Twierdzenie Czebyszewa o funkcji π(n): Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Nie podano opisu zmian
Nie podano opisu zmian
 
(Nie pokazano 8 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 142: Linia 142:


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Indukcja matematyczna. W&nbsp;przypadku lewej nierówności łatwo sprawdzamy, że <math>3.8^{81} < {\small\binom{160}{80}}</math>. Zakładając prawdziwość nierówności dla <math>n \geqslant 80</math>, otrzymujemy dla <math>n + 1</math>
Indukcja matematyczna<span style="color: Green"><sup>[a]</sup></span>. W&nbsp;przypadku lewej nierówności łatwo sprawdzamy, że <math>3.8^{81} < {\small\binom{160}{80}}</math>. Zakładając prawdziwość nierówności dla <math>n \geqslant 80</math>, otrzymujemy dla <math>n + 1</math>


::<math>{\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} > 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{80 + 1}} \right) > 3.8^{n + 1} \cdot 3.9753 > 3.8^{n + 2}</math>
::<math>{\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} > 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{80 + 1}} \right) > 3.8^{n + 1} \cdot 3.9753 > 3.8^{n + 2}</math>
Linia 150: Linia 150:


::<math>{\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} < 4^{n -1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) < 4^n</math>
::<math>{\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} < 4^{n -1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) < 4^n</math>
<hr style="width: 25%; height: 2px; " />
<span style="color: Green">[a]</span> Warto znać asymptotykę współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math>, aby lepiej zrozumieć dowodzone w&nbsp;twierdzeniu oszacowanie. Ze wzoru Stirlinga<ref name="Stirling"/>
::<math>\log n! \sim n \log n - n + {\small\frac{1}{2}} \log (2 \pi n) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{1260 n^5}} - {\small\frac{1}{1680 n^7}} + {\small\frac{1}{1188 n^9}} + \ldots + {\small\frac{B_{2 k}}{(2 k - 1) 2 k \cdot n^{2 k - 1}}} + \ldots</math>
::<math>n! \sim \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \exp \left( \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2 k (2 k - 1) n^{2 k - 1}}} \right)</math>
::<math>\;\;\;\,\, = \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \left( 1 + {\small\frac{1}{12 n}} + {\small\frac{1}{288 n^2}} - {\small\frac{139}{51840 n^3}} - {\small\frac{571}{2488320 n^4}} + {\small\frac{163879}{209018880 n^5}} + {\small\frac{5246819}{75246796800 n^6}} - \ldots \right)</math>
gdzie <math>B_i</math> są liczbami Bernoulliego, wynika, że
::<math>{\small\binom{2 n}{n}} \sim {\small\frac{4^n}{\sqrt{\pi n}}} \cdot \left( 1 - {\small\frac{1}{8 n}} + {\small\frac{1}{128 n^2}} + {\small\frac{5}{1024 n^3}} - {\small\frac{21}{32768 n^4}} - \ldots \right)</math>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 237: Linia 251:




<span id="A7" style="font-size: 110%; font-weight: bold;">Twierdzenie A7</span><br/>
<span id="A7" style="font-size: 110%; font-weight: bold;">Zadanie A7</span><br/>
Pokazać, że dla <math>n \geqslant 3</math> ciąg <math>a_n = {\small\frac{n}{\log n}}</math> jest silnie rosnący.
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Definicję ciągu silnie rosnącego podajemy w [[Ciągi liczbowe#C3|C3]]. Z twierdzenia [[#A6|A6]] otrzymujemy natychmiast, że dla <math>n \geqslant 3</math> jest
 
::<math>n > \left( 1 + {\small\frac{1}{n}} \right)^n</math>
 
Zatem <math>n^{n + 1} > (n + 1)^n</math>. Logarytmując, dostajemy
 
::<math>(n + 1) \log n > n \log (n + 1)</math>
 
Czyli
 
::<math>{\small\frac{n + 1}{\log (n + 1)}} > {\small\frac{n}{\log n}}</math>
 
Łatwo sprawdzamy, że
 
::<math>{\small\frac{3}{\log 3}} < {\small\frac{2}{\log 2}}</math>
 
Co należało pokazać.<br/>
&#9633;
{{\Spoiler}}
 
 
 
<span id="A8" style="font-size: 110%; font-weight: bold;">Twierdzenie A8</span><br/>
Prawdziwe są następujące oszacowania:
Prawdziwe są następujące oszacowania:


Linia 253: Linia 293:




<span id="A8" style="font-size: 110%; font-weight: bold;">Twierdzenie A8</span><br/>
<span id="A9" style="font-size: 110%; font-weight: bold;">Twierdzenie A9</span><br/>
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>{\small\frac{P (2 n)}{P (n)}} < 4^{n - 1}</math>, gdzie <math>P (n)</math> oznacza iloczyn wszystkich liczb pierwszych nie większych od <math>n</math>.
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>{\small\frac{P (2 n)}{P (n)}} < 4^{n - 1}</math>, gdzie <math>P (n)</math> oznacza iloczyn wszystkich liczb pierwszych nie większych od <math>n</math>.


Linia 275: Linia 315:




<span id="A9" style="font-size: 110%; font-weight: bold;">Twierdzenie A9</span><br/>
<span id="A10" style="font-size: 110%; font-weight: bold;">Twierdzenie A10</span><br/>
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>P(n) < 4^n</math>
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>P(n) < 4^n</math>


Linia 283: Linia 323:
::<math>P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot {\small\frac{P (2 k + 2)}{P (k + 1)}} < 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1}</math>
::<math>P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot {\small\frac{P (2 k + 2)}{P (k + 1)}} < 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1}</math>


gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A8|A8]].
gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A9|A9]].


Jeżeli <math>n + 1 = 2 k</math> jest liczbą parzystą większą lub równą <math>4</math>, to mamy
Jeżeli <math>n + 1 = 2 k</math> jest liczbą parzystą większą lub równą <math>4</math>, to mamy
Linia 289: Linia 329:
::<math>P(n + 1) = P (2 k) = P (k) \cdot {\small\frac{P (2 k)}{P (k)}} < 4^k \cdot 4^{k - 1} = 4^{2 k - 1} < 4^{2 k} = 4^{n + 1}</math>
::<math>P(n + 1) = P (2 k) = P (k) \cdot {\small\frac{P (2 k)}{P (k)}} < 4^k \cdot 4^{k - 1} = 4^{2 k - 1} < 4^{2 k} = 4^{n + 1}</math>


gdzie ponownie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A8|A8]].<br/>
gdzie ponownie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A9|A9]].<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 295: Linia 335:




<span id="A10" style="font-size: 110%; font-weight: bold;">Twierdzenie A10</span><br/>
<span id="A11" style="font-size: 110%; font-weight: bold;">Twierdzenie A11</span><br/>
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>p_n > {\small\frac{1}{2 \log 2}} \cdot n \log n</math>.
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>p_n > {\small\frac{1}{2 \log 2}} \cdot n \log n</math>.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ z&nbsp;definicji <math>P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n</math>, to korzystając z&nbsp;oszacowań uzyskanych w&nbsp;twierdzeniach [[#A7|A7]] i&nbsp;[[#A9|A9]] dostajemy dla <math>n \geqslant 13</math>
Ponieważ z&nbsp;definicji <math>P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n</math>, to korzystając z&nbsp;oszacowań uzyskanych w&nbsp;twierdzeniach [[#A8|A8]] i&nbsp;[[#A10|A10]] dostajemy dla <math>n \geqslant 13</math>


::<math>n^n < p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) < 4^{p_n}</math>
::<math>n^n < p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) < 4^{p_n}</math>
Linia 317: Linia 357:




<span id="A11" style="font-size: 110%; font-weight: bold;">Twierdzenie A11</span><br/>
<span id="A12" style="font-size: 110%; font-weight: bold;">Twierdzenie A12</span><br/>
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot {\small\frac{n}{\log n}}</math>.
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot {\small\frac{n}{\log n}}</math>.


Linia 341: Linia 381:




<span id="A12" style="font-size: 110%; font-weight: bold;">Twierdzenie A12</span><br/>
<span id="A13" style="font-size: 110%; font-weight: bold;">Twierdzenie A13</span><br/>
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (n) < 2 \cdot {\small\frac{n}{\log n}}</math>.
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (n) < 2 \cdot {\small\frac{n}{\log n}}</math>.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Indukcja matematyczna. Oszacowanie <math>\pi (n) < 2 \cdot {\small\frac{n}{\log n}}</math> jest prawdziwe dla <math>2 \leqslant n \leqslant 62</math>, co łatwo sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wpisać polecenie:
Indukcja matematyczna. Oszacowanie <math>\pi (n) < 2 \cdot {\small\frac{n}{\log n}}</math> jest prawdziwe dla <math>2 \leqslant n \leqslant 62</math>, co łatwo sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wpisać polecenie


  <span style="font-size: 90%; color:black;">'''for'''(n = 2, 62, '''if'''( '''primepi'''(n) >= 2 * n/'''log'''(n), '''print'''(n) ))</span>
  <span style="font-size: 90%; color:black;">'''for'''(n = 2, 62, '''if'''( '''primepi'''(n) >= 2 * n/'''log'''(n), '''print'''(n) ))</span>
Linia 351: Linia 391:
Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych należących do przedziału <math>[2, n]</math>, otrzymujemy dla <math>n + 1</math>
Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych należących do przedziału <math>[2, n]</math>, otrzymujemy dla <math>n + 1</math>


a) jeżeli <math>n + 1</math> jest liczbą parzystą, to:
a) jeżeli <math>n + 1</math> jest liczbą parzystą, to


::<math>\pi (n + 1) = \pi (n) = 2 \cdot {\small\frac{n}{\log n}} < 2 \cdot {\small\frac{n + 1}{\log (n + 1)}}</math>
::<math>\pi (n + 1) = \pi (n) = 2 \cdot {\small\frac{n}{\log n}} < 2 \cdot {\small\frac{n + 1}{\log (n + 1)}}</math>


Ostatnia nierówność wynika z twierdzenia A6. Wystarczy zauważyć, że <math>n > \left( 1 + {\small\frac{1}{n}} \right)^n</math> dla <math>n \geqslant 3</math>. Zatem <math>n^{n + 1} > (n + 1)^n</math>. Logarytmując, otrzymujemy <math>(n + 1) \log n > n \log (n + 1)</math>.
Ostatnia nierówność wynika natychmiast z zadania [[#A7|A7]].


b) jeżeli <math>n + 1</math> jest liczbą nieparzystą, to możemy położyć <math>n + 1 = 2 k + 1</math> i&nbsp;otrzymujemy:
b) jeżeli <math>n + 1</math> jest liczbą nieparzystą, to możemy położyć <math>n + 1 = 2 k + 1</math> i&nbsp;otrzymujemy:
Linia 394: Linia 434:




<span id="A13" style="font-size: 110%; font-weight: bold;">Definicja A13</span><br/>
<span id="A14" style="font-size: 110%; font-weight: bold;">Definicja A14</span><br/>
Funkcję <math>\lfloor x \rfloor</math> (czytaj: całość z <math>x</math>) definiujemy jako największą liczbę całkowitą nie większą od <math>x</math>. Operacyjnie możemy ją zdefiniować następująco: niech liczby <math>x, \varepsilon \in \mathbb{R}</math>, liczba <math>k \in \mathbb{Z}</math> oraz <math>0 \leqslant \varepsilon < 1</math>, jeżeli <math>x = k + \varepsilon</math>, to <math>\lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k </math>.
Funkcję <math>\lfloor x \rfloor</math> (czytaj: całość z <math>x</math>) definiujemy jako największą liczbę całkowitą nie większą od <math>x</math>. Operacyjnie możemy ją zdefiniować następująco: niech liczby <math>x, \varepsilon \in \mathbb{R}</math>, liczba <math>k \in \mathbb{Z}</math> oraz <math>0 \leqslant \varepsilon < 1</math>, jeżeli <math>x = k + \varepsilon</math>, to <math>\lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k </math>.






<span id="A14" style="font-size: 110%; font-weight: bold;">Twierdzenie A14</span><br/>
<span id="A15" style="font-size: 110%; font-weight: bold;">Twierdzenie A15</span><br/>
Dla <math>n \in \mathbb{Z}_+</math>, <math>x \in \mathbb{R}</math> jest <math>\left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor</math>.
Dla <math>n \in \mathbb{Z}_+</math>, <math>x \in \mathbb{R}</math> jest <math>\left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor</math>.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając z&nbsp;definicji [[#A13|A13]], przedstawmy liczbę w&nbsp;postaci <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>.
Korzystając z&nbsp;definicji [[#A14|A14]], przedstawmy liczbę w&nbsp;postaci <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>.


Z&nbsp;twierdzenia&nbsp;o dzieleniu z&nbsp;resztą liczbę <math>k</math> możemy zapisać w&nbsp;postaci <math>k = q n + r</math>, gdzie <math>0 \leqslant r \leqslant n - 1</math>, mamy zatem <math>x = q n + r + \varepsilon</math>. Ponieważ <math>0 \leqslant r + \varepsilon < n</math>, to po podzieleniu przez <math>n</math> dostajemy
Z&nbsp;twierdzenia&nbsp;o dzieleniu z&nbsp;resztą liczbę <math>k</math> możemy zapisać w&nbsp;postaci <math>k = q n + r</math>, gdzie <math>0 \leqslant r \leqslant n - 1</math>, mamy zatem <math>x = q n + r + \varepsilon</math>. Ponieważ <math>0 \leqslant r + \varepsilon < n</math>, to po podzieleniu przez <math>n</math> dostajemy
Linia 425: Linia 465:




<span id="A15" style="font-size: 110%; font-weight: bold;">Twierdzenie A15</span><br/>
<span id="A16" style="font-size: 110%; font-weight: bold;">Twierdzenie A16</span><br/>
Niech <math>x \in \mathbb{R}</math>. Liczba <math>\lfloor 2 x \rfloor - 2 \lfloor x \rfloor</math> przyjmuje wartości <math>0</math> lub <math>1</math>.
Niech <math>x \in \mathbb{R}</math>. Liczba <math>\lfloor 2 x \rfloor - 2 \lfloor x \rfloor</math> przyjmuje wartości <math>0</math> lub <math>1</math>.


Linia 442: Linia 482:




<span id="A16" style="font-size: 110%; font-weight: bold;">Definicja A16</span><br/>
<span id="A17" style="font-size: 110%; font-weight: bold;">Definicja A17</span><br/>
Niech <math>p</math> będzie liczbą pierwszą, zaś <math>a</math> dowolną liczbą naturalną. Jeżeli liczba pierwsza <math>p</math> wchodzi do rozwinięcia liczby naturalnej <math>n \geqslant 2</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>a</math>, to powiemy, że funkcja <math>W_p (n)</math> przyjmuje wartość <math>a</math>. Fakt ten możemy zapisać następująco
Niech <math>p</math> będzie liczbą pierwszą, zaś <math>a</math> dowolną liczbą naturalną. Jeżeli liczba pierwsza <math>p</math> wchodzi do rozwinięcia liczby naturalnej <math>n \geqslant 2</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>a</math>, to powiemy, że funkcja <math>W_p (n)</math> przyjmuje wartość <math>a</math>. Fakt ten możemy zapisać następująco


Linia 449: Linia 489:




<span id="A17" style="font-size: 110%; font-weight: bold;">Przykład A17</span><br/>
<span id="A18" style="font-size: 110%; font-weight: bold;">Przykład A18</span><br/>
<math>W_5 (100) = 2</math>,&nbsp;&nbsp; <math>W_7 (42) = 1</math>,&nbsp;&nbsp; ponieważ <math>11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11</math>, to <math>W_3 (11!) = 4</math>
<math>W_5 (100) = 2</math>,&nbsp;&nbsp; <math>W_7 (42) = 1</math>,&nbsp;&nbsp; ponieważ <math>11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11</math>, to <math>W_3 (11!) = 4</math>


Linia 457: Linia 497:




<span id="A18" style="font-size: 110%; font-weight: bold;">Twierdzenie A18</span><br/>
<span id="A19" style="font-size: 110%; font-weight: bold;">Twierdzenie A19</span><br/>


Podstawowe własności funkcji <math>W_p (n)</math>
Podstawowe własności funkcji <math>W_p (n)</math>
Linia 468: Linia 508:




<span id="A19" style="font-size: 110%; font-weight: bold;">Twierdzenie A19</span><br/>
<span id="A20" style="font-size: 110%; font-weight: bold;">Twierdzenie A20</span><br/>
Niech <math>p</math> będzie liczbą pierwszą. Ilość liczb podzielnych przez <math>p</math> i&nbsp;występujących w&nbsp;ciągu <math>1, 2, 3, \ldots, n</math> wynosi <math>r = \left\lfloor {\small\frac{n}{p}} \right\rfloor</math>.
Niech <math>p</math> będzie liczbą pierwszą. Ilość liczb podzielnych przez <math>p</math> i&nbsp;występujących w&nbsp;ciągu <math>1, 2, 3, \ldots, n</math> wynosi <math>r = \left\lfloor {\small\frac{n}{p}} \right\rfloor</math>.


Linia 482: Linia 522:




<span id="A20" style="font-size: 110%; font-weight: bold;">Przykład A20</span><br/>
<span id="A21" style="font-size: 110%; font-weight: bold;">Przykład A21</span><br/>
Ilość liczb całkowitych dodatnich podzielnych przez <math>5</math> i&nbsp;nie większych od <math>63</math> wynosi <math>\left\lfloor {\small\frac{63}{5}} \right\rfloor = 12</math>. Liczby te to <math>5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60</math>.
Ilość liczb całkowitych dodatnich podzielnych przez <math>5</math> i&nbsp;nie większych od <math>63</math> wynosi <math>\left\lfloor {\small\frac{63}{5}} \right\rfloor = 12</math>. Liczby te to <math>5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60</math>.






Twierdzenie [[#A19|A19]] umożliwi nam określenie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w <math>n!</math>
Twierdzenie [[#A20|A20]] umożliwi nam określenie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w <math>n!</math>


<span id="A21" style="font-size: 110%; font-weight: bold;">Twierdzenie A21</span><br/>
<span id="A22" style="font-size: 110%; font-weight: bold;">Twierdzenie A22</span><br/>
Liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>
Liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>


Linia 505: Linia 545:
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{\lfloor n / p \rfloor}{p}} \right\rfloor \cdot p \right)</math>
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{\lfloor n / p \rfloor}{p}} \right\rfloor \cdot p \right)</math>


Z twierdzenia [[#A14|A14]] wiemy, że dla <math>x \in \mathbb{R}</math> i <math>n \in \mathbb{Z}_{+}</math> jest:
Z twierdzenia [[#A15|A15]] wiemy, że dla <math>x \in \mathbb{R}</math> i <math>n \in \mathbb{Z}_{+}</math> jest:


::<math>\left\lfloor {\small\frac{\lfloor x \rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{x}{n}} \right \rfloor</math>
::<math>\left\lfloor {\small\frac{\lfloor x \rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{x}{n}} \right \rfloor</math>
Linia 527: Linia 567:




<span id="A22" style="font-size: 110%; font-weight: bold;">Uwaga A22</span><br/>
<span id="A23" style="font-size: 110%; font-weight: bold;">Uwaga A23</span><br/>
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w&nbsp;postaci
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w&nbsp;postaci


Linia 540: Linia 580:




<span id="A23" style="font-size: 110%; font-weight: bold;">Przykład A23</span><br/>
<span id="A24" style="font-size: 110%; font-weight: bold;">Przykład A24</span><br/>
Niech <math>n = 30</math>, <math>p = 3</math>
Niech <math>n = 30</math>, <math>p = 3</math>


Linia 573: Linia 613:




<span id="A24" style="font-size: 110%; font-weight: bold;">Twierdzenie A24</span><br/>
<span id="A25" style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/>
Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>{\small\binom{2 n}{n}}</math> z&nbsp;wykładnikiem
Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>{\small\binom{2 n}{n}}</math> z&nbsp;wykładnikiem


Linia 588: Linia 628:




<span id="A25" style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/>
<span id="A26" style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/>
Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>u = 1</math> lub <math>u = 0</math>.
Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>u = 1</math> lub <math>u = 0</math>.


Linia 596: Linia 636:
::<math>u = \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = \left \lfloor {\small\frac{2 n}{p}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p}} \right \rfloor</math>
::<math>u = \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = \left \lfloor {\small\frac{2 n}{p}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p}} \right \rfloor</math>


Na mocy twierdzenia [[#A15|A15]] (dla <math>x = \tfrac{n}{p}</math>), dostajemy natychmiast, że <math>u = 1</math> lub <math>u = 0</math>.
Na mocy twierdzenia [[#A16|A16]] (dla <math>x = \tfrac{n}{p}</math>), dostajemy natychmiast, że <math>u = 1</math> lub <math>u = 0</math>.
<br/>
<br/>
&#9633;
&#9633;
Linia 603: Linia 643:




<span id="A26" style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/>
<span id="A27" style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/>
Niech <math>p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \biggr\rvert {\small\binom{2 n}{n}}</math>, to <math>p^a \leqslant 2 n</math>.
Niech <math>n \in \mathbb{N}_0 \,</math> i <math>\, p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \biggr\rvert {\small\binom{2 n}{n}}</math>, to <math>p^a \leqslant 2 n</math>. Równość w tym oszacowaniu jest możliwa tylko w przypadku, gdy <math>n = 1</math> (wtedy <math>p = 2 \;</math> i <math>\; a = 1</math>).


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Linia 614: Linia 654:


::<math>p^a \leqslant p^u \leqslant p^s \leqslant 2 n</math>
::<math>p^a \leqslant p^u \leqslant p^s \leqslant 2 n</math>
&#9633;
{{\Spoiler}}




Rozważmy przypadek, gdy <math>p^a = 2 n</math>. Liczba pierwsza <math>p</math> nie może być liczbą nieparzystą, bo po prawej stronie równości mamy liczbę parzystą. Zatem może jedynie być <math>p = 2</math> i nie może być <math>a = 0 .</math> Czyli dostajemy <math>2^a = 2 n</math>, a stąd <math>n = 2^{a - 1} \;</math> i <math>\; a \geqslant 1</math>.


Zauważmy teraz, że dla <math>a \geqslant 1</math> mamy


::<math>\sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2^a}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{2^{a - 1}}{2^k}} \right\rfloor \right) = \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{k = 1}^{a - 1} \lfloor 2^{a - (k + 1)} \rfloor</math>


== Oszacowanie <math>p_n</math> od góry i <math>\pi (n)</math> od dołu ==
:::::::::<math>\;\;\, = \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{j = 2}^{a} \lfloor 2^{a - j} \rfloor</math>


Z twierdzenia [[#A26|A26]] wynika natychmiast
:::::::::<math>\;\;\, = \lfloor 2^{a - 1} \rfloor + \sum_{k = 2}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{j = 2}^{a} \lfloor 2^{a - j} \rfloor</math>


:::::::::<math>\;\;\, = \lfloor 2^{a - 1} \rfloor - \sum_{k = 2}^{a} \lfloor 2^{a - k} \rfloor</math>


<span id="A27" style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/>
:::::::::<math>\;\;\, = 2 \lfloor 2^{a - 1} \rfloor - \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor</math>
Niech <math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>.


Uwaga: w&nbsp;powyższym twierdzeniu <math>q_i</math> nie oznacza <math>i</math>-tej liczby pierwszej, a&nbsp;pewną liczbą pierwszą o&nbsp;indeksie <math>i</math> ze zboru liczb pierwszych <math>q_1, \ldots q_s</math>, które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z&nbsp;wykładnikiem większym od zera.
:::::::::<math>\;\;\, = 2^a - \sum_{k = 1}^{a} 2^{a - k}</math>


:::::::::<math>\;\;\, = 2^a - 2^a \sum_{k = 1}^{a} {\small\frac{1}{2^k}}</math>


:::::::::<math>\;\;\, = 1</math>


<span id="A28" style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/>
Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math>


::<math>{\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
Zatem


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
::<math>a = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2 n}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{2^k}} \right\rfloor \right)
Dowód wynika natychmiast z&nbsp;twierdzenia [[#A27|A27]], bo
= \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2^a}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{2^{a - 1}}{2^k}} \right\rfloor \right) = 1</math>


::<math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 
Wynika stąd, że <math>n = 2^{a - 1} = 1</math>. Istotnie, dla <math>n = 1</math> dostajemy
 
::<math>{\small\binom{2 n}{n}} = {\small\binom{2}{1}} = 2</math>
 
Widzimy, że dla <math>p = 2 \;</math> i <math>\; n = 1 \;</math> jest <math>\; p \biggr\rvert {\small\binom{2 n}{n}} \;</math> i <math>\; p = 2 n</math>. Co należało pokazać.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 647: Linia 693:




<span id="A29" style="font-size: 110%; font-weight: bold;">Twierdzenie A29</span><br/>
Dla <math>n \geqslant 3</math> prawdziwe jest następujące oszacowanie


::<math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
== Oszacowanie <math>p_n</math> od góry i <math>\pi (n)</math> od dołu ==
W twierdzeniu [[#A4|A4]] oszacowaliśmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math>. Przepiszemy, to twierdzenie w&nbsp;postaci bardziej czytelnej dla potrzeb tego dowodu


::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < {\small\binom{2 n}{n}}</math>
Z twierdzenia [[#A27|A27]] wynika natychmiast


Nierówności te są prawdziwe dla <math>n \geqslant 80</math>. Z&nbsp;twierdzenia [[#A28|A28]] mamy


::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
<span id="A28" style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/>
Niech <math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>.


Łącząc odpowiednie oszacowania współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> od góry z&nbsp;odpowiednimi oszacowaniami od dołu, dostajemy
Uwaga: w&nbsp;powyższym twierdzeniu <math>q_i</math> nie oznacza <math>i</math>-tej liczby pierwszej, a&nbsp;pewną liczbą pierwszą o&nbsp;indeksie <math>i</math> ze zboru liczb pierwszych <math>q_1, \ldots q_s</math>, które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z&nbsp;wykładnikiem większym od zera.


::<math>(2 n + 1)^{\pi (2 n + 1)} > \left( \sqrt{3.8} \right)^{2 n + 1}</math>


::<math>(2 n)^{\pi (2 n)} > \left( \sqrt{3.8} \right)^{2 n}</math>


Zatem zarówno dla parzystych, jak i&nbsp;nieparzystych liczb <math>m \geqslant 160</math> jest
<span id="A29" style="font-size: 110%; font-weight: bold;">Twierdzenie A29</span><br/>
Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math>


::<math>m^{\pi (m)} > \left( \sqrt{3.8} \right)^m</math>
::<math>{\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>


::<math>\pi (m) \cdot \log m > m \cdot \log \left( \sqrt{3.8} \right)</math>
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Dowód wynika natychmiast z&nbsp;twierdzenia [[#A28|A28]], bo


Czyli
::<math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 
::<math>\pi (m) > {\small\frac{1}{2}} \cdot \log \left ( 3.8 \right ) \cdot {\small\frac{m}{\log m}} > 0.6675 \cdot {\small\frac{m}{\log m}} > {\small\frac{2}{3}} \cdot {\small\frac{m}{\log m}}</math>
 
Dla <math>m = 3, 4, \ldots, 159</math> prawdziwość nierówności sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wykonać polecenie
 
<span style="font-size: 90%; color:black;">'''for'''(n = 2, 200, '''if'''( '''primepi'''(n) <= 2/3 * n/'''log'''(n), '''print'''(n) ))</span>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 686: Linia 722:


<span id="A30" style="font-size: 110%; font-weight: bold;">Twierdzenie A30</span><br/>
<span id="A30" style="font-size: 110%; font-weight: bold;">Twierdzenie A30</span><br/>
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 2 n \log n</math>
Dla <math>n \geqslant 3</math> prawdziwe jest następujące oszacowanie
 
::<math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Rozpoczniemy od pokazania, że dla <math>x > 83499.14</math> prawdziwe jest następujące oszacowanie funkcji <math>\log x</math> od góry
W twierdzeniu [[#A4|A4]] oszacowaliśmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math>. Przepiszemy, to twierdzenie w&nbsp;postaci bardziej czytelnej dla potrzeb tego dowodu


::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 4}</math>
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < {\small\binom{2 n}{n}}</math>


Wiemy, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>. Zatem dla odpowiednio dużych <math>x</math> z&nbsp;pewnością będzie <math>\tfrac{2}{3} \cdot x^{1 / 4} > \log x \,</math><span style="color: Green"><sup>[a]</sup></span>. Zamieszczony niżej obrazek przedstawia wykres funkcji <math>f( x ) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x</math>.
Nierówności te są prawdziwe dla <math>n \geqslant 80</math>. Z&nbsp;twierdzenia [[#A29|A29]] mamy


::[[File: A_Czebyszew-wykres-1.png|1000px|none]]
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>


Wpisując w&nbsp;PARI/GP polecenie
Łącząc odpowiednie oszacowania współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> od góry z&nbsp;odpowiednimi oszacowaniami od dołu, dostajemy


<span style="font-size: 90%; color:black;">'''solve'''(x = 80000, 10^5, 2/3 * x^(1/4) - '''log'''(x))</span>
::<math>(2 n + 1)^{\pi (2 n + 1)} > \left( \sqrt{3.8} \right)^{2 n + 1}</math>


wyliczamy, że funkcja <math>f( x )</math> przecina oś <math>O X</math> w&nbsp;punkcie <math>x = 83499.136 \ldots</math> Wynika stąd, że dla <math>x > 83499.14</math> prawdziwa jest nierówność
::<math>(2 n)^{\pi (2 n)} > \left( \sqrt{3.8} \right)^{2 n}</math>


::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 4}</math>
Zatem zarówno dla parzystych, jak i&nbsp;nieparzystych liczb <math>m \geqslant 160</math> jest


::<math>m^{\pi (m)} > \left( \sqrt{3.8} \right)^m</math>


Z twierdzenia [[#A29|A29]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>
::<math>\pi (m) \cdot \log m > m \cdot \log \left( \sqrt{3.8} \right)</math>


::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>
Czyli
 
::<math>\pi (m) > {\small\frac{1}{2}} \cdot \log \left ( 3.8 \right ) \cdot {\small\frac{m}{\log m}} > 0.6675 \cdot {\small\frac{m}{\log m}} > {\small\frac{2}{3}} \cdot {\small\frac{m}{\log m}}</math>
 
Dla <math>m = 3, 4, \ldots, 159</math> prawdziwość nierówności sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wykonać polecenie
 
<span style="font-size: 90%; color:black;">'''for'''(n = 2, 200, '''if'''( '''primepi'''(n) <= 2/3 * n/'''log'''(n), '''print'''(n) ))</span>
&#9633;
{{\Spoiler}}


Zatem


::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1)</math>


Korzystając z&nbsp;wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla <math>p_k > 83499</math>
<span id="A31" style="font-size: 110%; font-weight: bold;">Twierdzenie A31</span><br/>
Niech <math>a \in \mathbb{R}_+</math>. Ciąg <math>u_n = {\small\frac{n^a}{\log n}}</math> jest ciągiem silnie rosnącym dla <math>n > e^{1 / a}</math>.


