Szeregi liczbowe: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
 
(Nie pokazano 10 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 55: Linia 55:
 
::<math>S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}}  < a_1</math>
 
::<math>S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}}  < a_1</math>
  
Zatem dla każdego <math>m</math> ciąg sum częściowych <math>S_{2 m}</math> jest rosnący i&nbsp;ograniczony od góry, skąd na mocy twierdzenia [[Ciągi liczbowe#C10|C10]] jest zbieżny, czyli
+
Zatem dla każdego <math>m</math> ciąg sum częściowych <math>S_{2 m}</math> jest rosnący i&nbsp;ograniczony od góry, skąd na mocy twierdzenia [[Ciągi liczbowe#C11|C11]] jest zbieżny, czyli
  
 
::<math>\lim_{m \to \infty} S_{2 m} = g</math>
 
::<math>\lim_{m \to \infty} S_{2 m} = g</math>
Linia 201: Linia 201:
  
  
<span id="D11" style="font-size: 110%; font-weight: bold;">Twierdzenie D11</span><br/>
+
<span id="D11" style="font-size: 110%; font-weight: bold;">Definicja D11</span><br/>
 +
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''bezwzględnie zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest zbieżny.
 +
 
 +
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''warunkowo zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest zbieżny, ale szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest rozbieżny.
 +
 
 +
 
 +
 
 +
<span id="D12" style="font-size: 110%; font-weight: bold;">Twierdzenie D12</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w&nbsp;jednej z&nbsp;postaci
 
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w&nbsp;jednej z&nbsp;postaci
  
Linia 239: Linia 246:
  
  
<span id="D12" style="font-size: 110%; font-weight: bold;">Twierdzenie D12</span><br/>
+
<span id="D13" style="font-size: 110%; font-weight: bold;">Twierdzenie D13</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 290: Linia 297:
  
  
<span id="D13" style="font-size: 110%; font-weight: bold;">Twierdzenie D13</span><br/>
+
<span id="D14" style="font-size: 110%; font-weight: bold;">Twierdzenie D14</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 395: Linia 402:
  
  
Rezultat ten wykorzystamy w&nbsp;pełni w&nbsp;przykładzie [[#D14|D14]], a&nbsp;do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy
+
Rezultat ten wykorzystamy w&nbsp;pełni w&nbsp;przykładzie [[#D15|D15]], a&nbsp;do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy
  
 
::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math>
 
::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math>
Linia 409: Linia 416:
  
  
<span id="D14" style="font-size: 110%; font-weight: bold;">Przykład D14</span><br/>
+
<span id="D15" style="font-size: 110%; font-weight: bold;">Przykład D15</span><br/>
 
Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
 
Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
  
Linia 419: Linia 426:
 
Wartość pierwszej części możemy policzyć bezpośrednio, a&nbsp;dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
 
Wartość pierwszej części możemy policzyć bezpośrednio, a&nbsp;dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
  
Dowodząc twierdzenie [[#D13|D13]], w&nbsp;punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
+
Dowodząc twierdzenie [[#D14|D14]], w&nbsp;punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
  
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
Linia 446: Linia 453:
 
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości <math>m</math>. Wystarczy proste polecenie
 
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości <math>m</math>. Wystarczy proste polecenie
  
  for(n=1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print("n= ", n, "  a= ", s+1/log(10^n+1), "  b= ", s+1/log(10^n) ))
+
  <span style="font-size: 90%; color:black;">'''for'''(n = 1, 8, s = '''sum'''( k = 3, 10^n, 1/k/('''log'''(k))^2 ); '''print'''( "n= ", n, "  a= ", s + 1/'''log'''(10^n+1), "  b= ", s + 1/'''log'''(10^n) ))</span>
  
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
Linia 483: Linia 490:
 
== Szeregi nieskończone i&nbsp;całka oznaczona ==
 
== Szeregi nieskończone i&nbsp;całka oznaczona ==
  
<span id="D15" style="font-size: 110%; font-weight: bold;">Twierdzenie D15</span><br/>
+
<span id="D16" style="font-size: 110%; font-weight: bold;">Twierdzenie D16</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
  
Linia 518: Linia 525:
  
  
<span id="D16" style="font-size: 110%; font-weight: bold;">Przykład D16</span><br/>
+
<span id="D17" style="font-size: 110%; font-weight: bold;">Przykład D17</span><br/>
 
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
 
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
  
Linia 542: Linia 549:
  
  
<span id="D17" style="font-size: 110%; font-weight: bold;">Twierdzenie D17 (kryterium całkowe zbieżności szeregów)</span><br/>
+
<span id="D18" style="font-size: 110%; font-weight: bold;">Twierdzenie D18 (kryterium całkowe zbieżności szeregów)</span><br/>
 
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
 
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
  
Linia 555: Linia 562:
  
  
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D15|D15]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
+
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
  
 
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
 
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
Linia 570: Linia 577:
  
  
<span id="D18" style="font-size: 110%; font-weight: bold;">Przykład D18</span><br/>
+
<span id="D19" style="font-size: 110%; font-weight: bold;">Przykład D19</span><br/>
 
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
 
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
  
Linia 603: Linia 610:
  
  
<span id="D19" style="font-size: 110%; font-weight: bold;">Twierdzenie D19</span><br/>
+
<span id="D20" style="font-size: 110%; font-weight: bold;">Twierdzenie D20</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
  
Linia 615: Linia 622:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D15|D15]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
+
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
  
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
Linia 633: Linia 640:
  
  
<span id="D20" style="font-size: 110%; font-weight: bold;">Przykład D20</span><br/>
+
<span id="D21" style="font-size: 110%; font-weight: bold;">Przykład D21</span><br/>
Twierdzenie [[#D19|D19]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
+
Twierdzenie [[#D20|D20]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
  
 
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
 
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
Linia 676: Linia 683:
 
W programie PARI/GP wystarczy napisać:
 
W programie PARI/GP wystarczy napisać:
  
  f(k) = 1.0/(k+1)/sqrt(k)
+
  <span style="font-size: 90%; color:black;">f(k) = 1.0 / (k+1) / '''sqrt'''(k)</span>
  S(m) = sum( k = 1, m, f(k) )
+
  <span style="font-size: 90%; color:black;">S(m) = '''sum'''( k = 1, m, f(k) )</span>
  R(m) = Pi - 2*atan( sqrt(m) )
+
  <span style="font-size: 90%; color:black;">R(m) = '''Pi''' - 2*'''atan'''( '''sqrt'''(m) )</span>
  for(j=1, 9, m=10^j; suma=S(m); reszta=R(m); print( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))
+
  <span style="font-size: 90%; color:black;">'''for'''(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); '''print'''( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))</span>
  
  
  
  
Prostym wnioskiem z&nbsp;twierdzenia [[#D15|D15]] jest następujące<br/>
+
Prostym wnioskiem z&nbsp;twierdzenia [[#D16|D16]] jest następujące<br/>
<span id="D21" style="font-size: 110%; font-weight: bold;">Twierdzenie D21</span><br/>
+
<span id="D22" style="font-size: 110%; font-weight: bold;">Twierdzenie D22</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając ze wzoru z&nbsp;twierdzenia [[#D15|D15]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy  
+
Korzystając ze wzoru z&nbsp;twierdzenia [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy  
  
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
 
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
Linia 711: Linia 718:
  
  
<span id="D22" style="font-size: 110%; font-weight: bold;">Twierdzenie D22</span><br/>
+
<span id="D23" style="font-size: 110%; font-weight: bold;">Twierdzenie D23</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
  
Linia 723: Linia 730:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#D15|D15]] mamy
+
Z twierdzenia [[#D16|D16]] mamy
  
 
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
 
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
Linia 743: Linia 750:
  
  
<span id="D23" style="font-size: 110%; font-weight: bold;">Uwaga D23</span><br/>
+
<span id="D24" style="font-size: 110%; font-weight: bold;">Uwaga D24</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
  
 
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny  
 
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny  
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D22|D22]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
+
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D23|D23]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
  
 
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
 
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
Linia 754: Linia 761:
 
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
 
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
  
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D22|D22]].
+
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D23|D23]].
  
