Szeregi liczbowe: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
 
(Nie pokazano 28 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 201: Linia 201:
  
  
<span id="D11" style="font-size: 110%; font-weight: bold;">Twierdzenie D11</span><br/>
+
<span id="D11" style="font-size: 110%; font-weight: bold;">Definicja D11</span><br/>
 +
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''bezwzględnie zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest zbieżny.
 +
 
 +
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''warunkowo zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest zbieżny, ale szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest rozbieżny.
 +
 
 +
 
 +
 
 +
<span id="D12" style="font-size: 110%; font-weight: bold;">Twierdzenie D12</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w&nbsp;jednej z&nbsp;postaci
 
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w&nbsp;jednej z&nbsp;postaci
  
Linia 239: Linia 246:
  
  
<span id="D12" style="font-size: 110%; font-weight: bold;">Twierdzenie D12</span><br/>
+
<span id="D13" style="font-size: 110%; font-weight: bold;">Twierdzenie D13</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 290: Linia 297:
  
  
<span id="D13" style="font-size: 110%; font-weight: bold;">Twierdzenie D13</span><br/>
+
<span id="D14" style="font-size: 110%; font-weight: bold;">Twierdzenie D14</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 395: Linia 402:
  
  
Rezultat ten wykorzystamy w&nbsp;pełni w&nbsp;przykładzie [[#D14|D14]], a&nbsp;do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy
+
Rezultat ten wykorzystamy w&nbsp;pełni w&nbsp;przykładzie [[#D15|D15]], a&nbsp;do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy
  
 
::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math>
 
::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math>
Linia 409: Linia 416:
  
  
<span id="D14" style="font-size: 110%; font-weight: bold;">Przykład D14</span><br/>
+
<span id="D15" style="font-size: 110%; font-weight: bold;">Przykład D15</span><br/>
 
Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
 
Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
  
Linia 419: Linia 426:
 
Wartość pierwszej części możemy policzyć bezpośrednio, a&nbsp;dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
 
Wartość pierwszej części możemy policzyć bezpośrednio, a&nbsp;dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
  
Dowodząc twierdzenie [[#D13|D13]], w&nbsp;punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
+
Dowodząc twierdzenie [[#D14|D14]], w&nbsp;punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
  
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
Linia 446: Linia 453:
 
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości <math>m</math>. Wystarczy proste polecenie
 
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości <math>m</math>. Wystarczy proste polecenie
  
  for(n=1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print("n= ", n, "  a= ", s+1/log(10^n+1), "  b= ", s+1/log(10^n) ))
+
  <span style="font-size: 90%; color:black;">'''for'''(n = 1, 8, s = '''sum'''( k = 3, 10^n, 1/k/('''log'''(k))^2 ); '''print'''( "n= ", n, "  a= ", s + 1/'''log'''(10^n+1), "  b= ", s + 1/'''log'''(10^n) ))</span>
  
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
Linia 483: Linia 490:
 
== Szeregi nieskończone i&nbsp;całka oznaczona ==
 
== Szeregi nieskończone i&nbsp;całka oznaczona ==
  
<span id="D15" style="font-size: 110%; font-weight: bold;">Twierdzenie D15</span><br/>
+
<span id="D16" style="font-size: 110%; font-weight: bold;">Twierdzenie D16</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
  
Linia 518: Linia 525:
  
  
<span id="D16" style="font-size: 110%; font-weight: bold;">Przykład D16</span><br/>
+
<span id="D17" style="font-size: 110%; font-weight: bold;">Przykład D17</span><br/>
 
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
 
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
  
Linia 542: Linia 549:
  
  
<span id="D17" style="font-size: 110%; font-weight: bold;">Twierdzenie D17 (kryterium całkowe zbieżności szeregów)</span><br/>
+
<span id="D18" style="font-size: 110%; font-weight: bold;">Twierdzenie D18 (kryterium całkowe zbieżności szeregów)</span><br/>
 
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
 
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
  
Linia 555: Linia 562:
  
  
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D15|D15]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
+
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
  
 
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
 
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
Linia 570: Linia 577:
  
  
<span id="D18" style="font-size: 110%; font-weight: bold;">Przykład D18</span><br/>
+
<span id="D19" style="font-size: 110%; font-weight: bold;">Przykład D19</span><br/>
 
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
 
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
  
Linia 603: Linia 610:
  
  
<span id="D19" style="font-size: 110%; font-weight: bold;">Twierdzenie D19</span><br/>
+
<span id="D20" style="font-size: 110%; font-weight: bold;">Twierdzenie D20</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
  
Linia 615: Linia 622:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D15|D15]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
+
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
  
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
Linia 633: Linia 640:
  
  
<span id="D20" style="font-size: 110%; font-weight: bold;">Przykład D20</span><br/>
+
<span id="D21" style="font-size: 110%; font-weight: bold;">Przykład D21</span><br/>
Twierdzenie [[#D19|D19]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
+
Twierdzenie [[#D20|D20]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
  
 
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
 
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
Linia 676: Linia 683:
 
W programie PARI/GP wystarczy napisać:
 
W programie PARI/GP wystarczy napisać:
  
  f(k) = 1.0/(k+1)/sqrt(k)
+
  <span style="font-size: 90%; color:black;">f(k) = 1.0 / (k+1) / '''sqrt'''(k)</span>
  S(m) = sum( k = 1, m, f(k) )
+
  <span style="font-size: 90%; color:black;">S(m) = '''sum'''( k = 1, m, f(k) )</span>
  R(m) = Pi - 2*atan( sqrt(m) )
+
  <span style="font-size: 90%; color:black;">R(m) = '''Pi''' - 2*'''atan'''( '''sqrt'''(m) )</span>
  for(j=1, 9, m=10^j; suma=S(m); reszta=R(m); print( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))
+
  <span style="font-size: 90%; color:black;">'''for'''(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); '''print'''( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))</span>
  
  
  
  
Prostym wnioskiem z&nbsp;twierdzenia [[#D15|D15]] jest następujące<br/>
+
Prostym wnioskiem z&nbsp;twierdzenia [[#D16|D16]] jest następujące<br/>
<span id="D21" style="font-size: 110%; font-weight: bold;">Twierdzenie D21</span><br/>
+
<span id="D22" style="font-size: 110%; font-weight: bold;">Twierdzenie D22</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając ze wzoru z&nbsp;twierdzenia [[#D15|D15]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy  
+
Korzystając ze wzoru z&nbsp;twierdzenia [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy  
  
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
Linia 711: Linia 718:
  
  
<span id="D22" style="font-size: 110%; font-weight: bold;">Twierdzenie D22</span><br/>
+
<span id="D23" style="font-size: 110%; font-weight: bold;">Twierdzenie D23</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
  
Linia 723: Linia 730:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#D15|D15]] mamy
+
Z twierdzenia [[#D16|D16]] mamy
  
 
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
 
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
Linia 743: Linia 750:
  
  
<span id="D23" style="font-size: 110%; font-weight: bold;">Uwaga D23</span><br/>
+
<span id="D24" style="font-size: 110%; font-weight: bold;">Uwaga D24</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
  
 
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny  
 
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny  
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D22|D22]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
+
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D23|D23]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
  
 
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
 
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
Linia 754: Linia 761:
 
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
 
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
  
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D22|D22]].
+
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D23|D23]].
  
  
  
<span id="D24" style="font-size: 110%; font-weight: bold;">Zadanie D24</span><br/>
+
<span id="D25" style="font-size: 110%; font-weight: bold;">Zadanie D25</span><br/>
Korzystając z&nbsp;twierdzenia [[#D22|D22]], znaleźć oszacowania sumy częściowej szeregów
+
Korzystając z&nbsp;twierdzenia [[#D23|D23]], znaleźć oszacowania sumy częściowej szeregów
  
 
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
 
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
Linia 789: Linia 796:
  
  
<span id="D25" style="font-size: 110%; font-weight: bold;">Zadanie D25</span><br/>
+
<span id="D26" style="font-size: 110%; font-weight: bold;">Zadanie D26</span><br/>
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
  
Linia 815: Linia 822:
  
  
<span id="D26" style="font-size: 110%; font-weight: bold;">Zadanie D26</span><br/>
+
<span id="D27" style="font-size: 110%; font-weight: bold;">Zadanie D27</span><br/>
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
  
Linia 855: Linia 862:
 
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
 
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
  
<span id="D27" style="font-size: 110%; font-weight: bold;">Twierdzenie D27</span><br/>
+
<span id="D28" style="font-size: 110%; font-weight: bold;">Twierdzenie D28</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 896: Linia 903:
  
  
<span id="D28" style="font-size: 110%; font-weight: bold;">Twierdzenie D28</span><br/>
+
<span id="D29" style="font-size: 110%; font-weight: bold;">Twierdzenie D29</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 940: Linia 947:
 
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
 
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
  
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D13|D13]] p. 4 lub przykład [[#D18|D18]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
+
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D14|D14]] p. 4 lub przykład [[#D19|D19]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
  
 
'''Punkt 2.'''<br/>
 
'''Punkt 2.'''<br/>
Linia 961: Linia 968:
  
  
<span id="D29" style="font-size: 110%; font-weight: bold;">Twierdzenie D29</span><br/>
+
<span id="D30" style="font-size: 110%; font-weight: bold;">Twierdzenie D30</span><br/>
 
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
 
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
  
Linia 979: Linia 986:
  
  
<span id="D30" style="font-size: 110%; font-weight: bold;">Uwaga D30</span><br/>
+
<span id="D31" style="font-size: 110%; font-weight: bold;">Uwaga D31</span><br/>
 
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
 
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
  
  
  
<span id="D31" style="font-size: 110%; font-weight: bold;">Twierdzenie D31</span><br/>
+
<span id="D32" style="font-size: 110%; font-weight: bold;">Twierdzenie D32</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
 
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
  
Linia 1036: Linia 1043:
  
  
<span id="D32" style="font-size: 110%; font-weight: bold;">Twierdzenie D32</span><br/>
+
<span id="D33" style="font-size: 110%; font-weight: bold;">Twierdzenie D33</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
  
Linia 1085: Linia 1092:
  
  
<span id="D33" style="font-size: 110%; font-weight: bold;">Twierdzenie D33</span><br/>
+
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1095: Linia 1102:
 
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
 
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
  
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D31|D31]]), to
+
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D32|D32]]), to
  
 
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
 
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
Linia 1109: Linia 1116:
  
  
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
<span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1120: Linia 1127:
  
  
to z&nbsp;twierdzenia [[#D33|D33]] dostajemy
+
to z&nbsp;twierdzenia [[#D34|D34]] dostajemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
Linia 1134: Linia 1141:
 
::::::<math>\quad \;\: > - 1.755367</math>
 
::::::<math>\quad \;\: > - 1.755367</math>
  
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D28|D28]] p. 3).<br/>
+
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D29|D29]] p. 3).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1140: Linia 1147:
  
  
<span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
<span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1185: Linia 1192:
  
  
<span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36</span><br/>
+
<span id="D37" style="font-size: 110%; font-weight: bold;">Twierdzenie D37</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1195: Linia 1202:
 
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
 
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
  
to z&nbsp;twierdzenia [[#D35|D35]] dostajemy
+
to z&nbsp;twierdzenia [[#D36|D36]] dostajemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
Linia 1213: Linia 1220:
  
  
<span id="D37" style="font-size: 110%; font-weight: bold;">Uwaga D37</span><br/>
+
<span id="D38" style="font-size: 110%; font-weight: bold;">Uwaga D38</span><br/>
 
{| class="wikitable"
 
{| class="wikitable"
 
|
 
|
Linia 1230: Linia 1237:
  
  
<span id="D38" style="font-size: 110%; font-weight: bold;">Uwaga D38</span><br/>
+
<span id="D39" style="font-size: 110%; font-weight: bold;">Uwaga D39</span><br/>
 
{| class="wikitable"
 
{| class="wikitable"
 
|
 
|
Linia 1247: Linia 1254:
  
  
<span id="D39" style="font-size: 110%; font-weight: bold;">Uwaga D39</span><br/>
+
<span id="D40" style="font-size: 110%; font-weight: bold;">Uwaga D40</span><br/>
 
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
 
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
  
Linia 1258: Linia 1265:
  
  
<span id="D40" style="font-size: 110%; font-weight: bold;">Twierdzenie D40</span><br/>
+
<span id="D41" style="font-size: 110%; font-weight: bold;">Twierdzenie D41</span><br/>
 
Prawdziwy jest następujący związek
 
Prawdziwy jest następujący związek
  
Linia 1299: Linia 1306:
  
  
<span id="D41" style="font-size: 110%; font-weight: bold;">Twierdzenie D41</span><br/>
+
<span id="D42" style="font-size: 110%; font-weight: bold;">Twierdzenie D42</span><br/>
 
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
 
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
  
Linia 1336: Linia 1343:
  
  
Z twierdzenia [[#D40|D40]] wiemy, że
+
Z twierdzenia [[#D41|D41]] wiemy, że
  
 
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
 
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
Linia 1377: Linia 1384:
  