::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 4}</math>
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Zauważmy, że dowodzone twierdzenie jest uogólnieniem twierdzenia [[#A7|A7]]. Rozważmy funkcję zmiennej rzeczywistej <math>f(x) = {\small\frac{x^a}{\log x}}</math>. Pochodna funkcji <math>f(x)</math> jest równa


czyli
::<math>f' (x) = {\small\frac{x^{a - 1}}{\log^2 x}} \cdot (a \log x - 1) \qquad</math> ([https://www.wolframalpha.com/input?i=D%5Bx%5Ea%2Flog%28x%29%2C+x%5D WolframAlpha])


::<math>(p_k)^{3 / 4} < k</math>
Dla <math>x \in (0, 1)</math> mamy <math>\log x < 0</math> i pochodna <math>f' (x)</math> jest ujemna.


::<math>p_k < k^{4 / 3}</math>
Dla <math>x > 1</math> mamy <math>\log x > 0</math> i pochodna <math>f' (x)</math> jest dodatnia, gdy


Wstawiając to oszacowanie ponownie do <math>(1)</math>, dostajemy
::<math>a \log x - 1 > 0</math>


::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{4}{3}} \cdot \log k = 2 k \log k</math>
::<math>\log x > {\small\frac{1}{a}}</math>


Wpisując w&nbsp;PARI/GP polecenie
::<math>x > e^{1 / a}</math>


<span style="font-size: 90%; color:black;">'''for'''(k = 1, 10^5, p = '''prime'''(k); '''if'''( p > 83499, '''print'''("end"); '''break'''() ); '''if'''( p >= 2 * k * '''log'''(k), '''print'''(k) ))</span>
Wynika stąd, że funkcja <math>f(x)</math> jest silnie rosnąca dla <math>x > e^{1 / a}</math>.


łatwo sprawdzamy, że oszacowanie <math>p_k < 2 k \log k</math> jest prawdziwe dla <math>k \geqslant 3</math>.
Zauważmy, że ciąg <math>u_n = {\small\frac{n^a}{\log n}}</math> to wartości funkcji <math>f(x)</math> w punktach całkowitych <math>x = n</math>, zatem otrzymujemy


::<math>u_{n + 1} = f (n + 1) > f (n) = u_n \qquad \qquad \qquad \text{dla} \;\; n > e^{1 / a}</math>


<hr style="width: 25%; height: 2px; " />
Co należało pokazać.<br/>
<span style="color: Green">[a]</span> Bardziej precyzyjnie: pochodna funkcji <math>f(x) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x</math> jest równa <math>{\small\frac{1}{6 x^{3 / 4}}} - {\small\frac{1}{x}}</math> (zobacz [https://www.wolframalpha.com/input?i=D%5B+2%2F3+*+x%5E%281%2F4%29+-+log%28x%29%2C+x+%5D WolframAlpha]). Łatwo sprawdzamy, że pochodna jest ujemna w&nbsp;przedziale <math>(0, 1296)</math> i&nbsp;dodatnia w&nbsp;przedziale <math>(1296, \infty)</math>. Wynika stąd, że funkcja <math>f( x )</math> jest funkcją malejącą dla <math>x < 1296</math> i&nbsp;rosnącą dla <math>x > 1296</math>.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 742: Linia 789:




<span id="A32" style="font-size: 110%; font-weight: bold;">Przykład A32</span><br/>
Zauważmy, że prawdziwe jest proste stwierdzenie


::''Jeżeli ciąg <math>u_n</math> jest rosnący dla <math>n > n_0</math> oraz istnieje takie <math>n_1 > n_0</math>, że <math>u_{n_1} > 0</math>, to dla wszystkich <math>n \geqslant n_1</math> mamy <math>u_n > 0</math>.''




Podkreślmy, że liczba <math>n_1</math> może być znaleziona różnymi metodami i nie musimy wyjaśniać, jak ją znaleźliśmy.




Dla przykładu rozważmy problem z twierdzenia [[#A33|A33]]. Pokazujemy tam, że dla odpowiednio dużego <math>n</math> jest


::<math>u_n = {\small\frac{2}{3}} \cdot {\small\frac{n^{1 / 4}}{\log n}} - 1 > 0</math>


Istotnie, ciąg <math>{\small\frac{n^{1 / 4}}{\log n}}</math> jest silnie rosnący dla <math>n > e^4 \approx 54.6</math> (zobacz [[#A31|A31]]). Również ciąg <math>u_n = {\small\frac{2}{3}} \cdot {\small\frac{n^{1 / 4}}{\log n}} - 1</math> jest silnie rosnący dla <math>n > e^4</math> (zobacz [[Ciągi liczbowe#C4|C4]]).


Dowód twierdzenia [[#A30|A30]] kończy dowód całego twierdzenia&nbsp;[[#A1|A1]]. Możemy teraz dokończyć dowód twierdzenia&nbsp;[[#A7|A7]] i&nbsp;pokazać, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie:
Mamy też


::<math>p_1 \cdot \ldots \cdot p_n < (n \log n)^n</math>
::<math>u_{83500} \approx 0.00000167 > 0</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Oczywiście <math>83500 > e^4</math>, zatem ciąg <math>{\small\frac{2}{3}} \cdot {\small\frac{n^{1 / 4}}{\log n}} - 1</math> jest większy od zera dla wszystkich <math>n \geqslant 83500</math>.
Indukcja matematyczna. Twierdzenie jest prawdziwe dla <math>n = 3</math>. Zakładając prawdziwość twierdzenia dla <math>n</math>, otrzymujemy dla <math>n + 1</math>:


::<math>p_1 \cdot \ldots \cdot p_n p_{n + 1} < (n \log n)^n \cdot p_{n + 1} < </math>
Zastosowane wyżej podejście może być wykorzystane w dowodach twierdzeń [[#A33|A33]], [[#A34|A34]], [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B12|B12]] itd.


::::::<math>\quad < n^n \cdot (\log n)^n \cdot 2 (n + 1) \log (n + 1) \leqslant</math>


::::::<math>\quad \leqslant n^n \cdot \left( 1 + {\small\frac{1}{n}} \right)^n \cdot (n + 1) \cdot (\log n)^n \cdot \log (n + 1) <</math>


::::::<math>\quad < (n + 1)^{n + 1} \cdot [\log (n + 1)]^n \cdot \log (n + 1) =</math>
<span id="A33" style="font-size: 110%; font-weight: bold;">Twierdzenie A33</span><br/>
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 2 n \log n</math>


::::::<math>\quad = [(n + 1) \cdot \log (n + 1)]^{n + 1}</math>
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Rozpoczniemy od pokazania, że dla <math>x > 83499.14</math> prawdziwe jest następujące oszacowanie funkcji <math>\log x</math> od góry


Gdzie skorzystaliśmy z&nbsp;twierdzenia [[#A30|A30]] oraz z&nbsp;faktu, że ciąg <math>a_n = \left( 1 + {\small\frac{1}{n}} \right)^n</math> jest ciągiem ograniczonym <math>2 \leqslant a_n < 3</math> (zobacz twierdzenie [[#A6|A6]]).<br/>
::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 4}</math>
&#9633;
{{\Spoiler}}


Wiemy, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>. Zatem dla odpowiednio dużych <math>x</math> z&nbsp;pewnością będzie <math>\tfrac{2}{3} \cdot x^{1 / 4} > \log x \,</math><span style="color: Green"><sup>[a]</sup></span>. Zamieszczony niżej obrazek przedstawia wykres funkcji <math>f( x ) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x</math>.


::[[File: A_Czebyszew-wykres-1.png|1000px|none]]


Wpisując w&nbsp;PARI/GP polecenie


<span style="font-size: 90%; color:black;">'''solve'''(x = 80000, 10^5, 2/3 * x^(1/4) - '''log'''(x))</span>


== Uwagi do dowodu ==
wyliczamy, że funkcja <math>f( x )</math> przecina oś <math>O X</math> w&nbsp;punkcie <math>x = 83499.136 \ldots</math> Wynika stąd, że dla <math>x > 83499.14</math> prawdziwa jest nierówność
Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i&nbsp;udowodnić


::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 4}</math>


<span id="A31" style="font-size: 110%; font-weight: bold;">Twierdzenie A31</span><br/>
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 1.875 \cdot n \log n</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#A30|A30]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>
Rozpoczniemy od pokazania, że dla <math>x > 7572437.23</math> prawdziwe jest następujące oszacowanie funkcji <math>\log x</math> od góry
 
::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 5}</math>
 
Wiemy, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>. Zatem dla odpowiednio dużych <math>x</math> z&nbsp;pewnością będzie <math>\tfrac{2}{3} \cdot x^{1 / 5} > \log x \,</math><span style="color: Green"><sup>[a]</sup></span>. Wpisując w&nbsp;PARI/GP polecenie
 
<span style="font-size: 90%; color:black;">'''solve'''(x = 10^6, 10^7, 2/3 * x^(1/5) - '''log'''(x))</span>
 
wyliczamy, że funkcja <math>f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x</math> przecina oś <math>O X</math> w&nbsp;punkcie <math>x = 7572437.223 \ldots</math> Wynika stąd, że dla <math>x > 7572437.23</math> prawdziwa jest nierówność
 
::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 5}</math>


 
::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>
Z twierdzenia [[#A29|A29]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>
 
::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>


Zatem
Zatem
Linia 804: Linia 843:
::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1)</math>
::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1)</math>


Korzystając z&nbsp;wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla <math>p_k > 7572437</math>
Korzystając z&nbsp;wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla <math>p_k > 83499</math>


::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 5}</math>
::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 4}</math>


czyli
czyli


::<math>(p_k)^{4 / 5} < k</math>
::<math>(p_k)^{3 / 4} < k</math>


::<math>p_k < k^{5 / 4}</math>
::<math>p_k < k^{4 / 3}</math>


Wstawiając to oszacowanie ponownie do <math>(1)</math>, dostajemy
Wstawiając to oszacowanie ponownie do <math>(1)</math>, dostajemy


::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{5}{4}} \cdot \log k = 1.875 \cdot k \log k</math>
::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{4}{3}} \cdot \log k = 2 k \log k</math>


Wpisując w&nbsp;PARI/GP polecenie
Wpisując w&nbsp;PARI/GP polecenie


  <span style="font-size: 90%; color:black;">'''for'''(k = 1, 10^7, p = '''prime'''(k); '''if'''( p > 7572437, '''print'''("end"); '''break'''() ); '''if'''( p >= 2 * k * '''log'''(k), '''print'''(k) ))</span>
  <span style="font-size: 90%; color:black;">'''for'''(k = 1, 10^5, p = '''prime'''(k); '''if'''( p > 83499, '''print'''("end"); '''break'''() ); '''if'''( p >= 2 * k * '''log'''(k), '''print'''(k) ))</span>


łatwo sprawdzamy, że oszacowanie <math>p_k < 1.875 \cdot k \log k</math> jest prawdziwe dla <math>k \geqslant 3</math>.
łatwo sprawdzamy, że oszacowanie <math>p_k < 2 k \log k</math> jest prawdziwe dla <math>k \geqslant 3</math>.




<hr style="width: 25%; height: 2px; " />
<hr style="width: 25%; height: 2px; " />
<span style="color: Green">[a]</span> Bardziej precyzyjnie: pochodna funkcji <math>f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x</math> jest równa <math>{\small\frac{2}{15 x^{4 / 5}}} - {\small\frac{1}{x}}</math> (zobacz [https://www.wolframalpha.com/input?i=D%5B+2%2F3+*+x%5E%281%2F5%29+-+log%28x%29%2C+x+%5D WolframAlpha]). Łatwo sprawdzamy, że pochodna jest ujemna w&nbsp;przedziale <math>(0, 23730.46875)</math> i&nbsp;dodatnia w&nbsp;przedziale <math>(23730.46875, \infty)</math>. Wynika stąd, że funkcja <math>f( x )</math> jest funkcją malejącą dla <math>x < 23730.46875</math> i&nbsp;rosnącą dla <math>x > 23730.46875</math>.<br/>
<span style="color: Green">[a]</span> Bardziej precyzyjnie: pochodna funkcji <math>f(x) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x</math> jest równa <math>{\small\frac{1}{6 x^{3 / 4}}} - {\small\frac{1}{x}}</math> (zobacz [https://www.wolframalpha.com/input?i=D%5B+2%2F3+*+x%5E%281%2F4%29+-+log%28x%29%2C+x+%5D WolframAlpha]). Łatwo sprawdzamy, że pochodna jest ujemna w&nbsp;przedziale <math>(0, 1296)</math> i&nbsp;dodatnia w&nbsp;przedziale <math>(1296, \infty)</math>. Wynika stąd, że funkcja <math>f( x )</math> jest funkcją malejącą dla <math>x < 1296</math> i&nbsp;rosnącą dla <math>x > 1296</math>.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 832: Linia 871:




<span id="A32" style="font-size: 110%; font-weight: bold;">Twierdzenie A32</span><br/>
Niech <math>n \geqslant 2</math>. Dla funkcji <math>\pi (n)</math> prawdziwe jest oszacowanie


::<math>\pi (n) < 1.733 \cdot {\small\frac{n}{\log n}}</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest


::<math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > n^{4 / 5}</math>


Ostatnia nierówność wynika z&nbsp;faktu, że dla <math>x > 7572437.223 \ldots</math> prawdziwe jest oszacowanie


::<math>{\small\frac{2}{3}} \cdot {\small\frac{x}{\log x}} > x^{4 / 5}</math>


Korzystając z&nbsp;twierdzenia [[#A9|A9]] możemy napisać ciąg nierówności


::<math>4^n > P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} > \pi (n)^{\pi (n)} > (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5}</math>


skąd otrzymujemy, że dla <math>n \geqslant 7572438</math> prawdziwe jest oszacowanie
Dowód twierdzenia [[#A33|A33]] kończy dowód całego twierdzenia&nbsp;[[#A1|A1]]. Możemy teraz dokończyć dowód twierdzenia&nbsp;[[#A8|A8]] i&nbsp;pokazać, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie:
 
::<math>p_1 \cdot \ldots \cdot p_n < (n \log n)^n</math>
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Indukcja matematyczna. Twierdzenie jest prawdziwe dla <math>n = 3</math>. Zakładając prawdziwość twierdzenia dla <math>n</math>, otrzymujemy dla <math>n + 1</math>:
 
::<math>p_1 \cdot \ldots \cdot p_n p_{n + 1} < (n \log n)^n \cdot p_{n + 1} < </math>
 
::::::<math>\quad < n^n \cdot (\log n)^n \cdot 2 (n + 1) \log (n + 1) \leqslant</math>
 
::::::<math>\quad \leqslant n^n \cdot \left( 1 + {\small\frac{1}{n}} \right)^n \cdot (n + 1) \cdot (\log n)^n \cdot \log (n + 1) <</math>


::<math>\pi (n) < 1.733 \cdot {\small\frac{n}{\log n}}</math>
::::::<math>\quad < (n + 1)^{n + 1} \cdot [\log (n + 1)]^n \cdot \log (n + 1) =</math>


W GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>n \geqslant 2</math>
::::::<math>\quad = [(n + 1) \cdot \log (n + 1)]^{n + 1}</math>


<span style="font-size: 90%; color:black;">'''for'''(n = 2, 8*10^6, '''if'''( '''primepi'''(n) >= 1.733 * n/'''log'''(n), '''print'''(n) ))</span>
Gdzie skorzystaliśmy z&nbsp;twierdzenia [[#A33|A33]] oraz z&nbsp;faktu, że ciąg <math>a_n = \left( 1 + {\small\frac{1}{n}} \right)^n</math> jest ciągiem ograniczonym <math>2 \leqslant a_n < 3</math> (zobacz twierdzenie [[#A6|A6]]).<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 862: Linia 902:




<span id="A33" style="font-size: 110%; font-weight: bold;">Uwaga A33</span><br/>
Dowód twierdzenia [[#A31|A31]] wymagał wykorzystania polecenia PARI/GP, w&nbsp;którym wielokrotnie była wywoływana funkcja <span style="font-size: 90%; color:black;"><code>prime(n)</code></span>. Analogiczna sytuacja miała miejsce w&nbsp;przypadku twierdzenia&nbsp;[[#A32|A32]] – tam musieliśmy wielokrotnie wywoływać funkcję <span style="font-size: 90%; color:black;"><code>primepi(n)</code></span>. Znacznie lepiej w&nbsp;takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w&nbsp;sposób ciągły w&nbsp;całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy <span style="font-size: 90%; color:black;"><code>Test1(n)</code></span> i <span style="font-size: 90%; color:black;"><code>Test2(n)</code></span> wywołane z&nbsp;parametrami <span style="font-size: 90%; color:black;"><code>n = 520000</code></span> i&nbsp;odpowiednio <span style="font-size: 90%; color:black;"><code>n = 8*10^6</code></span> odpowiadają poleceniom


<span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span>


<span style="font-size: 90%; color:black;">'''for'''(n = 2, 8 * 10^6, '''if'''( '''primepi'''(n) >= 1.733 * n / '''log'''(n), '''print'''(n) ))</span>
== Uwagi do dowodu ==
Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i&nbsp;udowodnić
 


ale wykonywane są znacznie szybciej.
<span id="A34" style="font-size: 110%; font-weight: bold;">Twierdzenie A34</span><br/>
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 1.875 \cdot n \log n</math>


<span style="font-size: 90%; color:black;">Test1(n) =  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
Rozpoczniemy od pokazania, że dla <math>x > 7572437.23</math> prawdziwe jest następujące oszacowanie funkcji <math>\log x</math> od góry
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
{
'''local'''(p, k);
k = 1;
p = 2;
'''while'''( k <= n,
        '''if'''( p >= k^(5/4), '''print'''(k) );
        k = k + 1;
        p = '''nextprime'''(p + 1);  \\ liczba p ma wartość prime(k)
      );
}</span>


<span style="font-size: 90%; color:black;">Test2(n) =
::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 5}</math>
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
'''local'''(s, k);
s = 1;
k = 2;
'''while'''( k <= n,
        '''if'''( s >= 1.733 * k / '''log'''(k), '''print'''(k) );
        k = k + 1;
        s = s + '''isprime'''(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
      );
}</span>


Wiemy, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>. Zatem dla odpowiednio dużych <math>x</math> z&nbsp;pewnością będzie <math>\tfrac{2}{3} \cdot x^{1 / 5} > \log x \,</math><span style="color: Green"><sup>[a]</sup></span>. Wpisując w&nbsp;PARI/GP polecenie


<span style="font-size: 90%; color:black;">'''solve'''(x = 10^6, 10^7, 2/3 * x^(1/5) - '''log'''(x))</span>


<span id="A34" style="font-size: 110%; font-weight: bold;">Uwaga A34</span><br/>
wyliczamy, że funkcja <math>f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x</math> przecina oś <math>O X</math> w&nbsp;punkcie <math>x = 7572437.223 \ldots</math> Wynika stąd, że dla <math>x > 7572437.23</math> prawdziwa jest nierówność
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji <math>\pi (n)</math> lub <math>p_n</math>. Już osiągnięcie tą drogą oszacowania <math>p_n < 1.6 \cdot n \log n</math> przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność


::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 16}</math>
::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 5}</math>


jest prawdziwa dla <math>x > 7.671 \cdot 10^{32}</math>.


Z twierdzenia [[#A30|A30]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>


::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>


Zatem


::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1)</math>


== Zastosowania ==
Korzystając z&nbsp;wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla <math>p_k > 7572437</math>


Ciekawy rezultat wynika z&nbsp;twierdzenia&nbsp;[[#A7|A7]], ale wcześniej musimy udowodnić twierdzenie o&nbsp;średniej arytmetycznej i&nbsp;geometrycznej.
::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 5}</math>


<span id="A35" style="font-size: 110%; font-weight: bold;">Twierdzenie A35</span><br/>
czyli
Dla dowolnych liczb dodatnich <math>a_1, a_2, \ldots, a_n</math> średnia arytmetyczna jest nie mniejsza od średniej geometrycznej


::<math>{\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n}</math>
::<math>(p_k)^{4 / 5} < k</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
::<math>p_k < k^{5 / 4}</math>
Twierdzenie jest w&nbsp;sposób oczywisty prawdziwe dla <math>n = 1</math>. Równie łatwo stwierdzamy prawdziwość nierówności dla <math>n = 2</math>


::<math>(a_1 - a_2)^2 \geqslant 0</math>
Wstawiając to oszacowanie ponownie do <math>(1)</math>, dostajemy


::<math>a^2_1 - 2 a_1 a_2 + a^2_2 \geqslant 0</math>
::<math>p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{5}{4}} \cdot \log k = 1.875 \cdot k \log k</math>


::<math>a^2_1 + 2 a_1 a_2 + a^2_2 \geqslant 4 a_1 a_2</math>
Wpisując w&nbsp;PARI/GP polecenie


::<math>(a_1 + a_2)^2 \geqslant 4 a_1 a_2</math>
<span style="font-size: 90%; color:black;">'''for'''(k = 1, 10^7, p = '''prime'''(k); '''if'''( p > 7572437, '''print'''("end"); '''break'''() ); '''if'''( p >= 2 * k * '''log'''(k), '''print'''(k) ))</span>


::<math>{\small\frac{a_1 + a_2}{2}} \geqslant \sqrt{a_1 a_2}</math>
łatwo sprawdzamy, że oszacowanie <math>p_k < 1.875 \cdot k \log k</math> jest prawdziwe dla <math>k \geqslant 3</math>.


Dla potrzeb dowodu zapiszemy dowodzoną nierówność w&nbsp;postaci


::<math>\left( {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \right)^n \geqslant a_1 a_2 \cdot \ldots \cdot a_n</math>
<hr style="width: 25%; height: 2px; " />
<span style="color: Green">[a]</span> Bardziej precyzyjnie: pochodna funkcji <math>f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x</math> jest równa <math>{\small\frac{2}{15 x^{4 / 5}}} - {\small\frac{1}{x}}</math> (zobacz [https://www.wolframalpha.com/input?i=D%5B+2%2F3+*+x%5E%281%2F5%29+-+log%28x%29%2C+x+%5D WolframAlpha]). Łatwo sprawdzamy, że pochodna jest ujemna w&nbsp;przedziale <math>(0, 23730.46875)</math> i&nbsp;dodatnia w&nbsp;przedziale <math>(23730.46875, \infty)</math>. Wynika stąd, że funkcja <math>f( x )</math> jest funkcją malejącą dla <math>x < 23730.46875</math> i&nbsp;rosnącą dla <math>x > 23730.46875</math>.<br/>
&#9633;
{{\Spoiler}}


Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od <math>n</math> dla <math>n + 1</math> mamy


a) w&nbsp;przypadku gdy <math>n + 1 = 2 k</math> jest liczbą parzystą


::<math>\left( {\small\frac{a_1 + a_2 + \ldots + a_{n + 1}}{n + 1}} \right)^{n + 1} = \left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k}}{2 k}} \right)^{2 k} =</math>
<span id="A35" style="font-size: 110%; font-weight: bold;">Twierdzenie A35</span><br/>
Niech <math>n \geqslant 2</math>. Dla funkcji <math>\pi (n)</math> prawdziwe jest oszacowanie


:::::::::<math>\;\;\, = \left[ \left( \frac{ \tfrac{a_{\large 1} + a_{\large 2}}{2} + \tfrac{a_{\large 3} + a_{\large 4}}{2} + \ldots + \tfrac{a_{\large 2 k - 1} + a_{\large 2 k}}{2}}{k} \right)^k \right]^2 \geqslant</math>
::<math>\pi (n) < 1.733 \cdot {\small\frac{n}{\log n}}</math>


:::::::::<math>\;\;\, \geqslant \left( {\small\frac{a_1 + a_2}{2}} \cdot {\small\frac{a_3 + a_4}{2}} \cdot \ldots \cdot {\small\frac{a_{2 k - 1} + a_{2 k}}{2}} \right)^2 \geqslant</math>
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest


:::::::::<math>\;\;\, \geqslant \left( \sqrt{a_1 a_2} \cdot \sqrt{a_3 a_4} \cdot \ldots \cdot \sqrt{a_{2 k - 1} a_{2 k}} \right)^2 =</math>
::<math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > n^{4 / 5}</math>


:::::::::<math>\;\;\, = a_1 a_2 \cdot \ldots \cdot a_{2 k} =</math>
Ostatnia nierówność wynika z&nbsp;faktu, że dla <math>x > 7572437.223 \ldots</math> prawdziwe jest oszacowanie


:::::::::<math>\;\;\, = a_1 a_2 \cdot \ldots \cdot a_{n + 1}</math>
::<math>{\small\frac{2}{3}} \cdot {\small\frac{x}{\log x}} > x^{4 / 5}</math>


Gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;prawdziwości dowodzonego twierdzenia dla <math>n = 2</math>.
Korzystając z&nbsp;twierdzenia [[#A10|A10]] możemy napisać ciąg nierówności


b) w&nbsp;przypadku gdy <math>n + 1 = 2 k - 1</math> jest liczbą nieparzystą, możemy skorzystać z&nbsp;udowodnionego wyżej punktu a) dla '''parzystej''' ilości liczb
::<math>4^n > P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} > \pi (n)^{\pi (n)} > (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5}</math>


::<math>a_1, a_2, \ldots, a_{2 k - 1}, S</math>
skąd otrzymujemy, że dla <math>n \geqslant 7572438</math> prawdziwe jest oszacowanie


gdzie przez <math>S</math> oznaczyliśmy średnią arytmetyczną liczb <math>a_1, a_2, \ldots, a_{2 k - 1}</math>
::<math>\pi (n) < 1.733 \cdot {\small\frac{n}{\log n}}</math>


::<math>S = {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1}}{2 k - 1}}</math>
W GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>n \geqslant 2</math>


Na mocy punktu a) prawdziwa jest nierówność
<span style="font-size: 90%; color:black;">'''for'''(n = 2, 8*10^6, '''if'''( '''primepi'''(n) >= 1.733 * n/'''log'''(n), '''print'''(n) ))</span>
&#9633;
{{\Spoiler}}


::<math>\left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1} + S}{2 k}} \right)^{2 k} = \left( {\small\frac{(2 k - 1) S + S}{2 k}} \right)^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>


Skąd otrzymujemy


::<math>S^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>
<span id="A36" style="font-size: 110%; font-weight: bold;">Uwaga A36</span><br/>
Dowód twierdzenia [[#A34|A34]] wymagał wykorzystania polecenia PARI/GP, w&nbsp;którym wielokrotnie była wywoływana funkcja <span style="font-size: 90%; color:black;"><code>prime(n)</code></span>. Analogiczna sytuacja miała miejsce w&nbsp;przypadku twierdzenia&nbsp;[[#A35|A35]] – tam musieliśmy wielokrotnie wywoływać funkcję <span style="font-size: 90%; color:black;"><code>primepi(n)</code></span>. Znacznie lepiej w&nbsp;takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w&nbsp;sposób ciągły w&nbsp;całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy <span style="font-size: 90%; color:black;"><code>Test1(n)</code></span> i <span style="font-size: 90%; color:black;"><code>Test2(n)</code></span> wywołane z&nbsp;parametrami <span style="font-size: 90%; color:black;"><code>n = 520000</code></span> i&nbsp;odpowiednio <span style="font-size: 90%; color:black;"><code>n = 8*10^6</code></span> odpowiadają poleceniom


::<math>S^{2 k - 1} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1}</math>
<span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span>


Co należało pokazać.<br/>
<span style="font-size: 90%; color:black;">'''for'''(n = 2, 8 * 10^6, '''if'''( '''primepi'''(n) >= 1.733 * n / '''log'''(n), '''print'''(n) ))</span>
&#9633;
{{\Spoiler}}


ale wykonywane są znacznie szybciej.


<span style="font-size: 90%; color:black;">Test1(n) =
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
{
'''local'''(p, k);
k = 1;
p = 2;
'''while'''( k <= n,
        '''if'''( p >= k^(5/4), '''print'''(k) );
        k = k + 1;
        p = '''nextprime'''(p + 1);  \\ liczba p ma wartość prime(k)
      );
}</span>


<span id="A36" style="font-size: 110%; font-weight: bold;">Twierdzenie A36</span><br/>
<span style="font-size: 90%; color:black;">Test2(n) =
Dla <math>n \geqslant 1</math> prawdziwa jest nierówność <math>p_1 + p_2 + \ldots + p_n > n^2</math>.
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n  
 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{
Korzystając z&nbsp;twierdzeń [[#A7|A7]] i [[#A35|A35]], możemy napisać następujący ciąg nierówności dla <math>n</math> kolejnych liczb pierwszych
'''local'''(s, k);
 
s = 1;
::<math>{\small\frac{p_1 + p_2 + \ldots + p_n}{n}} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} > \sqrt[n]{n^n} = n</math>
k = 2;
'''while'''( k <= n,
        '''if'''( s >= 1.733 * k / '''log'''(k), '''print'''(k) );
        k = k + 1;
        s = s + '''isprime'''(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
      );
}</span>


Stąd otrzymujemy natychmiast tezę twierdzenia, którą sprawdzamy dla <math>n < 13</math>. Do sprawdzenia można wykorzystać proste polecenie w&nbsp;PARI/GP


<span style="font-size: 90%; color:black;">'''for'''(n = 1, 20, s = 0; '''for'''(k = 1, n, s = s + '''prime'''(k)); '''if'''( s <= n^2, '''print'''(n) ))</span>
&#9633;
{{\Spoiler}}


<span id="A37" style="font-size: 110%; font-weight: bold;">Uwaga A37</span><br/>
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji <math>\pi (n)</math> lub <math>p_n</math>. Już osiągnięcie tą drogą oszacowania <math>p_n < 1.6 \cdot n \log n</math> przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność


::<math>\log x < {\small\frac{2}{3}} \cdot x^{1 / 16}</math>


Twierdzenie [[#A1|A1]] pozwala nam udowodnić różne oszacowania funkcji <math>\pi (n)</math> i <math>p_n</math>, które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego <math>\varepsilon > 0</math> istnieje takie <math>n_0</math>, że dla każdego <math>n > n_0</math> prawdziwa jest nierówność <math>\log x < x^{\varepsilon}</math>. Inaczej mówiąc, funkcja <math>\log x</math> rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.
jest prawdziwa dla <math>x > 7.671 \cdot 10^{32}</math>.




<span id="A37" style="font-size: 110%; font-weight: bold;">Twierdzenie A37</span><br/>
Prawdziwe są następujące nierówności:


::1.&nbsp;&nbsp;&nbsp; <math>e^x > x \qquad \qquad \qquad \quad \:\,</math> dla każdego <math>x \in \mathbb{R}</math>


::2.&nbsp;&nbsp;&nbsp; <math>e^x \geqslant x + 1 \qquad \qquad \quad \;\:\, </math> dla każdego <math>x \in \mathbb{R}</math> &nbsp; (równość zachodzi wtedy i&nbsp;tylko wtedy, gdy <math>x = 0</math>)


::3.&nbsp;&nbsp;&nbsp; <math>e^x > 2 x \qquad \qquad \qquad \;\;\,\, </math> dla każdego <math>x \in \mathbb{R}</math>
== Zastosowania ==


::4.&nbsp;&nbsp;&nbsp; <math>\log x < n \cdot x^{1 / n} \qquad \quad \;\;\:</math> dla każdego <math>x \in \mathbb{R}_+</math> i&nbsp;dowolnego <math>n \in \mathbb{Z}_+</math>
Ciekawy rezultat wynika z&nbsp;twierdzenia&nbsp;[[#A8|A8]], ale wcześniej musimy udowodnić twierdzenie o&nbsp;średniej arytmetycznej i&nbsp;geometrycznej.


