Ciągi liczbowe: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
 
(Nie pokazano 16 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 7: Linia 7:
 
== Ciągi nieskończone ==
 
== Ciągi nieskończone ==
  
<span style="font-size: 110%; font-weight: bold;">Definicja C1</span><br/>
+
<span id="C1" style="font-size: 110%; font-weight: bold;">Definicja C1</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli każdej liczbie <math>n</math> przypiszemy pewną liczbę rzeczywistą <math>a_n</math>, to powiemy, że liczby <math>a_1, a_2, \ldots, a_n, \ldots</math> tworzą ciąg nieskończony.
 
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli każdej liczbie <math>n</math> przypiszemy pewną liczbę rzeczywistą <math>a_n</math>, to powiemy, że liczby <math>a_1, a_2, \ldots, a_n, \ldots</math> tworzą ciąg nieskończony.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C2</span><br/>
+
<span id="C2" style="font-size: 110%; font-weight: bold;">Uwaga C2</span><br/>
 
Ciąg nieskończony <math>a_1, a_2, \ldots, a_n, \ldots</math> będziemy oznaczać <math>(a_n)</math>. Często, o&nbsp;ile nie będzie prowadziło to do nieporozumień, ciąg nieskończony będziemy nazywać po prostu ciągiem.
 
Ciąg nieskończony <math>a_1, a_2, \ldots, a_n, \ldots</math> będziemy oznaczać <math>(a_n)</math>. Często, o&nbsp;ile nie będzie prowadziło to do nieporozumień, ciąg nieskończony będziemy nazywać po prostu ciągiem.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja C3</span><br/>
+
<span id="C3" style="font-size: 110%; font-weight: bold;">Definicja C3</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Ciąg <math>(a_n)</math> będziemy nazywali  
 
Niech <math>n \in \mathbb{Z}_+</math>. Ciąg <math>(a_n)</math> będziemy nazywali  
 
::* ciągiem rosnącym, jeżeli dla każdego <math>n</math> jest <math>a_{n + 1} \geqslant a_n</math>
 
::* ciągiem rosnącym, jeżeli dla każdego <math>n</math> jest <math>a_{n + 1} \geqslant a_n</math>
Linia 32: Linia 32:
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja C4</span><br/>
+
<span id="C4" style="font-size: 110%; font-weight: bold;">Definicja C4</span><br/>
 
Niech <math>\varepsilon \in \mathbb{R}_+</math>. Liczbę <math>a</math> będziemy nazywali granicą ciągu <math>(a_n)</math>, jeżeli dla dowolnego <math>\varepsilon</math> w&nbsp;przedziale <math>(a - \varepsilon, a + \varepsilon)</math> znajdują się '''prawie wszystkie wyrazy ciągu''' <math>(a_n)</math> (to znaczy wszystkie poza co najwyżej skończoną ilością).
 
Niech <math>\varepsilon \in \mathbb{R}_+</math>. Liczbę <math>a</math> będziemy nazywali granicą ciągu <math>(a_n)</math>, jeżeli dla dowolnego <math>\varepsilon</math> w&nbsp;przedziale <math>(a - \varepsilon, a + \varepsilon)</math> znajdują się '''prawie wszystkie wyrazy ciągu''' <math>(a_n)</math> (to znaczy wszystkie poza co najwyżej skończoną ilością).
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C5</span><br/>
+
<span id="C5" style="font-size: 110%; font-weight: bold;">Uwaga C5</span><br/>
 
1) sens definicji jest taki: jeżeli liczba <math>a</math> jest granicą ciągu <math>(a_n)</math>, to dla dowolnie małego <math>\varepsilon > 0</math>, poza przedziałem <math>(a - \varepsilon, a + \varepsilon)</math> może się znaleźć co najwyżej skończona ilość wyrazów ciągu <math>(a_n)</math>
 
1) sens definicji jest taki: jeżeli liczba <math>a</math> jest granicą ciągu <math>(a_n)</math>, to dla dowolnie małego <math>\varepsilon > 0</math>, poza przedziałem <math>(a - \varepsilon, a + \varepsilon)</math> może się znaleźć co najwyżej skończona ilość wyrazów ciągu <math>(a_n)</math>
  
2) słabsze żądanie, aby w&nbsp;przedziale <math>(a - \varepsilon, a + \varepsilon)</math> znajdowała się nieskończona ilość wyrazów ciągu nie prowadzi do poprawnej definicji granicy. Przykładowo, w&nbsp;przedziale <math>(1 - \varepsilon, 1 + \varepsilon)</math> znajduje się nieskończenie wiele wyrazów ciągu <math>a_n = (-1)^n</math>, ale ani liczba <math>1</math>, ani liczba <math>- 1</math> nie są granicami tego ciągu. O&nbsp;ciągu <math>a_n = (- 1)^n</math> mówimy, że nie ma granicy.
+
2) słabsze żądanie, aby w&nbsp;przedziale <math>(a - \varepsilon, a + \varepsilon)</math> znajdowała się nieskończona ilość wyrazów ciągu, nie prowadzi do poprawnej definicji granicy. Przykładowo, w&nbsp;przedziale <math>(1 - \varepsilon, 1 + \varepsilon)</math> znajduje się nieskończenie wiele wyrazów ciągu <math>a_n = (-1)^n</math>, ale ani liczba <math>1</math>, ani liczba <math>- 1</math> nie są granicami tego ciągu. O&nbsp;ciągu <math>a_n = (- 1)^n</math> mówimy, że nie ma granicy.
  
 
3) ze względu na równoważność warunków
 
3) ze względu na równoważność warunków
Linia 49: Linia 49:
 
::* <math>\quad | a_n - a | < \varepsilon</math>
 
::* <math>\quad | a_n - a | < \varepsilon</math>
  
definicja C4 może być wypowiedziana następująco
+
definicja [[#C4|C4]] może być wypowiedziana następująco
  
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja C6</span><br/>
+
<span id="C6" style="font-size: 110%; font-weight: bold;">Definicja C6</span><br/>
 
Liczbę <math>a</math> będziemy nazywali granicą ciągu <math>(a_n)</math>, jeżeli dla dowolnego <math>\varepsilon > 0</math> '''prawie wszystkie wyrazy ciągu''' <math>(a_n)</math> spełniają warunek <math>|a_n - a| < \varepsilon</math>.
 
Liczbę <math>a</math> będziemy nazywali granicą ciągu <math>(a_n)</math>, jeżeli dla dowolnego <math>\varepsilon > 0</math> '''prawie wszystkie wyrazy ciągu''' <math>(a_n)</math> spełniają warunek <math>|a_n - a| < \varepsilon</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja C7</span><br/>
+
<span id="C7" style="font-size: 110%; font-weight: bold;">Definicja C7</span><br/>
Ciąg <math>(a_n)</math> mający granicę (w rozumieniu definicji C4 lub C6) będziemy nazywali ciągiem zbieżnym, a&nbsp;fakt ten zapisujemy symbolicznie następująco
+
Ciąg <math>(a_n)</math> mający granicę (w rozumieniu definicji [[#C4|C4]] lub [[#C6|C6]]) będziemy nazywali ciągiem zbieżnym, a&nbsp;fakt ten zapisujemy symbolicznie następująco
  
 
::<math>\lim_{n \to \infty} a_n = a</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;lub&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a_n \longrightarrow a</math>
 
::<math>\lim_{n \to \infty} a_n = a</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;lub&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>a_n \longrightarrow a</math>
Linia 68: Linia 68:
  
 
Zauważmy jeszcze, że wprost z&nbsp;definicji granicy wynika</br>
 
Zauważmy jeszcze, że wprost z&nbsp;definicji granicy wynika</br>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C8</span><br/>
+
<span id="C8" style="font-size: 110%; font-weight: bold;">Twierdzenie C8</span><br/>
::1. <math>\quad \lim_{n \to \infty} a_n = a \quad \iff \quad \lim_{n \to \infty} (a_n - a) = 0 \quad \iff \quad \lim_{n \to \infty} | a_n - a | = 0</math>
 
  
::2. <math>\quad \lim_{n \to \infty} a_n = 0 \quad \iff \quad \lim_{n \to \infty} | a_n | = 0</math>
+
::1. <math>\quad \lim_{n \to \infty} a_n = a \qquad \iff \qquad \lim_{n \to \infty} (a_n - a) = 0 \qquad \iff \qquad \lim_{n \to \infty} | a_n - a | = 0</math>
  
::3. <math>\quad \lim_{n \to \infty} a_n = a \quad \implies \quad \lim_{n \to \infty} | a_n | = | a |</math>
+
::2. <math>\quad \lim_{n \to \infty} a_n = 0 \qquad \iff \qquad \lim_{n \to \infty} | a_n | = 0</math>
 +
 
 +
::3. <math>\quad \lim_{n \to \infty} a_n = a \qquad \implies \qquad \lim_{n \to \infty} | a_n | = | a |</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Linia 79: Linia 80:
 
Prawdziwość twierdzenia wynika ze względu na identyczność warunków, które muszą spełniać prawie wszystkie wyrazy ciągu
 
Prawdziwość twierdzenia wynika ze względu na identyczność warunków, które muszą spełniać prawie wszystkie wyrazy ciągu
  
::<math>| a_n - a | < \varepsilon \quad \iff \quad | (a_n - a) - 0 | < \varepsilon \quad \iff \quad \big|| a_n - a | - 0 \big| < \varepsilon</math>
+
::<math>| a_n - a | < \varepsilon \qquad \iff \qquad | (a_n - a) - 0 | < \varepsilon \qquad \iff \qquad \big|| a_n - a | - 0 \big| < \varepsilon</math>
  
 
'''Punkt 2.'''<br/>
 
'''Punkt 2.'''<br/>
Linia 95: Linia 96:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C9 (twierdzenie o&nbsp;trzech ciągach)</span><br/>
+
<span id="C9" style="font-size: 110%; font-weight: bold;">Twierdzenie C9</span><br/>
 +
Jeżeli ciąg <math>(a_n)</math> jest zbieżny, to jest ograniczony.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia ciąg <math>(a_n)</math> jest zbieżny, zatem możemy napisać, że <math>\lim_{n \rightarrow \infty} a_n = a</math>. Z&nbsp;definicji granicy (zobacz [[#C4|C4]], [[#C6|C6]]) dla dowolnego <math>\varepsilon > 0</math> prawie wszystkie wyrazy ciągu <math>(a_n)</math> spełniają warunek <math>| a_n - a | < \varepsilon</math>. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od pewnego <math>N = N (\varepsilon)</math>. Zatem dla <math>n > N</math> jest
 +
 
 +
::<math>a - \varepsilon < a_n < a + \varepsilon</math>
 +
 
 +
Wynika stąd, że dla każdego <math>n \geqslant 1</math> jest
 +
 
 +
::<math>m \leqslant a_n \leqslant M</math>
 +
 
 +
gdzie
 +
 
 +
::<math>M = \max (a_1, \ldots, a_N, a + \varepsilon)</math>
 +
 
 +
::<math>m = \min (a_1, \ldots, a_N, a - \varepsilon)</math>
 +
 
 +
Ponieważ <math>- | m | \leqslant m \;</math> i <math>\; M \leqslant | M |</math>, to
 +
 
 +
::<math>- | m | \leqslant a_n \leqslant | M |</math>
 +
 
 +
Jeżeli oznaczymy <math>U = \max (| m |, | M |)</math>, to możemy napisać
 +
 
 +
::<math>- U \leqslant a_n \leqslant U</math>
 +
 
 +
Czyli dla każdego <math>n \geqslant 1</math> jest <math>| a_n | \leqslant U</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="C10" style="font-size: 110%; font-weight: bold;">Twierdzenie C10 (twierdzenie o&nbsp;trzech ciągach)</span><br/>
 
Jeżeli istnieje taka liczba całkowita <math>N_0</math>, że dla każdego <math>n > N_0</math> jest spełniony warunek
 
Jeżeli istnieje taka liczba całkowita <math>N_0</math>, że dla każdego <math>n > N_0</math> jest spełniony warunek
  
Linia 107: Linia 140:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>\varepsilon</math> będzie dowolną, ustaloną liczbą większą od <math>0</math>. Z&nbsp;założenia prawie wszystkie wyrazy ciągu <math>(a_n)</math> spełniają warunek <math>|a_n - g| < \varepsilon</math>. Możemy założyć, że są to wszystkie wyrazy, poczynając od wyrazu <math>N_a</math>. Podobnie prawie wszystkie wyrazy ciągu <math>(b_n)</math> spełniają warunek <math>|b_n - g| < \varepsilon</math> i&nbsp;podobnie możemy założyć, że są to wszystkie wyrazy, poczynając od wyrazu <math>N_b</math>
+
Niech <math>\varepsilon</math> będzie dowolną, ustaloną liczbą większą od <math>0</math>. Z&nbsp;założenia prawie wszystkie wyrazy ciągu <math>(a_n)</math> spełniają warunek <math>|a_n - g| < \varepsilon</math>. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od wyrazu <math>N_a</math>. Podobnie prawie wszystkie wyrazy ciągu <math>(b_n)</math> spełniają warunek <math>|b_n - g| < \varepsilon</math> i&nbsp;podobnie możemy przyjąć, że są to wszystkie wyrazy, poczynając od wyrazu <math>N_b</math>
  
 
Nierówność <math>a_n \leqslant x_n \leqslant b_n</math> jest spełniona dla wszystkich wyrazów, poczynając od <math>N_0</math>, zatem oznaczając przez <math>M</math> największą z&nbsp;liczb <math>N_a</math>, <math>N_b</math>, <math>N_0</math>, możemy napisać, że o&nbsp;ile <math>n > M</math>, to spełnione są jednocześnie nierówności
 
Nierówność <math>a_n \leqslant x_n \leqslant b_n</math> jest spełniona dla wszystkich wyrazów, poczynając od <math>N_0</math>, zatem oznaczając przez <math>M</math> największą z&nbsp;liczb <math>N_a</math>, <math>N_b</math>, <math>N_0</math>, możemy napisać, że o&nbsp;ile <math>n > M</math>, to spełnione są jednocześnie nierówności
Linia 130: Linia 163:
  
 
Bez dowodu podamy kilka ważnych twierdzeń.<br>
 
Bez dowodu podamy kilka ważnych twierdzeń.<br>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C10*</span><br/>
+
<span id="C11" style="font-size: 110%; font-weight: bold;">Twierdzenie C11*</span><br/>
 
Jeżeli istnieje taka liczba całkowita <math>n</math> i&nbsp;rzeczywista <math>M</math>, że dla każdego <math>k > n</math> jest
 
Jeżeli istnieje taka liczba całkowita <math>n</math> i&nbsp;rzeczywista <math>M</math>, że dla każdego <math>k > n</math> jest
  
Linia 140: Linia 173:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C11*</span><br/>
+
<span id="C12" style="font-size: 110%; font-weight: bold;">Twierdzenie C12*</span><br/>
 
Jeżeli istnieje taka liczba całkowita <math>n</math> i&nbsp;rzeczywista <math>M</math>, że dla każdego <math>k > n</math> jest
 
Jeżeli istnieje taka liczba całkowita <math>n</math> i&nbsp;rzeczywista <math>M</math>, że dla każdego <math>k > n</math> jest
  
Linia 150: Linia 183:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C12*</span><br/>
+
<span id="C13" style="font-size: 110%; font-weight: bold;">Twierdzenie C13*</span><br/>
 
Jeżeli <math>\lim_{n \to \infty} a_n = a</math> oraz <math>\lim_{n \to \infty} b_n = b</math>, gdzie <math>a, b</math> są dowolnymi liczbami rzeczywistymi, to
 
Jeżeli <math>\lim_{n \to \infty} a_n = a</math> oraz <math>\lim_{n \to \infty} b_n = b</math>, gdzie <math>a, b</math> są dowolnymi liczbami rzeczywistymi, to
  
Linia 158: Linia 191:
 
Jeżeli dodatkowo dla każdego <math>n</math> jest <math>b_n \neq 0</math> i <math>b \neq 0</math>, to
 
Jeżeli dodatkowo dla każdego <math>n</math> jest <math>b_n \neq 0</math> i <math>b \neq 0</math>, to
  
:&nbsp;&nbsp;3. <math>\quad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}</math>
+
:&nbsp;&nbsp;3. <math>\quad \lim_{n \to \infty} {\small\frac{a_n}{b_n}} = {\small\frac{a}{b}}</math>
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C13</span><br/>
+
<span id="C14" style="font-size: 110%; font-weight: bold;">Twierdzenie C14</span><br/>
 
Jeżeli <math>\lim_{n \to \infty} a_n = 0</math>, zaś ciąg <math>(x_n)</math> jest ograniczony, czyli istnieje taka liczba <math>M > 0</math>, że dla każdej wartości <math>n</math> prawdziwa jest nierówność <math>| x_n | < M</math>, to
 
Jeżeli <math>\lim_{n \to \infty} a_n = 0</math>, zaś ciąg <math>(x_n)</math> jest ograniczony, czyli istnieje taka liczba <math>M > 0</math>, że dla każdej wartości <math>n</math> prawdziwa jest nierówność <math>| x_n | < M</math>, to
  
Linia 168: Linia 201:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Wystarczy pokazać, że (zobacz twierdzenie C8 p.2)
+
Wystarczy pokazać, że (zobacz twierdzenie [[#C8|C8]] p.2)
  
 
::<math>\lim_{n \to \infty} |x_n \cdot a_n| = 0</math>
 
::<math>\lim_{n \to \infty} |x_n \cdot a_n| = 0</math>
Linia 176: Linia 209:
 
::<math>0 \leqslant |x_n \cdot a_n| \leqslant |a_n| \cdot M</math>
 
::<math>0 \leqslant |x_n \cdot a_n| \leqslant |a_n| \cdot M</math>
  
Zatem z twierdzenia o trzech ciągach otrzymujemy natychmiast, że
+
Zatem z&nbsp;twierdzenia o&nbsp;trzech ciągach otrzymujemy natychmiast, że
  
 
::<math>\lim_{n \to \infty} |x_n \cdot a_n| = 0</math>
 
::<math>\lim_{n \to \infty} |x_n \cdot a_n| = 0</math>
Linia 186: Linia 219:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C14</span><br/>
+
<span id="C15" style="font-size: 110%; font-weight: bold;">Twierdzenie C15</span><br/>
 
Dla <math>a \geqslant 0</math> i <math>n \geqslant 1</math> prawdziwa jest nierówność
 
Dla <math>a \geqslant 0</math> i <math>n \geqslant 1</math> prawdziwa jest nierówność
  
::<math>(1 + a)^{1 / n} \leqslant 1 + \frac{a}{n}</math>
+
::<math>(1 + a)^{1 / n} \leqslant 1 + {\small\frac{a}{n}}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Wzór jest prawdziwy dla <math>a = 0</math>. Zakładając, że <math>a > 0</math> i&nbsp;korzystając ze wzoru dwumianowego, mamy dla <math>n \geqslant 1</math>
 
Wzór jest prawdziwy dla <math>a = 0</math>. Zakładając, że <math>a > 0</math> i&nbsp;korzystając ze wzoru dwumianowego, mamy dla <math>n \geqslant 1</math>
  
::<math>\left( 1 + \frac{a}{n} \right)^n = \sum_{k=0}^{n}\left [\binom{n}{k} \cdot \left ( \frac{a}{n} \right )^k \right ] \geqslant</math>
+
::<math>\left( 1 + {\small\frac{a}{n}} \right)^n = \sum_{k=0}^{n} \left [ {\small\binom{n}{k}} \cdot \left ( {\small\frac{a}{n}} \right )^k \right ] \geqslant</math>
:::::<math>\;\; \geqslant \sum_{k=0}^{1}\left [\binom{n}{k} \cdot \left ( \frac{a}{n} \right )^k \right ] =</math>
+
:::::<math>\;\; \geqslant \sum_{k=0}^{1} \left [ {\small\binom{n}{k}} \cdot \left ( {\small\frac{a}{n}} \right )^k \right ] =</math>
:::::<math>\;\; = 1 + n \cdot \frac{a}{n} =</math>
+
:::::<math>\;\; = 1 + n \cdot {\small\frac{a}{n}} =</math>
 
:::::<math>\;\; = 1 + a</math>
 
:::::<math>\;\; = 1 + a</math>
  
Linia 205: Linia 238:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C15</span><br/>
+
<span id="C16" style="font-size: 110%; font-weight: bold;">Twierdzenie C16</span><br/>
 
Jeżeli <math>A > 0</math>, to <math>\lim_{n \to \infty} \sqrt[n]{A} = 1</math>.
 
Jeżeli <math>A > 0</math>, to <math>\lim_{n \to \infty} \sqrt[n]{A} = 1</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Dla <math>A > 1</math> możemy napisać <math>A = 1 + a</math>, gdzie <math>a > 0</math>, wtedy z&nbsp;twierdzenia C14 otrzymujemy  
+
Dla <math>A > 1</math> możemy napisać <math>A = 1 + a</math>, gdzie <math>a > 0</math>, wtedy z&nbsp;twierdzenia [[#C15|C15]] otrzymujemy  
  
::<math>1 < \sqrt[n]{A} = (1 + a)^{1 / n} \leqslant 1 + \frac{a}{n}</math>
+
::<math>1 < \sqrt[n]{A} = (1 + a)^{1 / n} \leqslant 1 + {\small\frac{a}{n}}</math>
  
 
Z twierdzenia o&nbsp;trzech ciągach dostajemy natychmiast (dla <math>A > 1</math>)
 
Z twierdzenia o&nbsp;trzech ciągach dostajemy natychmiast (dla <math>A > 1</math>)
Linia 217: Linia 250:
 
::<math>\lim_{n \to \infty} \sqrt[n]{A} = 1</math>
 
::<math>\lim_{n \to \infty} \sqrt[n]{A} = 1</math>
  
W przypadku gdy <math>0 < A < 1</math>, możemy napisać <math>A = \frac{1}{B}</math>, gdzie <math>B > 1</math>, wtedy ze względu na udowodniony wyżej rezultat <math>\lim_{n \to \infty} \sqrt[n]{B} = 1</math>
+
W przypadku gdy <math>0 < A < 1</math>, możemy napisać <math>A = {\small\frac{1}{B}}</math>, gdzie <math>B > 1</math>, wtedy ze względu na udowodniony wyżej rezultat <math>\lim_{n \to \infty} \sqrt[n]{B} = 1</math>
  
::<math>\lim_{n \to \infty} \sqrt[n]{A} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{B}} = \frac{1}{\underset{n \rightarrow \infty}{\lim} \sqrt[n]{B}} = 1</math>
+
::<math>\lim_{n \to \infty} \sqrt[n]{A} = \lim_{n \to \infty} {\small\frac{1}{\sqrt[n]{B}}} = \frac{1}{\underset{n \rightarrow \infty}{\lim} \sqrt[n]{B}} = 1</math>
  
 
Jeżeli <math>A = 1</math>, to <math>\sqrt[n]{A} = 1</math> dla każdego <math>n \geqslant 1</math>. Co kończy dowód.<br/>
 
Jeżeli <math>A = 1</math>, to <math>\sqrt[n]{A} = 1</math> dla każdego <math>n \geqslant 1</math>. Co kończy dowód.<br/>
Linia 227: Linia 260:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C16</span><br/>
+
<span id="C17" style="font-size: 110%; font-weight: bold;">Twierdzenie C17</span><br/>
Jeżeli prawie wszystkie wyrazy ciągu ciągu <math>(a_n)</math> spełniają warunek <math>0 < m < a_n < M</math>, to <math>\lim_{n \to \infty} \sqrt[n]{a_n} = 1</math>
+
Jeżeli prawie wszystkie wyrazy ciągu <math>(a_n)</math> spełniają warunek <math>0 < m < a_n < M</math>, to <math>\lim_{n \to \infty} \sqrt[n]{a_n} = 1</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Linia 239: Linia 272:
 
::<math>\sqrt[n]{m} \leqslant \sqrt[n]{a_n} \leqslant \sqrt[n]{M}</math>
 
::<math>\sqrt[n]{m} \leqslant \sqrt[n]{a_n} \leqslant \sqrt[n]{M}</math>
  
Z twierdzenia C15 wiemy, że <math>\lim_{n \to \infty} \sqrt[n]{m} = \lim_{n \to \infty} \sqrt[n]{M} = 1</math>, zatem na podstawie twierdzenia o&nbsp;trzech ciągach otrzymujemy natychmiast <math>\lim_{n \to \infty} \sqrt[n]{a_n} = 1</math><br/>
+
Z twierdzenia [[#C16|C16]] wiemy, że <math>\lim_{n \to \infty} \sqrt[n]{m} = \lim_{n \to \infty} \sqrt[n]{M} = 1</math>, zatem na podstawie twierdzenia o&nbsp;trzech ciągach otrzymujemy natychmiast <math>\lim_{n \to \infty} \sqrt[n]{a_n} = 1</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 245: Linia 278:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C17</span><br/>
+
<span id="C18" style="font-size: 110%; font-weight: bold;">Twierdzenie C18</span><br/>
 
Następujące ciągi są silnie rosnące i&nbsp;zbieżne
 
Następujące ciągi są silnie rosnące i&nbsp;zbieżne
  
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
|- style=height:4em
 
|- style=height:4em
| <math>\quad 1. \quad</math> || <math>\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = e = 2.718281828 \ldots</math>
+
| <math>\quad 1. \quad</math> || <math>\lim_{n \to \infty} \left( 1 + {\small\frac{1}{n}} \right)^n = e = 2.718281828 \ldots</math>
 
|- style=height:4em
 
|- style=height:4em
| <math>\quad 2. \quad</math> || <math>\lim_{n \to \infty} \left( 1 - \frac{1}{n} \right)^n = \frac{1}{e} = 0.367879441 \ldots</math>
+
| <math>\quad 2. \quad</math> || <math>\lim_{n \to \infty} \left( 1 - {\small\frac{1}{n}} \right)^n = {\small\frac{1}{e}} = 0.367879441 \ldots</math>
 
|}
 
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
'''Punkt 1'''<br/>
 
'''Punkt 1'''<br/>
W twierdzeniu A6 pokazaliśmy, że ciąg
+
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A6|A6]] pokazaliśmy, że ciąg
  
::<math>a_n = \left( 1 + \frac{1}{n} \right)^n</math>
+
::<math>a_n = \left( 1 + {\small\frac{1}{n}} \right)^n</math>
  
jest silnie rosnący i&nbsp;ograniczony od góry. Zatem z&nbsp;twierdzenia C10 wynika, że jest zbieżny. Liczbę będącą granicą tego ciągu oznaczamy literą <math>e</math>, jest ona podstawą logarytmu naturalnego.
+
jest silnie rosnący i&nbsp;ograniczony od góry. Zatem z&nbsp;twierdzenia [[#C11|C11]] wynika, że jest zbieżny. Liczbę będącą granicą tego ciągu oznaczamy literą <math>e</math>, jest ona podstawą logarytmu naturalnego.
  
 
'''Punkt 2'''<br/>
 
'''Punkt 2'''<br/>
Pokażemy najpierw, że ciąg <math>\left( 1 - \frac{1}{n} \right)^n</math> jest silnie rosnący. Musimy pokazać, że prawdziwa jest nierówność
+
Pokażemy najpierw, że ciąg <math>\left( 1 - {\small\frac{1}{n}} \right)^n</math> jest silnie rosnący. Musimy pokazać, że prawdziwa jest nierówność
  
::<math>\left( 1 - \frac{1}{n + 1} \right)^{n + 1} > \left( 1 - \frac{1}{n} \right)^n</math>
+
::<math>\left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} > \left( 1 - {\small\frac{1}{n}} \right)^n</math>
  
 
Łatwo sprawdzamy prawdziwość nierówności dla <math>n = 1</math>. Załóżmy teraz, że <math>n \geqslant 2</math>. Przekształcając,
 
Łatwo sprawdzamy prawdziwość nierówności dla <math>n = 1</math>. Załóżmy teraz, że <math>n \geqslant 2</math>. Przekształcając,
  
::<math>\left( \frac{n}{n + 1} \right)^{n + 1} > \left( \frac{n - 1}{n} \right)^n</math>
+
::<math>\left( {\small\frac{n}{n + 1}} \right)^{n + 1} > \left( {\small\frac{n - 1}{n}} \right)^n</math>
  
::<math>\frac{n}{n + 1} \cdot \left( \frac{n}{n + 1} \right)^n \cdot \left( \frac{n}{n - 1} \right)^n > 1</math>
+
::<math>{\small\frac{n}{n + 1}} \cdot \left( {\small\frac{n}{n + 1}} \right)^n \cdot \left( {\small\frac{n}{n - 1}} \right)^n > 1</math>
  
::<math>\left( \frac{n^2}{n^2 - 1} \right)^n > \frac{n + 1}{n}</math>
+
::<math>\left( {\small\frac{n^2}{n^2 - 1}} \right)^n > {\small\frac{n + 1}{n}}</math>
  
 
otrzymujemy nierówność równoważną,
 
otrzymujemy nierówność równoważną,
  
::<math>\left( 1 + \frac{1}{n^2 - 1} \right)^n > 1 + \frac{1}{n}</math>
+
::<math>\left( 1 + {\small\frac{1}{n^2 - 1}} \right)^n > 1 + {\small\frac{1}{n}}</math>
  
 
którą już łatwo udowodnić, bo
 
którą już łatwo udowodnić, bo
  
::<math>\left( 1 + \frac{1}{n^2 - 1} \right)^n > \left( 1 + \frac{1}{n^2} \right)^n = \sum_{k = 0}^{n} \binom{n}{k} \cdot \left( \frac{1}{n^2} \right)^k > \sum_{k = 0}^{1} \binom{n}{k} \cdot \frac{1}{n^{2k}} = 1 + \frac{1}{n}</math>
+
::<math>\left( 1 + {\small\frac{1}{n^2 - 1}} \right)^n > \left( 1 + {\small\frac{1}{n^2}} \right)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot \left( {\small\frac{1}{n^2}} \right)^k > \sum_{k = 0}^{1} {\small\binom{n}{k}} \cdot {\small\frac{1}{n^{2k}}} = 1 + {\small\frac{1}{n}}</math>
  
Ponieważ dla każdego <math>n \geqslant 1</math> jest <math>\left( 1 - \frac{1}{n} \right)^n \leqslant 1</math> (bo iloczyn liczb mniejszych od <math>1</math> nie może być liczbą większą do jedności), to z&nbsp;twierdzenia C10 wynika, że ciąg ten jest zbieżny. Zatem możemy napisać
+
Ponieważ dla każdego <math>n \geqslant 1</math> jest <math>\left( 1 - {\small\frac{1}{n}} \right)^n \leqslant 1</math> (bo iloczyn liczb mniejszych od <math>1</math> nie może być liczbą większą do jedności), to z&nbsp;twierdzenia [[#C11|C11]] wynika, że ciąg ten jest zbieżny. Zatem możemy napisać
  
::<math>\underset{n \rightarrow \infty}{\lim} \left( 1 - \frac{1}{n} \right)^n = g</math>
+
::<math>\underset{n \rightarrow \infty}{\lim} \left( 1 - {\small\frac{1}{n}} \right)^n = g</math>
  
 
Rozważmy teraz iloczyn wypisanych w&nbsp;twierdzeniu ciągów
 
Rozważmy teraz iloczyn wypisanych w&nbsp;twierdzeniu ciągów
  
::<math>\left( 1 + \frac{1}{n} \right)^n \cdot \left( 1 - \frac{1}{n} \right)^n = \left( 1 - \frac{1}{n^2} \right)^n = \left[ \left( 1 - \frac{1}{n^2} \right)^{n^2} \right]^{1 / n}</math>
+
::<math>\left( 1 + {\small\frac{1}{n}} \right)^n \cdot \left( 1 - {\small\frac{1}{n}} \right)^n = \left( 1 - {\small\frac{1}{n^2}} \right)^n = \left[ \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \right]^{1 / n}</math>
  
Łatwo widzimy, że ciąg <math>\left( 1 - \frac{1}{n^2} \right)^{n^2}</math> jest podciągiem ciągu <math>\left( 1 - \frac{1}{n} \right)^n</math>, zatem jest ograniczony i&nbsp;dla <math>n \geqslant 2</math> spełniony jest układ nierówności
+
Łatwo widzimy, że ciąg <math>\left( 1 - {\small\frac{1}{n^2}} \right)^{n^2}</math> jest podciągiem ciągu <math>\left( 1 - {\small\frac{1}{n}} \right)^n</math>, zatem jest ograniczony i&nbsp;dla <math>n \geqslant 2</math> spełniony jest układ nierówności
  
::<math>0 < \left( \frac{3}{4} \right)^4 \leqslant \left( 1 - \frac{1}{n^2} \right)^{n^2} \leqslant 1</math>
+
::<math>0 < \left( {\small\frac{3}{4}} \right)^4 \leqslant \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \leqslant 1</math>
  
Z twierdzenia C16 dostajemy
+
Z twierdzenia [[#C17|C17]] dostajemy
  
::<math>\lim_{n \to \infty} \left[ \left( 1 - \frac{1}{n^2} \right)^{n^2} \right]^{1 / n} = 1</math>
+
::<math>\lim_{n \to \infty} \left[ \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \right]^{1 / n} = 1</math>
  
Z twierdzenia C12 p. 2 wynika natychmiast, że
+
Z twierdzenia [[#C13|C13]] p. 2 wynika natychmiast, że
  
::<math>e \cdot g = \lim_{n \to \infty} \left[ \left( 1 + \frac{1}{n} \right)^n \cdot \left( 1 - \frac{1}{n} \right)^n \right] = \lim_{n \to \infty} \left[ \left( 1 - \frac{1}{n^2} \right)^{n^2} \right]^{1 / n} = 1</math>
+
::<math>e \cdot g = \lim_{n \to \infty} \left[ \left( 1 + {\small\frac{1}{n}} \right)^n \cdot \left( 1 - {\small\frac{1}{n}} \right)^n \right] = \lim_{n \to \infty} \left[ \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \right]^{1 / n} = 1</math>
  