  
  
<span id="D24" style="font-size: 110%; font-weight: bold;">Zadanie D24</span><br/>
+
<span id="D25" style="font-size: 110%; font-weight: bold;">Zadanie D25</span><br/>
Korzystając z&nbsp;twierdzenia [[#D22|D22]], znaleźć oszacowania sumy częściowej szeregów
+
Korzystając z&nbsp;twierdzenia [[#D23|D23]], znaleźć oszacowania sumy częściowej szeregów
  
 
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
 
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
Linia 789: Linia 796:
  
  
<span id="D25" style="font-size: 110%; font-weight: bold;">Zadanie D25</span><br/>
+
<span id="D26" style="font-size: 110%; font-weight: bold;">Zadanie D26</span><br/>
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
  
Linia 815: Linia 822:
  
  
<span id="D26" style="font-size: 110%; font-weight: bold;">Zadanie D26</span><br/>
+
<span id="D27" style="font-size: 110%; font-weight: bold;">Zadanie D27</span><br/>
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
 
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
  
Linia 855: Linia 862:
 
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
 
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
  
<span id="D27" style="font-size: 110%; font-weight: bold;">Twierdzenie D27</span><br/>
+
<span id="D28" style="font-size: 110%; font-weight: bold;">Twierdzenie D28</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 896: Linia 903:
  
  
<span id="D28" style="font-size: 110%; font-weight: bold;">Twierdzenie D28</span><br/>
+
<span id="D29" style="font-size: 110%; font-weight: bold;">Twierdzenie D29</span><br/>
 
Następujące szeregi są zbieżne
 
Następujące szeregi są zbieżne
  
Linia 940: Linia 947:
 
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
 
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
  
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D13|D13]] p. 4 lub przykład [[#D18|D18]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
+
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D14|D14]] p. 4 lub przykład [[#D19|D19]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
  
 
'''Punkt 2.'''<br/>
 
'''Punkt 2.'''<br/>
Linia 961: Linia 968:
  
  
<span id="D29" style="font-size: 110%; font-weight: bold;">Twierdzenie D29</span><br/>
+
<span id="D30" style="font-size: 110%; font-weight: bold;">Twierdzenie D30</span><br/>
 
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
 
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
  
Linia 979: Linia 986:
  
  
<span id="D30" style="font-size: 110%; font-weight: bold;">Uwaga D30</span><br/>
+
<span id="D31" style="font-size: 110%; font-weight: bold;">Uwaga D31</span><br/>
 
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
 
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
  
  
  
<span id="D31" style="font-size: 110%; font-weight: bold;">Twierdzenie D31</span><br/>
+
<span id="D32" style="font-size: 110%; font-weight: bold;">Twierdzenie D32</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
 
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
  
Linia 1036: Linia 1043:
  
  
<span id="D32" style="font-size: 110%; font-weight: bold;">Twierdzenie D32</span><br/>
+
<span id="D33" style="font-size: 110%; font-weight: bold;">Twierdzenie D33</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
  
Linia 1085: Linia 1092:
  
  
<span id="D33" style="font-size: 110%; font-weight: bold;">Twierdzenie D33</span><br/>
+
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1095: Linia 1102:
 
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
 
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
  
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D31|D31]]), to
+
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D32|D32]]), to
  
 
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
 
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
Linia 1109: Linia 1116:
  
  
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
<span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1120: Linia 1127:
  
  
to z&nbsp;twierdzenia [[#D33|D33]] dostajemy
+
to z&nbsp;twierdzenia [[#D34|D34]] dostajemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
Linia 1134: Linia 1141:
 
::::::<math>\quad \;\: > - 1.755367</math>
 
::::::<math>\quad \;\: > - 1.755367</math>
  
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D28|D28]] p. 3).<br/>
+
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D29|D29]] p. 3).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1140: Linia 1147:
  
  
<span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
<span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1185: Linia 1192:
  
  
<span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36</span><br/>
+
<span id="D37" style="font-size: 110%; font-weight: bold;">Twierdzenie D37</span><br/>
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
Linia 1195: Linia 1202:
 
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
 
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
  
to z&nbsp;twierdzenia [[#D35|D35]] dostajemy
+
to z&nbsp;twierdzenia [[#D36|D36]] dostajemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
Linia 1213: Linia 1220:
  
  
<span id="D37" style="font-size: 110%; font-weight: bold;">Uwaga D37</span><br/>
+
<span id="D38" style="font-size: 110%; font-weight: bold;">Uwaga D38</span><br/>
 
{| class="wikitable"
 
{| class="wikitable"
 
|
 
|
Linia 1230: Linia 1237:
  
  
<span id="D38" style="font-size: 110%; font-weight: bold;">Uwaga D38</span><br/>
+
<span id="D39" style="font-size: 110%; font-weight: bold;">Uwaga D39</span><br/>
 
{| class="wikitable"
 
{| class="wikitable"
 
|
 
|
Linia 1247: Linia 1254:
  
  
<span id="D39" style="font-size: 110%; font-weight: bold;">Uwaga D39</span><br/>
+
<span id="D40" style="font-size: 110%; font-weight: bold;">Uwaga D40</span><br/>
 
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
 
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
  
Linia 1258: Linia 1265:
  
  
<span id="D40" style="font-size: 110%; font-weight: bold;">Twierdzenie D40</span><br/>
+
<span id="D41" style="font-size: 110%; font-weight: bold;">Twierdzenie D41</span><br/>
 
Prawdziwy jest następujący związek
 
Prawdziwy jest następujący związek
  
Linia 1299: Linia 1306:
  
  
<span id="D41" style="font-size: 110%; font-weight: bold;">Twierdzenie D41</span><br/>
+
<span id="D42" style="font-size: 110%; font-weight: bold;">Twierdzenie D42</span><br/>
 
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
 
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
  
Linia 1336: Linia 1343:
  
  
Z twierdzenia [[#D40|D40]] wiemy, że
+
Z twierdzenia [[#D41|D41]] wiemy, że
  
 
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
 
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
Linia 1377: Linia 1384:
  
  
Korzystając kolejno z&nbsp;twierdzeń [[#D15|D15]] i&nbsp;[[Ciągi liczbowe#C18|C18]], dostajemy
+
Korzystając kolejno z&nbsp;twierdzeń [[#D16|D16]] i&nbsp;[[Ciągi liczbowe#C18|C18]], dostajemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
Linia 1400: Linia 1407:
  
  
<span id="D42" style="font-size: 110%; font-weight: bold;">Zadanie D42</span><br/>
+
<span id="D43" style="font-size: 110%; font-weight: bold;">Zadanie D43</span><br/>
 
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
 
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
  
Linia 1408: Linia 1415:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia [[#D41|D41]] wiemy, że dla <math>x \geqslant 318</math> jest
+
Z twierdzenia [[#D42|D42]] wiemy, że dla <math>x \geqslant 318</math> jest
  
