Szeregi liczbowe: Różnice pomiędzy wersjami
Linia 1780: | Linia 1780: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
− | Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k \;</math> i <math>\; b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy | + | Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k \;</math> i <math>\; b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy |
::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math> | ::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math> | ||
Linia 1786: | Linia 1786: | ||
gdzie | gdzie | ||
− | ::<math>B(k) = \sum_{j = 0}^{k} r^j = \frac{r^{k + 1} - 1}{r - 1}</math> | + | ::<math>B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}}</math> |
Zatem | Zatem | ||
− | ::<math>\sum_{k = 0}^{n} k r^k = n \cdot \frac{r^{n + 1} - 1}{r - 1} - \sum_{k = 0}^{n - 1} \frac{r^{k + 1} - 1}{r - 1}</math> | + | ::<math>\sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}}</math> |
− | ::::<math>\;\, = \frac{1}{r - 1} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right)</math> | + | ::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right)</math> |
− | ::::<math>\;\, = \frac{1}{r - 1} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right)</math> | + | ::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right)</math> |
− | ::::<math>\;\, = \frac{1}{r - 1} \left( n r^{n + 1} - r \cdot \frac{r^n - 1}{r - 1} \right)</math> | + | ::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right)</math> |
<div style="margin-top: 1em; margin-bottom: 1em;"> | <div style="margin-top: 1em; margin-bottom: 1em;"> | ||
− | ::::<math>\;\, = \frac{1}{(r - 1)^2} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r)</math> | + | ::::<math>\;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r)</math> |
</div> | </div> | ||
Linia 1850: | Linia 1850: | ||
::::::::<math>\;\;\; = - M (a_1 - a_n)</math> | ::::::::<math>\;\;\; = - M (a_1 - a_n)</math> | ||
− | Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg <math>(a_n)</math> jest ograniczony, bo jest zbieżny (zobacz C9), możemy napisać | + | Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg <math>(a_n)</math> jest ograniczony, bo jest zbieżny (zobacz [[Ciągi liczbowe#C9|C9]]), możemy napisać |
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U</math> | ::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U</math> | ||
Linia 2356: | Linia 2356: | ||
Ponieważ | Ponieważ | ||
− | ::<math>{\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot \binom{n}{k}</math> | + | ::<math>{\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}}</math> |
to otrzymujemy | to otrzymujemy | ||
Linia 2362: | Linia 2362: | ||
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} | ::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} | ||
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} | = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} | ||
− | = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot \binom{n}{k} \cdot x^k y^{n - k} | + | = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k} |
− | = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} \binom{n}{k} \cdot x^k y^{n - k} | + | = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k} |
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y}</math> | = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y}</math> | ||
Linia 2432: | Linia 2432: | ||
Jeżeli <math>r = 0</math>, to <math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = 0</math>. Jeżeli <math>r \neq 0</math>, to | Jeżeli <math>r = 0</math>, to <math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = 0</math>. Jeżeli <math>r \neq 0</math>, to | ||
− | ::<math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( \frac{q}{r} \right)^k = r^n \cdot \frac{\left( \frac{q}{r} \right)^n - \frac{q}{r}}{\frac{q}{r} - 1} = \frac{r q^n - q r^n}{q - r}</math> | + | ::<math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot \frac{\left( {\small\frac{q}{r}} \right)^n - {\small\frac{q}{r}}}{{\small\frac{q}{r}} - 1} = {\small\frac{r q^n - q r^n}{q - r}}</math> |
Zauważmy, że znaleziony wzór obejmuje również przypadek <math>r = 0</math>. Zatem | Zauważmy, że znaleziony wzór obejmuje również przypadek <math>r = 0</math>. Zatem | ||
− | ::<math>c_n = a r^n + b q^n + \frac{r q^n - q r^n}{q - r}</math> | + | ::<math>c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}}</math> |
− | ::<math>\;\;\;\:\, = q^n \left( b + \frac{r}{q - r} \right) + r^n \left( a - \frac{q}{q - r} \right)</math> | + | ::<math>\;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right)</math> |
Zbierając, otrzymujemy | Zbierając, otrzymujemy | ||
Linia 2452: | Linia 2452: | ||
− | <span id="D69" style="font-size: 110%; font-weight: bold;"> | + | <span id="D69" style="font-size: 110%; font-weight: bold;">Przykład D69</span><br/> |
− | + | Ostatni punkt zadania [[#D68|D68]] pozwala stworzyć wiele przykładowych szeregów i ich iloczynów Cauchy'ego. Przypomnijmy, że | |
− | ::<math> | + | ::<math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\quad (b_n) = (b, r, r^2, r^3, \ldots)</math>, gdzie <math>\, q \neq r</math> |
− | + | ::<math>c_n = | |
+ | \begin{cases} | ||
+ | \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ | ||
+ | q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ | ||
+ | \end{cases}</math> | ||
+ | Przykłady zebraliśmy w tabeli. | ||
− | + | ::{| class="wikitable plainlinks" style="font-size: 90%; text-align: center; margin-right: auto;" | |
− | + | |- | |
+ | ! <math>\boldsymbol{a}</math> || <math>\boldsymbol{q}</math> || <math>\boldsymbol{b}</math> || <math>\boldsymbol{r}</math> || <math>\boldsymbol{(c_n)}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} a_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} b_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} c_n}</math> | ||
+ | |- | ||
+ | |<math>3</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math>|| <math>{\small\frac{1}{3}}</math> || <math>(-6,0,0,0,0,0,…)</math> || zbieżny || zbieżny || zbieżny | ||
+ | |- | ||
+ | |<math>-2</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-6,0,0,0,0,0,…)</math> || rozbieżny || rozbieżny || zbieżny | ||
+ | |- | ||
+ | | <math>{\small\frac{r - 2q}{r - q}}</math> || <math>q</math> || <math>{\small\frac{r}{r - q}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2q )}{(r - q)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || zbieżny / rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny | ||
+ | |- | ||
+ | | <math>4</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math> || <math>{\small\frac{1}{3}}</math> || <math>\left( -8,{\small\frac{1}{3}}, {\small\frac{1}{3^2}}, {\small\frac{1}{3^3}}, {\small\frac{1}{3^4}}, {\small\frac{1}{3^5}}, \ldots \right)</math> || zbieżny || zbieżny || zbieżny | ||
+ | |- | ||
+ | | <math>{\small\frac{7}{3}}</math> || <math>2</math> || <math>- {\small\frac{1}{3}}</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - {\small\frac{7}{9}}, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny | ||
+ | |- | ||
+ | | <math>-1</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-3,3,3^2,3^3,3^4,3^5,…)</math> || rozbieżny || rozbieżny || rozbieżny | ||
+ | |- | ||
