsza, jest skończona
- [math]\displaystyle{ \underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} \right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2 }[/math]
gdzie [math]\displaystyle{ B_2 = 1.90216058 \ldots }[/math] jest stałą Bruna[13][14].
Zadanie D46
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
Dowód z Księgi. Rozbieżność sumy [math]\displaystyle{ \textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}} }[/math]
Twierdzenie D47
Suma odwrotności liczb pierwszych jest rozbieżna.
Sumowanie przez części
Uwaga D48
Omawianie metody sumowania przez części[16] rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
- [math]\displaystyle{ D(k) = \begin{cases} 1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\ 0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\ \end{cases} }[/math]
Łatwo znajdujemy związek funkcji [math]\displaystyle{ D(k) }[/math] z funkcją [math]\displaystyle{ \pi (k) }[/math]
- [math]\displaystyle{ \pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1 }[/math]
- [math]\displaystyle{ \; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
- [math]\displaystyle{ \; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
- [math]\displaystyle{ \; = D (k) }[/math]
Twierdzenie D49
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]. Prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Zadanie D50
Pokazać, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math].
Zadanie D51
Pokazać, że oszacowanie [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math], gdzie [math]\displaystyle{ \varepsilon \in (0, 1) }[/math], nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
Twierdzenie D52 (sumowanie przez części)
Niech [math]\displaystyle{ a_j }[/math], [math]\displaystyle{ b_j }[/math] będą ciągami określonymi przynajmniej dla [math]\displaystyle{ s \leqslant j \leqslant n }[/math]. Prawdziwy jest następujący wzór
- [math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Wzór ten nazywamy wzorem na sumowanie przez części.
Zadanie D53
Pokazać, że [math]\displaystyle{ \sum_{k = 1}^{n} k 2^k = (n - 1) 2^{n + 1} + 2 }[/math].
Twierdzenie D54 (kryterium Dirichleta)
Niech [math]\displaystyle{ (a_k) \; }[/math] i [math]\displaystyle{ \; (b_k) }[/math] będą ciągami liczb rzeczywistych. Jeżeli
- ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny
- ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny
- [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = 0 }[/math]
- istnieje taka stała [math]\displaystyle{ M }[/math], że [math]\displaystyle{ \left| \sum_{j = 1}^{k} b_j \right| \leqslant M }[/math] dla dowolnej liczby [math]\displaystyle{ k }[/math]
to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] jest zbieżny.
Zadanie D55
Udowodnić następujące wzory
[math]\displaystyle{ \quad \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]
[math]\displaystyle{ \quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]
Zadanie D56
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny.
Zadanie D57
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math] jest zbieżny, a suma tego szeregu jest w przybliżeniu równa [math]\displaystyle{ 0.6839137864 \ldots }[/math]
Zadanie D58
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że
- [math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Twierdzenie D59
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math], gdzie [math]\displaystyle{ A, B \in \mathbb{R}_+ }[/math], to istnieje granica
- [math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Uwaga D60
Funkcja [math]\displaystyle{ \theta (n) }[/math] jest ściśle związana z dobrze nam znaną funkcją [math]\displaystyle{ P (n) }[/math]. Ponieważ [math]\displaystyle{ P(n) = \prod_{p \leqslant n} p }[/math], to
- [math]\displaystyle{ \log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n) }[/math].
Z twierdzenia D59 wynika, że jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math]. Jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math] (zobacz C12 p.3).
Wiemy, że dla funkcji [math]\displaystyle{ \theta (n) }[/math], gdzie [math]\displaystyle{ n \geqslant 2 }[/math], prawdziwe jest oszacowanie[18]
- [math]\displaystyle{ \left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}} }[/math]
Zadanie D61
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że
- [math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Iloczyn Cauchy'ego szeregów
Twierdzenie D62 (kryterium d'Alemberta)
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem liczb rzeczywistych i istnieje granica
- [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| }[/math]
Jeżeli
- [math]\displaystyle{ g \lt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny
- [math]\displaystyle{ g \gt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest rozbieżny
Uwaga C62
W przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1 }[/math] kryterium d'Alemberta nie rozstrzyga o zbieżności lub rozbieżności szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math]. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
- [math]\displaystyle{ \sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}} }[/math]
Przykład D64
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Zbadamy zbieżność szeregu
- [math]\displaystyle{ e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
Ponieważ
- [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0 }[/math]
to z kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.
Zadanie D65
Pokazać, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}} }[/math] jest rozbieżny.
Uwaga D66
W twierdzeniu A37, korzystając z następującej definicji funkcji [math]\displaystyle{ e^x }[/math]
- [math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
pominęliśmy dowód własności [math]\displaystyle{ e^x e^{- x} = 1 }[/math]. Spróbujemy teraz pokazać, że [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].
- [math]\displaystyle{ e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} }[/math]
Oznaczmy [math]\displaystyle{ a_i = {\small\frac{x^i}{i!}} }[/math] oraz [math]\displaystyle{ b_j = {\small\frac{y^j}{j!}} }[/math] i przyjrzyjmy się sumowaniu po [math]\displaystyle{ i, j }[/math]. W podwójnej sumie po prawej stronie [math]\displaystyle{ \sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j }[/math] sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ a_5 b_1 }[/math] [math]\displaystyle{ a_5 b_2 }[/math] [math]\displaystyle{ a_5 b_3 }[/math] [math]\displaystyle{ a_5 b_4 }[/math] [math]\displaystyle{ a_5 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ a_4 b_2 }[/math] [math]\displaystyle{ a_4 b_3 }[/math] [math]\displaystyle{ a_4 b_4 }[/math] [math]\displaystyle{ a_4 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ a_3 b_3 }[/math] [math]\displaystyle{ a_3 b_4 }[/math] [math]\displaystyle{ a_3 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ a_2 b_4 }[/math] [math]\displaystyle{ a_2 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ a_1 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ \; \cdots \; }[/math]
Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]
Co odpowiada sumie [math]\displaystyle{ \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k} b_{n - k} }[/math], gdzie [math]\displaystyle{ n }[/math] numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru
- [math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} }[/math]
Ponieważ
- [math]\displaystyle{ {\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot \binom{n}{k} }[/math]
to otrzymujemy
- [math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot \binom{n}{k} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} \binom{n}{k} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y} }[/math]
Pokazaliśmy tym samym, że z definicji
- [math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].
Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i w związku z tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.
Definicja D67
Iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0 }[/math]
W przypadku szeregów, których wyrazy są numerowane od liczby [math]\displaystyle{ 1 }[/math], iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 1}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 1}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} c_n }[/math], gdzie
- [math]\displaystyle{ c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1 }[/math]
Zadanie D68
Niech [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]. Pokazać, że
- jeżeli [math]\displaystyle{ (a_n) = (1, 0, 0, 0, 0, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = b_n }[/math]
- jeżeli [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = \sum_{k = 0}^{n} b_k = B_n }[/math]
- jeżeli [math]\displaystyle{ a_n = b_n = r^n }[/math], to [math]\displaystyle{ c_n = (n + 1) r^n }[/math]
- jeżeli [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ q \neq r }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Uwaga D69
W związku z definicją D67 pojawia się natychmiast pytanie: czy zawsze prawdziwa jest równość
- [math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Odpowiedź brzmi: nie, a odpowiednie przykłady podamy niżej w zadaniach. Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
Zadanie D70
Podać przykład szeregów, z których jeden jest zbieżny, a drugi rozbieżny i których iloczyn Cauchy'ego jest zbieżny.
Zadanie D71
Podać przykład szeregów rozbieżnych, których iloczyn Cauchy'ego jest zbieżny.
Zadanie D72
Podać przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny.
Uwaga D73
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy [math]\displaystyle{ m = 5 }[/math].
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]
Przejście do sumowania po liniach poziomych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii poziomej.
Przejście do sumowania po liniach pionowych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i }[/math]
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii pionowej.
Twierdzenie D74 (Franciszek Mertens)
Jeżeli szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] jest zbieżny bezwzględnie, szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] jest zbieżny, to ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny i [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].
Zadanie D75
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
Uwaga D76
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie D78 pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro[20]. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
Rozważmy szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math]. Sumy częściowe tego szeregu wynoszą [math]\displaystyle{ S_k = {\small\frac{1 + (- 1)^k}{2}} }[/math] i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu [math]\displaystyle{ (S_k) }[/math] jest równy (WolframAlfa)
- [math]\displaystyle{ x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} }[/math]
Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math] jest sumowalny w sensie Cesàro i jego suma jest równa [math]\displaystyle{ {\small\frac{1}{2}} }[/math].
Twierdzenie D77
Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math].
Twierdzenie D78
Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, to ciąg kolejnych średnich arytmetycznych [math]\displaystyle{ x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}} }[/math] jest zbieżny do tej samej granicy.
Twierdzenie D79
Niech [math]\displaystyle{ (a_n) }[/math] i [math]\displaystyle{ (b_n) }[/math] będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math] i [math]\displaystyle{ \lim_{n \rightarrow \infty} b_n = b }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math].
Twierdzenie D80 (Niels Henrik Abel)
Jeżeli szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] są zbieżne i ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny, to [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].
Przypisy
- ↑ Wikipedia, Funkcja η, (Wiki-pl), (Wiki-en)
- ↑ Wikipedia, Funkcja dzeta Riemanna, (Wiki-pl), (Wiki-en)
- ↑ Twierdzenie: funkcja ciągła w przedziale domkniętym jest całkowalna w tym przedziale.
- ↑ W szczególności: funkcja ograniczona i mająca skończoną liczbę punktów nieciągłości w przedziale domkniętym jest w tym przedziale całkowalna.
- ↑ Skocz do: 5,0 5,1 Wikipedia, Twierdzenia Mertensa, (Wiki-pl), (Wiki-en)
- ↑ Skocz do: 6,0 6,1 Wikipedia, Franciszek Mertens, (Wiki-pl)
- ↑ J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94, (LINK)
- ↑ Zobacz twierdzenie D42.
- ↑ The On-Line Encyclopedia of Integer Sequences, A001620 - Decimal expansion of Euler's constant, (A001620)
- ↑ The On-Line Encyclopedia of Integer Sequences, A083343 - Decimal expansion of constant B3 (or B_3) related to the Mertens constant, (A083343)
- ↑ The On-Line Encyclopedia of Integer Sequences, A138312 - Decimal expansion of Mertens's constant minus Euler's constant, (A138312)
- ↑ Pierre Dusart, Estimates of Some Functions Over Primes without R.H., 2010, (LINK)
- ↑ Wikipedia, Stałe Bruna, (Wiki-pl), (Wiki-en)
- ↑ The On-Line Encyclopedia of Integer Sequences, A065421 - Decimal expansion of Viggo Brun's constant B, (A065421)
- ↑ Paul Erdős, Über die Reihe [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math], Mathematica, Zutphen B 7, 1938, 1-2.
- ↑ sumowanie przez części (ang. summation by parts)
- ↑ ciąg wypukły (ang. convex sequence)
- ↑ Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, vol. 45(1), 2018, 227-251.
- ↑ Wikipedia, Szereg geometryczny, (Wiki-pl), (Wiki-en)
- ↑ Wikipedia, Sumowalność metodą Cesàro, (Wiki-pl), (Wiki-en)