Zatem <math>g = \frac{1}{e}</math>.<br/>
+
Zatem <math>g = {\small\frac{1}{e}}</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 310: Linia 343:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C18</span><br/>
+
<span id="C19" style="font-size: 110%; font-weight: bold;">Twierdzenie C19</span><br/>
 
Dla <math>n \geqslant 2</math> prawdziwe są następujące nierówności
 
Dla <math>n \geqslant 2</math> prawdziwe są następujące nierówności
  
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
|- style=height:4em
 
|- style=height:4em
| <math>\quad 1. \quad</math> || <math> \frac{1}{n + 1} < \log \left( 1 + \frac{1}{n} \right) < \frac{1}{n}</math>
+
| <math>\quad 1. \quad</math> || <math> {\small\frac{1}{n + 1}} < \log \left( 1 + {\small\frac{1}{n}} \right) < {\small\frac{1}{n}}</math>
 
|- style=height:4em
 
|- style=height:4em
| <math>\quad 2. \quad</math> || <math>- \frac{1}{n - 1} < \log \left( 1 - \frac{1}{n} \right) < - \frac{1}{n}</math>
+
| <math>\quad 2. \quad</math> || <math>- {\small\frac{1}{n - 1}} < \log \left( 1 - {\small\frac{1}{n}} \right) < - {\small\frac{1}{n}}</math>
 
|}
 
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ ciąg <math>\left( 1 + \frac{1}{n} \right)^n</math> jest silnie rosnący, to
+
Ponieważ ciąg <math>\left( 1 + {\small\frac{1}{n}} \right)^n</math> jest silnie rosnący, to
  
::<math>\left( 1 + \frac{1}{n} \right)^n < e</math>
+
::<math>\left( 1 + {\small\frac{1}{n}} \right)^n < e</math>
  
 
Logarytmując powyższą nierówność, mamy
 
Logarytmując powyższą nierówność, mamy
  
::<math>n \cdot \log \left( 1 + \frac{1}{n} \right) < 1</math>
+
::<math>n \cdot \log \left( 1 + {\small\frac{1}{n}} \right) < 1</math>
  
 
Stąd wynika natychmiast, że
 
Stąd wynika natychmiast, że
  
::<math>\log \left( 1 + \frac{1}{n} \right) < \frac{1}{n}</math>
+
::<math>\log \left( 1 + {\small\frac{1}{n}} \right) < {\small\frac{1}{n}}</math>
  
  
Ponieważ ciąg <math>\left( 1 - \frac{1}{n} \right)^n</math> również jest silnie rosnący, to postępując analogicznie, dostajemy
+
Ponieważ ciąg <math>\left( 1 - {\small\frac{1}{n}} \right)^n</math> również jest silnie rosnący, to postępując analogicznie, dostajemy
  
::<math>\left( 1 - \frac{1}{n} \right)^n < \frac{1}{e}</math>
+
::<math>\left( 1 - {\small\frac{1}{n}} \right)^n < {\small\frac{1}{e}}</math>
  
::<math>n \cdot \log \left( 1 - \frac{1}{n} \right) < - 1</math>
+
::<math>n \cdot \log \left( 1 - {\small\frac{1}{n}} \right) < - 1</math>
  
::<math>\log \left( 1 - \frac{1}{n} \right) < - \frac{1}{n}</math>
+
::<math>\log \left( 1 - {\small\frac{1}{n}} \right) < - {\small\frac{1}{n}}</math>
  
  
 
Przekształcając otrzymane wzory, otrzymujemy
 
Przekształcając otrzymane wzory, otrzymujemy
  
::<math>- \log \left( 1 + \frac{1}{n} \right) = - \log \left( \frac{n + 1}{n} \right) = \log \left( \frac{n}{n + 1} \right) = \log \left( 1 - \frac{1}{n + 1} \right) < - \frac{1}{n + 1}</math>
+
::<math>- \log \left( 1 + {\small\frac{1}{n}} \right) = - \log \left( {\small\frac{n + 1}{n}} \right) = \log \left( {\small\frac{n}{n + 1}} \right) = \log \left( 1 - {\small\frac{1}{n + 1}} \right) < - {\small\frac{1}{n + 1}}</math>
  
 
oraz
 
oraz
  
::<math>- \log \left( 1 - \frac{1}{n} \right) = - \log \left( \frac{n - 1}{n} \right) = \log \left( \frac{n}{n - 1} \right) = \log \left( 1 + \frac{1}{n - 1} \right) < \frac{1}{n - 1}</math><br/>
+
::<math>- \log \left( 1 - {\small\frac{1}{n}} \right) = - \log \left( {\small\frac{n - 1}{n}} \right) = \log \left( {\small\frac{n}{n - 1}} \right) = \log \left( 1 + {\small\frac{1}{n - 1}} \right) < {\small\frac{1}{n - 1}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 359: Linia 392:
 
== Liczby pierwsze w&nbsp;ciągach arytmetycznych ==
 
== Liczby pierwsze w&nbsp;ciągach arytmetycznych ==
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C19</span><br/>
+
<span id="C20" style="font-size: 110%; font-weight: bold;">Twierdzenie C20</span><br/>
 
Każda liczba naturalna <math>n \geqslant 2</math> jest liczbą pierwszą lub iloczynem liczb pierwszych.
 
Każda liczba naturalna <math>n \geqslant 2</math> jest liczbą pierwszą lub iloczynem liczb pierwszych.
  
Linia 384: Linia 417:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C20 (Euklides, IV w. p.n.e.)</span><br/>
+
<span id="C21" style="font-size: 110%; font-weight: bold;">Twierdzenie C21 (Euklides, IV w. p.n.e.)</span><br/>
 
Istnieje nieskończenie wiele liczb pierwszych.
 
Istnieje nieskończenie wiele liczb pierwszych.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Przypuśćmy, że istnieje jedynie skończona ilość liczb pierwszych <math>p_1, p_2, \ldots, p_n</math> . Wtedy liczba <math>a = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1</math> jest większa od jedności i&nbsp;z&nbsp;twierdzenia C19 wynika, że posiada dzielnik będący liczbą pierwszą, ale jak łatwo zauważyć żadna z&nbsp;liczb pierwszych <math>p_1, p_2, \ldots, p_n</math> nie jest dzielnikiem liczby <math>a</math>. Zatem istnieje liczba pierwsza <math>p</math> będąca dzielnikiem pierwszym liczby <math>a</math> i&nbsp;różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_n</math>. Co kończy dowód.<br/>
+
Przypuśćmy, że istnieje jedynie skończona ilość liczb pierwszych <math>p_1, p_2, \ldots, p_n</math> . Wtedy liczba <math>a = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1</math> jest większa od jedności i&nbsp;z&nbsp;twierdzenia [[#C20|C20]] wynika, że posiada dzielnik będący liczbą pierwszą, ale jak łatwo zauważyć żadna z&nbsp;liczb pierwszych <math>p_1, p_2, \ldots, p_n</math> nie jest dzielnikiem liczby <math>a</math>. Zatem istnieje liczba pierwsza <math>p</math> będąca dzielnikiem pierwszym liczby <math>a</math> i&nbsp;różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_n</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 394: Linia 427:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C21</span><br/>
+
<span id="C22" style="font-size: 110%; font-weight: bold;">Twierdzenie C22</span><br/>
 
Jeżeli liczba naturalna <math>n</math> jest postaci <math>4 k + 3</math><ref name="LiczbaJestPostaci"/>, to ma dzielnik postaci <math>4 k + 3</math> będący liczbą pierwszą.
 
Jeżeli liczba naturalna <math>n</math> jest postaci <math>4 k + 3</math><ref name="LiczbaJestPostaci"/>, to ma dzielnik postaci <math>4 k + 3</math> będący liczbą pierwszą.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Jeżeli <math>n</math> jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy zatem sytuację gdy <math>n</math> jest liczbą złożoną. Z&nbsp;założenia <math>n</math> jest liczbą nieparzystą, zatem możliwe są trzy typy iloczynów
+
Jeżeli <math>n</math> jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy zatem sytuację, gdy <math>n</math> jest liczbą złożoną. Z&nbsp;założenia <math>n</math> jest liczbą nieparzystą, zatem możliwe są trzy typy iloczynów
  
 
::<math>(4 a + 1) (4 b + 1) = 16 a b + 4 a + 4 b + 1 = 4 (4 a b + a + b) + 1</math>
 
::<math>(4 a + 1) (4 b + 1) = 16 a b + 4 a + 4 b + 1 = 4 (4 a b + a + b) + 1</math>
Linia 412: Linia 445:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C22</span><br/>
+
<span id="C23" style="font-size: 110%; font-weight: bold;">Twierdzenie C23</span><br/>
 
Istnieje nieskończenie wiele liczb pierwszych postaci <math>4 k + 3</math>.
 
Istnieje nieskończenie wiele liczb pierwszych postaci <math>4 k + 3</math>.
  
Linia 420: Linia 453:
 
::<math>M = 4 p_1 \cdot \ldots \cdot p_s - 1 = 4 (p_1 \cdot \ldots \cdot p_s - 1) + 3</math>
 
::<math>M = 4 p_1 \cdot \ldots \cdot p_s - 1 = 4 (p_1 \cdot \ldots \cdot p_s - 1) + 3</math>
  
jest postaci <math>4 k + 3</math> i&nbsp;jak wiemy z&nbsp;twierdzenia C21, ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 3</math>. Ale jak łatwo zauważyć, żadna z&nbsp;liczb <math>p_1, \ldots, p_s</math> nie dzieli liczby <math>M</math>. Zatem istnieje liczba pierwsza <math>q</math> postaci <math>4 k + 3</math> różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_s</math>. Otrzymana sprzeczność kończy dowód.<br/>
+
jest postaci <math>4 k + 3</math> i&nbsp;jak wiemy z&nbsp;twierdzenia [[#C22|C22]], ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 3</math>. Ale jak łatwo zauważyć, żadna z&nbsp;liczb <math>p_1, \ldots, p_s</math> nie dzieli liczby <math>M</math>. Zatem istnieje liczba pierwsza <math>q</math> postaci <math>4 k + 3</math> różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_s</math>. Otrzymana sprzeczność kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 426: Linia 459:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C23</span><br/>
+
<span id="C24" style="font-size: 110%; font-weight: bold;">Twierdzenie C24</span><br/>
 
Jeżeli liczba naturalna <math>n</math> jest postaci <math>6 k + 5</math>, to ma dzielnik postaci <math>6 k + 5</math> będący liczbą pierwszą.
 
Jeżeli liczba naturalna <math>n</math> jest postaci <math>6 k + 5</math>, to ma dzielnik postaci <math>6 k + 5</math> będący liczbą pierwszą.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Jeżeli <math>n</math> jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy sytuację gdy <math>n</math> jest liczbą złożoną. Z&nbsp;twierdzenia C19 wiemy, że w&nbsp;tym przypadku liczba <math>n</math> będzie iloczynem liczb pierwszych. Zauważmy, że nieparzyste liczby pierwsze mogą być jedynie postaci <math>6 k + 1</math> lub <math>6 k + 5</math> (liczba <math>6 k + 3</math> jest liczbą złożoną). Ponieważ iloczyn liczb postaci <math>6 k + 1</math>
+
Jeżeli <math>n</math> jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy sytuację, gdy <math>n</math> jest liczbą złożoną. Z&nbsp;twierdzenia [[#C20|C20]] wiemy, że w&nbsp;tym przypadku liczba <math>n</math> będzie iloczynem liczb pierwszych. Zauważmy, że nieparzyste liczby pierwsze mogą być jedynie postaci <math>6 k + 1</math> lub <math>6 k + 5</math> (liczba <math>6 k + 3</math> jest liczbą złożoną). Ponieważ iloczyn liczb postaci <math>6 k + 1</math>
  
 
::<math>(6 a + 1) (6 b + 1) = 36 a b + 6 a + 6 b + 1 = 6 (6 a b + a + b) + 1</math>
 
::<math>(6 a + 1) (6 b + 1) = 36 a b + 6 a + 6 b + 1 = 6 (6 a b + a + b) + 1</math>
Linia 440: Linia 473:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C24</span><br/>
+
<span id="C25" style="font-size: 110%; font-weight: bold;">Twierdzenie C25</span><br/>
 
Istnieje nieskończenie wiele liczb pierwszych postaci <math>6 k + 5</math>.
 
Istnieje nieskończenie wiele liczb pierwszych postaci <math>6 k + 5</math>.
  
Linia 448: Linia 481:
 
::<math>M = 6 p_1 \cdot \ldots \cdot p_s - 1 = 6 (p_1 \cdot \ldots \cdot p_s - 1) + 5</math>
 
::<math>M = 6 p_1 \cdot \ldots \cdot p_s - 1 = 6 (p_1 \cdot \ldots \cdot p_s - 1) + 5</math>
  
jest postaci <math>6 k + 5</math> i&nbsp;jak wiemy z&nbsp;twierdzenia C23 ma dzielnik pierwszy <math>q</math> postaci <math>6 k + 5</math>. Ale jak łatwo zauważyć żadna z&nbsp;liczb <math>p_1, \ldots, p_s</math> nie dzieli liczby <math>M</math>. Zatem istnieje liczba pierwsza <math>q</math> postaci <math>6 k + 5</math> różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_s</math>. Otrzymana sprzeczność kończy dowód.<br/>
+
jest postaci <math>6 k + 5</math> i&nbsp;ma dzielnik pierwszy <math>q</math> postaci <math>6 k + 5</math> (zobacz [[#C24|C24]]). Ale jak łatwo zauważyć żadna z&nbsp;liczb <math>p_1, \ldots, p_s</math> nie dzieli liczby <math>M</math>. Zatem istnieje liczba pierwsza <math>q</math> postaci <math>6 k + 5</math> różna od każdej z&nbsp;liczb <math>p_1, p_2, \ldots, p_s</math>. Otrzymana sprzeczność kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 454: Linia 487:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C25</span><br/>
+
<span id="C26" style="font-size: 110%; font-weight: bold;">Twierdzenie C26</span><br/>
 
Istnieje nieskończenie wiele liczb pierwszych postaci <math>3 k + 2</math>.
 
Istnieje nieskończenie wiele liczb pierwszych postaci <math>3 k + 2</math>.
  
Linia 468: Linia 501:
 
::<math>3 k + 2 = 3 (2 j + 1) + 2 = 6 j + 5</math>
 
::<math>3 k + 2 = 3 (2 j + 1) + 2 = 6 j + 5</math>
  
o którym wiemy, że zawiera nieskończenie wiele liczb pierwszych (zobacz twierdzenie C24). Zatem w&nbsp;ciągu arytmetycznym postaci <math>3 k + 2</math> występuje nieskończenie wiele liczb pierwszych.<br/>
+
o którym wiemy, że zawiera nieskończenie wiele liczb pierwszych (zobacz twierdzenie [[#C25|C25]]). Zatem w&nbsp;ciągu arytmetycznym postaci <math>3 k + 2</math> występuje nieskończenie wiele liczb pierwszych.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 474: Linia 507:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C26</span><br/>
+
<span id="C27" style="font-size: 110%; font-weight: bold;">Uwaga C27</span><br/>
 
Zauważmy, że liczby postaci <math>2 k + 1</math> to wszystkie liczby nieparzyste dodatnie. Ponieważ wszystkie liczby pierwsze (poza liczbą <math>2</math>) są liczbami nieparzystymi, to wśród liczb postaci <math>2 k + 1</math> występuje nieskończenie wiele liczb pierwszych.
 
Zauważmy, że liczby postaci <math>2 k + 1</math> to wszystkie liczby nieparzyste dodatnie. Ponieważ wszystkie liczby pierwsze (poza liczbą <math>2</math>) są liczbami nieparzystymi, to wśród liczb postaci <math>2 k + 1</math> występuje nieskończenie wiele liczb pierwszych.
  
Linia 481: Linia 514:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C27* (Peter Gustav Lejeune Dirichlet, 1837)</span><br/>
+
<span id="C28" style="font-size: 110%; font-weight: bold;">Twierdzenie C28* (Peter Gustav Lejeune Dirichlet, 1837)</span><br/>
 
Niech <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to w&nbsp;ciągu arytmetycznym <math>a k + b</math> występuje nieskończenie wiele liczb pierwszych.
 
Niech <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to w&nbsp;ciągu arytmetycznym <math>a k + b</math> występuje nieskończenie wiele liczb pierwszych.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C28</span><br/>
+
<span id="C29" style="font-size: 110%; font-weight: bold;">Uwaga C29</span><br/>
 
Dowód twierdzenia Dirichleta jest bardzo trudny. Natomiast bardzo łatwo można pokazać, że dowolny ciąg arytmetyczny <math>a k + b</math> zawiera nieskończenie wiele liczb złożonych. Istotnie, jeżeli liczby <math>a, b</math> nie są względnie pierwsze, to wszystkie wyrazy ciągu są liczbami złożonymi. Jeżeli <math>a, b</math> są względnie pierwsze i <math>b > 1 ,</math> to wystarczy przyjąć <math>k = b t</math>. Jeżeli są względnie pierwsze i <math>b = 1</math>, to wystarczy przyjąć <math>k = a t^2 + 2 t</math>, wtedy
 
Dowód twierdzenia Dirichleta jest bardzo trudny. Natomiast bardzo łatwo można pokazać, że dowolny ciąg arytmetyczny <math>a k + b</math> zawiera nieskończenie wiele liczb złożonych. Istotnie, jeżeli liczby <math>a, b</math> nie są względnie pierwsze, to wszystkie wyrazy ciągu są liczbami złożonymi. Jeżeli <math>a, b</math> są względnie pierwsze i <math>b > 1 ,</math> to wystarczy przyjąć <math>k = b t</math>. Jeżeli są względnie pierwsze i <math>b = 1</math>, to wystarczy przyjąć <math>k = a t^2 + 2 t</math>, wtedy
  
Linia 493: Linia 526:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C29</span><br/>
+
<span id="C30" style="font-size: 110%; font-weight: bold;">Uwaga C30</span><br/>
Wiemy już, że w przypadku gdy liczby <math>a</math> i <math>b</math> są względnie pierwsze, to w ciągu arytmetycznym <math>a k + b</math> występuje nieskończenie wiele liczb pierwszych. Pojawia się pytanie o to, czy możliwe jest oszacowanie najmniejszej liczby pierwszej <math>p</math> w takim ciągu. Jakkolwiek przypuszczamy, że prawdziwe jest oszacowanie <math>p < a^2</math>, to stan naszej obecnej wiedzy ujmuje twierdzenie Linnika<ref name="Linnik1"/><ref name="Linnik2"/><ref name="Linnik3"/><ref name="Linnik4"/>, które podajemy niżej. Trzeba było ponad pół wieku wysiłku wielu matematyków, aby pokazać, że w twierdzeniu Linnika możemy przyjąć <math>L = 5</math><ref name="Xylouris1"/>. Bombieri, Friedlander i Iwaniec udowodnili<ref name="Bombieri1"/>, że dla prawie wszystkich liczb <math>a</math> prawdziwe jest oszacowanie <math>L \leqslant 2</math>.
+
Wiemy już, że w&nbsp;przypadku gdy liczby <math>a</math> i <math>b</math> są względnie pierwsze, to w&nbsp;ciągu arytmetycznym <math>a k + b</math> występuje nieskończenie wiele liczb pierwszych. Pojawia się pytanie o&nbsp;to, czy możliwe jest oszacowanie najmniejszej liczby pierwszej <math>p</math> w&nbsp;takim ciągu. Jakkolwiek przypuszczamy, że prawdziwe jest oszacowanie <math>p < a^2</math>, to stan naszej obecnej wiedzy ujmuje twierdzenie Linnika<ref name="Linnik1"/><ref name="Linnik2"/><ref name="Linnik3"/><ref name="Linnik4"/>, które podajemy niżej. Trzeba było ponad pół wieku wysiłku wielu matematyków, aby pokazać, że w&nbsp;twierdzeniu Linnika możemy przyjąć <math>L = 5</math><ref name="Xylouris1"/>. Bombieri, Friedlander i&nbsp;Iwaniec udowodnili<ref name="Bombieri1"/>, że dla prawie wszystkich liczb <math>a</math> prawdziwe jest oszacowanie <math>L \leqslant 2</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C30* (Jurij Linnik, 1944)</span><br/> Niech <math>a, b \in \mathbb{Z}_+</math> i <math>p_{\min} (a, b)</math> oznacza najmniejszą liczbę pierwszą w ciągu arytmetycznym <math>a k + b</math>, gdzie <math>k \in \mathbb{Z}_+</math>. Jeżeli <math>\gcd (a, b) = 1</math> i <math>b \in [1, a - 1]</math>, to istnieją takie stałe <math>L > 0</math> i <math>a_0 \geqslant 2</math>, że dla wszystkich <math>a > a_0</math> prawdziwe jest oszacowanie
+
<span id="C31" style="font-size: 110%; font-weight: bold;">Twierdzenie C31* (Jurij Linnik, 1944)</span><br/> Niech <math>a, b \in \mathbb{Z}_+</math> i <math>p_{\min} (a, b)</math> oznacza najmniejszą liczbę pierwszą w&nbsp;ciągu arytmetycznym <math>a k + b</math>, gdzie <math>k \in \mathbb{Z}_+</math>. Jeżeli <math>\gcd (a, b) = 1</math> i <math>b \in [1, a - 1]</math>, to istnieją takie stałe <math>L > 0</math> i <math>a_0 \geqslant 2</math>, że dla wszystkich <math>a > a_0</math> prawdziwe jest oszacowanie
  
 
::<math>p_{\min} (a, b) < a^L</math>
 
::<math>p_{\min} (a, b) < a^L</math>
Linia 504: Linia 537:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C31</span><br/>
+
<span id="C32" style="font-size: 110%; font-weight: bold;">Zadanie C32</span><br/>
Pokazać, że z twierdzenia Linnika wynika istnienie takich stałych <math>c, L > 0</math>, że dla każdego <math>a \geqslant 2</math> prawdziwe jest oszacowanie
+
Pokazać, że z&nbsp;twierdzenia Linnika wynika istnienie takich stałych <math>c, L > 0</math>, że dla każdego <math>a \geqslant 2</math> prawdziwe jest oszacowanie
  
 
::<math>p(a) < c a^L</math>
 
::<math>p(a) < c a^L</math>
Linia 514: Linia 547:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Oszacowanie podane w twierdzeniu Linnika
+
Oszacowanie podane w&nbsp;twierdzeniu Linnika
  
 
::<math>p_{\min} (a, b) < a^L</math>
 
::<math>p_{\min} (a, b) < a^L</math>
Linia 526: Linia 559:
 
::<math>p(a) < a^L</math>
 
::<math>p(a) < a^L</math>
  
dla wszystkich <math>a > a_0</math>. Ponieważ dla <math>a \in [2, a_0]</math> funkcja <math>p(a)</math> przyjmuje wartości skończone, a dla <math>a > a_0</math> jest <math>p(a) < a^L</math>, to funkcja <math>{\small\frac{p (a)}{a^L}}</math> jest ograniczona od góry, czyli istnieje taka stała <math>c</math>, że
+
dla wszystkich <math>a > a_0</math>. Ponieważ dla <math>a \in [2, a_0]</math> funkcja <math>p(a)</math> przyjmuje wartości skończone, a&nbsp;dla <math>a > a_0</math> jest <math>p(a) < a^L</math>, to funkcja <math>{\small\frac{p (a)}{a^L}}</math> jest ograniczona od góry, czyli istnieje taka stała <math>c</math>, że
  
 
::<math>{\small\frac{p (a)}{a^L}} < c</math>
 
::<math>{\small\frac{p (a)}{a^L}} < c</math>
Linia 536: Linia 569:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C32</span><br/>
+
<span id="C33" style="font-size: 110%; font-weight: bold;">Przykład C33</span><br/>
Pokazaliśmy (zobacz C31), że istnieją takie stałe <math>c, L > 0</math>, że dla każdego <math>a \geqslant 2</math> prawdziwe jest oszacowanie
+
Pokazaliśmy (zobacz [[#C32|C32]]), że istnieją takie stałe <math>c, L > 0</math>, że dla każdego <math>a \geqslant 2</math> prawdziwe jest oszacowanie
  
 
::<math>p(a) < c a^L</math>
 
::<math>p(a) < c a^L</math>
Linia 555: Linia 588:
  
  
Ze względu na skokowy charakter zmian funkcji <math>{\small\frac{\log p (a)}{\log a}}</math> najwygodniej jest przedstawić jej wykres, pokazując jej maksymalne i minimalne wartości w wybranych podprzedziałach <math>\mathbb{Z}_+</math>. Mówiąc precyzyjnie, na poniższym obrazku widzimy funkcje
+
Na zamieszczonym niżej obrazku przedstawiono pierwszych czternaście punktów funkcji <math>{\small\frac{\log p (a)}{\log a}}</math>. Ze względu na skokowy charakter zmian tej funkcji najwygodniej będzie przedstawić jej wykres, pokazując jedynie jej maksymalne i&nbsp;minimalne wartości w&nbsp;wybranych podprzedziałach <math>\mathbb{Z}_+</math>. Mówiąc precyzyjnie, zamieszczone zostały wykresy funkcji
  
::<math>f(t) = \max_{2^t \leqslant a < 2^{t + 1}} {\small\frac{\log p (a)}{\log a}} \qquad \qquad \text{oraz} \qquad \qquad g(t) = \min_{2^t \leqslant a < 2^{t + 1}} {\small\frac{\log p (a)}{\log a}}</math>
+
::<math>f(t) = \max_{2^t \leqslant a < 2^{t + 1}} {\small\frac{\log p (a)}{\log a}} \qquad \qquad \qquad \qquad g(t) = \min_{2^t \leqslant a < 2^{t + 1}} {\small\frac{\log p (a)}{\log a}} \qquad \qquad \qquad \qquad h(a) = 1 + {\small\frac{2 \log \log a}{\log a}}</math>
  
 
gdzie <math>t \in \mathbb{Z}_+</math>.
 
gdzie <math>t \in \mathbb{Z}_+</math>.
  
 +
::[[File: Linnik-22.png|950px|none]]
  
::[[File: Linnik-1.png|none]]
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod i&nbsp;dane do wykresu|Hide=Ukryj kod i&nbsp;dane do wykresu}}
 +
W tabeli przedstawiamy dane, na podstawie których sporządziliśmy zamieszczony wyżej wykres. Mamy kolejno
 +
:* przedział <math>U</math>
 +
:* minimalną wartość <math>{\small\frac{\log p(a)}{\log a}}</math> w&nbsp;przedziale <math>U</math>
 +
:* liczbę <math>a</math>, która odpowiada minimalnej wartości <math>{\small\frac{\log p(a)}{\log a}}</math>
 +
:* wartość <math>p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b < a}} p_{\min} (a, b)</math>
 +
:* liczbę <math>b</math> taką, że najmniejsza liczba pierwsza w&nbsp;ciągu <math>a k + b</math> jest równa <math>p ( a )</math>
  
 +
Następnie podajemy analogiczne wartości dla maksymalnej wartości <math>{\small\frac{\log p(a)}{\log a}}</math> w&nbsp;przedziale <math>U</math>. Pominęliśmy dane dla początkowych przedziałów <math>[2^{n},2^{n + 1})</math>, ponieważ Czytelnik z&nbsp;łatwością policzy je samodzielnie. Prosty kod do obliczeń w&nbsp;PARI/GP zamieściliśmy pod tabelą.
  
W tabeli zestawiliśmy wszystkie wartości funkcji <math>{\small\frac{\log p (a)}{\log a}}</math> większe od <math>1.75</math> dla <math>a \in [2, 2^{20}]</math>
+
::{| class="wikitable plainlinks"  style="font-size: 85%; text-align: right; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{U}</math> || <math>\boldsymbol{\min_{a \in U} {\small\frac{\log p(a)}{\log a}}}</math> || <math>\boldsymbol{a}</math> || <math>\boldsymbol{p(a)}</math> || <math>\boldsymbol{b}</math> || <math>\boldsymbol{\max_{a \in U} {\small\frac{\log p(a)}{\log a}}}</math> || <math>\boldsymbol{a}</math> || <math>\boldsymbol{p(a)}</math> || <math>\boldsymbol{b}</math>
 +
|-
 +
| <math>[2^{12},2^{13})</math> || <math>1.273691</math> || <math>6840</math> || <math>76679</math> || <math>1439</math> || <math>1.574826</math> || <math>4177</math> || <math>503771</math> || <math>2531</math>
 +
|-
 +
| <math>[2^{13},2^{14})</math> || <math>1.265227</math> || <math>14490</math> || <math>183949</math> || <math>10069</math> || <math>1.551307</math> || <math>8941</math> || <math>1348387</math> || <math>7237</math>
 +
|-
 +
| <math>[2^{14},2^{15})</math> || <math>1.257880</math> || <math>20790</math> || <math>269987</math> || <math>20507</math> || <math>1.519764</math> || <math>22133</math> || <math>4012709</math> || <math>6636</math>
 +
|-
 +
| <math>[2^{15},2^{16})</math> || <math>1.247285</math> || <math>39270</math> || <math>537157</math> || <math>26647</math> || <math>1.500736</math> || <math>40951</math> || <math>8352037</math> || <math>38984</math>
 +
|-
 +
| <math>[2^{16},2^{17})</math> || <math>1.244884</math> || <math>106260</math> || <math>1808207</math> || <math>1787</math> || <math>1.477806</math> || <math>84229</math> || <math>19005359</math> || <math>53834</math>
 +
|-
 +
| <math>[2^{17},2^{18})</math> || <math>1.243658</math> || <math>150150</math> || <math>2740469</math> || <math>37769</math> || <math>1.474387</math> || <math>132331</math> || <math>35588503</math> || <math>123795</math>
 +
|-
 +
| <math>[2^{18},2^{19})</math> || <math>1.233771</math> || <math>510510</math> || <math>11024723</math> || <math>304013</math> || <math>1.457138</math> || <math>297491</math> || <math>94537921</math> || <math>233274</math>
 +
|-
 +
| <math>[2^{19},2^{20})</math> || <math>1.233150</math> || <math>1021020</math> || <math>25706531</math> || <math>181031</math> || <math>1.437418</math> || <math>596081</math> || <math>200230391</math> || <math>543256</math>
 +
|-
 +
| <math>[2^{20},2^{21})</math> || <math>1.231259</math> || <math>2072070</math> || <math>59859383</math> || <math>1841423</math> || <math>1.419752</math> || <math>1181311</math> || <math>418069567</math> || <math>1066784</math>
 +
|-
 +
| <math>[2^{21},2^{22})</math> || <math>1.224444</math> || <math>3543540</math> || <math>104573173</math> || <math>1810513</math> || <math>1.405843</math> || <math>2753747</math> || <math>1131160207</math> || <math>2123937</math>
 +
|}
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
+
<span style="font-size: 90%; color:black;">pmin(a, b) =
 +
\\ zwraca najmniejszą liczbę pierwszą w ciągu a*k + b, gdzie k >= 1 i gcd(a, b) = 1
 +
{
 +
'''local'''(k, p);
 +
k = 1;
 +
p = a*k + b;
 +
'''while'''( !'''isprime'''(p), p = a*(k++) + b );
 +
'''return'''(p);
 +
}</span>
 +
 
 +
<span style="font-size: 90%; color:black;">PMAX(a) =
 +
\\ zwraca największą ze wszystkich najmniejszych liczb pierwszych
 +
\\ w ciągach a*k + b, gdzie k >= 1, 0 < b < a i gcd(a, b) = 1
 +
{
 +
'''local'''(b, p, w);
 +
w = [0, 0];
 +
b = 0;
 +
'''while'''( b++ < a,
 +
        '''if'''( '''gcd'''(a, b) > 1, '''next'''() );
 +
        p = pmin(a, b);
 +
        '''if'''( w[1] < p, w = [p, b] );
 +
      );
 +
'''return'''(w);
 +
}</span>
 +
 
 +
<span style="font-size: 90%; color:black;">Linnik(n) =
 +
\\ n >= 1, sprawdzamy przedział U = [ 2^n , 2^(n + 1) ), czyli  2^n <= a < 2^(n+1)
 +
{
 +
'''local'''(a, b, p4a, sep, txt, w, y, Ymin, Ymax);
 +
sep = ", "; \\ separator
 +
Ymin = [100, 1, 0, 0]; \\ najmniejsza wartość funkcji log( p(a) ) / log(a) w przedziale U
 +
Ymax = [0, 1, 0, 0]; \\ największa wartość funkcji log( p(a) ) / log(a) w przedziale U
 +
a = 2^n - 1;
 +
'''while'''( a++ < 2^(n+1),
 +
        w = PMAX(a);
 +
        p4a = w[1];
 +
        b = w[2];
 +
        y = '''log'''(p4a) / '''log'''(a);
 +
        if( y < Ymin[1], Ymin = [y, a, p4a, b] );
 +
        if( y > Ymax[1], Ymax = [y, a, p4a, b] );
 +
      );
 +
txt = '''Str'''(n, sep, Ymin[1], sep, Ymin[2], sep, Ymin[3], sep, Ymin[4], sep, Ymax[1], sep, Ymax[2], sep, Ymax[3], sep, Ymax[4]);
 +
'''print'''(txt);
 +
}</span>
 +
{{\Spoiler}}
 +
 
 +
Przypuszczamy, że prawdziwe jest znacznie silniejsze oszacowanie najmniejszej liczby pierwszej w&nbsp;ciągu arytmetycznym<ref name="Turan1"/><ref name="Wagstaff1"/>
 +
 
 +
::<math>p(a) \sim a \log^2 \! a</math>
 +
 
 +
W takim przypadku mielibyśmy
 +
 
 +
::<math>{\small\frac{\log p (a)}{\log a}} \sim 1 + {\small\frac{2 \log \log a}{\log a}}</math>
 +
 
 +
Rzeczywiście, porównanie wykresów funkcji <math>f(t)</math> i <math>h(a)</math> wydaje się potwierdzać to przypuszczenie dla <math>a \in [2, 2^{22}]</math>.
 +
 
 +
 
 +
 
 +
W tabeli zestawiliśmy wszystkie wartości funkcji <math>{\small\frac{\log p (a)}{\log a}}</math> większe od <math>1.75</math> dla <math>a \in [2, 2^{22}]</math>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
 
|-
 
|-
 
! <math>\boldsymbol{a}</math> || <math>\boldsymbol{\log_2 \! a}</math> || <math>\boldsymbol{p(a)}</math> || <math>\boldsymbol{{\small\frac{\log p(a)}{\log a}}}</math>
 
! <math>\boldsymbol{a}</math> || <math>\boldsymbol{\log_2 \! a}</math> || <math>\boldsymbol{p(a)}</math> || <math>\boldsymbol{{\small\frac{\log p(a)}{\log a}}}</math>
Linia 589: Linia 713:
  
  
Rozważmy zbiór <math>S</math> takich liczb <math>a</math>, że prawdziwe jest oszacowanie <math>p (a) < a (\log a)^2</math>. Bez trudu możemy podać przykłady takich liczb, ale nie wiemy, czy jest ich nieskończenie wiele.
 