+ | | <math>{\small\frac{1}{2}}</math> || <math>1</math> || <math>{\small\frac{1}{2}}</math> || <math>-1</math> || <math>\left( {\small\frac{1}{4}}, 0, 0, 0, 0, 0, \ldots \right)</math> || rozbieżny || rozbieżny || zbieżny | ||
+ | |- | ||
+ | | <math>-1</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(-2, 0, 0, 0, 0, 0, \ldots )</math> || rozbieżny || rozbieżny || zbieżny | ||
+ | |- | ||
+ | | <math>-1</math> || <math>1</math> || <math>3</math> || <math>2</math> || <math>(-3, 1, 1, 1, 1, 1,\ldots )</math> || rozbieżny || rozbieżny || rozbieżny | ||
+ | |- | ||
+ | | <math>2</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>(-2,0,0,0,0,0,…)</math> || rozbieżny || zbieżny || zbieżny | ||
+ | |- | ||
+ | | <math>2</math> || <math>1</math> || <math>0</math> || <math>{\small\frac{1}{2}}</math> || <math>(0, 1, 1, 1, 1, 1, \ldots )</math> || rozbieżny || zbieżny || rozbieżny | ||
+ | |- | ||
+ | | <math>{\small\frac{r - 2}{r - 1}}</math> || <math>1</math> || <math>{\small\frac{r}{r - 1}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2 )}{(r - 1)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny | ||
+ | |- | ||
+ | | <math>0</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(0, 2, 2^2, 2^3, 2^4, 2^5, \ldots )</math> || rozbieżny || rozbieżny || rozbieżny | ||
+ | |- | ||
+ | | <math>3</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - 3, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny | ||
+ | |} | ||
− | |||
− | |||
− | |||
− | ::< | + | <span id="D70" style="font-size: 110%; font-weight: bold;">Przykład D70</span><br/> |
+ | Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz [[#D5|D5]]) | ||
− | + | ::<math>\sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=Sum%5B+%28-1%29%5Ek%2Fsqrt%28k%2B1%29%2C+%7Bk%2C+0%2C+infinity%7D+%5D WolframAlpha]) | |
− | + | Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy | |
− | |||
− | |||
− | |||
− | |||
− | + | ::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} | |
− | + | = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math> | |
− | |||
+ | Ale <math>k \leqslant n \;</math> i <math>\; n - k \leqslant n</math>, zatem | ||
+ | ::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math> | ||
− | + | Czyli | |
− | |||
− | + | ::<math>| c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1</math> | |
− | |||
− | + | Ponieważ <math>\lim_{n \rightarrow \infty} c_n \neq 0</math>, to iloczyn Cauchy'ego jest rozbieżny (zobacz [[#D4|D4]]). | |
− | |||
− | |||
− | + | <span id="D71" style="font-size: 110%; font-weight: bold;">Zadanie D71</span><br/> | |
+ | Pokazać, że jeżeli <math>a_n = b_n = r^n \;</math> i <math>\; c_n = (n + 1) r^n</math> (zobacz [[#D68|D68]] p.3), to szeregi <math>\sum_{n = 0}^{\infty} a_n</math> oraz <math>\sum_{n = 0}^{\infty} c_n</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór | ||
− | + | ::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math> | |
− | + | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | |
+ | Zbieżność szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> łatwo zbadamy, stosując kryterium d'Alemberta. | ||
− | ::<math>c_n = \ | + | ::<math>\left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r |</math> |
− | + | Zatem szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math> i rozbieżny, gdy <math>| r | > 1</math>, tak samo, jak szereg <math>\sum_{n = 0}^{\infty} r^n</math>. W przypadku, gdy <math>r = \pm 1</math> szereg <math>\sum_{n = 0}^{\infty} r^n</math> jest rozbieżny, a odpowiednie sumy częściowe szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> są równe | |
− | : | + | :* gdy <math>r = 1</math>, <math>c_n = n + 1</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad</math> (zobacz <span style="color: Green">[a]</span>, [https://www.wolframalpha.com/input?i=Sum%5B+n%2B1%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha]) |
− | + | :* gdy <math>r = - 1</math>, <math>c_n = (n + 1) (- 1)^n</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad</math> (zobacz [[#D53|D53]], [https://www.wolframalpha.com/input?i=Sum%5B+%28n%2B1%29*%28-1%29%5En%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha]) | |
− | + | W przypadku, gdy <math>| r | < 1</math> wiemy<ref name="GeometricSeries1"/>, że <math>\sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}}</math>. Korzystając z zadania [[#D53|D53]], otrzymujemy | |
− | + | ::<math>\sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = \frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2} + {\small\frac{r^{L + 1} - 1}{r - 1}} = \frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}}</math> | |
− | |||
− | + | Ponieważ szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math>, to musi być <math>\lim_{n \rightarrow \infty} (n + 1) r^n = 0</math> (zobacz [[#D4|D4]]). Pokazaliśmy, że w rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów. | |
− | & | ||
− | |||
+ | <hr style="width: 25%; height: 2px; " /> | ||
+ | <span style="color: Green">[a]</span> Zauważmy, że | ||
− | + | ::<math>\sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}}</math><br/> | |
− | + | □ | |
− | + | {{\Spoiler}} | |
− | {{ | ||
− | |||
− | |||
− | |||
− | + | <span id="D72" style="font-size: 110%; font-weight: bold;">Uwaga D72</span><br/> | |
− | + | Przykłady [[#D69|D69]] i [[#D70|D70]] pokazują, że w ogólności nie jest prawdziwy wzór | |
− | |||
− | + | ::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math> | |
− | + | Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Linia 2679: | Linia 2693: | ||
:::<math>\; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j |</math> | :::<math>\; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j |</math> | ||
− | :::<math>\; | + | :::<math>\; \leqslant A' B'</math> |
Ponieważ ciąg sum częściowych <math>C'_m</math> jest rosnący (bo sumujemy wartości nieujemne) i ograniczony od góry, to jest zbieżny.<br/> | Ponieważ ciąg sum częściowych <math>C'_m</math> jest rosnący (bo sumujemy wartości nieujemne) i ograniczony od góry, to jest zbieżny.<br/> | ||
Linia 2687: | Linia 2701: | ||
− | <span id="D76" style="font-size: 110%; font-weight: bold;">Uwaga | + | <span id="D76" style="font-size: 110%; font-weight: bold;">Zadanie D76</span><br/> |
− | Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[# | + | Podać przykład szeregów zbieżnych, z których tylko jeden jest bezwzględnie zbieżny i których iloczyn Cauchy'ego jest warunkowo zbieżny. |
+ | |||
+ | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
+ | Zauważmy, że szereg <math>\sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}}</math> jest bezwzględnie zbieżny, bo <math>\sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2</math> jest zbieżny. Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest zbieżny na mocy kryterium Leibniza (zobacz [[#D5|D5]]), ale nie jest bezwzględnie zbieżny (zobacz [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). | ||
+ | |||
+ | Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie | ||
+ | |||
+ | ::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math> | ||
+ | |||
+ | ::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math> | ||
+ | |||
+ | jest zbieżny. Łatwo widzimy, że | ||
+ | |||
+ | ::<math>| c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math> | ||
+ | |||