::5.&nbsp;&nbsp;&nbsp; <math>\log x < \tfrac{1}{2} n \cdot x^{1 / n} \qquad \quad </math> dla każdego <math>x \in \mathbb{R}_+</math> i&nbsp;dowolnego <math>n \in \mathbb{Z}_+</math>
<span id="A38" style="font-size: 110%; font-weight: bold;">Twierdzenie A38</span><br/>
Dla dowolnych liczb dodatnich <math>a_1, a_2, \ldots, a_n</math> średnia arytmetyczna jest nie mniejsza od średniej geometrycznej


::6.&nbsp;&nbsp;&nbsp; <math>\log x \leqslant n (x^{1 / n} - 1) \qquad</math> dla każdego <math>x \in \mathbb{R}_+</math> i&nbsp;dowolnego <math>n \in \mathbb{Z}_+</math> &nbsp; (równość zachodzi wtedy i&nbsp;tylko wtedy, gdy <math>x = 1</math>)
::<math>{\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n}</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Nim przejdziemy do dowodu trzech pierwszych punktów, pokażemy, że funkcja <math>e^x</math> jest funkcją dodatnią. Ponieważ funkcję <math>e^x</math> możemy zdefiniować w&nbsp;sposób równoważny wzorem<ref name="exp1"/>
Twierdzenie jest w&nbsp;sposób oczywisty prawdziwe dla <math>n = 1</math>. Równie łatwo stwierdzamy prawdziwość nierówności dla <math>n = 2</math>


::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
::<math>(a_1 - a_2)^2 \geqslant 0</math>


to funkcja <math>e^x</math> jest funkcją dodatnią, bo dla <math>x > 0</math> sumujemy tylko wyrazy dodatnie, dla <math>x = 0</math> mamy <math>e^0 = 1</math>, a dla <math>x < 0</math> możemy napisać <math>e^x = {\small\frac{1}{e^{- x}}} > 0 \,</math><span style="color: Green"><sup>[a]</sup><sup>[b]</sup></span>.
::<math>a^2_1 - 2 a_1 a_2 + a^2_2 \geqslant 0</math>


'''Punkt 1. i&nbsp;punkt 3.'''
::<math>a^2_1 + 2 a_1 a_2 + a^2_2 \geqslant 4 a_1 a_2</math>


Pokazaliśmy, że funkcja <math>e^x</math> jest funkcją dodatnią. Ponieważ funkcje <math>x \,</math> i <math>\, 2 x</math> są ujemne lub równe zero dla <math>x \leqslant 0</math>, to pozostaje rozważyć jedynie przypadek, gdy <math>x > 0</math>. Łatwo zauważamy, że
::<math>(a_1 + a_2)^2 \geqslant 4 a_1 a_2</math>


::<math>e^x - x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - x = 1 + \sum^{\infty}_{k = 2} {\small\frac{x^k}{k!}} > 0</math>
::<math>{\small\frac{a_1 + a_2}{2}} \geqslant \sqrt{a_1 a_2}</math>


::<math>e^x - 2 x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - 2 x = 1 - x + {\small\frac{x^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} = {\small\frac{1}{2}} + {\small\frac{(x - 1)^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} > 0</math>
Dla potrzeb dowodu zapiszemy dowodzoną nierówność w&nbsp;postaci


'''Punkt 2.'''
::<math>\left( {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \right)^n \geqslant a_1 a_2 \cdot \ldots \cdot a_n</math>


Rozważymy kolejno przypadki
Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od <math>n</math> dla <math>n + 1</math> mamy


:*&nbsp;&nbsp;&nbsp; gdy <math>x > 0</math>, to <math>e^x - (x + 1) = {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots > 0</math>, bo sumujemy wyrazy dodatnie
a) w&nbsp;przypadku gdy <math>n + 1 = 2 k</math> jest liczbą parzystą


:*&nbsp;&nbsp;&nbsp; gdy <math>x = 0</math>, to <math>e^x - (x + 1) = 0</math>
::<math>\left( {\small\frac{a_1 + a_2 + \ldots + a_{n + 1}}{n + 1}} \right)^{n + 1} = \left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k}}{2 k}} \right)^{2 k} =</math>


:*&nbsp;&nbsp;&nbsp; gdy <math>- 1 < x < 0</math>, to <math>e^x - (x + 1) = \left( {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} \right) + \left( {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} \right) + \ldots > 0</math>, bo dla <math>k \geqslant 1</math> jest <math>{\small\frac{x^{2 k}}{(2 k) !}} + {\small\frac{x^{2 k + 1}}{(2 k + 1) !}} = {\small\frac{x^{2 k} (2 k + 1 + x)}{(2 k + 1) !}} > 0</math>
:::::::::<math>\;\;\, = \left[ \left( \frac{ \tfrac{a_{\large 1} + a_{\large 2}}{2} + \tfrac{a_{\large 3} + a_{\large 4}}{2} + \ldots + \tfrac{a_{\large 2 k - 1} + a_{\large 2 k}}{2}}{k} \right)^k \right]^2 \geqslant</math>


:*&nbsp;&nbsp;&nbsp; gdy <math>x \leqslant - 1</math>, to <math>e^x > x + 1</math>, bo <math>x + 1 \leqslant 0</math>, a <math>e^x</math> jest funkcją dodatnią
:::::::::<math>\;\;\, \geqslant \left( {\small\frac{a_1 + a_2}{2}} \cdot {\small\frac{a_3 + a_4}{2}} \cdot \ldots \cdot {\small\frac{a_{2 k - 1} + a_{2 k}}{2}} \right)^2 \geqslant</math>


'''Punkt 4.'''
:::::::::<math>\;\;\, \geqslant \left( \sqrt{a_1 a_2} \cdot \sqrt{a_3 a_4} \cdot \ldots \cdot \sqrt{a_{2 k - 1} a_{2 k}} \right)^2 =</math>


W rozpatrywanej nierówności połóżmy zmienną pomocniczą <math>x = e^t</math>. Dostajemy <math>t < n \cdot (e^t)^{1 / n}</math>, czyli <math>e^{t / n} > {\small\frac{t}{n}}</math>. Otrzymana nierówność jest prawdziwa dla dowolnego <math>{\small\frac{t}{n}} \in \mathbb{R}</math> na mocy punktu 1. tego twierdzenia.
:::::::::<math>\;\;\, = a_1 a_2 \cdot \ldots \cdot a_{2 k} =</math>
 
:::::::::<math>\;\;\, = a_1 a_2 \cdot \ldots \cdot a_{n + 1}</math>
 
Gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;prawdziwości dowodzonego twierdzenia dla <math>n = 2</math>.
 
b) w&nbsp;przypadku gdy <math>n + 1 = 2 k - 1</math> jest liczbą nieparzystą, możemy skorzystać z&nbsp;udowodnionego wyżej punktu a) dla '''parzystej''' ilości liczb


'''Punkt 5.'''
::<math>a_1, a_2, \ldots, a_{2 k - 1}, S</math>


W rozpatrywanej nierówności połóżmy zmienną pomocniczą <math>x = e^t</math>. Dostajemy <math>t < {\small\frac{1}{2}} n \cdot (e^t)^{1 / n}</math>, czyli <math>e^{t / n} > 2 \cdot {\small\frac{t}{n}}</math>. Otrzymana nierówność jest prawdziwa dla dowolnego <math>{\small\frac{t}{n}} \in \mathbb{R}</math> na mocy punktu 3. tego twierdzenia.
gdzie przez <math>S</math> oznaczyliśmy średnią arytmetyczną liczb <math>a_1, a_2, \ldots, a_{2 k - 1}</math>


'''Punkt 6.'''
::<math>S = {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1}}{2 k - 1}}</math>


W rozpatrywanej nierówności połóżmy zmienną pomocniczą <math>x = e^t</math>. Dostajemy <math>t \leqslant n (e^{t / n} - 1)</math>, czyli <math>e^{t / n} \geqslant {\small\frac{t}{n}} + 1</math>. Otrzymana nierówność jest prawdziwa dla dowolnego <math>{\small\frac{t}{n}} \in \mathbb{R}</math> na mocy punktu 2. tego twierdzenia.
Na mocy punktu a) prawdziwa jest nierówność


::<math>\left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1} + S}{2 k}} \right)^{2 k} = \left( {\small\frac{(2 k - 1) S + S}{2 k}} \right)^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>


<hr style="width: 25%; height: 2px; " />
Skąd otrzymujemy
<span style="color: Green">[a]</span> Czytelnik zapewne zauważył, że własność <math>e^x e^{- x} = 1</math> przyjęliśmy bez dowodu. Można pokazać, że z&nbsp;definicji


::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
::<math>S^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>


wynika podstawowa własność funkcji wykładniczej <math>e^x e^y = e^{x + y}</math>, ale dowód wymaga znajomości iloczynu Cauchy'ego szeregów<ref name="Cauchy1"/><ref name="Cauchy2"/> i&nbsp;twierdzenia Mertensa o&nbsp;zbieżności takiego iloczynu.
::<math>S^{2 k - 1} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1}</math>


<span style="color: Green">[b]</span> Zadanie: pokazać, że jeżeli funkcja <math>f(x)</math> spełnia warunek <math>f (x + y) = f (x) f (y)</math>, to albo <math>f(x)</math> jest tożsamościowo równa zero, albo jest funkcją dodatnią. Wskazówka: <math>f(x) = f \left( {\small\frac{x}{2}} + {\small\frac{x}{2}} \right)</math>, <math>f(x) = f (x_0 + (x - x_0))</math><br/>
Co należało pokazać.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 1067: Linia 1109:




<span id="A38" style="font-size: 110%; font-weight: bold;">Zadanie A38</span><br/>
<span id="A39" style="font-size: 110%; font-weight: bold;">Twierdzenie A39</span><br/>
Niech <math>x \in \mathbb{R}_+</math>. Pokazać, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla każdego <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>.
Dla <math>n \geqslant 1</math> prawdziwa jest nierówność <math>p_1 + p_2 + \ldots + p_n > n^2</math>.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
Korzystając z&nbsp;twierdzeń [[#A8|A8]] i [[#A38|A38]], możemy napisać następujący ciąg nierówności dla <math>n</math> kolejnych liczb pierwszych
Rozważmy ciąg nierówności


::<math>\log x < n \cdot x^{1 / 2 n} < x^{1 / n}</math>
::<math>{\small\frac{p_1 + p_2 + \ldots + p_n}{n}} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} > \sqrt[n]{n^n} = n</math>


Z twierdzenia [[#A37|A37]] p.5 wiemy, że pierwsza nierówność jest prawdziwa dla dowolnych <math>x \in \mathbb{R}_+</math> i <math>n \in \mathbb{Z}_+</math>. Podnosząc strony drugiej nierówności do potęgi <math>2 n</math>, otrzymujemy <math>n^{2 n} \cdot x < x^2</math>, czyli nierówność ta jest prawdziwa dla <math>x > n^{2 n}</math>. Wynika stąd, że wystarczy przyjąć <math>x_0 = n^{2 n}</math>.
Stąd otrzymujemy natychmiast tezę twierdzenia, którą sprawdzamy dla <math>n < 13</math>. Do sprawdzenia można wykorzystać proste polecenie w&nbsp;PARI/GP


<span style="border-bottom-style: double;">Drugi sposób</span><br/>
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 20, s = 0; '''for'''(k = 1, n, s = s + '''prime'''(k)); '''if'''( s <= n^2, '''print'''(n) ))</span>
Nierówność <math>\log x < x^{1 / n}</math> możemy równoważnie zapisać w&nbsp;postaci <math>x < \exp (x^{1 / n})</math>. Jeżeli położymy <math>x = t^n</math>, to otrzymamy nierówność <math>t^n {< e^t} </math>. Ponieważ<ref name="exp1"/>
&#9633;
{{\Spoiler}}


::<math>e^t = \sum_{k = 0}^{\infty} {\small\frac{t^k}{k!}} = 1 + t + {\small\frac{t^2}{2}} + {\small\frac{t^3}{6}} + {\small\frac{t^4}{24}} + {\small\frac{t^5}{120}} + \ldots</math>


to


::<math>e^t > {\small\frac{t^{n + 1}}{(n + 1) !}} > t^n</math>
Twierdzenie [[#A1|A1]] pozwala nam udowodnić różne oszacowania funkcji <math>\pi (n)</math> i <math>p_n</math>, które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego <math>\varepsilon > 0</math> istnieje takie <math>n_0</math>, że dla każdego <math>n > n_0</math> prawdziwa jest nierówność <math>\log x < x^{\varepsilon}</math>. Inaczej mówiąc, funkcja <math>\log x</math> rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.


Pierwsza nierówność jest prawdziwa dla <math>t > 0</math>, bo pomijamy wyrazy dodatnie, a&nbsp;druga jest prawdziwa dla <math>t > (n + 1) !</math> Wystarczy zatem przyjąć <math>x_0 = [(n + 1) !]^n</math>. Ponieważ <math>[(n + 1) !]^n > n^{2 n}</math> dla <math>n \geqslant 1</math>, to jest to gorsze oszacowanie wartości <math>x_0</math>.<br/>
&#9633;
{{\Spoiler}}


<span id="A40" style="font-size: 110%; font-weight: bold;">Twierdzenie A40</span><br/>
Prawdziwe są następujące nierówności:


::1.&nbsp;&nbsp;&nbsp; <math>e^x > x \qquad \qquad \qquad \quad \:\,</math> dla każdego <math>x \in \mathbb{R}</math>


<span id="A39" style="font-size: 110%; font-weight: bold;">Twierdzenie A39</span><br/>
::2.&nbsp;&nbsp;&nbsp; <math>e^x \geqslant x + 1 \qquad \qquad \quad \;\:\, </math> dla każdego <math>x \in \mathbb{R}</math> &nbsp; (równość zachodzi wtedy i&nbsp;tylko wtedy, gdy <math>x = 0</math>)
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:


::<math>10 n \underset{n \geqslant 6473}{<} p_n \underset{n \geqslant 2}{<} n^2</math>
::3.&nbsp;&nbsp;&nbsp; <math>e^x > 2 x \qquad \qquad \qquad \;\;\,\, </math> dla każdego <math>x \in \mathbb{R}</math>


::<math>\sqrt{n} \underset{n \geqslant 5}{<} \pi (n) \underset{n \geqslant 64721}{<} {\small\frac{n}{10}}</math>
::4.&nbsp;&nbsp;&nbsp; <math>\log x < n \cdot x^{1 / n} \qquad \quad \;\;\:</math> dla każdego <math>x \in \mathbb{R}_+</math> i&nbsp;dowolnego <math>n \in \mathbb{Z}_+</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
::5.&nbsp;&nbsp;&nbsp; <math>\log x < \tfrac{1}{2} n \cdot x^{1 / n} \qquad \quad </math> dla każdego <math>x \in \mathbb{R}_+</math> i&nbsp;dowolnego <math>n \in \mathbb{Z}_+</math>
<span style="border-bottom-style: double;">Lewa górna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 1</math> jest <math>p_n > 0.72 \cdot n \log n</math>. Wystarczy rozwiązać nierówność:


::<math>0.72 \cdot \log n > 10</math>
::6.&nbsp;&nbsp;&nbsp; <math>\log x \leqslant n (x^{1 / n} - 1) \qquad</math> dla każdego <math>x \in \mathbb{R}_+</math> i&nbsp;dowolnego <math>n \in \mathbb{Z}_+</math> &nbsp; (równość zachodzi wtedy i&nbsp;tylko wtedy, gdy <math>x = 1</math>)


czyli <math>n > \exp \left( {\small\frac{10}{0.72}} \right) = 1076137.5</math>
::7.&nbsp;&nbsp;&nbsp; <math>\log x < {\small\frac{1}{\varepsilon}} \cdot x^{\varepsilon} \qquad \qquad \:\,</math> dla każdego <math>x , \varepsilon \in \mathbb{R}_+</math>


W PARI/GP wpisujemy polecenie:
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Nim przejdziemy do dowodu trzech pierwszych punktów, pokażemy, że funkcja <math>e^x</math> jest funkcją dodatnią. Ponieważ funkcję <math>e^x</math> możemy zdefiniować w&nbsp;sposób równoważny wzorem<ref name="exp1"/>


<span style="font-size: 90%; color:black;">'''for'''(n = 1, 11 * 10^5, '''if'''( '''prime'''(n) <= 10 * n, '''print'''(n) ))</span>
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>


to funkcja <math>e^x</math> jest funkcją dodatnią, bo dla <math>x > 0</math> sumujemy tylko wyrazy dodatnie, dla <math>x = 0</math> mamy <math>e^0 = 1</math>, a dla <math>x < 0</math> możemy napisać <math>e^x = {\small\frac{1}{e^{- x}}} > 0 \,</math><span style="color: Green"><sup>[a]</sup><sup>[b]</sup></span>.


<span style="border-bottom-style: double;">Prawa górna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>p_n < 2 n \log n</math>. Zatem wystarczy pokazać, że <math>2 n \log n < n^2</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A37|A37]] p.5, łatwo zauważmy, że dla <math>n > 4</math> jest:
'''Punkt 1. i&nbsp;punkt 3.'''


::<math>n - 2 \log n > n - 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 2 \right) > 0</math>
Pokazaliśmy, że funkcja <math>e^x</math> jest funkcją dodatnią. Ponieważ funkcje <math>x \,</math> i <math>\, 2 x</math> są ujemne lub równe zero dla <math>x \leqslant 0</math>, to pozostaje rozważyć jedynie przypadek, gdy <math>x > 0</math>. Łatwo zauważamy, że


Przypadki <math>n \leqslant 4</math> sprawdzamy bezpośrednio.
::<math>e^x - x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - x = 1 + \sum^{\infty}_{k = 2} {\small\frac{x^k}{k!}} > 0</math>


::<math>e^x - 2 x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - 2 x = 1 - x + {\small\frac{x^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} = {\small\frac{1}{2}} + {\small\frac{(x - 1)^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} > 0</math>


<span style="border-bottom-style: double;">Lewa dolna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Zatem wystarczy pokazać, że <math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > \sqrt{n}</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A37|A37]] p.5, łatwo zauważmy, że dla <math>n > 3^4 = 81</math> jest:
'''Punkt 2.'''


::<math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} - \sqrt{n} > {\small\frac{2}{3}} \cdot {\small\frac{n}{2 \cdot n^{1 / 4}}} - \sqrt{n} = {\small\frac{1}{3}} \cdot n^{3 / 4} - \sqrt{n} = {\small\frac{1}{3}} \sqrt{n} (n^{1 / 4} - 3) > 0</math>
Rozważymy kolejno przypadki


Sprawdzenie przypadków <math>n \leqslant 81</math> sprowadza się do wpisania w&nbsp;PARI/GP polecenia:
:*&nbsp;&nbsp;&nbsp; gdy <math>x > 0</math>, to <math>e^x - (x + 1) = {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots > 0</math>, bo sumujemy wyrazy dodatnie


<span style="font-size: 90%; color:black;">'''for'''(n = 1, 100, '''if'''( '''primepi'''(n) <= '''sqrt'''(n), '''print'''(n) ))</span>
:*&nbsp;&nbsp;&nbsp; gdy <math>x = 0</math>, to <math>e^x - (x + 1) = 0</math>


:*&nbsp;&nbsp;&nbsp; gdy <math>- 1 < x < 0</math>, to <math>e^x - (x + 1) = \left( {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} \right) + \left( {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} \right) + \ldots > 0</math>, bo dla <math>k \geqslant 1</math> jest <math>{\small\frac{x^{2 k}}{(2 k) !}} + {\small\frac{x^{2 k + 1}}{(2 k + 1) !}} = {\small\frac{x^{2 k} (2 k + 1 + x)}{(2 k + 1) !}} > 0</math>


<span style="border-bottom-style: double;">Prawa dolna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 2</math> jest <math>\pi (n) < {\small\frac{2 n}{\log n}}</math>. Zatem wystarczy pokazać, że <math>{\small\frac{2 n}{\log n}} < {\small\frac{n}{10}}</math>. Nierówność ta jest prawdziwa dla <math>\log n > 20</math>, czyli dla
:*&nbsp;&nbsp;&nbsp; gdy <math>x \leqslant - 1</math>, to <math>e^x > x + 1</math>, bo <math>x + 1 \leqslant 0</math>, a <math>e^x</math> jest funkcją dodatnią


::<math>n > e^{20} > 485165195.4</math>
'''Punkt 4.'''


Sprawdzenie przypadków dla <math>n \leqslant 490 \cdot 10^6</math> będzie wymagało napisania w&nbsp;PARI/GP krótkiego programu i&nbsp;wywołania go z&nbsp;parametrem n&nbsp;=&nbsp;490 * 10^6
W rozpatrywanej nierówności połóżmy zmienną pomocniczą <math>x = e^t</math>. Dostajemy <math>t < n \cdot (e^t)^{1 / n}</math>, czyli <math>e^{t / n} > {\small\frac{t}{n}}</math>. Otrzymana nierówność jest prawdziwa dla dowolnego <math>{\small\frac{t}{n}} \in \mathbb{R}</math> na mocy punktu 1. tego twierdzenia.


<span style="font-size: 90%; color:black;">Test3(n) =
'''Punkt 5.'''
\\ test oszacowania: primepi(k) < k/10 dla 2 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
'''local'''(s, k);
s = 1;
k = 2;
'''while'''( k <= n,
        '''if'''( s >= k/10, '''print'''(k) );
        k = k + 1;
        s = s + '''isprime'''(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
      );
}</span>
&#9633;
{{\Spoiler}}


W rozpatrywanej nierówności połóżmy zmienną pomocniczą <math>x = e^t</math>. Dostajemy <math>t < {\small\frac{1}{2}} n \cdot (e^t)^{1 / n}</math>, czyli <math>e^{t / n} > 2 \cdot {\small\frac{t}{n}}</math>. Otrzymana nierówność jest prawdziwa dla dowolnego <math>{\small\frac{t}{n}} \in \mathbb{R}</math> na mocy punktu 3. tego twierdzenia.


'''Punkt 6.'''


<span id="A40" style="font-size: 110%; font-weight: bold;">Twierdzenie A40</span><br/>
W rozpatrywanej nierówności połóżmy zmienną pomocniczą <math>x = e^t</math>. Dostajemy <math>t \leqslant n (e^{t / n} - 1)</math>, czyli <math>e^{t / n} \geqslant {\small\frac{t}{n}} + 1</math>. Otrzymana nierówność jest prawdziwa dla dowolnego <math>{\small\frac{t}{n}} \in \mathbb{R}</math> na mocy punktu 2. tego twierdzenia.
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie


::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3}</math>
'''Punkt 7.'''


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W rozpatrywanej nierówności połóżmy zmienną pomocniczą <math>x = e^t</math>. Dostajemy <math>t < {\small\frac{1}{\varepsilon}} \cdot (e^t)^{\varepsilon}</math>, czyli <math>e^{\varepsilon t} > \varepsilon t</math>. Otrzymana nierówność jest prawdziwa dla dowolnego <math>\varepsilon t \in \mathbb{R}</math> na mocy punktu 1. tego twierdzenia.
Korzystając kolejno z&nbsp;twierdzeń [[#A30|A30]], [[#A37|A37]] p.5 i [[#A7|A7]], łatwo otrzymujemy


::<math>(p_{n^{\large 2}})^{n / 3} < (2 n^2 \log n^2)^{n / 3}</math>


::::<math>\;\;\: = (4 n^2 \log n)^{n / 3}</math>
<hr style="width: 25%; height: 2px; " />
<span style="color: Green">[a]</span> Czytelnik zapewne zauważył, że własność <math>e^x e^{- x} = 1</math> przyjęliśmy bez dowodu. Można pokazać, że z&nbsp;definicji


::::<math>\;\;\: < (4 n^2 \cdot 2 n^{1 / 4})^{n / 3}</math>
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>


::::<math>\;\;\: = (8 n^{9 / 4})^{n / 3}</math>
wynika podstawowa własność funkcji wykładniczej <math>e^x e^y = e^{x + y}</math>, ale dowód wymaga znajomości iloczynu Cauchy'ego szeregów<ref name="Cauchy1"/><ref name="Cauchy2"/> i&nbsp;twierdzenia Mertensa o&nbsp;zbieżności takiego iloczynu.


::::<math>\;\;\: = (2 n^{3 / 4})^n</math>
<span style="color: Green">[b]</span> Zadanie: pokazać, że jeżeli funkcja <math>f(x)</math> spełnia warunek <math>f (x + y) = f (x) f (y)</math>, to albo <math>f(x)</math> jest tożsamościowo równa zero, albo jest funkcją dodatnią. Wskazówka: <math>f(x) = f \left( {\small\frac{x}{2}} + {\small\frac{x}{2}} \right)</math>, <math>f(x) = f (x_0 + (x - x_0))</math><br/>
 
::::<math>\;\;\: \leqslant n^n</math>
 
::::<math>\;\;\: < p_1 p_2 \cdot \ldots \cdot p_n</math>
 
Zauważmy, że nierówność <math>2 n^{3 / 4} \leqslant n</math> jest prawdziwa dla <math>n \geqslant 2^4</math>. Sprawdzając bezpośrednio dla <math>n < 16</math>, stwierdzamy, że dowodzona nierówność jest prawdziwa dla <math>n \geqslant 1</math>.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 1181: Linia 1203:


<span id="A41" style="font-size: 110%; font-weight: bold;">Zadanie A41</span><br/>
<span id="A41" style="font-size: 110%; font-weight: bold;">Zadanie A41</span><br/>
Korzystając z&nbsp;twierdzenia [[#A40|A40]] pokazać, że
Niech <math>x \in \mathbb{R}_+</math>. Pokazać, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla każdego <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>.
 
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4</math>
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{2 n})^3  \qquad \qquad \;\; \text{dla } \; n \geqslant 7</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
Rozważmy ciąg nierówności


'''Punkt 1.'''
::<math>\log x < n \cdot x^{1 / 2 n} < x^{1 / n}</math>


Ponieważ <math>n^2 > n + 1</math> dla <math>n \geqslant 2</math> oraz <math>{\small\frac{n}{3}} > 2</math> dla <math>n > 6</math>, to dla <math>n > 6</math> jest
Z twierdzenia [[#A40|A40]] p.5 wiemy, że pierwsza nierówność jest prawdziwa dla dowolnych <math>x \in \mathbb{R}_+</math> i <math>n \in \mathbb{Z}_+</math>. Podnosząc strony drugiej nierówności do potęgi <math>2 n</math>, otrzymujemy <math>n^{2 n} \cdot x < x^2</math>, czyli nierówność ta jest prawdziwa dla <math>x > n^{2 n}</math>. Wynika stąd, że wystarczy przyjąć <math>x_0 = n^{2 n}</math>.


::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{n + 1})^2</math>
<span style="border-bottom-style: double;">Drugi sposób</span><br/>
Nierówność <math>\log x < x^{1 / n}</math> możemy równoważnie zapisać w&nbsp;postaci <math>x < \exp (x^{1 / n})</math>. Jeżeli położymy <math>x = t^n</math>, to otrzymamy nierówność <math>t^n {< e^t} </math>. Ponieważ<ref name="exp1"/>


Sprawdzając bezpośrednio dla <math>n \leqslant 6</math>, łatwo stwierdzamy prawdziwość oszacowania dla <math>n \geqslant 4</math>.
::<math>e^t = \sum_{k = 0}^{\infty} {\small\frac{t^k}{k!}} = 1 + t + {\small\frac{t^2}{2}} + {\small\frac{t^3}{6}} + {\small\frac{t^4}{24}} + {\small\frac{t^5}{120}} + \ldots</math>


'''Punkt 2.'''
to


Ponieważ <math>n^2 > 2 n</math> dla <math>n > 2</math> oraz <math>{\small\frac{n}{3}} > 3</math> dla <math>n > 9</math>, to dla <math>n > 9</math> jest
::<math>e^t > {\small\frac{t^{n + 1}}{(n + 1) !}} > t^n</math>


::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{2 n})^3</math>
Pierwsza nierówność jest prawdziwa dla <math>t > 0</math>, bo pomijamy wyrazy dodatnie, a&nbsp;druga jest prawdziwa dla <math>t > (n + 1) !</math> Wystarczy zatem przyjąć <math>x_0 = [(n + 1) !]^n</math>. Ponieważ <math>[(n + 1) !]^n > n^{2 n}</math> dla <math>n \geqslant 1</math>, to jest to gorsze oszacowanie wartości <math>x_0</math>.<br/>
 
Sprawdzając bezpośrednio dla <math>n \leqslant 9</math>, łatwo stwierdzamy prawdziwość oszacowania dla <math>n \geqslant 7</math>.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 1209: Linia 1229:


<span id="A42" style="font-size: 110%; font-weight: bold;">Twierdzenie A42</span><br/>
<span id="A42" style="font-size: 110%; font-weight: bold;">Twierdzenie A42</span><br/>
Każda liczba pierwsza <math>p</math> taka, że <math>p \in \left( {\small\frac{n}{2}}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:
 
::<math>10 n \underset{n \geqslant 6473}{<} p_n \underset{n \geqslant 2}{<} n^2</math>
 
::<math>\sqrt{n} \underset{n \geqslant 5}{<} \pi (n) \underset{n \geqslant 64721}{<} {\small\frac{n}{10}}</math>


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#A21|A21]] wiemy, że każda liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>
<span style="border-bottom-style: double;">Lewa górna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 1</math> jest <math>p_n > 0.72 \cdot n \log n</math>. Wystarczy rozwiązać nierówność:


Z założenia <math>p \leqslant n</math> i <math>2 p > n</math>, zatem:
::<math>0.72 \cdot \log n > 10</math>


::1.&nbsp;&nbsp;&nbsp; <math>{\small\frac{n}{p}} \geqslant 1</math> &nbsp;&nbsp;oraz&nbsp;&nbsp; <math>{\small\frac{n}{p}} < 2</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor {\small\frac{n}{p}} \right\rfloor = 1</math>
czyli <math>n > \exp \left( {\small\frac{10}{0.72}} \right) = 1076137.5</math>


::2.&nbsp;&nbsp;&nbsp; <math>{\small\frac{n}{p^2}} < {\small\frac{2}{p}} \leqslant 1</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor {\small\frac{n}{p^2}} \right\rfloor = 0</math> &nbsp;&nbsp;i tym bardziej&nbsp;&nbsp; <math>\left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0</math> &nbsp;&nbsp;dla&nbsp;&nbsp; <math>k \geqslant 3</math><br/>
W PARI/GP wpisujemy polecenie:
&#9633;
{{\Spoiler}}


<span style="font-size: 90%; color:black;">'''for'''(n = 1, 11 * 10^5, '''if'''( '''prime'''(n) <= 10 * n, '''print'''(n) ))</span>




Rezultat uzyskany w&nbsp;twierdzeniu [[#A25|A25]] zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia [[#A43|A43]] i [[#A45|A45]] udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady [[#A44|A44]] i [[#A46|A46]] to tylko twierdzenia [[#A43|A43]] i [[#A45|A45]] dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń [[#A43|A43]] i [[#A45|A45]], to może je pominąć.
<span style="border-bottom-style: double;">Prawa górna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>p_n < 2 n \log n</math>. Zatem wystarczy pokazać, że <math>2 n \log n < n^2</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A40|A40]] p.5, łatwo zauważmy, że dla <math>n > 4</math> jest:


::<math>n - 2 \log n > n - 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 2 \right) > 0</math>


<span id="A43" style="font-size: 110%; font-weight: bold;">Twierdzenie A43</span><br/>
Przypadki <math>n \leqslant 4</math> sprawdzamy bezpośrednio.
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Najpierw udowodnimy przypadek <math>k = 0</math>.'''