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
+
Rozważmy zbiór <math>S</math> takich liczb <math>a</math>, że prawdziwe jest oszacowanie <math>p (a) < a \log^2 \! a</math>. Bez trudu możemy podać przykłady takich liczb, ale nie wiemy, czy jest ich nieskończenie wiele.
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
 
|-
 
|-
! <math>\boldsymbol{n}</math> || <math>\boldsymbol{a=p_1 \cdot \ldots \cdot p_n}</math> || <math>\boldsymbol{\log_2 \! a}</math> || <math>\boldsymbol{p(a)}</math> || <math>\boldsymbol{{\small\frac{a(\log a)^2}{p(a)}}}</math> || <math>\boldsymbol{{\small\frac{\log p(a)}{\log a}}}</math>
+
! <math>\boldsymbol{n}</math> || <math>\boldsymbol{a=p_1 \cdot \ldots \cdot p_n}</math> || <math>\boldsymbol{\log_2 \! a}</math> || <math>\boldsymbol{p(a)}</math> || <math>\boldsymbol{{\small\frac{a \log^2 \! a}{p(a)}}}</math> || <math>\boldsymbol{{\small\frac{\log p(a)}{\log a}}}</math>
 
|-
 
|-
 
| <math>2</math> || <math>6</math> || <math>2.584</math> || <math>11</math> || <math>1.751</math> || <math>1.338290</math>
 
| <math>2</math> || <math>6</math> || <math>2.584</math> || <math>11</math> || <math>1.751</math> || <math>1.338290</math>
Linia 623: Linia 748:
 
::<math>1 < {\small\frac{\log p (a)}{\log a}} < 1 + {\small\frac{2 \log \log a}{\log a}}</math>
 
::<math>1 < {\small\frac{\log p (a)}{\log a}} < 1 + {\small\frac{2 \log \log a}{\log a}}</math>
  
Jeżeli zbiór <math>S</math> jest nieskończony, to z twierdzenia o trzech ciągach otrzymujemy
+
Jeżeli zbiór <math>S</math> jest nieskończony, to z&nbsp;twierdzenia o&nbsp;trzech ciągach otrzymujemy
  
 
::<math>\underset{a \in S}{\lim_{a \rightarrow \infty}} {\small\frac{\log p (a)}{\log a}} = 1</math>
 
::<math>\underset{a \in S}{\lim_{a \rightarrow \infty}} {\small\frac{\log p (a)}{\log a}} = 1</math>
Linia 635: Linia 760:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C33</span><br/>
+
<span id="C34" style="font-size: 110%; font-weight: bold;">Zadanie C34</span><br/>
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...
  
Linia 645: Linia 770:
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja C34</span><br/>
+
<span id="C35" style="font-size: 110%; font-weight: bold;">Definicja C35</span><br/>
 
Niech <math>a \geqslant 2</math> będzie liczbą całkowitą. Wartość funkcji <math>\pi(n; a, b)</math> jest równa ilości liczb pierwszych nie większych od <math>n</math>, które przy dzieleniu przez <math>a</math> dają resztę <math>b</math>.
 
Niech <math>a \geqslant 2</math> będzie liczbą całkowitą. Wartość funkcji <math>\pi(n; a, b)</math> jest równa ilości liczb pierwszych nie większych od <math>n</math>, które przy dzieleniu przez <math>a</math> dają resztę <math>b</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C35</span><br/>
+
<span id="C36" style="font-size: 110%; font-weight: bold;">Uwaga C36</span><br/>
Zauważmy, że w&nbsp;twierdzeniu Dirichleta na liczby <math>a</math> oraz <math>b</math> nałożone są minimalne warunki: <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Sytuacja w&nbsp;przypadku funkcji <math>\pi (n ; a, b)</math> jest odmienna – tutaj mamy <math>a \geqslant 2</math> oraz <math>0 \leqslant b \leqslant a - 1</math>. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja <math>\pi (n ; a, b)</math> jest podziałem pierwotnym, a&nbsp;twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział
+
Zauważmy, że w&nbsp;twierdzeniu Dirichleta na liczby <math>a</math> oraz <math>b</math> nałożone są minimalne warunki: <math>a \in \mathbb{Z}_+</math> i <math>b \in \mathbb{Z}</math>. Sytuacja w&nbsp;przypadku funkcji <math>\pi (n ; a, b)</math> jest odmienna – tutaj mamy <math>a \geqslant 2</math> oraz <math>0 \leqslant b \leqslant a - 1</math>. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja <math>\pi (n ; a, b)</math>, jest podziałem pierwotnym, a&nbsp;twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział
 
liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek
 
liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek
  
Linia 666: Linia 791:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C36</span><br/>
+
<span id="C37" style="font-size: 110%; font-weight: bold;">Zadanie C37</span><br/>
 
Pokazać, że dla dowolnej liczby całkowitej <math>m \geqslant 1</math>
 
Pokazać, że dla dowolnej liczby całkowitej <math>m \geqslant 1</math>
  
Linia 674: Linia 799:
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
'''Punkt 1.'''<br/>
 
'''Punkt 1.'''<br/>
W przypadku liczb naturalnych, łatwo widzimy, że kolejne liczby
+
W przypadku liczb naturalnych łatwo widzimy, że kolejne liczby
  
 
::<math>(m + 1) ! + 2, \quad (m + 1) ! + 3, \quad \ldots, \quad (m + 1) ! + (m + 1)</math>
 
::<math>(m + 1) ! + 2, \quad (m + 1) ! + 3, \quad \ldots, \quad (m + 1) ! + (m + 1)</math>
Linia 703: Linia 828:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C37</span><br/>
+
<span id="C38" style="font-size: 110%; font-weight: bold;">Przykład C38</span><br/>
 
Rozważmy ciąg arytmetyczny <math>u_k = 3 k + 2</math> i&nbsp;wskaźnik
 
Rozważmy ciąg arytmetyczny <math>u_k = 3 k + 2</math> i&nbsp;wskaźnik
  
Linia 710: Linia 835:
 
Trzynaście wyrazów tego szeregu dla <math>k = k_0 + t</math>, gdzie <math>t = 0, 1, \ldots, 12</math> to oczywiście liczby złożone, ale wyrazy dla <math>k = k_0 - 1</math> i <math>k = k_0 + 13</math> są liczbami pierwszymi.
 
Trzynaście wyrazów tego szeregu dla <math>k = k_0 + t</math>, gdzie <math>t = 0, 1, \ldots, 12</math> to oczywiście liczby złożone, ale wyrazy dla <math>k = k_0 - 1</math> i <math>k = k_0 + 13</math> są liczbami pierwszymi.
  
Przeszukując ciąg <math>u_k = 3 k + 2</math> możemy łatwo znaleźć, że pierwsze trzynaście kolejnych wyrazów złożonych pojawia się już dla <math>k = 370, 371, \ldots, 382</math>.
+
Przeszukując ciąg <math>u_k = 3 k + 2</math>, możemy łatwo znaleźć, że pierwsze trzynaście kolejnych wyrazów złożonych pojawia się już dla <math>k = 370, 371, \ldots, 382</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C38</span><br/>
+
<span id="C39" style="font-size: 110%; font-weight: bold;">Twierdzenie C39</span><br/>
 
Jeżeli <math>n \geqslant 3</math>, to istnieje <math>n</math> kolejnych liczb naturalnych, wśród których znajduje się dokładnie <math>r \leqslant \pi (n)</math> liczb pierwszych.
 
Jeżeli <math>n \geqslant 3</math>, to istnieje <math>n</math> kolejnych liczb naturalnych, wśród których znajduje się dokładnie <math>r \leqslant \pi (n)</math> liczb pierwszych.
  
Linia 746: Linia 871:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C39</span><br/>
+
<span id="C40" style="font-size: 110%; font-weight: bold;">Przykład C40</span><br/>
 
Czytelnik może łatwo sprawdzić, że ciąg <math>( 1308, \ldots, 1407 )</math> stu kolejnych liczb całkowitych zawiera dokładnie <math>8</math> liczb pierwszych.
 
Czytelnik może łatwo sprawdzić, że ciąg <math>( 1308, \ldots, 1407 )</math> stu kolejnych liczb całkowitych zawiera dokładnie <math>8</math> liczb pierwszych.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C40</span><br/>
+
<span id="C41" style="font-size: 110%; font-weight: bold;">Zadanie C41</span><br/>
Pokazać, nie korzystając z&nbsp;twierdzenia C38, że istnieje <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
+
Pokazać, nie korzystając z&nbsp;twierdzenia [[#C39|C39]], że istnieje <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Linia 759: Linia 884:
 
::<math>1001! + 2, 1001! + 3, \ldots, 1001! + 1001</math>
 
::<math>1001! + 2, 1001! + 3, \ldots, 1001! + 1001</math>
  
nie zawiera żadnej liczby pierwszej. Wielokrotnie zmniejszając wszystkie wypisane wyżej liczby o&nbsp;jeden, aż do chwili, gdy pierwsza z&nbsp;wypisanych liczb będzie liczbą pierwszą uzyskamy <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
+
nie zawiera żadnej liczby pierwszej. Wielokrotnie zmniejszając wszystkie wypisane wyżej liczby o&nbsp;jeden, aż do chwili, gdy pierwsza z&nbsp;wypisanych liczb będzie liczbą pierwszą, uzyskamy <math>1000</math> kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.
  
 
Uwaga: dopiero liczba <math>1001! - 1733</math> jest pierwsza.<br/>
 
Uwaga: dopiero liczba <math>1001! - 1733</math> jest pierwsza.<br/>
Linia 767: Linia 892:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C41</span><br/>
+
<span id="C42" style="font-size: 110%; font-weight: bold;">Zadanie C42</span><br/>
 
Pokazać, że istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których jest dokładnie <math>5</math> liczb pierwszych.
 
Pokazać, że istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których jest dokładnie <math>5</math> liczb pierwszych.
  
Linia 774: Linia 899:
  
 
:* wśród pierwszych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> jest <math>13</math> liczb pierwszych  
 
:* wśród pierwszych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> jest <math>13</math> liczb pierwszych  
:* w&nbsp;ciągu <math>6 k + 1</math> istnieją dowolnie długie przedziały pozbawione liczb pierwszych (zobacz zadanie C36), zatem istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których nie ma ani jednej liczby pierwszej
+
:* w&nbsp;ciągu <math>6 k + 1</math> istnieją dowolnie długie przedziały pozbawione liczb pierwszych (zobacz zadanie [[#C37|C37]]), zatem istnieje <math>20</math> kolejnych liczb naturalnych postaci <math>6 k + 1</math>, wśród których nie ma ani jednej liczby pierwszej
  
Pierwsze spostrzeżenie pokazuje, że rozwiązanie problemu jest potencjalnie możliwe. Rozwiązanie mogłoby nie istnieć, gdybyśmy szukali <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> wśród których jest, powiedzmy, <math>15</math> liczb pierwszych.
+
Pierwsze spostrzeżenie pokazuje, że rozwiązanie problemu jest potencjalnie możliwe. Rozwiązanie mogłoby nie istnieć, gdybyśmy szukali <math>20</math> liczb naturalnych postaci <math>6 k + 1</math>, wśród których jest, powiedzmy, <math>15</math> liczb pierwszych.
  
 
Drugie spostrzeżenie mówi nam, że ilość liczb pierwszych wśród kolejnych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> zmienia się od <math>13</math> do <math>0</math>. Analiza przebiegu tych zmian jest kluczem do dowodu twierdzenia.
 
Drugie spostrzeżenie mówi nam, że ilość liczb pierwszych wśród kolejnych <math>20</math> liczb naturalnych postaci <math>6 k + 1</math> zmienia się od <math>13</math> do <math>0</math>. Analiza przebiegu tych zmian jest kluczem do dowodu twierdzenia.
Linia 809: Linia 934:
  
  
Wynika stąd, że przechodząc od ciągu <math>(B^n)</math> do ciągu <math>(B^{n + 1})</math> ilość liczb pierwszych może się zmienić o <math>- 1</math>, <math>0</math> lub <math>1</math>. Z&nbsp;drugiego ze spostrzeżeń uczynionych na początku dowodu wynika istnienie takiej liczby <math>r</math>, że wśród ciągów
+
Wynika stąd, że przechodząc od ciągu <math>(B^n)</math> do ciągu <math>(B^{n + 1})</math>, ilość liczb pierwszych może się zmienić o <math>- 1</math>, <math>0</math> lub <math>1</math>. Z&nbsp;drugiego ze spostrzeżeń uczynionych na początku dowodu wynika istnienie takiej liczby <math>r</math>, że wśród ciągów
  
 
::<math>(B^1), (B^2), \ldots, (B^r)</math>
 
::<math>(B^1), (B^2), \ldots, (B^r)</math>
Linia 819: Linia 944:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C42</span><br/>
+
<span id="C43" style="font-size: 110%; font-weight: bold;">Twierdzenie C43</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>a \geqslant 2</math> i <math>0 \leqslant b \leqslant a - 1</math>. Jeżeli liczby <math>a</math> oraz <math>b</math> są względnie pierwsze, to istnieje <math>n</math> kolejnych liczb postaci <math>a k + b</math>, wśród których znajduje się dokładnie <math>r \leqslant \pi (a (n - 1) + b ; a, b)</math> liczb pierwszych.
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>a \geqslant 2</math> i <math>0 \leqslant b \leqslant a - 1</math>. Jeżeli liczby <math>a</math> oraz <math>b</math> są względnie pierwsze, to istnieje <math>n</math> kolejnych liczb postaci <math>a k + b</math>, wśród których znajduje się dokładnie <math>r \leqslant \pi (a (n - 1) + b ; a, b)</math> liczb pierwszych.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Twierdzenie można udowodnić uogólniając dowód twierdzenia C38 lub wykorzystując metodę zastosowaną w&nbsp;rozwiązaniu zadania C41.<br/>
+
Twierdzenie można udowodnić, uogólniając dowód twierdzenia [[#C39|C39]] lub wykorzystując metodę zastosowaną w&nbsp;rozwiązaniu zadania [[#C42|C42]].<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 829: Linia 954:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C43</span><br/>
+
<span id="C44" style="font-size: 110%; font-weight: bold;">Zadanie C44</span><br/>
 
Niech <math>p \geqslant 5</math> będzie liczbą pierwszą. Pokazać, że w&nbsp;ciągu <math>6 k + 1</math> występują kwadraty wszystkich liczb pierwszych <math>p</math>.
 
Niech <math>p \geqslant 5</math> będzie liczbą pierwszą. Pokazać, że w&nbsp;ciągu <math>6 k + 1</math> występują kwadraty wszystkich liczb pierwszych <math>p</math>.
  
Linia 845: Linia 970:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C44</span><br/>
+
<span id="C45" style="font-size: 110%; font-weight: bold;">Zadanie C45</span><br/>
 
Dany jest ciąg arytmetyczny <math>a k + b</math>, gdzie liczby <math>a</math> i <math>b</math> są względnie pierwsze. Pokazać, że
 
Dany jest ciąg arytmetyczny <math>a k + b</math>, gdzie liczby <math>a</math> i <math>b</math> są względnie pierwsze. Pokazać, że
  
Linia 869: Linia 994:
 
::<math>p \mid a (j - i)</math>
 
::<math>p \mid a (j - i)</math>
  
Ponieważ <math>p \nmid a</math> to na mocy lematu Euklidesa (twierdzenie C74), mamy
+
Ponieważ <math>p \nmid a</math> to na mocy lematu Euklidesa (twierdzenie [[#C75|C75]]), mamy
  
 
::<math>p \mid (j - i)</math>
 
::<math>p \mid (j - i)</math>
Linia 887: Linia 1012:
 
::<math>n p - a k = b</math>
 
::<math>n p - a k = b</math>
  
Zauważmy, że ponieważ <math>p \nmid a</math>, to liczby <math>a</math> i <math>p</math> są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba <math>1</math>. Na mocy twierdzenia C78 równanie to ma nieskończenie wiele rozwiązań w&nbsp;liczbach całkowitych
+
Zauważmy, że ponieważ <math>p \nmid a</math>, to liczby <math>a</math> i <math>p</math> są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba <math>1</math>. Na mocy twierdzenia [[#C79|C79]] równanie to ma nieskończenie wiele rozwiązań w&nbsp;liczbach całkowitych
  
 
::<math>n = n_0 + p t</math>
 
::<math>n = n_0 + p t</math>
Linia 922: Linia 1047:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C45</span><br/>
+
<span id="C46" style="font-size: 110%; font-weight: bold;">Uwaga C46</span><br/>
 
Łatwo możemy napisać w&nbsp;PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną <math>k_0</math>, dla której wyraz ciągu arytmetycznego <math>a k + b</math> jest podzielny przez <math>p</math> (przy założeniu, że liczby <math>a</math> i <math>p</math> są względnie pierwsze).
 
Łatwo możemy napisać w&nbsp;PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną <math>k_0</math>, dla której wyraz ciągu arytmetycznego <math>a k + b</math> jest podzielny przez <math>p</math> (przy założeniu, że liczby <math>a</math> i <math>p</math> są względnie pierwsze).
  
Linia 933: Linia 1058:
 
== Ciągi nieskończone i&nbsp;liczby pierwsze ==
 
== Ciągi nieskończone i&nbsp;liczby pierwsze ==
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C46</span><br/>
+
<span id="C47" style="font-size: 110%; font-weight: bold;">Uwaga C47</span><br/>
 
Choć wiele ciągów jest dobrze znanych i&nbsp;równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo
 
Choć wiele ciągów jest dobrze znanych i&nbsp;równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo
  
Linia 979: Linia 1104:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C47</span><br/>
+
<span id="C48" style="font-size: 110%; font-weight: bold;">Przykład C48</span><br/>
 
Łatwo sprawdzić, że wartości wielomianu <math>W(n) = n^2 + n + 41</math> są liczbami pierwszymi dla <math>1 \leqslant n \leqslant 39</math>. Oczywiście <math>41 \mid W(41)</math>.
 
Łatwo sprawdzić, że wartości wielomianu <math>W(n) = n^2 + n + 41</math> są liczbami pierwszymi dla <math>1 \leqslant n \leqslant 39</math>. Oczywiście <math>41 \mid W(41)</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C48</span><br/>
+
<span id="C49" style="font-size: 110%; font-weight: bold;">Twierdzenie C49</span><br/>
Niech <math>a, n</math> będą liczbami całkowitymi takimi, że <math>a \geqslant 2</math> i <math>n \geqslant 1</math>. Jeżeli liczba <math>a^n + 1</math> jest liczbą pierwszą, to <math>a</math> jest liczbą parzystą i <math>n = 2^m</math>.
+
Niech <math>a, n \in \mathbb{Z}_+</math> i <math>a \geqslant 2</math>. Jeżeli liczba <math>a^n + 1</math> jest liczbą pierwszą, to <math>a</math> jest liczbą parzystą i <math>n = 2^m</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Gdyby liczba <math>a</math> była nieparzysta, to <math>a^n + 1 \geqslant 4</math> byłoby parzyste i&nbsp;nie mogłoby być liczbą pierwszą.
+
Gdyby liczba <math>a</math> była nieparzysta, to liczba <math>a^n + 1 \geqslant 4</math> byłaby parzysta i&nbsp;nie mogłaby być liczbą pierwszą.
  
Niech teraz wykładnik <math>n = x y</math> będzie liczbą złożoną, zaś <math>x</math> będzie liczbą nieparzystą. Wtedy
+
Niech wykładnik <math>n = x y</math> będzie liczbą złożoną, a <math>x</math> będzie liczbą nieparzystą. Wtedy
  
 
::<math>a^n + 1 = (a^y)^x + 1</math>
 
::<math>a^n + 1 = (a^y)^x + 1</math>
  
Oznaczając <math>b = a^y</math> oraz <math>x = 2 k + 1</math> mamy
+
Oznaczając <math>b = a^y</math> oraz <math>x = 2 k + 1</math>, otrzymujemy
  
::<math>a^n + 1 = (a^y)^x + 1 =</math>
+
::<math>a^n + 1 = (a^y)^x + 1</math>
  
::::<math>\: = b^x + 1 =</math>
+
::::<math>\: = b^x + 1</math>
  
::::<math>\: = b^{2 k + 1} + 1 =</math>
+
::::<math>\: = b^{2 k + 1} + 1</math>
  
::::<math>\: = (b + 1) \cdot (b^{2 k} - b^{2 k - 1} + \ldots - b^3 + b^2 - b + 1)</math>
+
::::<math>\: = (b + 1) \cdot (1 - b + b^2 - b^3 + \ldots + b^{2 k - 2} - b^{2 k - 1} + b^{2 k})</math>
  
Wynika stąd, że w&nbsp;takim przypadku <math>a^n + 1</math> jest liczbą złożoną. Zatem wykładnik <math>n</math> nie może zawierać czynników nieparzystych, czyli musi być <math>n = 2^m</math>. Co należało pokazać.<br/>
+
Czyli <math>a^n + 1</math> jest liczbą złożoną. Wynika stąd, że wykładnik <math>n</math> nie może zawierać czynników nieparzystych, czyli musi być <math>n = 2^m</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1010: Linia 1135:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C49</span><br/>
+
<span id="C50" style="font-size: 110%; font-weight: bold;">Twierdzenie C50</span><br/>
 
Dla dowolnej liczby naturalnej <math>n \geqslant 1</math> liczba <math>x - y</math> jest dzielnikiem wyrażenia <math>x^n - y^n</math>.
 
Dla dowolnej liczby naturalnej <math>n \geqslant 1</math> liczba <math>x - y</math> jest dzielnikiem wyrażenia <math>x^n - y^n</math>.
  
Linia 1030: Linia 1155:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C50</span><br/>
+
<span id="C51" style="font-size: 110%; font-weight: bold;">Twierdzenie C51</span><br/>
 
Jeżeli <math>n \geqslant 2</math> oraz <math>a^n - 1</math> jest liczbą pierwszą, to <math>a = 2</math> i <math>n</math> jest liczbą pierwszą.
 
Jeżeli <math>n \geqslant 2</math> oraz <math>a^n - 1</math> jest liczbą pierwszą, to <math>a = 2</math> i <math>n</math> jest liczbą pierwszą.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia C49 wiemy, że <math>x - y \mid x^n - y^n</math>. W&nbsp;przypadku gdy <math>a > 2</math> mamy
+
Z twierdzenia [[#C50|C50]] wiemy, że <math>x - y \mid x^n - y^n</math>. W&nbsp;przypadku gdy <math>a > 2</math> mamy
  
 
::<math>a - 1 \mid a^n - 1</math>
 
::<math>a - 1 \mid a^n - 1</math>
Linia 1053: Linia 1178:
 
== Ciągi arytmetyczne liczb pierwszych ==
 
== Ciągi arytmetyczne liczb pierwszych ==
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C51</span><br/>
+
<span id="C52" style="font-size: 110%; font-weight: bold;">Uwaga C52</span><br/>
 
Ciągi arytmetyczne liczb pierwszych<ref name="PAPWiki"/><ref name="PAPMathWorld"/> zbudowane z&nbsp;dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o&nbsp;długości <math>n \geqslant 3</math>.
 
Ciągi arytmetyczne liczb pierwszych<ref name="PAPWiki"/><ref name="PAPMathWorld"/> zbudowane z&nbsp;dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o&nbsp;długości <math>n \geqslant 3</math>.
  
Linia 1064: Linia 1189:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C52* (Ben Green i&nbsp;Terence Tao, 2004)</span><br/>
+
<span id="C53" style="font-size: 110%; font-weight: bold;">Twierdzenie C53* (Ben Green i&nbsp;Terence Tao, 2004)</span><br/>
 
Dla dowolnej liczby naturalnej <math>n \geqslant 2</math> istnieje nieskończenie wiele <math>n</math>-wyrazowych ciągów arytmetycznych liczb pierwszych.
 
Dla dowolnej liczby naturalnej <math>n \geqslant 2</math> istnieje nieskończenie wiele <math>n</math>-wyrazowych ciągów arytmetycznych liczb pierwszych.
  
Linia 1070: Linia 1195:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C53</span><br/>
+
<span id="C54" style="font-size: 110%; font-weight: bold;">Przykład C54</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 3</math> i <math>n = 4</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 3</math> i <math>n = 4</math>.
  
Linia 1418: Linia 1543:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C54</span><br/>
+
<span id="C55" style="font-size: 110%; font-weight: bold;">Przykład C55</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 5</math> i <math>n = 6</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 5</math> i <math>n = 6</math>.
  
Linia 1710: Linia 1835:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C55</span><br/>
+
<span id="C56" style="font-size: 110%; font-weight: bold;">Przykład C56</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 7</math> i <math>n = 8</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 7</math> i <math>n = 8</math>.
  
Linia 1974: Linia 2099:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C56</span><br/>
+
<span id="C57" style="font-size: 110%; font-weight: bold;">Przykład C57</span><br/>
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 9</math> i <math>n = 10</math>.
 
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n = 9</math> i <math>n = 10</math>.
  
Linia 2406: Linia 2531:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C57</span><br/>
+
<span id="C58" style="font-size: 110%; font-weight: bold;">Twierdzenie C58</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math> oraz <math>a, d, k, k_0 \in \mathbb{Z}</math>. Jeżeli liczby <math>d</math> i <math>n</math> są względnie pierwsze, to reszty <math>r_1, r_2, \ldots, r_n</math> z&nbsp;dzielenia <math>n</math> liczb <math>x_k</math> postaci  
 
Niech <math>n \in \mathbb{Z}_+</math> oraz <math>a, d, k, k_0 \in \mathbb{Z}</math>. Jeżeli liczby <math>d</math> i <math>n</math> są względnie pierwsze, to reszty <math>r_1, r_2, \ldots, r_n</math> z&nbsp;dzielenia <math>n</math> liczb <math>x_k</math> postaci  
  
Linia 2422: Linia 2547:
 
::<math>n \mid d (j - i)</math>
 
::<math>n \mid d (j - i)</math>
  
Ponieważ liczby <math>d</math> i <math>n</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C74), mamy
+
Ponieważ liczby <math>d</math> i <math>n</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie [[#C75|C75]]), mamy
  
 
::<math>n \mid (j - i)</math>
 
::<math>n \mid (j - i)</math>
Linia 2434: Linia 2559:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C58</span><br/>
+
<span id="C59" style="font-size: 110%; font-weight: bold;">Twierdzenie C59</span><br/>
 
Niech <math>d \in \mathbb{Z}_+</math> i&nbsp;niech będzie dany ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>
 
Niech <math>d \in \mathbb{Z}_+</math> i&nbsp;niech będzie dany ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>
  
Linia 2450: Linia 2575:
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
'''Punkt 1.'''<br/>
 
'''Punkt 1.'''<br/>
Gdyby <math>p_0 \mid d</math>, to dla <math>k \geqslant 1</math> mielibyśmy <math>p_k = p_0 \left( 1 + k \cdot \frac{d}{p_0} \right)</math> i&nbsp;wszystkie te liczby byłyby złożone.
+
Gdyby <math>p_0 \mid d</math>, to dla <math>k \geqslant 1</math> mielibyśmy <math>p_k = p_0 \left( 1 + k \cdot {\small\frac{d}{p_0}} \right)</math> i&nbsp;wszystkie te liczby byłyby złożone.
  
 
'''Punkt 2.'''<br/>
 
'''Punkt 2.'''<br/>
Linia 2456: Linia 2581:
  
 
'''Punkt 3.'''<br/>
 
'''Punkt 3.'''<br/>
Niech <math>q</math> będzie liczbą pierwszą mniejszą od <math>n</math>, a&nbsp;liczby <math>r_k</math> będą resztami uzyskanymi z&nbsp;dzielenia liczb <math>p_k = p_0 + k d</math> przez <math>q</math>, dla <math>k = 0, 1, \ldots, q - 1</math>. Ponieważ z&nbsp;założenia liczby <math>p_0, \ldots, p_{n - 1}</math> są liczbami pierwszymi większymi od <math>q</math> (zauważmy, że <math>p_0 \geqslant n</math>), to żadna z&nbsp;reszt <math>r_k</math> nie może być równa zeru. Czyli mamy <math>q</math> reszt mogących przyjmować jedynie <math>q - 1</math> różnych wartości. Zatem istnieją różne liczby <math>i, j</math>, takie że <math>0 \leqslant i < j \leqslant q - 1</math>, dla których <math>r_i = r_j</math>. Wynika stąd, że różnica liczb
+
Niech <math>q</math> będzie liczbą pierwszą mniejszą od <math>n</math>, a&nbsp;liczby <math>r_k</math> będą resztami uzyskanymi z&nbsp;dzielenia liczb <math>p_k = p_0 + k d</math> przez <math>q</math>, dla <math>k = 0, 1, \ldots, q - 1</math>. Ponieważ z&nbsp;założenia liczby <math>p_0, \ldots, p_{n - 1}</math> są liczbami pierwszymi większymi od <math>q</math> (zauważmy, że <math>p_0 \geqslant n</math>), to żadna z&nbsp;reszt <math>r_k</math> nie może być równa zeru. Czyli mamy <math>q</math> reszt mogących przyjmować jedynie <math>q - 1</math> różnych wartości. Zatem istnieją różne liczby <math>i, j</math> takie, że <math>0 \leqslant i < j \leqslant q - 1</math>, dla których <math>r_i = r_j</math>. Wynika stąd, że różnica liczb
  
 
::<math>p_j - p_i = (p_0 + j d) - (p_0 + i d) = d (j - i)</math>
 
::<math>p_j - p_i = (p_0 + j d) - (p_0 + i d) = d (j - i)</math>
Linia 2473: Linia 2598:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C59</span><br/>
+
<span id="C60" style="font-size: 110%; font-weight: bold;">Uwaga C60</span><br/>
 
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „''prime arithmetic progression''”. Konsekwentnie zapis PAP-<math>n</math> będzie oznaczał ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, a&nbsp;zapis PAP<math>(n, d, q)</math> ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, pierwszym wyrazie <math>q</math> i&nbsp;różnicy <math>d</math>.
 
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „''prime arithmetic progression''”. Konsekwentnie zapis PAP-<math>n</math> będzie oznaczał ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, a&nbsp;zapis PAP<math>(n, d, q)</math> ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math>, pierwszym wyrazie <math>q</math> i&nbsp;różnicy <math>d</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C60</span><br/>
+
<span id="C61" style="font-size: 110%; font-weight: bold;">Uwaga C61</span><br/>
 
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej <math>q</math> i&nbsp;o&nbsp;dowolnej długości <math>3 \leqslant n \leqslant q</math>, to obecnie jest to tylko nieudowodnione przypuszczenie.
 
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej <math>q</math> i&nbsp;o&nbsp;dowolnej długości <math>3 \leqslant n \leqslant q</math>, to obecnie jest to tylko nieudowodnione przypuszczenie.
  