+ | :::<math>\; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math> | ||
+ | |||
+ | :::<math>\; \geqslant {\small\frac{1}{n + 1}}</math> | ||
+ | |||
+ | Ponieważ szereg <math>\sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}}</math> jest rozbieżny i | ||
+ | |||
+ | ::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n |</math> | ||
+ | |||
+ | to na mocy kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny. Co należało pokazać.<br/> | ||
+ | □ | ||
+ | {{\Spoiler}} | ||
+ | |||
+ | |||
+ | |||
+ | <span id="D77" style="font-size: 110%; font-weight: bold;">Zadanie D77</span><br/> | ||
+ | Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny. | ||
+ | |||
+ | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}} | ||
+ | Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest warunkowo zbieżny (zobacz [[#D5|D5]], [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). Iloczyn Cauchy'ego dwóch takich szeregów jest równy <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie | ||
+ | |||
+ | ::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math> | ||
+ | |||
+ | ::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}}</math> | ||
+ | |||
+ | ::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}}</math> | ||
+ | |||
+ | ::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right)</math> | ||
+ | |||
+ | ::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right)</math> | ||
+ | |||
+ | ::<math>\;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}}</math> | ||
+ | |||
+ | |||
+ | Ponieważ (zobacz [[#D17|D17]]) | ||
+ | |||
+ | ::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math> | ||
+ | |||
+ | to | ||
+ | |||
+ | ::<math>{\small\frac{2}{n + 2}} \cdot \log (n + 2) < | c_n | < {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1))</math> | ||
+ | |||
+ | Z twierdzenia o trzech ciągach wynika natychmiast, że <math>\lim_{n \rightarrow \infty} | c_n | = 0</math>. Pokażemy teraz, że ciąg <math>(| c_n |)</math> jest ciągiem malejącym. | ||
+ | |||
+ | ::<math>| c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math> | ||
+ | |||
+ | :::::<math>\;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math> | ||
+ | |||
+ | :::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math> | ||
+ | |||
+ | :::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math> | ||
+ | |||
+ | :::::<math>\;\;\;\; \leqslant 0</math> | ||
+ | |||
+ | Bo <math>\; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1</math>. Ponieważ ciąg <math>(| c_n |)</math> jest malejący i zbieżny do zera, to z kryterium Leibniza (zobacz [[#D5|D5]]) szereg <math>\sum_{n = 0}^{\infty} (- 1)^n | c_n |</math> jest zbieżny. Zauważmy jeszcze, że dla <math>n \geqslant 1</math> mamy | ||
+ | |||
+ | ::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} < | c_n |</math> | ||
+ | |||
+ | Zatem na podstawie kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny.<br/> | ||
+ | □ | ||
+ | {{\Spoiler}} | ||
+ | |||
+ | |||
+ | |||
+ | <span id="D78" style="font-size: 110%; font-weight: bold;">Uwaga D78</span><br/> | ||
+ | Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D80|D80]] pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład. | ||
− | Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy | + | Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy |
− | ::<math>x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}}</math> | + | ::<math>x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} |
+ | = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} | ||
+ | = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa]) | ||
Zatem szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math> jest sumowalny w sensie Cesàro i jego suma jest równa <math>{\small\frac{1}{2}}</math>. | Zatem szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math> jest sumowalny w sensie Cesàro i jego suma jest równa <math>{\small\frac{1}{2}}</math>. | ||
Linia 2698: | Linia 2793: | ||
− | <span id=" | + | <span id="D79" style="font-size: 110%; font-weight: bold;">Twierdzenie D79</span><br/> |
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. | Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. | ||
Linia 2730: | Linia 2825: | ||
− | <span id=" | + | <span id="D80" style="font-size: 110%; font-weight: bold;">Twierdzenie D80</span><br/> |
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy. | Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy. | ||
Linia 2749: | Linia 2844: | ||
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math> | ::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math> | ||
− | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[# | + | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[#D79|D79]] i twierdzenia o trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy |
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math> | ::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math> | ||
Linia 2759: | Linia 2854: | ||
− | <span id=" | + | <span id="D81" style="font-size: 110%; font-weight: bold;">Twierdzenie D81</span><br/> |
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>. | Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>. | ||
Linia 2770: | Linia 2865: | ||
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math> | ::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math> | ||
− | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[# | + | W granicy, gdy <math>n \rightarrow \infty</math>, z twierdzenia [[#D79|D79]] i twierdzenia o trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy |
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math> | ::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math> | ||
Linia 2787: | Linia 2882: | ||
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math> | :::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math> | ||
− | W granicy, gdy <math>n \longrightarrow \infty</math>, z twierdzenia [[# | + | W granicy, gdy <math>n \longrightarrow \infty</math>, z twierdzenia [[#D80|D80]] i udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy |
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math> | ::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math> | ||
Linia 2798: | Linia 2893: | ||
− | <span id=" | + | <span id="D82" style="font-size: 110%; font-weight: bold;">Twierdzenie D82 (Niels Henrik Abel)</span><br/> |
Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>. | Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>. | ||
Linia 2838: | Linia 2933: | ||
::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math> | ::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math> | ||
− | W granicy, gdy <math>L \longrightarrow \infty</math>, z twierdzeń [[# | + | W granicy, gdy <math>L \longrightarrow \infty</math>, z twierdzeń [[#D80|D80]] i [[#D81|D81]] otrzymujemy <math>C = A B</math>. Co należało pokazać.<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} |
Wersja z 14:16, 25 cze 2024
Szeregi nieskończone
Definicja D1
Sumę wszystkich wyrazów ciągu nieskończonego [math]\displaystyle{ (a_n) }[/math]
- [math]\displaystyle{ a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{k = 1}^{\infty} a_k }[/math]
nazywamy szeregiem nieskończonym o wyrazach [math]\displaystyle{ a_n }[/math].