  
Korzystając kolejno z&nbsp;twierdzeń [[#D15|D15]] i&nbsp;[[Ciągi liczbowe#C18|C18]], dostajemy
+
Korzystając kolejno z&nbsp;twierdzeń [[#D16|D16]] i&nbsp;[[Ciągi liczbowe#C18|C18]], dostajemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
Linia 1400: Linia 1407:
  
  
<span id="D42" style="font-size: 110%; font-weight: bold;">Zadanie D42</span><br/>
+
<span id="D43" style="font-size: 110%; font-weight: bold;">Zadanie D43</span><br/>
 
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
 
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
  
Linia 1408: Linia 1415:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia [[#D41|D41]] wiemy, że dla <math>x \geqslant 318</math> jest
+
Z twierdzenia [[#D42|D42]] wiemy, że dla <math>x \geqslant 318</math> jest
  
 
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
 
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
Linia 1419: Linia 1426:
  
  
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D32|D32]], łatwo znajdujemy oszacowanie
+
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D33|D33]], łatwo znajdujemy oszacowanie
  
 
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
 
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
Linia 1449: Linia 1456:
  
  
Jednocześnie z&nbsp;twierdzenia [[#D31|D31]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
+
Jednocześnie z&nbsp;twierdzenia [[#D32|D32]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
  
 
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
 
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
Linia 1496: Linia 1503:
  
  
<span id="D43" style="font-size: 110%; font-weight: bold;">Definicja D43</span><br/>
+
<span id="D44" style="font-size: 110%; font-weight: bold;">Definicja D44</span><br/>
 
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
 
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
  
  
  
<span id="D44" style="font-size: 110%; font-weight: bold;">Twierdzenie D44* (Viggo Brun, 1919)</span><br/>
+
<span id="D45" style="font-size: 110%; font-weight: bold;">Twierdzenie D45* (Viggo Brun, 1919)</span><br/>
 
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
 
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
  
Linia 1511: Linia 1518:
  
  
<span id="D45" style="font-size: 110%; font-weight: bold;">Zadanie D45</span><br/>
+
<span id="D46" style="font-size: 110%; font-weight: bold;">Zadanie D46</span><br/>
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
  
Linia 1537: Linia 1544:
  
  
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}}</math> ==
+
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum {\small\frac{1}{p}}</math> ==
  
<span id="D46" style="font-size: 110%; font-weight: bold;">Twierdzenie D46</span><br/>
+
<span id="D47" style="font-size: 110%; font-weight: bold;">Twierdzenie D47</span><br/>
 
Suma odwrotności liczb pierwszych jest rozbieżna.
 
Suma odwrotności liczb pierwszych jest rozbieżna.
  
Linia 1596: Linia 1603:
 
== Sumowanie przez części ==
 
== Sumowanie przez części ==
  
<span id="D47" style="font-size: 110%; font-weight: bold;">Uwaga D47</span><br/>
+
<span id="D48" style="font-size: 110%; font-weight: bold;">Uwaga D48</span><br/>
 
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
 
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
  
Linia 1618: Linia 1625:
  
  
<span id="D48" style="font-size: 110%; font-weight: bold;">Twierdzenie D48</span><br/>
+
<span id="D49" style="font-size: 110%; font-weight: bold;">Twierdzenie D49</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
 
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
  
Linia 1652: Linia 1659:
  
  
<span id="D49" style="font-size: 110%; font-weight: bold;">Zadanie D49</span><br/>
+
<span id="D50" style="font-size: 110%; font-weight: bold;">Zadanie D50</span><br/>
 
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
 
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia [[#D48|D48]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
+
Z twierdzenia [[#D49|D49]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
Linia 1674: Linia 1681:
 
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
 
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
  
Korzystając z&nbsp;twierdzenia [[#D15|D15]], otrzymujemy
+
Korzystając z&nbsp;twierdzenia [[#D16|D16]], otrzymujemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
Linia 1690: Linia 1697:
  
  
<span id="D50" style="font-size: 110%; font-weight: bold;">Zadanie D50</span><br/>
+
<span id="D51" style="font-size: 110%; font-weight: bold;">Zadanie D51</span><br/>
 
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
 
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D48|D48]])
+
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D49|D49]])
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
Linia 1716: Linia 1723:
 
:::<math>\quad \; = C_3</math>
 
:::<math>\quad \; = C_3</math>
  
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D46|D46]], [[#D49|D49]]).<br/>
+
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D47|D47]], [[#D50|D50]]).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1722: Linia 1729:
  
  
<span id="D51" style="font-size: 110%; font-weight: bold;">Twierdzenie D51 (sumowanie przez części)</span><br/>
+
<span id="D52" style="font-size: 110%; font-weight: bold;">Twierdzenie D52 (sumowanie przez części)</span><br/>
 
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
 
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
  
Linia 1769: Linia 1776:
  
  
<span id="D52" style="font-size: 110%; font-weight: bold;">Zadanie D52</span><br/>
+
<span id="D53" style="font-size: 110%; font-weight: bold;">Zadanie D53</span><br/>
Pokazać, że <math>\sum_{k = 1}^{n} k 2^k = (n - 1) 2^{n + 1} + 2</math>.
+
Niech <math>r \neq 1</math>. Pokazać, że <math>\sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
We wzorze na sumowanie przez części połóżmy <math>s = 0</math>, <math>a_k = k</math> i <math>b_k = 2^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
+
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k \;</math> i <math>\; b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
  
::<math>\sum_{k = 0}^{n} k 2^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
+
::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
  
 
gdzie
 
gdzie
  
::<math>B(k) = \sum_{j = 0}^{k} 2^j = {\small\frac{2^{k + 1} - 1}{2 - 1}} = 2^{k + 1} - 1</math>
+
::<math>B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
  
 
Zatem
 
Zatem
  
::<math>\sum_{k = 0}^{n} k 2^k = n \cdot (2^{n + 1} - 1) - \sum_{k = 0}^{n - 1} (2^{k + 1} - 1)</math>
+
::<math>\sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
  
::::<math>\;\: = n 2^{n + 1} - n - \sum_{k = 0}^{n - 1} 2^{k + 1} + \sum_{k = 0}^{n - 1} 1</math>
+
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right)</math>
  
::::<math>\;\: = n 2^{n + 1} - n - 2 \sum_{k = 0}^{n - 1} 2^k + n</math>
+
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right)</math>
 +
 
 +
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right)</math>
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
::::<math>\;\: = n 2^{n + 1} - 2 \cdot {\small\frac{2^n - 1}{2 - 1}}</math>
+
::::<math>\;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r)</math>
 
</div>
 
</div>
  
<div style="margin-top: 1.5em; margin-bottom: 1.5em;">
+
<div style="margin-top: 1em; margin-bottom: 1em;">
::::<math>\;\: = n 2^{n + 1} - 2^{n + 1} + 2</math>
+
::::<math>\;\, = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>
 
</div>
 
</div>
  
<div style="margin-top: 1.5em; margin-bottom: 1em;">
+
Co należało pokazać.<br/>
::::<math>\;\: = 2^{n + 1} (n - 1) + 2</math>
 
</div>
 
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1807: Linia 1812:
  
  
<span id="D53" style="font-size: 110%; font-weight: bold;">Twierdzenie D53 (kryterium Dirichleta)</span><br/>
+
<span id="D54" style="font-size: 110%; font-weight: bold;">Twierdzenie D54 (kryterium Dirichleta)</span><br/>
 
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
 
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
  
Linia 1837: Linia 1842:
 
::::::::<math>\;\;\; = M (a_1 - a_n)</math>
 
::::::::<math>\;\;\; = M (a_1 - a_n)</math>
  
(zobacz [[#D11|D11]]). Jeżeli ciąg <math>(a_k)</math> jest rosnący, to
+
(zobacz [[#D12|D12]]). Jeżeli ciąg <math>(a_k)</math> jest rosnący, to
  
 
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math>
 
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math>
Linia 1845: Linia 1850:
 
::::::::<math>\;\;\; = - M (a_1 - a_n)</math>
 
::::::::<math>\;\;\; = - M (a_1 - a_n)</math>
  
Łącząc uzyskane rezultaty możemy napisać
+
Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg <math>(a_n)</math> jest ograniczony, bo jest zbieżny (zobacz [[Ciągi liczbowe#C9|C9]]), możemy napisać
  
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M | a_1 |</math>
+
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U</math>
  
Sumy częściowe szeregu <math>\sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) |</math> tworzą ciąg rosnący i&nbsp;ograniczony od góry, czyli szereg ten jest zbieżny (zobacz [[Ciągi liczbowe#C10|C10]]). Wynika stąd zbieżność szeregu <math>\sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k)</math> (zobacz [[#D10|D10]]). Zatem szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> musi być zbieżny. Co należało pokazać.<br/>
+
Ponieważ sumy częściowe szeregu <math>\sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) |</math> tworzą ciąg rosnący i&nbsp;ograniczony od góry, to szereg ten jest zbieżny (zobacz [[Ciągi liczbowe#C10|C10]]). Wynika stąd zbieżność szeregu <math>\sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k)</math> (zobacz [[#D10|D10]]). Zatem szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> musi być zbieżny. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1855: Linia 1860:
  
  
<span id="D54" style="font-size: 110%; font-weight: bold;">Zadanie D54</span><br/>
+
<span id="D55" style="font-size: 110%; font-weight: bold;">Zadanie D55</span><br/>
 
Udowodnić następujące wzory
 
Udowodnić następujące wzory
  
Linia 1923: Linia 1928:
  
  
<span id="D55" style="font-size: 110%; font-weight: bold;">Zadanie D55</span><br/>
+
<span id="D56" style="font-size: 110%; font-weight: bold;">Zadanie D56</span><br/>
 
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
 
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W zadaniu [[#D54|D54]] p.1 pokazaliśmy, że prawdziwy jest wzór
+
W zadaniu [[#D55|D55]] p.1 pokazaliśmy, że prawdziwy jest wzór
  
 
::<math>\sum_{j = 1}^{k} \sin j =  
 
::<math>\sum_{j = 1}^{k} \sin j =  
Linia 1951: Linia 1956:
  
  
<span id="D56" style="font-size: 110%; font-weight: bold;">Zadanie D56</span><br/>
+
<span id="D57" style="font-size: 110%; font-weight: bold;">Zadanie D57</span><br/>
 
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
 
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
  
Linia 1959: Linia 1964:
 
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
 
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
  
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D54|D54]] p.1, otrzymujemy
+
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D55|D55]] p.1, otrzymujemy
  
 
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
Linia 1981: Linia 1986:
 
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
  
Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[#D11|D11]]). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum
+
Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[#D12|D12]]). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum
  
 
::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
Linia 1998: Linia 2003:
 
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
  
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D54|D54]] p.2, otrzymujemy
+
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D55|D55]] p.2, otrzymujemy
  
 
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
 
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
Linia 2079: Linia 2084:
  
  
<span id="D57" style="font-size: 110%; font-weight: bold;">Zadanie D57</span><br/>
+
<span id="D58" style="font-size: 110%; font-weight: bold;">Zadanie D58</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
  
Linia 2105: Linia 2110:
  
  
<span id="D58" style="font-size: 110%; font-weight: bold;">Twierdzenie D58</span><br/>
+
<span id="D59" style="font-size: 110%; font-weight: bold;">Twierdzenie D59</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
  
Linia 2123: Linia 2128:
 
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
 
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
  
(zobacz [[#D57|D57]]) otrzymujemy
+
(zobacz [[#D58|D58]]) otrzymujemy
  
 
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
 
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
Linia 2173: Linia 2178:
  
  
<span id="D59" style="font-size: 110%; font-weight: bold;">Uwaga D59</span><br/>
+
<span id="D60" style="font-size: 110%; font-weight: bold;">Uwaga D60</span><br/>
 
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
 
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
  
 
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
 
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
  
Z twierdzenia [[#D58|D58]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C12|C12]] p.3).
+
Z twierdzenia [[#D59|D59]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C12|C12]] p.3).
  
 
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
 
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
Linia 2186: Linia 2191:
  
  
<span id="D60" style="font-size: 110%; font-weight: bold;">Zadanie D60</span><br/>
+
<span id="D61" style="font-size: 110%; font-weight: bold;">Zadanie D61</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
  
Linia 2192: Linia 2197:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Kładąc we wzorze na sumowanie przez części (zobacz [[#D51|D51]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
+
Kładąc we wzorze na sumowanie przez części (zobacz [[#D52|D52]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
  
 
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
 
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
Linia 2220: Linia 2225:
 
== Iloczyn Cauchy'ego szeregów ==
 
== Iloczyn Cauchy'ego szeregów ==
  
<span id="D61" style="font-size: 110%; font-weight: bold;">Twierdzenie D61 (kryterium d'Alemberta)</span><br/>
+
<span id="D62" style="font-size: 110%; font-weight: bold;">Twierdzenie D62 (kryterium d'Alemberta)</span><br/>
 
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i&nbsp;istnieje granica
 
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i&nbsp;istnieje granica
  
Linia 2271: Linia 2276:
  
  
<span id="D63" style="font-size: 110%; font-weight: bold;">Przykład D63</span><br/>
+
<span id="D64" style="font-size: 110%; font-weight: bold;">Przykład D64</span><br/>
 
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu
 
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu
  
Linia 2284: Linia 2289:
  
  
<span id="D64" style="font-size: 110%; font-weight: bold;">Zadanie D64</span><br/>
+
<span id="D65" style="font-size: 110%; font-weight: bold;">Zadanie D65</span><br/>
 
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny.
 