Dlatego '''nawet dla najmniejszej''' liczby pierwszej <math>q</math> takiej, że <math>q \nmid d</math> nierówność <math>n \leqslant q</math>, pokazana w&nbsp;twierdzeniu C58, pozostaje nadal tylko oszacowaniem. W&nbsp;szczególności nie możemy z&nbsp;góry przyjmować, że dla liczby <math>n = q</math> znajdziemy taką liczbę <math>d</math> będącą wielokrotnością liczby <math>P(q - 1)</math> i&nbsp;niepodzielną przez <math>q</math>, że będzie istniał PAP<math>(q, d, q)</math>.
+
Dlatego '''nawet dla najmniejszej''' liczby pierwszej <math>q</math> takiej, że <math>q \nmid d</math> nierówność <math>n \leqslant q</math>, pokazana w&nbsp;twierdzeniu [[#C59|C59]], pozostaje nadal tylko oszacowaniem. W&nbsp;szczególności nie możemy z&nbsp;góry przyjmować, że dla liczby <math>n = q</math> znajdziemy taką liczbę <math>d</math> będącą wielokrotnością liczby <math>P(q - 1)</math> i&nbsp;niepodzielną przez <math>q</math>, że będzie istniał PAP<math>(q, d, q)</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C61</span><br/>
+
<span id="C62" style="font-size: 110%; font-weight: bold;">Przykład C62</span><br/>
 
Rozważmy dwie różnice <math>d_1 = 6 = 2 \cdot 3</math> oraz <math>d_2 = 42 = 2 \cdot 3 \cdot 7</math>. Zauważmy, że liczba pierwsza <math>5</math> nie dzieli ani <math>d_1</math>, ani <math>d_2</math>. Co więcej, liczba pierwsza <math>5</math> jest '''najmniejszą''' liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność <math>n \leqslant 5</math> zapewnia najmocniejsze oszacowanie długości ciągu <math>n</math>. Łatwo sprawdzamy w&nbsp;zamieszczonych tabelach, że dla <math>d = 6</math> oraz dla <math>d = 42</math> są ciągi o&nbsp;długości <math>3, 4, 5</math>, ale nie ma ciągów o&nbsp;długości <math>6, 7, \ldots</math>
 
Rozważmy dwie różnice <math>d_1 = 6 = 2 \cdot 3</math> oraz <math>d_2 = 42 = 2 \cdot 3 \cdot 7</math>. Zauważmy, że liczba pierwsza <math>5</math> nie dzieli ani <math>d_1</math>, ani <math>d_2</math>. Co więcej, liczba pierwsza <math>5</math> jest '''najmniejszą''' liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność <math>n \leqslant 5</math> zapewnia najmocniejsze oszacowanie długości ciągu <math>n</math>. Łatwo sprawdzamy w&nbsp;zamieszczonych tabelach, że dla <math>d = 6</math> oraz dla <math>d = 42</math> są ciągi o&nbsp;długości <math>3, 4, 5</math>, ale nie ma ciągów o&nbsp;długości <math>6, 7, \ldots</math>
  
W szczególności z&nbsp;twierdzenia C58 wynika, że szukając ciągów arytmetycznych liczb pierwszych o&nbsp;określonej długości <math>n</math>, należy szukać ich tylko dla różnic <math>d</math> będących wielokrotnością liczby <math>P(n - 1)</math>.
+
W szczególności z&nbsp;twierdzenia [[#C59|C59]] wynika, że szukając ciągów arytmetycznych liczb pierwszych o&nbsp;określonej długości <math>n</math>, należy szukać ich tylko dla różnic <math>d</math> będących wielokrotnością liczby <math>P(n - 1)</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C62</span><br/>
+
<span id="C63" style="font-size: 110%; font-weight: bold;">Zadanie C63</span><br/>
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że jeżeli <math>p_0 = 3</math>, to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że jeżeli <math>p_0 = 3</math>, to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Ponieważ <math>p_0 = 3</math>, a&nbsp;rozpatrywany PAP jest rosnący, to kolejne wyrazy ciągu są większe od liczby <math>3</math> i&nbsp;mogą być przedstawione w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Z&nbsp;twierdzenia C58 wiemy, że musi być <math>n \leqslant p_0 = 3</math>, czyli długość rozpatrywanego ciągu arytmetycznego liczb pierwszych wynosi dokładnie <math>3</math> i&nbsp;istnieją tylko dwa następne wyrazy.
+
Ponieważ <math>p_0 = 3</math>, a&nbsp;rozpatrywany PAP jest rosnący, to kolejne wyrazy ciągu są większe od liczby <math>3</math> i&nbsp;mogą być przedstawione w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Z&nbsp;twierdzenia [[#C59|C59]] wiemy, że musi być <math>n \leqslant p_0 = 3</math>, czyli długość rozpatrywanego ciągu arytmetycznego liczb pierwszych wynosi dokładnie <math>3</math> i&nbsp;istnieją tylko dwa następne wyrazy.
  
 
Rozważmy ciąg arytmetyczny liczb pierwszych składający się z&nbsp;trzech wyrazów <math>p, q, r</math> takich, że <math>p = 3</math>. Mamy
 
Rozważmy ciąg arytmetyczny liczb pierwszych składający się z&nbsp;trzech wyrazów <math>p, q, r</math> takich, że <math>p = 3</math>. Mamy
Linia 2512: Linia 2637:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C63</span><br/>
+
<span id="C64" style="font-size: 110%; font-weight: bold;">Zadanie C64</span><br/>
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych <math>p_0, p_1, \ldots, p_{n - 1}</math>, gdzie <math>p_0 \geqslant 5</math> i <math>n \geqslant 3</math> muszą być jednakowej postaci.
 
Wiemy, że liczby pierwsze <math>p > 3</math> można przedstawić w&nbsp;jednej z&nbsp;postaci <math>6 k - 1</math> lub <math>6 k + 1</math>. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych <math>p_0, p_1, \ldots, p_{n - 1}</math>, gdzie <math>p_0 \geqslant 5</math> i <math>n \geqslant 3</math> muszą być jednakowej postaci.
  
Linia 2534: Linia 2659:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C64</span><br/>
+
<span id="C65" style="font-size: 110%; font-weight: bold;">Zadanie C65</span><br/>
 
Niech <math>d > 0</math> będzie różnicą ciągu arytmetycznego liczb pierwszych o&nbsp;długości <math>n</math>
 
Niech <math>d > 0</math> będzie różnicą ciągu arytmetycznego liczb pierwszych o&nbsp;długości <math>n</math>
  
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
  
Pokazać, nie korzystając z&nbsp;twierdzenia C58, że jeżeli liczba pierwsza <math>q</math> nie dzieli <math>d</math>, to <math>n \leqslant q</math>.
+
Pokazać, nie korzystając z&nbsp;twierdzenia [[#C59|C59]], że jeżeli liczba pierwsza <math>q</math> nie dzieli <math>d</math>, to <math>n \leqslant q</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Linia 2546: Linia 2671:
 
::<math>q < p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
 
::<math>q < p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
  
Ponieważ <math>q \nmid d</math>, to na mocy twierdzenia C57 wśród <math>q</math> kolejnych wyrazów <math>p_0, p_1, \ldots, p_{q - 1}</math> (zauważmy, że <math>q - 1 < n - 1</math>) jedna liczba pierwsza <math>p_k</math> musi być podzielna przez <math>q</math>, zatem musi być równa <math>q</math>. Jednak jest to niemożliwe, bo <math>q < p_k</math> dla wszystkich <math>k = 0, 1, \ldots, n - 1</math>. Zatem nie może być <math>n > q</math>.<br/>
+
Ponieważ <math>q \nmid d</math>, to na mocy twierdzenia [[#C58|C58]] wśród <math>q</math> kolejnych wyrazów <math>p_0, p_1, \ldots, p_{q - 1}</math> (zauważmy, że <math>q - 1 < n - 1</math>) jedna liczba pierwsza <math>p_k</math> musi być podzielna przez <math>q</math>, zatem musi być równa <math>q</math>. Jednak jest to niemożliwe, bo <math>q < p_k</math> dla wszystkich <math>k = 0, 1, \ldots, n - 1</math>. Zatem nie może być <math>n > q</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2552: Linia 2677:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C65</span><br/>
+
<span id="C66" style="font-size: 110%; font-weight: bold;">Twierdzenie C66</span><br/>
 
Niech <math>q</math> będzie liczbą pierwszą, a&nbsp;liczby pierwsze
 
Niech <math>q</math> będzie liczbą pierwszą, a&nbsp;liczby pierwsze
  
Linia 2569: Linia 2694:
 
Gdyby <math>q \mid d</math>, to mielibyśmy
 
Gdyby <math>q \mid d</math>, to mielibyśmy
  
::<math>p_k = q \left( 1 + k \cdot \frac{d}{q} \right)</math>
+
::<math>p_k = q \left( 1 + k \cdot {\small\frac{d}{q}} \right)</math>
  
 
i wszystkie liczby <math>p_k</math> dla <math>k \geqslant 1</math> byłyby złożone, wbrew założeniu, że <math>p_k</math> tworzą <math>q</math>-wyrazowy ciąg arytmetyczny liczb pierwszych.
 
i wszystkie liczby <math>p_k</math> dla <math>k \geqslant 1</math> byłyby złożone, wbrew założeniu, że <math>p_k</math> tworzą <math>q</math>-wyrazowy ciąg arytmetyczny liczb pierwszych.
  
 
<math>\Longleftarrow</math><br/>
 
<math>\Longleftarrow</math><br/>
Ponieważ <math>q</math> jest długością rozpatrywanego ciągu arytmetycznego liczb pierwszych, to z&nbsp;twierdzenia C58 wynika, że musi być <math>q \leqslant p_0</math>.
+
Ponieważ <math>q</math> jest długością rozpatrywanego ciągu arytmetycznego liczb pierwszych, to z&nbsp;twierdzenia [[#C59|C59]] wynika, że musi być <math>q \leqslant p_0</math>.
  
Z założenia liczba pierwsza <math>q</math> nie dzieli <math>d</math>, zatem z&nbsp;twierdzenia C57 wiemy, że <math>q</math> musi dzielić jedną z&nbsp;liczb <math>p_0, p_1, \ldots, p_{q - 1}</math>.
+
Z założenia liczba pierwsza <math>q</math> nie dzieli <math>d</math>, zatem z&nbsp;twierdzenia [[#C58|C58]] wiemy, że <math>q</math> musi dzielić jedną z&nbsp;liczb <math>p_0, p_1, \ldots, p_{q - 1}</math>.
  
 
Jeżeli <math>q \mid p_k</math>, to <math>p_k = q</math>. Ponieważ <math>q \leqslant p_0</math>, to możliwe jest jedynie <math>q \mid p_0</math> i&nbsp;musi być <math>p_0 = q</math>.<br/>
 
Jeżeli <math>q \mid p_k</math>, to <math>p_k = q</math>. Ponieważ <math>q \leqslant p_0</math>, to możliwe jest jedynie <math>q \mid p_0</math> i&nbsp;musi być <math>p_0 = q</math>.<br/>
Linia 2584: Linia 2709:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C66</span><br/>
+
<span id="C67" style="font-size: 110%; font-weight: bold;">Uwaga C67</span><br/>
 
Niech ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math> ma postać
 
Niech ciąg arytmetyczny liczb pierwszych o&nbsp;długości <math>n</math> ma postać
  
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
 
::<math>p_k = p_0 + k d \qquad</math> dla <math>\; k = 0, 1, \ldots, n - 1</math>
  
Z udowodnionych wyżej twierdzeń C58 i&nbsp;C65 wynika, że ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n</math> można podzielić na dwie grupy
+
Z udowodnionych wyżej twierdzeń [[#C59|C59]] i&nbsp;[[#C66|C66]] wynika, że ciągi arytmetyczne liczb pierwszych o&nbsp;długości <math>n</math> można podzielić na dwie grupy
  
 
:* jeżeli <math>n</math> jest liczbą pierwszą i <math>n \nmid d</math>, to <math>P(n - 1) \mid d</math> oraz <math>p_0 = n</math> (dla ustalonego <math>d</math> może istnieć tylko jeden ciąg)
 
:* jeżeli <math>n</math> jest liczbą pierwszą i <math>n \nmid d</math>, to <math>P(n - 1) \mid d</math> oraz <math>p_0 = n</math> (dla ustalonego <math>d</math> może istnieć tylko jeden ciąg)
Linia 2598: Linia 2723:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C67</span><br/>
+
<span id="C68" style="font-size: 110%; font-weight: bold;">Przykład C68</span><br/>
 
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi <math>d = 10^t</math>, gdzie <math>t \geqslant 1</math>. Zauważmy, że dla dowolnego <math>t</math> liczba <math>3</math> jest najmniejszą liczbą pierwszą, która nie dzieli <math>d</math>. Z&nbsp;oszacowania <math>n \leqslant 3</math> wynika, że musi być <math>n = 3</math>.
 
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi <math>d = 10^t</math>, gdzie <math>t \geqslant 1</math>. Zauważmy, że dla dowolnego <math>t</math> liczba <math>3</math> jest najmniejszą liczbą pierwszą, która nie dzieli <math>d</math>. Z&nbsp;oszacowania <math>n \leqslant 3</math> wynika, że musi być <math>n = 3</math>.
  
Linia 2605: Linia 2730:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C68</span><br/>
+
<span id="C69" style="font-size: 110%; font-weight: bold;">Zadanie C69</span><br/>
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>d = 2, 4, 8, 10, 14, 16</math>.
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>d = 2, 4, 8, 10, 14, 16</math>.
  
Linia 2621: Linia 2746:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C69</span><br/>
+
<span id="C70" style="font-size: 110%; font-weight: bold;">Zadanie C70</span><br/>
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>n = 3, 5, 7, 11</math> i <math>d = P (n - 1)</math>.
 
Znaleźć wszystkie PAP<math>(n, d, p)</math> dla <math>n = 3, 5, 7, 11</math> i <math>d = P (n - 1)</math>.
  
Linia 2639: Linia 2764:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C70</span><br/>
+
<span id="C71" style="font-size: 110%; font-weight: bold;">Przykład C71</span><br/>
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych, takie że <math>n = p_0</math> dla <math>n = 3, 5, 7, 11, 13</math>. Zauważmy, że wypisane w&nbsp;tabeli wartości <math>d</math> są wielokrotnościami liczby <math>P(n - 1)</math>.
+
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych takie, że <math>n = p_0</math> dla <math>n = 3, 5, 7, 11, 13</math>. Zauważmy, że wypisane w&nbsp;tabeli wartości <math>d</math> są wielokrotnościami liczby <math>P(n - 1)</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabelę|Hide=Ukryj tabelę}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż tabelę|Hide=Ukryj tabelę}}
Linia 2667: Linia 2792:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C71</span><br/>
+
<span id="C72" style="font-size: 110%; font-weight: bold;">Przykład C72</span><br/>
 
Liczby <math>3, 5, 7</math> są najprostszym przykładem ciągu arytmetycznego '''kolejnych''' liczb pierwszych. Zauważmy, że tylko w&nbsp;przypadku <math>n = 3</math> możliwa jest sytuacja, że <math>n = p_0 = 3</math>. Istotnie, łatwo stwierdzamy, że
 
Liczby <math>3, 5, 7</math> są najprostszym przykładem ciągu arytmetycznego '''kolejnych''' liczb pierwszych. Zauważmy, że tylko w&nbsp;przypadku <math>n = 3</math> możliwa jest sytuacja, że <math>n = p_0 = 3</math>. Istotnie, łatwo stwierdzamy, że
  
:* ponieważ <math>p_0</math> i <math>p_1</math> są '''kolejnymi''' liczbami pierwszymi, to <math>p_1 - p_0 < p_0</math> (zobacz zadanie B22)
+
:* ponieważ <math>p_0</math> i <math>p_1</math> są '''kolejnymi''' liczbami pierwszymi, to <math>p_1 - p_0 < p_0</math> (zobacz zadanie [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B22|B22]])
:* dla dowolnej liczby pierwszej <math>q \geqslant 5</math> jest <math>q < P (q - 1)</math> (zobacz zadanie B26)
+
:* dla dowolnej liczby pierwszej <math>q \geqslant 5</math> jest <math>q < P (q - 1)</math> (zobacz zadanie [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B26|B26]])
  
Przypuśćmy teraz, że istnieje ciąg arytmetyczny '''kolejnych''' liczb pierwszych, taki że <math>n = p_0 \geqslant 5</math>. Mamy
+
Przypuśćmy teraz, że istnieje ciąg arytmetyczny '''kolejnych''' liczb pierwszych taki, że <math>n = p_0 \geqslant 5</math>. Mamy
  
 
::<math>d = p_1 - p_0 < p_0 < P (p_0 - 1) = P (n - 1)</math>
 
::<math>d = p_1 - p_0 < p_0 < P (p_0 - 1) = P (n - 1)</math>
Linia 2679: Linia 2804:
 
Zatem <math>P(n - 1) \nmid d</math>, co jest niemożliwe.
 
Zatem <math>P(n - 1) \nmid d</math>, co jest niemożliwe.
  
Wynika stąd, że poza przypadkiem <math>n = p_0 = 3</math> ciąg arytmetyczny kolejnych liczb pierwszych musi spełniać warunek <math>P(n)|d</math>, czyli <math>P(n)|(p_1 - p_0)</math>.
+
Wynika stąd, że poza przypadkiem <math>n = p_0 = 3</math> ciąg arytmetyczny kolejnych liczb pierwszych musi spełniać warunek <math>P(n) \mid d</math>, czyli <math>P(n) \mid (p_1 - p_0)</math>.
  
 
Poniższe tabele przedstawiają przykładowe ciągi arytmetyczne kolejnych liczb pierwszych o&nbsp;długościach <math>n = 3, 4, 5, 6</math> dla rosnących wartości <math>p_0</math>. Nie istnieje ciąg arytmetyczny kolejnych liczb pierwszych o&nbsp;długości <math>n = 7</math> dla <math>p_0 < 10^{13}</math>. Prawdopodobnie CPAP-7 pojawią się dopiero dla <math>p_0 \sim 10^{20}</math>.
 
Poniższe tabele przedstawiają przykładowe ciągi arytmetyczne kolejnych liczb pierwszych o&nbsp;długościach <math>n = 3, 4, 5, 6</math> dla rosnących wartości <math>p_0</math>. Nie istnieje ciąg arytmetyczny kolejnych liczb pierwszych o&nbsp;długości <math>n = 7</math> dla <math>p_0 < 10^{13}</math>. Prawdopodobnie CPAP-7 pojawią się dopiero dla <math>p_0 \sim 10^{20}</math>.
Linia 2819: Linia 2944:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie C72</span><br/>
+
<span id="C73" style="font-size: 110%; font-weight: bold;">Zadanie C73</span><br/>
 
Uzasadnij przypuszczenie, że ciągów arytmetycznych '''kolejnych''' liczb pierwszych o&nbsp;długości <math>n = 7</math> możemy oczekiwać dopiero dla <math>p_0 \sim 10^{20}</math>.
 
Uzasadnij przypuszczenie, że ciągów arytmetycznych '''kolejnych''' liczb pierwszych o&nbsp;długości <math>n = 7</math> możemy oczekiwać dopiero dla <math>p_0 \sim 10^{20}</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Zauważmy, że ilość liczb pierwszych nie większych od <math>x</math> w&nbsp;dobrym przybliżeniu jest określona funkcją <math>\frac{x}{\log x}</math>. Ponieważ funkcja <math>\log x</math> zmienia się bardzo wolno, to odcinki liczb naturalnych o&nbsp;tej samej długości położone w&nbsp;niewielkiej odległości od siebie będą zawierały podobne ilości liczb pierwszych. Przykładowo, dla dużych wartości <math>x</math>, ilość liczb pierwszych w&nbsp;przedziale <math>(x, 2 x)</math> jest tego samego rzędu, co ilość liczb pierwszych w&nbsp;przedziale <math>(1, x)</math><ref name="PrimesInInterval"/>.
+
Zauważmy, że ilość liczb pierwszych nie większych od <math>x</math> w&nbsp;dobrym przybliżeniu jest określona funkcją <math>{\small\frac{x}{\log x}}</math>. Ponieważ funkcja <math>\log x</math> zmienia się bardzo wolno, to odcinki liczb naturalnych o&nbsp;tej samej długości położone w&nbsp;niewielkiej odległości od siebie będą zawierały podobne ilości liczb pierwszych. Przykładowo, dla dużych wartości <math>x</math>, ilość liczb pierwszych w&nbsp;przedziale <math>(x, 2 x)</math> jest tego samego rzędu, co ilość liczb pierwszych w&nbsp;przedziale <math>(1, x)</math><ref name="PrimesInInterval"/>.
  
  
Zatem liczbę <math>\frac{1}{\log x}</math> możemy traktować jako prawdopodobieństwo trafienia na liczbę pierwszą wśród liczb znajdujących się w&nbsp;pobliżu liczby <math>x</math>. Zakładając, że liczby pierwsze są rozłożone przypadkowo, możemy wyliczyć prawdopodobieństwo tego, że <math>n</math> kolejnych liczb pierwszych, położonych w&nbsp;pobliżu liczby <math>x</math>, utworzy ciąg arytmetyczny
+
Zatem liczbę <math>{\small\frac{1}{\log x}}</math> możemy traktować jako prawdopodobieństwo trafienia na liczbę pierwszą wśród liczb znajdujących się w&nbsp;pobliżu liczby <math>x</math>. Zakładając, że liczby pierwsze są rozłożone przypadkowo, możemy wyliczyć prawdopodobieństwo tego, że <math>n</math> kolejnych liczb pierwszych, położonych w&nbsp;pobliżu liczby <math>x</math>, utworzy ciąg arytmetyczny
  
::<math>\text{prob}_{\text{cpap}} (n, x) = \left( \frac{1}{\log x} \right)^n \left( 1 - \frac{1}{\log x} \right)^{(n - 1) (d - 1)}</math>
+
::<math>\text{prob}_{\text{cpap}} (n, x) = \left( {\small\frac{1}{\log x}} \right)^n \left( 1 - {\small\frac{1}{\log x}} \right)^{(n - 1) (d - 1)}</math>
  
gdzie <math>d = P (n)</math>. Jest tak, ponieważ w&nbsp;ciągu kolejnych liczb całkowitych musimy trafić na liczbę pierwszą, następnie na <math>d - 1</math> liczb złożonych, taka sytuacja musi się powtórzyć dokładnie <math>n - 1</math> razy, a&nbsp;na koniec znowu musimy trafić na liczbę pierwszą. Czyli potrzebujemy <math>n</math> liczb pierwszych, na które trafiamy z&nbsp;prawdopodobieństwem <math>\frac{1}{\log x}</math> oraz <math>(n - 1) (d - 1)</math> liczb złożonych, na które trafiamy z&nbsp;prawdopodobieństwem <math>1 - \frac{1}{\log x}</math>, a&nbsp;liczby te muszą pojawiać się w&nbsp;ściśle określonej kolejności.
+
gdzie <math>d = P (n)</math>. Jest tak, ponieważ w&nbsp;ciągu kolejnych liczb całkowitych musimy trafić na liczbę pierwszą, następnie na <math>d - 1</math> liczb złożonych, taka sytuacja musi się powtórzyć dokładnie <math>n - 1</math> razy, a&nbsp;na koniec znowu musimy trafić na liczbę pierwszą. Czyli potrzebujemy <math>n</math> liczb pierwszych, na które trafiamy z&nbsp;prawdopodobieństwem <math>{\small\frac{1}{\log x}}</math> oraz <math>(n - 1) (d - 1)</math> liczb złożonych, na które trafiamy z&nbsp;prawdopodobieństwem <math>1 - {\small\frac{1}{\log x}}</math>, a&nbsp;liczby te muszą pojawiać się w&nbsp;ściśle określonej kolejności.
  
  
 
Ilość ciągów arytmetycznych utworzonych przez <math>n</math> kolejnych liczb pierwszych należących do przedziału <math>(x, 2 x)</math> możemy zatem oszacować na równą około
 
Ilość ciągów arytmetycznych utworzonych przez <math>n</math> kolejnych liczb pierwszych należących do przedziału <math>(x, 2 x)</math> możemy zatem oszacować na równą około
  
::<math>Q_{\text{cpap}}(n, x) = x \cdot \left( \frac{1}{\log x} \right)^n \left( 1 - \frac{1}{\log x} \right)^{(n - 1) (d - 1)}</math>
+
::<math>Q_{\text{cpap}}(n, x) = x \cdot \left( {\small\frac{1}{\log x}} \right)^n \left( 1 - {\small\frac{1}{\log x}} \right)^{(n - 1) (d - 1)}</math>
  
  
Linia 2886: Linia 3011:
 
Możemy ją łatwo wyliczyć w&nbsp;PARI/GP. Oczywiście funkcję <math>f(7, x)</math> zastąpiliśmy jej oszacowaniem <math>C_7 = 2500</math>
 
Możemy ją łatwo wyliczyć w&nbsp;PARI/GP. Oczywiście funkcję <math>f(7, x)</math> zastąpiliśmy jej oszacowaniem <math>C_7 = 2500</math>
  
  P(n) = prod(k=2, n, if( isprime(k), k, 1 ))
+
  <span style="font-size: 90%; color:black;">P(n) = '''prod'''(k = 2, n, '''if'''( '''isprime'''(k), k, 1 ))</span>
  Q(x) = 2500 * x * ( 1/log(x) )^7 * ( 1 - 1/log(x) )^( (7-1)*(P(7)-1) )
+
 
  solve(x=10^10, 10^23, Q(x) - 1 )
+
  <span style="font-size: 90%; color:black;">Q(x) = 2500 * x * ( 1/'''log'''(x) )^7 * ( 1 - 1/'''log'''(x) )^( (7 - 1)*(P(7) - 1) )</span>
<br/>
+
 
 +
  <span style="font-size: 90%; color:black;">'''solve'''(x = 10^10, 10^23, Q(x) - 1 )</span>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2899: Linia 3025:
 
== Uzupełnienie ==
 
== Uzupełnienie ==
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C73 (lemat Bézouta)</span><br/>
+
<span id="C74" style="font-size: 110%; font-weight: bold;">Twierdzenie C74 (lemat Bézouta)</span><br/>
 
Jeżeli liczby całkowite <math>a</math> i <math>b</math> nie są jednocześnie równe zeru, a&nbsp;największy wspólny dzielnik tych liczb jest równy <math>D</math>, to istnieją takie liczby całkowite <math>x, y</math>, że
 
Jeżeli liczby całkowite <math>a</math> i <math>b</math> nie są jednocześnie równe zeru, a&nbsp;największy wspólny dzielnik tych liczb jest równy <math>D</math>, to istnieją takie liczby całkowite <math>x, y</math>, że
  
Linia 2926: Linia 3052:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C74 (lemat Euklidesa)</span><br/>
+
<span id="C75" style="font-size: 110%; font-weight: bold;">Twierdzenie C75 (lemat Euklidesa)</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą oraz <math>a, b, d \in \mathbb{Z}</math>.
 
Niech <math>p</math> będzie liczbą pierwszą oraz <math>a, b, d \in \mathbb{Z}</math>.
  
:* jeżeli <math>d \mid a b</math> i liczba <math>d</math> jest względnie pierwsza z <math>a</math>, to <math>d \mid b</math>
+
:* jeżeli <math>d \mid a b</math> i&nbsp;liczba <math>d</math> jest względnie pierwsza z <math>a</math>, to <math>d \mid b</math>
  
 
:* jeżeli <math>p \mid a b</math>, to <math>p \mid a</math> lub <math>p \mid b</math>
 
:* jeżeli <math>p \mid a b</math>, to <math>p \mid a</math> lub <math>p \mid b</math>
Linia 2937: Linia 3063:
 
'''Punkt 1.'''
 
'''Punkt 1.'''
  
Z założenia liczby <math>d</math> i <math>a</math> są względnie pierwsze, zatem na mocy lematu Bézouta (twierdzenie C73) istnieją takie liczby całkowite <math>x</math> i <math>y</math>, że
+
Z założenia liczby <math>d</math> i <math>a</math> są względnie pierwsze, zatem na mocy lematu Bézouta (twierdzenie [[#C74|C74]]) istnieją takie liczby całkowite <math>x</math> i <math>y</math>, że
  
 
::<math>d x + a y = 1</math>
 
::<math>d x + a y = 1</math>
Linia 2945: Linia 3071:
 
::<math>d b x + a b y = b</math>
 
::<math>d b x + a b y = b</math>
  
Obydwa wyrazy po prawej stronie są podzielne przez <math>d</math>, bo z założenia <math>d \mid a b</math>. Zatem prawa strona również jest podzielna przez <math>d</math>, czyli <math>d \mid b</math>. Co kończy dowód punktu pierwszego.
+
Obydwa wyrazy po lewej stronie są podzielne przez <math>d</math>, bo z&nbsp;założenia <math>d \mid a b</math>. Zatem prawa strona również jest podzielna przez <math>d</math>, czyli <math>d \mid b</math>. Co kończy dowód punktu pierwszego.
  
 
'''Punkt 2.'''
 
'''Punkt 2.'''
  
Jeżeli <math>p \nmid a</math>, to <math>\gcd (p, a) = 1</math>, zatem z punktu pierwszego wynika, że <math>p \mid b</math>.
+
Jeżeli <math>p \nmid a</math>, to <math>\gcd (p, a) = 1</math>, zatem z&nbsp;punktu pierwszego wynika, że <math>p \mid b</math>.
  
Jeżeli <math>p \nmid b</math>, to <math>\gcd (p, b) = 1</math>, zatem z punktu pierwszego wynika, że <math>p \mid a</math>.
+
Jeżeli <math>p \nmid b</math>, to <math>\gcd (p, b) = 1</math>, zatem z&nbsp;punktu pierwszego wynika, że <math>p \mid a</math>.
  
Czyli <math>p</math> musi dzielić przynajmniej jedną z liczb <math>a, b</math>. Co należało pokazać.<br/>
+
Czyli <math>p</math> musi dzielić przynajmniej jedną z&nbsp;liczb <math>a, b</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2959: Linia 3085:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C75</span><br/>
+
<span id="C76" style="font-size: 110%; font-weight: bold;">Twierdzenie C76</span><br/>
Niech <math>a, b, m \in \mathbb{Z}</math>. Jeżeli <math>a \mid m</math> i <math>b \mid m</math> oraz <math>\gcd (a, b) = 1</math>, to <math>a b \mid m</math>.
+
Niech <math>a, b, m \in \mathbb{Z}</math>. Jeżeli <math>a \mid m \;</math> i <math>\; b \mid m</math> oraz <math>\gcd (a, b) = 1</math>, to <math>a b \mid m</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Linia 2968: Linia 3094:
 
::<math>a x + b y = 1</math>
 
::<math>a x + b y = 1</math>
  
(zobacz C73). Zatem
+
(zobacz [[#C74|C74]]). Zatem
  
 
::<math>m = m (a x + b y)</math>
 
::<math>m = m (a x + b y)</math>
Linia 2984: Linia 3110:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C76</span><br/>
+
<span id="C77" style="font-size: 110%; font-weight: bold;">Twierdzenie C77</span><br/>
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Równanie <math>a x + b y = c</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest dzielnikiem liczby <math>c</math>.
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Równanie <math>a x + b y = c</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest dzielnikiem liczby <math>c</math>.
  
Linia 2996: Linia 3122:
 
::<math>a x_0 + b y_0 = c</math>
 
::<math>a x_0 + b y_0 = c</math>
  
Ponieważ <math>D</math> dzieli lewą stronę równania, to musi również dzielić prawą, zatem musi być <math>D|c</math>.
+
Ponieważ <math>D</math> dzieli lewą stronę równania, to musi również dzielić prawą, zatem musi być <math>D \mid c</math>.
  