Definicja D2
Ciąg [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] nazywamy ciągiem sum częściowych szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math].
Definicja D3
Szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będziemy nazywali zbieżnym, jeżeli ciąg sum częściowych [math]\displaystyle{ \left ( S_n \right ) }[/math] jest zbieżny.
Twierdzenie D4 (warunek konieczny zbieżności szeregu)
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny, to [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math].
Okazuje się, że bardzo łatwo podać przykład szeregów, dla których warunek [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math] jest warunkiem wystarczającym. Opisany w poniższym twierdzeniu rodzaj szeregów nazywamy szeregami naprzemiennymi.
Twierdzenie D5 (kryterium Leibniza)
Niech ciąg [math]\displaystyle{ (a_n) }[/math] będzie ciągiem malejącym o wyrazach nieujemnych. Jeżeli
- [math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} a_n = 0 }[/math]
to szereg [math]\displaystyle{ \underset{k = 1}{\overset{\infty}{\sum}} (- 1)^{k + 1} \cdot a_k }[/math] jest zbieżny.
Twierdzenie D6
Dla [math]\displaystyle{ s \gt 1 }[/math] prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Przykład D7
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta[1], którą definiuje szereg naprzemienny
- [math]\displaystyle{ \eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math]
lub funkcja dzeta Riemanna[2], którą definiuje inny szereg
- [math]\displaystyle{ \zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Na podstawie twierdzenia D6 funkcje te są związane wzorem
- [math]\displaystyle{ \eta (s) = (1 - 2^{1 - s}) \zeta (s) }[/math]
Dla [math]\displaystyle{ s \in \mathbb{R}_+ }[/math] funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math].
[math]\displaystyle{ s = {\small\frac{1}{2}} }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{\sqrt{k}}} = 0.604898643421 \ldots }[/math] WolframAlpha [math]\displaystyle{ s = 1 }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 = 0.693147180559 \ldots }[/math] WolframAlpha [math]\displaystyle{ s = 2 }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^2}} = {\small\frac{\pi^2}{12}} = 0.822467033424 \ldots }[/math] WolframAlpha
Twierdzenie D8
Niech [math]\displaystyle{ N \in \mathbb{Z}_+ }[/math]. Szeregi [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N}^{\infty} a_k }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. W przypadku zbieżności zachodzi związek
- [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k }[/math]
Twierdzenie D9 (kryterium porównawcze)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ k \gt N_0 }[/math] jest spełniony warunek
- [math]\displaystyle{ 0 \leqslant a_k \leqslant b_k }[/math]
to
- zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] pociąga za sobą zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]
- rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] pociąga za sobą rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]
Twierdzenie D10
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} \left | a_k \right | }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest również zbieżny.
Definicja D11
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest zbieżny.
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest warunkowo zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest zbieżny, ale szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest rozbieżny.
Twierdzenie D12
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] można zapisać w jednej z postaci
- [math]\displaystyle{ \quad a_k = f_k - f_{k + 1} }[/math]
- [math]\displaystyle{ \quad a_k = f_{k - 1} - f_k }[/math]
to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa
- [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1} }[/math]
- [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n }[/math]
Twierdzenie D13
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1 }[/math] 2. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{1}{k (k - 1)}} = 1 }[/math] 3. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} = {\small\frac{3}{4}} }[/math] 4. [math]\displaystyle{ \quad \sum^{\infty}_{k = 1} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} = 1.644934066848 \ldots }[/math] A013661, WolframAlpha
Twierdzenie D14
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} = 1.860025079221 \ldots }[/math] 2. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} = 0.788530565911 \ldots }[/math] A085361 3. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k - 1)}} = 1.257746886944 \ldots }[/math] A131688 4. [math]\displaystyle{ \quad \sum^{\infty}_{k = 3} {\small\frac{1}{k \cdot \log^2 \! k}} = 1.069058310734 \ldots }[/math] A115563
Przykład D15
Na przykładzie szeregu [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math] pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
Ponieważ nie jesteśmy w stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części
- [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math]
Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
Dowodząc twierdzenie D14, w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
- [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]
Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy
- [math]\displaystyle{ \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right) }[/math]
Ponieważ szeregi po lewej i po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}} }[/math]
Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy oszacowanie
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} \lt \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} }[/math]
Teraz pozostaje dodać sumę wyrazów szeregu od [math]\displaystyle{ k = 3 }[/math] do [math]\displaystyle{ k = m }[/math]
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} }[/math]
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości [math]\displaystyle{ m }[/math]. Wystarczy proste polecenie
for(n = 1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print( "n= ", n, " a= ", s + 1/log(10^n+1), " b= ", s + 1/log(10^n) ))
[math]\displaystyle{ m = 10^1 }[/math] [math]\displaystyle{ 1.06 }[/math] [math]\displaystyle{ 1.07 }[/math] [math]\displaystyle{ m = 10^2 }[/math] [math]\displaystyle{ 1.068 }[/math] [math]\displaystyle{ 1.069 }[/math] [math]\displaystyle{ m = 10^3 }[/math] [math]\displaystyle{ 1.06904 }[/math] [math]\displaystyle{ 1.06906 }[/math] [math]\displaystyle{ m = 10^4 }[/math] [math]\displaystyle{ 1.069057 }[/math] [math]\displaystyle{ 1.069058 }[/math] [math]\displaystyle{ m = 10^5 }[/math] [math]\displaystyle{ 1.0690582 }[/math] [math]\displaystyle{ 1.0690583 }[/math] [math]\displaystyle{ m = 10^6 }[/math] [math]\displaystyle{ 1.06905830 }[/math] [math]\displaystyle{ 1.06905831 }[/math] [math]\displaystyle{ m = 10^7 }[/math] [math]\displaystyle{ 1.0690583105 }[/math] [math]\displaystyle{ 1.0690583109 }[/math] [math]\displaystyle{ m = 10^8 }[/math] [math]\displaystyle{ 1.06905831071 }[/math] [math]\displaystyle{ 1.06905831074 }[/math]
Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z dokładnością 10 miejsc po przecinku.
Natomiast samo zsumowanie [math]\displaystyle{ 10^8 }[/math] wyrazów szeregu daje wynik
- [math]\displaystyle{ \sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots }[/math]
Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.
Rozpatrywana wyżej sytuacja pokazuje, że w przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.
Szeregi nieskończone i całka oznaczona
Twierdzenie D16
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, n + 1] }[/math], to prawdziwy jest następujący ciąg nierówności
- [math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x }[/math]
Przykład D17
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math].
Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math] jest ciągła, dodatnia i silnie malejąca w przedziale [math]\displaystyle{ (0, + \infty) }[/math], zatem dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ \int_{1}^{n + 1} {\small\frac{d x}{x}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \int_{1}^{n} {\small\frac{d x}{x}} }[/math]
Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony WolframAlpha.
- [math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]
Ponieważ
- [math]\displaystyle{ \log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) \gt \log n + {\small\frac{1}{n + 1}} }[/math]
to dostajemy
- [math]\displaystyle{ {\small\frac{1}{n + 1}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \lt 1 }[/math]
Zauważmy: nie tylko wiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o zbieżności szeregów.
Twierdzenie D18 (kryterium całkowe zbieżności szeregów)
Załóżmy, że funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna [math]\displaystyle{ F(x) = \int f (x) d x }[/math] ma dla [math]\displaystyle{ x \rightarrow \infty }[/math] granicę skończoną, czy nie.
Przykład D19
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony WolframAlpha.
szereg [math]\displaystyle{ \sum_{k = m}^{\infty} a_k }[/math] funkcja [math]\displaystyle{ f(x) }[/math] całka [math]\displaystyle{ F(x) = \int f(x) d x }[/math] granica [math]\displaystyle{ \lim_{x \to \infty} F(x) }[/math] wynik 1. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x}} }[/math] [math]\displaystyle{ \log x }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 2. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{\sqrt{k}}} }[/math] [math]\displaystyle{ {\small\frac{1}{\sqrt{x}}} }[/math] [math]\displaystyle{ 2 \sqrt{x} }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 3. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] [math]\displaystyle{ {\small\frac{1}{x^2}} }[/math] [math]\displaystyle{ - {\small\frac{1}{x}} }[/math] [math]\displaystyle{ 0 }[/math] szereg zbieżny 4. [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x \log x}} }[/math] [math]\displaystyle{ \log \log x }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 5. [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^2 \! k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x \log^2 \! x}} }[/math] [math]\displaystyle{ - {\small\frac{1}{\log x}} }[/math] [math]\displaystyle{ 0 }[/math] szereg zbieżny
Stosując kryterium całkowe, można łatwo pokazać, że szeregi
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}} }[/math]
są zbieżne dla [math]\displaystyle{ s \gt 1 }[/math] i rozbieżne dla [math]\displaystyle{ s \leqslant 1 }[/math].
Twierdzenie D20
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, \infty) }[/math] oraz
- [math]\displaystyle{ R(m) = \int_{m}^{\infty} f(x) d x }[/math]
- [math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math]
gdzie [math]\displaystyle{ a \lt m }[/math], to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math]
- [math]\displaystyle{ S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m) }[/math]
Przykład D21
Twierdzenie D20 umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]. Mamy
- [math]\displaystyle{ S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
- [math]\displaystyle{ \int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right) }[/math]
- [math]\displaystyle{ R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right) }[/math]
Zatem
- [math]\displaystyle{ S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m) }[/math]
Dla kolejnych wartości [math]\displaystyle{ m }[/math] otrzymujemy
[math]\displaystyle{ m }[/math] [math]\displaystyle{ S(m) + R(m) - f(m) }[/math] [math]\displaystyle{ S(m) + R(m) }[/math] [math]\displaystyle{ 10^1 }[/math] [math]\displaystyle{ 1.84 }[/math] [math]\displaystyle{ 1.87 }[/math] [math]\displaystyle{ 10^2 }[/math] [math]\displaystyle{ 1.85 }[/math] [math]\displaystyle{ 1.86 }[/math] [math]\displaystyle{ 10^3 }[/math] [math]\displaystyle{ 1.86000 }[/math] [math]\displaystyle{ 1.86004 }[/math] [math]\displaystyle{ 10^4 }[/math] [math]\displaystyle{ 1.860024 }[/math] [math]\displaystyle{ 1.860025 }[/math] [math]\displaystyle{ 10^5 }[/math] [math]\displaystyle{ 1.86002506 }[/math] [math]\displaystyle{ 1.86002509 }[/math] [math]\displaystyle{ 10^6 }[/math] [math]\displaystyle{ 1.860025078 }[/math] [math]\displaystyle{ 1.860025079 }[/math] [math]\displaystyle{ 10^7 }[/math] [math]\displaystyle{ 1.86002507920 }[/math] [math]\displaystyle{ 1.86002507923 }[/math] [math]\displaystyle{ 10^8 }[/math] [math]\displaystyle{ 1.860025079220 }[/math] [math]\displaystyle{ 1.860025079221 }[/math] [math]\displaystyle{ 10^9 }[/math] [math]\displaystyle{ 1.8600250792211 }[/math] [math]\displaystyle{ 1.8600250792212 }[/math]
W programie PARI/GP wystarczy napisać:
f(k) = 1.0 / (k+1) / sqrt(k) S(m) = sum( k = 1, m, f(k) ) R(m) = Pi - 2*atan( sqrt(m) ) for(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); print( "j= ", j, " a= ", suma + reszta - f(m), " b= ", suma + reszta ))
Prostym wnioskiem z twierdzenia D16 jest następujące
Twierdzenie D22
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli przy wyliczaniu sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math] (gdzie [math]\displaystyle{ a \lt m }[/math]) zastąpimy sumę [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] całką [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math], to błąd wyznaczenia sumy szeregu nie przekroczy [math]\displaystyle{ f(m) }[/math].
Twierdzenie D23
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny, to dla każdego [math]\displaystyle{ n \geqslant m }[/math] prawdziwe jest następujące oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) }[/math]
- [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]
gdzie [math]\displaystyle{ B }[/math] oraz [math]\displaystyle{ C }[/math] są dowolnymi stałymi spełniającymi nierówności
- [math]\displaystyle{ B \geqslant 1 }[/math]
- [math]\displaystyle{ C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x }[/math]
Uwaga D24
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, \infty) }[/math]. Rozważmy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math]. Zauważmy, że:
- korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny
- jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie D23), możemy znaleźć oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math]
Jednak dysponując już oszacowaniem sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math], możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math]. Zauważmy, że wybór większego [math]\displaystyle{ B }[/math] ułatwia dowód indukcyjny. Stałą [math]\displaystyle{ C }[/math] najlepiej zaokrąglić w górę do wygodnej dla nas wartości.
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna.
Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie D23.
Zadanie D25
Korzystając z twierdzenia D23, znaleźć oszacowania sumy częściowej szeregów
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad }[/math] oraz [math]\displaystyle{ \qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]
Zadanie D26
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest zbieżny.