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny.
  
Linia 2298: Linia 2303:
  
  
<span id="D65" style="font-size: 110%; font-weight: bold;">Uwaga D65</span><br/>
+
<span id="D66" style="font-size: 110%; font-weight: bold;">Uwaga D66</span><br/>
 
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A37|A37]], korzystając z&nbsp;następującej definicji funkcji <math>e^x</math>
 
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A37|A37]], korzystając z&nbsp;następującej definicji funkcji <math>e^x</math>
  
Linia 2351: Linia 2356:
 
Ponieważ
 
Ponieważ
  
::<math>{\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot \binom{n}{k}</math>
+
::<math>{\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}}</math>
  
 
to otrzymujemy
 
to otrzymujemy
Linia 2357: Linia 2362:
 
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}  
 
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}  
 
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}  
 
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}  
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot \binom{n}{k} \cdot x^k y^{n - k}  
+
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k}  
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} \binom{n}{k} \cdot x^k y^{n - k}  
+
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k}  
 
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y}</math>
 
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y}</math>
  
Linia 2371: Linia 2376:
  
  
<span id="D66" style="font-size: 110%; font-weight: bold;">Definicja D66</span><br/>
+
<span id="D67" style="font-size: 110%; font-weight: bold;">Definicja D67</span><br/>
 
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
 
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
 
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0</math>
 
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0</math>
  
 +
W przypadku szeregów, których wyrazy są numerowane od liczby <math>1</math>, iloczynem Cauchy'ego szeregów <math>\sum_{i = 1}^{\infty} a_i</math> oraz <math>\sum_{j = 1}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 1}^{\infty} c_n</math>, gdzie
 +
 +
::<math>c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1</math>
  
  
<span id="D67" style="font-size: 110%; font-weight: bold;">Zadanie D67</span><br/>
+
 
 +
<span id="D68" style="font-size: 110%; font-weight: bold;">Zadanie D68</span><br/>
 
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że
 
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 0, 0, 0, 0, \ldots)</math>, <math>(b_n)</math> jest dowolnym ciągiem, to <math>c_n = b_n</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 0, 0, 0, 0, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = b_n</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>, <math>(b_n)</math> jest dowolnym ciągiem, to <math>c_n = \sum_{k = 0}^{n} b_k = B_n</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = \sum_{k = 0}^{n} b_k = B_n</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (b_n) = (1, 1, 1, 1, 1, \ldots)</math>, to <math>c_n = n + 1</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = b_n = {\small\frac{r^n}{n!}}</math>, to <math>c_n = {\small\frac{(2 r)^n}{n!}}</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = b_n = (- 1)^n</math>, to <math>c_n = (n + 1) \cdot (- 1)^n</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, r, r^2, r^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, to <math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
 +
(a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, - 1, 1, - 1, 1, - 1, \ldots)</math>, <math>(b_n) = (b, 1, 1, 1, 1, 1, \ldots)</math>, to <math>c_n =
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, gdzie <math>q \neq r</math>, to <math>c_n =
 
\begin{cases}
 
\begin{cases}
  \qquad \;\;\:\, a b & \text{gdy } \; n = 0 \\
+
  \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
  \quad \;\;\, a - b & \text{gdy } \; n > 0 \; \text{ jest nieparzyste} \\
+
  q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
a + b -1 & \text{gdy } \; n > 0 \; \text{ jest parzyste} \\
 
 
\end{cases}</math>
 
\end{cases}</math>
  
Linia 2408: Linia 2420:
 
'''Punkt 3.'''
 
'''Punkt 3.'''
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} 1 = n + 1</math>
+
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} {\small\frac{r^k r^{n - k}}{k!(n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\frac{n!}{k! (n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} = {\small\frac{(2 r)^n}{n!}}</math>
 
 
Ponieważ <math>a_i b_j = 1</math>, to sumujemy same jedynki, a <math>c_n</math> jest liczbą elementów w <math>n + 1</math> przekątnej
 
  
 
'''Punkt 4.'''
 
'''Punkt 4.'''
 
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} (- 1)^k (- 1)^{n - k} = (- 1)^n \sum_{k = 0}^{n} 1 = (n + 1) \cdot (- 1)^n</math>
 
 
'''Punkt 5.'''
 
  
 
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
 
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
  
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a - b</math>
+
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a \cdot r + r \cdot b = (a + b) r</math>
  
 
Dla <math>n \geqslant 2</math> jest
 
Dla <math>n \geqslant 2</math> jest
Linia 2428: Linia 2434:
 
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
 
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
  
::<math>\;\;\;\:\, = a + b \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k</math>
+
::<math>\;\;\;\:\, = a \cdot r^n + r^n \cdot b + \sum_{k = 1}^{n - 1} r^k r^{n - k}</math>
 
 
Dla <math>n \geqslant 2</math> parzystego mamy
 
 
 
::<math>c_n = a + b \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k = a + b - 1</math>
 
  
Dla <math>n \geqslant 3</math> nieparzystego mamy
+
::<math>\;\;\;\:\, = (a + b) r^n + \sum_{k = 1}^{n - 1} r^n</math>
  
::<math>c_n = a + b \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k = a - b</math>
+
::<math>\;\;\;\:\, = (a + b + n - 1) r^n</math>
  
 
Zbierając, otrzymujemy
 
Zbierając, otrzymujemy
  
<math>c_n =
+
::<math>c_n =
 
\begin{cases}
 
\begin{cases}
  \qquad \;\;\:\, a b & \text{gdy } \; n = 0 \\
+
  \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
  \quad \;\;\, a - b & \text{gdy } \; n > 0 \; \text{ jest nieparzyste} \\
+
  (a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\
a + b -1 & \text{gdy } \; n > 0 \; \text{ jest parzyste} \\
+
\end{cases}</math>
\end{cases}</math><br/>
+
 
&#9633;
+
'''Punkt 5.'''
{{\Spoiler}}
 
  
 +
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
  
 +
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a r + b q</math>
  
<span id="D68" style="font-size: 110%; font-weight: bold;">Uwaga D68</span><br/>
+
Dla <math>n \geqslant 2</math> jest
W związku z&nbsp;definicją [[#D66|D66]] pojawia się natychmiast pytanie: czy zawsze prawdziwa jest równość
 
  
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
+
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
Odpowiedź brzmi: nie, a&nbsp;odpowiednie przykłady podamy niżej w&nbsp;zadaniach. Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
+
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
  
 +
::<math>\;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k}</math>
  
 +
Jeżeli <math>r = 0</math>, to <math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = 0</math>. Jeżeli <math>r \neq 0</math>, to
  
<span id="D69" style="font-size: 110%; font-weight: bold;">Zadanie D69</span><br/>
+
::<math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot {\small\frac{\left( {\normalsize\frac{q}{r}} \right)^n - {\normalsize\frac{q}{r}}}{{\normalsize\frac{q}{r}} - 1}} = {\small\frac{r q^n - q r^n}{q - r}}</math>
Podać przykład szeregów, z&nbsp;których jeden jest zbieżny, a&nbsp;drugi rozbieżny i&nbsp;których iloczyn Cauchy'ego jest zbieżny.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Zauważmy, że znaleziony wzór obejmuje również przypadek <math>r = 0</math>. Zatem
Niech
 
  
::<math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>
+
::<math>c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}}</math>
  
::<math>(b_n) = (1, - 1, 0, 0, 0, \ldots)</math>
+
::<math>\;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right)</math>
  
Szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest rozbieżny, a&nbsp;szereg <math>\sum_{j = 0}^{\infty} b_j</math> jest zbieżny. Łatwo znajdujemy wyrazy ciągu <math>(c_n)</math>
+
Zbierając, otrzymujemy
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_k =  
+
::<math>c_n =
 
\begin{cases}
 
\begin{cases}
  1 & \text{gdy } n = 0 \\
+
  \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
  0 & \text{gdy } n \geqslant 1 \\
+
  q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 
\end{cases}</math><br/>
 
\end{cases}</math><br/>
 
Czyli <math>(c_n) = (1, 0, 0, 0, 0, \ldots)</math> i&nbsp;szereg <math>\sum_{n = 0}^{\infty} c_n</math> jest zbieżny.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2484: Linia 2484:
  
  
<span id="D70" style="font-size: 110%; font-weight: bold;">Zadanie D70</span><br/>
+
<span id="D69" style="font-size: 110%; font-weight: bold;">Przykład D69</span><br/>
Podać przykład szeregów rozbieżnych, których iloczyn Cauchy'ego jest zbieżny.
+
Ostatni punkt zadania [[#D68|D68]] pozwala stworzyć wiele przykładowych szeregów i&nbsp;ich iloczynów Cauchy'ego. Przypomnijmy, że
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\quad (b_n) = (b, r, r^2, r^3, \ldots)</math>, &nbsp;gdzie <math>\, q \neq r</math>
Rozważmy ciągi
 
  
::<math>(a_n) = \left( {\small\frac{1}{2}}, - 1, 1, - 1, 1, \ldots \right)</math>
+
::<math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 +
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
  
::<math>(b_n) = \left( {\small\frac{1}{2}}, 1, 1, 1, 1, \ldots \right)</math>
 
  
Szeregi <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> są rozbieżne, bo <math>A_n = {\small\frac{1}{2}} \cdot (- 1)^n \;</math> i <math>\; B_n = {\small\frac{1}{2}} + n</math>. Policzmy wyrazy ciągu <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
+
Przykłady zebraliśmy w&nbsp;tabeli.
 +
 
 +
::{| class="wikitable plainlinks" style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{a}</math> || <math>\boldsymbol{q}</math> || <math>\boldsymbol{b}</math> || <math>\boldsymbol{r}</math> || <math>\boldsymbol{(c_n)}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} a_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} b_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} c_n}</math>
 +
|-
 +
|<math>3</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math>|| <math>{\small\frac{1}{3}}</math> || <math>(-6,0,0,0,0,0,…)</math> || zbieżny || zbieżny || zbieżny
 +
|-
 +
|<math>-2</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-6,0,0,0,0,0,…)</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>{\small\frac{r - 2q}{r - q}}</math> || <math>q</math> || <math>{\small\frac{r}{r - q}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2q )}{(r - q)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || zbieżny / rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
 +
|-
 +
| <math>4</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math> || <math>{\small\frac{1}{3}}</math> || <math>\left( -8,{\small\frac{1}{3}}, {\small\frac{1}{3^2}}, {\small\frac{1}{3^3}}, {\small\frac{1}{3^4}}, {\small\frac{1}{3^5}}, \ldots \right)</math> || zbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>{\small\frac{7}{3}}</math> || <math>2</math> || <math>- {\small\frac{1}{3}}</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - {\small\frac{7}{9}}, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-3,3,3^2,3^3,3^4,3^5,…)</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>{\small\frac{1}{2}}</math> || <math>1</math> || <math>{\small\frac{1}{2}}</math> || <math>-1</math> || <math>\left( {\small\frac{1}{4}}, 0, 0, 0, 0, 0, \ldots \right)</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(-2, 0, 0, 0, 0, 0, \ldots )</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>1</math> || <math>3</math> || <math>2</math> || <math>(-3, 1, 1, 1, 1, 1,\ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>2</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>(-2,0,0,0,0,0,…)</math> || rozbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>2</math> || <math>1</math> || <math>0</math> || <math>{\small\frac{1}{2}}</math> || <math>(0, 1, 1, 1, 1, 1, \ldots )</math> || rozbieżny || zbieżny || rozbieżny
 +
|-
 +
| <math>{\small\frac{r - 2}{r - 1}}</math> || <math>1</math> || <math>{\small\frac{r}{r - 1}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2 )}{(r - 1)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
 +
|-
 +
| <math>0</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(0, 2, 2^2, 2^3, 2^4, 2^5, \ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>3</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - 3, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 +
|}
  
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = {\small\frac{1}{4}}</math>
 
  
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = {\small\frac{1}{2}} \cdot 1 + (- 1) \cdot {\small\frac{1}{2}} = 0</math>
 
  
Dla <math>n \geqslant 2</math> jest
+
<span id="D70" style="font-size: 110%; font-weight: bold;">Przykład D70</span><br/>
 +
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz [[#D5|D5]])
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
+
::<math>\sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=Sum%5B+%28-1%29%5Ek%2Fsqrt%28k%2B1%29%2C+%7Bk%2C+0%2C+infinity%7D+%5D WolframAlpha])
  
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
+
Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy
  
::<math>\;\;\;\:\, = {\small\frac{1}{2}} + {\small\frac{1}{2}} \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k</math>
+
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}}
 +
= (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math>
  
Dla <math>n \geqslant 2</math> parzystego mamy
+
Ale <math>k \leqslant n \;</math> i <math>\; n - k \leqslant n</math>, zatem
  
::<math>c_n = {\small\frac{1}{2}} + {\small\frac{1}{2}} \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k = {\small\frac{1}{2}} + {\small\frac{1}{2}} - 1 = 0</math>
+
::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math>
  
Dla <math>n \geqslant 3</math> nieparzystego mamy
+
Czyli
  
::<math>c_n = {\small\frac{1}{2}} + {\small\frac{1}{2}} \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k = {\small\frac{1}{2}} - {\small\frac{1}{2}} + 0 = 0</math>
+
::<math>| c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1</math>
  
Zatem <math>(c_n) = \left( {\small\frac{1}{4}}, 0, 0, 0, 0, \ldots \right)</math> i&nbsp;szereg <math>\sum_{n = 0}^{\infty} c_n</math> jest zbieżny.<br/>
+
Ponieważ <math>\lim_{n \rightarrow \infty} c_n \neq 0</math>, to iloczyn Cauchy'ego jest rozbieżny (zobacz [[#D4|D4]]).
&#9633;
 
{{\Spoiler}}
 
  
  
  
 
<span id="D71" style="font-size: 110%; font-weight: bold;">Zadanie D71</span><br/>
 
<span id="D71" style="font-size: 110%; font-weight: bold;">Zadanie D71</span><br/>
Podać przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny.
+
Pokazać, że jeżeli <math>a_n = b_n = r^n \;</math> i <math>\; c_n = (n + 1) r^n</math> (zobacz [[#D68|D68]] p.3), to szeregi <math>\sum_{n = 0}^{\infty} a_n</math> oraz <math>\sum_{n = 0}^{\infty} c_n</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w&nbsp;przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór
 +
 
 +
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Rozważmy zbieżny szereg (zobacz [[#D5|D5]], [https://www.wolframalpha.com/input?i=Sum%5B+%28-1%29%5Ek%2Fsqrt%28k%2B1%29%2C+%7Bk+%2C+0%2C+infinity%7D+%5D WolframAlpha])
+
Zbieżność szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> łatwo zbadamy, stosując kryterium d'Alemberta.
  
