Twierdzenie Czebyszewa o funkcji π(n): Różnice pomiędzy wersjami
(Nie pokazano 4 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 20: | Linia 20: | ||
::<math>P(n)</math> — iloczyn liczb pierwszych nie większych od <math>n</math><br/> | ::<math>P(n)</math> — iloczyn liczb pierwszych nie większych od <math>n</math><br/> | ||
::<math>\lfloor x \rfloor</math> — największa liczba całkowita nie większa od <math>x</math><br/> | ::<math>\lfloor x \rfloor</math> — największa liczba całkowita nie większa od <math>x</math><br/> | ||
− | ::<math>\binom{n}{m}</math> — współczynnik dwumianowy (symbol Newtona), <math>\binom{n}{m} = {\small\frac{n!}{m! \cdot (n - m) !}}</math><br/> | + | ::<math>{\small\binom{n}{m}}</math> — współczynnik dwumianowy (symbol Newtona), <math>{\small\binom{n}{m}} = {\small\frac{n!}{m! \cdot (n - m) !}}</math><br/> |
::<math>\log (x)</math> — logarytm naturalny liczby <math>x > 0</math> | ::<math>\log (x)</math> — logarytm naturalny liczby <math>x > 0</math> | ||
::<math>W_p (n)</math> — wykładnik, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>n</math> | ::<math>W_p (n)</math> — wykładnik, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>n</math> | ||
Linia 34: | Linia 34: | ||
::<math>P(5) = 30</math>, <math>P(10) = 210</math>, <math>P(50) = 614889782588491410</math><br/> | ::<math>P(5) = 30</math>, <math>P(10) = 210</math>, <math>P(50) = 614889782588491410</math><br/> | ||
::<math>\lfloor 1.2 \rfloor = 1</math>, <math>\lfloor 2.8 \rfloor = 2</math>, <math>\lfloor - 1.5 \rfloor = - 2</math><br/> | ::<math>\lfloor 1.2 \rfloor = 1</math>, <math>\lfloor 2.8 \rfloor = 2</math>, <math>\lfloor - 1.5 \rfloor = - 2</math><br/> | ||
− | ::<math>\binom{5}{2} = 10</math>, <math>\binom{10}{5} = 252</math>, <math>\binom{9}{3} = 84</math><br/> | + | ::<math>{\small\binom{5}{2}} = 10</math>, <math>{\small\binom{10}{5}} = 252</math>, <math>{\small\binom{9}{3}} = 84</math><br/> |
::<math>W_2 (8) = 3</math>, <math>W_3 (18) = 2</math>, <math>W_7 (28) = 1</math> | ::<math>W_2 (8) = 3</math>, <math>W_3 (18) = 2</math>, <math>W_7 (28) = 1</math> | ||
Linia 45: | Linia 45: | ||
::<math>P(n)</math> = prodeuler(p=2, n, p)<br/> | ::<math>P(n)</math> = prodeuler(p=2, n, p)<br/> | ||
::<math>\lfloor x \rfloor</math> = floor(x)<br/> | ::<math>\lfloor x \rfloor</math> = floor(x)<br/> | ||
− | ::<math>\binom{n}{m}</math> = binomial(n, m)<br/> | + | ::<math>{\small\binom{n}{m}}</math> = binomial(n, m)<br/> |
::<math>W_p (n)</math> = valuation(n, p) | ::<math>W_p (n)</math> = valuation(n, p) | ||
Linia 100: | Linia 100: | ||
== Oszacowanie <math>p_n</math> od dołu i <math>\pi (n)</math> od góry == | == Oszacowanie <math>p_n</math> od dołu i <math>\pi (n)</math> od góry == | ||
− | Rozpoczniemy od oszacowania liczby <math>\binom{2n}{n}</math>. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu. | + | Rozpoczniemy od oszacowania liczby <math>{\small\binom{2n}{n}}</math>. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu. |
<span id="A2" style="font-size: 110%; font-weight: bold;">Twierdzenie A2</span><br/> | <span id="A2" style="font-size: 110%; font-weight: bold;">Twierdzenie A2</span><br/> | ||
− | Niech <math>n, k \in \mathbb{N}</math>. Współczynnik dwumianowy <math>\binom{n}{k}</math> jest zawsze liczbą całkowitą dodatnią. | + | Niech <math>n, k \in \mathbb{N}</math>. Współczynnik dwumianowy <math>{\small\binom{n}{k}}</math> jest zawsze liczbą całkowitą dodatnią. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
Indukcja matematyczna. Ponieważ | Indukcja matematyczna. Ponieważ | ||
− | ::<math>\binom{0}{0} = \binom{1}{0} = \binom{1}{1} = 1</math> | + | ::<math>{\small\binom{0}{0}} = {\small\binom{1}{0}} = {\small\binom{1}{1}} = 1</math> |
to twierdzenie jest prawdziwe dla <math>n = 1</math>. Zakładając prawdziwość twierdzenia dla wszystkich liczb całkowitych należących do przedziału <math>[1, n]</math> mamy dla <math>n + 1</math> | to twierdzenie jest prawdziwe dla <math>n = 1</math>. Zakładając prawdziwość twierdzenia dla wszystkich liczb całkowitych należących do przedziału <math>[1, n]</math> mamy dla <math>n + 1</math> | ||
− | ::<math>\binom{n + 1}{0} = \binom{n + 1}{n + 1} = 1</math> | + | ::<math>{\small\binom{n + 1}{0}} = {\small\binom{n + 1}{n + 1}} = 1</math> |
Dla <math>k</math> spełniającego warunek <math>1 \leqslant k \leqslant n</math>, jest | Dla <math>k</math> spełniającego warunek <math>1 \leqslant k \leqslant n</math>, jest | ||
− | ::<math>\binom{n + 1}{k} = \binom{n}{k} + \binom{n}{k - 1}</math> | + | ::<math>{\small\binom{n + 1}{k}} = {\small\binom{n}{k}} + {\small\binom{n}{k - 1}}</math> |
− | Na podstawie założenia indukcyjnego liczby po prawej stronie są liczbami całkowitymi dodatnimi, zatem <math>\binom{n + 1}{k}</math> dla wszystkich wartości <math>k</math> jest liczbą całkowitą dodatnią. Co należało pokazać.<br/> | + | Na podstawie założenia indukcyjnego liczby po prawej stronie są liczbami całkowitymi dodatnimi, zatem <math>{\small\binom{n + 1}{k}}</math> dla wszystkich wartości <math>k</math> jest liczbą całkowitą dodatnią. Co należało pokazać.<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 125: | Linia 125: | ||
<span id="A3" style="font-size: 110%; font-weight: bold;">Twierdzenie A3</span><br/> | <span id="A3" style="font-size: 110%; font-weight: bold;">Twierdzenie A3</span><br/> | ||
− | Niech <math>n \in \mathbb{Z}_+</math>. Współczynnik dwumianowy <math>\binom{2 n}{n}</math> jest liczbą parzystą. | + | Niech <math>n \in \mathbb{Z}_+</math>. Współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> jest liczbą parzystą. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
Łatwo zauważamy, że | Łatwo zauważamy, że | ||
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1)!}{n \cdot (n - 1) ! \cdot n!}} = 2 \cdot \binom{2 n - 1}{n - 1}</math><br/> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1)!}{n \cdot (n - 1) ! \cdot n!}} = 2 \cdot {\small\binom{2 n - 1}{n - 1}}</math><br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 137: | Linia 137: | ||
<span id="A4" style="font-size: 110%; font-weight: bold;">Twierdzenie A4</span><br/> | <span id="A4" style="font-size: 110%; font-weight: bold;">Twierdzenie A4</span><br/> | ||
− | Prawdziwe są następujące oszacowania współczynnika dwumianowego <math>\binom{2 n}{n}</math> | + | Prawdziwe są następujące oszacowania współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> |
− | ::<math>3.8^{n + 1} \underset{n \geqslant 80}{<} \binom{2 n}{n} \underset{n \geqslant 5}{<} 4^{n - 1}</math> | + | ::<math>3.8^{n + 1} \underset{n \geqslant 80}{<} {\small\binom{2 n}{n}} \underset{n \geqslant 5}{<} 4^{n - 1}</math> |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Indukcja matematyczna. W przypadku lewej nierówności łatwo sprawdzamy, że <math>3.8^{81} < \binom{160}{80}</math>. Zakładając prawdziwość nierówności dla <math>n \geqslant 80</math>, otrzymujemy dla <math>n + 1</math> | + | Indukcja matematyczna<span style="color: Green"><sup>[a]</sup></span>. W przypadku lewej nierówności łatwo sprawdzamy, że <math>3.8^{81} < {\small\binom{160}{80}}</math>. Zakładając prawdziwość nierówności dla <math>n \geqslant 80</math>, otrzymujemy dla <math>n + 1</math> |
− | ::<math>\binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} > 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{80 + 1}} \right) > 3.8^{n + 1} \cdot 3.9753 > 3.8^{n + 2}</math> | + | ::<math>{\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} > 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{80 + 1}} \right) > 3.8^{n + 1} \cdot 3.9753 > 3.8^{n + 2}</math> |