Zauważmy, że każda liczba pierwsza <math>p \in (n, 2 n]</math> występuje dokładnie jeden raz w&nbsp;liczniku ułamka
<span style="border-bottom-style: double;">Lewa dolna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Zatem wystarczy pokazać, że <math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > \sqrt{n}</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A40|A40]] p.5, łatwo zauważmy, że dla <math>n > 3^4 = 81</math> jest:


::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>
::<math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} - \sqrt{n} > {\small\frac{2}{3}} \cdot {\small\frac{n}{2 \cdot n^{1 / 4}}} - \sqrt{n} = {\small\frac{1}{3}} \cdot n^{3 / 4} - \sqrt{n} = {\small\frac{1}{3}} \sqrt{n} (n^{1 / 4} - 3) > 0</math>


i nie występuje w&nbsp;mianowniku. Zatem w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze wystąpi z&nbsp;wykładnikiem równym <math>1</math>.
Sprawdzenie przypadków <math>n \leqslant 81</math> sprowadza się do wpisania w&nbsp;PARI/GP polecenia:


Co kończy dowód twierdzenia w&nbsp;przypadku, gdy <math>k = 0</math>.
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 100, '''if'''( '''primepi'''(n) <= '''sqrt'''(n), '''print'''(n) ))</span>


'''Możemy teraz przejść do dowodu dla wszystkich <math>k \geqslant 1</math>.'''


<span style="border-bottom-style: double;">Prawa dolna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 2</math> jest <math>\pi (n) < {\small\frac{2 n}{\log n}}</math>. Zatem wystarczy pokazać, że <math>{\small\frac{2 n}{\log n}} < {\small\frac{n}{10}}</math>. Nierówność ta jest prawdziwa dla <math>\log n > 20</math>, czyli dla


<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
::<math>n > e^{20} > 485165195.4</math>
Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w&nbsp;postaci ułamka


::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>
Sprawdzenie przypadków dla <math>n \leqslant 490 \cdot 10^6</math> będzie wymagało napisania w&nbsp;PARI/GP krótkiego programu i&nbsp;wywołania go z&nbsp;parametrem n&nbsp;=&nbsp;490 * 10^6


Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
<span style="font-size: 90%; color:black;">Test3(n) =
\\ test oszacowania: primepi(k) < k/10 dla 2 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
'''local'''(s, k);
s = 1;
k = 2;
'''while'''( k <= n,
        '''if'''( s >= k/10, '''print'''(k) );
        k = k + 1;
        s = s + '''isprime'''(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
      );
}</span>
&#9633;
{{\Spoiler}}


* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
* <math>(2 k + 1) p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k + 1</math> razy w&nbsp;liczniku
* <math>(2 k + 2) p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>(2 k + 1) p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k + 1</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, (2 k + 1) p</math>)


Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k + 1</math> razy w&nbsp;liczniku ułamka


::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>
<span id="A43" style="font-size: 110%; font-weight: bold;">Twierdzenie A43</span><br/>
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie


Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.
::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3}</math>


Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k + 1</math>. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając kolejno z&nbsp;twierdzeń [[#A33|A33]], [[#A40|A40]] p.5 i [[#A8|A8]], łatwo otrzymujemy


::<math>r_i \notin \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>
::<math>(p_{n^{\large 2}})^{n / 3} < (2 n^2 \log n^2)^{n / 3}</math>


Warunek ten będzie z&nbsp;pewnością spełniony, gdy
::::<math>\;\;\: = (4 n^2 \log n)^{n / 3}</math>


::<math>q \leqslant 2 k + 1 \leqslant {\small\frac{n}{k + 1}}</math>
::::<math>\;\;\: < (4 n^2 \cdot 2 n^{1 / 4})^{n / 3}</math>


czyli dla <math>n</math> spełniających nierówność <math>n \geqslant (k + 1) (2 k + 1)</math>.
::::<math>\;\;\: = (8 n^{9 / 4})^{n / 3}</math>


Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>.
::::<math>\;\;\: = (2 n^{3 / 4})^n</math>


::::<math>\;\;\: \leqslant n^n</math>


<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
::::<math>\;\;\: < p_1 p_2 \cdot \ldots \cdot p_n</math>
Rozważmy najpierw pierwszy składnik sumy


::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right )</math>
Zauważmy, że nierówność <math>2 n^{3 / 4} \leqslant n</math> jest prawdziwa dla <math>n \geqslant 2^4</math>. Sprawdzając bezpośrednio dla <math>n < 16</math>, stwierdzamy, że dowodzona nierówność jest prawdziwa dla <math>n \geqslant 1</math>.<br/>
&#9633;
{{\Spoiler}}


Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy


::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{n}{k + 1}} \qquad \; \Longrightarrow \qquad {\small\frac{n}{p}} < k + 1 \qquad \;\;\; \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant k</math>


::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 2 k + 1</math>
<span id="A44" style="font-size: 110%; font-weight: bold;">Zadanie A44</span><br/>
Korzystając z&nbsp;twierdzenia [[#A43|A43]] pokazać, że


Zatem
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4</math>
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{2 n})^3  \qquad \qquad \;\; \text{dla } \; n \geqslant 7</math>


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2 k + 1 - 2 k = 1</math>
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}


Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
'''Punkt 1.'''


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1</math>
Ponieważ <math>n^2 > n + 1</math> dla <math>n \geqslant 2</math> oraz <math>{\small\frac{n}{3}} > 2</math> dla <math>n > 6</math>, to dla <math>n > 6</math> jest
 
::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{n + 1})^2</math>


Sprawdzając bezpośrednio dla <math>n \leqslant 6</math>, łatwo stwierdzamy prawdziwość oszacowania dla <math>n \geqslant 4</math>.


Założenie, że <math>n \geqslant 2 (k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
'''Punkt 2.'''


::<math>p > {\small\frac{n}{k + 1}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 2 k + 2</math>
Ponieważ <math>n^2 > 2 n</math> dla <math>n > 2</math> oraz <math>{\small\frac{n}{3}} > 3</math> dla <math>n > 9</math>, to dla <math>n > 9</math> jest


::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} < (2 k + 2)^s</math>
::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{2 n})^3</math>


::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 2)^2}{2 n}} \cdot \left( {\small\frac{2 k + 2}{2 n}} \right)^{s - 2}</math>
Sprawdzając bezpośrednio dla <math>n \leqslant 9</math>, łatwo stwierdzamy prawdziwość oszacowania dla <math>n \geqslant 7</math>.<br/>
&#9633;
{{\Spoiler}}


::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 2)^2}{2 n}}</math>


::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < 1</math>


::::::<math>\;\;\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>
<span id="A45" style="font-size: 110%; font-weight: bold;">Twierdzenie A45</span><br/>
Każda liczba pierwsza <math>p</math> taka, że <math>p \in \left( {\small\frac{n}{2}}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.


Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 2 (k + 1)^2</math> jest
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#A22|A22]] wiemy, że każda liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>


::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 1</math>
Z założenia <math>p \leqslant n</math> i <math>2 p > n</math>, zatem:


Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < 2 (k + 1)^2</math> twierdzenie pozostaje prawdziwe.
::1.&nbsp;&nbsp;&nbsp; <math>{\small\frac{n}{p}} \geqslant 1</math> &nbsp;&nbsp;oraz&nbsp;&nbsp; <math>{\small\frac{n}{p}} < 2</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor {\small\frac{n}{p}} \right\rfloor = 1</math>


Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 (k + 1) (k + \tfrac{1}{2})</math>
::2.&nbsp;&nbsp;&nbsp; <math>{\small\frac{n}{p^2}} < {\small\frac{2}{p}} \leqslant 1</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor {\small\frac{n}{p^2}} \right\rfloor = 0</math> &nbsp;&nbsp;i tym bardziej&nbsp;&nbsp; <math>\left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0</math> &nbsp;&nbsp;dla&nbsp;&nbsp; <math>k \geqslant 3</math><br/>
<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 1322: Linia 1359:




<span id="A44" style="font-size: 110%; font-weight: bold;">Przykład A44</span><br/>
Rezultat uzyskany w&nbsp;twierdzeniu [[#A26|A26]] zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia [[#A46|A46]] i [[#A48|A48]] udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady [[#A47|A47]] i [[#A49|A49]] to tylko twierdzenia [[#A46|A46]] i [[#A48|A48]] dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń [[#A46|A46]] i [[#A48|A48]], to może je pominąć.
Jeżeli <math>n \geqslant 6</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
 
<span id="A46" style="font-size: 110%; font-weight: bold;">Twierdzenie A46</span><br/>
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
'''Najpierw udowodnimy przypadek <math>k = 0</math>.'''
Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w&nbsp;postaci ułamka
 
Zauważmy, że każda liczba pierwsza <math>p \in (n, 2 n]</math> występuje dokładnie jeden raz w&nbsp;liczniku ułamka


::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>
::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
i nie występuje w&nbsp;mianowniku. Zatem w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze wystąpi z&nbsp;wykładnikiem równym <math>1</math>.


* <math>p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej jeden raz w&nbsp;mianowniku
Co kończy dowód twierdzenia w&nbsp;przypadku, gdy <math>k = 0</math>.
* <math>2 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie jeden raz w&nbsp;mianowniku (jako <math>p</math>)
* <math>3 p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>2 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku
* <math>4 p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>3 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>2 p</math> i <math>3 p</math>)


Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> pojawia się dokładnie jeden raz w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka
'''Możemy teraz przejść do dowodu dla wszystkich <math>k \geqslant 1</math>.'''


::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w&nbsp;postaci ułamka


Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>p = 2, 3</math>. Dlatego zakładamy, że <math>n \geqslant 6</math>, bo dla <math>n \geqslant 6</math> liczby pierwsze <math>p = 2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>.
::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 5</math> i&nbsp;liczba <math>3^2</math> dzieli liczbę <math>{\small\binom{10}{5}} = 252 = 9 \cdot 28</math>
Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:


* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
* <math>(2 k + 1) p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k + 1</math> razy w&nbsp;liczniku
* <math>(2 k + 2) p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>(2 k + 1) p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k + 1</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, (2 k + 1) p</math>)


<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k + 1</math> razy w&nbsp;liczniku ułamka
Rozważmy najpierw pierwszy składnik sumy


::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right )</math>
::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy
Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.


::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} < 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 1</math>
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k + 1</math>. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek


::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{2 n}{3}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 3 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 3</math>
::<math>r_i \notin \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>


Zatem
Warunek ten będzie z&nbsp;pewnością spełniony, gdy


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 3 - 2 = 1</math>
::<math>q \leqslant 2 k + 1 \leqslant {\small\frac{n}{k + 1}}</math>


Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
czyli dla <math>n</math> spełniających nierówność <math>n \geqslant (k + 1) (2 k + 1)</math>.


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1</math>
Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>.




Założenie, że <math>n \geqslant 9</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
Rozważmy najpierw pierwszy składnik sumy


::<math>p > {\small\frac{n}{2}} \quad \implies \quad {\small\frac{(2 n)^k}{p^k}} < 4^k \quad \implies \quad {\small\frac{2 n}{p^k}} < {\small\frac{16}{2 n}} \cdot \left( {\small\frac{4}{2 n}} \right)^{k - 2} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{2 n}} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{18}} \quad \implies \quad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right )</math>


Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 9</math> jest
Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy


::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 1</math>
::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{n}{k + 1}} \qquad \; \Longrightarrow \qquad {\small\frac{n}{p}} < k + 1 \qquad \;\;\; \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant k</math>


Dla <math>n = 6, 7</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>. Dla <math>n = 8</math> łatwo sprawdzamy, że liczba <math>5</math> wchodzi do rozkładu liczby <math>{\small\binom{16}{8}} = 12870</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 2 k + 1</math>


Zatem dla <math>n \geqslant 6</math> liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> wchodzi do rozkładu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.<br/>
Zatem
&#9633;
{{\Spoiler}}


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2 k + 1 - 2 k = 1</math>


Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy


<span id="A45" style="font-size: 110%; font-weight: bold;">Twierdzenie A45</span><br/>
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1</math>
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w&nbsp;postaci ułamka


::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>
Założenie, że <math>n \geqslant 2 (k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy


Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
::<math>p > {\small\frac{n}{k + 1}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 2 k + 2</math>


* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku
::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} < (2 k + 2)^s</math>
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
* <math>2 k p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;liczniku
* <math>(2 k + 1) p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>2 k p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, 2 k p</math>)


::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 2)^2}{2 n}} \cdot \left( {\small\frac{2 k + 2}{2 n}} \right)^{s - 2}</math>


Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k</math> razy w&nbsp;liczniku ułamka
::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 2)^2}{2 n}}</math>


::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>
::::::<math>\;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < 1</math>


Co oznacza, że <math>p</math> nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
::::::<math>\;\;\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>


Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k</math>. Rozpatrywane przez nas wielokrotności liczby <math>p</math> zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek
Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 2 (k + 1)^2</math> jest


::<math>r_i \notin \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 1</math>


Warunek ten będzie z&nbsp;pewnością spełniony, gdy
Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < 2 (k + 1)^2</math> twierdzenie pozostaje prawdziwe.


::<math>q \leqslant 2 k \leqslant {\small\frac{n}{k + \tfrac{1}{2}}}</math>
Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 (k + 1) (k + \tfrac{1}{2})</math>
<br/>
&#9633;
{{\Spoiler}}


czyli dla <math>n</math> spełniających nierówność <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>. Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 k (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 k (k + \tfrac{1}{2})</math>.




<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
<span id="A47" style="font-size: 110%; font-weight: bold;">Przykład A47</span><br/>
Rozważmy najpierw pierwszy składnik sumy
Jeżeli <math>n \geqslant 6</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.


::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right )</math>
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w&nbsp;postaci ułamka


Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy
::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 2 k</math>
Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:


::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{n}{k}} \qquad \quad \;\,\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant k \qquad \qquad \;\:\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant k</math>
* <math>p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej jeden raz w&nbsp;mianowniku
* <math>2 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie jeden raz w&nbsp;mianowniku (jako <math>p</math>)
* <math>3 p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>2 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku
* <math>4 p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>3 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>2 p</math> i <math>3 p</math>)


Zatem
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> pojawia się dokładnie jeden raz w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 2 k - 2 k = 0</math>


Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0</math>
Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.


Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>p = 2, 3</math>. Dlatego zakładamy, że <math>n \geqslant 6</math>, bo dla <math>n \geqslant 6</math> liczby pierwsze <math>p = 2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>.


Założenie, że <math>2 n \geqslant (2 k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 5</math> i&nbsp;liczba <math>3^2</math> dzieli liczbę <math>{\small\binom{10}{5}} = 252 = 9 \cdot 28</math>


::<math>p > {\small\frac{2 n}{2 k + 1}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} < (2 k + 1)^s</math>


::::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 1)^2}{2 n}} \cdot \left( {\small\frac{2 k + 1}{2 n}} \right)^{s - 2}</math>
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
Rozważmy najpierw pierwszy składnik sumy


::::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 1)^2}{2 n}}</math>
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right )</math>


::::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < 1</math>
Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy


::::::<math>\;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>
::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} < 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 1</math>


Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>2 n \geqslant (2 k + 1)^2</math> jest
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{2 n}{3}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 3 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 3</math>


::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 0</math>
Zatem
 
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 3 - 2 = 1</math>
 
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1</math>
 
 
Założenie, że <math>n \geqslant 9</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
 
::<math>p > {\small\frac{n}{2}} \quad \implies \quad {\small\frac{(2 n)^k}{p^k}} < 4^k \quad \implies \quad {\small\frac{2 n}{p^k}} < {\small\frac{16}{2 n}} \cdot \left( {\small\frac{4}{2 n}} \right)^{k - 2} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{2 n}} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{18}} \quad \implies \quad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>
 
Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 9</math> jest
 
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 1</math>


Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < {\small\frac{1}{2}} (2 k + 1)^2</math> twierdzenie pozostaje prawdziwe.
Dla <math>n = 6, 7</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>. Dla <math>n = 8</math> łatwo sprawdzamy, że liczba <math>5</math> wchodzi do rozkładu liczby <math>{\small\binom{16}{8}} = 12870</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.


Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>.<br/>
Zatem dla <math>n \geqslant 6</math> liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> wchodzi do rozkładu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 1462: Linia 1520:




<span id="A46" style="font-size: 110%; font-weight: bold;">Przykład A46</span><br/>
<span id="A48" style="font-size: 110%; font-weight: bold;">Twierdzenie A48</span><br/>
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Linia 1473: Linia 1531:
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:


* <math>2 p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;mianowniku  
* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku  
* <math>3 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;mianowniku (jako <math>p</math> i <math>2 p</math>)
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
* <math>4 p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>3 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku  
* <math>2 k p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;liczniku  
* <math>5 p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>4 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>3 p</math> i <math>4 p</math>)
* <math>(2 k + 1) p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>2 k p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, 2 k p</math>)
 


Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math> pojawia się dokładnie dwa razy w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k</math> razy w&nbsp;liczniku ułamka


::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>
::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


Zatem nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
Co oznacza, że <math>p</math> nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
 
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k</math>. Rozpatrywane przez nas wielokrotności liczby <math>p</math> zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek
 
::<math>r_i \notin \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>
 
Warunek ten będzie z&nbsp;pewnością spełniony, gdy


Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>2</math> i <math>3</math>. Dlatego zakładamy, że <math>n \geqslant 8</math>, bo dla <math>n \geqslant 8</math> liczby pierwsze <math>2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>.
::<math>q \leqslant 2 k \leqslant {\small\frac{n}{k + \tfrac{1}{2}}}</math>


Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 7</math> i&nbsp;liczba <math>3</math> dzieli liczbę <math>{\small\binom{14}{7}} = 3432</math>
czyli dla <math>n</math> spełniających nierówność <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>. Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 k (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 k (k + \tfrac{1}{2})</math>.




<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
Rozważmy najpierw pierwszy składnik sumy
Rozważmy najpierw pierwszy składnik sumy


::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right )</math>
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right )</math>


Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy
Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy


::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 5 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 4</math>
::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 2 k</math>


::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2</math>
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{n}{k}} \qquad \quad \;\,\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant k \qquad \qquad \;\:\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant k</math>


Zatem
Zatem  
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 2 k - 2 k = 0</math>


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 4 - 4 = 0</math>
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 
Ponieważ każdy ze składników szukanej sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy


::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0</math>
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0</math>




Założenie, że <math>n \geqslant 13</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
Założenie, że <math>2 n \geqslant (2 k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy


::<math>p > {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^k}{p^k}} < 5^k</math>
::<math>p > {\small\frac{2 n}{2 k + 1}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} < (2 k + 1)^s</math>


:::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{2 n}} \cdot \left( {\small\frac{5}{2 n}} \right)^{k - 2}</math>
::::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 1)^2}{2 n}} \cdot \left( {\small\frac{2 k + 1}{2 n}} \right)^{s - 2}</math>


:::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{2 n}}</math>
::::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 1)^2}{2 n}}</math>


:::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{26}}</math>
::::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < 1</math>


:::::<math>\;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>
::::::<math>\;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>


Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 13</math> jest
Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>2 n \geqslant (2 k + 1)^2</math> jest


::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 0</math>
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 0</math>


Dla <math>n = 8, 9</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>.
Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < {\small\frac{1}{2}} (2 k + 1)^2</math> twierdzenie pozostaje prawdziwe.


Dla <math>n = 10, 11, 12</math> łatwo sprawdzamy, że liczba <math>5</math> nie dzieli liczb <math>{\small\binom{20}{10}} = 184756</math>, <math>{\small\binom{22}{11}} = 705432</math> oraz <math>{\small\binom{24}{12}} = 2704156</math>.
Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>.<br/>
 
Zatem dla <math>n \geqslant 8</math> liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math> nie dzieli liczby <math>{\small\binom{2 n}{n}}</math>.<br/>
&#9633;
&#9633;
{{\Spoiler}}
{{\Spoiler}}
Linia 1535: Linia 1597:




<span id="A47" style="font-size: 110%; font-weight: bold;">Uwaga A47</span><br/>
<span id="A49" style="font-size: 110%; font-weight: bold;">Przykład A49</span><br/>
Z przykładu [[#A44|A44]] nie wynika, że w&nbsp;przedziale <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;[[#A46|A46]] oraz twierdzeń&nbsp;[[#A43|A43]] i&nbsp;[[#A45|A45]]. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
Zapiszmy współczynnik dwumianowy <math>{\small\binom{2 n}{n}}</math> w&nbsp;postaci ułamka


::<math>{\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


<span id="A48" style="font-size: 110%; font-weight: bold;">Przykład A48</span><br/>
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń [[#A43|A43]] i [[#A45|A45]] do współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.


{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
* <math>2 p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;mianowniku
Wybraliśmy współczynnik dwumianowy <math>{\small\binom{2 \cdot 3284}{3284}}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
* <math>3 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;mianowniku (jako <math>p</math> i <math>2 p</math>)
* <math>4 p \leqslant 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>3 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku
* <math>5 p > 2 n</math> — warunek ten (łącznie z&nbsp;warunkiem <math>4 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>3 p</math> i <math>4 p</math>)


Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;[[#A43|A43]] i [[#A45|A45]] nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math> pojawia się dokładnie dwa razy w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka


::<math>{\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}}</math>


2<sup>6</sup>, 3<sup>8</sup>, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59<sup>2</sup>, 61<sup>2</sup>, 67, 71, 73<sup>2</sup>, 79<sup>2</sup>, 83, 89, 97, 101, 103, <span style="border-bottom-style: double;">'''107'''</span>, '''127''', '''137''', 139, '''151''', '''157''', '''167''', '''173''', '''197''', 199, '''211''', '''223''', '''239''', 241, '''257''', '''277''', 281, 283, '''307''', 311, '''331''', 337, '''367''', 373, 379, 383, '''419''', 421, 431, 433, '''479''', 487, 491, 499, 503, '''557''', 563, 569, 571, 577, 587, 593, '''659''', 661, 673, 677, 683, 691, 701, 709, 719, 727, '''823''', 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, '''1097''', 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, '''1657''', 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179
Zatem nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.


Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>2</math> i <math>3</math>. Dlatego zakładamy, że <math>n \geqslant 8</math>, bo dla <math>n \geqslant 8</math> liczby pierwsze <math>2, 3</math> nie spełniają warunku <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>.


Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 7</math> i&nbsp;liczba <math>3</math> dzieli liczbę <math>{\small\binom{14}{7}} = 3432</math>


Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>


Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A43|A43]], jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A45|A45]], jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;[[#A43|A43]] i [[#A45|A45]] można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
Rozważmy najpierw pierwszy składnik sumy


Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right )</math>
 
Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy


{| class="wikitable"  style="font-size: 90%; text-align: center; margin: 1em auto 1em auto;"
::1)&nbsp;&nbsp;&nbsp; <math>p > {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 5 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 4</math>
! <math>k</math>||<math>{\small\frac{3284}{k+1}}</math>||<math>p \in \left ( {\small\frac{3284}{k + 1}}, \frac{3284}{k + \tfrac{1}{2}} \right ]</math>||<math>\frac{3284}{k+\tfrac{1}{2}}</math>||<math>{\small\frac{3284}{k}}</math>
 
|-
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2</math>
| 0||3284||{3299, 3301, ..., 6553, 6563}||6568||
 
|-
Zatem
| 1||1642||{1657, 1663, ..., 2161, 2179}||2189,33||3284
 
|-
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 4 - 4 = 0</math>
| 2||1094,67||{1097, 1103, ..., 1303, 1307}||1313,60||1642
 
|-
Ponieważ każdy ze składników szukanej sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
| 3||'''821'''||{823, 827, ..., 929, 937}||938,29||1094,67
 
|-
::<math>\left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0</math>
| 4||656,80||{659, 661, 673, 677, 683, 691, 701, 709, 719, 727}||729,78||821
 
|-
 
| 5||547,33||{557, 563, 569, 571, 577, 587, 593}||597,09||656,80
Założenie, że <math>n \geqslant 13</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
|-
 
| 6||469,14||{479, 487, 491, 499, 503}||505,23||547,33
::<math>p > {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^k}{p^k}} < 5^k</math>
|-
 
| 7||410,50||{419, 421, 431, 433}||437,87||469,14
:::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{2 n}} \cdot \left( {\small\frac{5}{2 n}} \right)^{k - 2}</math>
|-
 
| 8||364,89||{367, 373, 379, 383}||386,35||410,50
:::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{2 n}}</math>
|-
 
| 9||328,40||{331, 337}||345,68||364,89
:::::<math>\;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{26}}</math>
|-
 
| 10||298,55||{307, 311}||312,76||328,40
:::::<math>\;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>
|-
 
| 11||273,67||{277, 281, 283}||285,57||298,55
Jeżeli <math>\left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 13</math> jest
|-
 
| 12||252,62||{257}||262,72||273,67
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 0</math>
|-
 
| 13||234,57||{239, 241}||243,26||252,62
Dla <math>n = 8, 9</math> żadna liczba pierwsza nie należy do <math>\left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>.
|-
 
| 14||218,93||{223}||226,48||234,57
Dla <math>n = 10, 11, 12</math> łatwo sprawdzamy, że liczba <math>5</math> nie dzieli liczb <math>{\small\binom{20}{10}} = 184756</math>, <math>{\small\binom{22}{11}} = 705432</math> oraz <math>{\small\binom{24}{12}} = 2704156</math>.
|-
 
| 15||205,25||{211}||211,87||218,93
Zatem dla <math>n \geqslant 8</math> liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math> nie dzieli liczby <math>{\small\binom{2 n}{n}}</math>.<br/>
|-
&#9633;
| 16||193,18||{197, 199}||199,03||205,25
{{\Spoiler}}
|-
 
| 17||182,44||{}||187,66||193,18
 
|-
 
| 18||172,84||{173}||177,51||182,44
<span id="A50" style="font-size: 110%; font-weight: bold;">Uwaga A50</span><br/>
|-
Z przykładu [[#A47|A47]] nie wynika, że w&nbsp;przedziale <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;[[#A49|A49]] oraz twierdzeń&nbsp;[[#A46|A46]] i&nbsp;[[#A48|A48]]. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
| 19||164,20||{167}||168,41||172,84
 
 
 
<span id="A51" style="font-size: 110%; font-weight: bold;">Przykład A51</span><br/>
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń [[#A46|A46]] i [[#A48|A48]] do współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
Wybraliśmy współczynnik dwumianowy <math>{\small\binom{2 \cdot 3284}{3284}}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
 
Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;[[#A46|A46]] i [[#A48|A48]] nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
 
 
2<sup>6</sup>, 3<sup>8</sup>, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59<sup>2</sup>, 61<sup>2</sup>, 67, 71, 73<sup>2</sup>, 79<sup>2</sup>, 83, 89, 97, 101, 103, <span style="border-bottom-style: double;">'''107'''</span>, '''127''', '''137''', 139, '''151''', '''157''', '''167''', '''173''', '''197''', 199, '''211''', '''223''', '''239''', 241, '''257''', '''277''', 281, 283, '''307''', 311, '''331''', 337, '''367''', 373, 379, 383, '''419''', 421, 431, 433, '''479''', 487, 491, 499, 503, '''557''', 563, 569, 571, 577, 587, 593, '''659''', 661, 673, 677, 683, 691, 701, 709, 719, 727, '''823''', 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, '''1097''', 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, '''1657''', 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179
 
 
 
Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>
 
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A46|A46]], jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A48|A48]], jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;[[#A46|A46]] i [[#A48|A48]] można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
 
Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>
 
{| class="wikitable"  style="font-size: 90%; text-align: center; margin: 1em auto 1em auto;"
! <math>k</math>||<math>{\small\frac{3284}{k+1}}</math>||<math>p \in \left ( {\small\frac{3284}{k + 1}}, \frac{3284}{k + \tfrac{1}{2}} \right ]</math>||<math>\frac{3284}{k+\tfrac{1}{2}}</math>||<math>{\small\frac{3284}{k}}</math>
|-
|-
| 20||156,38||{157}||160,20||164,20
| 0||3284||{3299, 3301, ..., 6553, 6563}||6568||  
|-
|-
| 21||149,27||{151}||152,74||156,38
| 1||1642||{1657, 1663, ..., 2161, 2179}||2189,33||3284
|-
|-
| 22||142,78||{}||145,96||149,27
| 2||1094,67||{1097, 1103, ..., 1303, 1307}||1313,60||1642
|-
|-
| 23||136,83||{137, 139}||139,74||142,78
| 3||'''821'''||{823, 827, ..., 929, 937}||938,29||1094,67
|-
|-
| 24||131,36||{}||134,04||136,83
| 4||656,80||{659, 661, 673, 677, 683, 691, 701, 709, 719, 727}||729,78||821
|-
|-
| 25||126,31||{127}||128,78||131,36
| 5||547,33||{557, 563, 569, 571, 577, 587, 593}||597,09||656,80
|-
|-
| 26||121,63||{}||123,92||126,31
| 6||469,14||{479, 487, 491, 499, 503}||505,23||547,33
|-
|-
| 27||117,29||{}||119,42||121,63
| 7||410,50||{419, 421, 431, 433}||437,87||469,14
|-
|-
| 28||113,24||{}||115,23||117,29
| 8||364,89||{367, 373, 379, 383}||386,35||410,50
|-
|-
| 29||109,47||{}||111,32||113,24
| 9||328,40||{331, 337}||345,68||364,89
|-
|-
| 30||105,94||{<span style="border-bottom-style: double;">'''107'''</span>}||107,67||109,47
| 10||298,55||{307, 311}||312,76||328,40
|-
|-
| 31||102,63||{103}||104,25||105,94
| 11||273,67||{277, 281, 283}||285,57||298,55
|-
|-
| 32||99,52||{101}||101,05||102,63
| 12||252,62||{257}||262,72||273,67
|-
|-
| 33||96,59||{97}||98,03||99,52
| 13||234,57||{239, 241}||243,26||252,62
|-
|-
| 34||93,83||{}||95,19||96,59
| 14||218,93||{223}||226,48||234,57
|-
|-
| 35||91,22||{}||92,51||93,83
| 15||205,25||{211}||211,87||218,93
|-
|-
| 36||88,76||{89}||89,97||91,22
| 16||193,18||{197, 199}||199,03||205,25
|-
|-
| 37||86,42||{}||87,57||88,76
| 17||182,44||{}||187,66||193,18
|-
|-
| 38||84,21||{}||85,30||86,42
| 18||172,84||{173}||177,51||182,44
|-
|-
| '''39'''||'''82,10'''||{83}||'''83,14'''||84,21
| 19||164,20||{167}||168,41||172,84
|-
|-
| '''40'''||80,10||{}||'''81,09'''||'''82,10'''
| 20||156,38||{157}||160,20||164,20
|-
|-
| 41||78,19||{79}||79,13||80,10
| 21||149,27||{151}||152,74||156,38
|-
|-
| 42||76,37||{}||77,27||78,19
| 22||142,78||{}||145,96||149,27
|-
|-
| 43||74,64||{}||75,49||76,37
| 23||136,83||{137, 139}||139,74||142,78
|-
|-
| 44||72,98||{'''73'''}||73,80||74,64
| 24||131,36||{}||134,04||136,83
|-
|-
| 45||71,39||{}||72,18||72,98
| 25||126,31||{127}||128,78||131,36
|-
|-
| 46||69,87||{}||70,62||71,39
| 26||121,63||{}||123,92||126,31
|-
|-
| 47||68,42||{}||69,14||69,87
| 27||117,29||{}||119,42||121,63
|-
|-
| 48||67,02||{}||67,71||68,42
| 28||113,24||{}||115,23||117,29
|-
|-
| 49||65,68||{}||66,34||67,02
| 29||109,47||{}||111,32||113,24
|-
|-
| 50||64,39||{}||65,03||65,68
| 30||105,94||{<span style="border-bottom-style: double;">'''107'''</span>}||107,67||109,47
|-
|-
| 51||63,15||{}||63,77||64,39
| 31||102,63||{103}||104,25||105,94
|-
|-
| 52||61,96||{}||62,55||63,15
| 32||99,52||{101}||101,05||102,63
|-
|-
| 53||60,81||{61}||61,38||61,96
| 33||96,59||{97}||98,03||99,52
|-
|-
| 54||59,71||{}||60,26||60,81
| 34||93,83||{}||95,19||96,59
|-
|-
| 55||58,64||{59}||59,17||59,71
| 35||91,22||{}||92,51||93,83
|-
|-
| 56||57,61||{}||58,12||58,64
| 36||88,76||{89}||89,97||91,22
|-
|-
| 57||56,62||{}||57,11||57,61
| 37||86,42||{}||87,57||88,76
|-
|-
| 58||55,66||{}||56,14||56,62
| 38||84,21||{}||85,30||86,42
|-
|-
| 59||54,73||{}||55,19||55,66
| '''39'''||'''82,10'''||{83}||'''83,14'''||84,21
|-
|-
| 60||53,84||{}||54,28||54,73
| '''40'''||80,10||{}||'''81,09'''||'''82,10'''
|-
|-
| 61||52,97||{53}||53,40||53,84
| 41||78,19||{79}||79,13||80,10
|-
|-
| 62||52,13||{}||52,54||52,97
| 42||76,37||{}||77,27||78,19
|-
|-
| 63||51,31||{}||51,72||52,13
| 43||74,64||{}||75,49||76,37
|-
|-
| 64||50,52||{}||50,91||51,31
| 44||72,98||{'''73'''}||73,80||74,64
|-
|-
| 65||49,76||{}||50,14||50,52
| 45||71,39||{}||72,18||72,98
|-
| 46||69,87||{}||70,62||71,39
|-
| 47||68,42||{}||69,14||69,87
|-
| 48||67,02||{}||67,71||68,42
|-
| 49||65,68||{}||66,34||67,02
|-
| 50||64,39||{}||65,03||65,68
|-
| 51||63,15||{}||63,77||64,39
|-
| 52||61,96||{}||62,55||63,15
|-
|-
| 66||49,01||{}||49,38||49,76
| 53||60,81||{61}||61,38||61,96
|-
|-
| 67||48,29||{}||48,65||49,01
| 54||59,71||{}||60,26||60,81
|-
|-
| 68||47,59||{}||47,94||48,29
| 55||58,64||{59}||59,17||59,71
|-
|-
| 69||46,91||{47}||47,25||47,59
| 56||57,61||{}||58,12||58,64
|-
|-
| 70||46,25||{}||46,58||46,91
| 57||56,62||{}||57,11||57,61
|}
|-
<br/>
| 58||55,66||{}||56,14||56,62
&#9633;
|-
{{\Spoiler}}
| 59||54,73||{}||55,19||55,66
 
|-
| 60||53,84||{}||54,28||54,73
|-
| 61||52,97||{53}||53,40||53,84
|-
| 62||52,13||{}||52,54||52,97
|-
| 63||51,31||{}||51,72||52,13
|-
| 64||50,52||{}||50,91||51,31
|-
| 65||49,76||{}||50,14||50,52
|-
| 66||49,01||{}||49,38||49,76
|-
| 67||48,29||{}||48,65||49,01
|-
| 68||47,59||{}||47,94||48,29
|-
| 69||46,91||{47}||47,25||47,59
|-
| 70||46,25||{}||46,58||46,91
|}
<br/>
&#9633;
{{\Spoiler}}
 
 
 
 


== Dokładniejsze oszacowanie <math>\pi (n)</math> od dołu ==


<span id="A52" style="font-size: 110%; font-weight: bold;">Uwaga A52</span><br/>
Poniżej przedstawimy inny dowód oszacowania od dołu funkcji <math>\pi (x)</math>. Naszym zdaniem jest łatwiejszy niż dowód twierdzenia [[#A30|A30]] i, co warto odnotować, daje nieco dokładniejsze oszacowanie.




 
 
 
<span id="A53" style="font-size: 110%; font-weight: bold;">Twierdzenie A53</span><br/>
 
Dla <math>n \geqslant 3</math> prawdziwe jest następujące oszacowanie
 
 
 
::<math>\pi (n) > 0.69 \cdot {\small\frac{n}{\log n}}</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B5|B5]] wiemy, że dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie
 
 
== Przypisy ==
::<math>{\small\binom{2 n}{n}} > {\small\frac{4^n}{2 n}}</math>
 
 
<references>
 
 
Z drugiej strony, korzystając z twierdzenia [[#A27|A27]] możemy napisać
<ref name="PARIGP">Wikipedia, ''PARI/GP'', ([https://en.wikipedia.org/wiki/PARI/GP Wiki-en])</ref>
 
 
::<math>{\small\binom{2 n}{n}} = \prod_{2 \leqslant p \leqslant 2 n} p^{\alpha_p} \leqslant (2 n)^{\pi (2 n)}</math>
<ref name="Czebyszew1">Wikipedia, ''Pafnuty Czebyszew (1821 - 1893)'', ([https://pl.wikipedia.org/wiki/Pafnutij_Czebyszow Wiki-pl]), ([https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B1%D1%8B%D1%88%D1%91%D0%B2,_%D0%9F%D0%B0%D1%84%D0%BD%D1%83%D1%82%D0%B8%D0%B9_%D0%9B%D1%8C%D0%B2%D0%BE%D0%B2%D0%B8%D1%87 Wiki-ru])</ref>
 
 
 
<ref name="Czebyszew2">P. L. Chebyshev, ''Mémoire sur les nombres premiers'', J. de Math. Pures Appl. (1) 17 (1852), 366-390, ([http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf LINK])</ref>
Łącząc powyższe oszacowania, otrzymujemy
 
 
<ref name="Erdos">P. Erdos, ''Beweis eines Satzes von Tschebyschef'', Acta Litt. Sci. Szeged 5 (1932), 194-198, ([https://old.renyi.hu/~p_erdos/1932-01.pdf LINK1]), ([http://acta.bibl.u-szeged.hu/13396/1/math_005_194-198.pdf LINK2])</ref>
::<math>{\small\frac{4^n}{2 n}} < (2 n)^{\pi (2 n)}</math>
 
 
<ref name="Dusart99">P. Dusart, ''The <math>k^{th}</math> prime is greater than <math>k (\ln k + \ln \ln k - 1)</math> for <math>k \geqslant 2</math>'', Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.</ref>
 
 
Czyli
<ref name="Dusart06">P. Dusart, ''Sharper bounds for <math>\psi</math>, <math>\theta</math>, <math>\pi</math>, <math>p_k</math>'', Rapport de recherche no. 1998-06, Université de Limoges</ref>
 
 
::<math>\pi (2 n) > {\small\frac{2 n \log 2 - \log 2 n}{\log 2 n}} = \log 2 \cdot {\small\frac{2 n}{\log 2 n}} - 1</math>
<ref name="Dusart10">P. Dusart, ''Estimates of some functions over primes without R.H.'', (2010), ([https://arxiv.org/abs/1002.0442 LINK])</ref>
 
 
 
<ref name="Dusart18">P. Dusart, ''Explicit estimates of some functions over primes'', Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.</ref>
Ponieważ dla wszystkich <math>n \geqslant 2 \,</math> jest <math>\, \pi (2 n) = \pi (2 n - 1)</math>, to
 
::<math>\pi (2 n - 1) = \pi (2 n) > \log 2 \cdot {\small\frac{2 n}{\log 2 n}} - 1 > \log 2 \cdot {\small\frac{2 n - 1}{\log (2 n - 1)}} - 1</math>
 
 
Ostatnia nierówność wynika z faktu, że <math>n \geqslant 3</math> ciąg <math>u_n = {\small\frac{n}{\log n}}</math> jest ciągiem silnie rosnącym (zobacz twierdzenie [[#A7|A7]]). Zatem znaleziony wzór jest prawdziwy dla liczb parzystych <math>4, 6, 8, \ldots</math> i nieparzystych <math>3, 5, 7, \ldots</math> Wynika stąd, że dla <math>n \geqslant 3</math> jest
 
::<math>\pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1</math>
 
 
Ponownie korzystając z tego, że ciąg <math>u_n = {\small\frac{n}{\log n}}</math> jest ciągiem silnie rosnącym, widzimy, że dla <math>n > 2650</math> prawdziwy jest następujący ciąg przekształceń
 
::<math>\log 2 \cdot {\small\frac{n}{\log n}} - 1 = (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}} + \left( 0.003 \cdot {\small\frac{n}{\log n}} - 1 \right)</math>
 
::::::<math>\;\;\;\; > (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}} + \left( 0.003 \cdot {\small\frac{2650}{\log 2650}} - 1 \right)</math>
 
::::::<math>\;\;\;\; = (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}} + 0.00858695 \ldots</math>
 
<div style="margin-top: 0.8em; margin-bottom: 0.8em;">
::::::<math>\;\;\;\; > (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}}</math>
</div>
 
::::::<math>\;\;\;\; = 0.690147 \ldots \cdot {\small\frac{n}{\log n}}</math>
 
::::::<math>\;\;\;\; > 0.69 \cdot {\small\frac{n}{\log n}}</math>
 
 
Z układu nierówności prawdziwego dla <math>n > 2650</math>
 
::<math>\pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1 > 0.69 \cdot {\small\frac{n}{\log n}}</math>
 
otrzymujemy natychmiast, że
 
::<math>\pi (n) > 0.69 \cdot {\small\frac{n}{\log n}} \qquad \qquad \qquad \text{dla} \;\; n > 2650</math>
 
 
Sprawdzając bezpośrednio prawdziwość powyższego oszacowania dla <math>n \leqslant 2650</math>, dostajemy
 
::<math>\pi (n) > 0.69 \cdot {\small\frac{n}{\log n}} \qquad \qquad \qquad \text{dla} \;\; n \geqslant 3</math>
 
Co należało pokazać.<br/>
&#9633;
{{\Spoiler}}
 
 
 
<span id="A54" style="font-size: 110%; font-weight: bold;">Uwaga A54</span><br/>
Na zakończenie tego artykułu chcemy przedstawić dowód pozornie trywialnego twierdzenia, że dla <math>n \geqslant 2</math> między <math>n</math> i <math>n^2</math> znajduje się liczba pierwsza. Podobnie proste wydaje się oszacowanie <math>\pi (n) > \sqrt{n}</math>. Jednak przedstawiony niżej dowód wcale prosty nie jest. Trudność tego dowodu jest podobna do dowodu twierdzenia [[#A30|A30]] i tkwi w znalezieniu dostatecznie dokładnego oszacowania funkcji <math>\pi (n)</math> od dołu.
 
Otrzymany w trakcie dowodu twierdzenia [[#A53|A53]] rezultat
 
::<math>\pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1 \qquad \qquad \qquad \text{dla} \;\; n \geqslant 3</math>
 
Wykorzystamy do dowodu twierdzenia [[#A55|A55]]. Podkreślmy, że nawet w przypadku tego wzoru musieliśmy
 
:*&nbsp;&nbsp;&nbsp;znać wykładnik, z jakim liczba pierwsza <math>p</math> występuje w <math>n!</math>
:*&nbsp;&nbsp;&nbsp;zbadać właściwości współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math>
 
 
 
<span id="A55" style="font-size: 110%; font-weight: bold;">Twierdzenie A55</span><br/>
Dla <math>n \geqslant 2</math> między liczbami <math>n</math> i <math>n^2</math> znajduje się liczba pierwsza.
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>n = 2, 3, \ldots 9</math>, co pozwala ograniczyć dowód do liczb <math>n \geqslant 10</math>.
 
Dla oszacowania od góry funkcji <math>\pi (n)</math> wystarczy przyjąć, że <math>\pi (n) < n</math> (oszacowanie prawdziwe dla <math>n \geqslant 1</math>).
 
Dla oszacowania od dołu funkcji <math>\pi (n)</math> skorzystamy ze wzoru otrzymanego w trakcie dowodu twierdzenia [[#A53|A53]]
 
::<math>\pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1 \qquad \qquad \qquad \text{dla} \;\; n \geqslant 3</math>
 
Dla <math>n \geqslant 10</math> otrzymujemy
 
::<math>\pi (n^2) - \pi (n) > \log 2 \cdot {\small\frac{n^2}{\log n^2}} - 1 - n</math>
 
:::::<math>\quad \;\; = n \left( {\small\frac{\log 2}{2}} \cdot {\small\frac{n}{\log n}} - {\small\frac{1}{n}} - 1 \right)</math>
 
:::::<math>\quad \;\; \geqslant n \left( {\small\frac{\log 2}{2}} \cdot {\small\frac{n}{\log n}} - {\small\frac{1}{10}} - 1 \right)</math>
 
:::::<math>\quad \;\; = n \left( {\small\frac{\log 2}{2}} \cdot {\small\frac{n}{\log n}} - 1.1 \right)</math>
 
Wyrażenie w nawiasie rośnie ze wzrostem <math>n</math> (zobacz [[#A7|A7]], [[Ciągi liczbowe#C4|C4]], [[#A31|A31]], [[#A32|A32]]) i dla <math>n = 10</math> jest większe od <math>0.4</math>, zatem dla <math>n \geqslant 10</math> mamy
 
::<math>\pi (n^2) - \pi (n) > 4</math>
 
Co kończy dowód.<br/>
&#9633;
{{\Spoiler}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
== Przypisy ==
 
<references>
 
<ref name="PARIGP">Wikipedia, ''PARI/GP'', ([https://en.wikipedia.org/wiki/PARI/GP Wiki-en])</ref>
 
<ref name="Czebyszew1">Wikipedia, ''Pafnuty Czebyszew (1821 - 1893)'', ([https://pl.wikipedia.org/wiki/Pafnutij_Czebyszow Wiki-pl]), ([https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B1%D1%8B%D1%88%D1%91%D0%B2,_%D0%9F%D0%B0%D1%84%D0%BD%D1%83%D1%82%D0%B8%D0%B9_%D0%9B%D1%8C%D0%B2%D0%BE%D0%B2%D0%B8%D1%87 Wiki-ru])</ref>
 
<ref name="Czebyszew2">P. L. Chebyshev, ''Mémoire sur les nombres premiers'', J. de Math. Pures Appl. (1) 17 (1852), 366-390, ([http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A20_0.pdf LINK])</ref>
 
<ref name="Erdos">P. Erdos, ''Beweis eines Satzes von Tschebyschef'', Acta Litt. Sci. Szeged 5 (1932), 194-198, ([https://old.renyi.hu/~p_erdos/1932-01.pdf LINK1]), ([http://acta.bibl.u-szeged.hu/13396/1/math_005_194-198.pdf LINK2])</ref>
 
<ref name="Dusart99">P. Dusart, ''The <math>k^{th}</math> prime is greater than <math>k (\ln k + \ln \ln k - 1)</math> for <math>k \geqslant 2</math>'', Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.</ref>
 
<ref name="Dusart06">P. Dusart, ''Sharper bounds for <math>\psi</math>, <math>\theta</math>, <math>\pi</math>, <math>p_k</math>'', Rapport de recherche no. 1998-06, Université de Limoges</ref>
 
<ref name="Dusart10">P. Dusart, ''Estimates of some functions over primes without R.H.'', (2010), ([https://arxiv.org/abs/1002.0442 LINK])</ref>
 
<ref name="Dusart18">P. Dusart, ''Explicit estimates of some functions over primes'', Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.</ref>
 
<ref name="Stirling">Wikipedia, ''Wzór Stirlinga'', ([https://pl.wikipedia.org/wiki/Wz%C3%B3r_Stirlinga Wiki-pl]), ([https://en.wikipedia.org/wiki/Stirling%27s_approximation Wiki-en])</ref>


<ref name="p1">Wikipedia, ''Twierdzenie o&nbsp;zbieżności ciągu monotonicznego'', ([https://pl.wikipedia.org/wiki/Twierdzenie_o_zbie%C5%BCno%C5%9Bci_ci%C4%85gu_monotonicznego LINK])</ref>
<ref name="p1">Wikipedia, ''Twierdzenie o&nbsp;zbieżności ciągu monotonicznego'', ([https://pl.wikipedia.org/wiki/Twierdzenie_o_zbie%C5%BCno%C5%9Bci_ci%C4%85gu_monotonicznego LINK])</ref>

Aktualna wersja na dzień 13:20, 21 lis 2025

07.11.2021



Oznaczenia

Będziemy stosowali następujące oznaczenia:

[math]\displaystyle{ \mathbb{Z} }[/math] — zbiór liczb całkowitych
[math]\displaystyle{ \mathbb{Z}_+ }[/math] — zbiór liczb całkowitych dodatnich
[math]\displaystyle{ \mathbb{N} }[/math] — zbiór liczb naturalnych [math]\displaystyle{ \mathbb{N} = \mathbb{Z}_{+} }[/math]
[math]\displaystyle{ \mathbb{N}_0 }[/math] — zbiór liczb całkowitych nieujemnych [math]\displaystyle{ \mathbb{N}_0 = \mathbb{Z}_{+} \cup \left \{ 0 \right \} }[/math]
[math]\displaystyle{ \mathbb{R} }[/math] — zbiór liczb rzeczywistych
[math]\displaystyle{ d \mid n }[/math] — czytaj: d dzieli n ([math]\displaystyle{ d }[/math] jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ d \nmid n }[/math] — czytaj: d nie dzieli n ([math]\displaystyle{ d }[/math] nie jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ p_n }[/math][math]\displaystyle{ n }[/math]-ta liczba pierwsza
[math]\displaystyle{ \pi (n) }[/math] — ilość liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ P(n) }[/math] — iloczyn liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ \lfloor x \rfloor }[/math] — największa liczba całkowita nie większa od [math]\displaystyle{ x }[/math]
[math]\displaystyle{ {\small\binom{n}{m}} }[/math] — współczynnik dwumianowy (symbol Newtona), [math]\displaystyle{ {\small\binom{n}{m}} = {\small\frac{n!}{m! \cdot (n - m) !}} }[/math]
[math]\displaystyle{ \log (x) }[/math] — logarytm naturalny liczby [math]\displaystyle{ x > 0 }[/math]
[math]\displaystyle{ W_p (n) }[/math] — wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ n }[/math]
[math]\displaystyle{ n }[/math] — oznacza zawsze liczbę naturalną
[math]\displaystyle{ p }[/math] — oznacza zawsze liczbę pierwszą


Przykładowe wartości niektórych wypisanych wyżej funkcji:

[math]\displaystyle{ p_2 = 3 }[/math],   [math]\displaystyle{ p_{10} = 29 }[/math],   [math]\displaystyle{ p_{100} = 541 }[/math]
[math]\displaystyle{ \pi (10) = 4 }[/math],   [math]\displaystyle{ \pi (100) = 25 }[/math],   [math]\displaystyle{ \pi (541) = 100 }[/math]
[math]\displaystyle{ P(5) = 30 }[/math],   [math]\displaystyle{ P(10) = 210 }[/math],   [math]\displaystyle{ P(50) = 614889782588491410 }[/math]
[math]\displaystyle{ \lfloor 1.2 \rfloor = 1 }[/math],   [math]\displaystyle{ \lfloor 2.8 \rfloor = 2 }[/math],   [math]\displaystyle{ \lfloor - 1.5 \rfloor = - 2 }[/math]
[math]\displaystyle{ {\small\binom{5}{2}} = 10 }[/math],   [math]\displaystyle{ {\small\binom{10}{5}} = 252 }[/math],   [math]\displaystyle{ {\small\binom{9}{3}} = 84 }[/math]
[math]\displaystyle{ W_2 (8) = 3 }[/math],   [math]\displaystyle{ W_3 (18) = 2 }[/math],   [math]\displaystyle{ W_7 (28) = 1 }[/math]


Funkcje te są zaimplementowane w PARI/GP[1]

[math]\displaystyle{ p_n }[/math] = prime(n)
[math]\displaystyle{ \pi (n) }[/math] = primepi(n)
[math]\displaystyle{ P(n) }[/math] = prodeuler(p=2, n, p)
[math]\displaystyle{ \lfloor x \rfloor }[/math] = floor(x)
[math]\displaystyle{ {\small\binom{n}{m}} }[/math] = binomial(n, m)
[math]\displaystyle{ W_p (n) }[/math] = valuation(n, p)



Twierdzenie Czebyszewa

W 1852 roku rosyjski matematyk Czebyszew[2][3] udowodnił, że dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ a \cdot {\small\frac{n}{\log n}} \: \underset{n \geqslant 11}{<} \: \pi (n) \: \underset{n \geqslant 96098}{<} \: b \cdot {\small\frac{n}{\log n}} }[/math]

gdzie

[math]\displaystyle{ a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022 \qquad \quad b = \tfrac{6}{5} a = 1.105550428 }[/math]


Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z nierównościami udowodnionymi przez Czebyszewa w teorii prawdopodobieństwa), a twierdzeniem Czebyszewa nazywany jest łatwy wniosek z tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math]

Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] nabrało nowego życia, gdy w 1936 Erdos[4] zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.


Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami[5][6][7][8] funkcji [math]\displaystyle{ \pi (n) }[/math] oraz [math]\displaystyle{ p_n }[/math]


[math]\displaystyle{ {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \underset{n \geqslant 599}{<} \pi (n) \underset{n \geqslant 2}{<} {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1.28}{\log n}} \right) }[/math]


[math]\displaystyle{ n (\log n + \log \log n - 1) \underset{n \geqslant 2}{<} p_n \underset{n \geqslant 6}{<} n (\log n + \log \log n) }[/math]


Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] oraz analogiczne oszacowanie dla funkcji [math]\displaystyle{ p_n }[/math].


Twierdzenie A1
Prawdziwe są następujące oszacowania:


[math]\displaystyle{ 0.72 \cdot n \log n \underset{n \geqslant 1}{<} p_n \underset{n \geqslant 3}{<} 2n \log n }[/math]


[math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} \underset{n \geqslant 3}{<} \pi (n) \underset{n \geqslant 2}{<} {\small\frac{2 n}{\log n}} }[/math]


Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.



Oszacowanie [math]\displaystyle{ p_n }[/math] od dołu i [math]\displaystyle{ \pi (n) }[/math] od góry

Rozpoczniemy od oszacowania liczby [math]\displaystyle{ {\small\binom{2n}{n}} }[/math]. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.

Twierdzenie A2
Niech [math]\displaystyle{ n, k \in \mathbb{N} }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{n}{k}} }[/math] jest zawsze liczbą całkowitą dodatnią.

Dowód

Indukcja matematyczna. Ponieważ

[math]\displaystyle{ {\small\binom{0}{0}} = {\small\binom{1}{0}} = {\small\binom{1}{1}} = 1 }[/math]

to twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Zakładając prawdziwość twierdzenia dla wszystkich liczb całkowitych należących do przedziału [math]\displaystyle{ [1, n] }[/math] mamy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ {\small\binom{n + 1}{0}} = {\small\binom{n + 1}{n + 1}} = 1 }[/math]

Dla [math]\displaystyle{ k }[/math] spełniającego warunek [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math], jest

[math]\displaystyle{ {\small\binom{n + 1}{k}} = {\small\binom{n}{k}} + {\small\binom{n}{k - 1}} }[/math]

Na podstawie założenia indukcyjnego liczby po prawej stronie są liczbami całkowitymi dodatnimi, zatem [math]\displaystyle{ {\small\binom{n + 1}{k}} }[/math] dla wszystkich wartości [math]\displaystyle{ k }[/math] jest liczbą całkowitą dodatnią. Co należało pokazać.


Twierdzenie A3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] jest liczbą parzystą.

Dowód

Łatwo zauważamy, że

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1)!}{n \cdot (n - 1) ! \cdot n!}} = 2 \cdot {\small\binom{2 n - 1}{n - 1}} }[/math]


Twierdzenie A4
Prawdziwe są następujące oszacowania współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]

[math]\displaystyle{ 3.8^{n + 1} \underset{n \geqslant 80}{<} {\small\binom{2 n}{n}} \underset{n \geqslant 5}{<} 4^{n - 1} }[/math]
Dowód

Indukcja matematyczna[a]. W przypadku lewej nierówności łatwo sprawdzamy, że [math]\displaystyle{ 3.8^{81} < {\small\binom{160}{80}} }[/math]. Zakładając prawdziwość nierówności dla [math]\displaystyle{ n \geqslant 80 }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ {\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} > 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{80 + 1}} \right) > 3.8^{n + 1} \cdot 3.9753 > 3.8^{n + 2} }[/math]


Prawa nierówność jest prawdziwa dla [math]\displaystyle{ n = 5 }[/math]. Zakładając prawdziwość nierówności dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ {\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} < 4^{n -1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) < 4^n }[/math]



[a] Warto znać asymptotykę współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math], aby lepiej zrozumieć dowodzone w twierdzeniu oszacowanie. Ze wzoru Stirlinga[9]

[math]\displaystyle{ \log n! \sim n \log n - n + {\small\frac{1}{2}} \log (2 \pi n) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{1260 n^5}} - {\small\frac{1}{1680 n^7}} + {\small\frac{1}{1188 n^9}} + \ldots + {\small\frac{B_{2 k}}{(2 k - 1) 2 k \cdot n^{2 k - 1}}} + \ldots }[/math]
[math]\displaystyle{ n! \sim \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \exp \left( \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2 k (2 k - 1) n^{2 k - 1}}} \right) }[/math]
[math]\displaystyle{ \;\;\;\,\, = \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \left( 1 + {\small\frac{1}{12 n}} + {\small\frac{1}{288 n^2}} - {\small\frac{139}{51840 n^3}} - {\small\frac{571}{2488320 n^4}} + {\small\frac{163879}{209018880 n^5}} + {\small\frac{5246819}{75246796800 n^6}} - \ldots \right) }[/math]

gdzie [math]\displaystyle{ B_i }[/math] są liczbami Bernoulliego, wynika, że

[math]\displaystyle{ {\small\binom{2 n}{n}} \sim {\small\frac{4^n}{\sqrt{\pi n}}} \cdot \left( 1 - {\small\frac{1}{8 n}} + {\small\frac{1}{128 n^2}} + {\small\frac{5}{1024 n^3}} - {\small\frac{21}{32768 n^4}} - \ldots \right) }[/math]


Twierdzenie A5
Dla [math]\displaystyle{ n \geqslant 12 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n > 3 n }[/math].

Dowód

Indukcja matematyczna. Dowód oprzemy na spostrzeżeniu, że wśród kolejnych sześciu liczb naturalnych [math]\displaystyle{ 6 k, 6 k + 1, 6 k + 2, 6 k + 3, 6 k + 4, 6 k + 5 }[/math] jedynie dwie: [math]\displaystyle{ 6 k + 1 }[/math] i [math]\displaystyle{ 6 k + 5 }[/math] mogą być pierwsze. Wynika stąd, że [math]\displaystyle{ p_{n + 2} \geqslant p_n + 6 }[/math] dla [math]\displaystyle{ n \geqslant 4 }[/math]. Dowód indukcyjny przeprowadzimy, stosując krok równy [math]\displaystyle{ 2 }[/math]. Twierdzenie jest oczywiście prawdziwe dla [math]\displaystyle{ n = 12 }[/math], bo [math]\displaystyle{ p_{12} = 37 > 3 \cdot 12 = 36 }[/math], podobnie [math]\displaystyle{ p_{13} = 41 > 3 \cdot 13 = 39 }[/math]. Zakładając prawdziwość twierdzenia dla wszystkich liczb naturalnych [math]\displaystyle{ k \in [12, n] }[/math], otrzymujemy dla [math]\displaystyle{ n + 2 }[/math]:

[math]\displaystyle{ p_{n + 2} \geqslant p_n + 6 > 3 n + 6 = 3 \cdot (n + 2) }[/math]

Uwaga: inaczej mówiąc, dowodzimy twierdzenie osobno dla [math]\displaystyle{ n }[/math] parzystych [math]\displaystyle{ (n \geqslant 12) }[/math] i osobno dla [math]\displaystyle{ n }[/math] nieparzystych [math]\displaystyle{ (n \geqslant 13) }[/math].


Twierdzenie A6
Ciąg [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] jest rosnący i ograniczony. Dla wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n < 3 }[/math].

Dowód

W artykule, w którym pojęcie współczynnika dwumianowego odgrywa główną rolę, nie mogło zabraknąć dowodu odwołującego się do wzoru dwumianowego

[math]\displaystyle{ \left ( x + y \right )^{n} = \sum_{k=0}^{n} {\small\binom{n}{k}} x^{n-k}y^{k} = {\small\binom{n}{0}} x^{n} + {\small\binom{n}{1}}x^{n-1}y + {\small\binom{n}{2}}x^{n-2}y^{2} + \ldots + {\small\binom{n}{n}}y^{n} }[/math]

gdzie [math]\displaystyle{ {\small\binom{n}{k}} = {\small\frac{n!}{k! \cdot (n - k)!}} }[/math].