Zadanie D27
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest zbieżny.
Szeregi nieskończone i liczby pierwsze
Twierdzenie D28
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{p_k}} = 0.269605966 \ldots }[/math] 2. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p^2}} = 0.452247420041 \ldots }[/math] A085548 3. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{(p - 1)^2}} = 1.375064994748 \ldots }[/math] A086242 4. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p (p - 1)}} = 0.773156669049 \ldots }[/math] A136141
Twierdzenie D29
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = 1.636616323351 \ldots }[/math] A137245 2. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p^2 \log p}} = 0.507782187859 \ldots }[/math] A221711 3. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = 0.755366610831 \ldots }[/math] A138312 4. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{\log p}{p^2}} = 0.493091109368 \ldots }[/math] A136271
Twierdzenie D30
Szereg [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] jest rozbieżny.
Uwaga D31
Moglibyśmy oszacować rozbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] podobnie, jak to uczyniliśmy w przypadku twierdzenia B37, ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
Twierdzenie D32
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Prawdziwe są następujące nierówności
[math]\displaystyle{ \quad 1. \quad }[/math] [math]\displaystyle{ n! \gt n^n e^{- n} }[/math] [math]\displaystyle{ \text{dla} \;\; n \geqslant 1 }[/math] [math]\displaystyle{ \quad 2. \quad }[/math] [math]\displaystyle{ n! \lt n^{n + 1} e^{- n} }[/math] [math]\displaystyle{ \text{dla} \;\; n \geqslant 7 }[/math]
Twierdzenie D33
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, prawdziwe są oszacowania
[math]\displaystyle{ \quad 1. \quad }[/math] [math]\displaystyle{ {\small\frac{n}{p}} - 1 \lt W_p (n!) \lt {\small\frac{n}{p - 1}} }[/math] [math]\displaystyle{ \quad 2. \quad }[/math] [math]\displaystyle{ {\small\frac{n + 1}{p}} - 1 \leqslant W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}} }[/math]
Twierdzenie D34
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - 1 }[/math]
Twierdzenie D35 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1.755367 }[/math]
Twierdzenie D36 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt 0.386295 }[/math]
Twierdzenie D37
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt 1.141661 }[/math]
Uwaga D38
Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} }[/math] jest dane wzorem
gdzie [math]\displaystyle{ E = 1.332582275733 \ldots }[/math] Dla [math]\displaystyle{ n \geqslant 319 }[/math] mamy też[7]
|
Uwaga D39
Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math] jest dane wzorem
gdzie [math]\displaystyle{ \gamma = 0.5772156649 \ldots }[/math] jest stałą Eulera. Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie[8]
|
Uwaga D40
Dla [math]\displaystyle{ n \leqslant 10^{10} }[/math] wartości wyrażeń
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E }[/math]
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma }[/math]
są liczbami dodatnimi.
Twierdzenie D41
Prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma }[/math]
gdzie
- [math]\displaystyle{ \quad \gamma = 0.577215664901532 \ldots }[/math] jest stałą Eulera[9]
- [math]\displaystyle{ \quad E = 1.332582275733220 \ldots }[/math][10]
- [math]\displaystyle{ \quad E - \gamma = 0.755366610831688 \ldots }[/math][11]
Twierdzenie D42
Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]
Zadanie D43
Niech [math]\displaystyle{ r = 1 - \log (2) \approx 0.30685281944 }[/math]. Pokazać, że z nierówności prawdziwej dla [math]\displaystyle{ x \geqslant 32 }[/math]
- [math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]
wynika twierdzenie Czebyszewa.
Definicja D44
Powiemy, że liczby pierwsze [math]\displaystyle{ p, q }[/math] są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli [math]\displaystyle{ \left | p - q \right | = 2 }[/math]
Twierdzenie D45* (Viggo Brun, 1919)
Suma odwrotności par liczb pierwszych [math]\displaystyle{ p }[/math] i [math]\displaystyle{ p + 2 }[/math], takich że liczba [math]\displaystyle{ p + 2 }[/math] jest również pierwsza, jest skończona
- [math]\displaystyle{ \underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} \right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2 }[/math]
gdzie [math]\displaystyle{ B_2 = 1.90216058 \ldots }[/math] jest stałą Bruna[13][14].
Zadanie D46
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
Dowód z Księgi. Rozbieżność sumy [math]\displaystyle{ \textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}} }[/math]
Twierdzenie D47
Suma odwrotności liczb pierwszych jest rozbieżna.
Sumowanie przez części
Uwaga D48
Omawianie metody sumowania przez części[16] rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
- [math]\displaystyle{ D(k) = \begin{cases} 1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\ 0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\ \end{cases} }[/math]
Łatwo znajdujemy związek funkcji [math]\displaystyle{ D(k) }[/math] z funkcją [math]\displaystyle{ \pi (k) }[/math]
- [math]\displaystyle{ \pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1 }[/math]
- [math]\displaystyle{ \; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
- [math]\displaystyle{ \; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
- [math]\displaystyle{ \; = D (k) }[/math]
Twierdzenie D49
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]. Prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Zadanie D50
Pokazać, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math].
Zadanie D51
Pokazać, że oszacowanie [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math], gdzie [math]\displaystyle{ \varepsilon \in (0, 1) }[/math], nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
Twierdzenie D52 (sumowanie przez części)
Niech [math]\displaystyle{ a_j }[/math], [math]\displaystyle{ b_j }[/math] będą ciągami określonymi przynajmniej dla [math]\displaystyle{ s \leqslant j \leqslant n }[/math]. Prawdziwy jest następujący wzór
- [math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Wzór ten nazywamy wzorem na sumowanie przez części.
Zadanie D53
Niech [math]\displaystyle{ r \neq 1 }[/math]. Pokazać, że [math]\displaystyle{ \sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math].
Twierdzenie D54 (kryterium Dirichleta)
Niech [math]\displaystyle{ (a_k) \; }[/math] i [math]\displaystyle{ \; (b_k) }[/math] będą ciągami liczb rzeczywistych. Jeżeli
- ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny
- ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny
- [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = 0 }[/math]
- istnieje taka stała [math]\displaystyle{ M }[/math], że [math]\displaystyle{ \left| \sum_{j = 1}^{k} b_j \right| \leqslant M }[/math] dla dowolnej liczby [math]\displaystyle{ k }[/math]
to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] jest zbieżny.
Zadanie D55
Udowodnić następujące wzory
[math]\displaystyle{ \quad \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]
[math]\displaystyle{ \quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]
Zadanie D56
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny.