Prawa nierówność jest prawdziwa dla <math>n = 5</math>. Zakładając prawdziwość nierówności dla <math>n</math>, otrzymujemy dla <math>n + 1</math>: | Prawa nierówność jest prawdziwa dla <math>n = 5</math>. Zakładając prawdziwość nierówności dla <math>n</math>, otrzymujemy dla <math>n + 1</math>: | ||
− | ::<math>\binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} < 4^{n -1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) < 4^n</math> | + | ::<math>{\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} < 4^{n -1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) < 4^n</math> |
+ | |||
+ | |||
+ | <hr style="width: 25%; height: 2px; " /> | ||
+ | <span style="color: Green">[a]</span> Warto znać asymptotykę współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math>, aby lepiej zrozumieć dowodzone w twierdzeniu oszacowanie. Ze wzoru Stirlinga<ref name="Stirling"/> | ||
+ | |||
+ | ::<math>\log n! \sim n \log n - n + {\small\frac{1}{2}} \log (2 \pi n) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{1260 n^5}} - {\small\frac{1}{1680 n^7}} + {\small\frac{1}{1188 n^9}} + \ldots + {\small\frac{B_{2 k}}{(2 k - 1) 2 k \cdot n^{2 k - 1}}} + \ldots</math> | ||
+ | |||
+ | ::<math>n! \sim \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \exp \left( \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2 k (2 k - 1) n^{2 k - 1}}} \right)</math> | ||
+ | |||
+ | ::<math>\;\;\;\,\, = \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \left( 1 + {\small\frac{1}{12 n}} + {\small\frac{1}{288 n^2}} - {\small\frac{139}{51840 n^3}} - {\small\frac{571}{2488320 n^4}} + {\small\frac{163879}{209018880 n^5}} + {\small\frac{5246819}{75246796800 n^6}} - \ldots \right)</math> | ||
+ | |||
+ | gdzie <math>B_i</math> są liczbami Bernoulliego, wynika, że | ||
+ | |||
+ | ::<math>{\small\binom{2 n}{n}} \sim {\small\frac{4^n}{\sqrt{\pi n}}} \cdot \left( 1 - {\small\frac{1}{8 n}} + {\small\frac{1}{128 n^2}} + {\small\frac{5}{1024 n^3}} - {\small\frac{21}{32768 n^4}} - \ldots \right)</math> | ||
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 176: | Linia 190: | ||
W artykule, w którym pojęcie współczynnika dwumianowego odgrywa główną rolę, nie mogło zabraknąć dowodu odwołującego się do wzoru dwumianowego | W artykule, w którym pojęcie współczynnika dwumianowego odgrywa główną rolę, nie mogło zabraknąć dowodu odwołującego się do wzoru dwumianowego | ||
− | ::<math>\left ( x + y \right )^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k}y^{k} = \binom{n}{0} x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n}y^{n}</math> | + | ::<math>\left ( x + y \right )^{n} = \sum_{k=0}^{n} {\small\binom{n}{k}} x^{n-k}y^{k} = {\small\binom{n}{0}} x^{n} + {\small\binom{n}{1}}x^{n-1}y + {\small\binom{n}{2}}x^{n-2}y^{2} + \ldots + {\small\binom{n}{n}}y^{n}</math> |
− | gdzie <math>\binom{n}{k} = {\small\frac{n!}{k! \cdot (n - k)!}}</math>. | + | gdzie <math>{\small\binom{n}{k}} = {\small\frac{n!}{k! \cdot (n - k)!}}</math>. |
Linia 186: | Linia 200: | ||
::<math>a_n = \left( 1 + {\small\frac{1}{n}} \right)^n =</math> | ::<math>a_n = \left( 1 + {\small\frac{1}{n}} \right)^n =</math> | ||
− | ::<math>\quad \; = \sum_{k=0}^{n} \binom{n}{k} {\small\frac{1}{n^k}} =</math> | + | ::<math>\quad \; = \sum_{k=0}^{n} {\small\binom{n}{k}} {\small\frac{1}{n^k}} =</math> |
::<math>\quad \; = 2 + \sum_{k=2}^{n} {\small\frac{n!}{k! \cdot (n - k)!}} \cdot {\small\frac{1}{n^k}} =</math> | ::<math>\quad \; = 2 + \sum_{k=2}^{n} {\small\frac{n!}{k! \cdot (n - k)!}} \cdot {\small\frac{1}{n^k}} =</math> | ||
Linia 259: | Linia 273: | ||
Rozważmy współczynnik dwumianowy | Rozważmy współczynnik dwumianowy | ||
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}}</math> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}}</math> |
Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> występuje w liczniku wypisanego wyżej ułamka i nie występuje w mianowniku. Wynika stąd oszacowanie | Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> występuje w liczniku wypisanego wyżej ułamka i nie występuje w mianowniku. Wynika stąd oszacowanie | ||
− | ::<math>\binom{2 n}{n} = C \cdot \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} > \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} = {\small\frac{P (2 n)}{P (n)}}</math> | + | ::<math>{\small\binom{2 n}{n}} = C \cdot \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} > \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} = {\small\frac{P (2 n)}{P (n)}}</math> |
− | Zauważmy, że wypisany w powyższej nierówności iloczyn liczb pierwszych jest liczbą nieparzystą. Ponieważ współczynnik dwumianowy <math>\binom{2 n}{n}</math> jest dodatnią liczbą całkowitą parzystą, zatem również czynnik <math>C \geqslant 2</math> musi być dodatnią liczbą całkowitą parzystą. Łącząc uzyskaną nierówność z oszacowaniem z twierdzenia [[#A4|A4]], otrzymujemy natychmiast: | + | Zauważmy, że wypisany w powyższej nierówności iloczyn liczb pierwszych jest liczbą nieparzystą. Ponieważ współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> jest dodatnią liczbą całkowitą parzystą, zatem również czynnik <math>C \geqslant 2</math> musi być dodatnią liczbą całkowitą parzystą. Łącząc uzyskaną nierówność z oszacowaniem z twierdzenia [[#A4|A4]], otrzymujemy natychmiast: |
− | ::<math>{\small\frac{P (2 n)}{P (n)}} < \binom{2 n}{n} < 4^{n - 1}</math> | + | ::<math>{\small\frac{P (2 n)}{P (n)}} < {\small\binom{2 n}{n}} < 4^{n - 1}</math> |
Dla <math>n = 2, 3, 4</math> sprawdzamy uzyskany rezultat bezpośrednio.<br/> | Dla <math>n = 2, 3, 4</math> sprawdzamy uzyskany rezultat bezpośrednio.<br/> | ||
Linia 323: | Linia 337: | ||
Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> jest dzielnikiem współczynnika dwumianowego | Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> jest dzielnikiem współczynnika dwumianowego | ||
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}}</math> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}}</math> |
bo dzieli licznik i nie dzieli mianownika. Ponieważ dla każdej z tych liczb jest <math>p > n</math>, to | bo dzieli licznik i nie dzieli mianownika. Ponieważ dla każdej z tych liczb jest <math>p > n</math>, to | ||
− | ::<math>n^{\pi (2 n) - \pi (n)} < \prod_{n < p_i \leqslant 2 n} p_i < \binom{2 n}{n} < 4^n</math> | + | ::<math>n^{\pi (2 n) - \pi (n)} < \prod_{n < p_i \leqslant 2 n} p_i < {\small\binom{2 n}{n}} < 4^n</math> |
Ostatnia nierówność wynika z twierdzenia [[#A4|A4]]. Logarytmując, dostajemy | Ostatnia nierówność wynika z twierdzenia [[#A4|A4]]. Logarytmując, dostajemy | ||
Linia 355: | Linia 369: | ||
::<math>\pi (n + 1) = \pi (n) = 2 \cdot {\small\frac{n}{\log n}} < 2 \cdot {\small\frac{n + 1}{\log (n + 1)}}</math> | ::<math>\pi (n + 1) = \pi (n) = 2 \cdot {\small\frac{n}{\log n}} < 2 \cdot {\small\frac{n + 1}{\log (n + 1)}}</math> | ||
− | Ostatnia nierówność wynika | + | Ostatnia nierówność wynika z twierdzenia A6. Wystarczy zauważyć, że <math>n > \left( 1 + {\small\frac{1}{n}} \right)^n</math> dla <math>n \geqslant 3</math>. Zatem <math>n^{n + 1} > (n + 1)^n</math>. Logarytmując, otrzymujemy <math>(n + 1) \log n > n \log (n + 1)</math>. |
b) jeżeli <math>n + 1</math> jest liczbą nieparzystą, to możemy położyć <math>n + 1 = 2 k + 1</math> i otrzymujemy: | b) jeżeli <math>n + 1</math> jest liczbą nieparzystą, to możemy położyć <math>n + 1 = 2 k + 1</math> i otrzymujemy: | ||