 
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
 
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
Linia 1419: Linia 1426:
  
  
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D32|D32]], łatwo znajdujemy oszacowanie
+
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D33|D33]], łatwo znajdujemy oszacowanie
  
 
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
 
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
Linia 1449: Linia 1456:
  
  
Jednocześnie z&nbsp;twierdzenia [[#D31|D31]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
+
Jednocześnie z&nbsp;twierdzenia [[#D32|D32]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
  
 
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
 
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
Linia 1496: Linia 1503:
  
  
<span id="D43" style="font-size: 110%; font-weight: bold;">Definicja D43</span><br/>
+
<span id="D44" style="font-size: 110%; font-weight: bold;">Definicja D44</span><br/>
 
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
 
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
  
  
  
<span id="D44" style="font-size: 110%; font-weight: bold;">Twierdzenie D44* (Viggo Brun, 1919)</span><br/>
+
<span id="D45" style="font-size: 110%; font-weight: bold;">Twierdzenie D45* (Viggo Brun, 1919)</span><br/>
 
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
 
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
  
Linia 1511: Linia 1518:
  
  
<span id="D45" style="font-size: 110%; font-weight: bold;">Zadanie D45</span><br/>
+
<span id="D46" style="font-size: 110%; font-weight: bold;">Zadanie D46</span><br/>
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
 
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
  
Linia 1539: Linia 1546:
 
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}}</math> ==
 
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}}</math> ==
  
<span id="D46" style="font-size: 110%; font-weight: bold;">Twierdzenie D46</span><br/>
+
<span id="D47" style="font-size: 110%; font-weight: bold;">Twierdzenie D47</span><br/>
 
Suma odwrotności liczb pierwszych jest rozbieżna.
 
Suma odwrotności liczb pierwszych jest rozbieżna.
  
Linia 1556: Linia 1563:
 
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_Q</math> takich, że <math>k \leqslant M</math></span><br/>
 
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_Q</math> takich, że <math>k \leqslant M</math></span><br/>
  
Zauważmy, że liczb nie większych od <math>M</math> i&nbsp;podzielnych przez liczbę pierwszą <math>p</math> jest dokładnie <math>\left\lfloor {\small\frac{M}{p}} \right\rfloor</math> (zobacz [[Twierdzenie Czebyszewa o funkcji π(n)#A19|A19]]). Łatwo otrzymujemy oszacowanie<sup>[a]</sup>
+
Zauważmy, że liczb nie większych od <math>M</math> i&nbsp;podzielnych przez liczbę pierwszą <math>p</math> jest dokładnie <math>\left\lfloor {\small\frac{M}{p}} \right\rfloor</math> (zobacz [[Twierdzenie Czebyszewa o funkcji π(n)#A19|A19]]). Łatwo otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
  
 
::<math>\sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor < M \cdot \sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}} M</math>
 
::<math>\sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor < M \cdot \sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}} M</math>
  
bo z&nbsp;założenia <math>\sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}}</math>. Zatem liczb takich, że <math>k \in \mathbb{Z}_Q</math> i <math>k \leqslant M</math> jest mniej niż <math>{\small\frac{M}{2}}</math>.
+
bo z&nbsp;założenia <math>\sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}}</math>. Zatem liczb takich, że <math>k \in \mathbb{Z}_Q \,</math> i <math>\, k \leqslant M</math> jest mniej niż <math>{\small\frac{M}{2}}</math>.
  
 
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math></span><br/>
 
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math></span><br/>
Linia 1568: Linia 1575:
 
::<math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r)</math>
 
::<math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r)</math>
  
Ponieważ <math>\delta_i</math> może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci <math>p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r</math> jest dokładnie <math>2^r</math>, a&nbsp;kwadratów liczb całkowitych nie większych od <math>M</math> jest dokładnie <math>\left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M}</math>. Zatem liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math> jest nie więcej niż <math>2^r \sqrt{M} \,</math><sup>[b]</sup>.
+
Ponieważ <math>\delta_i</math> może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci <math>p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r</math> jest dokładnie <math>2^r</math>, a&nbsp;kwadratów liczb całkowitych nie większych od <math>M</math> jest dokładnie <math>\left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M}</math>. Zatem liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math> jest nie więcej niż <math>2^r \sqrt{M} \,</math><span style="color: Green"><sup>[b]</sup></span>.
  
  
Linia 1584: Linia 1591:
  
 
<hr style="width: 25%; height: 2px; " />
 
<hr style="width: 25%; height: 2px; " />
[a] Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb <math>k</math>. Dla przykładu: gdy <math>M > p_{r + 1} p_{r + 2}</math>, to liczba <math>p_{r + 1} p_{r + 2}</math> zostanie policzona dwukrotnie: raz jako podzielna przez <math>p_{r + 1}</math> i&nbsp;drugi raz jako podzielna przez <math>p_{r + 2}</math>. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.
+
<span style="color: Green">[a]</span> Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb <math>k</math>. Dla przykładu: gdy <math>M > p_{r + 1} p_{r + 2}</math>, to liczba <math>p_{r + 1} p_{r + 2}</math> zostanie policzona dwukrotnie: raz jako podzielna przez <math>p_{r + 1}</math> i&nbsp;drugi raz jako podzielna przez <math>p_{r + 2}</math>. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.
  
[b] Zauważmy, że dla <math>M > 8</math> liczba <math>a^2</math> taka, że <math>a^2 \leqslant M < (a + 1)^2</math> wystąpi dokładnie jeden raz (jako <math>a^2 \cdot 1</math>), ale my oszacujemy, że pojawiła się <math>2^r</math> razy. Można pokazać, że dla dowolnych <math>r \geqslant 1 \;</math> i <math>\; M \geqslant 1</math>, liczb <math>k \in \boldsymbol{P}</math> takich, że <math>k \leqslant M</math>, jest mniej niż <math>2^r \sqrt{M}</math>. Jest ich nawet mniej niż <math>2^r \left\lfloor \sqrt{M} \right\rfloor</math>, poza przypadkami <math>r = 1 \;</math> i <math>\; M = 2, 3, 8</math>, kiedy to ilość takich liczb jest równa <math>2^r \left\lfloor \sqrt{M} \right\rfloor < 2^r \sqrt{M}</math>.<br/>
+
<span style="color: Green">[b]</span> Zauważmy, że dla <math>M > 8</math> liczba <math>a^2</math> taka, że <math>a^2 \leqslant M < (a + 1)^2</math> wystąpi dokładnie jeden raz (jako <math>a^2 \cdot 1</math>), ale my oszacujemy, że pojawiła się <math>2^r</math> razy. Można pokazać, że dla dowolnych <math>r \geqslant 1 \;</math> i <math>\; M \geqslant 1</math>, liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math>, jest mniej niż <math>2^r \sqrt{M}</math>. Jest ich nawet mniej niż <math>2^r \left\lfloor \sqrt{M} \right\rfloor</math>, poza przypadkami <math>r = 1 \;</math> i <math>\; M = 2, 3, 8</math>, kiedy to ilość takich liczb jest równa <math>2^r \left\lfloor \sqrt{M} \right\rfloor < 2^r \sqrt{M}</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1596: Linia 1603:
 
== Sumowanie przez części ==
 
== Sumowanie przez części ==
  
<span id="D47" style="font-size: 110%; font-weight: bold;">Uwaga D47</span><br/>
+
<span id="D48" style="font-size: 110%; font-weight: bold;">Uwaga D48</span><br/>
 