::<math>\sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots</math>
+
::<math>\left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r |</math>
  
Mamy
+
Zatem szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math> i&nbsp;rozbieżny, gdy <math>| r | > 1</math>, tak samo, jak szereg <math>\sum_{n = 0}^{\infty} r^n</math>. W&nbsp;przypadku, gdy <math>r = \pm 1</math> szereg <math>\sum_{n = 0}^{\infty} r^n</math> jest rozbieżny, a&nbsp;odpowiednie sumy częściowe szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> są równe
 +
 
 +
:*&nbsp;&nbsp;&nbsp; gdy <math>r = 1</math>, <math>c_n = n + 1</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad</math> (zobacz <span style="color: Green">[a]</span>, [https://www.wolframalpha.com/input?i=Sum%5B+n%2B1%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
 +
 
 +
:*&nbsp;&nbsp;&nbsp; gdy <math>r = - 1</math>, <math>c_n = (n + 1) (- 1)^n</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad</math> (zobacz [[#D53|D53]], [https://www.wolframalpha.com/input?i=Sum%5B+%28n%2B1%29*%28-1%29%5En%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
 +
 
 +
W przypadku, gdy <math>| r | < 1</math> wiemy<ref name="GeometricSeries1"/>, że <math>\sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}}</math>. Korzystając z&nbsp;zadania [[#D53|D53]], otrzymujemy
  
::<math>\left( \sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{\sqrt{i + 1}}} \right) \cdot \left( \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{\sqrt{j + 1}}} \right)  
+
::<math>\sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}}</math>
= \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} \right)
 
= \sum_{n = 0}^{\infty} (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math>
 
  
Ale <math>k \leqslant n</math> i <math>n - k \leqslant n</math>, zatem
 
  
::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math>
+
Ponieważ szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math>, to musi być <math>\lim_{n \rightarrow \infty} (n + 1) r^n = 0</math> (zobacz [[#D4|D4]]). Pokazaliśmy, że w&nbsp;rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów.
  
Czyli
 
  
::<math>| c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1</math>
+
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> Zauważmy, że
  
Ponieważ <math>\lim_{n \rightarrow \infty} c_n \neq 0</math>, to iloczyn Cauchy'ego jest rozbieżny (zobacz [[#D4|D4]]).<br/>
+
::<math>\sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2551: Linia 2589:
  
 
<span id="D72" style="font-size: 110%; font-weight: bold;">Uwaga D72</span><br/>
 
<span id="D72" style="font-size: 110%; font-weight: bold;">Uwaga D72</span><br/>
 +
Przykłady [[#D69|D69]] i [[#D70|D70]] pokazują, że w&nbsp;ogólności nie jest prawdziwy wzór
 +
 +
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
 +
 +
Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
 +
 +
 +
 +
<span id="D73" style="font-size: 110%; font-weight: bold;">Uwaga D73</span><br/>
 
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych
 
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych
  
Linia 2589: Linia 2636:
  
  
<span id="D73" style="font-size: 110%; font-weight: bold;">Twierdzenie D73 (Franciszek Mertens)</span><br/>
+
<span id="D74" style="font-size: 110%; font-weight: bold;">Twierdzenie D74 (Franciszek Mertens)</span><br/>
 
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
 
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
  
Linia 2603: Linia 2650:
 
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
 
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D72|D72]]).
+
Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
  
 
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
Linia 2656: Linia 2703:
  
  
<span id="D74" style="font-size: 110%; font-weight: bold;">Zadanie D74</span><br/>
+
<span id="D75" style="font-size: 110%; font-weight: bold;">Zadanie D75</span><br/>
 
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
 
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
  
Linia 2664: Linia 2711:
 
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math>
 
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math>
  
Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D72|D72]]).
+
Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
  
 
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math>
 
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math>
Linia 2678: Linia 2725:
 
:::<math>\; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j |</math>
 
:::<math>\; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j |</math>
  
:::<math>\; < A' B'</math>
+
:::<math>\; \leqslant A' B'</math>
  
 
Ponieważ ciąg sum częściowych <math>C'_m</math> jest rosnący (bo sumujemy wartości nieujemne) i&nbsp;ograniczony od góry, to jest zbieżny.<br/>
 
Ponieważ ciąg sum częściowych <math>C'_m</math> jest rosnący (bo sumujemy wartości nieujemne) i&nbsp;ograniczony od góry, to jest zbieżny.<br/>
Linia 2686: Linia 2733:
  
  
<span id="D75" style="font-size: 110%; font-weight: bold;">Uwaga D75</span><br/>
+
<span id="D76" style="font-size: 110%; font-weight: bold;">Zadanie D76</span><br/>
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D77|D77]] pozwala przypisać wartość sumy do szeregów, których suma w&nbsp;zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w&nbsp;sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
+
Podać przykład szeregów zbieżnych, z&nbsp;których tylko jeden jest bezwzględnie zbieżny i&nbsp;których iloczyn Cauchy'ego jest warunkowo zbieżny.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że szereg <math>\sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}}</math> jest bezwzględnie zbieżny, bo <math>\sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2</math> jest zbieżny. Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest zbieżny na mocy kryterium Leibniza (zobacz [[#D5|D5]]), ale nie jest bezwzględnie zbieżny (zobacz [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]).
 +
 
 +
Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i&nbsp;tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa])
+
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
  
::<math>x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}}</math>
+
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
  
Zatem szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math> jest sumowalny w&nbsp;sensie Cesàro i&nbsp;jego suma jest równa <math>{\small\frac{1}{2}}</math>.
+
jest zbieżny. Łatwo widzimy, że
  
 +
::<math>| c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
  
 +
:::<math>\; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
  
<span id="D76" style="font-size: 110%; font-weight: bold;">Twierdzenie D76</span><br/>
+
:::<math>\; \geqslant {\small\frac{1}{n + 1}}</math>
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ szereg <math>\sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}}</math> jest rozbieżny i
Z założenia <math>\lim_{n \rightarrow \infty} a_n = 0</math>. Ze zbieżności ciągu <math>(a_k)</math> wynika, że
 
  
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| a_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C9|C9]])
+
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n |</math>
  
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon</math> (zobacz [[Ciągi liczbowe#C4|C4]], [[Ciągi liczbowe#C6|C6]])
+
to na mocy kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Możemy przyjąć, że warunek <math>| a_k | < \varepsilon</math> spełniają wszystkie wyrazy, poczynając od <math>N = N (\varepsilon)</math>. Zatem dla <math>n > N</math> możemy napisać
 
  
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}}</math>
 
  
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}}</math>
+
<span id="D77" style="font-size: 110%; font-weight: bold;">Zadanie D77</span><br/>
 +
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.
  
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + \varepsilon</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest warunkowo zbieżny (zobacz [[#D5|D5]], [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). Iloczyn Cauchy'ego dwóch takich szeregów jest równy <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
Ponieważ liczba <math>n</math> może być dowolnie duża, to wyrażenie <math>{\small\frac{U (N + 1)}{n + 1}}</math> może być dowolnie małe. W&nbsp;szczególności warunek
+
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
  
::<math>{\small\frac{U (N + 1)}{n + 1}} < \varepsilon</math>
+
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}}</math>
  
jest spełniony dla <math>n > {\small\frac{U (N + 1)}{\varepsilon}} - 1</math> i&nbsp;otrzymujemy, że
+
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}}</math>
  
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | < 2 \varepsilon</math>
+
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right)</math>
  
dla wszystkich <math>n > \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right)</math>. Zatem <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. Co należało pokazać.<br/>
+
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}}</math>
  
  
<span id="D77" style="font-size: 110%; font-weight: bold;">Twierdzenie D77</span><br/>
+
Ponieważ (zobacz [[#D17|D17]])
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
Z założenia ciąg <math>(a_k)</math> jest zbieżny, zatem możemy napisać
 
  
::<math>\lim_{k \rightarrow \infty} a_k = g</math>
+
to
  
Z definicji ciągu <math>(x_n)</math> dostajemy
+
::<math>{\small\frac{2}{n + 2}} \cdot \log (n + 2) < | c_n | < {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1))</math>
  
::<math>x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g
+
Z twierdzenia o&nbsp;trzech ciągach wynika natychmiast, że <math>\lim_{n \rightarrow \infty} | c_n | = 0</math>. Pokażemy teraz, że ciąg <math>(| c_n |)</math> jest ciągiem malejącym.
= {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}}  
+
 
= {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}}  
+
::<math>| c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
= {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}}</math>
+
 
 +
:::::<math>\;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
 +
 
 +
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
  
Wynika stąd, że
+
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
  
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math>
+
:::::<math>\;\;\;\; \leqslant 0</math>
  
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D76|D76]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
+
Bo <math>\; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1</math>. Ponieważ ciąg <math>(| c_n |)</math> jest malejący i&nbsp;zbieżny do zera, to z&nbsp;kryterium Leibniza (zobacz [[#D5|D5]]) szereg <math>\sum_{n = 0}^{\infty} (- 1)^n | c_n |</math> jest zbieżny. Zauważmy jeszcze, że dla <math>n \geqslant 1</math> mamy
  
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math>
+
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} < | c_n |</math>
  
Czyli <math>\lim_{n \rightarrow \infty} x_n = g</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2). Co należało pokazać.<br/>
+
Zatem na podstawie kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2758: Linia 2812:
  
  
<span id="D78" style="font-size: 110%; font-weight: bold;">Twierdzenie D78</span><br/>
+
<span id="D78" style="font-size: 110%; font-weight: bold;">Uwaga D78</span><br/>
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>.
+
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D80|D80]] pozwala przypisać wartość sumy do szeregów, których suma w&nbsp;zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w&nbsp;sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i&nbsp;tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy
  
'''1. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n = 0}</math>
+
::<math>x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}}
 +
= {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}}
 +
= {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa])
  
Ponieważ ciąg <math>(b_n)</math> jest zbieżny, to jest ograniczony (zobacz [[Ciągi liczbowe#C9|C9]]), czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| b_k | \leqslant U</math>. Zatem
+
Zatem szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math> jest sumowalny w&nbsp;sensie Cesàro i&nbsp;jego suma jest równa <math>{\small\frac{1}{2}}</math>.
  
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math>
 
  
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D76|D76]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
 
  
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math>
+
<span id="D79" style="font-size: 110%; font-weight: bold;">Twierdzenie D79</span><br/>
 +
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>.
  