Linia 391: | Linia 405: | ||
== Wykładnik, z jakim liczba pierwsza <math>p</math> występuje w <math>n!</math> == | == Wykładnik, z jakim liczba pierwsza <math>p</math> występuje w <math>n!</math> == | ||
− | Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>\binom{2 n}{n} = {\small\frac{(2 n) !}{(n!)^2}}</math>. | + | Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}}</math>. |
Linia 570: | Linia 584: | ||
− | Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci <math>\binom{2 n}{n}</math>. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego. | + | Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci <math>{\small\binom{2 n}{n}}</math>. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego. |
<span id="A24" style="font-size: 110%; font-weight: bold;">Twierdzenie A24</span><br/> | <span id="A24" style="font-size: 110%; font-weight: bold;">Twierdzenie A24</span><br/> | ||
− | Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>\binom{2 n}{n}</math> z wykładnikiem | + | Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>{\small\binom{2 n}{n}}</math> z wykładnikiem |
::<math>u = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right)</math> | ::<math>u = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right)</math> | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Ponieważ <math>\binom{2 n}{n} = {\small\frac{(2 n) !}{(n!)^2}}</math>, to liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>\binom{2 n}{n}</math> z wykładnikiem: | + | Ponieważ <math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}}</math>, to liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>{\small\binom{2 n}{n}}</math> z wykładnikiem: |
− | ::<math>W_p \left( \binom{2 n}{n} \right) = W_p ((2 n) !) - 2 W_p (n!) = \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right)</math> | + | ::<math>W_p \left( {\small\binom{2 n}{n}} \right) = W_p ((2 n) !) - 2 W_p (n!) = \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right)</math> |
<br/> | <br/> | ||
□ | □ | ||
Linia 589: | Linia 603: | ||
<span id="A25" style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/> | <span id="A25" style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/> | ||
− | Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z wykładnikiem <math>u = 1</math> lub <math>u = 0</math>. | + | Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z wykładnikiem <math>u = 1</math> lub <math>u = 0</math>. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
Linia 604: | Linia 618: | ||
<span id="A26" style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/> | <span id="A26" style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/> | ||
− | Niech <math>p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \biggr\rvert \binom{2 n}{n}</math>, to <math>p^a \leqslant 2 n</math>. | + | Niech <math>p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \biggr\rvert {\small\binom{2 n}{n}}</math>, to <math>p^a \leqslant 2 n</math>. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | Niech <math>u</math> oznacza wykładnik, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze. Mamy | + | Niech <math>u</math> oznacza wykładnik, z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze. Mamy |
::<math>u = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \right)</math> | ::<math>u = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \right)</math> | ||
Linia 627: | Linia 641: | ||
<span id="A27" style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/> | <span id="A27" style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/> | ||
− | Niech <math>\binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>. | + | Niech <math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>. |
Uwaga: w powyższym twierdzeniu <math>q_i</math> nie oznacza <math>i</math>-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie <math>i</math> ze zboru liczb pierwszych <math>q_1, \ldots q_s</math>, które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera. | Uwaga: w powyższym twierdzeniu <math>q_i</math> nie oznacza <math>i</math>-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie <math>i</math> ze zboru liczb pierwszych <math>q_1, \ldots q_s</math>, które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera. | ||
Linia 634: | Linia 648: | ||
<span id="A28" style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/> | <span id="A28" style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/> | ||
− | Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>\binom{2 n}{n}</math> | + | Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> |
− | ::<math>\binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math> | + | ::<math>{\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math> |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
Dowód wynika natychmiast z twierdzenia [[#A27|A27]], bo | Dowód wynika natychmiast z twierdzenia [[#A27|A27]], bo | ||
− | ::<math>\binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math> | + | ::<math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 653: | Linia 667: | ||
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
− | W twierdzeniu [[#A4|A4]] oszacowaliśmy współczynnik dwumianowy <math>\binom{2 n}{n}</math>. Przepiszemy, to twierdzenie w postaci bardziej czytelnej dla potrzeb tego dowodu | + | W twierdzeniu [[#A4|A4]] oszacowaliśmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math>. Przepiszemy, to twierdzenie w postaci bardziej czytelnej dla potrzeb tego dowodu |
− | ::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < \binom{2 n}{n}</math> | + | ::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < {\small\binom{2 n}{n}}</math> |
Nierówności te są prawdziwe dla <math>n \geqslant 80</math>. Z twierdzenia [[#A28|A28]] mamy | Nierówności te są prawdziwe dla <math>n \geqslant 80</math>. Z twierdzenia [[#A28|A28]] mamy | ||
− | ::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math> | + | ::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math> |
− | Łącząc odpowiednie oszacowania współczynnika dwumianowego <math>\binom{2 n}{n}</math> od góry z odpowiednimi oszacowaniami od dołu, dostajemy | + | Łącząc odpowiednie oszacowania współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> od góry z odpowiednimi oszacowaniami od dołu, dostajemy |
::<math>(2 n + 1)^{\pi (2 n + 1)} > \left( \sqrt{3.8} \right)^{2 n + 1}</math> | ::<math>(2 n + 1)^{\pi (2 n + 1)} > \left( \sqrt{3.8} \right)^{2 n + 1}</math> | ||
Linia 863: | Linia 877: | ||
<span id="A33" style="font-size: 110%; font-weight: bold;">Uwaga A33</span><br/> | <span id="A33" style="font-size: 110%; font-weight: bold;">Uwaga A33</span><br/> | ||
− | Dowód twierdzenia [[#A31|A31]] wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja <code>prime(n)</code>. Analogiczna sytuacja miała miejsce w przypadku twierdzenia [[#A32|A32]] – tam musieliśmy wielokrotnie wywoływać funkcję <code>primepi(n)</code>. Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy <code>Test1(n)</code> i <code>Test2(n)</code> wywołane z parametrami <code>n = 520000</code> i odpowiednio <code>n = 8*10^6</code> odpowiadają poleceniom | + | Dowód twierdzenia [[#A31|A31]] wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja <span style="font-size: 90%; color:black;"><code>prime(n)</code></span>. Analogiczna sytuacja miała miejsce w przypadku twierdzenia [[#A32|A32]] – tam musieliśmy wielokrotnie wywoływać funkcję <span style="font-size: 90%; color:black;"><code>primepi(n)</code></span>. Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy <span style="font-size: 90%; color:black;"><code>Test1(n)</code></span> i <span style="font-size: 90%; color:black;"><code>Test2(n)</code></span> wywołane z parametrami <span style="font-size: 90%; color:black;"><code>n = 520000</code></span> i odpowiednio <span style="font-size: 90%; color:black;"><code>n = 8*10^6</code></span> odpowiadają poleceniom |