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
 
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
  
Linia 1618: Linia 1625:
  
  
<span id="D48" style="font-size: 110%; font-weight: bold;">Twierdzenie D48</span><br/>
+
<span id="D49" style="font-size: 110%; font-weight: bold;">Twierdzenie D49</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
 
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
  
Linia 1652: Linia 1659:
  
  
<span id="D49" style="font-size: 110%; font-weight: bold;">Zadanie D49</span><br/>
+
<span id="D50" style="font-size: 110%; font-weight: bold;">Zadanie D50</span><br/>
 
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
 
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia [[#D48|D48]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
+
Z twierdzenia [[#D49|D49]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
Linia 1674: Linia 1681:
 
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
 
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
  
Korzystając z&nbsp;twierdzenia [[#D15|D15]], otrzymujemy
+
Korzystając z&nbsp;twierdzenia [[#D16|D16]], otrzymujemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
Linia 1690: Linia 1697:
  
  
<span id="D50" style="font-size: 110%; font-weight: bold;">Zadanie D50</span><br/>
+
<span id="D51" style="font-size: 110%; font-weight: bold;">Zadanie D51</span><br/>
 
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
 
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D48|D48]])
+
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D49|D49]])
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
Linia 1716: Linia 1723:
 
:::<math>\quad \; = C_3</math>
 
:::<math>\quad \; = C_3</math>
  
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D46|D46]], [[#D49|D49]]).<br/>
+
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D47|D47]], [[#D50|D50]]).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1722: Linia 1729:
  
  
<span id="D51" style="font-size: 110%; font-weight: bold;">Twierdzenie D51 (sumowanie przez części)</span><br/>
+
<span id="D52" style="font-size: 110%; font-weight: bold;">Twierdzenie D52 (sumowanie przez części)</span><br/>
 
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
 
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
  
Linia 1769: Linia 1776:
  
  
<span id="D52" style="font-size: 110%; font-weight: bold;">Zadanie D52</span><br/>
+
<span id="D53" style="font-size: 110%; font-weight: bold;">Zadanie D53</span><br/>
Pokazać, że <math>\sum_{k = 1}^{n} k 2^k = (n - 1) 2^{n + 1} + 2</math>.
+
Niech <math>r \neq 1</math>. Pokazać, że <math>\sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
We wzorze na sumowanie przez części połóżmy <math>s = 0</math>, <math>a_k = k</math> i <math>b_k = 2^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
+
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k \;</math> i <math>\; b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
  
::<math>\sum_{k = 0}^{n} k 2^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
+
::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
  
 
gdzie
 
gdzie
  
::<math>B(k) = \sum_{j = 0}^{k} 2^j = {\small\frac{2^{k + 1} - 1}{2 - 1}} = 2^{k + 1} - 1</math>
+
::<math>B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
  
 
Zatem
 
Zatem
  
::<math>\sum_{k = 0}^{n} k 2^k = n \cdot (2^{n + 1} - 1) - \sum_{k = 0}^{n - 1} (2^{k + 1} - 1)</math>
+
::<math>\sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
  
::::<math>\;\: = n 2^{n + 1} - n - \sum_{k = 0}^{n - 1} 2^{k + 1} + \sum_{k = 0}^{n - 1} 1</math>
+
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right)</math>
  
::::<math>\;\: = n 2^{n + 1} - n - 2 \sum_{k = 0}^{n - 1} 2^k + n</math>
+
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right)</math>
 +
 
 +
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right)</math>
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
::::<math>\;\: = n 2^{n + 1} - 2 \cdot {\small\frac{2^n - 1}{2 - 1}}</math>
+
::::<math>\;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r)</math>
 
</div>
 
</div>
  
<div style="margin-top: 1.5em; margin-bottom: 1.5em;">
+
<div style="margin-top: 1em; margin-bottom: 1em;">
::::<math>\;\: = n 2^{n + 1} - 2^{n + 1} + 2</math>
+
::::<math>\;\, = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>
</div>
 
 
 
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 
::::<math>\;\: = 2^{n + 1} (n - 1) + 2</math>
 
 
</div>
 
</div>
  
Linia 1807: Linia 1812:
  
  
<span id="D53" style="font-size: 110%; font-weight: bold;">Twierdzenie D53 (kryterium Dirichleta)</span><br/>
+
<span id="D54" style="font-size: 110%; font-weight: bold;">Twierdzenie D54 (kryterium Dirichleta)</span><br/>
 
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
 
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
  
Linia 1837: Linia 1842:
 
::::::::<math>\;\;\; = M (a_1 - a_n)</math>
 
::::::::<math>\;\;\; = M (a_1 - a_n)</math>
  
(zobacz [[#D11|D11]]). Jeżeli ciąg <math>(a_k)</math> jest rosnący, to
+
(zobacz [[#D12|D12]]). Jeżeli ciąg <math>(a_k)</math> jest rosnący, to
  
 
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math>
 
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math>
Linia 1845: Linia 1850:
 
::::::::<math>\;\;\; = - M (a_1 - a_n)</math>
 
::::::::<math>\;\;\; = - M (a_1 - a_n)</math>
  
Łącząc uzyskane rezultaty możemy napisać
+
Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg <math>(a_n)</math> jest ograniczony, bo jest zbieżny (zobacz [[Ciągi liczbowe#C9|C9]]), możemy napisać
  
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M | a_1 |</math>
+
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U</math>
  
Sumy częściowe szeregu <math>\sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) |</math> tworzą ciąg rosnący i&nbsp;ograniczony od góry, czyli szereg ten jest zbieżny (zobacz [[Ciągi liczbowe#C10|C10]]). Wynika stąd zbieżność szeregu <math>\sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k)</math> (zobacz [[#D10|D10]]). Zatem szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> musi być zbieżny. Co należało pokazać.<br/>
+
Ponieważ sumy częściowe szeregu <math>\sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) |</math> tworzą ciąg rosnący i&nbsp;ograniczony od góry, to szereg ten jest zbieżny (zobacz [[Ciągi liczbowe#C10|C10]]). Wynika stąd zbieżność szeregu <math>\sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k)</math> (zobacz [[#D10|D10]]). Zatem szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> musi być zbieżny. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1855: Linia 1860:
  
  
<span id="D54" style="font-size: 110%; font-weight: bold;">Zadanie D54</span><br/>
+
<span id="D55" style="font-size: 110%; font-weight: bold;">Zadanie D55</span><br/>
 
Udowodnić następujące wzory
 
Udowodnić następujące wzory
  
Linia 1923: Linia 1928:
  
  
<span id="D55" style="font-size: 110%; font-weight: bold;">Zadanie D55</span><br/>
+
<span id="D56" style="font-size: 110%; font-weight: bold;">Zadanie D56</span><br/>
 
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
 
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W zadaniu [[#D54|D54]] p.1 pokazaliśmy, że prawdziwy jest wzór
+
W zadaniu [[#D55|D55]] p.1 pokazaliśmy, że prawdziwy jest wzór
  
 
::<math>\sum_{j = 1}^{k} \sin j =  
 
::<math>\sum_{j = 1}^{k} \sin j =  
Linia 1933: Linia 1938:
 
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}}</math>
 
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}}</math>
  
Skąd natychmiast otrzymujemy oszacowanie<sup>[a]</sup>
+
Skąd natychmiast otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
  
 
::<math>\left| \sum_{j = 1}^{k} \sin j \right| =  
 
::<math>\left| \sum_{j = 1}^{k} \sin j \right| =  
Linia 1943: Linia 1948:
  