 
<math>\Longleftarrow</math>
 
<math>\Longleftarrow</math>
  
Jeżeli <math>D|c</math>, to możemy napisać <math>c = k D</math> i&nbsp;równanie przyjmuje postać
+
Jeżeli <math>D \mid c</math>, to możemy napisać <math>c = k D</math> i&nbsp;równanie przyjmuje postać
  
 
::<math>a x + b y = k D</math>
 
::<math>a x + b y = k D</math>
  
Lemat Bézouta (twierdzenie C73) zapewnia istnienie liczb całkowitych <math>x_0</math> i <math>y_0</math> takich, że
+
Lemat Bézouta (twierdzenie [[#C74|C74]]) zapewnia istnienie liczb całkowitych <math>x_0</math> i <math>y_0</math> takich, że
  
 
::<math>a x_0 + b y_0 = D</math>
 
::<math>a x_0 + b y_0 = D</math>
Linia 3022: Linia 3148:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga C77</span><br/>
+
<span id="C78" style="font-size: 110%; font-weight: bold;">Uwaga C78</span><br/>
Z twierdzenia C76 wynika, że szukając rozwiązań równania <math>A x + B y = C</math> w&nbsp;liczbach całkowitych, powinniśmy
+
Z twierdzenia [[#C77|C77]] wynika, że szukając rozwiązań równania <math>A x + B y = C</math> w&nbsp;liczbach całkowitych, powinniśmy
  
 
:* obliczyć największy wspólny dzielnik <math>D</math> liczb <math>A</math> i <math>B</math>
 
:* obliczyć największy wspólny dzielnik <math>D</math> liczb <math>A</math> i <math>B</math>
:* jeżeli <math>D > 1</math>, należy sprawdzić, czy <math>D|C</math>
+
:* jeżeli <math>D > 1</math>, należy sprawdzić, czy <math>D \mid C</math>
 
:* jeżeli <math>D \nmid C</math>, to równanie <math>A x + B y = C</math> nie ma rozwiązań w&nbsp;liczbach całkowitych
 
:* jeżeli <math>D \nmid C</math>, to równanie <math>A x + B y = C</math> nie ma rozwiązań w&nbsp;liczbach całkowitych
:* jeżeli <math>D|C</math>, należy podzielić obie strony równania <math>A x + B y = C</math> przez <math>D</math> i&nbsp;przejść do rozwiązywania równania równoważnego <math>a x + b y = c</math>, gdzie <math>a = \frac{A}{D}</math>, <math>b = \frac{B}{D}</math>, <math>c = \frac{C}{D}</math>, zaś największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest równy <math>1</math>.
+
:* jeżeli <math>D \mid C</math>, należy podzielić obie strony równania <math>A x + B y = C</math> przez <math>D</math> i&nbsp;przejść do rozwiązywania równania równoważnego <math>a x + b y = c</math>, gdzie <math>a = {\small\frac{A}{D}}</math>, <math>b = {\small\frac{B}{D}}</math>, <math>c = {\small\frac{C}{D}}</math>, zaś największy wspólny dzielnik liczb <math>a</math> i <math>b</math> jest równy <math>1</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie C78</span><br/>
+
<span id="C79" style="font-size: 110%; font-weight: bold;">Twierdzenie C79</span><br/>
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to równanie
 
Niech <math>a, b, c \in \mathbb{Z}</math>. Jeżeli liczby <math>a</math> i <math>b</math> są względnie pierwsze, to równanie
  
Linia 3047: Linia 3173:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z założenia liczby <math>a</math> i <math>b</math> są względnie pierwsze, zatem największy wspólny dzielnik tych liczb jest równy <math>1</math> i&nbsp;dzieli liczbę <math>c</math>. Na mocy twierdzenia C76 równanie
+
Z założenia liczby <math>a</math> i <math>b</math> są względnie pierwsze, zatem największy wspólny dzielnik tych liczb jest równy <math>1</math> i&nbsp;dzieli liczbę <math>c</math>. Na mocy twierdzenia [[#C77|C77]] równanie
  
 
::<math>a x + b y = c</math>
 
::<math>a x + b y = c</math>
Linia 3075: Linia 3201:
 
Wynika stąd, że musi być spełniony warunek
 
Wynika stąd, że musi być spełniony warunek
  
::<math>a(x - x_0) = b (y_0 - y)</math>
+
::<math>a (x - x_0) = b (y_0 - y)</math>
  
Ponieważ liczby <math>a</math> i <math>b</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C74) <math>b|(x - x_0)</math>. Skąd mamy
+
Ponieważ liczby <math>a \,</math> i <math>\, b</math> są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie [[#C75|C75]]) <math>b \mid (x - x_0)</math>. Skąd mamy
  
 
::<math>x - x_0 = b t</math>
 
::<math>x - x_0 = b t</math>
Linia 3091: Linia 3217:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład C79</span><br/>
+
<span id="C80" style="font-size: 110%; font-weight: bold;">Przykład C80</span><br/>
 
Rozwiązania równania
 
Rozwiązania równania
  
 
::<math>a x + b y = c</math>
 
::<math>a x + b y = c</math>
  
gdzie <math>\gcd (a, b) = 1</math>, które omówiliśmy w poprzednim twierdzeniu, najłatwiej znaleźć korzystając w PARI/GP z funkcji <code>gcdext(a, b)</code>. Funkcja ta zwraca wektor liczb <code>[x<sub>0</sub>, y<sub>0</sub>, d]</code>, gdzie <math>d = \gcd (a, b)</math>, a liczby <math>x_0</math> i <math>y_0</math> są rozwiązaniami równania
+
gdzie <math>\gcd (a, b) = 1</math>, które omówiliśmy w&nbsp;poprzednim twierdzeniu, najłatwiej znaleźć korzystając w&nbsp;PARI/GP z&nbsp;funkcji <span style="font-size: 90%; color:black;"><code>gcdext(a, b)</code></span>. Funkcja ta zwraca wektor liczb <span style="font-size: 90%; color:black;"><code>[x<sub>0</sub>, y<sub>0</sub>, d]</code></span>, gdzie <math>d = \gcd (a, b)</math>, a&nbsp;liczby <math>x_0</math> i <math>y_0</math> są rozwiązaniami równania
  
 
::<math>a x_0 + b y_0 = \gcd (a, b)</math>
 
::<math>a x_0 + b y_0 = \gcd (a, b)</math>
Linia 3104: Linia 3230:
 
::<math>a(c x_0) + b (c y_0) = c</math>
 
::<math>a(c x_0) + b (c y_0) = c</math>
  
Zatem para liczb całkowitych <math>(c x_0, c y_0)</math> jest jednym z rozwiązań równania
+
Zatem para liczb całkowitych <math>(c x_0, c y_0)</math> jest jednym z&nbsp;rozwiązań równania
  
 
::<math>a x + b y = c</math>
 
::<math>a x + b y = c</math>
Linia 3114: Linia 3240:
 
::<math>y = c y_0 - a t</math>
 
::<math>y = c y_0 - a t</math>
  
Niech <math>a = 7</math> i <math>b = 17</math>. Funkcja <code>gcdext(7,17)</code> zwraca wektor <code>[5, -2, 1]</code>, zatem rozwiązaniami równania <math>7 x + 17 y = 1</math> są liczby
+
Niech <math>a = 7 \;</math> i <math>\; b = 17</math>. Funkcja <span style="font-size: 90%; color:black;"><code>gcdext(7,17)</code></span> zwraca wektor <span style="font-size: 90%; color:black;"><code>[5, -2, 1]</code></span>, zatem rozwiązaniami równania <math>7 x + 17 y = 1</math> są liczby
  
 
::<math>x = 5 + 17 t</math>
 
::<math>x = 5 + 17 t</math>
Linia 3157: Linia 3283:
  
 
<ref name="Bombieri1">Enrico Bombieri, John B. Friedlander and Henryk Iwaniec, ''Primes in Arithmetic Progressions to Large Moduli. III'', Journal of the American Mathematical Society 2 (1989) 215-224</ref>
 
<ref name="Bombieri1">Enrico Bombieri, John B. Friedlander and Henryk Iwaniec, ''Primes in Arithmetic Progressions to Large Moduli. III'', Journal of the American Mathematical Society 2 (1989) 215-224</ref>
 +
 +
<ref name="Turan1">Paul Turán, ''Über die Primzahlen der arithmetischen Progression'', Acta Sci. Szeged 8 (1937), 226-235</ref>
 +
 +
<ref name="Wagstaff1">Samuel S. Wagstaff, Jr., ''Greatest of the Least Primes in Arithmetic Progressions Having a&nbsp;Given Modulus'', Mathematics of Computation Vol. 33, No. 147 (1979), 1073-1080</ref>
  
 
<ref name="PAPWiki">Wikipedia, ''Primes in arithmetic progression'', ([https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression Wiki-en])</ref>
 
<ref name="PAPWiki">Wikipedia, ''Primes in arithmetic progression'', ([https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression Wiki-en])</ref>

Aktualna wersja na dzień 10:05, 9 cze 2024

12.03.2022



Ciągi nieskończone

Definicja C1
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli każdej liczbie [math]\displaystyle{ n }[/math] przypiszemy pewną liczbę rzeczywistą [math]\displaystyle{ a_n }[/math], to powiemy, że liczby [math]\displaystyle{ a_1, a_2, \ldots, a_n, \ldots }[/math] tworzą ciąg nieskończony.


Uwaga C2
Ciąg nieskończony [math]\displaystyle{ a_1, a_2, \ldots, a_n, \ldots }[/math] będziemy oznaczać [math]\displaystyle{ (a_n) }[/math]. Często, o ile nie będzie prowadziło to do nieporozumień, ciąg nieskończony będziemy nazywać po prostu ciągiem.


Definicja C3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Ciąg [math]\displaystyle{ (a_n) }[/math] będziemy nazywali

  • ciągiem rosnącym, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \geqslant a_n }[/math]
  • ciągiem malejącym, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \leqslant a_n }[/math]

Ciągi rosnące dzielimy na

  • ciągi silnie rosnące, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \gt a_n }[/math]
  • ciągi słabo rosnące, jeżeli istnieją takie [math]\displaystyle{ n }[/math], że [math]\displaystyle{ a_{n + 1} = a_n }[/math]

Ciągi malejące dzielimy na

  • ciągi silnie malejące, jeżeli dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ a_{n + 1} \lt a_n }[/math]
  • ciągi słabo malejące, jeżeli istnieją takie [math]\displaystyle{ n }[/math], że [math]\displaystyle{ a_{n + 1} = a_n }[/math]


Definicja C4
Niech [math]\displaystyle{ \varepsilon \in \mathbb{R}_+ }[/math]. Liczbę [math]\displaystyle{ a }[/math] będziemy nazywali granicą ciągu [math]\displaystyle{ (a_n) }[/math], jeżeli dla dowolnego [math]\displaystyle{ \varepsilon }[/math] w przedziale [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] znajdują się prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] (to znaczy wszystkie poza co najwyżej skończoną ilością).


Uwaga C5
1) sens definicji jest taki: jeżeli liczba [math]\displaystyle{ a }[/math] jest granicą ciągu [math]\displaystyle{ (a_n) }[/math], to dla dowolnie małego [math]\displaystyle{ \varepsilon \gt 0 }[/math], poza przedziałem [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] może się znaleźć co najwyżej skończona ilość wyrazów ciągu [math]\displaystyle{ (a_n) }[/math]

2) słabsze żądanie, aby w przedziale [math]\displaystyle{ (a - \varepsilon, a + \varepsilon) }[/math] znajdowała się nieskończona ilość wyrazów ciągu, nie prowadzi do poprawnej definicji granicy. Przykładowo, w przedziale [math]\displaystyle{ (1 - \varepsilon, 1 + \varepsilon) }[/math] znajduje się nieskończenie wiele wyrazów ciągu [math]\displaystyle{ a_n = (-1)^n }[/math], ale ani liczba [math]\displaystyle{ 1 }[/math], ani liczba [math]\displaystyle{ - 1 }[/math] nie są granicami tego ciągu. O ciągu [math]\displaystyle{ a_n = (- 1)^n }[/math] mówimy, że nie ma granicy.

3) ze względu na równoważność warunków

  • [math]\displaystyle{ \quad a_n \in (a - \varepsilon, a + \varepsilon) }[/math]
  • [math]\displaystyle{ \quad a - \varepsilon \lt a_n \lt a + \varepsilon }[/math]
  • [math]\displaystyle{ \quad - \varepsilon \lt a_n - a \lt \varepsilon }[/math]
  • [math]\displaystyle{ \quad | a_n - a | \lt \varepsilon }[/math]

definicja C4 może być wypowiedziana następująco


Definicja C6
Liczbę [math]\displaystyle{ a }[/math] będziemy nazywali granicą ciągu [math]\displaystyle{ (a_n) }[/math], jeżeli dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ |a_n - a| \lt \varepsilon }[/math].


Definicja C7
Ciąg [math]\displaystyle{ (a_n) }[/math] mający granicę (w rozumieniu definicji C4 lub C6) będziemy nazywali ciągiem zbieżnym, a fakt ten zapisujemy symbolicznie następująco

[math]\displaystyle{ \lim_{n \to \infty} a_n = a }[/math]      lub      [math]\displaystyle{ a_n \longrightarrow a }[/math]

(od łacińskiego słowa limes oznaczającego granicę).


Zauważmy jeszcze, że wprost z definicji granicy wynika
Twierdzenie C8

1. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = a \qquad \iff \qquad \lim_{n \to \infty} (a_n - a) = 0 \qquad \iff \qquad \lim_{n \to \infty} | a_n - a | = 0 }[/math]
2. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = 0 \qquad \iff \qquad \lim_{n \to \infty} | a_n | = 0 }[/math]
3. [math]\displaystyle{ \quad \lim_{n \to \infty} a_n = a \qquad \implies \qquad \lim_{n \to \infty} | a_n | = | a | }[/math]
Dowód

Punkt 1.
Prawdziwość twierdzenia wynika ze względu na identyczność warunków, które muszą spełniać prawie wszystkie wyrazy ciągu

[math]\displaystyle{ | a_n - a | \lt \varepsilon \qquad \iff \qquad | (a_n - a) - 0 | \lt \varepsilon \qquad \iff \qquad \big|| a_n - a | - 0 \big| \lt \varepsilon }[/math]

Punkt 2.
Jest to jedynie szczególny przypadek punktu 1. dla [math]\displaystyle{ a = 0 }[/math].

Punkt 3.
Dla dowolnych liczb [math]\displaystyle{ x, y \in \mathbb{R} }[/math] prawdziwa jest nierówność

[math]\displaystyle{ \big|| x | - | y | \big| \leqslant |x - y| }[/math]

Wynika stąd, że jeżeli dla prawie wszystkich wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] spełniona jest nierówność [math]\displaystyle{ |a_n - a| \lt \varepsilon }[/math], to tym bardziej prawdą jest, że [math]\displaystyle{ \big|| a_n | - | a |\big| \lt \varepsilon }[/math]


Twierdzenie C9
Jeżeli ciąg [math]\displaystyle{ (a_n) }[/math] jest zbieżny, to jest ograniczony.

Dowód

Z założenia ciąg [math]\displaystyle{ (a_n) }[/math] jest zbieżny, zatem możemy napisać, że [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math]. Z definicji granicy (zobacz C4, C6) dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ | a_n - a | \lt \varepsilon }[/math]. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od pewnego [math]\displaystyle{ N = N (\varepsilon) }[/math]. Zatem dla [math]\displaystyle{ n \gt N }[/math] jest

[math]\displaystyle{ a - \varepsilon \lt a_n \lt a + \varepsilon }[/math]

Wynika stąd, że dla każdego [math]\displaystyle{ n \geqslant 1 }[/math] jest

[math]\displaystyle{ m \leqslant a_n \leqslant M }[/math]

gdzie

[math]\displaystyle{ M = \max (a_1, \ldots, a_N, a + \varepsilon) }[/math]
[math]\displaystyle{ m = \min (a_1, \ldots, a_N, a - \varepsilon) }[/math]

Ponieważ [math]\displaystyle{ - | m | \leqslant m \; }[/math] i [math]\displaystyle{ \; M \leqslant | M | }[/math], to

[math]\displaystyle{ - | m | \leqslant a_n \leqslant | M | }[/math]

Jeżeli oznaczymy [math]\displaystyle{ U = \max (| m |, | M |) }[/math], to możemy napisać

[math]\displaystyle{ - U \leqslant a_n \leqslant U }[/math]

Czyli dla każdego [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ | a_n | \leqslant U }[/math]. Co kończy dowód.


Twierdzenie C10 (twierdzenie o trzech ciągach)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ n \gt N_0 }[/math] jest spełniony warunek

[math]\displaystyle{ a_n \leqslant x_n \leqslant b_n }[/math]

oraz

[math]\displaystyle{ \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = g }[/math]

to [math]\displaystyle{ \lim_{n \to \infty} x_n = g }[/math].

Dowód

Niech [math]\displaystyle{ \varepsilon }[/math] będzie dowolną, ustaloną liczbą większą od [math]\displaystyle{ 0 }[/math]. Z założenia prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ |a_n - g| \lt \varepsilon }[/math]. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od wyrazu [math]\displaystyle{ N_a }[/math]. Podobnie prawie wszystkie wyrazy ciągu [math]\displaystyle{ (b_n) }[/math] spełniają warunek [math]\displaystyle{ |b_n - g| \lt \varepsilon }[/math] i podobnie możemy przyjąć, że są to wszystkie wyrazy, poczynając od wyrazu [math]\displaystyle{ N_b }[/math]

Nierówność [math]\displaystyle{ a_n \leqslant x_n \leqslant b_n }[/math] jest spełniona dla wszystkich wyrazów, poczynając od [math]\displaystyle{ N_0 }[/math], zatem oznaczając przez [math]\displaystyle{ M }[/math] największą z liczb [math]\displaystyle{ N_a }[/math], [math]\displaystyle{ N_b }[/math], [math]\displaystyle{ N_0 }[/math], możemy napisać, że o ile [math]\displaystyle{ n \gt M }[/math], to spełnione są jednocześnie nierówności

  • [math]\displaystyle{ \quad g - \varepsilon \lt a_n \lt g + \varepsilon\ }[/math]
  • [math]\displaystyle{ \quad g - \varepsilon \lt b_n \lt g + \varepsilon\ }[/math]
  • [math]\displaystyle{ \quad a_n \leqslant x_n \leqslant b_n }[/math]

Z powyższych nierówności wynika natychmiast następujący ciąg nierówności

[math]\displaystyle{ g - \varepsilon \lt a_n \leqslant x_n \leqslant b_n \lt g + \varepsilon }[/math]

Co oznacza, że dla [math]\displaystyle{ n \gt M }[/math] zachodzi

[math]\displaystyle{ g - \varepsilon \lt x_n \lt g + \varepsilon }[/math]

Czyli prawie wszystkie wyrazy ciągu [math]\displaystyle{ (x_n) }[/math] spełniają warunek [math]\displaystyle{ |x_n - g| \lt \varepsilon }[/math]. Co kończy dowód.


Bez dowodu podamy kilka ważnych twierdzeń.
Twierdzenie C11*
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ n }[/math] i rzeczywista [math]\displaystyle{ M }[/math], że dla każdego [math]\displaystyle{ k \gt n }[/math] jest

[math]\displaystyle{ a_{k + 1}\geqslant a_k \qquad }[/math] oraz [math]\displaystyle{ \qquad a_k \leqslant M }[/math]

to ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny.
Inaczej mówiąc: ciąg rosnący i ograniczony od góry jest zbieżny.


Twierdzenie C12*
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ n }[/math] i rzeczywista [math]\displaystyle{ M }[/math], że dla każdego [math]\displaystyle{ k \gt n }[/math] jest

[math]\displaystyle{ a_{k + 1} \leqslant a_k \qquad }[/math] oraz [math]\displaystyle{ \qquad a_k \geqslant M }[/math]

to ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny.
Inaczej mówiąc: ciąg malejący i ograniczony od dołu jest zbieżny.


Twierdzenie C13*
Jeżeli [math]\displaystyle{ \lim_{n \to \infty} a_n = a }[/math] oraz [math]\displaystyle{ \lim_{n \to \infty} b_n = b }[/math], gdzie [math]\displaystyle{ a, b }[/math] są dowolnymi liczbami rzeczywistymi, to

  1. [math]\displaystyle{ \quad \lim_{n \to \infty} (a_n \pm b_n) = a \pm b }[/math]
  2. [math]\displaystyle{ \quad \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b }[/math]

Jeżeli dodatkowo dla każdego [math]\displaystyle{ n }[/math] jest [math]\displaystyle{ b_n \neq 0 }[/math] i [math]\displaystyle{ b \neq 0 }[/math], to

  3. [math]\displaystyle{ \quad \lim_{n \to \infty} {\small\frac{a_n}{b_n}} = {\small\frac{a}{b}} }[/math]


Twierdzenie C14
Jeżeli [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math], zaś ciąg [math]\displaystyle{ (x_n) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ M \gt 0 }[/math], że dla każdej wartości [math]\displaystyle{ n }[/math] prawdziwa jest nierówność [math]\displaystyle{ | x_n | \lt M }[/math], to

[math]\displaystyle{ \lim_{n \to \infty} (x_n \cdot a_n) = 0 }[/math]
Dowód

Wystarczy pokazać, że (zobacz twierdzenie C8 p.2)

[math]\displaystyle{ \lim_{n \to \infty} |x_n \cdot a_n| = 0 }[/math]

Z założenia prawdziwe jest oszacowanie

[math]\displaystyle{ 0 \leqslant |x_n \cdot a_n| \leqslant |a_n| \cdot M }[/math]

Zatem z twierdzenia o trzech ciągach otrzymujemy natychmiast, że

[math]\displaystyle{ \lim_{n \to \infty} |x_n \cdot a_n| = 0 }[/math]

Co kończy dowód.


Twierdzenie C15
Dla [math]\displaystyle{ a \geqslant 0 }[/math] i [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ (1 + a)^{1 / n} \leqslant 1 + {\small\frac{a}{n}} }[/math]
Dowód

Wzór jest prawdziwy dla [math]\displaystyle{ a = 0 }[/math]. Zakładając, że [math]\displaystyle{ a \gt 0 }[/math] i korzystając ze wzoru dwumianowego, mamy dla [math]\displaystyle{ n \geqslant 1 }[/math]

[math]\displaystyle{ \left( 1 + {\small\frac{a}{n}} \right)^n = \sum_{k=0}^{n} \left [ {\small\binom{n}{k}} \cdot \left ( {\small\frac{a}{n}} \right )^k \right ] \geqslant }[/math]
[math]\displaystyle{ \;\; \geqslant \sum_{k=0}^{1} \left [ {\small\binom{n}{k}} \cdot \left ( {\small\frac{a}{n}} \right )^k \right ] = }[/math]
[math]\displaystyle{ \;\; = 1 + n \cdot {\small\frac{a}{n}} = }[/math]
[math]\displaystyle{ \;\; = 1 + a }[/math]

Co należało pokazać.


Twierdzenie C16
Jeżeli [math]\displaystyle{ A \gt 0 }[/math], to [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{A} = 1 }[/math].

Dowód

Dla [math]\displaystyle{ A \gt 1 }[/math] możemy napisać [math]\displaystyle{ A = 1 + a }[/math], gdzie [math]\displaystyle{ a \gt 0 }[/math], wtedy z twierdzenia C15 otrzymujemy

[math]\displaystyle{ 1 \lt \sqrt[n]{A} = (1 + a)^{1 / n} \leqslant 1 + {\small\frac{a}{n}} }[/math]

Z twierdzenia o trzech ciągach dostajemy natychmiast (dla [math]\displaystyle{ A \gt 1 }[/math])

[math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{A} = 1 }[/math]

W przypadku gdy [math]\displaystyle{ 0 \lt A \lt 1 }[/math], możemy napisać [math]\displaystyle{ A = {\small\frac{1}{B}} }[/math], gdzie [math]\displaystyle{ B \gt 1 }[/math], wtedy ze względu na udowodniony wyżej rezultat [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{B} = 1 }[/math]

[math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{A} = \lim_{n \to \infty} {\small\frac{1}{\sqrt[n]{B}}} = \frac{1}{\underset{n \rightarrow \infty}{\lim} \sqrt[n]{B}} = 1 }[/math]

Jeżeli [math]\displaystyle{ A = 1 }[/math], to [math]\displaystyle{ \sqrt[n]{A} = 1 }[/math] dla każdego [math]\displaystyle{ n \geqslant 1 }[/math]. Co kończy dowód.


Twierdzenie C17
Jeżeli prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] spełniają warunek [math]\displaystyle{ 0 \lt m \lt a_n \lt M }[/math], to [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{a_n} = 1 }[/math]

Dowód

Z założenia dla prawie wszystkich wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] jest

[math]\displaystyle{ 0 \lt m \leqslant a_n \leqslant M }[/math]

Zatem dla prawie wszystkich wyrazów ciągu [math]\displaystyle{ a_n }[/math] mamy

[math]\displaystyle{ \sqrt[n]{m} \leqslant \sqrt[n]{a_n} \leqslant \sqrt[n]{M} }[/math]

Z twierdzenia C16 wiemy, że [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{m} = \lim_{n \to \infty} \sqrt[n]{M} = 1 }[/math], zatem na podstawie twierdzenia o trzech ciągach otrzymujemy natychmiast [math]\displaystyle{ \lim_{n \to \infty} \sqrt[n]{a_n} = 1 }[/math]


Twierdzenie C18
Następujące ciągi są silnie rosnące i zbieżne

Dowód

Punkt 1
W twierdzeniu A6 pokazaliśmy, że ciąg

[math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n }[/math]

jest silnie rosnący i ograniczony od góry. Zatem z twierdzenia C11 wynika, że jest zbieżny. Liczbę będącą granicą tego ciągu oznaczamy literą [math]\displaystyle{ e }[/math], jest ona podstawą logarytmu naturalnego.

Punkt 2
Pokażemy najpierw, że ciąg [math]\displaystyle{ \left( 1 - {\small\frac{1}{n}} \right)^n }[/math] jest silnie rosnący. Musimy pokazać, że prawdziwa jest nierówność

[math]\displaystyle{ \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \gt \left( 1 - {\small\frac{1}{n}} \right)^n }[/math]

Łatwo sprawdzamy prawdziwość nierówności dla [math]\displaystyle{ n = 1 }[/math]. Załóżmy teraz, że [math]\displaystyle{ n \geqslant 2 }[/math]. Przekształcając,

[math]\displaystyle{ \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \gt \left( {\small\frac{n - 1}{n}} \right)^n }[/math]
[math]\displaystyle{ {\small\frac{n}{n + 1}} \cdot \left( {\small\frac{n}{n + 1}} \right)^n \cdot \left( {\small\frac{n}{n - 1}} \right)^n \gt 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{n^2}{n^2 - 1}} \right)^n \gt {\small\frac{n + 1}{n}} }[/math]

otrzymujemy nierówność równoważną,

[math]\displaystyle{ \left( 1 + {\small\frac{1}{n^2 - 1}} \right)^n \gt 1 + {\small\frac{1}{n}} }[/math]

którą już łatwo udowodnić, bo

[math]\displaystyle{ \left( 1 + {\small\frac{1}{n^2 - 1}} \right)^n \gt \left( 1 + {\small\frac{1}{n^2}} \right)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot \left( {\small\frac{1}{n^2}} \right)^k \gt \sum_{k = 0}^{1} {\small\binom{n}{k}} \cdot {\small\frac{1}{n^{2k}}} = 1 + {\small\frac{1}{n}} }[/math]

Ponieważ dla każdego [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ \left( 1 - {\small\frac{1}{n}} \right)^n \leqslant 1 }[/math] (bo iloczyn liczb mniejszych od [math]\displaystyle{ 1 }[/math] nie może być liczbą większą do jedności), to z twierdzenia C11 wynika, że ciąg ten jest zbieżny. Zatem możemy napisać

[math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} \left( 1 - {\small\frac{1}{n}} \right)^n = g }[/math]

Rozważmy teraz iloczyn wypisanych w twierdzeniu ciągów

[math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n \cdot \left( 1 - {\small\frac{1}{n}} \right)^n = \left( 1 - {\small\frac{1}{n^2}} \right)^n = \left[ \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \right]^{1 / n} }[/math]

Łatwo widzimy, że ciąg [math]\displaystyle{ \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} }[/math] jest podciągiem ciągu [math]\displaystyle{ \left( 1 - {\small\frac{1}{n}} \right)^n }[/math], zatem jest ograniczony i dla [math]\displaystyle{ n \geqslant 2 }[/math] spełniony jest układ nierówności

[math]\displaystyle{ 0 \lt \left( {\small\frac{3}{4}} \right)^4 \leqslant \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \leqslant 1 }[/math]

Z twierdzenia C17 dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \right]^{1 / n} = 1 }[/math]

Z twierdzenia C13 p. 2 wynika natychmiast, że

[math]\displaystyle{ e \cdot g = \lim_{n \to \infty} \left[ \left( 1 + {\small\frac{1}{n}} \right)^n \cdot \left( 1 - {\small\frac{1}{n}} \right)^n \right] = \lim_{n \to \infty} \left[ \left( 1 - {\small\frac{1}{n^2}} \right)^{n^2} \right]^{1 / n} = 1 }[/math]

Zatem [math]\displaystyle{ g = {\small\frac{1}{e}} }[/math].


Twierdzenie C19
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe są następujące nierówności

Dowód

Ponieważ ciąg [math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] jest silnie rosnący, to

[math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n \lt e }[/math]

Logarytmując powyższą nierówność, mamy

[math]\displaystyle{ n \cdot \log \left( 1 + {\small\frac{1}{n}} \right) \lt 1 }[/math]

Stąd wynika natychmiast, że

[math]\displaystyle{ \log \left( 1 + {\small\frac{1}{n}} \right) \lt {\small\frac{1}{n}} }[/math]


Ponieważ ciąg [math]\displaystyle{ \left( 1 - {\small\frac{1}{n}} \right)^n }[/math] również jest silnie rosnący, to postępując analogicznie, dostajemy

[math]\displaystyle{ \left( 1 - {\small\frac{1}{n}} \right)^n \lt {\small\frac{1}{e}} }[/math]
[math]\displaystyle{ n \cdot \log \left( 1 - {\small\frac{1}{n}} \right) \lt - 1 }[/math]
[math]\displaystyle{ \log \left( 1 - {\small\frac{1}{n}} \right) \lt - {\small\frac{1}{n}} }[/math]


Przekształcając otrzymane wzory, otrzymujemy

[math]\displaystyle{ - \log \left( 1 + {\small\frac{1}{n}} \right) = - \log \left( {\small\frac{n + 1}{n}} \right) = \log \left( {\small\frac{n}{n + 1}} \right) = \log \left( 1 - {\small\frac{1}{n + 1}} \right) \lt - {\small\frac{1}{n + 1}} }[/math]

oraz

[math]\displaystyle{ - \log \left( 1 - {\small\frac{1}{n}} \right) = - \log \left( {\small\frac{n - 1}{n}} \right) = \log \left( {\small\frac{n}{n - 1}} \right) = \log \left( 1 + {\small\frac{1}{n - 1}} \right) \lt {\small\frac{1}{n - 1}} }[/math]



Liczby pierwsze w ciągach arytmetycznych

Twierdzenie C20
Każda liczba naturalna [math]\displaystyle{ n \geqslant 2 }[/math] jest liczbą pierwszą lub iloczynem liczb pierwszych.

Dowód

Pierwszy sposób

Przypuśćmy, że istnieją liczby naturalne większe od [math]\displaystyle{ 1 }[/math], które nie są liczbami pierwszymi ani nie są iloczynami liczb pierwszych. Niech [math]\displaystyle{ m }[/math] oznacza najmniejszą[1] z takich liczb. Z założenia [math]\displaystyle{ m }[/math] nie jest liczbą pierwszą, zatem [math]\displaystyle{ m }[/math] może być zapisana w postaci [math]\displaystyle{ m = a \cdot b }[/math], gdzie liczby [math]\displaystyle{ a, b }[/math] są liczbami naturalnymi mniejszymi od [math]\displaystyle{ m }[/math].

Ponieważ [math]\displaystyle{ m }[/math] jest najmniejszą liczbą naturalną, która nie jest liczbą pierwszą ani nie jest iloczynem liczb pierwszych, to liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] muszą być liczbami złożonymi, ale jako mniejsze od [math]\displaystyle{ m }[/math] są one iloczynami liczb pierwszych, zatem i liczba [math]\displaystyle{ m }[/math] musi być iloczynem liczb pierwszych.

Uzyskana sprzeczność dowodzi, że nasze przypuszczenie jest fałszywe.


Drugi sposób

Indukcja matematyczna. Twierdzenie jest oczywiście prawdziwe dla [math]\displaystyle{ n = 2 }[/math]. Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb naturalnych [math]\displaystyle{ k \in [2, n] }[/math], dla liczby [math]\displaystyle{ n + 1 }[/math] mamy dwie możliwości

  • [math]\displaystyle{ n + 1 }[/math] jest liczbą pierwszą (wtedy twierdzenie jest prawdziwe w sposób oczywisty)
  • [math]\displaystyle{ n + 1 }[/math] jest liczbą złożoną wtedy, [math]\displaystyle{ n + 1 = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a, b \lt n + 1 }[/math]; zatem na podstawie założenia indukcyjnego liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są liczbami pierwszymi lub iloczynami liczb pierwszych, czyli [math]\displaystyle{ n + 1 = a b }[/math] jest iloczynem liczb pierwszych.

Co należało pokazać.


Twierdzenie C21 (Euklides, IV w. p.n.e.)
Istnieje nieskończenie wiele liczb pierwszych.

Dowód

Przypuśćmy, że istnieje jedynie skończona ilość liczb pierwszych [math]\displaystyle{ p_1, p_2, \ldots, p_n }[/math] . Wtedy liczba [math]\displaystyle{ a = p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1 }[/math] jest większa od jedności i z twierdzenia C20 wynika, że posiada dzielnik będący liczbą pierwszą, ale jak łatwo zauważyć żadna z liczb pierwszych [math]\displaystyle{ p_1, p_2, \ldots, p_n }[/math] nie jest dzielnikiem liczby [math]\displaystyle{ a }[/math]. Zatem istnieje liczba pierwsza [math]\displaystyle{ p }[/math] będąca dzielnikiem pierwszym liczby [math]\displaystyle{ a }[/math] i różna od każdej z liczb [math]\displaystyle{ p_1, p_2, \ldots, p_n }[/math]. Co kończy dowód.


Twierdzenie C22
Jeżeli liczba naturalna [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math][2], to ma dzielnik postaci [math]\displaystyle{ 4 k + 3 }[/math] będący liczbą pierwszą.

Dowód

Jeżeli [math]\displaystyle{ n }[/math] jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy zatem sytuację, gdy [math]\displaystyle{ n }[/math] jest liczbą złożoną. Z założenia [math]\displaystyle{ n }[/math] jest liczbą nieparzystą, zatem możliwe są trzy typy iloczynów

[math]\displaystyle{ (4 a + 1) (4 b + 1) = 16 a b + 4 a + 4 b + 1 = 4 (4 a b + a + b) + 1 }[/math]
[math]\displaystyle{ (4 a + 1) (4 b + 3) = 16 a b + 12 a + 4 b + 3 = 4 (4 a b + 3 a + b) + 3 }[/math]
[math]\displaystyle{ (4 a + 3) (4 b + 3) = 16 a b + 12 a + 12 b + 9 = 4 (4 a b + 3 a + 3 b + 2) + 1 }[/math]

Widzimy, że liczba złożona postaci [math]\displaystyle{ 4 k + 3 }[/math] jest iloczynem liczb postaci [math]\displaystyle{ 4 k + 1 }[/math] i [math]\displaystyle{ 4 k + 3 }[/math]. Wynika stąd natychmiast, że liczba złożona postaci [math]\displaystyle{ 4 k + 3 }[/math] posiada dzielnik postaci [math]\displaystyle{ 4 k + 3 }[/math]. Niech [math]\displaystyle{ q }[/math] oznacza najmniejszy dzielnik liczby [math]\displaystyle{ n }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math]. Pokażemy, że [math]\displaystyle{ q }[/math] jest liczbą pierwszą. Istotnie, gdyby [math]\displaystyle{ q }[/math] była liczbą złożoną, to miałaby dzielnik [math]\displaystyle{ d }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] i byłoby [math]\displaystyle{ d \lt q }[/math], wbrew założeniu, że [math]\displaystyle{ q }[/math] jest najmniejszym dzielnikiem liczby [math]\displaystyle{ n }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math]. Co kończy dowód.


Twierdzenie C23
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 4 k + 3 }[/math].