<span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span> | <span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span> | ||
Linia 1224: | Linia 1238: | ||
− | Rezultat uzyskany w twierdzeniu [[#A25|A25]] zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia [[#A43|A43]] i [[#A45|A45]] udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady [[#A44|A44]] i [[#A46|A46]] to tylko twierdzenia [[#A43|A43]] i [[#A45|A45]] dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń [[#A43|A43]] i [[#A45|A45]], to może je pominąć. | + | Rezultat uzyskany w twierdzeniu [[#A25|A25]] zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia [[#A43|A43]] i [[#A45|A45]] udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady [[#A44|A44]] i [[#A46|A46]] to tylko twierdzenia [[#A43|A43]] i [[#A45|A45]] dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń [[#A43|A43]] i [[#A45|A45]], to może je pominąć. |
<span id="A43" style="font-size: 110%; font-weight: bold;">Twierdzenie A43</span><br/> | <span id="A43" style="font-size: 110%; font-weight: bold;">Twierdzenie A43</span><br/> | ||
− | Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z wykładnikiem równym jeden. | + | Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z wykładnikiem równym jeden. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
Linia 1235: | Linia 1249: | ||
Zauważmy, że każda liczba pierwsza <math>p \in (n, 2 n]</math> występuje dokładnie jeden raz w liczniku ułamka | Zauważmy, że każda liczba pierwsza <math>p \in (n, 2 n]</math> występuje dokładnie jeden raz w liczniku ułamka | ||
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> |
− | i nie występuje w mianowniku. Zatem w rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze wystąpi z wykładnikiem równym <math>1</math>. | + | i nie występuje w mianowniku. Zatem w rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze wystąpi z wykładnikiem równym <math>1</math>. |
Co kończy dowód twierdzenia w przypadku, gdy <math>k = 0</math>. | Co kończy dowód twierdzenia w przypadku, gdy <math>k = 0</math>. | ||
Linia 1245: | Linia 1259: | ||
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | <span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | ||
− | Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka | + | Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w postaci ułamka |
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> |
Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | ||
Linia 1260: | Linia 1274: | ||
::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ||
− | Zatem występuje w rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze z wykładnikiem jeden. | + | Zatem występuje w rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z wykładnikiem jeden. |
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k + 1</math>. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek | Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k + 1</math>. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek | ||
Linia 1323: | Linia 1337: | ||
<span id="A44" style="font-size: 110%; font-weight: bold;">Przykład A44</span><br/> | <span id="A44" style="font-size: 110%; font-weight: bold;">Przykład A44</span><br/> | ||
− | Jeżeli <math>n \geqslant 6</math> i liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>, to <math>p</math> występuje w rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z wykładnikiem równym jeden. | + | Jeżeli <math>n \geqslant 6</math> i liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>, to <math>p</math> występuje w rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z wykładnikiem równym jeden. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | <span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | ||
− | Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka | + | Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w postaci ułamka |
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> |
Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | ||
Linia 1342: | Linia 1356: | ||
::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ||
− | Zatem występuje w rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze z wykładnikiem jeden. | + | Zatem występuje w rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z wykładnikiem jeden. |
Wielokrotności liczby <math>p</math> podnoszą wykładniki, z jakimi występują liczby pierwsze <math>p = 2, 3</math>. Dlatego zakładamy, że <math>n \geqslant 6</math>, bo dla <math>n \geqslant 6</math> liczby pierwsze <math>p = 2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>. | Wielokrotności liczby <math>p</math> podnoszą wykładniki, z jakimi występują liczby pierwsze <math>p = 2, 3</math>. Dlatego zakładamy, że <math>n \geqslant 6</math>, bo dla <math>n \geqslant 6</math> liczby pierwsze <math>p = 2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>. | ||
− | Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 5</math> i liczba <math>3^2</math> dzieli liczbę <math>\binom{10}{5} = 252 = 9 \cdot 28</math> | + | Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 5</math> i liczba <math>3^2</math> dzieli liczbę <math>{\small\binom{10}{5}} = 252 = 9 \cdot 28</math> |
Linia 1377: | Linia 1391: | ||
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 1</math> | ::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 1</math> | ||
− | Dla <math>n = 6, 7</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>. Dla <math>n = 8</math> łatwo sprawdzamy, że liczba <math>5</math> wchodzi do rozkładu liczby <math>\binom{16}{8} = 12870</math> na czynniki pierwsze z wykładnikiem równym jeden. | + | Dla <math>n = 6, 7</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>. Dla <math>n = 8</math> łatwo sprawdzamy, że liczba <math>5</math> wchodzi do rozkładu liczby <math>{\small\binom{16}{8}} = 12870</math> na czynniki pierwsze z wykładnikiem równym jeden. |
− | Zatem dla <math>n \geqslant 6</math> liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> wchodzi do rozkładu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z wykładnikiem równym jeden.<br/> | + | Zatem dla <math>n \geqslant 6</math> liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> wchodzi do rozkładu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z wykładnikiem równym jeden.<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 1386: | Linia 1400: | ||
<span id="A45" style="font-size: 110%; font-weight: bold;">Twierdzenie A45</span><br/> | <span id="A45" style="font-size: 110%; font-weight: bold;">Twierdzenie A45</span><br/> | ||
− | Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze. | + | Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | <span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | ||
− | Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka | + | Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w postaci ułamka |
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> |