Dowód opiera się na spostrzeżeniu, że [math]\displaystyle{ e = \sum_{k=0}^{\infty} {\small\frac{1}{k!}} = 2.718281828 \ldots }[/math], a wykorzystanie wzoru dwumianowego pozwala przekształcić wyrażenie [math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] do postaci sumy z wyraźnie wydzielonym czynnikiem [math]\displaystyle{ {\small\frac{1}{k!}} }[/math]. Stosując wzór dwumianowy, możemy zapisać [math]\displaystyle{ n }[/math]-ty wyraz ciągu [math]\displaystyle{ (a_n) }[/math] w postaci

[math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n = }[/math]
[math]\displaystyle{ \quad \; = \sum_{k=0}^{n} {\small\binom{n}{k}} {\small\frac{1}{n^k}} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} {\small\frac{n!}{k! \cdot (n - k)!}} \cdot {\small\frac{1}{n^k}} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot {\small\frac{n \cdot (n - 1) \cdot \ldots \cdot (n - (k - 1))}{n^k}} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n}} \right) }[/math]


Odpowiednio dla wyrazu [math]\displaystyle{ a_{n + 1} }[/math] mamy

[math]\displaystyle{ a_{n + 1} = \left( 1 + {\small\frac{1}{n + 1}} \right)^{n + 1} = }[/math]
[math]\displaystyle{ \qquad \: = 2 + \sum_{k=2}^{n + 1} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n + 1}} \right) > }[/math]
[math]\displaystyle{ \qquad \: > 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n + 1}} \right) > }[/math]
[math]\displaystyle{ \qquad \: > 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n}} \right) = }[/math]
[math]\displaystyle{ \qquad \: = a_n }[/math]

Ostatnia nierówność jest prawdziwa, bo dla dowolnej liczby [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] jest [math]\displaystyle{ 1 - {\small\frac{x}{n + 1}} > 1 - {\small\frac{x}{n}} }[/math]

Zatem ciąg [math]\displaystyle{ (a_n) }[/math] jest rosnący. Musimy jeszcze wykazać, że jest ograniczony od góry. Pokazaliśmy wyżej, że wyraz [math]\displaystyle{ a_n }[/math] może być zapisany w postaci

[math]\displaystyle{ a_n = 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n}} \right) }[/math]


Ponieważ czynniki w nawiasach są dodatnie i mniejsze od jedności, to

[math]\displaystyle{ a_n \leqslant 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} = }[/math]
[math]\displaystyle{ \quad \; \leqslant 1 + 1 + \sum_{k=2}^{n} {\small\frac{1}{2^{k-1}}} = }[/math]
[math]\displaystyle{ \quad \; = 1 + \left ( 1 + {\small\frac{1}{2}} + {\small\frac{1}{2^2}} + \ldots + {\small\frac{1}{2^{n-1}}}\right ) = }[/math]
[math]\displaystyle{ \quad \; = 1 + {\small\frac{1 - \left ( \tfrac{1}{2} \right )^{n}}{1 - \tfrac{1}{2}}} = }[/math]
[math]\displaystyle{ \quad \; = 1 + 2 - {\small\frac{1}{2^{n-1}}} < }[/math]
[math]\displaystyle{ \quad \; < 3 }[/math]


Druga nierówność (nieostra) jest prawdziwa, bo dla [math]\displaystyle{ k \geqslant 2 }[/math] zachodzi oczywista nierówność [math]\displaystyle{ k! \geqslant 2^{k - 1} }[/math]. Do sumy ujętej w nawiasy zastosowaliśmy wzór na sumę częściową szeregu geometrycznego.

Ponieważ [math]\displaystyle{ a_1 = 2 }[/math], to prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n < 3 }[/math]. Zauważmy jeszcze (już bez dowodu), że ciąg [math]\displaystyle{ (a_n) }[/math], jako rosnący i ograniczony od góry[10], jest zbieżny. Granicą ciągu [math]\displaystyle{ (a_n) }[/math] jest liczba niewymierna [math]\displaystyle{ e = 2.718281828 \ldots }[/math], która jest podstawą logarytmu naturalnego.


Zadanie A7
Pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] ciąg [math]\displaystyle{ a_n = {\small\frac{n}{\log n}} }[/math] jest silnie rosnący.

Rozwiązanie

Definicję ciągu silnie rosnącego podajemy w C3. Z twierdzenia A6 otrzymujemy natychmiast, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest

[math]\displaystyle{ n > \left( 1 + {\small\frac{1}{n}} \right)^n }[/math]

Zatem [math]\displaystyle{ n^{n + 1} > (n + 1)^n }[/math]. Logarytmując, dostajemy

[math]\displaystyle{ (n + 1) \log n > n \log (n + 1) }[/math]

Czyli

[math]\displaystyle{ {\small\frac{n + 1}{\log (n + 1)}} > {\small\frac{n}{\log n}} }[/math]

Łatwo sprawdzamy, że

[math]\displaystyle{ {\small\frac{3}{\log 3}} < {\small\frac{2}{\log 2}} }[/math]

Co należało pokazać.


Twierdzenie A8
Prawdziwe są następujące oszacowania:

[math]\displaystyle{ n^n \underset{n \geqslant 13}{<} p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{<} (n \log n)^n }[/math]
Dowód

Indukcja matematyczna. Udowodnimy tylko oszacowanie od dołu. Dowód oszacowania od góry przedstawimy po zakończeniu dowodu twierdzenia A1. Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 13 }[/math]. Zakładając prawdziwość twierdzenia dla liczb naturalnych [math]\displaystyle{ k \in [13, n] }[/math] mamy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n p_{n + 1} > n^n \cdot p_{n + 1} > n^n \cdot 3 (n + 1) > n^n \cdot \left( 1 + {\small\frac{1}{n}} \right)^n \cdot (n + 1) = (n + 1)^{n + 1} }[/math]

Gdzie skorzystaliśmy z faktu, że [math]\displaystyle{ p_n > 3 n }[/math] dla [math]\displaystyle{ n \geqslant 12 }[/math] oraz z właściwości rosnącego ciągu [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n < e = 2.718281828 \ldots < 3 }[/math] (zobacz twierdzenie A6).


Twierdzenie A9
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{P (2 n)}{P (n)}} < 4^{n - 1} }[/math], gdzie [math]\displaystyle{ P (n) }[/math] oznacza iloczyn wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math].

Dowód

Rozważmy współczynnik dwumianowy

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}} }[/math]

Każda liczba pierwsza należąca do przedziału [math]\displaystyle{ [n + 1, 2 n] }[/math] występuje w liczniku wypisanego wyżej ułamka i nie występuje w mianowniku. Wynika stąd oszacowanie

[math]\displaystyle{ {\small\binom{2 n}{n}} = C \cdot \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} > \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} = {\small\frac{P (2 n)}{P (n)}} }[/math]

Zauważmy, że wypisany w powyższej nierówności iloczyn liczb pierwszych jest liczbą nieparzystą. Ponieważ współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] jest dodatnią liczbą całkowitą parzystą, zatem również czynnik [math]\displaystyle{ C \geqslant 2 }[/math] musi być dodatnią liczbą całkowitą parzystą. Łącząc uzyskaną nierówność z oszacowaniem z twierdzenia A4, otrzymujemy natychmiast:

[math]\displaystyle{ {\small\frac{P (2 n)}{P (n)}} < {\small\binom{2 n}{n}} < 4^{n - 1} }[/math]

Dla [math]\displaystyle{ n = 2, 3, 4 }[/math] sprawdzamy uzyskany rezultat bezpośrednio.


Twierdzenie A10
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ P(n) < 4^n }[/math]

Dowód

Indukcja matematyczna. Oszacowanie [math]\displaystyle{ P(n) < 4^n }[/math] jest prawdziwe dla [math]\displaystyle{ n = 1, 2 }[/math]. Zakładając prawdziwość oszacowania dla wszystkich liczb całkowitych nie większych od [math]\displaystyle{ n }[/math], dla [math]\displaystyle{ n + 1 }[/math] rozpatrzymy dwa przypadki. Jeżeli [math]\displaystyle{ n + 1 = 2 k + 1 }[/math] jest liczbą nieparzystą większą lub równą [math]\displaystyle{ 3 }[/math], to mamy

[math]\displaystyle{ P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot {\small\frac{P (2 k + 2)}{P (k + 1)}} < 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1} }[/math]

gdzie skorzystaliśmy z założenia indukcyjnego i oszacowania z twierdzenia A9.

Jeżeli [math]\displaystyle{ n + 1 = 2 k }[/math] jest liczbą parzystą większą lub równą [math]\displaystyle{ 4 }[/math], to mamy

[math]\displaystyle{ P(n + 1) = P (2 k) = P (k) \cdot {\small\frac{P (2 k)}{P (k)}} < 4^k \cdot 4^{k - 1} = 4^{2 k - 1} < 4^{2 k} = 4^{n + 1} }[/math]

gdzie ponownie skorzystaliśmy z założenia indukcyjnego i oszacowania z twierdzenia A9.


Twierdzenie A11
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n > {\small\frac{1}{2 \log 2}} \cdot n \log n }[/math].

Dowód

Ponieważ z definicji [math]\displaystyle{ P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n }[/math], to korzystając z oszacowań uzyskanych w twierdzeniach A8A10 dostajemy dla [math]\displaystyle{ n \geqslant 13 }[/math]

[math]\displaystyle{ n^n < p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) < 4^{p_n} }[/math]

Logarytmując obie strony nierówności, mamy

[math]\displaystyle{ n \log n < p_n \cdot \log 4 }[/math]

Skąd natychmiast wynika dowodzone oszacowanie

[math]\displaystyle{ p_n > {\small\frac{1}{2 \log 2}} \cdot n \log n > 0.72 \cdot n \log n }[/math]

Prawdziwość powyższej nierówności dla [math]\displaystyle{ n \leqslant 12 }[/math] sprawdzamy bezpośrednio.


Twierdzenie A12
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (2 n) - \pi (n) < 2 \log 2 \cdot {\small\frac{n}{\log n}} }[/math].

Dowód

Każda liczba pierwsza należąca do przedziału [math]\displaystyle{ [n + 1, 2 n] }[/math] jest dzielnikiem współczynnika dwumianowego

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}} }[/math]

bo dzieli licznik i nie dzieli mianownika. Ponieważ dla każdej z tych liczb jest [math]\displaystyle{ p > n }[/math], to

[math]\displaystyle{ n^{\pi (2 n) - \pi (n)} < \prod_{n < p_i \leqslant 2 n} p_i < {\small\binom{2 n}{n}} < 4^n }[/math]

Ostatnia nierówność wynika z twierdzenia A4. Logarytmując, dostajemy

[math]\displaystyle{ [\pi (2 n) - \pi (n)] \cdot \log n < 2 n \cdot \log 2 }[/math]

Czyli

[math]\displaystyle{ \pi (2 n) - \pi (n) < 2 \log 2 \cdot {\small\frac{n}{\log n}} }[/math]


Twierdzenie A13
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) < 2 \cdot {\small\frac{n}{\log n}} }[/math].

Dowód

Indukcja matematyczna. Oszacowanie [math]\displaystyle{ \pi (n) < 2 \cdot {\small\frac{n}{\log n}} }[/math] jest prawdziwe dla [math]\displaystyle{ 2 \leqslant n \leqslant 62 }[/math], co łatwo sprawdzamy przez bezpośrednie wyliczenie. W programie GP/PARI wystarczy wpisać polecenie

for(n = 2, 62, if( primepi(n) >= 2 * n/log(n), print(n) ))

Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych należących do przedziału [math]\displaystyle{ [2, n] }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

a) jeżeli [math]\displaystyle{ n + 1 }[/math] jest liczbą parzystą, to

[math]\displaystyle{ \pi (n + 1) = \pi (n) = 2 \cdot {\small\frac{n}{\log n}} < 2 \cdot {\small\frac{n + 1}{\log (n + 1)}} }[/math]

Ostatnia nierówność wynika natychmiast z zadania A7.

b) jeżeli [math]\displaystyle{ n + 1 }[/math] jest liczbą nieparzystą, to możemy położyć [math]\displaystyle{ n + 1 = 2 k + 1 }[/math] i otrzymujemy:

[math]\displaystyle{ \pi (n + 1) = \pi (2 k + 1) }[/math]
[math]\displaystyle{ \quad = \pi (2 k + 2) }[/math]
[math]\displaystyle{ \quad = \pi (k + 1) + [\pi (2 k + 2) - \pi (k + 1)] }[/math]
[math]\displaystyle{ \quad < 2 \cdot {\small\frac{k + 1}{\log (k + 1)}} + 2 \log 2 \cdot {\small\frac{k + 1}{\log (k + 1)}} }[/math]
[math]\displaystyle{ \quad = (1 + \log 2) \cdot {\small\frac{2 k + 2}{\log (k + 1)}} }[/math]
[math]\displaystyle{ \quad < \left[ 1.7 \cdot {\small\frac{2 k + 2}{\log (k + 1)}} \cdot {\small\frac{\log (2 k + 1)}{2 k + 1}} \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot {\small\frac{2 k + 2}{2 k + 1}} \cdot {\small\frac{\log (2 k + 2)}{\log (k + 1)}} \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot \left( 1 + {\small\frac{1}{2 k + 1}} \right) \cdot {\small\frac{\log (k + 1) + \log 2}{\log (k + 1)}} \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot \left( 1 + {\small\frac{1}{2 k + 1}} \right) \cdot \left( 1 + {\small\frac{\log 2}{\log (k + 1)}} \right) \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad < 2 \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = 2 \cdot {\small\frac{n + 1}{\log (n + 1)}} }[/math]

Ostatnia nierówność wynika z faktu, że czynnik w nawiasie kwadratowym maleje wraz ze wzrostem [math]\displaystyle{ k }[/math] i dla [math]\displaystyle{ k = 63 }[/math] osiąga wartość [math]\displaystyle{ 1.9989 \ldots }[/math]



Wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} }[/math].


Definicja A14
Funkcję [math]\displaystyle{ \lfloor x \rfloor }[/math] (czytaj: całość z [math]\displaystyle{ x }[/math]) definiujemy jako największą liczbę całkowitą nie większą od [math]\displaystyle{ x }[/math]. Operacyjnie możemy ją zdefiniować następująco: niech liczby [math]\displaystyle{ x, \varepsilon \in \mathbb{R} }[/math], liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ 0 \leqslant \varepsilon < 1 }[/math], jeżeli [math]\displaystyle{ x = k + \varepsilon }[/math], to [math]\displaystyle{ \lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k }[/math].


Twierdzenie A15
Dla [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], [math]\displaystyle{ x \in \mathbb{R} }[/math] jest [math]\displaystyle{ \left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor }[/math].

Dowód

Korzystając z definicji A14, przedstawmy liczbę w postaci [math]\displaystyle{ x = k + \varepsilon }[/math], gdzie [math]\displaystyle{ 0 \leqslant \varepsilon < 1 }[/math].

Z twierdzenia o dzieleniu z resztą liczbę [math]\displaystyle{ k }[/math] możemy zapisać w postaci [math]\displaystyle{ k = q n + r }[/math], gdzie [math]\displaystyle{ 0 \leqslant r \leqslant n - 1 }[/math], mamy zatem [math]\displaystyle{ x = q n + r + \varepsilon }[/math]. Ponieważ [math]\displaystyle{ 0 \leqslant r + \varepsilon < n }[/math], to po podzieleniu przez [math]\displaystyle{ n }[/math] dostajemy

[math]\displaystyle{ 0 \leqslant {\small\frac{r + \varepsilon}{n}} < 1 }[/math]

czyli

[math]\displaystyle{ \left \lfloor {\small\frac{x}{n}} \right \rfloor = \left \lfloor {\small\frac{qn + r + \varepsilon }{n}} \right \rfloor = \left \lfloor q + {\small\frac{r + \varepsilon }{n}} \right \rfloor = q }[/math]

Podobnie, ponieważ [math]\displaystyle{ 0 \leqslant r < n }[/math], to [math]\displaystyle{ 0 \leqslant {\small\frac{r}{n}} < 1 }[/math] i otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{\left \lfloor x \right\rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor qn + r + \varepsilon \right \rfloor}{n}} \right \rfloor = \left \lfloor {\small\frac{qn + r}{n}} \right \rfloor = \left \lfloor q + {\small\frac{r}{n}} \right \rfloor = q }[/math]


Twierdzenie A16
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Liczba [math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor }[/math] przyjmuje wartości [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math].

Dowód

Niech [math]\displaystyle{ x = k + \varepsilon }[/math], gdzie [math]\displaystyle{ 0 \leqslant \varepsilon < 1 }[/math]. Mamy

[math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor = \lfloor 2 k + 2 \varepsilon \rfloor - 2 \lfloor k + \varepsilon \rfloor = 2 k + \lfloor 2 \varepsilon \rfloor - 2 k -2 \lfloor \varepsilon \rfloor = \lfloor 2 \varepsilon \rfloor }[/math]

Ponieważ [math]\displaystyle{ 0 \leqslant 2 \varepsilon < 2 }[/math], zatem [math]\displaystyle{ \lfloor 2 \varepsilon \rfloor = 0 }[/math] lub [math]\displaystyle{ \lfloor 2 \varepsilon \rfloor = 1 }[/math].


Bardzo istotnym rezultatem (z punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n! }[/math]


Definicja A17
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą, zaś [math]\displaystyle{ a }[/math] dowolną liczbą naturalną. Jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ a }[/math], to powiemy, że funkcja [math]\displaystyle{ W_p (n) }[/math] przyjmuje wartość [math]\displaystyle{ a }[/math]. Fakt ten możemy zapisać następująco

[math]\displaystyle{ W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n }[/math]


Przykład A18
[math]\displaystyle{ W_5 (100) = 2 }[/math],   [math]\displaystyle{ W_7 (42) = 1 }[/math],   ponieważ [math]\displaystyle{ 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11 }[/math], to [math]\displaystyle{ W_3 (11!) = 4 }[/math]


Wprost z definicji funkcji [math]\displaystyle{ W_p (n) }[/math] wynikają następujące właściwości:


Twierdzenie A19

Podstawowe własności funkcji [math]\displaystyle{ W_p (n) }[/math]

  1. [math]\displaystyle{ \;\; W_p (n \cdot m) = W_p (n) + W_p (m) }[/math]
  2. [math]\displaystyle{ \;\; W_p (n \cdot p^a) = a + W_p (n) }[/math]
  3. [math]\displaystyle{ \;\; W_{p}\left ( {\small\frac{n}{m}} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad {\small\frac{n}{m}}\in \mathbb{Z}_{+} }[/math]
  4. [math]\displaystyle{ \;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0 }[/math]


Twierdzenie A20
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Ilość liczb podzielnych przez [math]\displaystyle{ p }[/math] i występujących w ciągu [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] wynosi [math]\displaystyle{ r = \left\lfloor {\small\frac{n}{p}} \right\rfloor }[/math].

Dowód

Wśród liczb naturalnych [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] istnieje pewna ilość liczb podzielnych przez [math]\displaystyle{ p }[/math]. Liczby te możemy z łatwością wypisać, będą nimi

[math]\displaystyle{ 1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, r \cdot p }[/math]

Gdzie [math]\displaystyle{ r }[/math] jest największą liczbą całkowitą nie większą niż [math]\displaystyle{ {\small\frac{n}{p}} }[/math], czyli [math]\displaystyle{ r = \left\lfloor {\small\frac{n}{p}} \right\rfloor }[/math].


Przykład A21
Ilość liczb całkowitych dodatnich podzielnych przez [math]\displaystyle{ 5 }[/math] i nie większych od [math]\displaystyle{ 63 }[/math] wynosi [math]\displaystyle{ \left\lfloor {\small\frac{63}{5}} \right\rfloor = 12 }[/math]. Liczby te to [math]\displaystyle{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 }[/math].


Twierdzenie A20 umożliwi nam określenie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Twierdzenie A22
Liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

Dowód

Dowód sprowadza się do znalezienia wartości funkcji [math]\displaystyle{ W_p (n!) }[/math].

[math]\displaystyle{ W_p (n!) = W_p (1 \cdot 2 \cdot 3 \cdot \ldots \cdot n) = W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p}} \right\rfloor \cdot p \right) }[/math]

Pozostawiliśmy jedynie czynniki podzielne przez [math]\displaystyle{ p }[/math] (czynniki niepodzielne przez [math]\displaystyle{ p }[/math] nie dają wkładu do wykładnika, z jakim [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]), wyłączając czynnik [math]\displaystyle{ p }[/math] z każdej z liczb [math]\displaystyle{ p, 2 p, 3 p, \ldots, \left\lfloor {\small\frac{n}{p}} \right\rfloor \cdot p }[/math] mamy

[math]\displaystyle{ W_p (n!) = W_p \left( p^{\lfloor n / p \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p}} \right\rfloor \right) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p}} \right\rfloor \right) }[/math]

Otrzymane wyrażenie przekształcamy analogicznie jak wyżej

[math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{\lfloor n / p \rfloor}{p}} \right\rfloor \cdot p \right) }[/math]

Z twierdzenia A15 wiemy, że dla [math]\displaystyle{ x \in \mathbb{R} }[/math] i [math]\displaystyle{ n \in \mathbb{Z}_{+} }[/math] jest:

[math]\displaystyle{ \left\lfloor {\small\frac{\lfloor x \rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{x}{n}} \right \rfloor }[/math]

zatem

[math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p^2}} \right\rfloor \cdot p \right) = }[/math]
[math]\displaystyle{ \;\, = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p^{\lfloor n / p^2 \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p^2}} \right\rfloor \right) = }[/math]
[math]\displaystyle{ \;\, = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p^2}} \right\rfloor \right) }[/math]

Oczywiście opisaną wyżej procedurę możemy powtarzać wielokrotnie. Zakończenie następuje wtedy, gdy wykładnik liczby pierwszej [math]\displaystyle{ p }[/math] osiągnie wartość tak dużą, że [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]. Ponieważ nie wiemy, jaka to wartość (choć możemy ją oszacować), to stosujemy zapis

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

zdając sobie sprawę z tego, że w rzeczywistości sumowanie obejmuje jedynie skończoną liczbę składników.


Uwaga A23
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w postaci

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^B \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

gdzie [math]\displaystyle{ B = \lfloor \log_2 (n) \rfloor }[/math]. Jest tak dlatego, że jeżeli [math]\displaystyle{ k }[/math] przekroczy [math]\displaystyle{ \lfloor \log_2 (n) \rfloor }[/math], to dla liczby pierwszej [math]\displaystyle{ p = 2 }[/math], jak również dla wszystkich innych liczb pierwszych, mamy

[math]\displaystyle{ {\small\frac{n}{p^k}} < 1 }[/math]

czyli dla [math]\displaystyle{ k > B }[/math] sumujemy same zera.


Przykład A24
Niech [math]\displaystyle{ n = 30 }[/math], [math]\displaystyle{ p = 3 }[/math]

[math]\displaystyle{ W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3 \cdot 6 \cdot 9) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + 1 = }[/math]
[math]\displaystyle{ \quad = 14 }[/math]

Co jest zgodne ze wzorem:

[math]\displaystyle{ W_3 (30!) = \left\lfloor {\small\frac{30}{3}} \right\rfloor + \left\lfloor {\small\frac{30}{3^2}} \right\rfloor + \left\lfloor {\small\frac{30}{3^3}} \right\rfloor = 10 + 3 + 1 = 14 }[/math]



Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.


Twierdzenie A25
Liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] z wykładnikiem

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right) }[/math]
Dowód

Ponieważ [math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] z wykładnikiem:

[math]\displaystyle{ W_p \left( {\small\binom{2 n}{n}} \right) = W_p ((2 n) !) - 2 W_p (n!) = \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right) }[/math]



Twierdzenie A26
Liczby pierwsze spełniające warunek [math]\displaystyle{ p > \sqrt{2 n} }[/math] występują w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].

Dowód

Jeżeli [math]\displaystyle{ p > \sqrt{2 n} }[/math], to dla [math]\displaystyle{ k \geqslant 2 }[/math] mamy [math]\displaystyle{ p^k \geqslant p^2 > 2 n > n }[/math]. Zatem dla [math]\displaystyle{ k \geqslant 2 }[/math] jest [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math] i otrzymujemy

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = \left \lfloor {\small\frac{2 n}{p}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p}} \right \rfloor }[/math]

Na mocy twierdzenia A16 (dla [math]\displaystyle{ x = \tfrac{n}{p} }[/math]), dostajemy natychmiast, że [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].


Twierdzenie A27
Niech [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \, p }[/math] będzie liczbą pierwszą. Jeżeli [math]\displaystyle{ p^a \biggr\rvert {\small\binom{2 n}{n}} }[/math], to [math]\displaystyle{ p^a \leqslant 2 n }[/math]. Równość w tym oszacowaniu jest możliwa tylko w przypadku, gdy [math]\displaystyle{ n = 1 }[/math] (wtedy [math]\displaystyle{ p = 2 \; }[/math] i [math]\displaystyle{ \; a = 1 }[/math]).

Dowód

Niech [math]\displaystyle{ u }[/math] oznacza wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze. Mamy

[math]\displaystyle{ u = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \right) }[/math]

gdzie sumowanie przebiega w rzeczywistości od [math]\displaystyle{ k = 1 }[/math] do [math]\displaystyle{ k = s }[/math], a wartość liczby [math]\displaystyle{ s }[/math] wynika z warunku [math]\displaystyle{ p^s \leqslant 2 n < p^{s + 1} }[/math]. Ponieważ sumowane wyrazy są równe [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy natychmiast oszacowanie [math]\displaystyle{ u \leqslant s }[/math], skąd wynika następujący ciąg nierówności

[math]\displaystyle{ p^a \leqslant p^u \leqslant p^s \leqslant 2 n }[/math]


Rozważmy przypadek, gdy [math]\displaystyle{ p^a = 2 n }[/math]. Liczba pierwsza [math]\displaystyle{ p }[/math] nie może być liczbą nieparzystą, bo po prawej stronie równości mamy liczbę parzystą. Zatem może jedynie być [math]\displaystyle{ p = 2 }[/math] i nie może być [math]\displaystyle{ a = 0 . }[/math] Czyli dostajemy [math]\displaystyle{ 2^a = 2 n }[/math], a stąd [math]\displaystyle{ n = 2^{a - 1} \; }[/math] i [math]\displaystyle{ \; a \geqslant 1 }[/math].

Zauważmy teraz, że dla [math]\displaystyle{ a \geqslant 1 }[/math] mamy

[math]\displaystyle{ \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2^a}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{2^{a - 1}}{2^k}} \right\rfloor \right) = \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{k = 1}^{a - 1} \lfloor 2^{a - (k + 1)} \rfloor }[/math]
[math]\displaystyle{ \;\;\, = \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{j = 2}^{a} \lfloor 2^{a - j} \rfloor }[/math]
[math]\displaystyle{ \;\;\, = \lfloor 2^{a - 1} \rfloor + \sum_{k = 2}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{j = 2}^{a} \lfloor 2^{a - j} \rfloor }[/math]
[math]\displaystyle{ \;\;\, = \lfloor 2^{a - 1} \rfloor - \sum_{k = 2}^{a} \lfloor 2^{a - k} \rfloor }[/math]
[math]\displaystyle{ \;\;\, = 2 \lfloor 2^{a - 1} \rfloor - \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor }[/math]
[math]\displaystyle{ \;\;\, = 2^a - \sum_{k = 1}^{a} 2^{a - k} }[/math]
[math]\displaystyle{ \;\;\, = 2^a - 2^a \sum_{k = 1}^{a} {\small\frac{1}{2^k}} }[/math]
[math]\displaystyle{ \;\;\, = 1 }[/math]


Zatem

[math]\displaystyle{ a = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2 n}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{2^k}} \right\rfloor \right) = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2^a}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{2^{a - 1}}{2^k}} \right\rfloor \right) = 1 }[/math]


Wynika stąd, że [math]\displaystyle{ n = 2^{a - 1} = 1 }[/math]. Istotnie, dla [math]\displaystyle{ n = 1 }[/math] dostajemy

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\binom{2}{1}} = 2 }[/math]

Widzimy, że dla [math]\displaystyle{ p = 2 \; }[/math] i [math]\displaystyle{ \; n = 1 \; }[/math] jest [math]\displaystyle{ \; p \biggr\rvert {\small\binom{2 n}{n}} \; }[/math] i [math]\displaystyle{ \; p = 2 n }[/math]. Co należało pokazać.



Oszacowanie [math]\displaystyle{ p_n }[/math] od góry i [math]\displaystyle{ \pi (n) }[/math] od dołu

Z twierdzenia A27 wynika natychmiast


Twierdzenie A28
Niech [math]\displaystyle{ {\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math] będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej [math]\displaystyle{ q_i }[/math], [math]\displaystyle{ i = 1, \ldots, s }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ q^{\alpha_i}_i \leqslant 2 n }[/math].

Uwaga: w powyższym twierdzeniu [math]\displaystyle{ q_i }[/math] nie oznacza [math]\displaystyle{ i }[/math]-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie [math]\displaystyle{ i }[/math] ze zboru liczb pierwszych [math]\displaystyle{ q_1, \ldots q_s }[/math], które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera.


Twierdzenie A29
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest następujące oszacowanie współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]

[math]\displaystyle{ {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)} }[/math]
Dowód

Dowód wynika natychmiast z twierdzenia A28, bo

[math]\displaystyle{ {\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)} }[/math]


Twierdzenie A30
Dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]
Dowód

W twierdzeniu A4 oszacowaliśmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]. Przepiszemy, to twierdzenie w postaci bardziej czytelnej dla potrzeb tego dowodu

[math]\displaystyle{ \left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < {\small\binom{2 n}{n}} }[/math]

Nierówności te są prawdziwe dla [math]\displaystyle{ n \geqslant 80 }[/math]. Z twierdzenia A29 mamy

[math]\displaystyle{ \left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)} }[/math]

Łącząc odpowiednie oszacowania współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] od góry z odpowiednimi oszacowaniami od dołu, dostajemy

[math]\displaystyle{ (2 n + 1)^{\pi (2 n + 1)} > \left( \sqrt{3.8} \right)^{2 n + 1} }[/math]
[math]\displaystyle{ (2 n)^{\pi (2 n)} > \left( \sqrt{3.8} \right)^{2 n} }[/math]

Zatem zarówno dla parzystych, jak i nieparzystych liczb [math]\displaystyle{ m \geqslant 160 }[/math] jest

[math]\displaystyle{ m^{\pi (m)} > \left( \sqrt{3.8} \right)^m }[/math]
[math]\displaystyle{ \pi (m) \cdot \log m > m \cdot \log \left( \sqrt{3.8} \right) }[/math]

Czyli

[math]\displaystyle{ \pi (m) > {\small\frac{1}{2}} \cdot \log \left ( 3.8 \right ) \cdot {\small\frac{m}{\log m}} > 0.6675 \cdot {\small\frac{m}{\log m}} > {\small\frac{2}{3}} \cdot {\small\frac{m}{\log m}} }[/math]

Dla [math]\displaystyle{ m = 3, 4, \ldots, 159 }[/math] prawdziwość nierówności sprawdzamy przez bezpośrednie wyliczenie. W programie GP/PARI wystarczy wykonać polecenie

for(n = 2, 200, if( primepi(n) <= 2/3 * n/log(n), print(n) ))


Twierdzenie A31
Niech [math]\displaystyle{ a \in \mathbb{R}_+ }[/math]. Ciąg [math]\displaystyle{ u_n = {\small\frac{n^a}{\log n}} }[/math] jest ciągiem silnie rosnącym dla [math]\displaystyle{ n > e^{1 / a} }[/math].

Dowód

Zauważmy, że dowodzone twierdzenie jest uogólnieniem twierdzenia A7. Rozważmy funkcję zmiennej rzeczywistej [math]\displaystyle{ f(x) = {\small\frac{x^a}{\log x}} }[/math]. Pochodna funkcji [math]\displaystyle{ f(x) }[/math] jest równa

[math]\displaystyle{ f' (x) = {\small\frac{x^{a - 1}}{\log^2 x}} \cdot (a \log x - 1) \qquad }[/math] (WolframAlpha)

Dla [math]\displaystyle{ x \in (0, 1) }[/math] mamy [math]\displaystyle{ \log x < 0 }[/math] i pochodna [math]\displaystyle{ f' (x) }[/math] jest ujemna.