Zadanie D57
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math] jest zbieżny, a suma tego szeregu jest w przybliżeniu równa [math]\displaystyle{ 0.6839137864 \ldots }[/math]
Zadanie D58
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że
- [math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Twierdzenie D59
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math], gdzie [math]\displaystyle{ A, B \in \mathbb{R}_+ }[/math], to istnieje granica
- [math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Uwaga D60
Funkcja [math]\displaystyle{ \theta (n) }[/math] jest ściśle związana z dobrze nam znaną funkcją [math]\displaystyle{ P (n) }[/math]. Ponieważ [math]\displaystyle{ P(n) = \prod_{p \leqslant n} p }[/math], to
- [math]\displaystyle{ \log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n) }[/math].
Z twierdzenia D59 wynika, że jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math]. Jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math] (zobacz C12 p.3).
Wiemy, że dla funkcji [math]\displaystyle{ \theta (n) }[/math], gdzie [math]\displaystyle{ n \geqslant 2 }[/math], prawdziwe jest oszacowanie[18]
- [math]\displaystyle{ \left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}} }[/math]
Zadanie D61
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że
- [math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Iloczyn Cauchy'ego szeregów
Twierdzenie D62 (kryterium d'Alemberta)
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem liczb rzeczywistych i istnieje granica
- [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| }[/math]
Jeżeli
- [math]\displaystyle{ g \lt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny
- [math]\displaystyle{ g \gt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest rozbieżny
Uwaga C62
W przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1 }[/math] kryterium d'Alemberta nie rozstrzyga o zbieżności lub rozbieżności szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math]. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
- [math]\displaystyle{ \sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}} }[/math]
Przykład D64
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Zbadamy zbieżność szeregu
- [math]\displaystyle{ e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
Ponieważ
- [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0 }[/math]
to z kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.
Zadanie D65
Pokazać, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}} }[/math] jest rozbieżny.
Uwaga D66
W twierdzeniu A37, korzystając z następującej definicji funkcji [math]\displaystyle{ e^x }[/math]
- [math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
pominęliśmy dowód własności [math]\displaystyle{ e^x e^{- x} = 1 }[/math]. Spróbujemy teraz pokazać, że [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].
- [math]\displaystyle{ e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} }[/math]
Oznaczmy [math]\displaystyle{ a_i = {\small\frac{x^i}{i!}} }[/math] oraz [math]\displaystyle{ b_j = {\small\frac{y^j}{j!}} }[/math] i przyjrzyjmy się sumowaniu po [math]\displaystyle{ i, j }[/math]. W podwójnej sumie po prawej stronie [math]\displaystyle{ \sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j }[/math] sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ a_5 b_1 }[/math] [math]\displaystyle{ a_5 b_2 }[/math] [math]\displaystyle{ a_5 b_3 }[/math] [math]\displaystyle{ a_5 b_4 }[/math] [math]\displaystyle{ a_5 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ a_4 b_2 }[/math] [math]\displaystyle{ a_4 b_3 }[/math] [math]\displaystyle{ a_4 b_4 }[/math] [math]\displaystyle{ a_4 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ a_3 b_3 }[/math] [math]\displaystyle{ a_3 b_4 }[/math] [math]\displaystyle{ a_3 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ a_2 b_4 }[/math] [math]\displaystyle{ a_2 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ a_1 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ \; \cdots \; }[/math]
Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]
Co odpowiada sumie [math]\displaystyle{ \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k} b_{n - k} }[/math], gdzie [math]\displaystyle{ n }[/math] numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru
- [math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} }[/math]
Ponieważ
- [math]\displaystyle{ {\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} }[/math]
to otrzymujemy
- [math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y} }[/math]
Pokazaliśmy tym samym, że z definicji
- [math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].
Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i w związku z tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.
Definicja D67
Iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0 }[/math]
W przypadku szeregów, których wyrazy są numerowane od liczby [math]\displaystyle{ 1 }[/math], iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 1}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 1}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} c_n }[/math], gdzie
- [math]\displaystyle{ c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1 }[/math]
Zadanie D68
Niech [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]. Pokazać, że
- jeżeli [math]\displaystyle{ (a_n) = (1, 0, 0, 0, 0, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = b_n }[/math]
- jeżeli [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = \sum_{k = 0}^{n} b_k = B_n }[/math]
- jeżeli [math]\displaystyle{ a_n = b_n = r^n }[/math], to [math]\displaystyle{ c_n = (n + 1) r^n }[/math]
- jeżeli [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ q \neq r }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Przykład D69
Ostatni punkt zadania D68 pozwala stworzyć wiele przykładowych szeregów i ich iloczynów Cauchy'ego. Przypomnijmy, że
- [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ \quad (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ \, q \neq r }[/math]
- [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Przykłady zebraliśmy w tabeli.