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | ||
Linia 1406: | Linia 1420: | ||
::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ||
− | Co oznacza, że <math>p</math> nie występuje w rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze. | + | Co oznacza, że <math>p</math> nie występuje w rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze. |
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k</math>. Rozpatrywane przez nas wielokrotności liczby <math>p</math> zwiększają wykładniki, z jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek | Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k</math>. Rozpatrywane przez nas wielokrotności liczby <math>p</math> zwiększają wykładniki, z jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek | ||
Linia 1463: | Linia 1477: | ||
<span id="A46" style="font-size: 110%; font-weight: bold;">Przykład A46</span><br/> | <span id="A46" style="font-size: 110%; font-weight: bold;">Przykład A46</span><br/> | ||
− | Jeżeli <math>n \geqslant 8</math> i liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>, to <math>p</math> nie występuje w rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze. | + | Jeżeli <math>n \geqslant 8</math> i liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>, to <math>p</math> nie występuje w rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}} | ||
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | <span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/> | ||
− | Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka | + | Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w postaci ułamka |
− | ::<math>\binom{2 n}{n} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | + | ::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> |
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki: | ||
Linia 1482: | Linia 1496: | ||
::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math> | ||
− | Zatem nie występuje w rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze. | + | Zatem nie występuje w rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze. |
Wielokrotności liczby <math>p</math> podnoszą wykładniki, z jakimi występują liczby pierwsze <math>2</math> i <math>3</math>. Dlatego zakładamy, że <math>n \geqslant 8</math>, bo dla <math>n \geqslant 8</math> liczby pierwsze <math>2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>. | Wielokrotności liczby <math>p</math> podnoszą wykładniki, z jakimi występują liczby pierwsze <math>2</math> i <math>3</math>. Dlatego zakładamy, że <math>n \geqslant 8</math>, bo dla <math>n \geqslant 8</math> liczby pierwsze <math>2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>. | ||
− | Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 7</math> i liczba <math>3</math> dzieli liczbę <math>\binom{14}{7} = 3432</math> | + | Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 7</math> i liczba <math>3</math> dzieli liczbę <math>{\small\binom{14}{7}} = 3432</math> |
Linia 1527: | Linia 1541: | ||
Dla <math>n = 8, 9</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>. | Dla <math>n = 8, 9</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>. | ||
− | Dla <math>n = 10, 11, 12</math> łatwo sprawdzamy, że liczba <math>5</math> nie dzieli liczb <math>\binom{20}{10} = 184756</math>, <math>\binom{22}{11} = 705432</math> oraz <math>\binom{24}{12} = 2704156</math>. | + | Dla <math>n = 10, 11, 12</math> łatwo sprawdzamy, że liczba <math>5</math> nie dzieli liczb <math>{\small\binom{20}{10}} = 184756</math>, <math>{\small\binom{22}{11}} = 705432</math> oraz <math>{\small\binom{24}{12}} = 2704156</math>. |
− | Zatem dla <math>n \geqslant 8</math> liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math> nie dzieli liczby <math>\binom{2 n}{n}</math>.<br/> | + | Zatem dla <math>n \geqslant 8</math> liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math> nie dzieli liczby <math>{\small\binom{2 n}{n}}</math>.<br/> |
□ | □ | ||
{{\Spoiler}} | {{\Spoiler}} | ||
Linia 1541: | Linia 1555: | ||
<span id="A48" style="font-size: 110%; font-weight: bold;">Przykład A48</span><br/> | <span id="A48" style="font-size: 110%; font-weight: bold;">Przykład A48</span><br/> | ||
− | Pokazujemy i omawiamy wynik zastosowania twierdzeń [[#A43|A43]] i [[#A45|A45]] do współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>. | + | Pokazujemy i omawiamy wynik zastosowania twierdzeń [[#A43|A43]] i [[#A45|A45]] do współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>. |
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}} | {{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}} | ||
− | Wybraliśmy współczynnik dwumianowy <math>\binom{2 \cdot 3284}{3284}</math> dlatego, że w rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z wykładnikiem większym niż jeden i tak właśnie jest.<br/> | + | Wybraliśmy współczynnik dwumianowy <math>{\small\binom{2 \cdot 3284}{3284}}</math> dlatego, że w rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z wykładnikiem większym niż jeden i tak właśnie jest.<br/> |
− | Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w tabeli. Ostatnią pogrubioną i dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w tabeli – oczywiście tak się nie stanie, bo twierdzeń [[#A43|A43]] i [[#A45|A45]] nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>. | + | Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w tabeli. Ostatnią pogrubioną i dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w tabeli – oczywiście tak się nie stanie, bo twierdzeń [[#A43|A43]] i [[#A45|A45]] nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>. |
Linia 1553: | Linia 1567: | ||
− | Liczba 821 została pogrubiona (w tabeli), bo jest liczbą pierwszą i wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w rozkładzie współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/> | + | Liczba 821 została pogrubiona (w tabeli), bo jest liczbą pierwszą i wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w rozkładzie współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/> |
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie [[#A43|A43]], jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie [[#A45|A45]], jest <math>k = 40</math>. Wartości te i odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia [[#A43|A43]] i [[#A45|A45]] można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/> | Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie [[#A43|A43]], jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie [[#A45|A45]], jest <math>k = 40</math>. Wartości te i odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia [[#A43|A43]] i [[#A45|A45]] można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/> | ||
− | Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i 67, które występują w rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/> | + | Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i 67, które występują w rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/> |
{| class="wikitable" style="font-size: 90%; text-align: center; margin: 1em auto 1em auto;" | {| class="wikitable" style="font-size: 90%; text-align: center; margin: 1em auto 1em auto;" | ||
Linia 1740: | Linia 1754: | ||
<ref name="Dusart18">P. Dusart, ''Explicit estimates of some functions over primes'', Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.</ref> | <ref name="Dusart18">P. Dusart, ''Explicit estimates of some functions over primes'', Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.</ref> | ||