Dowód

Przypuśćmy, że istnieje tylko skończona ilość liczb pierwszych postaci [math]\displaystyle{ 4 k + 3 }[/math]. Niech będą to liczby [math]\displaystyle{ p_1, \ldots, p_s }[/math]. Liczba

[math]\displaystyle{ M = 4 p_1 \cdot \ldots \cdot p_s - 1 = 4 (p_1 \cdot \ldots \cdot p_s - 1) + 3 }[/math]

jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jak wiemy z twierdzenia C22, ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math]. Ale jak łatwo zauważyć, żadna z liczb [math]\displaystyle{ p_1, \ldots, p_s }[/math] nie dzieli liczby [math]\displaystyle{ M }[/math]. Zatem istnieje liczba pierwsza [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] różna od każdej z liczb [math]\displaystyle{ p_1, p_2, \ldots, p_s }[/math]. Otrzymana sprzeczność kończy dowód.


Twierdzenie C24
Jeżeli liczba naturalna [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ 6 k + 5 }[/math], to ma dzielnik postaci [math]\displaystyle{ 6 k + 5 }[/math] będący liczbą pierwszą.

Dowód

Jeżeli [math]\displaystyle{ n }[/math] jest liczbą pierwszą, to twierdzenie jest dowiedzione. Zbadajmy sytuację, gdy [math]\displaystyle{ n }[/math] jest liczbą złożoną. Z twierdzenia C20 wiemy, że w tym przypadku liczba [math]\displaystyle{ n }[/math] będzie iloczynem liczb pierwszych. Zauważmy, że nieparzyste liczby pierwsze mogą być jedynie postaci [math]\displaystyle{ 6 k + 1 }[/math] lub [math]\displaystyle{ 6 k + 5 }[/math] (liczba [math]\displaystyle{ 6 k + 3 }[/math] jest liczbą złożoną). Ponieważ iloczyn liczb postaci [math]\displaystyle{ 6 k + 1 }[/math]

[math]\displaystyle{ (6 a + 1) (6 b + 1) = 36 a b + 6 a + 6 b + 1 = 6 (6 a b + a + b) + 1 }[/math]

jest liczbą postaci [math]\displaystyle{ 6 k + 1 }[/math], to w rozkładzie liczby [math]\displaystyle{ n }[/math] na czynniki pierwsze musi pojawić się przynajmniej jeden czynnik postaci [math]\displaystyle{ 6 k + 5 }[/math]. Co kończy dowód.


Twierdzenie C25
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 6 k + 5 }[/math].

Dowód

Przypuśćmy, że istnieje tylko skończona ilość liczb pierwszych postaci [math]\displaystyle{ 6 k + 5 }[/math]. Niech będą to liczby [math]\displaystyle{ p_1, \ldots, p_s }[/math]. Liczba

[math]\displaystyle{ M = 6 p_1 \cdot \ldots \cdot p_s - 1 = 6 (p_1 \cdot \ldots \cdot p_s - 1) + 5 }[/math]

jest postaci [math]\displaystyle{ 6 k + 5 }[/math] i ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 6 k + 5 }[/math] (zobacz C24). Ale jak łatwo zauważyć żadna z liczb [math]\displaystyle{ p_1, \ldots, p_s }[/math] nie dzieli liczby [math]\displaystyle{ M }[/math]. Zatem istnieje liczba pierwsza [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 6 k + 5 }[/math] różna od każdej z liczb [math]\displaystyle{ p_1, p_2, \ldots, p_s }[/math]. Otrzymana sprzeczność kończy dowód.


Twierdzenie C26
Istnieje nieskończenie wiele liczb pierwszych postaci [math]\displaystyle{ 3 k + 2 }[/math].

Dowód

Jeżeli [math]\displaystyle{ k = 2 j }[/math] jest liczbą parzystą, to otrzymujemy ciąg liczb parzystych

[math]\displaystyle{ 3 k + 2 = 6 j + 2 }[/math]

w którym jedynie liczba [math]\displaystyle{ 2 }[/math] jest liczbą pierwszą (dla [math]\displaystyle{ j = 0 }[/math]).

Jeżeli [math]\displaystyle{ k = 2 j + 1 }[/math] jest liczbą nieparzystą, to otrzymujemy ciąg liczb nieparzystych

[math]\displaystyle{ 3 k + 2 = 3 (2 j + 1) + 2 = 6 j + 5 }[/math]

o którym wiemy, że zawiera nieskończenie wiele liczb pierwszych (zobacz twierdzenie C25). Zatem w ciągu arytmetycznym postaci [math]\displaystyle{ 3 k + 2 }[/math] występuje nieskończenie wiele liczb pierwszych.


Uwaga C27
Zauważmy, że liczby postaci [math]\displaystyle{ 2 k + 1 }[/math] to wszystkie liczby nieparzyste dodatnie. Ponieważ wszystkie liczby pierwsze (poza liczbą [math]\displaystyle{ 2 }[/math]) są liczbami nieparzystymi, to wśród liczb postaci [math]\displaystyle{ 2 k + 1 }[/math] występuje nieskończenie wiele liczb pierwszych.

Wszystkie omówione wyżej przypadki ciągów arytmetycznych: [math]\displaystyle{ 2 k + 1 }[/math], [math]\displaystyle{ 3 k + 2 }[/math], [math]\displaystyle{ 4 k + 3 }[/math] i [math]\displaystyle{ 6 k + 5 }[/math], w których występuje nieskończona ilość liczb pierwszych są szczególnymi przypadkami udowodnionego w 1837 roku twierdzenia


Twierdzenie C28* (Peter Gustav Lejeune Dirichlet, 1837)
Niech [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ b \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math] występuje nieskończenie wiele liczb pierwszych.


Uwaga C29
Dowód twierdzenia Dirichleta jest bardzo trudny. Natomiast bardzo łatwo można pokazać, że dowolny ciąg arytmetyczny [math]\displaystyle{ a k + b }[/math] zawiera nieskończenie wiele liczb złożonych. Istotnie, jeżeli liczby [math]\displaystyle{ a, b }[/math] nie są względnie pierwsze, to wszystkie wyrazy ciągu są liczbami złożonymi. Jeżeli [math]\displaystyle{ a, b }[/math] są względnie pierwsze i [math]\displaystyle{ b \gt 1 , }[/math] to wystarczy przyjąć [math]\displaystyle{ k = b t }[/math]. Jeżeli są względnie pierwsze i [math]\displaystyle{ b = 1 }[/math], to wystarczy przyjąć [math]\displaystyle{ k = a t^2 + 2 t }[/math], wtedy

[math]\displaystyle{ a k + 1 = a^2 t^2 + 2 a t + 1 = (a t + 1)^2 }[/math]


Uwaga C30
Wiemy już, że w przypadku gdy liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math] występuje nieskończenie wiele liczb pierwszych. Pojawia się pytanie o to, czy możliwe jest oszacowanie najmniejszej liczby pierwszej [math]\displaystyle{ p }[/math] w takim ciągu. Jakkolwiek przypuszczamy, że prawdziwe jest oszacowanie [math]\displaystyle{ p \lt a^2 }[/math], to stan naszej obecnej wiedzy ujmuje twierdzenie Linnika[3][4][5][6], które podajemy niżej. Trzeba było ponad pół wieku wysiłku wielu matematyków, aby pokazać, że w twierdzeniu Linnika możemy przyjąć [math]\displaystyle{ L = 5 }[/math][7]. Bombieri, Friedlander i Iwaniec udowodnili[8], że dla prawie wszystkich liczb [math]\displaystyle{ a }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ L \leqslant 2 }[/math].


Twierdzenie C31* (Jurij Linnik, 1944)
Niech [math]\displaystyle{ a, b \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ p_{\min} (a, b) }[/math] oznacza najmniejszą liczbę pierwszą w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ \gcd (a, b) = 1 }[/math] i [math]\displaystyle{ b \in [1, a - 1] }[/math], to istnieją takie stałe [math]\displaystyle{ L \gt 0 }[/math] i [math]\displaystyle{ a_0 \geqslant 2 }[/math], że dla wszystkich [math]\displaystyle{ a \gt a_0 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_{\min} (a, b) \lt a^L }[/math]


Zadanie C32
Pokazać, że z twierdzenia Linnika wynika istnienie takich stałych [math]\displaystyle{ c, L \gt 0 }[/math], że dla każdego [math]\displaystyle{ a \geqslant 2 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p(a) \lt c a^L }[/math]

gdzie

[math]\displaystyle{ p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b \lt a}} p_{\min} (a, b) }[/math]
Rozwiązanie

Oszacowanie podane w twierdzeniu Linnika

[math]\displaystyle{ p_{\min} (a, b) \lt a^L }[/math]

jest prawdziwe dla dowolnej liczby [math]\displaystyle{ b \in [1, a - 1] }[/math] względnie pierwszej z [math]\displaystyle{ a }[/math]. Jeżeli zdefiniujemy funkcję

[math]\displaystyle{ p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b \lt a}} p_{\min} (a, b) }[/math]

to możemy zapisać twierdzenie Linnika tak, aby po lewej stronie nie występowała liczba [math]\displaystyle{ b }[/math], co czyni zapis bardziej przejrzystym. Mamy

[math]\displaystyle{ p(a) \lt a^L }[/math]

dla wszystkich [math]\displaystyle{ a \gt a_0 }[/math]. Ponieważ dla [math]\displaystyle{ a \in [2, a_0] }[/math] funkcja [math]\displaystyle{ p(a) }[/math] przyjmuje wartości skończone, a dla [math]\displaystyle{ a \gt a_0 }[/math] jest [math]\displaystyle{ p(a) \lt a^L }[/math], to funkcja [math]\displaystyle{ {\small\frac{p (a)}{a^L}} }[/math] jest ograniczona od góry, czyli istnieje taka stała [math]\displaystyle{ c }[/math], że

[math]\displaystyle{ {\small\frac{p (a)}{a^L}} \lt c }[/math]

dla dowolnego [math]\displaystyle{ a \geqslant 2 }[/math]. Co należało pokazać.


Przykład C33
Pokazaliśmy (zobacz C32), że istnieją takie stałe [math]\displaystyle{ c, L \gt 0 }[/math], że dla każdego [math]\displaystyle{ a \geqslant 2 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p(a) \lt c a^L }[/math]

gdzie

[math]\displaystyle{ p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b \lt a}} p_{\min} (a, b) }[/math]


Ponieważ [math]\displaystyle{ p(a) \gt a }[/math], to prawdziwy jest ciąg nierówności

[math]\displaystyle{ 1 \lt {\small\frac{\log p (a)}{\log a}} \lt {\small\frac{\log c}{\log a}} + L \leqslant \left| {\small\frac{\log c}{\log a}} \right| + L \leqslant {\small\frac{\left| \log c \right|}{\log 2}} + L }[/math]

Wynika stąd, że dla [math]\displaystyle{ a \geqslant 2 }[/math] funkcja [math]\displaystyle{ {\small\frac{\log p (a)}{\log a}} }[/math] jest ograniczona.


Na zamieszczonym niżej obrazku przedstawiono pierwszych czternaście punktów funkcji [math]\displaystyle{ {\small\frac{\log p (a)}{\log a}} }[/math]. Ze względu na skokowy charakter zmian tej funkcji najwygodniej będzie przedstawić jej wykres, pokazując jedynie jej maksymalne i minimalne wartości w wybranych podprzedziałach [math]\displaystyle{ \mathbb{Z}_+ }[/math]. Mówiąc precyzyjnie, zamieszczone zostały wykresy funkcji

[math]\displaystyle{ f(t) = \max_{2^t \leqslant a \lt 2^{t + 1}} {\small\frac{\log p (a)}{\log a}} \qquad \qquad \qquad \qquad g(t) = \min_{2^t \leqslant a \lt 2^{t + 1}} {\small\frac{\log p (a)}{\log a}} \qquad \qquad \qquad \qquad h(a) = 1 + {\small\frac{2 \log \log a}{\log a}} }[/math]

gdzie [math]\displaystyle{ t \in \mathbb{Z}_+ }[/math].

Linnik-22.png
Pokaż kod i dane do wykresu

W tabeli przedstawiamy dane, na podstawie których sporządziliśmy zamieszczony wyżej wykres. Mamy kolejno

  • przedział [math]\displaystyle{ U }[/math]
  • minimalną wartość [math]\displaystyle{ {\small\frac{\log p(a)}{\log a}} }[/math] w przedziale [math]\displaystyle{ U }[/math]
  • liczbę [math]\displaystyle{ a }[/math], która odpowiada minimalnej wartości [math]\displaystyle{ {\small\frac{\log p(a)}{\log a}} }[/math]
  • wartość [math]\displaystyle{ p(a) = \underset{\gcd (a, b) = 1}{\max_{1 \leqslant b \lt a}} p_{\min} (a, b) }[/math]
  • liczbę [math]\displaystyle{ b }[/math] taką, że najmniejsza liczba pierwsza w ciągu [math]\displaystyle{ a k + b }[/math] jest równa [math]\displaystyle{ p ( a ) }[/math]

Następnie podajemy analogiczne wartości dla maksymalnej wartości [math]\displaystyle{ {\small\frac{\log p(a)}{\log a}} }[/math] w przedziale [math]\displaystyle{ U }[/math]. Pominęliśmy dane dla początkowych przedziałów [math]\displaystyle{ [2^{n},2^{n + 1}) }[/math], ponieważ Czytelnik z łatwością policzy je samodzielnie. Prosty kod do obliczeń w PARI/GP zamieściliśmy pod tabelą.

pmin(a, b) = 
\\ zwraca najmniejszą liczbę pierwszą w ciągu a*k + b, gdzie k >= 1 i gcd(a, b) = 1
{
local(k, p);
k = 1;
p = a*k + b;
while( !isprime(p), p = a*(k++) + b );
return(p);
}
PMAX(a) = 
\\ zwraca największą ze wszystkich najmniejszych liczb pierwszych
\\ w ciągach a*k + b, gdzie k >= 1, 0 < b < a i gcd(a, b) = 1
{
local(b, p, w);
w = [0, 0];
b = 0;
while( b++ < a,
       if( gcd(a, b) > 1, next() );
       p = pmin(a, b);
       if( w[1] < p, w = [p, b] );
     );
return(w);
}
Linnik(n) = 
\\ n >= 1, sprawdzamy przedział U = [ 2^n , 2^(n + 1) ), czyli  2^n <= a < 2^(n+1)
{
local(a, b, p4a, sep, txt, w, y, Ymin, Ymax);
sep = ", "; \\ separator
Ymin = [100, 1, 0, 0]; \\ najmniejsza wartość funkcji log( p(a) ) / log(a) w przedziale U
Ymax = [0, 1, 0, 0]; \\ największa wartość funkcji log( p(a) ) / log(a) w przedziale U
a = 2^n - 1;
while( a++ < 2^(n+1),
       w = PMAX(a);
       p4a = w[1];
       b = w[2];
       y = log(p4a) / log(a);
       if( y < Ymin[1], Ymin = [y, a, p4a, b] );
       if( y > Ymax[1], Ymax = [y, a, p4a, b] );
     );
txt = Str(n, sep, Ymin[1], sep, Ymin[2], sep, Ymin[3], sep, Ymin[4], sep, Ymax[1], sep, Ymax[2], sep, Ymax[3], sep, Ymax[4]);
print(txt);
}

Przypuszczamy, że prawdziwe jest znacznie silniejsze oszacowanie najmniejszej liczby pierwszej w ciągu arytmetycznym[9][10]

[math]\displaystyle{ p(a) \sim a \log^2 \! a }[/math]

W takim przypadku mielibyśmy

[math]\displaystyle{ {\small\frac{\log p (a)}{\log a}} \sim 1 + {\small\frac{2 \log \log a}{\log a}} }[/math]

Rzeczywiście, porównanie wykresów funkcji [math]\displaystyle{ f(t) }[/math] i [math]\displaystyle{ h(a) }[/math] wydaje się potwierdzać to przypuszczenie dla [math]\displaystyle{ a \in [2, 2^{22}] }[/math].


W tabeli zestawiliśmy wszystkie wartości funkcji [math]\displaystyle{ {\small\frac{\log p (a)}{\log a}} }[/math] większe od [math]\displaystyle{ 1.75 }[/math] dla [math]\displaystyle{ a \in [2, 2^{22}] }[/math]


Rozważmy zbiór [math]\displaystyle{ S }[/math] takich liczb [math]\displaystyle{ a }[/math], że prawdziwe jest oszacowanie [math]\displaystyle{ p (a) \lt a \log^2 \! a }[/math]. Bez trudu możemy podać przykłady takich liczb, ale nie wiemy, czy jest ich nieskończenie wiele.


Ponieważ [math]\displaystyle{ p(a) \gt a }[/math], to prawdziwy jest układ nierówności

[math]\displaystyle{ 1 \lt {\small\frac{\log p (a)}{\log a}} \lt 1 + {\small\frac{2 \log \log a}{\log a}} }[/math]

Jeżeli zbiór [math]\displaystyle{ S }[/math] jest nieskończony, to z twierdzenia o trzech ciągach otrzymujemy

[math]\displaystyle{ \underset{a \in S}{\lim_{a \rightarrow \infty}} {\small\frac{\log p (a)}{\log a}} = 1 }[/math]

W konsekwencji wykres funkcji

[math]\displaystyle{ g(t) = \underset{2^t \leqslant a \lt 2^{t + 1}}{\min} {\small\frac{\log p (a)}{\log a}} }[/math]

będzie opadał ku prostej [math]\displaystyle{ y = 1 }[/math].


Zadanie C34
Pokazać, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi 99, przykładowo 199, 499, 599, 1399, 1499, ...

Rozwiązanie

Wszystkie liczby naturalne zakończone cyframi [math]\displaystyle{ 99 }[/math] możemy zapisać w postaci [math]\displaystyle{ a_n = 100 k + 99 }[/math], gdzie [math]\displaystyle{ k \in \mathbb{N} }[/math]. Ponieważ ciąg [math]\displaystyle{ (a_n) }[/math] jest ciągiem arytmetycznym, a liczby [math]\displaystyle{ 99 }[/math] i [math]\displaystyle{ 100 }[/math] są względnie pierwsze, to na podstawie twierdzenia Dirichleta stwierdzamy, że istnieje nieskończenie wiele liczb pierwszych zakończonych cyframi [math]\displaystyle{ 99 }[/math].


Definicja C35
Niech [math]\displaystyle{ a \geqslant 2 }[/math] będzie liczbą całkowitą. Wartość funkcji [math]\displaystyle{ \pi(n; a, b) }[/math] jest równa ilości liczb pierwszych nie większych od [math]\displaystyle{ n }[/math], które przy dzieleniu przez [math]\displaystyle{ a }[/math] dają resztę [math]\displaystyle{ b }[/math].


Uwaga C36
Zauważmy, że w twierdzeniu Dirichleta na liczby [math]\displaystyle{ a }[/math] oraz [math]\displaystyle{ b }[/math] nałożone są minimalne warunki: [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ b \in \mathbb{Z} }[/math]. Sytuacja w przypadku funkcji [math]\displaystyle{ \pi (n ; a, b) }[/math] jest odmienna – tutaj mamy [math]\displaystyle{ a \geqslant 2 }[/math] oraz [math]\displaystyle{ 0 \leqslant b \leqslant a - 1 }[/math]. Jest tak dlatego, że podział liczb pierwszych, który odzwierciedla funkcja [math]\displaystyle{ \pi (n ; a, b) }[/math], jest podziałem pierwotnym, a twierdzenie Dirichleta jest tylko jego uzasadnieniem. Podział liczb pierwszych musi być też precyzyjnie określony, tak aby zachodził naturalny związek

[math]\displaystyle{ \sum_{b = 0}^{a - 1} \pi (n ; a, b) = \pi (n) }[/math]

Oczywiście nie przeszkadza to w liczeniu liczb pierwszych w dowolnym ciągu arytmetycznym. Niech na przykład

[math]\displaystyle{ u_k = 7 k + 101 = 7 (k + 14) + 3 \qquad }[/math] gdzie [math]\displaystyle{ k = 0, 1, \ldots }[/math]

Ilość liczb pierwszych w ciagu [math]\displaystyle{ (u_k) }[/math] jest równa

[math]\displaystyle{ \pi (n ; 7, 3) - \pi (7 \cdot 13 + 3 ; 7, 3) = \pi (n ; 7, 3) - 5 }[/math]


Zadanie C37
Pokazać, że dla dowolnej liczby całkowitej [math]\displaystyle{ m \geqslant 1 }[/math]

  • wśród liczb naturalnych zawsze można wskazać [math]\displaystyle{ m }[/math] kolejnych liczb, które są złożone
  • w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math], gdzie liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, zawsze można wskazać [math]\displaystyle{ m }[/math] kolejnych wyrazów, które są złożone
Rozwiązanie

Punkt 1.
W przypadku liczb naturalnych łatwo widzimy, że kolejne liczby

[math]\displaystyle{ (m + 1) ! + 2, \quad (m + 1) ! + 3, \quad \ldots, \quad (m + 1) ! + (m + 1) }[/math]

są liczbami złożonymi. Co oznacza, że dla dowolnej liczby naturalnej [math]\displaystyle{ m }[/math] zawsze możemy wskazać taką liczbę [math]\displaystyle{ n }[/math], że [math]\displaystyle{ p_{n + 1} - p_n \gt m }[/math].

Punkt 2.
W przypadku ciągu arytmetycznego [math]\displaystyle{ u_k = a k + b }[/math] rozważmy kolejne wyrazy ciągu począwszy od wskaźnika

[math]\displaystyle{ k_0 = \prod^{m - 1}_{j = 0} (a j + b) }[/math]

Łatwo zauważamy, że dla [math]\displaystyle{ k = k_0, k_0 + 1, \ldots, k_0 + (m - 1) }[/math] wyrazy ciągu arytmetycznego [math]\displaystyle{ u_k = a k + b }[/math] są liczbami złożonymi. Istotnie, niech [math]\displaystyle{ t = 0, 1, \ldots, m - 1 }[/math] wtedy

[math]\displaystyle{ u_k = a k + b = }[/math]
[math]\displaystyle{ \! = a (k_0 + t) + b = }[/math]
[math]\displaystyle{ \! = a k_0 + (a t + b) = }[/math]
[math]\displaystyle{ \! = a \prod^{m - 1}_{j = 0} (a j + b) + (a t + b) }[/math]

i liczba [math]\displaystyle{ a t + b }[/math] dzieli iloczyn [math]\displaystyle{ \prod^{m - 1}_{j = 0} (a j + b) }[/math] dla [math]\displaystyle{ t = 0, \ldots, m - 1 }[/math]. Co należało pokazać.

Wiemy, że jeżeli liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to w ciągu [math]\displaystyle{ a k + b }[/math] występuje nieskończenie wiele liczb pierwszych. Niech będą to liczby [math]\displaystyle{ q_1, q_2, \ldots, q_r, \ldots }[/math]. Uzyskany rezultat oznacza, że dla dowolnej liczby naturalnej [math]\displaystyle{ m }[/math] zawsze możemy wskazać taką liczbę [math]\displaystyle{ n }[/math], że [math]\displaystyle{ q_{n + 1} - q_n \geqslant a (m + 1) }[/math]


Przykład C38
Rozważmy ciąg arytmetyczny [math]\displaystyle{ u_k = 3 k + 2 }[/math] i wskaźnik

[math]\displaystyle{ k_0 = \prod^{12}_{j = 0} (3 j + 2) = 3091650738176000 }[/math]

Trzynaście wyrazów tego szeregu dla [math]\displaystyle{ k = k_0 + t }[/math], gdzie [math]\displaystyle{ t = 0, 1, \ldots, 12 }[/math] to oczywiście liczby złożone, ale wyrazy dla [math]\displaystyle{ k = k_0 - 1 }[/math] i [math]\displaystyle{ k = k_0 + 13 }[/math] są liczbami pierwszymi.

Przeszukując ciąg [math]\displaystyle{ u_k = 3 k + 2 }[/math], możemy łatwo znaleźć, że pierwsze trzynaście kolejnych wyrazów złożonych pojawia się już dla [math]\displaystyle{ k = 370, 371, \ldots, 382 }[/math].


Twierdzenie C39
Jeżeli [math]\displaystyle{ n \geqslant 3 }[/math], to istnieje [math]\displaystyle{ n }[/math] kolejnych liczb naturalnych, wśród których znajduje się dokładnie [math]\displaystyle{ r \leqslant \pi (n) }[/math] liczb pierwszych.

Dowód

Warunek [math]\displaystyle{ n \geqslant 3 }[/math] nie wynika z potrzeb dowodu, a jedynie pomija sytuacje nietypowe, których twierdzenie nie obejmuje. Zawsze istnieje jedna liczba naturalna, która jest liczbą pierwszą i łatwo możemy wskazać dwie kolejne liczby naturalne będące liczbami pierwszymi.

Niech [math]\displaystyle{ k \in \mathbb{N} }[/math]. Wartość funkcji

[math]\displaystyle{ Q(k, n) = \pi (k + n) - \pi (k) }[/math]

jest równa ilości liczb pierwszych wśród [math]\displaystyle{ n }[/math] kolejnych liczb naturalnych od liczby [math]\displaystyle{ k + 1 }[/math] do liczby [math]\displaystyle{ k + n }[/math].

Uwzględniając, że wypisane niżej wyrażenia w nawiasach kwadratowych mogą przyjmować jedynie dwie wartości [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], dostajemy

  • [math]\displaystyle{ \biggl| Q (k + 1, n) - Q (k, n) \biggr| = \biggl| \bigl[\pi (k + n + 1) - \pi (k + n) \bigr] - \bigl[\pi (k + 1) - \pi (k) \bigr] \biggr| \leqslant 1 }[/math]

Ponadto mamy

  • [math]\displaystyle{ Q(0, n) = \pi (n) \qquad }[/math] bo [math]\displaystyle{ \pi (0) = 0 }[/math]
  • [math]\displaystyle{ Q((n + 1) ! + 1, n) = 0 \qquad }[/math] bo liczby [math]\displaystyle{ (n + 1) ! + 2, \ldots, (n + 1) ! + (n + 1) }[/math] są liczbami złożonymi

Ponieważ wartości funkcji [math]\displaystyle{ Q(k, n) }[/math] mogą zmieniać się tylko o [math]\displaystyle{ - 1 }[/math], [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to [math]\displaystyle{ Q(k, n) }[/math] musi przyjmować wszystkie wartości całkowite od [math]\displaystyle{ 0 }[/math] do [math]\displaystyle{ \pi (n) }[/math]. Wynika stąd, że istnieje taka liczba [math]\displaystyle{ k_r }[/math], że [math]\displaystyle{ Q(k_r, n) = r }[/math], gdzie [math]\displaystyle{ 0 \leqslant r \leqslant \pi (n) }[/math].


C Q10.png

Fragment wykresu funkcji [math]\displaystyle{ Q(k, 10) }[/math]. Widzimy, że dla [math]\displaystyle{ k = 113 }[/math] po raz pierwszy mamy [math]\displaystyle{ Q(k, 10) = 0 }[/math], a funkcja [math]\displaystyle{ Q(k, 10) }[/math] przyjmuje wszystkie wartości całkowite od [math]\displaystyle{ 0 }[/math] do [math]\displaystyle{ 5 }[/math].


Przykład C40
Czytelnik może łatwo sprawdzić, że ciąg [math]\displaystyle{ ( 1308, \ldots, 1407 ) }[/math] stu kolejnych liczb całkowitych zawiera dokładnie [math]\displaystyle{ 8 }[/math] liczb pierwszych.


Zadanie C41
Pokazać, nie korzystając z twierdzenia C39, że istnieje [math]\displaystyle{ 1000 }[/math] kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.

Rozwiązanie

Zauważmy, że [math]\displaystyle{ 1000 }[/math] kolejnych liczb naturalnych

[math]\displaystyle{ 1001! + 2, 1001! + 3, \ldots, 1001! + 1001 }[/math]

nie zawiera żadnej liczby pierwszej. Wielokrotnie zmniejszając wszystkie wypisane wyżej liczby o jeden, aż do chwili, gdy pierwsza z wypisanych liczb będzie liczbą pierwszą, uzyskamy [math]\displaystyle{ 1000 }[/math] kolejnych liczb naturalnych, wśród których jest dokładnie jedna liczba pierwsza.

Uwaga: dopiero liczba [math]\displaystyle{ 1001! - 1733 }[/math] jest pierwsza.


Zadanie C42
Pokazać, że istnieje [math]\displaystyle{ 20 }[/math] kolejnych liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math], wśród których jest dokładnie [math]\displaystyle{ 5 }[/math] liczb pierwszych.

Rozwiązanie

Rozwiązywanie zadania rozpoczniemy od dwóch spostrzeżeń

  • wśród pierwszych [math]\displaystyle{ 20 }[/math] liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math] jest [math]\displaystyle{ 13 }[/math] liczb pierwszych
  • w ciągu [math]\displaystyle{ 6 k + 1 }[/math] istnieją dowolnie długie przedziały pozbawione liczb pierwszych (zobacz zadanie C37), zatem istnieje [math]\displaystyle{ 20 }[/math] kolejnych liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math], wśród których nie ma ani jednej liczby pierwszej

Pierwsze spostrzeżenie pokazuje, że rozwiązanie problemu jest potencjalnie możliwe. Rozwiązanie mogłoby nie istnieć, gdybyśmy szukali [math]\displaystyle{ 20 }[/math] liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math], wśród których jest, powiedzmy, [math]\displaystyle{ 15 }[/math] liczb pierwszych.

Drugie spostrzeżenie mówi nam, że ilość liczb pierwszych wśród kolejnych [math]\displaystyle{ 20 }[/math] liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math] zmienia się od [math]\displaystyle{ 13 }[/math] do [math]\displaystyle{ 0 }[/math]. Analiza przebiegu tych zmian jest kluczem do dowodu twierdzenia.


Zbadajmy zatem, jak zmienia się ilość liczb pierwszych wśród kolejnych [math]\displaystyle{ 20 }[/math] liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math]. Rozważmy ciąg [math]\displaystyle{ a_k = 6 k + 1 }[/math], gdzie [math]\displaystyle{ k = 0, 1, 2, \ldots }[/math]

[math]\displaystyle{ (a_k) = (1, \mathbf{7}, \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115, 121, \mathbf{127}, 133, \mathbf{139}, 145, \mathbf{151}, \mathbf{157}, \mathbf{163}, 169, 175, \mathbf{181}, 187, \mathbf{193}, \mathbf{199}, 205, \mathbf{211}, \ldots) }[/math]

Liczby pierwsze zostały pogrubione.


Niech [math]\displaystyle{ (B^n) }[/math] będzie fragmentem ciągu [math]\displaystyle{ (a_k) }[/math] rozpoczynającym się od [math]\displaystyle{ n }[/math]-tego wyrazu ciągu i złożonym z [math]\displaystyle{ 20 }[/math] kolejnych wyrazów ciągu [math]\displaystyle{ (a_k) }[/math]. Przykładowo mamy

[math]\displaystyle{ (B^1) = (1, \mathbf{7}, \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115 ) }[/math]

[math]\displaystyle{ (B^2) = ( \mathbf{7}, \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115, 121 ) }[/math]

[math]\displaystyle{ (B^3) = ( \mathbf{13}, \mathbf{19}, 25, \mathbf{31}, \mathbf{37}, \mathbf{43}, 49, 55, \mathbf{61}, \mathbf{67}, \mathbf{73}, \mathbf{79}, 85, 91, \mathbf{97}, \mathbf{103}, \mathbf{109}, 115, 121, \mathbf{127} ) }[/math]


Musimy zrozumieć, jak przejście od ciągu [math]\displaystyle{ (B^n) }[/math] do ciągu [math]\displaystyle{ (B^{n + 1}) }[/math] wpływa na ilość liczb pierwszych w tych ciągach.

  • jeżeli najmniejszy wyraz ciągu [math]\displaystyle{ (B^n) }[/math] jest liczbą złożoną, to po przejściu do ciągu [math]\displaystyle{ (B^{n + 1}) }[/math] ilość liczb pierwszych w tym ciągu w stosunku do ilości liczb pierwszych w ciągu [math]\displaystyle{ (B^n) }[/math] może
    • pozostać bez zmian (w przypadku, gdy największy wyraz ciągu [math]\displaystyle{ (B^{n + 1}) }[/math] jest liczbą złożoną)
    • zwiększyć się o jeden (w przypadku, gdy największy wyraz ciągu [math]\displaystyle{ (B^{n + 1}) }[/math] jest liczbą pierwszą)
  • jeżeli najmniejszy wyraz ciągu [math]\displaystyle{ (B^n) }[/math] jest liczbą pierwszą, to po przejściu do ciągu [math]\displaystyle{ (B^{n + 1}) }[/math] ilość liczb pierwszych w tym ciągu w stosunku do ilości liczb pierwszych w ciągu [math]\displaystyle{ (B^n) }[/math] może
    • zmniejszyć się o jeden (w przypadku, gdy największy wyraz ciągu [math]\displaystyle{ (B^{n + 1}) }[/math] jest liczbą złożoną)
    • pozostać bez zmian (w przypadku, gdy największy wyraz ciągu [math]\displaystyle{ (B^{n + 1}) }[/math] jest liczbą pierwszą)


Wynika stąd, że przechodząc od ciągu [math]\displaystyle{ (B^n) }[/math] do ciągu [math]\displaystyle{ (B^{n + 1}) }[/math], ilość liczb pierwszych może się zmienić o [math]\displaystyle{ - 1 }[/math], [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math]. Z drugiego ze spostrzeżeń uczynionych na początku dowodu wynika istnienie takiej liczby [math]\displaystyle{ r }[/math], że wśród ciągów

[math]\displaystyle{ (B^1), (B^2), \ldots, (B^r) }[/math]

ilość liczb pierwszych będzie przyjmowała wszystkie możliwe wartości od liczby [math]\displaystyle{ 13 }[/math] do liczby [math]\displaystyle{ 0 }[/math]. Co zapewnia istnienie takich [math]\displaystyle{ 20 }[/math] kolejnych liczb naturalnych postaci [math]\displaystyle{ 6 k + 1 }[/math], że wśród nich jest dokładnie [math]\displaystyle{ 5 }[/math] liczb pierwszych.