Dla [math]\displaystyle{ x > 1 }[/math] mamy [math]\displaystyle{ \log x > 0 }[/math] i pochodna [math]\displaystyle{ f' (x) }[/math] jest dodatnia, gdy

[math]\displaystyle{ a \log x - 1 > 0 }[/math]
[math]\displaystyle{ \log x > {\small\frac{1}{a}} }[/math]
[math]\displaystyle{ x > e^{1 / a} }[/math]

Wynika stąd, że funkcja [math]\displaystyle{ f(x) }[/math] jest silnie rosnąca dla [math]\displaystyle{ x > e^{1 / a} }[/math].

Zauważmy, że ciąg [math]\displaystyle{ u_n = {\small\frac{n^a}{\log n}} }[/math] to wartości funkcji [math]\displaystyle{ f(x) }[/math] w punktach całkowitych [math]\displaystyle{ x = n }[/math], zatem otrzymujemy

[math]\displaystyle{ u_{n + 1} = f (n + 1) > f (n) = u_n \qquad \qquad \qquad \text{dla} \;\; n > e^{1 / a} }[/math]

Co należało pokazać.


Przykład A32
Zauważmy, że prawdziwe jest proste stwierdzenie

Jeżeli ciąg [math]\displaystyle{ u_n }[/math] jest rosnący dla [math]\displaystyle{ n > n_0 }[/math] oraz istnieje takie [math]\displaystyle{ n_1 > n_0 }[/math], że [math]\displaystyle{ u_{n_1} > 0 }[/math], to dla wszystkich [math]\displaystyle{ n \geqslant n_1 }[/math] mamy [math]\displaystyle{ u_n > 0 }[/math].


Podkreślmy, że liczba [math]\displaystyle{ n_1 }[/math] może być znaleziona różnymi metodami i nie musimy wyjaśniać, jak ją znaleźliśmy.


Dla przykładu rozważmy problem z twierdzenia A33. Pokazujemy tam, że dla odpowiednio dużego [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ u_n = {\small\frac{2}{3}} \cdot {\small\frac{n^{1 / 4}}{\log n}} - 1 > 0 }[/math]

Istotnie, ciąg [math]\displaystyle{ {\small\frac{n^{1 / 4}}{\log n}} }[/math] jest silnie rosnący dla [math]\displaystyle{ n > e^4 \approx 54.6 }[/math] (zobacz A31). Również ciąg [math]\displaystyle{ u_n = {\small\frac{2}{3}} \cdot {\small\frac{n^{1 / 4}}{\log n}} - 1 }[/math] jest silnie rosnący dla [math]\displaystyle{ n > e^4 }[/math] (zobacz C4).

Mamy też

[math]\displaystyle{ u_{83500} \approx 0.00000167 > 0 }[/math]

Oczywiście [math]\displaystyle{ 83500 > e^4 }[/math], zatem ciąg [math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n^{1 / 4}}{\log n}} - 1 }[/math] jest większy od zera dla wszystkich [math]\displaystyle{ n \geqslant 83500 }[/math].

Zastosowane wyżej podejście może być wykorzystane w dowodach twierdzeń A33, A34, B12 itd.


Twierdzenie A33
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n < 2 n \log n }[/math]

Dowód

Rozpoczniemy od pokazania, że dla [math]\displaystyle{ x > 83499.14 }[/math] prawdziwe jest następujące oszacowanie funkcji [math]\displaystyle{ \log x }[/math] od góry

[math]\displaystyle{ \log x < {\small\frac{2}{3}} \cdot x^{1 / 4} }[/math]

Wiemy, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla [math]\displaystyle{ x > x_0 }[/math] jest [math]\displaystyle{ \log x < x^{1 / n} }[/math]. Zatem dla odpowiednio dużych [math]\displaystyle{ x }[/math] z pewnością będzie [math]\displaystyle{ \tfrac{2}{3} \cdot x^{1 / 4} > \log x \, }[/math][a]. Zamieszczony niżej obrazek przedstawia wykres funkcji [math]\displaystyle{ f( x ) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x }[/math].

Wpisując w PARI/GP polecenie

solve(x = 80000, 10^5, 2/3 * x^(1/4) - log(x))

wyliczamy, że funkcja [math]\displaystyle{ f( x ) }[/math] przecina oś [math]\displaystyle{ O X }[/math] w punkcie [math]\displaystyle{ x = 83499.136 \ldots }[/math] Wynika stąd, że dla [math]\displaystyle{ x > 83499.14 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ \log x < {\small\frac{2}{3}} \cdot x^{1 / 4} }[/math]


Z twierdzenia A30 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Kładąc [math]\displaystyle{ n = p_k }[/math], otrzymujemy dla [math]\displaystyle{ k \geqslant 2 }[/math]

[math]\displaystyle{ k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}} }[/math]

Zatem

[math]\displaystyle{ p_k < {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1) }[/math]

Korzystając z wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla [math]\displaystyle{ p_k > 83499 }[/math]

[math]\displaystyle{ p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 4} }[/math]

czyli

[math]\displaystyle{ (p_k)^{3 / 4} < k }[/math]
[math]\displaystyle{ p_k < k^{4 / 3} }[/math]

Wstawiając to oszacowanie ponownie do [math]\displaystyle{ (1) }[/math], dostajemy

[math]\displaystyle{ p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{4}{3}} \cdot \log k = 2 k \log k }[/math]

Wpisując w PARI/GP polecenie

for(k = 1, 10^5, p = prime(k); if( p > 83499, print("end"); break() ); if( p >= 2 * k * log(k), print(k) ))

łatwo sprawdzamy, że oszacowanie [math]\displaystyle{ p_k < 2 k \log k }[/math] jest prawdziwe dla [math]\displaystyle{ k \geqslant 3 }[/math].



[a] Bardziej precyzyjnie: pochodna funkcji [math]\displaystyle{ f(x) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x }[/math] jest równa [math]\displaystyle{ {\small\frac{1}{6 x^{3 / 4}}} - {\small\frac{1}{x}} }[/math] (zobacz WolframAlpha). Łatwo sprawdzamy, że pochodna jest ujemna w przedziale [math]\displaystyle{ (0, 1296) }[/math] i dodatnia w przedziale [math]\displaystyle{ (1296, \infty) }[/math]. Wynika stąd, że funkcja [math]\displaystyle{ f( x ) }[/math] jest funkcją malejącą dla [math]\displaystyle{ x < 1296 }[/math] i rosnącą dla [math]\displaystyle{ x > 1296 }[/math].






Dowód twierdzenia A33 kończy dowód całego twierdzenia A1. Możemy teraz dokończyć dowód twierdzenia A8 i pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n < (n \log n)^n }[/math]
Dowód

Indukcja matematyczna. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 3 }[/math]. Zakładając prawdziwość twierdzenia dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n p_{n + 1} < (n \log n)^n \cdot p_{n + 1} < }[/math]
[math]\displaystyle{ \quad < n^n \cdot (\log n)^n \cdot 2 (n + 1) \log (n + 1) \leqslant }[/math]
[math]\displaystyle{ \quad \leqslant n^n \cdot \left( 1 + {\small\frac{1}{n}} \right)^n \cdot (n + 1) \cdot (\log n)^n \cdot \log (n + 1) < }[/math]
[math]\displaystyle{ \quad < (n + 1)^{n + 1} \cdot [\log (n + 1)]^n \cdot \log (n + 1) = }[/math]
[math]\displaystyle{ \quad = [(n + 1) \cdot \log (n + 1)]^{n + 1} }[/math]

Gdzie skorzystaliśmy z twierdzenia A33 oraz z faktu, że ciąg [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] jest ciągiem ograniczonym [math]\displaystyle{ 2 \leqslant a_n < 3 }[/math] (zobacz twierdzenie A6).



Uwagi do dowodu

Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i udowodnić


Twierdzenie A34
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n < 1.875 \cdot n \log n }[/math]

Dowód

Rozpoczniemy od pokazania, że dla [math]\displaystyle{ x > 7572437.23 }[/math] prawdziwe jest następujące oszacowanie funkcji [math]\displaystyle{ \log x }[/math] od góry

[math]\displaystyle{ \log x < {\small\frac{2}{3}} \cdot x^{1 / 5} }[/math]

Wiemy, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla [math]\displaystyle{ x > x_0 }[/math] jest [math]\displaystyle{ \log x < x^{1 / n} }[/math]. Zatem dla odpowiednio dużych [math]\displaystyle{ x }[/math] z pewnością będzie [math]\displaystyle{ \tfrac{2}{3} \cdot x^{1 / 5} > \log x \, }[/math][a]. Wpisując w PARI/GP polecenie

solve(x = 10^6, 10^7, 2/3 * x^(1/5) - log(x))

wyliczamy, że funkcja [math]\displaystyle{ f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x }[/math] przecina oś [math]\displaystyle{ O X }[/math] w punkcie [math]\displaystyle{ x = 7572437.223 \ldots }[/math] Wynika stąd, że dla [math]\displaystyle{ x > 7572437.23 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ \log x < {\small\frac{2}{3}} \cdot x^{1 / 5} }[/math]


Z twierdzenia A30 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Kładąc [math]\displaystyle{ n = p_k }[/math], otrzymujemy dla [math]\displaystyle{ k \geqslant 2 }[/math]

[math]\displaystyle{ k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}} }[/math]

Zatem

[math]\displaystyle{ p_k < {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1) }[/math]

Korzystając z wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla [math]\displaystyle{ p_k > 7572437 }[/math]

[math]\displaystyle{ p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 5} }[/math]

czyli

[math]\displaystyle{ (p_k)^{4 / 5} < k }[/math]
[math]\displaystyle{ p_k < k^{5 / 4} }[/math]

Wstawiając to oszacowanie ponownie do [math]\displaystyle{ (1) }[/math], dostajemy

[math]\displaystyle{ p_k < {\small\frac{3}{2}} \cdot k \cdot {\small\frac{5}{4}} \cdot \log k = 1.875 \cdot k \log k }[/math]

Wpisując w PARI/GP polecenie

for(k = 1, 10^7, p = prime(k); if( p > 7572437, print("end"); break() ); if( p >= 2 * k * log(k), print(k) ))

łatwo sprawdzamy, że oszacowanie [math]\displaystyle{ p_k < 1.875 \cdot k \log k }[/math] jest prawdziwe dla [math]\displaystyle{ k \geqslant 3 }[/math].



[a] Bardziej precyzyjnie: pochodna funkcji [math]\displaystyle{ f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x }[/math] jest równa [math]\displaystyle{ {\small\frac{2}{15 x^{4 / 5}}} - {\small\frac{1}{x}} }[/math] (zobacz WolframAlpha). Łatwo sprawdzamy, że pochodna jest ujemna w przedziale [math]\displaystyle{ (0, 23730.46875) }[/math] i dodatnia w przedziale [math]\displaystyle{ (23730.46875, \infty) }[/math]. Wynika stąd, że funkcja [math]\displaystyle{ f( x ) }[/math] jest funkcją malejącą dla [math]\displaystyle{ x < 23730.46875 }[/math] i rosnącą dla [math]\displaystyle{ x > 23730.46875 }[/math].


Twierdzenie A35
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) < 1.733 \cdot {\small\frac{n}{\log n}} }[/math]
Dowód

Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest

[math]\displaystyle{ \pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > n^{4 / 5} }[/math]

Ostatnia nierówność wynika z faktu, że dla [math]\displaystyle{ x > 7572437.223 \ldots }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{x}{\log x}} > x^{4 / 5} }[/math]

Korzystając z twierdzenia A10 możemy napisać ciąg nierówności

[math]\displaystyle{ 4^n > P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} > \pi (n)^{\pi (n)} > (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5} }[/math]

skąd otrzymujemy, że dla [math]\displaystyle{ n \geqslant 7572438 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) < 1.733 \cdot {\small\frac{n}{\log n}} }[/math]

W GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 2 }[/math]

for(n = 2, 8*10^6, if( primepi(n) >= 1.733 * n/log(n), print(n) ))


Uwaga A36
Dowód twierdzenia A34 wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja prime(n). Analogiczna sytuacja miała miejsce w przypadku twierdzenia A35 – tam musieliśmy wielokrotnie wywoływać funkcję primepi(n). Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy Test1(n) i Test2(n) wywołane z parametrami n = 520000 i odpowiednio n = 8*10^6 odpowiadają poleceniom

for(s = 1, 520000, if( prime(s) >= s^(5/4), print(s) ))
for(n = 2, 8 * 10^6, if( primepi(n) >= 1.733 * n / log(n), print(n) ))

ale wykonywane są znacznie szybciej.

Test1(n) = 
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
{
local(p, k);
k = 1;
p = 2;
while( k <= n,
       if( p >= k^(5/4), print(k) );
       k = k + 1;
       p = nextprime(p + 1);  \\ liczba p ma wartość prime(k)
     );
}
Test2(n) = 
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
local(s, k);
s = 1;
k = 2;
while( k <= n,
       if( s >= 1.733 * k / log(k), print(k) );
       k = k + 1;
       s = s + isprime(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
     );
}


Uwaga A37
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] lub [math]\displaystyle{ p_n }[/math]. Już osiągnięcie tą drogą oszacowania [math]\displaystyle{ p_n < 1.6 \cdot n \log n }[/math] przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność

[math]\displaystyle{ \log x < {\small\frac{2}{3}} \cdot x^{1 / 16} }[/math]

jest prawdziwa dla [math]\displaystyle{ x > 7.671 \cdot 10^{32} }[/math].



Zastosowania

Ciekawy rezultat wynika z twierdzenia A8, ale wcześniej musimy udowodnić twierdzenie o średniej arytmetycznej i geometrycznej.

Twierdzenie A38
Dla dowolnych liczb dodatnich [math]\displaystyle{ a_1, a_2, \ldots, a_n }[/math] średnia arytmetyczna jest nie mniejsza od średniej geometrycznej

[math]\displaystyle{ {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n} }[/math]
Dowód

Twierdzenie jest w sposób oczywisty prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Równie łatwo stwierdzamy prawdziwość nierówności dla [math]\displaystyle{ n = 2 }[/math]

[math]\displaystyle{ (a_1 - a_2)^2 \geqslant 0 }[/math]
[math]\displaystyle{ a^2_1 - 2 a_1 a_2 + a^2_2 \geqslant 0 }[/math]
[math]\displaystyle{ a^2_1 + 2 a_1 a_2 + a^2_2 \geqslant 4 a_1 a_2 }[/math]
[math]\displaystyle{ (a_1 + a_2)^2 \geqslant 4 a_1 a_2 }[/math]
[math]\displaystyle{ {\small\frac{a_1 + a_2}{2}} \geqslant \sqrt{a_1 a_2} }[/math]

Dla potrzeb dowodu zapiszemy dowodzoną nierówność w postaci

[math]\displaystyle{ \left( {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \right)^n \geqslant a_1 a_2 \cdot \ldots \cdot a_n }[/math]

Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] dla [math]\displaystyle{ n + 1 }[/math] mamy

a) w przypadku gdy [math]\displaystyle{ n + 1 = 2 k }[/math] jest liczbą parzystą

[math]\displaystyle{ \left( {\small\frac{a_1 + a_2 + \ldots + a_{n + 1}}{n + 1}} \right)^{n + 1} = \left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k}}{2 k}} \right)^{2 k} = }[/math]
[math]\displaystyle{ \;\;\, = \left[ \left( \frac{ \tfrac{a_{\large 1} + a_{\large 2}}{2} + \tfrac{a_{\large 3} + a_{\large 4}}{2} + \ldots + \tfrac{a_{\large 2 k - 1} + a_{\large 2 k}}{2}}{k} \right)^k \right]^2 \geqslant }[/math]
[math]\displaystyle{ \;\;\, \geqslant \left( {\small\frac{a_1 + a_2}{2}} \cdot {\small\frac{a_3 + a_4}{2}} \cdot \ldots \cdot {\small\frac{a_{2 k - 1} + a_{2 k}}{2}} \right)^2 \geqslant }[/math]
[math]\displaystyle{ \;\;\, \geqslant \left( \sqrt{a_1 a_2} \cdot \sqrt{a_3 a_4} \cdot \ldots \cdot \sqrt{a_{2 k - 1} a_{2 k}} \right)^2 = }[/math]
[math]\displaystyle{ \;\;\, = a_1 a_2 \cdot \ldots \cdot a_{2 k} = }[/math]
[math]\displaystyle{ \;\;\, = a_1 a_2 \cdot \ldots \cdot a_{n + 1} }[/math]

Gdzie skorzystaliśmy z założenia indukcyjnego i prawdziwości dowodzonego twierdzenia dla [math]\displaystyle{ n = 2 }[/math].

b) w przypadku gdy [math]\displaystyle{ n + 1 = 2 k - 1 }[/math] jest liczbą nieparzystą, możemy skorzystać z udowodnionego wyżej punktu a) dla parzystej ilości liczb

[math]\displaystyle{ a_1, a_2, \ldots, a_{2 k - 1}, S }[/math]

gdzie przez [math]\displaystyle{ S }[/math] oznaczyliśmy średnią arytmetyczną liczb [math]\displaystyle{ a_1, a_2, \ldots, a_{2 k - 1} }[/math]

[math]\displaystyle{ S = {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1}}{2 k - 1}} }[/math]

Na mocy punktu a) prawdziwa jest nierówność

[math]\displaystyle{ \left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1} + S}{2 k}} \right)^{2 k} = \left( {\small\frac{(2 k - 1) S + S}{2 k}} \right)^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S }[/math]

Skąd otrzymujemy

[math]\displaystyle{ S^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S }[/math]
[math]\displaystyle{ S^{2 k - 1} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} }[/math]

Co należało pokazać.


Twierdzenie A39
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność [math]\displaystyle{ p_1 + p_2 + \ldots + p_n > n^2 }[/math].

Dowód

Korzystając z twierdzeń A8 i A38, możemy napisać następujący ciąg nierówności dla [math]\displaystyle{ n }[/math] kolejnych liczb pierwszych

[math]\displaystyle{ {\small\frac{p_1 + p_2 + \ldots + p_n}{n}} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} > \sqrt[n]{n^n} = n }[/math]

Stąd otrzymujemy natychmiast tezę twierdzenia, którą sprawdzamy dla [math]\displaystyle{ n < 13 }[/math]. Do sprawdzenia można wykorzystać proste polecenie w PARI/GP

for(n = 1, 20, s = 0; for(k = 1, n, s = s + prime(k)); if( s <= n^2, print(n) ))


Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] i [math]\displaystyle{ p_n }[/math], które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego [math]\displaystyle{ \varepsilon > 0 }[/math] istnieje takie [math]\displaystyle{ n_0 }[/math], że dla każdego [math]\displaystyle{ n > n_0 }[/math] prawdziwa jest nierówność [math]\displaystyle{ \log x < x^{\varepsilon} }[/math]. Inaczej mówiąc, funkcja [math]\displaystyle{ \log x }[/math] rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.


Twierdzenie A40
Prawdziwe są następujące nierówności:

1.    [math]\displaystyle{ e^x > x \qquad \qquad \qquad \quad \:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
2.    [math]\displaystyle{ e^x \geqslant x + 1 \qquad \qquad \quad \;\:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]   (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 0 }[/math])
3.    [math]\displaystyle{ e^x > 2 x \qquad \qquad \qquad \;\;\,\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
4.    [math]\displaystyle{ \log x < n \cdot x^{1 / n} \qquad \quad \;\;\: }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
5.    [math]\displaystyle{ \log x < \tfrac{1}{2} n \cdot x^{1 / n} \qquad \quad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
6.    [math]\displaystyle{ \log x \leqslant n (x^{1 / n} - 1) \qquad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]   (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 1 }[/math])
7.    [math]\displaystyle{ \log x < {\small\frac{1}{\varepsilon}} \cdot x^{\varepsilon} \qquad \qquad \:\, }[/math] dla każdego [math]\displaystyle{ x , \varepsilon \in \mathbb{R}_+ }[/math]
Dowód

Nim przejdziemy do dowodu trzech pierwszych punktów, pokażemy, że funkcja [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią. Ponieważ funkcję [math]\displaystyle{ e^x }[/math] możemy zdefiniować w sposób równoważny wzorem[11]

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

to funkcja [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią, bo dla [math]\displaystyle{ x > 0 }[/math] sumujemy tylko wyrazy dodatnie, dla [math]\displaystyle{ x = 0 }[/math] mamy [math]\displaystyle{ e^0 = 1 }[/math], a dla [math]\displaystyle{ x < 0 }[/math] możemy napisać [math]\displaystyle{ e^x = {\small\frac{1}{e^{- x}}} > 0 \, }[/math][a][b].

Punkt 1. i punkt 3.

Pokazaliśmy, że funkcja [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią. Ponieważ funkcje [math]\displaystyle{ x \, }[/math] i [math]\displaystyle{ \, 2 x }[/math] są ujemne lub równe zero dla [math]\displaystyle{ x \leqslant 0 }[/math], to pozostaje rozważyć jedynie przypadek, gdy [math]\displaystyle{ x > 0 }[/math]. Łatwo zauważamy, że

[math]\displaystyle{ e^x - x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - x = 1 + \sum^{\infty}_{k = 2} {\small\frac{x^k}{k!}} > 0 }[/math]
[math]\displaystyle{ e^x - 2 x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - 2 x = 1 - x + {\small\frac{x^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} = {\small\frac{1}{2}} + {\small\frac{(x - 1)^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} > 0 }[/math]

Punkt 2.

Rozważymy kolejno przypadki

  •     gdy [math]\displaystyle{ x > 0 }[/math], to [math]\displaystyle{ e^x - (x + 1) = {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots > 0 }[/math], bo sumujemy wyrazy dodatnie
  •     gdy [math]\displaystyle{ x = 0 }[/math], to [math]\displaystyle{ e^x - (x + 1) = 0 }[/math]
  •     gdy [math]\displaystyle{ - 1 < x < 0 }[/math], to [math]\displaystyle{ e^x - (x + 1) = \left( {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} \right) + \left( {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} \right) + \ldots > 0 }[/math], bo dla [math]\displaystyle{ k \geqslant 1 }[/math] jest [math]\displaystyle{ {\small\frac{x^{2 k}}{(2 k) !}} + {\small\frac{x^{2 k + 1}}{(2 k + 1) !}} = {\small\frac{x^{2 k} (2 k + 1 + x)}{(2 k + 1) !}} > 0 }[/math]
  •     gdy [math]\displaystyle{ x \leqslant - 1 }[/math], to [math]\displaystyle{ e^x > x + 1 }[/math], bo [math]\displaystyle{ x + 1 \leqslant 0 }[/math], a [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią

Punkt 4.

W rozpatrywanej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^t }[/math]. Dostajemy [math]\displaystyle{ t < n \cdot (e^t)^{1 / n} }[/math], czyli [math]\displaystyle{ e^{t / n} > {\small\frac{t}{n}} }[/math]. Otrzymana nierówność jest prawdziwa dla dowolnego [math]\displaystyle{ {\small\frac{t}{n}} \in \mathbb{R} }[/math] na mocy punktu 1. tego twierdzenia.

Punkt 5.

W rozpatrywanej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^t }[/math]. Dostajemy [math]\displaystyle{ t < {\small\frac{1}{2}} n \cdot (e^t)^{1 / n} }[/math], czyli [math]\displaystyle{ e^{t / n} > 2 \cdot {\small\frac{t}{n}} }[/math]. Otrzymana nierówność jest prawdziwa dla dowolnego [math]\displaystyle{ {\small\frac{t}{n}} \in \mathbb{R} }[/math] na mocy punktu 3. tego twierdzenia.

Punkt 6.

W rozpatrywanej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^t }[/math]. Dostajemy [math]\displaystyle{ t \leqslant n (e^{t / n} - 1) }[/math], czyli [math]\displaystyle{ e^{t / n} \geqslant {\small\frac{t}{n}} + 1 }[/math]. Otrzymana nierówność jest prawdziwa dla dowolnego [math]\displaystyle{ {\small\frac{t}{n}} \in \mathbb{R} }[/math] na mocy punktu 2. tego twierdzenia.

Punkt 7.

W rozpatrywanej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^t }[/math]. Dostajemy [math]\displaystyle{ t < {\small\frac{1}{\varepsilon}} \cdot (e^t)^{\varepsilon} }[/math], czyli [math]\displaystyle{ e^{\varepsilon t} > \varepsilon t }[/math]. Otrzymana nierówność jest prawdziwa dla dowolnego [math]\displaystyle{ \varepsilon t \in \mathbb{R} }[/math] na mocy punktu 1. tego twierdzenia.



[a] Czytelnik zapewne zauważył, że własność [math]\displaystyle{ e^x e^{- x} = 1 }[/math] przyjęliśmy bez dowodu. Można pokazać, że z definicji

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math], ale dowód wymaga znajomości iloczynu Cauchy'ego szeregów[12][13] i twierdzenia Mertensa o zbieżności takiego iloczynu.

[b] Zadanie: pokazać, że jeżeli funkcja [math]\displaystyle{ f(x) }[/math] spełnia warunek [math]\displaystyle{ f (x + y) = f (x) f (y) }[/math], to albo [math]\displaystyle{ f(x) }[/math] jest tożsamościowo równa zero, albo jest funkcją dodatnią. Wskazówka: [math]\displaystyle{ f(x) = f \left( {\small\frac{x}{2}} + {\small\frac{x}{2}} \right) }[/math], [math]\displaystyle{ f(x) = f (x_0 + (x - x_0)) }[/math]


Zadanie A41
Niech [math]\displaystyle{ x \in \mathbb{R}_+ }[/math]. Pokazać, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla każdego [math]\displaystyle{ x > x_0 }[/math] jest [math]\displaystyle{ \log x < x^{1 / n} }[/math].

Rozwiązanie

Pierwszy sposób
Rozważmy ciąg nierówności

[math]\displaystyle{ \log x < n \cdot x^{1 / 2 n} < x^{1 / n} }[/math]

Z twierdzenia A40 p.5 wiemy, że pierwsza nierówność jest prawdziwa dla dowolnych [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Podnosząc strony drugiej nierówności do potęgi [math]\displaystyle{ 2 n }[/math], otrzymujemy [math]\displaystyle{ n^{2 n} \cdot x < x^2 }[/math], czyli nierówność ta jest prawdziwa dla [math]\displaystyle{ x > n^{2 n} }[/math]. Wynika stąd, że wystarczy przyjąć [math]\displaystyle{ x_0 = n^{2 n} }[/math].

Drugi sposób
Nierówność [math]\displaystyle{ \log x < x^{1 / n} }[/math] możemy równoważnie zapisać w postaci [math]\displaystyle{ x < \exp (x^{1 / n}) }[/math]. Jeżeli położymy [math]\displaystyle{ x = t^n }[/math], to otrzymamy nierówność [math]\displaystyle{ t^n {< e^t} }[/math]. Ponieważ[11]

[math]\displaystyle{ e^t = \sum_{k = 0}^{\infty} {\small\frac{t^k}{k!}} = 1 + t + {\small\frac{t^2}{2}} + {\small\frac{t^3}{6}} + {\small\frac{t^4}{24}} + {\small\frac{t^5}{120}} + \ldots }[/math]

to

[math]\displaystyle{ e^t > {\small\frac{t^{n + 1}}{(n + 1) !}} > t^n }[/math]

Pierwsza nierówność jest prawdziwa dla [math]\displaystyle{ t > 0 }[/math], bo pomijamy wyrazy dodatnie, a druga jest prawdziwa dla [math]\displaystyle{ t > (n + 1) ! }[/math] Wystarczy zatem przyjąć [math]\displaystyle{ x_0 = [(n + 1) !]^n }[/math]. Ponieważ [math]\displaystyle{ [(n + 1) !]^n > n^{2 n} }[/math] dla [math]\displaystyle{ n \geqslant 1 }[/math], to jest to gorsze oszacowanie wartości [math]\displaystyle{ x_0 }[/math].


Twierdzenie A42
Dla funkcji [math]\displaystyle{ p_n }[/math] i [math]\displaystyle{ \pi (n) }[/math] prawdziwe są następujące oszacowania:

[math]\displaystyle{ 10 n \underset{n \geqslant 6473}{<} p_n \underset{n \geqslant 2}{<} n^2 }[/math]
[math]\displaystyle{ \sqrt{n} \underset{n \geqslant 5}{<} \pi (n) \underset{n \geqslant 64721}{<} {\small\frac{n}{10}} }[/math]
Dowód

Lewa górna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ p_n > 0.72 \cdot n \log n }[/math]. Wystarczy rozwiązać nierówność:

[math]\displaystyle{ 0.72 \cdot \log n > 10 }[/math]

czyli [math]\displaystyle{ n > \exp \left( {\small\frac{10}{0.72}} \right) = 1076137.5 }[/math]

W PARI/GP wpisujemy polecenie:

for(n = 1, 11 * 10^5, if( prime(n) <= 10 * n, print(n) ))


Prawa górna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest [math]\displaystyle{ p_n < 2 n \log n }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ 2 n \log n < n^2 }[/math]. Korzystając z twierdzenia A40 p.5, łatwo zauważmy, że dla [math]\displaystyle{ n > 4 }[/math] jest:

[math]\displaystyle{ n - 2 \log n > n - 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 2 \right) > 0 }[/math]

Przypadki [math]\displaystyle{ n \leqslant 4 }[/math] sprawdzamy bezpośrednio.


Lewa dolna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest [math]\displaystyle{ \pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > \sqrt{n} }[/math]. Korzystając z twierdzenia A40 p.5, łatwo zauważmy, że dla [math]\displaystyle{ n > 3^4 = 81 }[/math] jest:

[math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} - \sqrt{n} > {\small\frac{2}{3}} \cdot {\small\frac{n}{2 \cdot n^{1 / 4}}} - \sqrt{n} = {\small\frac{1}{3}} \cdot n^{3 / 4} - \sqrt{n} = {\small\frac{1}{3}} \sqrt{n} (n^{1 / 4} - 3) > 0 }[/math]

Sprawdzenie przypadków [math]\displaystyle{ n \leqslant 81 }[/math] sprowadza się do wpisania w PARI/GP polecenia:

for(n = 1, 100, if( primepi(n) <= sqrt(n), print(n) ))


Prawa dolna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 2 }[/math] jest [math]\displaystyle{ \pi (n) < {\small\frac{2 n}{\log n}} }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ {\small\frac{2 n}{\log n}} < {\small\frac{n}{10}} }[/math]. Nierówność ta jest prawdziwa dla [math]\displaystyle{ \log n > 20 }[/math], czyli dla

[math]\displaystyle{ n > e^{20} > 485165195.4 }[/math]

Sprawdzenie przypadków dla [math]\displaystyle{ n \leqslant 490 \cdot 10^6 }[/math] będzie wymagało napisania w PARI/GP krótkiego programu i wywołania go z parametrem n = 490 * 10^6

Test3(n) =
\\ test oszacowania: primepi(k) < k/10 dla 2 <= k <= n 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
local(s, k);
s = 1;
k = 2;
while( k <= n,
       if( s >= k/10, print(k) );
       k = k + 1;
       s = s + isprime(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
     );
}


Twierdzenie A43
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} }[/math]
Dowód

Korzystając kolejno z twierdzeń A33, A40 p.5 i A8, łatwo otrzymujemy

[math]\displaystyle{ (p_{n^{\large 2}})^{n / 3} < (2 n^2 \log n^2)^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: = (4 n^2 \log n)^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: < (4 n^2 \cdot 2 n^{1 / 4})^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: = (8 n^{9 / 4})^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: = (2 n^{3 / 4})^n }[/math]
[math]\displaystyle{ \;\;\: \leqslant n^n }[/math]
[math]\displaystyle{ \;\;\: < p_1 p_2 \cdot \ldots \cdot p_n }[/math]

Zauważmy, że nierówność [math]\displaystyle{ 2 n^{3 / 4} \leqslant n }[/math] jest prawdziwa dla [math]\displaystyle{ n \geqslant 2^4 }[/math]. Sprawdzając bezpośrednio dla [math]\displaystyle{ n < 16 }[/math], stwierdzamy, że dowodzona nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 1 }[/math].