+ | |||
+ | <ref name="Stirling">Wikipedia, ''Wzór Stirlinga'', ([https://pl.wikipedia.org/wiki/Wz%C3%B3r_Stirlinga Wiki-pl]), ([https://en.wikipedia.org/wiki/Stirling%27s_approximation Wiki-en])</ref> | ||
<ref name="p1">Wikipedia, ''Twierdzenie o zbieżności ciągu monotonicznego'', ([https://pl.wikipedia.org/wiki/Twierdzenie_o_zbie%C5%BCno%C5%9Bci_ci%C4%85gu_monotonicznego LINK])</ref> | <ref name="p1">Wikipedia, ''Twierdzenie o zbieżności ciągu monotonicznego'', ([https://pl.wikipedia.org/wiki/Twierdzenie_o_zbie%C5%BCno%C5%9Bci_ci%C4%85gu_monotonicznego LINK])</ref> |
Aktualna wersja na dzień 19:32, 25 lis 2024
Oznaczenia
Będziemy stosowali następujące oznaczenia:
- [math]\displaystyle{ \mathbb{Z} }[/math] — zbiór liczb całkowitych
- [math]\displaystyle{ \mathbb{Z}_+ }[/math] — zbiór liczb całkowitych dodatnich
- [math]\displaystyle{ \mathbb{N} }[/math] — zbiór liczb naturalnych [math]\displaystyle{ \mathbb{N} = \mathbb{Z}_{+} }[/math]
- [math]\displaystyle{ \mathbb{N}_0 }[/math] — zbiór liczb całkowitych nieujemnych [math]\displaystyle{ \mathbb{N}_0 = \mathbb{Z}_{+} \cup \left \{ 0 \right \} }[/math]
- [math]\displaystyle{ \mathbb{R} }[/math] — zbiór liczb rzeczywistych
- [math]\displaystyle{ d \mid n }[/math] — czytaj: d dzieli n ([math]\displaystyle{ d }[/math] jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
- [math]\displaystyle{ d \nmid n }[/math] — czytaj: d nie dzieli n ([math]\displaystyle{ d }[/math] nie jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
- [math]\displaystyle{ p_n }[/math] — [math]\displaystyle{ n }[/math]-ta liczba pierwsza
- [math]\displaystyle{ \pi (n) }[/math] — ilość liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
- [math]\displaystyle{ P(n) }[/math] — iloczyn liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
- [math]\displaystyle{ \lfloor x \rfloor }[/math] — największa liczba całkowita nie większa od [math]\displaystyle{ x }[/math]
- [math]\displaystyle{ {\small\binom{n}{m}} }[/math] — współczynnik dwumianowy (symbol Newtona), [math]\displaystyle{ {\small\binom{n}{m}} = {\small\frac{n!}{m! \cdot (n - m) !}} }[/math]
- [math]\displaystyle{ \log (x) }[/math] — logarytm naturalny liczby [math]\displaystyle{ x \gt 0 }[/math]
- [math]\displaystyle{ W_p (n) }[/math] — wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ n }[/math]
- [math]\displaystyle{ n }[/math] — oznacza zawsze liczbę naturalną
- [math]\displaystyle{ p }[/math] — oznacza zawsze liczbę pierwszą
- [math]\displaystyle{ \mathbb{Z} }[/math] — zbiór liczb całkowitych
Przykładowe wartości niektórych wypisanych wyżej funkcji:
- [math]\displaystyle{ p_2 = 3 }[/math], [math]\displaystyle{ p_{10} = 29 }[/math], [math]\displaystyle{ p_{100} = 541 }[/math]
- [math]\displaystyle{ \pi (10) = 4 }[/math], [math]\displaystyle{ \pi (100) = 25 }[/math], [math]\displaystyle{ \pi (541) = 100 }[/math]
- [math]\displaystyle{ P(5) = 30 }[/math], [math]\displaystyle{ P(10) = 210 }[/math], [math]\displaystyle{ P(50) = 614889782588491410 }[/math]
- [math]\displaystyle{ \lfloor 1.2 \rfloor = 1 }[/math], [math]\displaystyle{ \lfloor 2.8 \rfloor = 2 }[/math], [math]\displaystyle{ \lfloor - 1.5 \rfloor = - 2 }[/math]
- [math]\displaystyle{ {\small\binom{5}{2}} = 10 }[/math], [math]\displaystyle{ {\small\binom{10}{5}} = 252 }[/math], [math]\displaystyle{ {\small\binom{9}{3}} = 84 }[/math]
- [math]\displaystyle{ W_2 (8) = 3 }[/math], [math]\displaystyle{ W_3 (18) = 2 }[/math], [math]\displaystyle{ W_7 (28) = 1 }[/math]
- [math]\displaystyle{ p_2 = 3 }[/math], [math]\displaystyle{ p_{10} = 29 }[/math], [math]\displaystyle{ p_{100} = 541 }[/math]
Funkcje te są zaimplementowane w PARI/GP[1]
- [math]\displaystyle{ p_n }[/math] = prime(n)
- [math]\displaystyle{ \pi (n) }[/math] = primepi(n)
- [math]\displaystyle{ P(n) }[/math] = prodeuler(p=2, n, p)
- [math]\displaystyle{ \lfloor x \rfloor }[/math] = floor(x)
- [math]\displaystyle{ {\small\binom{n}{m}} }[/math] = binomial(n, m)
- [math]\displaystyle{ W_p (n) }[/math] = valuation(n, p)
- [math]\displaystyle{ p_n }[/math] = prime(n)
Twierdzenie Czebyszewa
W 1852 roku rosyjski matematyk Czebyszew[2][3] udowodnił, że dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ a \cdot {\small\frac{n}{\log n}} \: \underset{n \geqslant 11}{\lt } \: \pi (n) \: \underset{n \geqslant 96098}{\lt } \: b \cdot {\small\frac{n}{\log n}} }[/math]
gdzie
- [math]\displaystyle{ a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022 \qquad \quad b = \tfrac{6}{5} a = 1.105550428 }[/math]
Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z nierównościami udowodnionymi przez Czebyszewa w teorii prawdopodobieństwa), a twierdzeniem Czebyszewa nazywany jest łatwy wniosek z tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math]”
Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] nabrało nowego życia, gdy w 1936 Erdos[4] zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.
Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami[5][6][7][8] funkcji [math]\displaystyle{ \pi (n) }[/math] oraz [math]\displaystyle{ p_n }[/math]
- [math]\displaystyle{ {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \underset{n \geqslant 599}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1.28}{\log n}} \right) }[/math]
- [math]\displaystyle{ n (\log n + \log \log n - 1) \underset{n \geqslant 2}{\lt } p_n \underset{n \geqslant 6}{\lt } n (\log n + \log \log n) }[/math]
Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] oraz analogiczne oszacowanie dla funkcji [math]\displaystyle{ p_n }[/math].
Twierdzenie A1
Prawdziwe są następujące oszacowania:
- [math]\displaystyle{ 0.72 \cdot n \log n \underset{n \geqslant 1}{\lt } p_n \underset{n \geqslant 3}{\lt } 2n \log n }[/math]
- [math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} \underset{n \geqslant 3}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } {\small\frac{2 n}{\log n}} }[/math]
Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.
Oszacowanie [math]\displaystyle{ p_n }[/math] od dołu i [math]\displaystyle{ \pi (n) }[/math] od góry
Rozpoczniemy od oszacowania liczby [math]\displaystyle{ {\small\binom{2n}{n}} }[/math]. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.
Twierdzenie A2
Niech [math]\displaystyle{ n, k \in \mathbb{N} }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{n}{k}} }[/math] jest zawsze liczbą całkowitą dodatnią.
Twierdzenie A3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] jest liczbą parzystą.
Twierdzenie A4
Prawdziwe są następujące oszacowania współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]
- [math]\displaystyle{ 3.8^{n + 1} \underset{n \geqslant 80}{\lt } {\small\binom{2 n}{n}} \underset{n \geqslant 5}{\lt } 4^{n - 1} }[/math]
Twierdzenie A5
Dla [math]\displaystyle{ n \geqslant 12 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt 3 n }[/math].
Twierdzenie A6
Ciąg [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] jest rosnący i ograniczony. Dla wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math].
Twierdzenie A7
Prawdziwe są następujące oszacowania:
- [math]\displaystyle{ n^n \underset{n \geqslant 13}{\lt } p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{\lt } (n \log n)^n }[/math]
Twierdzenie A8
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{P (2 n)}{P (n)}} \lt 4^{n - 1} }[/math], gdzie [math]\displaystyle{ P (n) }[/math] oznacza iloczyn wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math].