Twierdzenie C43
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ 0 \leqslant b \leqslant a - 1 }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] oraz [math]\displaystyle{ b }[/math] są względnie pierwsze, to istnieje [math]\displaystyle{ n }[/math] kolejnych liczb postaci [math]\displaystyle{ a k + b }[/math], wśród których znajduje się dokładnie [math]\displaystyle{ r \leqslant \pi (a (n - 1) + b ; a, b) }[/math] liczb pierwszych.

Dowód

Twierdzenie można udowodnić, uogólniając dowód twierdzenia C39 lub wykorzystując metodę zastosowaną w rozwiązaniu zadania C42.


Zadanie C44
Niech [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Pokazać, że w ciągu [math]\displaystyle{ 6 k + 1 }[/math] występują kwadraty wszystkich liczb pierwszych [math]\displaystyle{ p }[/math].

Rozwiązanie

Wiemy, że liczby pierwsze nieparzyste [math]\displaystyle{ p \geqslant 5 }[/math] mogą być postaci [math]\displaystyle{ 6 k + 1 }[/math] lub [math]\displaystyle{ 6 k + 5 }[/math]. Ponieważ

[math]\displaystyle{ (6 k + 1)^2 = 6 (6 k^2 + 2 k) + 1 }[/math]
[math]\displaystyle{ (6 k + 5)^2 = 6 (6 k^2 + 10 k + 4) + 1 }[/math]

zatem kwadraty liczb pierwszych są postaci [math]\displaystyle{ 6 k + 1 }[/math] i nie mogą występować w ciągu postaci [math]\displaystyle{ 6 k + 5 }[/math].


Zadanie C45
Dany jest ciąg arytmetyczny [math]\displaystyle{ a k + b }[/math], gdzie liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze. Pokazać, że

  • jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ a }[/math], to żaden wyraz ciągu [math]\displaystyle{ a k + b }[/math] nie jest podzielny przez [math]\displaystyle{ p }[/math]
  • jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] nie dzieli [math]\displaystyle{ a }[/math], to istnieje nieskończenie wiele wyrazów ciągu [math]\displaystyle{ a k + b }[/math], które są podzielne przez [math]\displaystyle{ p }[/math]
Rozwiązanie

Punkt 1.
Zauważmy, że liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, zatem liczba pierwsza [math]\displaystyle{ p }[/math] nie może jednocześnie dzielić liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math]. Ponieważ z założenia [math]\displaystyle{ p \mid a }[/math], to wynika stąd, że [math]\displaystyle{ p }[/math] nie dzieli [math]\displaystyle{ b }[/math]. Jeśli tak, to

[math]\displaystyle{ a k + b = (n p) k + b }[/math]

i [math]\displaystyle{ p }[/math] nie dzieli żadnej liczby postaci [math]\displaystyle{ a k + b }[/math].

Punkt 2.
Pierwszy sposób

Niech [math]\displaystyle{ k_0 \in \mathbb{N} }[/math]. Przypuśćmy, że dla pewnych różnych liczb naturalnych [math]\displaystyle{ i, j }[/math] takich, że [math]\displaystyle{ 1 \leqslant i \lt j \leqslant p }[/math] liczby [math]\displaystyle{ a(k_0 + i) + b }[/math] oraz [math]\displaystyle{ a(k_0 + j) + b }[/math] dają tę samą resztę przy dzieleniu przez liczbę pierwszą [math]\displaystyle{ p }[/math]. Zatem różnica tych liczb jest podzielna przez [math]\displaystyle{ p }[/math]

[math]\displaystyle{ p \mid [a (k_0 + j) + b] - [a (k_0 + i) + b] }[/math]

czyli

[math]\displaystyle{ p \mid a (j - i) }[/math]

Ponieważ [math]\displaystyle{ p \nmid a }[/math] to na mocy lematu Euklidesa (twierdzenie C75), mamy

[math]\displaystyle{ p \mid (j - i) }[/math]

co jest niemożliwe, bo [math]\displaystyle{ 1 \leqslant j - i \leqslant p - 1 \lt p }[/math].

Zatem reszty [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] są wszystkie różne, a ponieważ jest ich [math]\displaystyle{ p }[/math], czyli tyle ile jest różnych reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ S = \{ 0, 1, 2, \ldots, p - 1 \} }[/math]. W szczególności wynika stąd, że wśród [math]\displaystyle{ p }[/math] kolejnych wyrazów ciągu arytmetycznego [math]\displaystyle{ a k + b }[/math] jeden z tych wyrazów jest podzielny przez [math]\displaystyle{ p }[/math]. Zatem istnieje nieskończenie wiele wyrazów ciągu [math]\displaystyle{ a k + b }[/math], które są podzielne przez [math]\displaystyle{ p }[/math].


Drugi sposób

Problem sprowadza się do wykazania istnienia nieskończenie wielu par liczb naturalnych [math]\displaystyle{ (k, n) }[/math], takich że

[math]\displaystyle{ a k + b = n p }[/math]

Co z kolei sprowadza się do badania rozwiązań całkowitych równania

[math]\displaystyle{ n p - a k = b }[/math]

Zauważmy, że ponieważ [math]\displaystyle{ p \nmid a }[/math], to liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ p }[/math] są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba [math]\displaystyle{ 1 }[/math]. Na mocy twierdzenia C79 równanie to ma nieskończenie wiele rozwiązań w liczbach całkowitych

[math]\displaystyle{ n = n_0 + p t }[/math]
[math]\displaystyle{ k = k_0 + a t }[/math]

gdzie [math]\displaystyle{ t }[/math] jest dowolną liczbą całkowitą, a para liczb [math]\displaystyle{ (n_0, k_0) }[/math] jest dowolnym rozwiązaniem tego równania. Widzimy, że dla dostatecznie dużych liczb [math]\displaystyle{ t }[/math] zawsze możemy uzyskać takie [math]\displaystyle{ n }[/math] i [math]\displaystyle{ k }[/math], że [math]\displaystyle{ n, k \in \mathbb{Z}_+ }[/math]. Pokazaliśmy w ten sposób, że w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math] istnieje nieskończenie wiele wyrazów podzielnych przez liczbę pierwszą [math]\displaystyle{ p }[/math].


Trzeci sposób

Zauważmy, że ponieważ [math]\displaystyle{ p \nmid a }[/math], to liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ p }[/math] są względnie pierwsze. Zatem ich największym wspólnym dzielnikiem jest liczba [math]\displaystyle{ 1 }[/math]. Lemat Bézouta zapewnia istnienie takich liczb całkowitych [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math], że

[math]\displaystyle{ a x + p y = 1 }[/math]

Niech [math]\displaystyle{ k_0 = r p - b x }[/math], gdzie [math]\displaystyle{ r }[/math] jest dowolną liczbą całkowitą dodatnią, ale na tyle dużą, aby [math]\displaystyle{ k_0 }[/math] była liczbą dodatnią bez względu na znak iloczynu [math]\displaystyle{ b x }[/math]. Łatwo sprawdzamy, że liczba [math]\displaystyle{ a k_0 + b }[/math] jest podzielna przez [math]\displaystyle{ p }[/math]

[math]\displaystyle{ a k_0 + b = a (r p - b x) + b = }[/math]
[math]\displaystyle{ \;\; = a r p - a b x + b = }[/math]
[math]\displaystyle{ \;\; = a r p + b (1 - a x) = }[/math]
[math]\displaystyle{ \;\; = a r p + b p y = }[/math]
[math]\displaystyle{ \;\; = p (a r + b y) }[/math]

Zatem w ciągu [math]\displaystyle{ a k + b }[/math] istnieje przynajmniej jeden wyraz podzielny przez liczbę pierwszą [math]\displaystyle{ p }[/math]. Jeśli tak, to w ciągu arytmetycznym [math]\displaystyle{ a k + b }[/math] istnieje nieskończenie wiele liczb podzielnych przez [math]\displaystyle{ p }[/math], bo dla [math]\displaystyle{ k = k_0 + s p }[/math], gdzie [math]\displaystyle{ s \in \mathbb{N} }[/math], mamy

[math]\displaystyle{ a k + b = a (k_0 + s p) + b = a s p + (a k_0 + b) }[/math]

Czyli [math]\displaystyle{ p \mid a k + b }[/math].


Uwaga C46
Łatwo możemy napisać w PARI/GP funkcję, która zwraca najmniejszą liczbę naturalną [math]\displaystyle{ k_0 }[/math], dla której wyraz ciągu arytmetycznego [math]\displaystyle{ a k + b }[/math] jest podzielny przez [math]\displaystyle{ p }[/math] (przy założeniu, że liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ p }[/math] są względnie pierwsze).

f(a,b,p) = lift( Mod(-b,p)*Mod(a,p)^(-1) )



Ciągi nieskończone i liczby pierwsze

Uwaga C47
Choć wiele ciągów jest dobrze znanych i równie dobrze zbadanych, to nie wiemy, czy zawierają one nieskończenie wiele liczb pierwszych. Przykładowo

Nie wiemy, czy istnieje wielomian całkowity [math]\displaystyle{ W(n) }[/math] stopnia większego niż jeden taki, że [math]\displaystyle{ W(n) }[/math] jest liczbą pierwszą dla nieskończenie wielu liczb [math]\displaystyle{ n }[/math].


Przykład C48
Łatwo sprawdzić, że wartości wielomianu [math]\displaystyle{ W(n) = n^2 + n + 41 }[/math] są liczbami pierwszymi dla [math]\displaystyle{ 1 \leqslant n \leqslant 39 }[/math]. Oczywiście [math]\displaystyle{ 41 \mid W(41) }[/math].


Twierdzenie C49
Niech [math]\displaystyle{ a, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ a \geqslant 2 }[/math]. Jeżeli liczba [math]\displaystyle{ a^n + 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a }[/math] jest liczbą parzystą i [math]\displaystyle{ n = 2^m }[/math].

Dowód

Gdyby liczba [math]\displaystyle{ a }[/math] była nieparzysta, to liczba [math]\displaystyle{ a^n + 1 \geqslant 4 }[/math] byłaby parzysta i nie mogłaby być liczbą pierwszą.

Niech wykładnik [math]\displaystyle{ n = x y }[/math] będzie liczbą złożoną, a [math]\displaystyle{ x }[/math] będzie liczbą nieparzystą. Wtedy

[math]\displaystyle{ a^n + 1 = (a^y)^x + 1 }[/math]

Oznaczając [math]\displaystyle{ b = a^y }[/math] oraz [math]\displaystyle{ x = 2 k + 1 }[/math], otrzymujemy

[math]\displaystyle{ a^n + 1 = (a^y)^x + 1 }[/math]
[math]\displaystyle{ \: = b^x + 1 }[/math]
[math]\displaystyle{ \: = b^{2 k + 1} + 1 }[/math]
[math]\displaystyle{ \: = (b + 1) \cdot (1 - b + b^2 - b^3 + \ldots + b^{2 k - 2} - b^{2 k - 1} + b^{2 k}) }[/math]

Czyli [math]\displaystyle{ a^n + 1 }[/math] jest liczbą złożoną. Wynika stąd, że wykładnik [math]\displaystyle{ n }[/math] nie może zawierać czynników nieparzystych, czyli musi być [math]\displaystyle{ n = 2^m }[/math]. Co należało pokazać.


Twierdzenie C50
Dla dowolnej liczby naturalnej [math]\displaystyle{ n \geqslant 1 }[/math] liczba [math]\displaystyle{ x - y }[/math] jest dzielnikiem wyrażenia [math]\displaystyle{ x^n - y^n }[/math].

Dowód

Indukcja matematyczna. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math], bo [math]\displaystyle{ x - y }[/math] dzieli [math]\displaystyle{ x^1 - y^1 }[/math]. Załóżmy, że [math]\displaystyle{ x - y }[/math] jest dzielnikiem wyrażenia [math]\displaystyle{ x^n - y^n }[/math], czyli [math]\displaystyle{ x^n - y^n = (x - y) \cdot k }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ x^{n + 1} - y^{n + 1} = x x^n - y x^n + y x^n - y y^n = }[/math]
[math]\displaystyle{ \quad \, = (x - y) x^n + y (x^n - y^n) = }[/math]
[math]\displaystyle{ \quad \, = (x - y) x^n + y (x - y) \cdot k = }[/math]
[math]\displaystyle{ \quad \, = (x - y) (x^n + y \cdot k) }[/math]

Czyli [math]\displaystyle{ x - y }[/math] jest dzielnikiem [math]\displaystyle{ x^{n + 1} - y^{n + 1} }[/math]. Co kończy dowód indukcyjny.


Twierdzenie C51
Jeżeli [math]\displaystyle{ n \geqslant 2 }[/math] oraz [math]\displaystyle{ a^n - 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a = 2 }[/math] i [math]\displaystyle{ n }[/math] jest liczbą pierwszą.

Dowód

Z twierdzenia C50 wiemy, że [math]\displaystyle{ x - y \mid x^n - y^n }[/math]. W przypadku gdy [math]\displaystyle{ a \gt 2 }[/math] mamy

[math]\displaystyle{ a - 1 \mid a^n - 1 }[/math]

Czyli musi być [math]\displaystyle{ a = 2 }[/math]. Z tego samego twierdzenia wynika też, że jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną [math]\displaystyle{ n = r s }[/math], to

[math]\displaystyle{ 2^r - 1 \mid 2^{r s} - 1 }[/math]

bo [math]\displaystyle{ a^r - b^r \mid (a^r)^s - (b^r)^s }[/math]. Zatem [math]\displaystyle{ n }[/math] musi być liczbą pierwszą. Co kończy dowód.




Ciągi arytmetyczne liczb pierwszych

Uwaga C52
Ciągi arytmetyczne liczb pierwszych[11][12] zbudowane z dwóch liczb pierwszych nie są interesujące, bo dowolne dwie liczby tworzą ciąg arytmetyczny. Dlatego będziemy się zajmowali ciągami arytmetycznymi liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math].

Ponieważ nie da się zbudować ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math], w którym pierwszym wyrazem jest liczba [math]\displaystyle{ p_0 = 2 }[/math], to będą nas interesowały ciągi rozpoczynające się od liczby pierwszej [math]\displaystyle{ p_0 \geqslant 3 }[/math]

Jeżeli do liczby pierwszej nieparzystej dodamy dodatnią liczbę nieparzystą, to otrzymamy liczbę parzystą złożoną, zatem różnica ciągu arytmetycznego [math]\displaystyle{ d }[/math] musi być liczbą parzystą, aby zbudowanie jakiegokolwiek ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n \geqslant 3 }[/math] było możliwe.

Istnienie nieskończenie wiele ciągów arytmetycznych liczb pierwszych o długości [math]\displaystyle{ n = 3 }[/math] pokazano już wiele lat temu[13]. Temat ciągów arytmetycznych liczb pierwszych zyskał na popularności[14] po udowodnieniu przez Bena Greena i Terence'a Tao twierdzenia o istnieniu dowolnie długich (ale skończonych) ciągów arytmetycznych liczb pierwszych[15].


Twierdzenie C53* (Ben Green i Terence Tao, 2004)
Dla dowolnej liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] istnieje nieskończenie wiele [math]\displaystyle{ n }[/math]-wyrazowych ciągów arytmetycznych liczb pierwszych.



Przykład C54
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 3 }[/math] i [math]\displaystyle{ n = 4 }[/math].

Pokaż tabele

W przypadku [math]\displaystyle{ n = 3 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 2 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^8 }[/math].

W przypadku [math]\displaystyle{ n = 4 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 6 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^8 }[/math].

Jeżeli w tabeli jest wypisanych sześć wartości [math]\displaystyle{ p_0 }[/math], to oznacza to, że zostało znalezionych co najmniej sześć wartości [math]\displaystyle{ p_0 }[/math].



Przykład C55
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 5 }[/math] i [math]\displaystyle{ n = 6 }[/math].

Pokaż tabele

W przypadku [math]\displaystyle{ n = 5 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 6 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^8 }[/math].

W przypadku [math]\displaystyle{ n = 6 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 30 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^8 }[/math].

Jeżeli w tabeli jest wypisanych sześć wartości [math]\displaystyle{ p_0 }[/math], to oznacza to, że zostało znalezionych co najmniej sześć wartości [math]\displaystyle{ p_0 }[/math].



Przykład C56
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] i [math]\displaystyle{ n = 8 }[/math].

Pokaż tabele

W przypadku [math]\displaystyle{ n = 7 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 30 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^8 }[/math].

W przypadku [math]\displaystyle{ n = 8 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 210 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^8 }[/math].

Jeżeli w tabeli jest wypisanych sześć wartości [math]\displaystyle{ p_0 }[/math], to oznacza to, że zostało znalezionych co najmniej sześć wartości [math]\displaystyle{ p_0 }[/math].



Przykład C57
Tabela zawiera przykładowe ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n = 9 }[/math] i [math]\displaystyle{ n = 10 }[/math].

Pokaż tabele

W przypadku [math]\displaystyle{ n = 9 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 210 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^9 }[/math].

W przypadku [math]\displaystyle{ n = 10 }[/math] wyszukiwanie ciągów zostało przeprowadzone dla [math]\displaystyle{ d = 210 k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant 100 }[/math] i (przy ustalonym [math]\displaystyle{ d }[/math]) dla kolejnych liczb pierwszych [math]\displaystyle{ p_0 \leqslant 10^{10} }[/math].

Jeżeli w tabeli jest wypisanych sześć wartości [math]\displaystyle{ p_0 }[/math], to oznacza to, że zostało znalezionych co najmniej sześć wartości [math]\displaystyle{ p_0 }[/math].



Twierdzenie C58
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] oraz [math]\displaystyle{ a, d, k, k_0 \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ d }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, to reszty [math]\displaystyle{ r_1, r_2, \ldots, r_n }[/math] z dzielenia [math]\displaystyle{ n }[/math] liczb [math]\displaystyle{ x_k }[/math] postaci

[math]\displaystyle{ x_k = a + k d \qquad }[/math] dla [math]\displaystyle{ \; k = k_0 + 1, \ldots, k_0 + n }[/math]

przez liczbę [math]\displaystyle{ n }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, n - 1 \} }[/math]. W szczególności wynika stąd, że wśród liczb [math]\displaystyle{ x_k }[/math] jedna jest podzielna przez [math]\displaystyle{ n }[/math].

Dowód

Przypuśćmy, że dla pewnych różnych liczb naturalnych [math]\displaystyle{ i, j }[/math] takich, że [math]\displaystyle{ 1 \leqslant i \lt j \leqslant n }[/math] liczby [math]\displaystyle{ a + (k_0 + i) d }[/math] oraz [math]\displaystyle{ a + (k_0 + j) d }[/math] dają tę samą resztę przy dzieleniu przez [math]\displaystyle{ n }[/math]. Zatem różnica tych liczb jest podzielna przez [math]\displaystyle{ n }[/math]

[math]\displaystyle{ n \mid [a + (k_0 + j) d] - [a + (k_0 + i) d] }[/math]

Czyli

[math]\displaystyle{ n \mid d (j - i) }[/math]

Ponieważ liczby [math]\displaystyle{ d }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C75), mamy

[math]\displaystyle{ n \mid (j - i) }[/math]

Co jest niemożliwe, bo [math]\displaystyle{ 1 \leqslant j - i \leqslant n - 1 \lt n }[/math].

Zatem reszty [math]\displaystyle{ r_1, r_2, \ldots, r_n }[/math] są wszystkie różne, a ponieważ jest ich [math]\displaystyle{ n }[/math], czyli tyle ile jest różnych reszt z dzielenia przez liczbę [math]\displaystyle{ n }[/math], to zbiór tych reszt jest identyczny ze zbiorem reszt z dzielenia przez [math]\displaystyle{ n }[/math], czyli ze zbiorem [math]\displaystyle{ S = \{ 0, 1, 2, \ldots, n - 1 \} }[/math].


Twierdzenie C59
Niech [math]\displaystyle{ d \in \mathbb{Z}_+ }[/math] i niech będzie dany ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math]

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Z żądania, aby dany ciąg arytmetyczny był ciągiem arytmetycznym liczb pierwszych, wynika, że muszą być spełnione następujące warunki

  • [math]\displaystyle{ p_0 \nmid d }[/math]
  • [math]\displaystyle{ n \leqslant p_0 }[/math]
  • [math]\displaystyle{ P(n - 1) \mid d }[/math]
  • jeżeli liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], to [math]\displaystyle{ n \leqslant q }[/math]

gdzie [math]\displaystyle{ P(t) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ t }[/math].

Dowód

Punkt 1.
Gdyby [math]\displaystyle{ p_0 \mid d }[/math], to dla [math]\displaystyle{ k \geqslant 1 }[/math] mielibyśmy [math]\displaystyle{ p_k = p_0 \left( 1 + k \cdot {\small\frac{d}{p_0}} \right) }[/math] i wszystkie te liczby byłyby złożone.

Punkt 2.
Ponieważ [math]\displaystyle{ p_0 }[/math] dzieli [math]\displaystyle{ p_0 + p_0 d }[/math], więc musi być [math]\displaystyle{ n - 1 \lt p_0 }[/math], czyli [math]\displaystyle{ n \leqslant p_0 }[/math].

Punkt 3.
Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą mniejszą od [math]\displaystyle{ n }[/math], a liczby [math]\displaystyle{ r_k }[/math] będą resztami uzyskanymi z dzielenia liczb [math]\displaystyle{ p_k = p_0 + k d }[/math] przez [math]\displaystyle{ q }[/math], dla [math]\displaystyle{ k = 0, 1, \ldots, q - 1 }[/math]. Ponieważ z założenia liczby [math]\displaystyle{ p_0, \ldots, p_{n - 1} }[/math] są liczbami pierwszymi większymi od [math]\displaystyle{ q }[/math] (zauważmy, że [math]\displaystyle{ p_0 \geqslant n }[/math]), to żadna z reszt [math]\displaystyle{ r_k }[/math] nie może być równa zeru. Czyli mamy [math]\displaystyle{ q }[/math] reszt mogących przyjmować jedynie [math]\displaystyle{ q - 1 }[/math] różnych wartości. Zatem istnieją różne liczby [math]\displaystyle{ i, j }[/math] takie, że [math]\displaystyle{ 0 \leqslant i \lt j \leqslant q - 1 }[/math], dla których [math]\displaystyle{ r_i = r_j }[/math]. Wynika stąd, że różnica liczb

[math]\displaystyle{ p_j - p_i = (p_0 + j d) - (p_0 + i d) = d (j - i) }[/math]

musi być podzielna przez [math]\displaystyle{ q }[/math]. Ponieważ [math]\displaystyle{ q \nmid (j - i) }[/math], bo [math]\displaystyle{ 1 \leqslant j - i \leqslant q - 1 \lt q }[/math], zatem z lematu Euklidesa [math]\displaystyle{ q \mid d }[/math].

Z uwagi na fakt, że jest tak dla każdej liczby pierwszej [math]\displaystyle{ q \lt n }[/math], liczba [math]\displaystyle{ d }[/math] musi być podzielna przez

[math]\displaystyle{ P(n - 1) = \prod_{q \lt n} q }[/math]

Punkt 4.
Ponieważ [math]\displaystyle{ P(n - 1)|d }[/math], to wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ n }[/math] muszą być dzielnikami [math]\displaystyle{ d }[/math]. Wynika stąd, że jeśli liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], to musi być [math]\displaystyle{ q \geqslant n }[/math]. Co należało pokazać.


Uwaga C60
Czasami, zamiast pisać „ciąg arytmetyczny liczb pierwszych”, będziemy posługiwali się skrótem PAP od angielskiej nazwy „prime arithmetic progression”. Konsekwentnie zapis PAP-[math]\displaystyle{ n }[/math] będzie oznaczał ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math], a zapis PAP[math]\displaystyle{ (n, d, q) }[/math] ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math], pierwszym wyrazie [math]\displaystyle{ q }[/math] i różnicy [math]\displaystyle{ d }[/math].


Uwaga C61
Jakkolwiek sądzimy, że istnieje nieskończenie wiele ciągów arytmetycznych liczb pierwszych rozpoczynających się od dowolnej liczby pierwszej [math]\displaystyle{ q }[/math] i o dowolnej długości [math]\displaystyle{ 3 \leqslant n \leqslant q }[/math], to obecnie jest to tylko nieudowodnione przypuszczenie.

Dlatego nawet dla najmniejszej liczby pierwszej [math]\displaystyle{ q }[/math] takiej, że [math]\displaystyle{ q \nmid d }[/math] nierówność [math]\displaystyle{ n \leqslant q }[/math], pokazana w twierdzeniu C59, pozostaje nadal tylko oszacowaniem. W szczególności nie możemy z góry przyjmować, że dla liczby [math]\displaystyle{ n = q }[/math] znajdziemy taką liczbę [math]\displaystyle{ d }[/math] będącą wielokrotnością liczby [math]\displaystyle{ P(q - 1) }[/math] i niepodzielną przez [math]\displaystyle{ q }[/math], że będzie istniał PAP[math]\displaystyle{ (q, d, q) }[/math].


Przykład C62
Rozważmy dwie różnice [math]\displaystyle{ d_1 = 6 = 2 \cdot 3 }[/math] oraz [math]\displaystyle{ d_2 = 42 = 2 \cdot 3 \cdot 7 }[/math]. Zauważmy, że liczba pierwsza [math]\displaystyle{ 5 }[/math] nie dzieli ani [math]\displaystyle{ d_1 }[/math], ani [math]\displaystyle{ d_2 }[/math]. Co więcej, liczba pierwsza [math]\displaystyle{ 5 }[/math] jest najmniejszą liczbą pierwszą, która nie dzieli rozpatrywanych różnic, zatem nierówność [math]\displaystyle{ n \leqslant 5 }[/math] zapewnia najmocniejsze oszacowanie długości ciągu [math]\displaystyle{ n }[/math]. Łatwo sprawdzamy w zamieszczonych tabelach, że dla [math]\displaystyle{ d = 6 }[/math] oraz dla [math]\displaystyle{ d = 42 }[/math] są ciągi o długości [math]\displaystyle{ 3, 4, 5 }[/math], ale nie ma ciągów o długości [math]\displaystyle{ 6, 7, \ldots }[/math]

W szczególności z twierdzenia C59 wynika, że szukając ciągów arytmetycznych liczb pierwszych o określonej długości [math]\displaystyle{ n }[/math], należy szukać ich tylko dla różnic [math]\displaystyle{ d }[/math] będących wielokrotnością liczby [math]\displaystyle{ P(n - 1) }[/math].


Zadanie C63
Wiemy, że liczby pierwsze [math]\displaystyle{ p \gt 3 }[/math] można przedstawić w jednej z postaci [math]\displaystyle{ 6 k - 1 }[/math] lub [math]\displaystyle{ 6 k + 1 }[/math]. Pokazać, że jeżeli [math]\displaystyle{ p_0 = 3 }[/math], to dwa następne wyrazu rosnącego ciągu arytmetycznego liczb pierwszych są różnych postaci.

Rozwiązanie

Ponieważ [math]\displaystyle{ p_0 = 3 }[/math], a rozpatrywany PAP jest rosnący, to kolejne wyrazy ciągu są większe od liczby [math]\displaystyle{ 3 }[/math] i mogą być przedstawione w jednej z postaci [math]\displaystyle{ 6 k - 1 }[/math] lub [math]\displaystyle{ 6 k + 1 }[/math]. Z twierdzenia C59 wiemy, że musi być [math]\displaystyle{ n \leqslant p_0 = 3 }[/math], czyli długość rozpatrywanego ciągu arytmetycznego liczb pierwszych wynosi dokładnie [math]\displaystyle{ 3 }[/math] i istnieją tylko dwa następne wyrazy.

Rozważmy ciąg arytmetyczny liczb pierwszych składający się z trzech wyrazów [math]\displaystyle{ p, q, r }[/math] takich, że [math]\displaystyle{ p = 3 }[/math]. Mamy

[math]\displaystyle{ r = q + d = q + (q - p) = 2 q - p }[/math]

Zatem

[math]\displaystyle{ r + q = 3 q - 3 }[/math]

Widzimy, że prawa strona powyższej równości jest podzielna przez [math]\displaystyle{ 3 }[/math]. Zatem liczby po lewej stronie wypisanych wyżej równości muszą być różnych postaci, bo tylko w takim przypadku lewa strona równości będzie również podzielna przez [math]\displaystyle{ 3 }[/math].


Zadanie C64
Wiemy, że liczby pierwsze [math]\displaystyle{ p \gt 3 }[/math] można przedstawić w jednej z postaci [math]\displaystyle{ 6 k - 1 }[/math] lub [math]\displaystyle{ 6 k + 1 }[/math]. Pokazać, że wszystkie wyrazy rosnącego ciągu arytmetycznego liczb pierwszych [math]\displaystyle{ p_0, p_1, \ldots, p_{n - 1} }[/math], gdzie [math]\displaystyle{ p_0 \geqslant 5 }[/math] i [math]\displaystyle{ n \geqslant 3 }[/math] muszą być jednakowej postaci.

Rozwiązanie

Niech liczby [math]\displaystyle{ p, q, r }[/math] będą trzema kolejnymi (dowolnie wybranymi) wyrazami rozpatrywanego ciągu. Łatwo zauważmy, że

[math]\displaystyle{ r = q + d = q + (q - p) = 2 q - p }[/math]

Zatem

[math]\displaystyle{ p + q = 3 q - r }[/math]
[math]\displaystyle{ q + r = 3 q - p }[/math]
[math]\displaystyle{ p + r = 2 q }[/math]

Zauważmy, że prawa strona wypisanych wyżej równości nie jest podzielna przez [math]\displaystyle{ 3 }[/math], bo liczby [math]\displaystyle{ p, q, r }[/math] są liczbami pierwszymi większymi od liczby [math]\displaystyle{ 3 }[/math]. Zatem liczby po lewej stronie wypisanych wyżej równości muszą być tej samej postaci, bo gdyby było inaczej, to lewa strona tych równości byłaby podzielna przez [math]\displaystyle{ 3 }[/math], a prawa nie. Czyli każda para liczb z trójki [math]\displaystyle{ p, q, r }[/math] musi być tej samej postaci i wynika stąd, że wszystkie trzy liczby muszą być tej samej postaci. Ponieważ trzy kolejne wyrazy ciągu [math]\displaystyle{ p_0, p_1, \ldots, p_{n - 1} }[/math] były wybrane dowolnie, to wszystkie wyrazy tego ciągu muszą być tej samej postaci.


Zadanie C65
Niech [math]\displaystyle{ d \gt 0 }[/math] będzie różnicą ciągu arytmetycznego liczb pierwszych o długości [math]\displaystyle{ n }[/math]

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Pokazać, nie korzystając z twierdzenia C59, że jeżeli liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], to [math]\displaystyle{ n \leqslant q }[/math].

Rozwiązanie

Przypuśćmy, że [math]\displaystyle{ n \gt q }[/math] tak, że [math]\displaystyle{ q \lt n \leqslant p_0 }[/math], zatem

[math]\displaystyle{ q \lt p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Ponieważ [math]\displaystyle{ q \nmid d }[/math], to na mocy twierdzenia C58 wśród [math]\displaystyle{ q }[/math] kolejnych wyrazów [math]\displaystyle{ p_0, p_1, \ldots, p_{q - 1} }[/math] (zauważmy, że [math]\displaystyle{ q - 1 \lt n - 1 }[/math]) jedna liczba pierwsza [math]\displaystyle{ p_k }[/math] musi być podzielna przez [math]\displaystyle{ q }[/math], zatem musi być równa [math]\displaystyle{ q }[/math]. Jednak jest to niemożliwe, bo [math]\displaystyle{ q \lt p_k }[/math] dla wszystkich [math]\displaystyle{ k = 0, 1, \ldots, n - 1 }[/math]. Zatem nie może być [math]\displaystyle{ n \gt q }[/math].


Twierdzenie C66
Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą, a liczby pierwsze

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] gdzie [math]\displaystyle{ \; k = 0, 1, \ldots, q - 1 }[/math]

tworzą ciąg arytmetyczny o długości [math]\displaystyle{ q }[/math] i różnicy [math]\displaystyle{ d \gt 0 }[/math].

Równość [math]\displaystyle{ p_0 = q }[/math] zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ q \nmid d }[/math].

Dowód

[math]\displaystyle{ \Longrightarrow }[/math]
Jeżeli [math]\displaystyle{ p_0 = q }[/math], to [math]\displaystyle{ q }[/math]-wyrazowy ciąg arytmetyczny liczb pierwszych ma postać

[math]\displaystyle{ p_k = q + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, q - 1 }[/math]

Gdyby [math]\displaystyle{ q \mid d }[/math], to mielibyśmy

[math]\displaystyle{ p_k = q \left( 1 + k \cdot {\small\frac{d}{q}} \right) }[/math]

i wszystkie liczby [math]\displaystyle{ p_k }[/math] dla [math]\displaystyle{ k \geqslant 1 }[/math] byłyby złożone, wbrew założeniu, że [math]\displaystyle{ p_k }[/math] tworzą [math]\displaystyle{ q }[/math]-wyrazowy ciąg arytmetyczny liczb pierwszych.

[math]\displaystyle{ \Longleftarrow }[/math]
Ponieważ [math]\displaystyle{ q }[/math] jest długością rozpatrywanego ciągu arytmetycznego liczb pierwszych, to z twierdzenia C59 wynika, że musi być [math]\displaystyle{ q \leqslant p_0 }[/math].

Z założenia liczba pierwsza [math]\displaystyle{ q }[/math] nie dzieli [math]\displaystyle{ d }[/math], zatem z twierdzenia C58 wiemy, że [math]\displaystyle{ q }[/math] musi dzielić jedną z liczb [math]\displaystyle{ p_0, p_1, \ldots, p_{q - 1} }[/math].