Zadanie A44
Korzystając z twierdzenia A43 pokazać, że

  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4 }[/math]
  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n > (p_{2 n})^3 \qquad \qquad \;\; \text{dla } \; n \geqslant 7 }[/math]
Rozwiązanie

Punkt 1.

Ponieważ [math]\displaystyle{ n^2 > n + 1 }[/math] dla [math]\displaystyle{ n \geqslant 2 }[/math] oraz [math]\displaystyle{ {\small\frac{n}{3}} > 2 }[/math] dla [math]\displaystyle{ n > 6 }[/math], to dla [math]\displaystyle{ n > 6 }[/math] jest

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{n + 1})^2 }[/math]

Sprawdzając bezpośrednio dla [math]\displaystyle{ n \leqslant 6 }[/math], łatwo stwierdzamy prawdziwość oszacowania dla [math]\displaystyle{ n \geqslant 4 }[/math].

Punkt 2.

Ponieważ [math]\displaystyle{ n^2 > 2 n }[/math] dla [math]\displaystyle{ n > 2 }[/math] oraz [math]\displaystyle{ {\small\frac{n}{3}} > 3 }[/math] dla [math]\displaystyle{ n > 9 }[/math], to dla [math]\displaystyle{ n > 9 }[/math] jest

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{2 n})^3 }[/math]

Sprawdzając bezpośrednio dla [math]\displaystyle{ n \leqslant 9 }[/math], łatwo stwierdzamy prawdziwość oszacowania dla [math]\displaystyle{ n \geqslant 7 }[/math].


Twierdzenie A45
Każda liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, n \right] }[/math] występuje w rozwinięciu [math]\displaystyle{ n! }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Z twierdzenia A22 wiemy, że każda liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

Z założenia [math]\displaystyle{ p \leqslant n }[/math] i [math]\displaystyle{ 2 p > n }[/math], zatem:

1.    [math]\displaystyle{ {\small\frac{n}{p}} \geqslant 1 }[/math]   oraz   [math]\displaystyle{ {\small\frac{n}{p}} < 2 }[/math],   czyli   [math]\displaystyle{ \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1 }[/math]
2.    [math]\displaystyle{ {\small\frac{n}{p^2}} < {\small\frac{2}{p}} \leqslant 1 }[/math],   czyli   [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^2}} \right\rfloor = 0 }[/math]   i tym bardziej   [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]   dla   [math]\displaystyle{ k \geqslant 3 }[/math]


Rezultat uzyskany w twierdzeniu A26 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza [math]\displaystyle{ p }[/math], aby występowała w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia A46 i A48 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A47 i A49 to tylko twierdzenia A46 i A48 dla wybranych wartości liczby [math]\displaystyle{ k }[/math]. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A46 i A48, to może je pominąć.


Twierdzenie A46
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą naturalną. Jeżeli [math]\displaystyle{ n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right) }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Najpierw udowodnimy przypadek [math]\displaystyle{ k = 0 }[/math].

Zauważmy, że każda liczba pierwsza [math]\displaystyle{ p \in (n, 2 n] }[/math] występuje dokładnie jeden raz w liczniku ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

i nie występuje w mianowniku. Zatem w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze wystąpi z wykładnikiem równym [math]\displaystyle{ 1 }[/math].

Co kończy dowód twierdzenia w przypadku, gdy [math]\displaystyle{ k = 0 }[/math].

Możemy teraz przejść do dowodu dla wszystkich [math]\displaystyle{ k \geqslant 1 }[/math].


Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ k p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w mianowniku
  • [math]\displaystyle{ (k + 1) p > n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku (jako [math]\displaystyle{ p, 2 p, \ldots, k p }[/math])
  • [math]\displaystyle{ (2 k + 1) p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (k + 1) p > n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k + 1 }[/math] razy w liczniku
  • [math]\displaystyle{ (2 k + 2) p > 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (2 k + 1) p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k + 1 }[/math] razy w liczniku (jako [math]\displaystyle{ (k + 1) p, (k + 2) p, \ldots, (2 k + 1) p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math] pojawia się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku i dokładnie [math]\displaystyle{ k + 1 }[/math] razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Zatem występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem jeden.

Niech [math]\displaystyle{ q }[/math] będzie największą liczbą pierwszą nie większą od ustalonej liczby [math]\displaystyle{ 2 k + 1 }[/math]. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ r_i \in \{ 2, 3, \ldots, q \} }[/math]. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek

[math]\displaystyle{ r_i \notin \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math]

Warunek ten będzie z pewnością spełniony, gdy

[math]\displaystyle{ q \leqslant 2 k + 1 \leqslant {\small\frac{n}{k + 1}} }[/math]

czyli dla [math]\displaystyle{ n }[/math] spełniających nierówność [math]\displaystyle{ n \geqslant (k + 1) (2 k + 1) }[/math].

Oczywiście nie wyklucza to możliwości, że istnieją liczby [math]\displaystyle{ n < 2 (k + 1) (k + \tfrac{1}{2}) }[/math], dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby [math]\displaystyle{ k }[/math]) bezpośrednio sprawdzić prawdziwość twierdzenia dla [math]\displaystyle{ n < 2 (k + 1) (k + \tfrac{1}{2}) }[/math].


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 1 }[/math], to będziemy szukali oszacowania od dołu. Z założenia mamy

1)    [math]\displaystyle{ p > {\small\frac{n}{k + 1}} \qquad \; \Longrightarrow \qquad {\small\frac{n}{p}} < k + 1 \qquad \;\;\; \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant k }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 2 k + 1 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2 k + 1 - 2 k = 1 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 2 (k + 1)^2 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p > {\small\frac{n}{k + 1}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 2 k + 2 }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} < (2 k + 2)^s }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 2)^2}{2 n}} \cdot \left( {\small\frac{2 k + 2}{2 n}} \right)^{s - 2} }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 2)^2}{2 n}} }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < 1 }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 2 (k + 1)^2 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 1 }[/math]

Pozostaje bezpośrednio sprawdzić, dla jakich wartości [math]\displaystyle{ n < 2 (k + 1)^2 }[/math] twierdzenie pozostaje prawdziwe.

Ponieważ analiza krotności pojawiania się liczby pierwszej [math]\displaystyle{ p }[/math] jest bardziej precyzyjna, to podajemy, że twierdzenie jest z pewnością prawdziwe dla [math]\displaystyle{ n \geqslant 2 (k + 1) (k + \tfrac{1}{2}) }[/math]


Przykład A47
Jeżeli [math]\displaystyle{ n \geqslant 6 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej jeden raz w mianowniku
  • [math]\displaystyle{ 2 p > n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie jeden raz w mianowniku (jako [math]\displaystyle{ p }[/math])
  • [math]\displaystyle{ 3 p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 2 p > n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w liczniku
  • [math]\displaystyle{ 4 p > 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 3 p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w liczniku (jako [math]\displaystyle{ 2 p }[/math] i [math]\displaystyle{ 3 p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] pojawia się dokładnie jeden raz w mianowniku i dokładnie dwa razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Zatem występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem jeden.

Wielokrotności liczby [math]\displaystyle{ p }[/math] podnoszą wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ p = 2, 3 }[/math]. Dlatego zakładamy, że [math]\displaystyle{ n \geqslant 6 }[/math], bo dla [math]\displaystyle{ n \geqslant 6 }[/math] liczby pierwsze [math]\displaystyle{ p = 2, 3 }[/math] nie spełniają warunku [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math].

Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 5 }[/math] i liczba [math]\displaystyle{ 3^2 }[/math] dzieli liczbę [math]\displaystyle{ {\small\binom{10}{5}} = 252 = 9 \cdot 28 }[/math]


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 1 }[/math], to będziemy szukali oszacowania od dołu. Z założenia mamy

1)    [math]\displaystyle{ p > {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} < 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 1 }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{2 n}{3}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 3 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 3 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 3 - 2 = 1 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 9 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p > {\small\frac{n}{2}} \quad \implies \quad {\small\frac{(2 n)^k}{p^k}} < 4^k \quad \implies \quad {\small\frac{2 n}{p^k}} < {\small\frac{16}{2 n}} \cdot \left( {\small\frac{4}{2 n}} \right)^{k - 2} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{2 n}} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{18}} \quad \implies \quad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 9 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 1 }[/math]

Dla [math]\displaystyle{ n = 6, 7 }[/math] żadna liczba pierwsza nie należy do [math]\displaystyle{ \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math]. Dla [math]\displaystyle{ n = 8 }[/math] łatwo sprawdzamy, że liczba [math]\displaystyle{ 5 }[/math] wchodzi do rozkładu liczby [math]\displaystyle{ {\small\binom{16}{8}} = 12870 }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Zatem dla [math]\displaystyle{ n \geqslant 6 }[/math] liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] wchodzi do rozkładu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.


Twierdzenie A48
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math], to dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math] liczba [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą [math]\displaystyle{ p }[/math] występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ k p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w mianowniku
  • [math]\displaystyle{ (k + 1) p > n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku (jako [math]\displaystyle{ p, 2 p, \ldots, k p }[/math])
  • [math]\displaystyle{ 2 k p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (k + 1) p > n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w liczniku
  • [math]\displaystyle{ (2 k + 1) p > 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 2 k p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w liczniku (jako [math]\displaystyle{ (k + 1) p, (k + 2) p, \ldots, 2 k p }[/math])


Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math] pojawia się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku i dokładnie [math]\displaystyle{ k }[/math] razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Co oznacza, że [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Niech [math]\displaystyle{ q }[/math] będzie największą liczbą pierwszą nie większą od ustalonej liczby [math]\displaystyle{ 2 k }[/math]. Rozpatrywane przez nas wielokrotności liczby [math]\displaystyle{ p }[/math] zwiększają wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ r_i \in \{ 2, 3, \ldots, q \} }[/math]. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek

[math]\displaystyle{ r_i \notin \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math]

Warunek ten będzie z pewnością spełniony, gdy

[math]\displaystyle{ q \leqslant 2 k \leqslant {\small\frac{n}{k + \tfrac{1}{2}}} }[/math]

czyli dla [math]\displaystyle{ n }[/math] spełniających nierówność [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math]. Oczywiście nie wyklucza to możliwości, że istnieją liczby [math]\displaystyle{ n < 2 k (k + \tfrac{1}{2}) }[/math], dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby [math]\displaystyle{ k }[/math]) bezpośrednio sprawdzić prawdziwość twierdzenia dla [math]\displaystyle{ n < 2 k (k + \tfrac{1}{2}) }[/math].


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 0 }[/math], to będziemy szukali oszacowania od góry. Z założenia mamy

1)    [math]\displaystyle{ p > {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 2 k }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{n}{k}} \qquad \quad \;\,\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant k \qquad \qquad \;\:\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant k }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 2 k - 2 k = 0 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0 }[/math]


Założenie, że [math]\displaystyle{ 2 n \geqslant (2 k + 1)^2 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p > {\small\frac{2 n}{2 k + 1}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} < (2 k + 1)^s }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 1)^2}{2 n}} \cdot \left( {\small\frac{2 k + 1}{2 n}} \right)^{s - 2} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < {\small\frac{(2 k + 1)^2}{2 n}} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} < 1 }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ 2 n \geqslant (2 k + 1)^2 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 0 }[/math]

Pozostaje bezpośrednio sprawdzić, dla jakich wartości [math]\displaystyle{ n < {\small\frac{1}{2}} (2 k + 1)^2 }[/math] twierdzenie pozostaje prawdziwe.

Ponieważ analiza krotności pojawiania się liczby pierwszej [math]\displaystyle{ p }[/math] jest bardziej precyzyjna, to podajemy, że twierdzenie jest z pewnością prawdziwe dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math].


Przykład A49
Jeżeli [math]\displaystyle{ n \geqslant 8 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math], to [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą [math]\displaystyle{ p }[/math] występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ 2 p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w mianowniku
  • [math]\displaystyle{ 3 p > n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w mianowniku (jako [math]\displaystyle{ p }[/math] i [math]\displaystyle{ 2 p }[/math])
  • [math]\displaystyle{ 4 p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 3 p > n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w liczniku
  • [math]\displaystyle{ 5 p > 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 4 p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w liczniku (jako [math]\displaystyle{ 3 p }[/math] i [math]\displaystyle{ 4 p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math] pojawia się dokładnie dwa razy w mianowniku i dokładnie dwa razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Zatem nie występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Wielokrotności liczby [math]\displaystyle{ p }[/math] podnoszą wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ 3 }[/math]. Dlatego zakładamy, że [math]\displaystyle{ n \geqslant 8 }[/math], bo dla [math]\displaystyle{ n \geqslant 8 }[/math] liczby pierwsze [math]\displaystyle{ 2, 3 }[/math] nie spełniają warunku [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math].

Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 7 }[/math] i liczba [math]\displaystyle{ 3 }[/math] dzieli liczbę [math]\displaystyle{ {\small\binom{14}{7}} = 3432 }[/math]


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 0 }[/math], to będziemy szukali oszacowania od góry. Z założenia mamy

1)    [math]\displaystyle{ p > {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} < 5 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 4 }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 4 - 4 = 0 }[/math]

Ponieważ każdy ze składników szukanej sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 13 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p > {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^k}{p^k}} < 5^k }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{2 n}} \cdot \left( {\small\frac{5}{2 n}} \right)^{k - 2} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{2 n}} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} < {\small\frac{25}{26}} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 13 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 0 }[/math]

Dla [math]\displaystyle{ n = 8, 9 }[/math] żadna liczba pierwsza nie należy do [math]\displaystyle{ \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math].

Dla [math]\displaystyle{ n = 10, 11, 12 }[/math] łatwo sprawdzamy, że liczba [math]\displaystyle{ 5 }[/math] nie dzieli liczb [math]\displaystyle{ {\small\binom{20}{10}} = 184756 }[/math], [math]\displaystyle{ {\small\binom{22}{11}} = 705432 }[/math] oraz [math]\displaystyle{ {\small\binom{24}{12}} = 2704156 }[/math].

Zatem dla [math]\displaystyle{ n \geqslant 8 }[/math] liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math] nie dzieli liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math].


Uwaga A50
Z przykładu A47 nie wynika, że w przedziale [math]\displaystyle{ \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] znajduje się choćby jedna liczba pierwsza [math]\displaystyle{ p }[/math]. Analogiczna uwaga jest prawdziwa w przypadku przykładu A49 oraz twierdzeń A46A48. Istnienie liczby pierwszej w określonym przedziale będzie tematem kolejnego artykułu.


Przykład A51
Pokazujemy i omawiamy wynik zastosowania twierdzeń A46 i A48 do współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math]. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek [math]\displaystyle{ p > \sqrt{2 n} }[/math], co w naszym przypadku daje [math]\displaystyle{ p > \sqrt{2 \cdot 3284} \approx 81.04 }[/math].

Pokaż przykład

Wybraliśmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] dlatego, że w rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze [math]\displaystyle{ p \leqslant 107 }[/math], co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z wykładnikiem większym niż jeden. Ponieważ [math]\displaystyle{ \sqrt{2 \cdot 3284} \approx 81.043 }[/math], zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z wykładnikiem większym niż jeden i tak właśnie jest.

Poniżej wypisaliśmy wszystkie liczby pierwsze [math]\displaystyle{ p \leqslant 3284 }[/math], które występują w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w tabeli. Ostatnią pogrubioną i dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w tabeli – oczywiście tak się nie stanie, bo twierdzeń A46 i A48 nie można stosować bez ograniczeń dla coraz większych liczb [math]\displaystyle{ k }[/math].


26, 38, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 592, 612, 67, 71, 732, 792, 83, 89, 97, 101, 103, 107, 127, 137, 139, 151, 157, 167, 173, 197, 199, 211, 223, 239, 241, 257, 277, 281, 283, 307, 311, 331, 337, 367, 373, 379, 383, 419, 421, 431, 433, 479, 487, 491, 499, 503, 557, 563, 569, 571, 577, 587, 593, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179


Liczba 821 została pogrubiona (w tabeli), bo jest liczbą pierwszą i wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w rozkładzie współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] na czynniki pierwsze.

Czytelnik łatwo sprawdzi, że największą wartością liczby [math]\displaystyle{ k }[/math], dla jakiej można jeszcze stosować twierdzenie A46, jest [math]\displaystyle{ k = 39 }[/math]. Podobnie największą wartością liczby [math]\displaystyle{ k }[/math], dla jakiej można jeszcze stosować twierdzenie A48, jest [math]\displaystyle{ k = 40 }[/math]. Wartości te i odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia A46 i A48 można stosować dla liczb pierwszych [math]\displaystyle{ p }[/math] spełniających warunek [math]\displaystyle{ p > 81.09 }[/math]. Co bardzo dokładnie pokrywa się z warunkiem [math]\displaystyle{ p > \sqrt{2 \cdot 3284} \approx 81.04 }[/math]

Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i 67, które występują w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] na czynniki pierwsze.

[math]\displaystyle{ k }[/math] [math]\displaystyle{ {\small\frac{3284}{k+1}} }[/math] [math]\displaystyle{ p \in \left ( {\small\frac{3284}{k + 1}}, \frac{3284}{k + \tfrac{1}{2}} \right ] }[/math] [math]\displaystyle{ \frac{3284}{k+\tfrac{1}{2}} }[/math] [math]\displaystyle{ {\small\frac{3284}{k}} }[/math]
0 3284 {3299, 3301, ..., 6553, 6563} 6568
1 1642 {1657, 1663, ..., 2161, 2179} 2189,33 3284
2 1094,67 {1097, 1103, ..., 1303, 1307} 1313,60 1642
3 821 {823, 827, ..., 929, 937} 938,29 1094,67
4 656,80 {659, 661, 673, 677, 683, 691, 701, 709, 719, 727} 729,78 821
5 547,33 {557, 563, 569, 571, 577, 587, 593} 597,09 656,80
6 469,14 {479, 487, 491, 499, 503} 505,23 547,33
7 410,50 {419, 421, 431, 433} 437,87 469,14
8 364,89 {367, 373, 379, 383} 386,35 410,50
9 328,40 {331, 337} 345,68 364,89
10 298,55 {307, 311} 312,76 328,40
11 273,67 {277, 281, 283} 285,57 298,55
12 252,62 {257} 262,72 273,67
13 234,57 {239, 241} 243,26 252,62
14 218,93 {223} 226,48 234,57
15 205,25 {211} 211,87 218,93
16 193,18 {197, 199} 199,03 205,25
17 182,44 {} 187,66 193,18
18 172,84 {173} 177,51 182,44
19 164,20 {167} 168,41 172,84
20 156,38 {157} 160,20 164,20
21 149,27 {151} 152,74 156,38
22 142,78 {} 145,96 149,27
23 136,83 {137, 139} 139,74 142,78
24 131,36 {} 134,04 136,83
25 126,31 {127} 128,78 131,36
26 121,63 {} 123,92 126,31
27 117,29 {} 119,42 121,63
28 113,24 {} 115,23 117,29
29 109,47 {} 111,32 113,24
30 105,94 {107} 107,67 109,47
31 102,63 {103} 104,25 105,94
32 99,52 {101} 101,05 102,63
33 96,59 {97} 98,03 99,52
34 93,83 {} 95,19 96,59
35 91,22 {} 92,51 93,83
36 88,76 {89} 89,97 91,22
37 86,42 {} 87,57 88,76
38 84,21 {} 85,30 86,42
39 82,10 {83} 83,14 84,21
40 80,10 {} 81,09 82,10
41 78,19 {79} 79,13 80,10
42 76,37 {} 77,27 78,19
43 74,64 {} 75,49 76,37
44 72,98 {73} 73,80 74,64
45 71,39 {} 72,18 72,98
46 69,87 {} 70,62 71,39
47 68,42 {} 69,14 69,87
48 67,02 {} 67,71 68,42
49 65,68 {} 66,34 67,02
50 64,39 {} 65,03 65,68
51 63,15 {} 63,77 64,39
52 61,96 {} 62,55 63,15
53 60,81 {61} 61,38 61,96
54 59,71 {} 60,26 60,81
55 58,64 {59} 59,17 59,71
56 57,61 {} 58,12 58,64
57 56,62 {} 57,11 57,61
58 55,66 {} 56,14 56,62
59 54,73 {} 55,19 55,66
60 53,84 {} 54,28 54,73
61 52,97 {53} 53,40 53,84
62 52,13 {} 52,54 52,97
63 51,31 {} 51,72 52,13
64 50,52 {} 50,91 51,31
65 49,76 {} 50,14 50,52
66 49,01 {} 49,38 49,76
67 48,29 {} 48,65 49,01
68 47,59 {} 47,94 48,29
69 46,91 {47} 47,25 47,59
70 46,25 {} 46,58 46,91




Dokładniejsze oszacowanie [math]\displaystyle{ \pi (n) }[/math] od dołu

Uwaga A52
Poniżej przedstawimy inny dowód oszacowania od dołu funkcji [math]\displaystyle{ \pi (x) }[/math]. Naszym zdaniem jest łatwiejszy niż dowód twierdzenia A30 i, co warto odnotować, daje nieco dokładniejsze oszacowanie.


Twierdzenie A53
Dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \pi (n) > 0.69 \cdot {\small\frac{n}{\log n}} }[/math]
Dowód

Z twierdzenia B5 wiemy, że dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ {\small\binom{2 n}{n}} > {\small\frac{4^n}{2 n}} }[/math]


Z drugiej strony, korzystając z twierdzenia A27 możemy napisać

[math]\displaystyle{ {\small\binom{2 n}{n}} = \prod_{2 \leqslant p \leqslant 2 n} p^{\alpha_p} \leqslant (2 n)^{\pi (2 n)} }[/math]


Łącząc powyższe oszacowania, otrzymujemy

[math]\displaystyle{ {\small\frac{4^n}{2 n}} < (2 n)^{\pi (2 n)} }[/math]


Czyli

[math]\displaystyle{ \pi (2 n) > {\small\frac{2 n \log 2 - \log 2 n}{\log 2 n}} = \log 2 \cdot {\small\frac{2 n}{\log 2 n}} - 1 }[/math]


Ponieważ dla wszystkich [math]\displaystyle{ n \geqslant 2 \, }[/math] jest [math]\displaystyle{ \, \pi (2 n) = \pi (2 n - 1) }[/math], to

[math]\displaystyle{ \pi (2 n - 1) = \pi (2 n) > \log 2 \cdot {\small\frac{2 n}{\log 2 n}} - 1 > \log 2 \cdot {\small\frac{2 n - 1}{\log (2 n - 1)}} - 1 }[/math]


Ostatnia nierówność wynika z faktu, że [math]\displaystyle{ n \geqslant 3 }[/math] ciąg [math]\displaystyle{ u_n = {\small\frac{n}{\log n}} }[/math] jest ciągiem silnie rosnącym (zobacz twierdzenie A7). Zatem znaleziony wzór jest prawdziwy dla liczb parzystych [math]\displaystyle{ 4, 6, 8, \ldots }[/math] i nieparzystych [math]\displaystyle{ 3, 5, 7, \ldots }[/math] Wynika stąd, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest

[math]\displaystyle{ \pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1 }[/math]


Ponownie korzystając z tego, że ciąg [math]\displaystyle{ u_n = {\small\frac{n}{\log n}} }[/math] jest ciągiem silnie rosnącym, widzimy, że dla [math]\displaystyle{ n > 2650 }[/math] prawdziwy jest następujący ciąg przekształceń

[math]\displaystyle{ \log 2 \cdot {\small\frac{n}{\log n}} - 1 = (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}} + \left( 0.003 \cdot {\small\frac{n}{\log n}} - 1 \right) }[/math]
[math]\displaystyle{ \;\;\;\; > (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}} + \left( 0.003 \cdot {\small\frac{2650}{\log 2650}} - 1 \right) }[/math]
[math]\displaystyle{ \;\;\;\; = (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}} + 0.00858695 \ldots }[/math]
[math]\displaystyle{ \;\;\;\; > (\log 2 - 0.003) \cdot {\small\frac{n}{\log n}} }[/math]
[math]\displaystyle{ \;\;\;\; = 0.690147 \ldots \cdot {\small\frac{n}{\log n}} }[/math]
[math]\displaystyle{ \;\;\;\; > 0.69 \cdot {\small\frac{n}{\log n}} }[/math]


Z układu nierówności prawdziwego dla [math]\displaystyle{ n > 2650 }[/math]

[math]\displaystyle{ \pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1 > 0.69 \cdot {\small\frac{n}{\log n}} }[/math]

otrzymujemy natychmiast, że

[math]\displaystyle{ \pi (n) > 0.69 \cdot {\small\frac{n}{\log n}} \qquad \qquad \qquad \text{dla} \;\; n > 2650 }[/math]


Sprawdzając bezpośrednio prawdziwość powyższego oszacowania dla [math]\displaystyle{ n \leqslant 2650 }[/math], dostajemy

[math]\displaystyle{ \pi (n) > 0.69 \cdot {\small\frac{n}{\log n}} \qquad \qquad \qquad \text{dla} \;\; n \geqslant 3 }[/math]

Co należało pokazać.


Uwaga A54
Na zakończenie tego artykułu chcemy przedstawić dowód pozornie trywialnego twierdzenia, że dla [math]\displaystyle{ n \geqslant 2 }[/math] między [math]\displaystyle{ n }[/math] i [math]\displaystyle{ n^2 }[/math] znajduje się liczba pierwsza. Podobnie proste wydaje się oszacowanie [math]\displaystyle{ \pi (n) > \sqrt{n} }[/math]. Jednak przedstawiony niżej dowód wcale prosty nie jest. Trudność tego dowodu jest podobna do dowodu twierdzenia A30 i tkwi w znalezieniu dostatecznie dokładnego oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] od dołu.

Otrzymany w trakcie dowodu twierdzenia A53 rezultat

[math]\displaystyle{ \pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1 \qquad \qquad \qquad \text{dla} \;\; n \geqslant 3 }[/math]

Wykorzystamy do dowodu twierdzenia A55. Podkreślmy, że nawet w przypadku tego wzoru musieliśmy

  •    znać wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]
  •    zbadać właściwości współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]


Twierdzenie A55
Dla [math]\displaystyle{ n \geqslant 2 }[/math] między liczbami [math]\displaystyle{ n }[/math] i [math]\displaystyle{ n^2 }[/math] znajduje się liczba pierwsza.

Dowód

Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 2, 3, \ldots 9 }[/math], co pozwala ograniczyć dowód do liczb [math]\displaystyle{ n \geqslant 10 }[/math].

Dla oszacowania od góry funkcji [math]\displaystyle{ \pi (n) }[/math] wystarczy przyjąć, że [math]\displaystyle{ \pi (n) < n }[/math] (oszacowanie prawdziwe dla [math]\displaystyle{ n \geqslant 1 }[/math]).

Dla oszacowania od dołu funkcji [math]\displaystyle{ \pi (n) }[/math] skorzystamy ze wzoru otrzymanego w trakcie dowodu twierdzenia A53

[math]\displaystyle{ \pi (n) > \log 2 \cdot {\small\frac{n}{\log n}} - 1 \qquad \qquad \qquad \text{dla} \;\; n \geqslant 3 }[/math]

Dla [math]\displaystyle{ n \geqslant 10 }[/math] otrzymujemy

[math]\displaystyle{ \pi (n^2) - \pi (n) > \log 2 \cdot {\small\frac{n^2}{\log n^2}} - 1 - n }[/math]
[math]\displaystyle{ \quad \;\; = n \left( {\small\frac{\log 2}{2}} \cdot {\small\frac{n}{\log n}} - {\small\frac{1}{n}} - 1 \right) }[/math]
[math]\displaystyle{ \quad \;\; \geqslant n \left( {\small\frac{\log 2}{2}} \cdot {\small\frac{n}{\log n}} - {\small\frac{1}{10}} - 1 \right) }[/math]
[math]\displaystyle{ \quad \;\; = n \left( {\small\frac{\log 2}{2}} \cdot {\small\frac{n}{\log n}} - 1.1 \right) }[/math]

Wyrażenie w nawiasie rośnie ze wzrostem [math]\displaystyle{ n }[/math] (zobacz A7, C4, A31, A32) i dla [math]\displaystyle{ n = 10 }[/math] jest większe od [math]\displaystyle{ 0.4 }[/math], zatem dla [math]\displaystyle{ n \geqslant 10 }[/math] mamy

[math]\displaystyle{ \pi (n^2) - \pi (n) > 4 }[/math]

Co kończy dowód.








Przypisy

  1. Wikipedia, PARI/GP, (Wiki-en)
  2. Wikipedia, Pafnuty Czebyszew (1821 - 1893), (Wiki-pl), (Wiki-ru)
  3. P. L. Chebyshev, Mémoire sur les nombres premiers, J. de Math. Pures Appl. (1) 17 (1852), 366-390, (LINK)
  4. P. Erdos, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198, (LINK1), (LINK2)
  5. P. Dusart, The [math]\displaystyle{ k^{th} }[/math] prime is greater than [math]\displaystyle{ k (\ln k + \ln \ln k - 1) }[/math] for [math]\displaystyle{ k \geqslant 2 }[/math], Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.
  6. P. Dusart, Sharper bounds for [math]\displaystyle{ \psi }[/math], [math]\displaystyle{ \theta }[/math], [math]\displaystyle{ \pi }[/math], [math]\displaystyle{ p_k }[/math], Rapport de recherche no. 1998-06, Université de Limoges
  7. P. Dusart, Estimates of some functions over primes without R.H., (2010), (LINK)
  8. P. Dusart, Explicit estimates of some functions over primes, Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.
  9. Wikipedia, Wzór Stirlinga, (Wiki-pl), (Wiki-en)
  10. Wikipedia, Twierdzenie o zbieżności ciągu monotonicznego, (LINK)
  11. 11,0 11,1 Wikipedia, Characterizations of the exponential function, (Wiki-en)
  12. Wikipedia, Cauchy product, (Wiki-en)
  13. Wikipedia, Szereg (matematyka) - Działania, (Wiki-pl)