Twierdzenie A9
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ P(n) \lt 4^n }[/math]
Twierdzenie A10
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt {\small\frac{1}{2 \log 2}} \cdot n \log n }[/math].
Twierdzenie A11
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (2 n) - \pi (n) \lt 2 \log 2 \cdot {\small\frac{n}{\log n}} }[/math].
Twierdzenie A12
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \lt 2 \cdot {\small\frac{n}{\log n}} }[/math].
Wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]
Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} }[/math].
Definicja A13
Funkcję [math]\displaystyle{ \lfloor x \rfloor }[/math] (czytaj: całość z [math]\displaystyle{ x }[/math]) definiujemy jako największą liczbę całkowitą nie większą od [math]\displaystyle{ x }[/math]. Operacyjnie możemy ją zdefiniować następująco: niech liczby [math]\displaystyle{ x, \varepsilon \in \mathbb{R} }[/math], liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math], jeżeli [math]\displaystyle{ x = k + \varepsilon }[/math], to [math]\displaystyle{ \lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k }[/math].
Twierdzenie A14
Dla [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], [math]\displaystyle{ x \in \mathbb{R} }[/math] jest [math]\displaystyle{ \left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor }[/math].
Twierdzenie A15
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Liczba [math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor }[/math] przyjmuje wartości [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math].
Bardzo istotnym rezultatem (z punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n! }[/math]
Definicja A16
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą, zaś [math]\displaystyle{ a }[/math] dowolną liczbą naturalną. Jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ a }[/math], to powiemy, że funkcja [math]\displaystyle{ W_p (n) }[/math] przyjmuje wartość [math]\displaystyle{ a }[/math]. Fakt ten możemy zapisać następująco
- [math]\displaystyle{ W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n }[/math]
Przykład A17
[math]\displaystyle{ W_5 (100) = 2 }[/math], [math]\displaystyle{ W_7 (42) = 1 }[/math], ponieważ [math]\displaystyle{ 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11 }[/math], to [math]\displaystyle{ W_3 (11!) = 4 }[/math]
Wprost z definicji funkcji [math]\displaystyle{ W_p (n) }[/math] wynikają następujące właściwości:
Twierdzenie A18
Podstawowe własności funkcji [math]\displaystyle{ W_p (n) }[/math]
- [math]\displaystyle{ \;\; W_p (n \cdot m) = W_p (n) + W_p (m) }[/math]
- [math]\displaystyle{ \;\; W_p (n \cdot p^a) = a + W_p (n) }[/math]
- [math]\displaystyle{ \;\; W_{p}\left ( {\small\frac{n}{m}} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad {\small\frac{n}{m}}\in \mathbb{Z}_{+} }[/math]
- [math]\displaystyle{ \;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0 }[/math]
Twierdzenie A19
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Ilość liczb podzielnych przez [math]\displaystyle{ p }[/math] i występujących w ciągu [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] wynosi [math]\displaystyle{ r = \left\lfloor {\small\frac{n}{p}} \right\rfloor }[/math].
Przykład A20
Ilość liczb całkowitych dodatnich podzielnych przez [math]\displaystyle{ 5 }[/math] i nie większych od [math]\displaystyle{ 63 }[/math] wynosi [math]\displaystyle{ \left\lfloor {\small\frac{63}{5}} \right\rfloor = 12 }[/math]. Liczby te to [math]\displaystyle{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 }[/math].
Twierdzenie A19 umożliwi nam określenie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]
Twierdzenie A21
Liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]
Uwaga A22
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w postaci
- [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^B \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]
gdzie [math]\displaystyle{ B = \lfloor \log_2 (n) \rfloor }[/math]. Jest tak dlatego, że jeżeli [math]\displaystyle{ k }[/math] przekroczy [math]\displaystyle{ \lfloor \log_2 (n) \rfloor }[/math], to dla liczby pierwszej [math]\displaystyle{ p = 2 }[/math], jak również dla wszystkich innych liczb pierwszych, mamy
- [math]\displaystyle{ {\small\frac{n}{p^k}} \lt 1 }[/math]
czyli dla [math]\displaystyle{ k \gt B }[/math] sumujemy same zera.
Przykład A23
Niech [math]\displaystyle{ n = 30 }[/math], [math]\displaystyle{ p = 3 }[/math]
- [math]\displaystyle{ W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) = }[/math]
- [math]\displaystyle{ \quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) = }[/math]
- [math]\displaystyle{ \quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
- [math]\displaystyle{ \quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
- [math]\displaystyle{ \quad = 10 + W_3 (3 \cdot 6 \cdot 9) = }[/math]
- [math]\displaystyle{ \quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) = }[/math]
- [math]\displaystyle{ \quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) = }[/math]
- [math]\displaystyle{ \quad = 10 + 3 + W_3 (3) = }[/math]
- [math]\displaystyle{ \quad = 10 + 3 + 1 = }[/math]
- [math]\displaystyle{ \quad = 14 }[/math]
Co jest zgodne ze wzorem:
- [math]\displaystyle{ W_3 (30!) = \left\lfloor {\small\frac{30}{3}} \right\rfloor + \left\lfloor {\small\frac{30}{3^2}} \right\rfloor + \left\lfloor {\small\frac{30}{3^3}} \right\rfloor = 10 + 3 + 1 = 14 }[/math]
Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.
Twierdzenie A24
Liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] z wykładnikiem
- [math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right) }[/math]
Twierdzenie A25
Liczby pierwsze spełniające warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math] występują w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].
Twierdzenie A26
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Jeżeli [math]\displaystyle{ p^a \biggr\rvert {\small\binom{2 n}{n}} }[/math], to [math]\displaystyle{ p^a \leqslant 2 n }[/math].
Oszacowanie [math]\displaystyle{ p_n }[/math] od góry i [math]\displaystyle{ \pi (n) }[/math] od dołu
Z twierdzenia A26 wynika natychmiast
Twierdzenie A27
Niech [math]\displaystyle{ {\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math] będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej [math]\displaystyle{ q_i }[/math], [math]\displaystyle{ i = 1, \ldots, s }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ q^{\alpha_i}_i \leqslant 2 n }[/math].
Uwaga: w powyższym twierdzeniu [math]\displaystyle{ q_i }[/math] nie oznacza [math]\displaystyle{ i }[/math]-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie [math]\displaystyle{ i }[/math] ze zboru liczb pierwszych [math]\displaystyle{ q_1, \ldots q_s }[/math], które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera.
Twierdzenie A28
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest następujące oszacowanie współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]
- [math]\displaystyle{ {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]
Twierdzenie A29
Dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]
Twierdzenie A30
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 2 n \log n }[/math]
Dowód twierdzenia A30 kończy dowód całego twierdzenia A1. Możemy teraz dokończyć dowód twierdzenia A7 i pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie:
- [math]\displaystyle{ p_1 \cdot \ldots \cdot p_n \lt (n \log n)^n }[/math]
Uwagi do dowodu
Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i udowodnić
Twierdzenie A31
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 1.875 \cdot n \log n }[/math]
Twierdzenie A32
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ \pi (n) \lt 1.733 \cdot {\small\frac{n}{\log n}} }[/math]
Uwaga A33
Dowód twierdzenia A31 wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja prime(n)
. Analogiczna sytuacja miała miejsce w przypadku twierdzenia A32 – tam musieliśmy wielokrotnie wywoływać funkcję primepi(n)
. Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy Test1(n)
i Test2(n)
wywołane z parametrami n = 520000
i odpowiednio n = 8*10^6
odpowiadają poleceniom
for(s = 1, 520000, if( prime(s) >= s^(5/4), print(s) ))
for(n = 2, 8 * 10^6, if( primepi(n) >= 1.733 * n / log(n), print(n) ))
ale wykonywane są znacznie szybciej.