 
<hr style="width: 25%; height: 2px; " />
 
<hr style="width: 25%; height: 2px; " />
[a] Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie
+
<span style="color: Green">[a]</span> Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie
  
 
::<math>- 0.127671 < {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} < 1.958159</math><br/>
 
::<math>- 0.127671 < {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} < 1.958159</math><br/>
Linia 1951: Linia 1956:
  
  
<span id="D56" style="font-size: 110%; font-weight: bold;">Zadanie D56</span><br/>
+
<span id="D57" style="font-size: 110%; font-weight: bold;">Zadanie D57</span><br/>
 
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
 
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
  
Linia 1959: Linia 1964:
 
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
 
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
  
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D54|D54]] p.1, otrzymujemy
+
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D55|D55]] p.1, otrzymujemy
  
 
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
Linia 1981: Linia 1986:
 
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
  
Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[#D11|D11]]). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum
+
Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[#D12|D12]]). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum
  
 
::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
Linia 1998: Linia 2003:
 
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
  
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D54|D54]] p.2, otrzymujemy
+
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D55|D55]] p.2, otrzymujemy
  
 
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
 
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
Linia 2051: Linia 2056:
 
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) |</math>
 
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) |</math>
  
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right|</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz przypis [a])
+
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right|</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz przypis <span style="color: Green">[a]</span>)
  
 
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right]</math>
 
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right]</math>
Linia 2065: Linia 2070:
  
 
<hr style="width: 25%; height: 2px; " />
 
<hr style="width: 25%; height: 2px; " />
[a] Z&nbsp;łatwego do sprawdzenia wzoru
+
<span style="color: Green">[a]</span> Z&nbsp;łatwego do sprawdzenia wzoru
  
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}}</math>
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}}</math>
Linia 2073: Linia 2078:
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} > {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}}</math>
 
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} > {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}}</math>
  
Ciągi <math>(a_k)_{k = 1}^n</math> liczb rzeczywistych takie, że <math>2 a_k \leqslant a_{k - 1} + a_{k + 1}</math> dla <math>k = 2, \ldots, n - 1</math> nazywamy ciągami wypukłymi<ref name="convexseq1"/>. Wprost z definicji funkcji wypukłej wynika, że jeżeli <math>f(x)</math> jest funkcją wypukłą i <math>a_k = f (k)</math>, to ciąg <math>(a_k)</math> jest ciągiem wypukłym.<br/>
+
Ciągi <math>(a_k)_{k = 1}^n</math> liczb rzeczywistych takie, że <math>2 a_k \leqslant a_{k - 1} + a_{k + 1}</math> dla <math>k = 2, \ldots, n - 1</math> nazywamy ciągami wypukłymi<ref name="convexseq1"/>. Wprost z&nbsp;definicji funkcji wypukłej wynika, że jeżeli <math>f(x)</math> jest funkcją wypukłą i <math>a_k = f (k)</math>, to ciąg <math>(a_k)</math> jest ciągiem wypukłym.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2079: Linia 2084:
  
  
<span id="D57" style="font-size: 110%; font-weight: bold;">Zadanie D57</span><br/>
+
<span id="D58" style="font-size: 110%; font-weight: bold;">Zadanie D58</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
  
Linia 2105: Linia 2110:
  
  
<span id="D58" style="font-size: 110%; font-weight: bold;">Twierdzenie D58</span><br/>
+
<span id="D59" style="font-size: 110%; font-weight: bold;">Twierdzenie D59</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
  
Linia 2123: Linia 2128:
 
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
 
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
  
(zobacz [[#D57|D57]]) otrzymujemy
+
(zobacz [[#D58|D58]]) otrzymujemy
  
 
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
 
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
Linia 2173: Linia 2178:
  
  
<span id="D59" style="font-size: 110%; font-weight: bold;">Uwaga D59</span><br/>
+
<span id="D60" style="font-size: 110%; font-weight: bold;">Uwaga D60</span><br/>
 
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
 
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
  
 
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
 
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
  
Z twierdzenia [[#D58|D58]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C12|C12]] p.3).
+
Z twierdzenia [[#D59|D59]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C12|C12]] p.3).
  
 
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
 
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
Linia 2186: Linia 2191:
  
  
<span id="D60" style="font-size: 110%; font-weight: bold;">Zadanie D60</span><br/>
+
<span id="D61" style="font-size: 110%; font-weight: bold;">Zadanie D61</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
  
Linia 2192: Linia 2197:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Kładąc we wzorze na sumowanie przez części (zobacz [[#D51|D51]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
+
Kładąc we wzorze na sumowanie przez części (zobacz [[#D52|D52]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
  
 
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
 
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
Linia 2218: Linia 2223:
  
  
 +
== Iloczyn Cauchy'ego szeregów ==
  
 +
<span id="D62" style="font-size: 110%; font-weight: bold;">Twierdzenie D62 (kryterium d'Alemberta)</span><br/>
 +
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i&nbsp;istnieje granica
  
 +
::<math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right|</math>
  
 +
Jeżeli
 +
:*&nbsp;&nbsp;&nbsp;<math>g < 1</math>, to szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest bezwzględnie zbieżny
  
 +
:*&nbsp;&nbsp;&nbsp;<math>g > 1</math>, to szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest rozbieżny
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Rozważmy najpierw przypadek, gdy <math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| < 1</math>. Niech <math>r</math> będzie dowolną liczbą rzeczywistą taką, że <math>g < r < 1</math> i&nbsp;przyjmijmy <math>\varepsilon = r - g</math>. Z&nbsp;definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu <math>\left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right)</math> spełniają warunek
  
 +
::<math>- \varepsilon < \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g < \varepsilon</math>
  
 +
Możemy przyjąć, że są to wszystkie wyrazy, poczynając od <math>N</math>. Z&nbsp;prawej nierówności otrzymujemy, że dla <math>n \geqslant N</math> jest
  
 +
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| < r</math>
  
 +
::<math>| a_{n + 1} | < r | a_n |</math>
  
 +
::<math>| a_{n + k} | < r^k | a_n |</math>
  
 +
Ostatnią nierówność można łatwo udowodnić metodą indukcji matematycznej względem <math>k</math>. Korzystając ze wzoru na sumę szeregu geometrycznego<ref name="GeometricSeries1"/>, otrzymujemy
  
== Przypisy ==
+
::<math>\sum_{k = N + 1}^{\infty} | a_k | = \sum_{k = 1}^{\infty} | a_{N + k} | < \sum_{k = 1}^{\infty} r^k | a_n | = r | a_n | \sum_{k = 1}^{\infty} r^{k - 1} = | a_n | \cdot {\small\frac{r}{1 - r}}</math>
<references>
 
  
<ref name="DirichletEta">Wikipedia, ''Funkcja η'', ([https://pl.wikipedia.org/wiki/Funkcja_%CE%B7 Wiki-pl]), ([https://en.wikipedia.org/wiki/Dirichlet_eta_function Wiki-en])</ref>
+
Zatem szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest bezwzględnie zbieżny.
  