Czyli <math>\lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2).
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>\lim_{n \rightarrow \infty} a_n = 0</math>. Ze zbieżności ciągu <math>(a_k)</math> wynika, że
  
 +
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| a_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C9|C9]])
  
'''2. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0}</math>
+
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon</math> (zobacz [[Ciągi liczbowe#C4|C4]], [[Ciągi liczbowe#C6|C6]])
  
Niech <math>x_n = a_n - a</math>. Oczywiście <math>\lim_{n \rightarrow \infty} x_n = 0</math>. Podstawiając, otrzymujemy
+
Możemy przyjąć, że warunek <math>| a_k | < \varepsilon</math> spełniają wszystkie wyrazy, poczynając od <math>N = N (\varepsilon)</math>. Zatem dla <math>n > N</math> możemy napisać
  
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k}</math>
+
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}}</math>
  
:::::::<math>\, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
+
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}}</math>
  
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
+
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + \varepsilon</math>
  
W granicy, gdy <math>n \longrightarrow \infty</math>, z&nbsp;twierdzenia [[#D77|D77]] i&nbsp;udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy
+
Ponieważ liczba <math>n</math> może być dowolnie duża, to wyrażenie <math>{\small\frac{U (N + 1)}{n + 1}}</math> może być dowolnie małe. W&nbsp;szczególności warunek
  
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>
+
::<math>{\small\frac{U (N + 1)}{n + 1}} < \varepsilon</math>
  
Co kończy dowód.<br/>
+
jest spełniony dla <math>n > {\small\frac{U (N + 1)}{\varepsilon}} - 1</math> i&nbsp;otrzymujemy, że
&#9633;
+
 
{{\Spoiler}}
+
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | < 2 \varepsilon</math>
 
+
 
 
+
dla wszystkich <math>n > \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right)</math>. Zatem <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. Co należało pokazać.<br/>
 
+
&#9633;
 
+
{{\Spoiler}}
<span id="D79" style="font-size: 110%; font-weight: bold;
+
 
 +
 
 +
 
 +
<span id="D80" style="font-size: 110%; font-weight: bold;">Twierdzenie D80</span><br/>
 +
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia ciąg <math>(a_k)</math> jest zbieżny, zatem możemy napisać
 +
 
 +
::<math>\lim_{k \rightarrow \infty} a_k = g</math>
 +
 
 +
Z definicji ciągu <math>(x_n)</math> dostajemy
 +
 
 +
::<math>x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g
 +
= {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}}
 +
= {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}}
 +
= {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}}</math>
 +
 
 +
Wynika stąd, że
 +
 
 +
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math>
 +
 
 +
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D79|D79]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
 +
 
 +
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math>
 +
 
 +
Czyli <math>\lim_{n \rightarrow \infty} x_n = g</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2). Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D81" style="font-size: 110%; font-weight: bold;">Twierdzenie D81</span><br/>
 +
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 
 +
'''1. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n = 0}</math>
 +
 
 +
Ponieważ ciąg <math>(b_n)</math> jest zbieżny, to jest ograniczony (zobacz [[Ciągi liczbowe#C9|C9]]), czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| b_k | \leqslant U</math>. Zatem
 +
 
 +
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math>
 +
 
 +
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D79|D79]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
 +
 
 +
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math>
 +
 
 +
Czyli <math>\lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2).
 +
 
 +
 
 +
'''2. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0}</math>
 +
 
 +
Niech <math>x_n = a_n - a</math>. Oczywiście <math>\lim_{n \rightarrow \infty} x_n = 0</math>. Podstawiając, otrzymujemy
 +
 
 +
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k}</math>
 +
 
 +
:::::::<math>\, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
 +
 
 +
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
 +
 
 +
W granicy, gdy <math>n \longrightarrow \infty</math>, z&nbsp;twierdzenia [[#D80|D80]] i&nbsp;udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy
 +
 
 +
::<math>\lim_{n \rightarrow \infty} {\small\frac{
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2871: Linia 4677:
 
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
 
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
  
<ref name="twierdzenie">Zobacz twierdzenie [[#D41|D41]].</ref>
+
<ref name="twierdzenie">Zobacz twierdzenie [[#D42|D42]].</ref>
  
 
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>
 
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>
Linia 2896: Linia 4702:
  
 
<ref name="CesaroSum1">Wikipedia, ''Sumowalność metodą Cesàro'', ([https://pl.wikipedia.org/wiki/Sumowalno%C5%9B%C4%87_metod%C4%85_Ces%C3%A0ro Wiki-pl]), ([https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation Wiki-en])</ref>
 
<ref name="CesaroSum1">Wikipedia, ''Sumowalność metodą Cesàro'', ([https://pl.wikipedia.org/wiki/Sumowalno%C5%9B%C4%87_metod%C4%85_Ces%C3%A0ro Wiki-pl]), ([https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation Wiki-en])</ref>
 +
 +
<ref name="IndefiniteSum1">Wikipedia, ''Indefinite sum'', ([https://en.wikipedia.org/wiki/Indefinite_sum Wiki-en])</ref>
 +
 +
<ref name="Fasenmyer1">Sister Mary Celine Fasenmyer, ''Some Generalized Hypergeometric Polynomials'', Bull. Amer. Math. Soc. 53 (1947), 806-812</ref>
 +
 +
<ref name="Fasenmyer2">Sister Mary Celine Fasenmyer, ''A Note on Pure Recurrence Relations'', Amer. Math. Monthly 56 (1949), 14-17</ref>
 +
 +
<ref name="Zeilberger1">Doron Zeilberger, ''Sister Celine's technique and its generalizations'', Journal of Mathematical Analysis and Applications, 85 (1982), 114-145</ref>
 +
 +
<ref name="WilfZeilberger1">Herbert Wilf and Doron Zeilberger, ''Rational Functions Certify Combinatorial Identities'', J. Amer. Math. Soc. 3 (1990), 147-158</ref>
 +
 +
<ref name="PetkovsekWilfZeilberger1">Marko Petkovšek, Herbert Wilf and Doron Zeilberger, ''A = B'', AK Peters, Ltd., 1996</ref>
 +
 +
<ref name="JovanMikic1">Jovan Mikić, ''A Proof of a&nbsp;Famous Identity Concerning the Convolution of the Central Binomial Coefficients'', Journal of Integer Sequences, Vol. 19, No. 6 (2016), pp. 1 - 10, ([https://cs.uwaterloo.ca/journals/JIS/VOL19/Mikic2/mikic15.html LINK])</ref>
 +
 +
<ref name="gamma1">Wikipedia, ''Funkcja Γ'', ([https://pl.wikipedia.org/wiki/Funkcja_%CE%93 Wiki-pl]), ([https://en.wikipedia.org/wiki/Gamma_function Wiki-en])</ref>
  
 
</references>
 
</references>

Aktualna wersja na dzień 11:37, 28 sty 2025

07.04.2022



Szeregi nieskończone

Definicja D1
Sumę wszystkich wyrazów ciągu nieskończonego [math]\displaystyle{ (a_n) }[/math]

[math]\displaystyle{ a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{k = 1}^{\infty} a_k }[/math]

nazywamy szeregiem nieskończonym o wyrazach [math]\displaystyle{ a_n }[/math].


Definicja D2
Ciąg [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] nazywamy ciągiem sum częściowych szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math].


Definicja D3
Szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będziemy nazywali zbieżnym, jeżeli ciąg sum częściowych [math]\displaystyle{ \left ( S_n \right ) }[/math] jest zbieżny.


Twierdzenie D4 (warunek konieczny zbieżności szeregu)
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny, to [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math].

Dowód


Okazuje się, że bardzo łatwo podać przykład szeregów, dla których warunek [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math] jest warunkiem wystarczającym. Opisany w poniższym twierdzeniu rodzaj szeregów nazywamy szeregami naprzemiennymi.
Twierdzenie D5 (kryterium Leibniza)
Niech ciąg [math]\displaystyle{ (a_n) }[/math] będzie ciągiem malejącym o wyrazach nieujemnych. Jeżeli

[math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} a_n = 0 }[/math]

to szereg [math]\displaystyle{ \underset{k = 1}{\overset{\infty}{\sum}} (- 1)^{k + 1} \cdot a_k }[/math] jest zbieżny.

Dowód


Twierdzenie D6
Dla [math]\displaystyle{ s \gt 1 }[/math] prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Dowód


Przykład D7
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta[1], którą definiuje szereg naprzemienny

[math]\displaystyle{ \eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math]

lub funkcja dzeta Riemanna[2], którą definiuje inny szereg

[math]\displaystyle{ \zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

Na podstawie twierdzenia D6 funkcje te są związane wzorem

[math]\displaystyle{ \eta (s) = (1 - 2^{1 - s}) \zeta (s) }[/math]

Dla [math]\displaystyle{ s \in \mathbb{R}_+ }[/math] funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math].


Twierdzenie D8
Niech [math]\displaystyle{ N \in \mathbb{Z}_+ }[/math]. Szeregi [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N}^{\infty} a_k }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. W przypadku zbieżności zachodzi związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k }[/math]
Dowód


Twierdzenie D9 (kryterium porównawcze)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ k \gt N_0 }[/math] jest spełniony warunek

[math]\displaystyle{ 0 \leqslant a_k \leqslant b_k }[/math]

to

  1.    zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] pociąga za sobą zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]
  2.    rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] pociąga za sobą rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]
Dowód


Twierdzenie D10
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} \left | a_k \right | }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest również zbieżny.

Dowód


Definicja D11
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest zbieżny.

Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest warunkowo zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest zbieżny, ale szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest rozbieżny.


Twierdzenie D12
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] można zapisać w jednej z postaci

  1. [math]\displaystyle{ \quad a_k = f_k - f_{k + 1} }[/math]
  2. [math]\displaystyle{ \quad a_k = f_{k - 1} - f_k }[/math]

to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa

  1. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1} }[/math]
  2. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n }[/math]
Dowód


Twierdzenie D13
Następujące szeregi są zbieżne

Dowód


Twierdzenie D14
Następujące szeregi są zbieżne

Dowód


Przykład D15
Na przykładzie szeregu [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math] pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.

Ponieważ nie jesteśmy w stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części

[math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.

Dowodząc twierdzenie D14, w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]


Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy

[math]\displaystyle{ \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right) }[/math]


Ponieważ szeregi po lewej i po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}} }[/math]


Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy oszacowanie

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} \lt \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} }[/math]


Teraz pozostaje dodać sumę wyrazów szeregu od [math]\displaystyle{ k = 3 }[/math] do [math]\displaystyle{ k = m }[/math]

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości [math]\displaystyle{ m }[/math]. Wystarczy proste polecenie

for(n = 1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print( "n= ", n, "   a= ", s + 1/log(10^n+1), "   b= ", s + 1/log(10^n) ))

Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z dokładnością 10 miejsc po przecinku.

Natomiast samo zsumowanie [math]\displaystyle{ 10^8 }[/math] wyrazów szeregu daje wynik

[math]\displaystyle{ \sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots }[/math]

Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.

Rozpatrywana wyżej sytuacja pokazuje, że w przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.



Szeregi nieskończone i całka oznaczona

Twierdzenie D16
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, n + 1] }[/math], to prawdziwy jest następujący ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x }[/math]
Dowód


Przykład D17
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math].

Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math] jest ciągła, dodatnia i silnie malejąca w przedziale [math]\displaystyle{ (0, + \infty) }[/math], zatem dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \int_{1}^{n + 1} {\small\frac{d x}{x}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \int_{1}^{n} {\small\frac{d x}{x}} }[/math]

Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

[math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]

Ponieważ

[math]\displaystyle{ \log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) \gt \log n + {\small\frac{1}{n + 1}} }[/math]

to dostajemy

[math]\displaystyle{ {\small\frac{1}{n + 1}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \lt 1 }[/math]

Zauważmy: nie tylko wiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o zbieżności szeregów.



Twierdzenie D18 (kryterium całkowe zbieżności szeregów)
Załóżmy, że funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna [math]\displaystyle{ F(x) = \int f (x) d x }[/math] ma dla [math]\displaystyle{ x \rightarrow \infty }[/math] granicę skończoną, czy nie.

Dowód


Przykład D19
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

Stosując kryterium całkowe, można łatwo pokazać, że szeregi

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}} }[/math]

są zbieżne dla [math]\displaystyle{ s \gt 1 }[/math] i rozbieżne dla [math]\displaystyle{ s \leqslant 1 }[/math].



Twierdzenie D20
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, \infty) }[/math] oraz

[math]\displaystyle{ R(m) = \int_{m}^{\infty} f(x) d x }[/math]
[math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math]

gdzie [math]\displaystyle{ a \lt m }[/math], to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math]

[math]\displaystyle{ S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m) }[/math]
Dowód


Przykład D21
Twierdzenie D20 umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]. Mamy

[math]\displaystyle{ S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
[math]\displaystyle{ \int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right) }[/math]
[math]\displaystyle{ R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right) }[/math]

Zatem

[math]\displaystyle{ S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m) }[/math]

Dla kolejnych wartości [math]\displaystyle{ m }[/math] otrzymujemy


W programie PARI/GP wystarczy napisać:

f(k) = 1.0 / (k+1) / sqrt(k)
S(m) = sum( k = 1, m, f(k) )
R(m) = Pi - 2*atan( sqrt(m) )
for(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); print( "j= ", j, "   a= ", suma + reszta - f(m), "   b= ", suma + reszta ))



Prostym wnioskiem z twierdzenia D16 jest następujące
Twierdzenie D22
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli przy wyliczaniu sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math] (gdzie [math]\displaystyle{ a \lt m }[/math]) zastąpimy sumę [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] całką [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math], to błąd wyznaczenia sumy szeregu nie przekroczy [math]\displaystyle{ f(m) }[/math].

Dowód


Twierdzenie D23
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny, to dla każdego [math]\displaystyle{ n \geqslant m }[/math] prawdziwe jest następujące oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) }[/math]

[math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]

gdzie [math]\displaystyle{ B }[/math] oraz [math]\displaystyle{ C }[/math] są dowolnymi stałymi spełniającymi nierówności

[math]\displaystyle{ B \geqslant 1 }[/math]
[math]\displaystyle{ C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x }[/math]
Dowód


Uwaga D24
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, \infty) }[/math]. Rozważmy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math]. Zauważmy, że:

  • korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny
  • jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie D23), możemy znaleźć oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math]

Jednak dysponując już oszacowaniem sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math], możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math]. Zauważmy, że wybór większego [math]\displaystyle{ B }[/math] ułatwia dowód indukcyjny. Stałą [math]\displaystyle{ C }[/math] najlepiej zaokrąglić w górę do wygodnej dla nas wartości.


Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna.

Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie D23.


Zadanie D25
Korzystając z twierdzenia D23, znaleźć oszacowania sumy częściowej szeregów

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad }[/math] oraz [math]\displaystyle{ \qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]
Rozwiązanie


Zadanie D26
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest zbieżny.

Rozwiązanie


Zadanie D27
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest zbieżny.

Rozwiązanie



Szeregi nieskończone i liczby pierwsze

Twierdzenie D28
Następujące szeregi są zbieżne

Dowód


Twierdzenie D29
Następujące szeregi są zbieżne

Dowód


Twierdzenie D30
Szereg [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] jest rozbieżny.

Dowód


Uwaga D31
Moglibyśmy oszacować rozbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] podobnie, jak to uczyniliśmy w przypadku twierdzenia B37, ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.


Twierdzenie D32
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Prawdziwe są następujące nierówności

Dowód


Twierdzenie D33
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, prawdziwe są oszacowania

Dowód


Twierdzenie D34
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - 1 }[/math]
Dowód


Twierdzenie D35 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1.755367 }[/math]
Dowód


Twierdzenie D36 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt 0.386295 }[/math]
Dowód


Twierdzenie D37
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt 1.141661 }[/math]
Dowód


Uwaga D38

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots }[/math]

gdzie [math]\displaystyle{ E = 1.332582275733 \ldots }[/math]

Dla [math]\displaystyle{ n \geqslant 319 }[/math] mamy też[7]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D39

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots }[/math]

gdzie [math]\displaystyle{ \gamma = 0.5772156649 \ldots }[/math] jest stałą Eulera.

Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie[8]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D40
Dla [math]\displaystyle{ n \leqslant 10^{10} }[/math] wartości wyrażeń

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E }[/math]
[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma }[/math]

są liczbami dodatnimi.


Twierdzenie D41
Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma }[/math]

gdzie

  • [math]\displaystyle{ \quad \gamma = 0.577215664901532 \ldots }[/math] jest stałą Eulera[9]
  • [math]\displaystyle{ \quad E = 1.332582275733220 \ldots }[/math][10]
  • [math]\displaystyle{ \quad E - \gamma = 0.755366610831688 \ldots }[/math][11]
Dowód


Twierdzenie D42
Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]
Dowód


Zadanie D43
Niech [math]\displaystyle{ r = 1 - \log (2) \approx 0.30685281944 }[/math]. Pokazać, że z nierówności prawdziwej dla [math]\displaystyle{ x \geqslant 32 }[/math]

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]

wynika twierdzenie Czebyszewa.

Rozwiązanie


Definicja D44
Powiemy, że liczby pierwsze [math]\displaystyle{ p, q }[/math] są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli [math]\displaystyle{ \left | p - q \right | = 2 }[/math]


Twierdzenie D45* (Viggo Brun, 1919)
Suma odwrotności par liczb pierwszych [math]\displaystyle{ p }[/math] i [math]\displaystyle{ p + 2 }[/math], takich że liczba [math]\displaystyle{ p + 2 }[/math] jest również pierwsza, jest skończona

[math]\displaystyle{ \underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} \right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2 }[/math]

gdzie [math]\displaystyle{ B_2 = 1.90216058 \ldots }[/math] jest stałą Bruna[13][14].


Zadanie D46
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.

Rozwiązanie



Dowód z Księgi. Rozbieżność sumy [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math]

Twierdzenie D47
Suma odwrotności liczb pierwszych jest rozbieżna.

Dowód



Sumowanie przez części

Uwaga D48
Omawianie metody sumowania przez części[16] rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja

[math]\displaystyle{ D(k) = \begin{cases} 1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\ 0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\ \end{cases} }[/math]


Łatwo znajdujemy związek funkcji [math]\displaystyle{ D(k) }[/math] z funkcją [math]\displaystyle{ \pi (k) }[/math]

[math]\displaystyle{ \pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1 }[/math]
[math]\displaystyle{ \; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) }[/math]


Twierdzenie D49
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]. Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Dowód


Zadanie D50
Pokazać, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math].

Rozwiązanie


Zadanie D51
Pokazać, że oszacowanie [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math], gdzie [math]\displaystyle{ \varepsilon \in (0, 1) }[/math], nie może być prawdziwe dla prawie wszystkich liczb naturalnych.

Rozwiązanie


Twierdzenie D52 (sumowanie przez części)
Niech [math]\displaystyle{ a_j }[/math], [math]\displaystyle{ b_j }[/math] będą ciągami określonymi przynajmniej dla [math]\displaystyle{ s \leqslant j \leqslant n }[/math]. Prawdziwy jest następujący wzór

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Wzór ten nazywamy wzorem na sumowanie przez części.

Dowód


Zadanie D53
Niech [math]\displaystyle{ r \neq 1 }[/math]. Pokazać, że [math]\displaystyle{ \sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math].

Rozwiązanie


Twierdzenie D54 (kryterium Dirichleta)
Niech [math]\displaystyle{ (a_k) \; }[/math] i [math]\displaystyle{ \; (b_k) }[/math] będą ciągami liczb rzeczywistych. Jeżeli

  •    ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny

  •    [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = 0 }[/math]
  •    istnieje taka stała [math]\displaystyle{ M }[/math], że [math]\displaystyle{ \left| \sum_{j = 1}^{k} b_j \right| \leqslant M }[/math] dla dowolnej liczby [math]\displaystyle{ k }[/math]

to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] jest zbieżny.

Dowód


Zadanie D55
Udowodnić następujące wzory

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

Rozwiązanie


Zadanie D56
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny.

Rozwiązanie


Zadanie D57
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math] jest zbieżny, a suma tego szeregu jest w przybliżeniu równa [math]\displaystyle{ 0.6839137864 \ldots }[/math]

Rozwiązanie


Zadanie D58
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Rozwiązanie


Twierdzenie D59
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math], gdzie [math]\displaystyle{ A, B \in \mathbb{R}_+ }[/math], to istnieje granica

[math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Dowód


Uwaga D60
Funkcja [math]\displaystyle{ \theta (n) }[/math] jest ściśle związana z dobrze nam znaną funkcją [math]\displaystyle{ P (n) }[/math]. Ponieważ [math]\displaystyle{ P(n) = \prod_{p \leqslant n} p }[/math], to

[math]\displaystyle{ \log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n) }[/math].

Z twierdzenia D59 wynika, że jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math]. Jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math] (zobacz C12 p.3).

Wiemy, że dla funkcji [math]\displaystyle{ \theta (n) }[/math], gdzie [math]\displaystyle{ n \geqslant 2 }[/math], prawdziwe jest oszacowanie[18]

[math]\displaystyle{ \left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}} }[/math]


Zadanie D61
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Rozwiązanie



Iloczyn Cauchy'ego szeregów

Twierdzenie D62 (kryterium d'Alemberta)
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem liczb rzeczywistych i istnieje granica

[math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| }[/math]

Jeżeli

  •    [math]\displaystyle{ g \lt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny
  •    [math]\displaystyle{ g \gt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest rozbieżny
Dowód


Uwaga C62
W przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1 }[/math] kryterium d'Alemberta nie rozstrzyga o zbieżności lub rozbieżności szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math]. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów

[math]\displaystyle{ \sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}} }[/math]


Przykład D64
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Zbadamy zbieżność szeregu

[math]\displaystyle{ e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

Ponieważ

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0 }[/math]

to z kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.


Zadanie D65
Pokazać, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}} }[/math] jest rozbieżny.

Rozwiązanie


Uwaga D66
W twierdzeniu A37, korzystając z następującej definicji funkcji [math]\displaystyle{ e^x }[/math]

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

pominęliśmy dowód własności [math]\displaystyle{ e^x e^{- x} = 1 }[/math]. Spróbujemy teraz pokazać, że [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

[math]\displaystyle{ e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} }[/math]

Oznaczmy [math]\displaystyle{ a_i = {\small\frac{x^i}{i!}} }[/math] oraz [math]\displaystyle{ b_j = {\small\frac{y^j}{j!}} }[/math] i przyjrzyjmy się sumowaniu po [math]\displaystyle{ i, j }[/math]. W podwójnej sumie po prawej stronie [math]\displaystyle{ \sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j }[/math] sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ a_5 b_1 }[/math] [math]\displaystyle{ a_5 b_2 }[/math] [math]\displaystyle{ a_5 b_3 }[/math] [math]\displaystyle{ a_5 b_4 }[/math] [math]\displaystyle{ a_5 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ a_4 b_2 }[/math] [math]\displaystyle{ a_4 b_3 }[/math] [math]\displaystyle{ a_4 b_4 }[/math] [math]\displaystyle{ a_4 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ a_3 b_3 }[/math] [math]\displaystyle{ a_3 b_4 }[/math] [math]\displaystyle{ a_3 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ a_2 b_4 }[/math] [math]\displaystyle{ a_2 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ a_1 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ \; \cdots \; }[/math]

Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Co odpowiada sumie [math]\displaystyle{ \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k} b_{n - k} }[/math], gdzie [math]\displaystyle{ n }[/math] numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} }[/math]

Ponieważ

[math]\displaystyle{ {\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} }[/math]

to otrzymujemy

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y} }[/math]

Pokazaliśmy tym samym, że z definicji

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i w związku z tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.


Definicja D67
Iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0 }[/math]

W przypadku szeregów, których wyrazy są numerowane od liczby [math]\displaystyle{ 1 }[/math], iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 1}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 1}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1 }[/math]


Zadanie D68
Niech [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]. Pokazać, że

  •    jeżeli [math]\displaystyle{ (a_n) = (1, 0, 0, 0, 0, \ldots) }[/math], [math]\displaystyle{ \; (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = b_n }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math], [math]\displaystyle{ \; (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = \sum_{k = 0}^{n} b_k = B_n }[/math]
  •    jeżeli [math]\displaystyle{ a_n = b_n = {\small\frac{r^n}{n!}} }[/math], to [math]\displaystyle{ c_n = {\small\frac{(2 r)^n}{n!}} }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (a, r, r^2, r^3, \ldots) }[/math], [math]\displaystyle{ \; (b_n) = (b, r, r^2, r^3, \ldots) }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\ (a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ \; (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ q \neq r }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Rozwiązanie


Przykład D69
Ostatni punkt zadania D68 pozwala stworzyć wiele przykładowych szeregów i ich iloczynów Cauchy'ego. Przypomnijmy, że

[math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ \quad (b_n) = (b, r, r^2, r^3, \ldots) }[/math],  gdzie [math]\displaystyle{ \, q \neq r }[/math]
[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]


Przykłady zebraliśmy w tabeli.


Przykład D70
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz D5)

[math]\displaystyle{ \sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad }[/math] (WolframAlpha)

Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} }[/math]

Ale [math]\displaystyle{ k \leqslant n \; }[/math] i [math]\displaystyle{ \; n - k \leqslant n }[/math], zatem

[math]\displaystyle{ {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}} }[/math]

Czyli

[math]\displaystyle{ | c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1 }[/math]

Ponieważ [math]\displaystyle{ \lim_{n \rightarrow \infty} c_n \neq 0 }[/math], to iloczyn Cauchy'ego jest rozbieżny (zobacz D4).


Zadanie D71
Pokazać, że jeżeli [math]\displaystyle{ a_n = b_n = r^n \; }[/math] i [math]\displaystyle{ \; c_n = (n + 1) r^n }[/math] (zobacz D68 p.3), to szeregi [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] oraz [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Rozwiązanie


Uwaga D72
Przykłady D69 i D70 pokazują, że w ogólności nie jest prawdziwy wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]

Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.


Uwaga D73
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy [math]\displaystyle{ m = 5 }[/math].

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Przejście do sumowania po liniach poziomych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii poziomej.


Przejście do sumowania po liniach pionowych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii pionowej.


Twierdzenie D74 (Franciszek Mertens)
Jeżeli szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] jest zbieżny bezwzględnie, szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] jest zbieżny, to ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny i [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód


Zadanie D75
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.

Rozwiązanie


Zadanie D76
Podać przykład szeregów zbieżnych, z których tylko jeden jest bezwzględnie zbieżny i których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie


Zadanie D77
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie


Uwaga D78
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie D80 pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro[20]. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.

Rozważmy szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math]. Sumy częściowe tego szeregu wynoszą [math]\displaystyle{ S_k = {\small\frac{1 + (- 1)^k}{2}} }[/math] i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu [math]\displaystyle{ (S_k) }[/math] jest równy

[math]\displaystyle{ x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad }[/math] (WolframAlfa)

Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math] jest sumowalny w sensie Cesàro i jego suma jest równa [math]\displaystyle{ {\small\frac{1}{2}} }[/math].


Twierdzenie D79
Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math].

Dowód


Twierdzenie D80
Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, to ciąg kolejnych średnich arytmetycznych [math]\displaystyle{ x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}} }[/math] jest zbieżny do tej samej granicy.