Test1(n) =
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
{
local(p, k);
k = 1;
p = 2;
while( k <= n,
if( p >= k^(5/4), print(k) );
k = k + 1;
p = nextprime(p + 1); \\ liczba p ma wartość prime(k)
);
}
Test2(n) =
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
local(s, k);
s = 1;
k = 2;
while( k <= n,
if( s >= 1.733 * k / log(k), print(k) );
k = k + 1;
s = s + isprime(k); \\ dla kolejnych k liczba s ma wartość primepi(k)
);
}
Uwaga A34
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] lub [math]\displaystyle{ p_n }[/math]. Już osiągnięcie tą drogą oszacowania [math]\displaystyle{ p_n \lt 1.6 \cdot n \log n }[/math] przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność
- [math]\displaystyle{ \log x \lt {\small\frac{2}{3}} \cdot x^{1 / 16} }[/math]
jest prawdziwa dla [math]\displaystyle{ x \gt 7.671 \cdot 10^{32} }[/math].
Zastosowania
Ciekawy rezultat wynika z twierdzenia A7, ale wcześniej musimy udowodnić twierdzenie o średniej arytmetycznej i geometrycznej.
Twierdzenie A35
Dla dowolnych liczb dodatnich [math]\displaystyle{ a_1, a_2, \ldots, a_n }[/math] średnia arytmetyczna jest nie mniejsza od średniej geometrycznej
- [math]\displaystyle{ {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n} }[/math]
Twierdzenie A36
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność [math]\displaystyle{ p_1 + p_2 + \ldots + p_n \gt n^2 }[/math].
Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] i [math]\displaystyle{ p_n }[/math], które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] istnieje takie [math]\displaystyle{ n_0 }[/math], że dla każdego [math]\displaystyle{ n \gt n_0 }[/math] prawdziwa jest nierówność [math]\displaystyle{ \log x \lt x^{\varepsilon} }[/math]. Inaczej mówiąc, funkcja [math]\displaystyle{ \log x }[/math] rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.
Twierdzenie A37
Prawdziwe są następujące nierówności:
- 1. [math]\displaystyle{ e^x \gt x \qquad \qquad \qquad \quad \:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
- 2. [math]\displaystyle{ e^x \geqslant x + 1 \qquad \qquad \quad \;\:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math] (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 0 }[/math])
- 3. [math]\displaystyle{ e^x \gt 2 x \qquad \qquad \qquad \;\;\,\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
- 4. [math]\displaystyle{ \log x \lt n \cdot x^{1 / n} \qquad \quad \;\;\: }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
- 5. [math]\displaystyle{ \log x \lt \tfrac{1}{2} n \cdot x^{1 / n} \qquad \quad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
- 6. [math]\displaystyle{ \log x \leqslant n (x^{1 / n} - 1) \qquad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 1 }[/math])
Zadanie A38
Niech [math]\displaystyle{ x \in \mathbb{R}_+ }[/math]. Pokazać, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla każdego [math]\displaystyle{ x \gt x_0 }[/math] jest [math]\displaystyle{ \log x \lt x^{1 / n} }[/math].
Twierdzenie A39
Dla funkcji [math]\displaystyle{ p_n }[/math] i [math]\displaystyle{ \pi (n) }[/math] prawdziwe są następujące oszacowania:
- [math]\displaystyle{ 10 n \underset{n \geqslant 6473}{\lt } p_n \underset{n \geqslant 2}{\lt } n^2 }[/math]
- [math]\displaystyle{ \sqrt{n} \underset{n \geqslant 5}{\lt } \pi (n) \underset{n \geqslant 64721}{\lt } {\small\frac{n}{10}} }[/math]
Twierdzenie A40
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n^2})^{n / 3} }[/math]
Zadanie A41
Korzystając z twierdzenia A40 pokazać, że
- [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4 }[/math]
- [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{2 n})^3 \qquad \qquad \;\; \text{dla } \; n \geqslant 7 }[/math]
Twierdzenie A42
Każda liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, n \right] }[/math] występuje w rozwinięciu [math]\displaystyle{ n! }[/math] na czynniki pierwsze z wykładnikiem równym jeden.
Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza [math]\displaystyle{ p }[/math], aby występowała w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia A43 i A45 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A44 i A46 to tylko twierdzenia A43 i A45 dla wybranych wartości liczby [math]\displaystyle{ k }[/math]. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A43 i A45, to może je pominąć.
Twierdzenie A43
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą naturalną. Jeżeli [math]\displaystyle{ n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right) }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.
Przykład A44
Jeżeli [math]\displaystyle{ n \geqslant 6 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.
Twierdzenie A45
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math], to dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math] liczba [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.
Przykład A46
Jeżeli [math]\displaystyle{ n \geqslant 8 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math], to [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.
Uwaga A47
Z przykładu A44 nie wynika, że w przedziale [math]\displaystyle{ \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] znajduje się choćby jedna liczba pierwsza [math]\displaystyle{ p }[/math]. Analogiczna uwaga jest prawdziwa w przypadku przykładu A46 oraz twierdzeń A43 i A45. Istnienie liczby pierwszej w określonym przedziale będzie tematem kolejnego artykułu.
Przykład A48
Pokazujemy i omawiamy wynik zastosowania twierdzeń A43 i A45 do współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math]. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math], co w naszym przypadku daje [math]\displaystyle{ p \gt \sqrt{2 \cdot 3284} \approx 81.04 }[/math].
Przypisy
- ↑ Wikipedia, PARI/GP, (Wiki-en)
- ↑ Wikipedia, Pafnuty Czebyszew (1821 - 1893), (Wiki-pl), (Wiki-ru)
- ↑ P. L. Chebyshev, Mémoire sur les nombres premiers, J. de Math. Pures Appl. (1) 17 (1852), 366-390, (LINK)
- ↑ P. Erdos, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198, (LINK1), (LINK2)
- ↑ P. Dusart, The [math]\displaystyle{ k^{th} }[/math] prime is greater than [math]\displaystyle{ k (\ln k + \ln \ln k - 1) }[/math] for [math]\displaystyle{ k \geqslant 2 }[/math], Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.
- ↑ P. Dusart, Sharper bounds for [math]\displaystyle{ \psi }[/math], [math]\displaystyle{ \theta }[/math], [math]\displaystyle{ \pi }[/math], [math]\displaystyle{ p_k }[/math], Rapport de recherche no. 1998-06, Université de Limoges
- ↑ P. Dusart, Estimates of some functions over primes without R.H., (2010), (LINK)
- ↑ P. Dusart, Explicit estimates of some functions over primes, Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.
- ↑ Wikipedia, Wzór Stirlinga, (Wiki-pl), (Wiki-en)
- ↑ Wikipedia, Twierdzenie o zbieżności ciągu monotonicznego, (LINK)
- ↑ Skocz do: 11,0 11,1 Wikipedia, Characterizations of the exponential function, (Wiki-en)
- ↑ Wikipedia, Cauchy product, (Wiki-en)
- ↑ Wikipedia, Szereg (matematyka) - Działania, (Wiki-pl)