[math]\displaystyle{ \boldsymbol{a} }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ \boldsymbol{b} }[/math] [math]\displaystyle{ \boldsymbol{r} }[/math] [math]\displaystyle{ \boldsymbol{(c_n)} }[/math] [math]\displaystyle{ \boldsymbol{\sum_{n=0}^{\infty} a_n} }[/math] [math]\displaystyle{ \boldsymbol{\sum_{n=0}^{\infty} b_n} }[/math] [math]\displaystyle{ \boldsymbol{\sum_{n=0}^{\infty} c_n} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ -2 }[/math] [math]\displaystyle{ {\small\frac{1}{3}} }[/math] [math]\displaystyle{ (-6,0,0,0,0,0,…) }[/math] zbieżny zbieżny zbieżny [math]\displaystyle{ -2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ (-6,0,0,0,0,0,…) }[/math] rozbieżny rozbieżny zbieżny [math]\displaystyle{ {\small\frac{r - 2q}{r - q}} }[/math] [math]\displaystyle{ q }[/math] [math]\displaystyle{ {\small\frac{r}{r - q}} }[/math] [math]\displaystyle{ r }[/math] [math]\displaystyle{ \left( {\small\frac{r ( r - 2q )}{(r - q)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right) }[/math] zbieżny / rozbieżny zbieżny / rozbieżny zbieżny / rozbieżny [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ -2 }[/math] [math]\displaystyle{ {\small\frac{1}{3}} }[/math] [math]\displaystyle{ \left( -8,{\small\frac{1}{3}}, {\small\frac{1}{3^2}}, {\small\frac{1}{3^3}}, {\small\frac{1}{3^4}}, {\small\frac{1}{3^5}}, \ldots \right) }[/math] zbieżny zbieżny zbieżny [math]\displaystyle{ {\small\frac{7}{3}} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - {\small\frac{1}{3}} }[/math] [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ \left( - {\small\frac{7}{9}}, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right) }[/math] rozbieżny zbieżny zbieżny [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ (-3,3,3^2,3^3,3^4,3^5,…) }[/math] rozbieżny rozbieżny rozbieżny [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ \left( {\small\frac{1}{4}}, 0, 0, 0, 0, 0, \ldots \right) }[/math] rozbieżny rozbieżny zbieżny [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ (-2, 0, 0, 0, 0, 0, \ldots ) }[/math] rozbieżny rozbieżny zbieżny [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ (-3, 1, 1, 1, 1, 1,\ldots ) }[/math] rozbieżny rozbieżny rozbieżny [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ (-2,0,0,0,0,0,…) }[/math] rozbieżny zbieżny zbieżny [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ (0, 1, 1, 1, 1, 1, \ldots ) }[/math] rozbieżny zbieżny rozbieżny [math]\displaystyle{ {\small\frac{r - 2}{r - 1}} }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ {\small\frac{r}{r - 1}} }[/math] [math]\displaystyle{ r }[/math] [math]\displaystyle{ \left( {\small\frac{r ( r - 2 )}{(r - 1)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right) }[/math] rozbieżny zbieżny / rozbieżny zbieżny / rozbieżny [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ (0, 2, 2^2, 2^3, 2^4, 2^5, \ldots ) }[/math] rozbieżny rozbieżny rozbieżny [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ {\small\frac{1}{2}} }[/math] [math]\displaystyle{ \left( - 3, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right) }[/math] rozbieżny zbieżny zbieżny
Przykład D70
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz D5)
- [math]\displaystyle{ \sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad }[/math] (WolframAlpha)
Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} }[/math]
Ale [math]\displaystyle{ k \leqslant n \; }[/math] i [math]\displaystyle{ \; n - k \leqslant n }[/math], zatem
- [math]\displaystyle{ {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}} }[/math]
Czyli
- [math]\displaystyle{ | c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1 }[/math]
Ponieważ [math]\displaystyle{ \lim_{n \rightarrow \infty} c_n \neq 0 }[/math], to iloczyn Cauchy'ego jest rozbieżny (zobacz D4).
Zadanie D71
Pokazać, że jeżeli [math]\displaystyle{ a_n = b_n = r^n \; }[/math] i [math]\displaystyle{ \; c_n = (n + 1) r^n }[/math] (zobacz D68 p.3), to szeregi [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] oraz [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór
- [math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Uwaga D72
Przykłady D69 i D70 pokazują, że w ogólności nie jest prawdziwy wzór
- [math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
Uwaga D73
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy [math]\displaystyle{ m = 5 }[/math].
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]
Przejście do sumowania po liniach poziomych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii poziomej.
Przejście do sumowania po liniach pionowych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i }[/math]
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii pionowej.
Twierdzenie D74 (Franciszek Mertens)
Jeżeli szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] jest zbieżny bezwzględnie, szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] jest zbieżny, to ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny i [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].
Zadanie D75
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
Zadanie D76
Podać przykład szeregów zbieżnych, z których tylko jeden jest bezwzględnie zbieżny i których iloczyn Cauchy'ego jest warunkowo zbieżny.
Zadanie D77
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.
Uwaga D78
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie D80 pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro[20]. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
Rozważmy szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math]. Sumy częściowe tego szeregu wynoszą [math]\displaystyle{ S_k = {\small\frac{1 + (- 1)^k}{2}} }[/math] i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu [math]\displaystyle{ (S_k) }[/math] jest równy
- [math]\displaystyle{ x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad }[/math] (WolframAlfa)
Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math] jest sumowalny w sensie Cesàro i jego suma jest równa [math]\displaystyle{ {\small\frac{1}{2}} }[/math].
Twierdzenie D79
Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math].
Twierdzenie D80
Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, to ciąg kolejnych średnich arytmetycznych [math]\displaystyle{ x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}} }[/math] jest zbieżny do tej samej granicy.
Twierdzenie D81
Niech [math]\displaystyle{ (a_n) }[/math] i [math]\displaystyle{ (b_n) }[/math] będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math] i [math]\displaystyle{ \lim_{n \rightarrow \infty} b_n = b }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math].
Twierdzenie D82 (Niels Henrik Abel)
Jeżeli szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] są zbieżne i ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny, to [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].
Przypisy
- ↑ Wikipedia, Funkcja η, (Wiki-pl), (Wiki-en)
- ↑ Wikipedia, Funkcja dzeta Riemanna, (Wiki-pl), (Wiki-en)
- ↑ Twierdzenie: funkcja ciągła w przedziale domkniętym jest całkowalna w tym przedziale.
- ↑ W szczególności: funkcja ograniczona i mająca skończoną liczbę punktów nieciągłości w przedziale domkniętym jest w tym przedziale całkowalna.
- ↑ Skocz do: 5,0 5,1 Wikipedia, Twierdzenia Mertensa, (Wiki-pl), (Wiki-en)
- ↑ Skocz do: 6,0 6,1 Wikipedia, Franciszek Mertens, (Wiki-pl)
- ↑ J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94, (LINK)
- ↑ Zobacz twierdzenie D42.
- ↑ The On-Line Encyclopedia of Integer Sequences, A001620 - Decimal expansion of Euler's constant, (A001620)
- ↑ The On-Line Encyclopedia of Integer Sequences, A083343 - Decimal expansion of constant B3 (or B_3) related to the Mertens constant, (A083343)
- ↑ The On-Line Encyclopedia of Integer Sequences, A138312 - Decimal expansion of Mertens's constant minus Euler's constant, (A138312)
- ↑ Pierre Dusart, Estimates of Some Functions Over Primes without R.H., 2010, (LINK)
- ↑ Wikipedia, Stałe Bruna, (Wiki-pl), (Wiki-en)
- ↑ The On-Line Encyclopedia of Integer Sequences, A065421 - Decimal expansion of Viggo Brun's constant B, (A065421)
- ↑ Paul Erdős, Über die Reihe [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math], Mathematica, Zutphen B 7, 1938, 1-2.
- ↑ sumowanie przez części (ang. summation by parts)
- ↑ ciąg wypukły (ang. convex sequence)
- ↑ Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, vol. 45(1), 2018, 227-251.
- ↑ Skocz do: 19,0 19,1 Wikipedia, Szereg geometryczny, (Wiki-pl), (Wiki-en)
- ↑ Wikipedia, Sumowalność metodą Cesàro, (Wiki-pl), (Wiki-en)