Dowód


Twierdzenie D81
Niech [math]\displaystyle{ (a_n) }[/math] i [math]\displaystyle{ (b_n) }[/math] będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math] i [math]\displaystyle{ \lim_{n \rightarrow \infty} b_n = b }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math].

Dowód



Twierdzenie D82 (Niels Henrik Abel)
Jeżeli szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] są zbieżne i ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny, to [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód



Liczby Catalana

Definicja D83
Liczby Catalana [math]\displaystyle{ C_n }[/math] definiujemy wzorem

[math]\displaystyle{ C_n = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} }[/math]

gdzie [math]\displaystyle{ n \geqslant 0 }[/math].


Twierdzenie D84
Liczby Catalana [math]\displaystyle{ C_n }[/math] mają następujące własności

  •    [math]\displaystyle{ C_n }[/math] są liczbami całkowitymi dodatnimi
  •    [math]\displaystyle{ C_n = {\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{n}} {\small\binom{2 n}{n - 1}} }[/math]
  •    [math]\displaystyle{ C_{n + 1} = {\small\frac{2 (2 n + 1)}{n + 2}} C_n }[/math]
  •    [math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math]
Dowód


Zadanie D85
Niech [math]\displaystyle{ C_n }[/math] oznacza [math]\displaystyle{ n }[/math]-tą liczbę Catalana i niech [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] oznacza szereg, który otrzymujemy, mnożąc szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] przez siebie według reguły Cauchy'ego. Pokazać, że

  •    jeżeli [math]\displaystyle{ a_n = C_n }[/math],  to  [math]\displaystyle{ x_n = C_{n + 1} }[/math]
  •    jeżeli [math]\displaystyle{ a_0 = \alpha \; }[/math] i [math]\displaystyle{ \; a_n = r^{n - 1} C_{n - 1} }[/math] dla [math]\displaystyle{ n \geqslant 1 }[/math],  to  [math]\displaystyle{ x_0 = \alpha^2 }[/math], [math]\displaystyle{ \; x_1 = 2 \alpha C_0 \; }[/math] i [math]\displaystyle{ \; x_n = (1 + 2 \alpha r) r^{n - 2} C_{n - 1} }[/math] dla [math]\displaystyle{ n \geqslant 2 }[/math]

Dla jakich wartości [math]\displaystyle{ \alpha, r }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] jest zbieżny?

Rozwiązanie



Sumy współczynników dwumianowych

Twierdzenie D86
Dla [math]\displaystyle{ n \geqslant 0 \; }[/math] i [math]\displaystyle{ \; r \in \mathbb{R} }[/math] prawdziwe są wzory

[math]\displaystyle{ \sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{r^{k + 1}}{k + 1}} {\small\binom{n}{k}} = {\small\frac{(r + 1)^{n + 1} - 1}{n + 1}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2} }[/math]
Dowód


Twierdzenie D87
Dla [math]\displaystyle{ n, m \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{m} {\small\binom{n + k}{n}} = {\small\binom{n + m + 1}{n}} }[/math]
Dowód


Suma nieoznaczona

Uwaga D88
Sumą nieoznaczoną[21] (lub antyróżnicą) funkcji [math]\displaystyle{ f(k) }[/math], będziemy nazywali dowolną funkcję [math]\displaystyle{ F(k) }[/math] taką, że

[math]\displaystyle{ F(k + 1) - F (k) = f (k) }[/math]

Łatwo zauważamy, że istnieje cała rodzina funkcji [math]\displaystyle{ F(k) }[/math], bo jeżeli [math]\displaystyle{ F (k) }[/math] jest sumą nieoznaczoną, to [math]\displaystyle{ F (k) + C }[/math], gdzie [math]\displaystyle{ C }[/math] jest stałą, również jest sumą nieoznaczoną. W szczególności

[math]\displaystyle{ \sum_{k = a}^{b} f (k) = \sum_{k = a}^{b} (F (k + 1) - F (k)) }[/math]
[math]\displaystyle{ \;\;\;\: = - \sum_{k = a}^{b} (F (k) - F (k + 1)) }[/math]
[math]\displaystyle{ \;\;\;\: = - ( F (a) - F (b + 1) ) }[/math]
[math]\displaystyle{ \;\;\;\: = F (b + 1) - F (a) }[/math]

Co przez analogię do całki nieoznaczonej możemy zapisać jako

[math]\displaystyle{ \sum_{k = a}^{b} f (k) = F (k) \biggr\rvert_{a}^{b + 1} \qquad \qquad \qquad ( 1 ) }[/math]


Należy podkreślić różnicę między sumą oznaczoną [math]\displaystyle{ S(n) }[/math] a sumą nieoznaczoną [math]\displaystyle{ F(k) }[/math]. Niech [math]\displaystyle{ f(k) = k^2 }[/math]. Oczywiście

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} k^2 = {\small\frac{1}{6}} n (n + 1) (2 n + 1) }[/math]
[math]\displaystyle{ F(k) = {\small\frac{1}{6}} (k - 1) k (2 k - 1) }[/math]

Ponieważ dla sumy [math]\displaystyle{ S(n) }[/math] prawdziwy jest związek [math]\displaystyle{ S(n + 1) - S (n) = f (n + 1) }[/math], to otrzymujemy [math]\displaystyle{ F(k) = S (k - 1) }[/math]. Weźmy kolejny przykład, niech [math]\displaystyle{ f(k) = r^k }[/math], gdzie [math]\displaystyle{ r }[/math] jest stałą. Mamy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} r^k = {\small\frac{r^{n + 1} - 1}{r - 1}} }[/math]

ale

[math]\displaystyle{ F(k) = {\small\frac{r^k}{r - 1}} }[/math]

i nie jest prawdą, że [math]\displaystyle{ F(k) = S (k - 1) }[/math], bo pominięty został wyraz [math]\displaystyle{ {\small\frac{- 1}{r - 1}} }[/math], który jest stałą, ale jest to zrozumiałe.

Niech teraz [math]\displaystyle{ f(n, k) = {\small\binom{n + k}{n}} }[/math]. Wiemy, że (zobacz D87)

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]
[math]\displaystyle{ F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}} }[/math]

Tym razem otrzymujemy zupełnie inne wyniki: suma [math]\displaystyle{ S(n) }[/math] nie zależy od dwóch zmiennych, bo jest to niemożliwe, a suma nieoznaczona nadal zależy od [math]\displaystyle{ k }[/math], bo dla [math]\displaystyle{ F(n, k) }[/math] musi być prawdziwy wzór [math]\displaystyle{ (1) }[/math]. Łatwo widzimy, że

[math]\displaystyle{ S (n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]


Uwaga D89
Powiedzmy, że dysponujemy wzorem [math]\displaystyle{ S(b) = \sum_{k = a}^{b} f (k) }[/math] i chcemy udowodnić jego poprawność. W prostych przypadkach możemy wykorzystać indukcję matematyczną: wystarczy pokazać, że

[math]\displaystyle{ S(k + 1) = S (k) + f (k + 1) }[/math]

Jeżeli już udało nam się pokazać związek [math]\displaystyle{ f(k) = S (k) - S (k - 1) }[/math], to równie dobrze możemy zamienić sumę na sumę teleskopową (zobacz D12), aby otrzymać, że

[math]\displaystyle{ \sum_{k = a + 1}^{b} f (k) = \sum_{k = a + 1}^{b} ( S (k) - S (k - 1) ) }[/math]
[math]\displaystyle{ \;\, = - \sum_{k = a + 1}^{b} ( S (k - 1) - S (k) ) }[/math]
[math]\displaystyle{ \;\, = - ( S (a) - S (b) ) }[/math]
[math]\displaystyle{ \;\, = S (b) - S (a) }[/math]

Czyli

[math]\displaystyle{ S(b) = \sum_{k = a + 1}^{b} f (k) + S (a) = \sum_{k = a}^{b} f (k) }[/math]

bo [math]\displaystyle{ S(a) = f (a) }[/math].


W przypadkach bardziej skomplikowanych nie możemy tak postąpić. W poprzedniej uwadze rozważaliśmy sumę

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]

ale

[math]\displaystyle{ S(n) - S (n - 1) = {\small\frac{3 n + 1}{2 (n + 1)}} {\small\binom{2 n}{n}} }[/math]

I nie da się pokazać związku [math]\displaystyle{ S(k) - S (k - 1) = f (n, k) }[/math], bo różnica [math]\displaystyle{ S(k) - S (k - 1) }[/math] nie zależy od [math]\displaystyle{ n }[/math].

Tutaj z pomocą przychodzi nam suma nieoznaczona. W programie Maxima możemy ją policzyć, wpisując polecenia

load ("zeilberger");
AntiDifference(binomial(n+k, n), k);

Otrzymujemy

[math]\displaystyle{ F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}} }[/math]

Oczywiście

[math]\displaystyle{ F(n, k + 1) - F (n, k) = {\small\binom{n + k}{n}} }[/math]

i

[math]\displaystyle{ S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} = {\small\binom{2 n + 1}{n}} }[/math]

Podsumujmy. Jakkolwiek znalezienie ogólnego wzoru na sumę [math]\displaystyle{ S (n) = \sum_{k = 0}^{n} f (k) }[/math] może być bardzo trudne, to udowodnienie poprawności tego wzoru może być znacznie łatwiejsze (metodą indukcji matematycznej lub obliczając sumę teleskopową). Podobnie jest w bardziej skomplikowanym przypadku, gdy szukamy ogólnego wzoru na sumę [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Tutaj wymienionych przed chwilą metod zastosować nie można, a znalezienie wzoru na sumę nieoznaczoną [math]\displaystyle{ F(n, k) }[/math] może być jeszcze trudniejsze, ale gdy już taki wzór mamy, to sprawdzenie jego poprawności, czyli związku [math]\displaystyle{ F(n, k + 1) - F (n, k) = f (n, k) }[/math], może być bardzo łatwe, a wtedy otrzymujemy natychmiast

[math]\displaystyle{ S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]


Zadanie D90
Korzystając z programu Maxima znaleźć sumę nieoznaczoną [math]\displaystyle{ F(n, k) }[/math] dla funkcji

[math]\displaystyle{ f(n, k) = {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

i pokazać, że prawdziwy jest wzór [math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math], gdzie [math]\displaystyle{ C_n }[/math] są liczbami Catalana.

Rozwiązanie


Znajdowanie równania rekurencyjnego dla sumy [math]\displaystyle{ \boldsymbol{S(n)} }[/math]

Uwaga D91
Rozważmy sumę

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]

W twierdzeniach D107 i D108 wyliczyliśmy [math]\displaystyle{ S(n) }[/math], znajdując najpierw równanie rekurencyjne dla sumy. Możemy przypuszczać, że równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) }[/math] wynika z istnienia odpowiedniego równania rekurencyjnego dla składników sumy [math]\displaystyle{ f(n, k) }[/math]. Zagadnieniem tym zajmowała się siostra Mary Celine Fasenmyer, która podała algorytm postępowania[22][23]. Prace Zeilbergera oraz Wilfa i Zeilbergera uogólniły ten algorytm[24][25]. My przedstawimy jedynie kilka prostych przypadków, które zilustrujemy przykładami. Szersze omówienie tematu Czytelnik znajdzie w książce Petkovšeka, Wilfa i Zeilbergera[26].


Twierdzenie D92
Niech [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Jeżeli składniki sumy [math]\displaystyle{ f(n, k) }[/math] spełniają równanie rekurencyjne

[math]\displaystyle{ a \cdot f (n + 1, k + 1) + b \cdot f (n + 1, k) + c \cdot f (n, k + 1) + d \cdot f (n, k) = 0 }[/math]

gdzie współczynniki [math]\displaystyle{ a, b, c, d }[/math] są funkcjami tylko [math]\displaystyle{ n }[/math], to suma [math]\displaystyle{ S (n) }[/math] spełnia równanie rekurencyjne

[math]\displaystyle{ (a + b) S (n + 1) + (c + d) S (n) - a \cdot f (n + 1, 0) - b \cdot f (n + 1, n + 1) - c [f (n, 0) - f (n, n + 1)] = 0 }[/math]
Dowód


Uwaga D93
Nie ma sensu stosowanie opisanej powyżej metody do prostych sum postaci [math]\displaystyle{ \sum_{k = 0}^{n} f (k) }[/math], bo równanie rekurencyjne otrzymujemy w takim przypadku natychmiast: [math]\displaystyle{ S(n + 1) - S (n) = f (n + 1) }[/math].


Zadanie D94
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D87)

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]
Rozwiązanie


Zadanie D95
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D86 p.1)

[math]\displaystyle{ \sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n }[/math]
Rozwiązanie


Zadanie D96
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D86 p.2)

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{2^{n + 1} - 1}{n + 1}} }[/math]
Rozwiązanie


Zadanie D97
Niech [math]\displaystyle{ n \in \mathbb{N}_0 \; }[/math] i [math]\displaystyle{ \; k \in \mathbb{Z} }[/math]. Uzasadnić, dlaczego przyjmujemy, że [math]\displaystyle{ {\small\binom{n}{k}} = 0 }[/math], gdy [math]\displaystyle{ k \lt 0 \; }[/math] lub [math]\displaystyle{ \; k \gt n }[/math].