<ref name="RiemannZeta">Wikipedia, ''Funkcja dzeta Riemanna'', ([https://pl.wikipedia.org/wiki/Funkcja_dzeta_Riemanna Wiki-pl]), ([https://en.wikipedia.org/wiki/Riemann_zeta_function Wiki-en])</ref>
 
  
<ref name="calkowalnosc1">Twierdzenie: funkcja ciągła w&nbsp;przedziale domkniętym jest całkowalna w&nbsp;tym przedziale.</ref>
+
W przypadku, gdy <math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| > 1</math> wybieramy liczbę <math>r</math> tak, aby spełniała warunek <math>1 < r < g</math> i&nbsp;przyjmujemy <math>\varepsilon = g - r</math>. Z&nbsp;definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu <math>\left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right)</math> spełniają warunek
  
<ref name="calkowalnosc2">W szczególności: funkcja ograniczona i&nbsp;mająca skończoną liczbę punktów nieciągłości w&nbsp;przedziale domkniętym jest w&nbsp;tym przedziale całkowalna.</ref>
+
::<math>- \varepsilon < \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g < \varepsilon</math>
  
<ref name="Mertens1">Wikipedia, ''Twierdzenia Mertensa'', ([https://pl.wikipedia.org/wiki/Twierdzenia_Mertensa Wiki-pl]), ([https://en.wikipedia.org/wiki/Mertens%27_theorems Wiki-en])</ref>
+
Przyjmując, że są to wszystkie wyrazy, poczynając od <math>N</math>, z&nbsp;lewej nierówności otrzymujemy dla <math>n \geqslant N</math>
  
<ref name="Mertens2">Wikipedia, ''Franciszek Mertens'', ([https://pl.wikipedia.org/wiki/Franciszek_Mertens Wiki-pl])</ref>
+
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| > r > 1</math>
  
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
+
Czyli <math>| a_{n + 1} | > | a_n |</math>, zatem dla wszystkich <math>k > N</math> jest <math>| a_k | > | a_N | > 0</math> i&nbsp;nie może być spełniony podstawowy warunek zbieżności szeregu (zobacz [[#D4|D4]]). Zatem szereg jest rozbieżny. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<ref name="twierdzenie">Zobacz twierdzenie [[#D41|D41]].</ref>
 
  
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>
 
  
<ref name="A083343">The On-Line Encyclopedia of Integer Sequences, ''A083343 - Decimal expansion of constant&#32;B3 (or B_3) related to the Mertens constant'', ([https://oeis.org/A083343 A083343])</ref>
+
<span id="C62" style="font-size: 110%; font-weight: bold;">Uwaga C62</span><br/>
 +
W przypadku, gdy <math>\lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1</math> kryterium d'Alemberta nie rozstrzyga o&nbsp;zbieżności lub rozbieżności szeregu <math>\sum_{n = 0}^{\infty} a_n</math>. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
  
<ref name="A138312">The On-Line Encyclopedia of Integer Sequences, ''A138312 - Decimal expansion of Mertens's constant minus Euler's constant'', ([https://oeis.org/A138312 A138312])</ref>
+
::<math>\sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}}</math>
  
<ref name="Dusart10">Pierre Dusart, ''Estimates of Some Functions Over Primes without R.H.'', 2010, ([https://arxiv.org/abs/1002.0442 LINK])</ref>
 
  
<ref name="Wiki1">Wikipedia, ''Stałe Bruna'', ([https://pl.wikipedia.org/wiki/Sta%C5%82e_Bruna Wiki-pl]), ([https://en.wikipedia.org/wiki/Brun%27s_theorem Wiki-en])</ref>
 
  
<ref name="A065421">The On-Line Encyclopedia of Integer Sequences, ''A065421 - Decimal expansion of Viggo Brun's constant B'', ([https://oeis.org/A065421 A065421])</ref>
+
<span id="D64" style="font-size: 110%; font-weight: bold;">Przykład D64</span><br/>
 +
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu
  
<ref name="Erdos1">Paul Erdős, ''Über die Reihe'' <math>\textstyle \sum {\small\frac{1}{p}}</math>, Mathematica, Zutphen B 7, 1938, 1-2.</ref>
+
::<math>e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
  
<ref name="sumowanie1">sumowanie przez części (ang. ''summation by parts'')</ref>
+
Ponieważ
  
<ref name="convexseq1">ciąg wypukły (ang. ''convex sequence'')</ref>
+
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0</math>
 +
 
 +
to z&nbsp;kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.
 +
 
 +
 
 +
 
 +
<span id="D65" style="font-size: 110%; font-weight: bold;">Zadanie D65</span><br/>
 +
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Łatwo znajdujemy, że
 +
 
 +
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| = {\small\frac{(n + 1)^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{n^n}} = {\small\frac{(n + 1) (n + 1)^n}{(n + 1) n!}} \cdot {\small\frac{n!}{n^n}} = \left( 1 + {\small\frac{1}{n}} \right)^n \xrightarrow{\; n \rightarrow \infty \;} e > 1</math>
 +
 
 +
Z kryterium d'Alemberta wynika, że szereg jest rozbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D66" style="font-size: 110%; font-weight: bold;">Uwaga D66</span><br/>
 +
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A37|A37]], korzystając z&nbsp;następującej definicji funkcji <math>e^x</math>
 +
 
 +
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
 +
 
 +
pominęliśmy dowód własności <math>e^x e^{- x} = 1</math>. Spróbujemy teraz pokazać, że <math>e^x e^y = e^{x + y}</math>.
 +
 
 +
::<math>e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}</math>
 +
 
 +
Oznaczmy <math>a_i = {\small\frac{x^i}{i!}}</math> oraz <math>b_j = {\small\frac{y^j}{j!}}</math> i&nbsp;przyjrzyjmy się sumowaniu po <math>i, j</math>. W&nbsp;podwójnej sumie po prawej stronie <math>\sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j</math> sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku
 +
 
 +
::{| class="wikitable"  style="text-align:center;"
 +
|- style="background-color: LightGray"
 +
| <math> a_6 b_0 </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math> \cdots </math>
 +
|- style="background-color: Violet"
 +
| <math> a_5 b_0 </math> || <math> a_5 b_1 </math> || <math> a_5 b_2 </math> || <math> a_5 b_3 </math> || <math> a_5 b_4 </math> || <math> a_5 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Cyan"
 +
| <math> a_4 b_0 </math> || <math> a_4 b_1 </math> || <math> a_4 b_2 </math> || <math> a_4 b_3 </math> || <math> a_4 b_4 </math> || <math> a_4 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Green"
 +
| <math> a_3 b_0 </math> || <math> a_3 b_1 </math> || <math> a_3 b_2 </math> || <math> a_3 b_3 </math> || <math> a_3 b_4 </math> || <math> a_3 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Yellow"
 +
| <math> a_2 b_0 </math> || <math> a_2 b_1 </math> || <math> a_2 b_2 </math> || <math> a_2 b_3 </math> || <math> a_2 b_4 </math> || <math> a_2 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Orange"
 +
| <math> a_1 b_0 </math> || <math> a_1 b_1 </math> || <math> a_1 b_2 </math> || <math> a_1 b_3 </math> || <math> a_1 b_4 </math> || <math> a_1 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Red"
 +
| <math> a_0 b_0 </math> || <math> a_0 b_1 </math> || <math> a_0 b_2 </math> || <math> a_0 b_3 </math> || <math> a_0 b_4 </math> || <math> a_0 b_5 </math> || <math> \; \cdots \; </math>
 +
|}
 +
 
 +
Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek
 +
 
 +
::{| class="wikitable"  style="text-align:center;"
 +
|-
 +
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||
 +
|-
 +
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||
 +
|-
 +
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||
 +
|-
 +
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||
 +
|-
 +
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> ||  ||
 +
|-
 +
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||
 +
|-
 +
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math>  || bgcolor="LightGray" | <math> a_0 b_6 </math>
 +
|}
 +
 