Jeżeli [math]\displaystyle{ q \mid p_k }[/math], to [math]\displaystyle{ p_k = q }[/math]. Ponieważ [math]\displaystyle{ q \leqslant p_0 }[/math], to możliwe jest jedynie [math]\displaystyle{ q \mid p_0 }[/math] i musi być [math]\displaystyle{ p_0 = q }[/math].


Uwaga C67
Niech ciąg arytmetyczny liczb pierwszych o długości [math]\displaystyle{ n }[/math] ma postać

[math]\displaystyle{ p_k = p_0 + k d \qquad }[/math] dla [math]\displaystyle{ \; k = 0, 1, \ldots, n - 1 }[/math]

Z udowodnionych wyżej twierdzeń C59C66 wynika, że ciągi arytmetyczne liczb pierwszych o długości [math]\displaystyle{ n }[/math] można podzielić na dwie grupy

  • jeżeli [math]\displaystyle{ n }[/math] jest liczbą pierwszą i [math]\displaystyle{ n \nmid d }[/math], to [math]\displaystyle{ P(n - 1) \mid d }[/math] oraz [math]\displaystyle{ p_0 = n }[/math] (dla ustalonego [math]\displaystyle{ d }[/math] może istnieć tylko jeden ciąg)
  • jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną lub [math]\displaystyle{ n \mid d }[/math], to [math]\displaystyle{ P(n) \mid d }[/math] oraz [math]\displaystyle{ p_0 \gt n }[/math]

Funkcja [math]\displaystyle{ P(t) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ t }[/math].


Przykład C68
Niech różnica ciągu arytmetycznego liczb pierwszych wynosi [math]\displaystyle{ d = 10^t }[/math], gdzie [math]\displaystyle{ t \geqslant 1 }[/math]. Zauważmy, że dla dowolnego [math]\displaystyle{ t }[/math] liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą pierwszą, która nie dzieli [math]\displaystyle{ d }[/math]. Z oszacowania [math]\displaystyle{ n \leqslant 3 }[/math] wynika, że musi być [math]\displaystyle{ n = 3 }[/math].

Jeżeli długość ciągu [math]\displaystyle{ n = 3 }[/math] i [math]\displaystyle{ n \nmid d }[/math], to musi być [math]\displaystyle{ p_0 = n = 3 }[/math] i może istnieć tylko jeden PAP dla każdego [math]\displaystyle{ d }[/math]. W przypadku [math]\displaystyle{ t \leqslant 10000 }[/math] jedynie dla [math]\displaystyle{ t = 1, 5, 6, 17 }[/math] wszystkie liczby ciągu arytmetycznego [math]\displaystyle{ (3, 3 + 10^t, 3 + 2 \cdot 10^t) }[/math] są pierwsze.


Zadanie C69
Znaleźć wszystkie PAP[math]\displaystyle{ (n, d, p) }[/math] dla [math]\displaystyle{ d = 2, 4, 8, 10, 14, 16 }[/math].

Rozwiązanie

Zauważmy, że dla każdej z podanych różnic [math]\displaystyle{ d }[/math], liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą pierwszą, która nie dzieli [math]\displaystyle{ d }[/math]. Z oszacowania [math]\displaystyle{ n \leqslant 3 }[/math] wynika, że musi być [math]\displaystyle{ n = 3 }[/math].

Ponieważ [math]\displaystyle{ n = 3 }[/math] jest liczbą pierwszą i dla wypisanych [math]\displaystyle{ d }[/math] liczba [math]\displaystyle{ n \nmid d }[/math], to w każdym przypadku może istnieć tylko jeden ciąg, którego pierwszym wyrazem jest liczba pierwsza [math]\displaystyle{ p_0 = n = 3 }[/math]. Dla [math]\displaystyle{ d = 2, 4, 8, 10, 14 }[/math] łatwo znajdujemy odpowiednie ciągi

[math]\displaystyle{ (3, 5, 7) }[/math], [math]\displaystyle{ \qquad (3, 7, 11) }[/math], [math]\displaystyle{ \qquad (3, 11, 19) }[/math], [math]\displaystyle{ \qquad (3, 13, 23) }[/math], [math]\displaystyle{ \qquad (3, 17, 31) }[/math]

Dla [math]\displaystyle{ d = 16 }[/math] szukany ciąg nie istnieje, bo [math]\displaystyle{ 35 = 5 \cdot 7 }[/math].


Zadanie C70
Znaleźć wszystkie PAP[math]\displaystyle{ (n, d, p) }[/math] dla [math]\displaystyle{ n = 3, 5, 7, 11 }[/math] i [math]\displaystyle{ d = P (n - 1) }[/math].

Rozwiązanie

Z założenia PAP ma długość [math]\displaystyle{ n }[/math], liczba [math]\displaystyle{ n }[/math] jest liczbą pierwszą i [math]\displaystyle{ n \nmid d }[/math]. Zatem może istnieć tylko jeden PAP taki, że [math]\displaystyle{ p_0 = n }[/math]. Dla [math]\displaystyle{ n = 3, 5 }[/math] i odpowiednio [math]\displaystyle{ d = 2, 6 }[/math] otrzymujemy ciągi arytmetyczne liczb pierwszych

[math]\displaystyle{ (3, 5, 7) }[/math], [math]\displaystyle{ \qquad (5, 11, 17, 23, 29) }[/math]

Ale dla [math]\displaystyle{ n = 7, 11 }[/math] i odpowiednio [math]\displaystyle{ d = 30, 210 }[/math] szukane ciągi nie istnieją, bo

[math]\displaystyle{ (7, 37, 67, 97, 127, 157, {\color{Red} 187 = 11 \cdot 17}) }[/math]
[math]\displaystyle{ (11, {\color{Red} 221 = 13 \cdot 17}, 431, 641, {\color{Red} 851 = 23 \cdot 37}, 1061, {\color{Red} 1271 = 31 \cdot 41}, 1481, {\color{Red} 1691 = 19 \cdot 89}, 1901, 2111) }[/math]


Przykład C71
Przedstawiamy przykładowe ciągi arytmetyczne liczb pierwszych takie, że [math]\displaystyle{ n = p_0 }[/math] dla [math]\displaystyle{ n = 3, 5, 7, 11, 13 }[/math]. Zauważmy, że wypisane w tabeli wartości [math]\displaystyle{ d }[/math] są wielokrotnościami liczby [math]\displaystyle{ P(n - 1) }[/math].

Pokaż tabelę


Przykłady takich ciągów dla jeszcze większych liczb pierwszych Czytelnik znajdzie na stronie A088430.


Przykład C72
Liczby [math]\displaystyle{ 3, 5, 7 }[/math] są najprostszym przykładem ciągu arytmetycznego kolejnych liczb pierwszych. Zauważmy, że tylko w przypadku [math]\displaystyle{ n = 3 }[/math] możliwa jest sytuacja, że [math]\displaystyle{ n = p_0 = 3 }[/math]. Istotnie, łatwo stwierdzamy, że

  • ponieważ [math]\displaystyle{ p_0 }[/math] i [math]\displaystyle{ p_1 }[/math]kolejnymi liczbami pierwszymi, to [math]\displaystyle{ p_1 - p_0 \lt p_0 }[/math] (zobacz zadanie B22)
  • dla dowolnej liczby pierwszej [math]\displaystyle{ q \geqslant 5 }[/math] jest [math]\displaystyle{ q \lt P (q - 1) }[/math] (zobacz zadanie B26)

Przypuśćmy teraz, że istnieje ciąg arytmetyczny kolejnych liczb pierwszych taki, że [math]\displaystyle{ n = p_0 \geqslant 5 }[/math]. Mamy

[math]\displaystyle{ d = p_1 - p_0 \lt p_0 \lt P (p_0 - 1) = P (n - 1) }[/math]

Zatem [math]\displaystyle{ P(n - 1) \nmid d }[/math], co jest niemożliwe.

Wynika stąd, że poza przypadkiem [math]\displaystyle{ n = p_0 = 3 }[/math] ciąg arytmetyczny kolejnych liczb pierwszych musi spełniać warunek [math]\displaystyle{ P(n) \mid d }[/math], czyli [math]\displaystyle{ P(n) \mid (p_1 - p_0) }[/math].

Poniższe tabele przedstawiają przykładowe ciągi arytmetyczne kolejnych liczb pierwszych o długościach [math]\displaystyle{ n = 3, 4, 5, 6 }[/math] dla rosnących wartości [math]\displaystyle{ p_0 }[/math]. Nie istnieje ciąg arytmetyczny kolejnych liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] dla [math]\displaystyle{ p_0 \lt 10^{13} }[/math]. Prawdopodobnie CPAP-7 pojawią się dopiero dla [math]\displaystyle{ p_0 \sim 10^{20} }[/math].

Znane są ciągi arytmetyczne kolejnych liczb pierwszych o długościach [math]\displaystyle{ n \leqslant 10 }[/math][16].

Pokaż tabele



Zadanie C73
Uzasadnij przypuszczenie, że ciągów arytmetycznych kolejnych liczb pierwszych o długości [math]\displaystyle{ n = 7 }[/math] możemy oczekiwać dopiero dla [math]\displaystyle{ p_0 \sim 10^{20} }[/math].

Rozwiązanie

Zauważmy, że ilość liczb pierwszych nie większych od [math]\displaystyle{ x }[/math] w dobrym przybliżeniu jest określona funkcją [math]\displaystyle{ {\small\frac{x}{\log x}} }[/math]. Ponieważ funkcja [math]\displaystyle{ \log x }[/math] zmienia się bardzo wolno, to odcinki liczb naturalnych o tej samej długości położone w niewielkiej odległości od siebie będą zawierały podobne ilości liczb pierwszych. Przykładowo, dla dużych wartości [math]\displaystyle{ x }[/math], ilość liczb pierwszych w przedziale [math]\displaystyle{ (x, 2 x) }[/math] jest tego samego rzędu, co ilość liczb pierwszych w przedziale [math]\displaystyle{ (1, x) }[/math][17].


Zatem liczbę [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] możemy traktować jako prawdopodobieństwo trafienia na liczbę pierwszą wśród liczb znajdujących się w pobliżu liczby [math]\displaystyle{ x }[/math]. Zakładając, że liczby pierwsze są rozłożone przypadkowo, możemy wyliczyć prawdopodobieństwo tego, że [math]\displaystyle{ n }[/math] kolejnych liczb pierwszych, położonych w pobliżu liczby [math]\displaystyle{ x }[/math], utworzy ciąg arytmetyczny

[math]\displaystyle{ \text{prob}_{\text{cpap}} (n, x) = \left( {\small\frac{1}{\log x}} \right)^n \left( 1 - {\small\frac{1}{\log x}} \right)^{(n - 1) (d - 1)} }[/math]

gdzie [math]\displaystyle{ d = P (n) }[/math]. Jest tak, ponieważ w ciągu kolejnych liczb całkowitych musimy trafić na liczbę pierwszą, następnie na [math]\displaystyle{ d - 1 }[/math] liczb złożonych, taka sytuacja musi się powtórzyć dokładnie [math]\displaystyle{ n - 1 }[/math] razy, a na koniec znowu musimy trafić na liczbę pierwszą. Czyli potrzebujemy [math]\displaystyle{ n }[/math] liczb pierwszych, na które trafiamy z prawdopodobieństwem [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] oraz [math]\displaystyle{ (n - 1) (d - 1) }[/math] liczb złożonych, na które trafiamy z prawdopodobieństwem [math]\displaystyle{ 1 - {\small\frac{1}{\log x}} }[/math], a liczby te muszą pojawiać się w ściśle określonej kolejności.


Ilość ciągów arytmetycznych utworzonych przez [math]\displaystyle{ n }[/math] kolejnych liczb pierwszych należących do przedziału [math]\displaystyle{ (x, 2 x) }[/math] możemy zatem oszacować na równą około

[math]\displaystyle{ Q_{\text{cpap}}(n, x) = x \cdot \left( {\small\frac{1}{\log x}} \right)^n \left( 1 - {\small\frac{1}{\log x}} \right)^{(n - 1) (d - 1)} }[/math]


Porównując powyższe oszacowanie z rzeczywistą ilością [math]\displaystyle{ \# \text{CPAP}(n, x) }[/math] ciągów arytmetycznych kolejnych liczb pierwszych w przedziale [math]\displaystyle{ (x, 2x) }[/math] dostajemy

[math]\displaystyle{ \frac{\# \text{CPAP}(n, x)}{Q_{\text{cpap}} (n, x)} = f (n, x) }[/math]

gdzie w możliwym do zbadania zakresie, czyli dla [math]\displaystyle{ x \lt 2^{42} \approx 4.4 \cdot 10^{12} }[/math] mamy

[math]\displaystyle{ f(n, x) \approx a_n \cdot \log x + b_n }[/math]

Stałe [math]\displaystyle{ a_n }[/math] i [math]\displaystyle{ b_n }[/math] wyznaczamy metodą regresji liniowej. Musimy pamiętać, że uzyskanych w ten sposób wyników nie możemy ekstrapolować dla dowolnie dużych [math]\displaystyle{ x }[/math].

W przypadku [math]\displaystyle{ n = 5 }[/math] oraz [math]\displaystyle{ n = 6 }[/math] dysponowaliśmy zbyt małą liczbą danych, aby wyznaczyć stałe [math]\displaystyle{ a_n }[/math] i [math]\displaystyle{ b_n }[/math] z wystarczającą dokładnością. Dlatego w tych przypadkach ograniczyliśmy się do podania oszacowania funkcji [math]\displaystyle{ f(n, x) }[/math].

Uzyskany wyżej rezultaty są istotne, bo z wyliczonych postaci funkcji [math]\displaystyle{ f(n, x) }[/math] wynika, że są to funkcje bardzo wolno zmienne, a ich ekstrapolacja jest w pełni uprawniona.


W zamieszczonej niżej tabeli mamy kolejno

  • [math]\displaystyle{ n }[/math], czyli długość CPAP
  • wartość iloczynu [math]\displaystyle{ n \cdot P (n) }[/math]
  • znalezioną postać funkcji [math]\displaystyle{ f(n, x) }[/math] lub oszacowanie wartości tej funkcji [math]\displaystyle{ C_n }[/math] na podstawie uzyskanych danych; w przypadku [math]\displaystyle{ n = 7 }[/math] jest to oszacowanie wynikające z obserwacji, że wartości funkcji [math]\displaystyle{ f(n, x) }[/math] są rzędu [math]\displaystyle{ n \cdot P (n) }[/math]
  • wyliczoną wartość [math]\displaystyle{ \frac{\# \text{CPAP}(n, 2^{40})}{Q_{\text{cpap}}(n, 2^{40})} }[/math], czyli [math]\displaystyle{ f(n, 2^{40}) }[/math]
  • wartość funkcji [math]\displaystyle{ f(n, 2^{70}) }[/math] wynikające z ekstrapolacji wzoru [math]\displaystyle{ f(n, x) = a_n \cdot \log x + b_n \qquad }[/math] (dla [math]\displaystyle{ n = 3, 4 }[/math])
  • wartość [math]\displaystyle{ x }[/math] wynikającą z rozwiązania równania
[math]\displaystyle{ \qquad (a_n \cdot \log x + b_n) \cdot Q_{\text{cpap}} (n, x) = 1 \qquad }[/math] (dla [math]\displaystyle{ n = 3, 4 }[/math])
[math]\displaystyle{ \qquad C_n \cdot Q_{\text{cpap}} (n, x) = 1 \qquad }[/math] (dla [math]\displaystyle{ n = 5, 6, 7 }[/math])
  • dla porównania w kolejnych kolumnach zostały podane dwie najmniejsze wartości [math]\displaystyle{ p_0 }[/math] dla CPAP-n

Zauważając, że funkcje [math]\displaystyle{ f(n, x) }[/math] są rzędu [math]\displaystyle{ n \cdot P (n) }[/math] i przyjmując, że podobnie będzie dla [math]\displaystyle{ f(7, x) }[/math], możemy wyliczyć wartość [math]\displaystyle{ x }[/math], dla której może pojawić się pierwszy CPAP-7. Wartość ta jest równa w przybliżeniu [math]\displaystyle{ 2 \cdot 10^{20} }[/math] i wynika z rozwiązania równania

[math]\displaystyle{ f(7, x) \cdot Q_{\text{cpap}}(7, x) = 1 }[/math]

Możemy ją łatwo wyliczyć w PARI/GP. Oczywiście funkcję [math]\displaystyle{ f(7, x) }[/math] zastąpiliśmy jej oszacowaniem [math]\displaystyle{ C_7 = 2500 }[/math]

P(n) = prod(k = 2, n, if( isprime(k), k, 1 ))
Q(x) = 2500 * x * ( 1/log(x) )^7 * ( 1 - 1/log(x) )^( (7 - 1)*(P(7) - 1) )
solve(x = 10^10, 10^23, Q(x) - 1 )



Uzupełnienie

Twierdzenie C74 (lemat Bézouta)
Jeżeli liczby całkowite [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] nie są jednocześnie równe zeru, a największy wspólny dzielnik tych liczb jest równy [math]\displaystyle{ D }[/math], to istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ a x + b y = D }[/math]
Dowód

Niech [math]\displaystyle{ S }[/math] będzie zbiorem wszystkich liczb całkowitych dodatnich postaci [math]\displaystyle{ a n + b m }[/math], gdzie [math]\displaystyle{ n, m }[/math] są dowolnymi liczbami całkowitymi. Zbiór [math]\displaystyle{ S }[/math] nie jest zbiorem pustym, bo przykładowo liczba [math]\displaystyle{ a^2 + b^2 \in S }[/math]. Z zasady dobrego uporządkowania liczb naturalnych wynika, że zbiór [math]\displaystyle{ S }[/math] ma element najmniejszy, oznaczmy go literą [math]\displaystyle{ d }[/math].

Pokażemy, że [math]\displaystyle{ d \mid a }[/math] i [math]\displaystyle{ d \mid b }[/math]. Z twierdzenia o dzieleniu z resztą możemy napisać [math]\displaystyle{ a = k d + r }[/math], gdzie [math]\displaystyle{ 0 \leqslant r \lt d }[/math].

Przypuśćmy, że [math]\displaystyle{ d \nmid a }[/math], czyli że [math]\displaystyle{ r \gt 0 }[/math]. Ponieważ [math]\displaystyle{ d \in S }[/math], to mamy [math]\displaystyle{ d = a u + b v }[/math] dla pewnych liczb całkowitych [math]\displaystyle{ u }[/math] i [math]\displaystyle{ v }[/math]. Zatem

[math]\displaystyle{ r = a - k d = }[/math]
[math]\displaystyle{ \;\;\, = a - k (a u + b v) = }[/math]
[math]\displaystyle{ \;\;\, = a \cdot (1 - k u) + b \cdot (- k v) }[/math]

Wynika stąd, że dodatnia liczba [math]\displaystyle{ r }[/math] należy do zbioru [math]\displaystyle{ S }[/math] oraz [math]\displaystyle{ r \lt d }[/math], wbrew określeniu liczby [math]\displaystyle{ d }[/math], czyli musi być [math]\displaystyle{ r = 0 }[/math] i [math]\displaystyle{ d \mid a }[/math]. Podobnie pokazujemy, że [math]\displaystyle{ d \mid b }[/math].

Jeżeli [math]\displaystyle{ d' }[/math] jest innym dzielnikiem liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math], to [math]\displaystyle{ d' \mid d }[/math], bo [math]\displaystyle{ d' \mid (a u + b v) }[/math]. Zatem [math]\displaystyle{ d' \leqslant d }[/math], skąd wynika natychmiast, że liczba [math]\displaystyle{ d }[/math] jest największym z dzielników, które jednocześnie dzielą liczby [math]\displaystyle{ a }[/math] oraz [math]\displaystyle{ b }[/math]. Czyli [math]\displaystyle{ d = D }[/math].


Twierdzenie C75 (lemat Euklidesa)
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą oraz [math]\displaystyle{ a, b, d \in \mathbb{Z} }[/math].

  • jeżeli [math]\displaystyle{ d \mid a b }[/math] i liczba [math]\displaystyle{ d }[/math] jest względnie pierwsza z [math]\displaystyle{ a }[/math], to [math]\displaystyle{ d \mid b }[/math]
  • jeżeli [math]\displaystyle{ p \mid a b }[/math], to [math]\displaystyle{ p \mid a }[/math] lub [math]\displaystyle{ p \mid b }[/math]
Dowód

Punkt 1.

Z założenia liczby [math]\displaystyle{ d }[/math] i [math]\displaystyle{ a }[/math] są względnie pierwsze, zatem na mocy lematu Bézouta (twierdzenie C74) istnieją takie liczby całkowite [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math], że

[math]\displaystyle{ d x + a y = 1 }[/math]

Mnożąc obie strony równania przez [math]\displaystyle{ b }[/math], dostajemy

[math]\displaystyle{ d b x + a b y = b }[/math]

Obydwa wyrazy po lewej stronie są podzielne przez [math]\displaystyle{ d }[/math], bo z założenia [math]\displaystyle{ d \mid a b }[/math]. Zatem prawa strona również jest podzielna przez [math]\displaystyle{ d }[/math], czyli [math]\displaystyle{ d \mid b }[/math]. Co kończy dowód punktu pierwszego.

Punkt 2.

Jeżeli [math]\displaystyle{ p \nmid a }[/math], to [math]\displaystyle{ \gcd (p, a) = 1 }[/math], zatem z punktu pierwszego wynika, że [math]\displaystyle{ p \mid b }[/math].

Jeżeli [math]\displaystyle{ p \nmid b }[/math], to [math]\displaystyle{ \gcd (p, b) = 1 }[/math], zatem z punktu pierwszego wynika, że [math]\displaystyle{ p \mid a }[/math].

Czyli [math]\displaystyle{ p }[/math] musi dzielić przynajmniej jedną z liczb [math]\displaystyle{ a, b }[/math]. Co należało pokazać.


Twierdzenie C76
Niech [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ a \mid m \; }[/math] i [math]\displaystyle{ \; b \mid m }[/math] oraz [math]\displaystyle{ \gcd (a, b) = 1 }[/math], to [math]\displaystyle{ a b \mid m }[/math].

Dowód

Z założenia istnieją takie liczby [math]\displaystyle{ r, s, x, y \in \mathbb{Z} }[/math], że [math]\displaystyle{ m = a r }[/math] i [math]\displaystyle{ m = b s }[/math] oraz

[math]\displaystyle{ a x + b y = 1 }[/math]

(zobacz C74). Zatem

[math]\displaystyle{ m = m (a x + b y) }[/math]
[math]\displaystyle{ \quad \, = m a x + m b y }[/math]
[math]\displaystyle{ \quad \, = b s a x + a r b y }[/math]
[math]\displaystyle{ \quad \, = a b (s x + r y) }[/math]

Czyli [math]\displaystyle{ a b \mid m }[/math]. Co należało pokazać.


Twierdzenie C77
Niech [math]\displaystyle{ a, b, c \in \mathbb{Z} }[/math]. Równanie [math]\displaystyle{ a x + b y = c }[/math] ma rozwiązanie wtedy i tylko wtedy, gdy największy wspólny dzielnik liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] jest dzielnikiem liczby [math]\displaystyle{ c }[/math].

Dowód

Niech [math]\displaystyle{ D }[/math] oznacza największy wspólny dzielnik liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math].

[math]\displaystyle{ \Longrightarrow }[/math]

Jeżeli liczby całkowite [math]\displaystyle{ x_0 }[/math] i [math]\displaystyle{ y_0 }[/math] są rozwiązaniem rozpatrywanego równania, to

[math]\displaystyle{ a x_0 + b y_0 = c }[/math]

Ponieważ [math]\displaystyle{ D }[/math] dzieli lewą stronę równania, to musi również dzielić prawą, zatem musi być [math]\displaystyle{ D \mid c }[/math].

[math]\displaystyle{ \Longleftarrow }[/math]

Jeżeli [math]\displaystyle{ D \mid c }[/math], to możemy napisać [math]\displaystyle{ c = k D }[/math] i równanie przyjmuje postać

[math]\displaystyle{ a x + b y = k D }[/math]

Lemat Bézouta (twierdzenie C74) zapewnia istnienie liczb całkowitych [math]\displaystyle{ x_0 }[/math] i [math]\displaystyle{ y_0 }[/math] takich, że

[math]\displaystyle{ a x_0 + b y_0 = D }[/math]

Czyli z lematu Bézouta wynika, że równanie [math]\displaystyle{ a x + b y = D }[/math] ma rozwiązanie w liczbach całkowitych. Przekształcając, dostajemy

[math]\displaystyle{ a(k x_0) + b (k y_0) = k D }[/math]

Zatem liczby [math]\displaystyle{ k x_0 }[/math] i [math]\displaystyle{ k y_0 }[/math] są rozwiązaniem równania

[math]\displaystyle{ a x + b y = k D }[/math]

Co oznacza, że równianie [math]\displaystyle{ a x + b y = c }[/math] ma rozwiązanie.


Uwaga C78
Z twierdzenia C77 wynika, że szukając rozwiązań równania [math]\displaystyle{ A x + B y = C }[/math] w liczbach całkowitych, powinniśmy

  • obliczyć największy wspólny dzielnik [math]\displaystyle{ D }[/math] liczb [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math]
  • jeżeli [math]\displaystyle{ D \gt 1 }[/math], należy sprawdzić, czy [math]\displaystyle{ D \mid C }[/math]
  • jeżeli [math]\displaystyle{ D \nmid C }[/math], to równanie [math]\displaystyle{ A x + B y = C }[/math] nie ma rozwiązań w liczbach całkowitych
  • jeżeli [math]\displaystyle{ D \mid C }[/math], należy podzielić obie strony równania [math]\displaystyle{ A x + B y = C }[/math] przez [math]\displaystyle{ D }[/math] i przejść do rozwiązywania równania równoważnego [math]\displaystyle{ a x + b y = c }[/math], gdzie [math]\displaystyle{ a = {\small\frac{A}{D}} }[/math], [math]\displaystyle{ b = {\small\frac{B}{D}} }[/math], [math]\displaystyle{ c = {\small\frac{C}{D}} }[/math], zaś największy wspólny dzielnik liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] jest równy [math]\displaystyle{ 1 }[/math].


Twierdzenie C79
Niech [math]\displaystyle{ a, b, c \in \mathbb{Z} }[/math]. Jeżeli liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, to równanie

[math]\displaystyle{ a x + b y = c }[/math]

ma nieskończenie wiele rozwiązań w liczbach całkowitych.

Jeżeli para liczb całkowitych [math]\displaystyle{ (x_0, y_0) }[/math] jest jednym z tych rozwiązań, to wszystkie pozostałe rozwiązania całkowite można otrzymać ze wzorów

[math]\displaystyle{ x = x_0 + b t }[/math]
[math]\displaystyle{ y = y_0 - a t }[/math]

gdzie [math]\displaystyle{ t }[/math] jest dowolną liczbą całkowitą.

Dowód

Z założenia liczby [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] są względnie pierwsze, zatem największy wspólny dzielnik tych liczb jest równy [math]\displaystyle{ 1 }[/math] i dzieli liczbę [math]\displaystyle{ c }[/math]. Na mocy twierdzenia C77 równanie

[math]\displaystyle{ a x + b y = c }[/math]

ma rozwiązanie w liczbach całkowitych.

Zauważmy, że jeżeli para liczb całkowitych [math]\displaystyle{ (x_0, y_0) }[/math] jest rozwiązaniem równania [math]\displaystyle{ a x + b y = c }[/math], to para liczb [math]\displaystyle{ (x_0 + b t, y_0 - a t) }[/math] również jest rozwiązaniem. Istotnie

[math]\displaystyle{ a(x_0 + b t) + b (y_0 - a t) = a x_0 + a b t + b y_0 - b a t = }[/math]
[math]\displaystyle{ \, = a x_0 + b y_0 = }[/math]
[math]\displaystyle{ \, = c }[/math]

Pokażmy teraz, że nie istnieją inne rozwiązania niż określone wzorami

[math]\displaystyle{ x = x_0 + b t }[/math]
[math]\displaystyle{ y = y_0 - a t }[/math]

gdzie [math]\displaystyle{ t }[/math] jest dowolną liczbą całkowitą.

Przypuśćmy, że pary liczb całkowitych [math]\displaystyle{ (x, y) }[/math] oraz [math]\displaystyle{ (x_0, y_0) }[/math] są rozwiązaniami rozpatrywanego równania, zatem

[math]\displaystyle{ a x + b y = c = a x_0 + b y_0 }[/math]

Wynika stąd, że musi być spełniony warunek

[math]\displaystyle{ a (x - x_0) = b (y_0 - y) }[/math]

Ponieważ liczby [math]\displaystyle{ a \, }[/math] i [math]\displaystyle{ \, b }[/math] są względnie pierwsze, to na mocy lematu Euklidesa (twierdzenie C75) [math]\displaystyle{ b \mid (x - x_0) }[/math]. Skąd mamy

[math]\displaystyle{ x - x_0 = b t }[/math]

gdzie [math]\displaystyle{ t }[/math] jest dowolną liczbą całkowitą. Po podstawieniu dostajemy natychmiast

[math]\displaystyle{ y - y_0 = - a t }[/math]

Co kończy dowód.


Przykład C80
Rozwiązania równania

[math]\displaystyle{ a x + b y = c }[/math]

gdzie [math]\displaystyle{ \gcd (a, b) = 1 }[/math], które omówiliśmy w poprzednim twierdzeniu, najłatwiej znaleźć korzystając w PARI/GP z funkcji gcdext(a, b). Funkcja ta zwraca wektor liczb [x0, y0, d], gdzie [math]\displaystyle{ d = \gcd (a, b) }[/math], a liczby [math]\displaystyle{ x_0 }[/math] i [math]\displaystyle{ y_0 }[/math] są rozwiązaniami równania

[math]\displaystyle{ a x_0 + b y_0 = \gcd (a, b) }[/math]

Ponieważ założyliśmy, że [math]\displaystyle{ \gcd (a, b) = 1 }[/math], to łatwo zauważmy, że

[math]\displaystyle{ a(c x_0) + b (c y_0) = c }[/math]

Zatem para liczb całkowitych [math]\displaystyle{ (c x_0, c y_0) }[/math] jest jednym z rozwiązań równania

[math]\displaystyle{ a x + b y = c }[/math]

i wszystkie pozostałe rozwiązania uzyskujemy ze wzorów

[math]\displaystyle{ x = c x_0 + b t }[/math]
[math]\displaystyle{ y = c y_0 - a t }[/math]

Niech [math]\displaystyle{ a = 7 \; }[/math] i [math]\displaystyle{ \; b = 17 }[/math]. Funkcja gcdext(7,17) zwraca wektor [5, -2, 1], zatem rozwiązaniami równania [math]\displaystyle{ 7 x + 17 y = 1 }[/math] są liczby

[math]\displaystyle{ x = 5 + 17 t }[/math]
[math]\displaystyle{ y = - 2 - 7 t }[/math]

A rozwiązaniami równania [math]\displaystyle{ 7 x + 17 y = 10 }[/math] są liczby

[math]\displaystyle{ x = 50 + 17 t }[/math]
[math]\displaystyle{ y = - 20 - 7 t }[/math]








Przypisy

  1. Korzystamy w tym momencie z zasady dobrego uporządkowania zbioru liczb naturalnych, która stwierdza, że każdy niepusty podzbiór zbioru liczb naturalnych zawiera element najmniejszy. (Wiki-pl), (Wiki-en)
  2. Określenie, że „liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ a k + b }[/math]”, jest jedynie bardziej czytelnym (obrazowym) zapisem stwierdzenia, że reszta z dzielenia liczby [math]\displaystyle{ n }[/math] przez [math]\displaystyle{ a }[/math] wynosi [math]\displaystyle{ b }[/math]. Zapis „liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ a k - 1 }[/math]” oznacza, że reszta z dzielenia liczby [math]\displaystyle{ n }[/math] przez [math]\displaystyle{ a }[/math] wynosi [math]\displaystyle{ a - 1 }[/math].
  3. Wikipedia, Linnik's theorem, (Wiki-en)
  4. MathWorld, Linnik's Theorem. (MathWorld)
  5. Yuri Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Mat. Sb. (N.S.) 15 (1944) 139–178.
  6. Yuri Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Mat. Sb. (N.S.) 15 (1944) 347–368.
  7. Triantafyllos Xylouris, Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression, Bonner Mathematische Schriften, vol. 404, Univ. Bonn, 2011, Diss.
  8. Enrico Bombieri, John B. Friedlander and Henryk Iwaniec, Primes in Arithmetic Progressions to Large Moduli. III, Journal of the American Mathematical Society 2 (1989) 215-224
  9. Paul Turán, Über die Primzahlen der arithmetischen Progression, Acta Sci. Szeged 8 (1937), 226-235
  10. Samuel S. Wagstaff, Jr., Greatest of the Least Primes in Arithmetic Progressions Having a Given Modulus, Mathematics of Computation Vol. 33, No. 147 (1979), 1073-1080
  11. Wikipedia, Primes in arithmetic progression, (Wiki-en)
  12. MathWorld, Prime Arithmetic Progression, (LINK)
  13. J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten, Mathematische Annalen, 116 (1939) 1-50, (LINK)
  14. Wikipedia, Largest known primes in AP, (Wiki-en)
  15. Ben Green and Terence Tao, The Primes Contain Arbitrarily Long Arithmetic Progressions., Ann. of Math. (2) 167 (2008), 481-547, (LINK1), Preprint. 8 Apr 2004, (LINK2)
  16. Wikipedia, Primes in arithmetic progression - Largest known consecutive primes in AP, (Wiki-en)
  17. Henryk Dąbrowski, Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n - Uwagi do twierdzenia, (LINK)