Rozwiązanie


Twierdzenie D98
Niech [math]\displaystyle{ n, I, J \in \mathbb{N}_0 \; }[/math] i [math]\displaystyle{ \; k \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] \, }[/math] i składniki sumy [math]\displaystyle{ f(n, k) }[/math] spełniają równanie rekurencyjne

[math]\displaystyle{ \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0 }[/math]

gdzie współczynniki [math]\displaystyle{ a_{i j} }[/math] są funkcjami tylko [math]\displaystyle{ n }[/math], to suma

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]

spełnia następujące równanie rekurencyjne

[math]\displaystyle{ \sum_{i = 0}^{I} S (n + i) \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]
Dowód


Uwaga D99
Z zadania D97 wynika, że jeżeli funkcja [math]\displaystyle{ f(n, k) }[/math] zawiera czynnik [math]\displaystyle{ {\small\binom{n}{k}} }[/math], to może spełniać warunek [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math]. Oczywiście nie jest to warunek wystarczający, bo funkcja [math]\displaystyle{ f (n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math] jest różna od zera dla [math]\displaystyle{ k = - 1 }[/math].


Zadanie D100
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D86 p.3)

[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1} }[/math]
Rozwiązanie


Zadanie D101
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwe są wzory

[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^3 {\small\binom{n}{k}} = n^2 (n + 3) 2^{n - 3} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{n}{k}}^2 = {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}}^2 = n^2 {\small\binom{2 n - 2}{n - 1}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^3 {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n^2 (n + 1) {\small\binom{2 n - 2}{n - 1}} }[/math]
Rozwiązanie


Uwaga D102
Niech [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Wiemy (zobacz D98), że jeżeli dla dowolnego [math]\displaystyle{ n }[/math] wartość funkcji [math]\displaystyle{ f(n, k) }[/math] jest określona dla wszystkich [math]\displaystyle{ k \in \mathbb{Z} \; }[/math] i [math]\displaystyle{ \; f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math], to sumę [math]\displaystyle{ S(n) }[/math] możemy zapisać w równoważnej postaci [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k \in \mathbb{Z}} f (n, k) }[/math]


Rozważmy teraz funkcję [math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math], która powyższego warunku nie spełnia, bo jest różna od zera dla [math]\displaystyle{ k = - 1 }[/math]. Jeżeli zapiszemy [math]\displaystyle{ f(n, k) }[/math] w postaci

[math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{n!}{k! (n - k) !}} = {\small\frac{n!}{(k + 1) ! (n - k) !}} }[/math]

to natychmiast widzimy, że

[math]\displaystyle{ f(n, - 1) = {\small\frac{n!}{0! (n + 1) !}} = {\small\frac{1}{n + 1}} }[/math]

Zatem w przypadku tej funkcji mamy

[math]\displaystyle{ \sum_{k \in \mathbb{Z}} f (n, k) = \sum_{k = 0}^{n} f (n, k) + f (n, - 1) = S (n) + {\small\frac{1}{n + 1}} }[/math]


Zakładając, że spełnione jest równanie

[math]\displaystyle{ \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0 }[/math]

otrzymujemy następujące równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) = \sum_{k \in \mathbb{Z}} f (n, k) }[/math]

[math]\displaystyle{ \sum_{k \in \mathbb{Z}} \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k \in \mathbb{Z}} f (n + i, k + j) }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{l \in \mathbb{Z}} f (n + i, l) }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]


Jeżeli mamy skończoną liczbę punktów [math]\displaystyle{ k_r \notin [0, n] }[/math], w których funkcja [math]\displaystyle{ f(n, k) }[/math] jest określona i różna od zera, to możemy zdefiniować funkcję

[math]\displaystyle{ T(n) = f (n, k_1) + f (n, k_2) + f (n, k_3) + \ldots = \sum_r f (n, k_r) }[/math]

W takim przypadku otrzymamy następujące równanie rekurencyjne dla sumy [math]\displaystyle{ S (n) = \sum_{k = 0}^{n} f (n, k) }[/math]

[math]\displaystyle{ \sum_{i = 0}^{I} [S (n + i) + T (n + i)] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]


Wystarczy drobna modyfikacja procedury sum5(), aby obejmowała ona również takie przypadki

sum6(I, J):= 
(
read("podaj definicję f(n, k)"),   /* składnik sumy */
print("f(n, k) = ", f(n, k) ),
read("podaj definicję T(n)"),   /* suma skończonych wartości funkcji f(n, k), gdzie k<0 lub k>n */
print("T(n) = ", T(n) ),
F1: sum( sum( a[i,j] * f(n+i, k+j), i, 0, I), j, 0, J) / f(n, k),
F2: num( factor( minfactorial( makefact( expand( F1 ) ) ) ) ),
deg: hipow(F2, k),
LE:  [subst(0, k, F2) = 0],
for i: 1 thru deg do push(coeff(F2, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
LV: create_list(a[i, j], i, 0, I , j, 0, J),   /* lista zmiennych */
sol: solve( LE, LV ),   /* lista rozwiązań */
S1: sum( ( S[n+i] + T(n+i) ) * sum( a[i,j], j, 0, J ), i, 0, I ),
S2: num( factor( minfactorial( makefact( expand( S1 ) ) ) ) ),
S3: subst( sol[1], S2 ),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
load("solve_rec"),
solve_rec( S4 = 0,  S[n] )
)$


Korzystając z powyższej procedury, Czytelnik może łatwo policzyć wypisane poniżej sumy.


Zadanie D103
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n }[/math]
Rozwiązanie


Zadanie D104
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
Rozwiązanie



Uzupełnienie

 

Dowód własności liczb Catalana [math]\displaystyle{ {\small C_{n + 1} = \textstyle\sum_{k = 0}^{n} C_k C_{n - k}} }[/math]

Uwaga D105
Przedstawiony poniżej dowód czwartego punktu twierdzenia D84 został oparty na pracy Jovana Mikicia[27].


Twierdzenie D106
Jeżeli funkcja [math]\displaystyle{ f(k) }[/math] nie zależy od [math]\displaystyle{ n }[/math] i dane są sumy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

to

[math]\displaystyle{ T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math]
Dowód


Twierdzenie D107
Dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n }[/math]
Dowód


Twierdzenie D108
Dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
Dowód


Twierdzenie D109
Jeżeli [math]\displaystyle{ C_n }[/math] są liczbami Catalana, to

[math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math]
Dowód




Funkcja gamma

 

Definicja D110
Funkcja [math]\displaystyle{ \Gamma (z) }[/math][28] jest zdefiniowana równoważnymi wzorami

[math]\displaystyle{ \Gamma (z) = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t \qquad \operatorname{Re}(z) \gt 0 \qquad \qquad }[/math] (definicja całkowa Eulera)
[math]\displaystyle{ \Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja Gaussa)
[math]\displaystyle{ \Gamma (z) = {\small\frac{1}{z}} \prod_{n = 1}^{\infty} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja iloczynowa Eulera)
[math]\displaystyle{ \Gamma (z) = {\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja iloczynowa Weierstrassa)

Trzy ostatnie wzory możemy wykorzystać do zdefiniowania funkcji [math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} }[/math], która jest określona dla dowolnych [math]\displaystyle{ z \in \mathbb{C} }[/math]

[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = \lim_{n \rightarrow \infty} {\small\frac{z (z + 1) \cdot \ldots \cdot (z + n)}{n^z n!}} }[/math]
[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = z \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right) }[/math]
[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = z e^{\gamma z} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right) e^{- \tfrac{z}{n}} }[/math]
Pokaż wykres
Pokaż równoważność definicji


Twierdzenie D111
Dla funkcji [math]\displaystyle{ \Gamma (z) }[/math] prawdziwe są następujące wzory

  •    [math]\displaystyle{ \Gamma (1) = 1 }[/math]
  •    [math]\displaystyle{ z \Gamma (z) = \Gamma (z + 1) \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} }[/math]
  •    [math]\displaystyle{ \Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}} \qquad z \notin \mathbb{Z} }[/math]
  •    [math]\displaystyle{ \Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) \qquad 2 z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (wzór Legendre'a o podwajaniu)
Dowód


Ze wzorów podanych w twierdzeniu D111 otrzymujemy
Twierdzenie D112
Niech [math]\displaystyle{ k \in \mathbb{Z} \; }[/math] i [math]\displaystyle{ \; n \in \mathbb{N}_0 }[/math]

  •    [math]\displaystyle{ \Gamma \left( {\small\frac{1}{2}} \right) = \sqrt{\pi} }[/math]
  •    [math]\displaystyle{ \Gamma (n + 1) = n! }[/math]
  •    [math]\displaystyle{ \Gamma \left( z + {\small\frac{1}{2}} \right) \Gamma \left( - z + {\small\frac{1}{2}} \right) = {\small\frac{\pi}{\cos (\pi z)}} \qquad z \neq k + {\small\frac{1}{2}} }[/math]
  •    [math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) \Gamma \left( - n + {\small\frac{1}{2}} \right) = \pi \cdot (- 1)^n }[/math]
  •    [math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} }[/math]
  •    [math]\displaystyle{ \Gamma \left( - n + {\small\frac{1}{2}} \right) = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
  •    [math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
Dowód


Twierdzenie D113
Jeżeli [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \; a \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}} }[/math]
Dowód


Twierdzenie D114
Jeżeli [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \; a \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}} }[/math]
Dowód


Zadanie D115
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \; g(n) = {\small\binom{2 n}{n}} }[/math]. Pokazać, że

  •    rozszerzając funkcję [math]\displaystyle{ g(n) }[/math] na zbiór liczb rzeczywistych, otrzymujemy [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} }[/math]
  •    [math]\displaystyle{ \lim_{x \rightarrow - n} g (x) = 0 }[/math]
Rozwiązanie


Zadanie D116
Niech [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \; g(n) = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} }[/math]. Pokazać, że

  •    rozszerzając funkcję [math]\displaystyle{ g(n) }[/math] na zbiór liczb rzeczywistych, otrzymujemy [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} }[/math]
  •    [math]\displaystyle{ \lim_{x \rightarrow - 1} g (x) = - {\small\frac{1}{2}} }[/math]
Rozwiązanie








Przypisy

  1. Wikipedia, Funkcja η, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Funkcja dzeta Riemanna, (Wiki-pl), (Wiki-en)
  3. Twierdzenie: funkcja ciągła w przedziale domkniętym jest całkowalna w tym przedziale.
  4. W szczególności: funkcja ograniczona i mająca skończoną liczbę punktów nieciągłości w przedziale domkniętym jest w tym przedziale całkowalna.
  5. 5,0 5,1 Wikipedia, Twierdzenia Mertensa, (Wiki-pl), (Wiki-en)
  6. 6,0 6,1 Wikipedia, Franciszek Mertens, (Wiki-pl)
  7. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94, (LINK)
  8. Zobacz twierdzenie D42.
  9. The On-Line Encyclopedia of Integer Sequences, A001620 - Decimal expansion of Euler's constant, (A001620)
  10. The On-Line Encyclopedia of Integer Sequences, A083343 - Decimal expansion of constant B3 (or B_3) related to the Mertens constant, (A083343)
  11. The On-Line Encyclopedia of Integer Sequences, A138312 - Decimal expansion of Mertens's constant minus Euler's constant, (A138312)
  12. Pierre Dusart, Estimates of Some Functions Over Primes without R.H., 2010, (LINK)
  13. Wikipedia, Stałe Bruna, (Wiki-pl), (Wiki-en)
  14. The On-Line Encyclopedia of Integer Sequences, A065421 - Decimal expansion of Viggo Brun's constant B, (A065421)
  15. Paul Erdős, Über die Reihe [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math], Mathematica, Zutphen B 7, 1938, 1-2.
  16. sumowanie przez części (ang. summation by parts)
  17. ciąg wypukły (ang. convex sequence)
  18. Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, vol. 45(1), 2018, 227-251.
  19. 19,0 19,1 Wikipedia, Szereg geometryczny, (Wiki-pl), (Wiki-en)
  20. Wikipedia, Sumowalność metodą Cesàro, (Wiki-pl), (Wiki-en)
  21. Wikipedia, Indefinite sum, (Wiki-en)
  22. Sister Mary Celine Fasenmyer, Some Generalized Hypergeometric Polynomials, Bull. Amer. Math. Soc. 53 (1947), 806-812
  23. Sister Mary Celine Fasenmyer, A Note on Pure Recurrence Relations, Amer. Math. Monthly 56 (1949), 14-17
  24. Doron Zeilberger, Sister Celine's technique and its generalizations, Journal of Mathematical Analysis and Applications, 85 (1982), 114-145
  25. Herbert Wilf and Doron Zeilberger, Rational Functions Certify Combinatorial Identities, J. Amer. Math. Soc. 3 (1990), 147-158
  26. Marko Petkovšek, Herbert Wilf and Doron Zeilberger, A = B, AK Peters, Ltd., 1996
  27. Jovan Mikić, A Proof of a Famous Identity Concerning the Convolution of the Central Binomial Coefficients, Journal of Integer Sequences, Vol. 19, No. 6 (2016), pp. 1 - 10, (LINK)
  28. Wikipedia, Funkcja Γ, (Wiki-pl), (Wiki-en)