 +
Co odpowiada sumie <math>\sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k}  b_{n - k}</math>, gdzie <math>n</math> numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru
 +
 
 +
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}</math>
 +
 
 +
Ponieważ
 +
 
 +
::<math>{\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}}</math>
 +
 
 +
to otrzymujemy
 +
 
 +
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}
 +
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}
 +
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k}
 +
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k}
 +
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y}</math>
 +
 
 +
Pokazaliśmy tym samym, że z&nbsp;definicji
 +
 
 +
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
 +
 
 +
wynika podstawowa własność funkcji wykładniczej <math>e^x e^y = e^{x + y}</math>.
 +
 
 +
Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i&nbsp;w&nbsp;związku z&nbsp;tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i&nbsp;zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.
 +
 
 +
 
 +
 
 +
<span id="D67" style="font-size: 110%; font-weight: bold;">Definicja D67</span><br/>
 +
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0</math>
 +
 
 +
W przypadku szeregów, których wyrazy są numerowane od liczby <math>1</math>, iloczynem Cauchy'ego szeregów <math>\sum_{i = 1}^{\infty} a_i</math> oraz <math>\sum_{j = 1}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 1}^{\infty} c_n</math>, gdzie
 +
 
 +
::<math>c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1</math>
 +
 
 +
 
 +
 
 +
<span id="D68" style="font-size: 110%; font-weight: bold;">Zadanie D68</span><br/>
 +
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że
 +
 
 +
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 0, 0, 0, 0, \ldots)</math>, <math>(b_n)</math> jest dowolnym ciągiem, to <math>c_n = b_n</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>, <math>(b_n)</math> jest dowolnym ciągiem, to <math>c_n = \sum_{k = 0}^{n} b_k = B_n</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = b_n = r^n</math>, to <math>c_n = (n + 1) r^n</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>(b_n) = (b, r, r^2, r^3, \ldots)</math>, gdzie <math>q \neq r</math>, to <math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 +
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
 
 +
'''Punkt 1.'''
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n = b_n</math>
 +
 
 +
'''Punkt 2.'''
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_{n - k} = \sum^n_{j = 0} b_j = B_n</math>
 +
 
 +
'''Punkt 3.'''
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} r^k r^{n - k} = \sum_{k = 0}^{n} r^n = (n + 1) r^n</math>
 +
 
 +
'''Punkt 4.'''
 +
 
 +
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
 +
 
 +
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a r + b q</math>
 +
 
 +
Dla <math>n \geqslant 2</math> jest
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
 +
 
 +
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
 +
 
 +
::<math>\;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k}</math>
 +
 
 +
Jeżeli <math>r = 0</math>, to <math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = 0</math>. Jeżeli <math>r \neq 0</math>, to
 +
 
 +
::<math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot \frac{\left( {\small\frac{q}{r}} \right)^n - {\small\frac{q}{r}}}{{\small\frac{q}{r}} - 1} = {\small\frac{r q^n - q r^n}{q - r}}</math>
 +
 
 +
Zauważmy, że znaleziony wzór obejmuje również przypadek <math>r = 0</math>. Zatem
 +
 
 +
::<math>c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}}</math>
 +
 
 +
::<math>\;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right)</math>
 +
 
 +
Zbierając, otrzymujemy
 +
 
 +
::<math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 +
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D69" style="font-size: 110%; font-weight: bold;">Przykład D69</span><br/>
 +
Ostatni punkt zadania [[#D68|D68]] pozwala stworzyć wiele przykładowych szeregów i ich iloczynów Cauchy'ego. Przypomnijmy, że
 +
 
 +
::<math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\quad (b_n) = (b, r, r^2, r^3, \ldots)</math>, &nbsp;gdzie <math>\, q \neq r</math>
 +
 
 +
::<math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 +
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
 +
 
 +
 
 +
Przykłady zebraliśmy w&nbsp;tabeli.
 +
 
 +
::{| class="wikitable plainlinks" style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{a}</math> || <math>\boldsymbol{q}</math> || <math>\boldsymbol{b}</math> || <math>\boldsymbol{r}</math> || <math>\boldsymbol{(c_n)}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} a_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} b_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} c_n}</math>
 +
|-
 +
|<math>3</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math>|| <math>{\small\frac{1}{3}}</math> || <math>(-6,0,0,0,0,0,…)</math> || zbieżny || zbieżny || zbieżny
 +
|-
 +
|<math>-2</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-6,0,0,0,0,0,…)</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>{\small\frac{r - 2q}{r - q}}</math> || <math>q</math> || <math>{\small\frac{r}{r - q}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2q )}{(r - q)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || zbieżny / rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
 +
|-
 +
| <math>4</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math> || <math>{\small\frac{1}{3}}</math> || <math>\left( -8,{\small\frac{1}{3}}, {\small\frac{1}{3^2}}, {\small\frac{1}{3^3}}, {\small\frac{1}{3^4}}, {\small\frac{1}{3^5}}, \ldots \right)</math> || zbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>{\small\frac{7}{3}}</math> || <math>2</math> || <math>- {\small\frac{1}{3}}</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - {\small\frac{7}{9}}, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-3,3,3^2,3^3,3^4,3^5,…)</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>{\small\frac{1}{2}}</math> || <math>1</math> || <math>{\small\frac{1}{2}}</math> || <math>-1</math> || <math>\left( {\small\frac{1}{4}}, 0, 0, 0, 0, 0, \ldots \right)</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(-2, 0, 0, 0, 0, 0, \ldots )</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>1</math> || <math>3</math> || <math>2</math> || <math>(-3, 1, 1, 1, 1, 1,\ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>2</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>(-2,0,0,0,0,0,…)</math> || rozbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>2</math> || <math>1</math> || <math>0</math> || <math>{\small\frac{1}{2}}</math> || <math>(0, 1, 1, 1, 1, 1, \ldots )</math> || rozbieżny || zbieżny || rozbieżny
 +
|-
 +
| <math>{\small\frac{r - 2}{r - 1}}</math> || <math>1</math> || <math>{\small\frac{r}{r - 1}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2 )}{(r - 1)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
 +
|-
 +
| <math>0</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(0, 2, 2^2, 2^3, 2^4, 2^5, \ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>3</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - 3, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 +
|}
 +
 
 +
 
 +
 
 +
<span id="D70" style="font-size: 110%; font-weight: bold;">Przykład D70</span><br/>
 +
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz [[#D5|D5]])
 +
 
 +
::<math>\sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=Sum%5B+%28-1%29%5Ek%2Fsqrt%28k%2B1%29%2C+%7Bk%2C+0%2C+infinity%7D+%5D WolframAlpha])
 +
 
 +
Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}}
 +
= (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math>
 +
 
 +
Ale <math>k \leqslant n \;</math> i <math>\; n - k \leqslant n</math>, zatem
 +
 
 +
::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math>
 +
 
 +
Czyli
 +
 
 +
::<math>| c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1</math>
 +
 
 +
Ponieważ <math>\lim_{n \rightarrow \infty} c_n \neq 0</math>, to iloczyn Cauchy'ego jest rozbieżny (zobacz [[#D4|D4]]).
 +
 
 +
 
 +
 
 +
<span id="D71" style="font-size: 110%; font-weight: bold;">Zadanie D71</span><br/>
 +
Pokazać, że jeżeli <math>a_n = b_n = r^n \;</math> i <math>\; c_n = (n + 1) r^n</math> (zobacz [[#D68|D68]] p.3), to szeregi <math>\sum_{n = 0}^{\infty} a_n</math> oraz <math>\sum_{n = 0}^{\infty} c_n</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w&nbsp;przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór
 +
 
 +
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zbieżność szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> łatwo zbadamy, stosując kryterium d'Alemberta.
 +
 
 +
::<math>\left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r |</math>
 +
 
 +
Zatem szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math> i&nbsp;rozbieżny, gdy <math>| r | > 1</math>, tak samo, jak szereg <math>\sum_{n = 0}^{\infty} r^n</math>. W&nbsp;przypadku, gdy <math>r = \pm 1</math> szereg <math>\sum_{n = 0}^{\infty} r^n</math> jest rozbieżny, a&nbsp;odpowiednie sumy częściowe szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> są równe
 +
 
 +
:*&nbsp;&nbsp;&nbsp; gdy <math>r = 1</math>, <math>c_n = n + 1</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad</math> (zobacz <span style="color: Green">[a]</span>, [https://www.wolframalpha.com/input?i=Sum%5B+n%2B1%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
 +
 
 +
:*&nbsp;&nbsp;&nbsp; gdy <math>r = - 1</math>, <math>c_n = (n + 1) (- 1)^n</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad</math> (zobacz [[#D53|D53]], [https://www.wolframalpha.com/input?i=Sum%5B+%28n%2B1%29*%28-1%29%5En%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
 +
 
 +
W przypadku, gdy <math>| r | < 1</math> wiemy<ref name="GeometricSeries1"/>, że <math>\sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}}</math>. Korzystając z&nbsp;zadania [[#D53|D53]], otrzymujemy
 +
 
 +
::<math>\sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}}</math>
 +
 
 +
 
 +
Ponieważ szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math>, to musi być <math>\lim_{n \rightarrow \infty} (n + 1) r^n = 0</math> (zobacz [[#D4|D4]]). Pokazaliśmy, że w&nbsp;rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów.
 +
 
 +
 
 +
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> Zauważmy, że
 +
 
 +
::<math>\sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D72" style="font-size: 110%; font-weight: bold;">Uwaga D72</span><br/>
 +
Przykłady [[#D69|D69]] i [[#D70|D70]] pokazują, że w&nbsp;ogólności nie jest prawdziwy wzór
 +
 
 +
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
 +
 
 +
Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
 +
 
 +
 
 +
 
 +
<span id="D73" style="font-size: 110%; font-weight: bold;">Uwaga D73</span><br/>
 +
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych
 +
 
 +
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
 +
 
 +
możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy <math>m = 5</math>.
 +
 
 +
::{| class="wikitable"  style="text-align:center;"
 +
|-
 +
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||
 +
|-
 +
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||
 +
|-
 +
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||
 +
|-
 +
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||
 +
|-
 +
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> ||  ||
 +
|-
 +
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||
 +
|-
 +
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math>  || bgcolor="LightGray" | <math> a_0 b_6 </math>
 +
|}
 +
 
 +
Przejście do sumowania po liniach poziomych
 +
 
 +
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 +
 
 +
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a&nbsp;druga po kolejnych elementach w <math>i</math>-tej linii poziomej.
 +
 
 +
 
 +
Przejście do sumowania po liniach pionowych
 +
 
 +
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i</math>
 +
 
 +
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a&nbsp;druga po kolejnych elementach w <math>i</math>-tej linii pionowej.
 +
 
 +
 
 +
 
 +
<span id="D74" style="font-size: 110%; font-weight: bold;">Twierdzenie D74 (Franciszek Mertens)</span><br/>
 +
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest zbieżny bezwzględnie, oznaczmy <math>\sum_{i = 0}^{\infty} | a_i | = A'</math>. Niech
 +
 
 +
::<math>A_n = \sum_{i = 0}^{n} a_i \qquad \qquad B_n = \sum_{j = 0}^{n} b_j \qquad \qquad C_n = \sum_{k = 0}^{n} c_k \qquad \qquad \beta_n = B_n - B</math>
 +
 
 +
Przekształcając sumę <math>C_m</math>, otrzymujemy
 +
 
 +
::<math>C_m = \sum_{n = 0}^{m} c_n</math>
 +
 
 +
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
 +
 
 +
Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
 +
 
 +
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 +
 
 +
:::<math>\; = \sum_{i = 0}^{m} a_i \sum_{j = 0}^{m - i} b_j</math>
 +
 
 +
:::<math>\; = \sum_{i = 0}^{m} a_i B_{m - i}</math>
 +
 
 +
:::<math>\; = \sum_{i = 0}^{m} a_i \left( {B + \beta_{m - i}}  \right)</math>
 +
 
 +
:::<math>\; = \sum_{i = 0}^{m} a_i B + \sum_{i = 0}^{m} a_i \beta_{m - i}</math>
 +
 
 +
:::<math>\; = B \sum_{i = 0}^{m} a_i + \sum_{i = 0}^{m} a_i \beta_{m - i}</math>
 +
 
 +
:::<math>\; = A_m B + \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
 +
 
 +
Zatem
 +
 
 +
::<math>C_m - A_m B = \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
 +
 
 +
Niech
 +
 
 +
::<math>\delta_m = \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
 +
 
 +
Oczywiście chcemy pokazać, że <math>C_m \longrightarrow A B</math>. Ponieważ <math>A_m B \longrightarrow A B</math>, to wystarczy pokazać, że <math>\delta_m \longrightarrow 0</math>.
 +
 
 +
Z założenia <math>B_m \longrightarrow B</math>, zatem <math>\beta_m \longrightarrow 0</math>. Ze zbieżności ciągu <math>(\beta_k)</math> wynika, że
 +
 
 +
:*&nbsp;&nbsp;&nbsp;ciąg <math>(\beta_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| \beta_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C9|C9]])
 +
 
 +
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon_1 > 0</math> prawie wszystkie wyrazy ciągu <math>(\beta_k)</math> spełniają warunek <math>| \beta_k | < \varepsilon_1</math> (zobacz [[Ciągi liczbowe#C4|C4]], [[Ciągi liczbowe#C6|C6]])
 +
 
 +
Możemy przyjąć, że warunek <math>| \beta_k | < \varepsilon_1</math> spełniają wszystkie wyrazy, poczynając od <math>M = M (\varepsilon_1)</math>. Zatem dla <math>m > M</math> dostajemy
 +
 
 +
::<math>| \delta_m | \leqslant \sum_{k = 0}^{M} | \beta_k | | a_{m - k} | + \sum_{k = M + 1}^{m} | \beta_k | | a_{m - k} |</math>
 +
 
 +
:::<math>\;\; < U (| a_m | + \ldots + | a_{m - M} |) + \varepsilon_1 \sum_{k = M + 1}^{m} | a_{m - k} |</math>
 +
 
 +
:::<math>\;\; < U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A'</math>
 +
 
 +
Z założenia szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest zbieżny, zatem musi być <math>\lim_{m \rightarrow \infty} a_m = 0</math> (zobacz [[#D4|D4]]). Czyli dla dowolnego <math>\varepsilon_2 > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon_2</math>. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od <math>N = N (\varepsilon_2)</math>. Zatem dla <math>m > M + N</math> otrzymujemy
 +
 
 +
::<math>| \delta_m | < U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A'</math>
 +
 
 +
:::<math>\;\; < \varepsilon_2 (M + 1) U + \varepsilon_1 A'</math>
 +
 
 +
 
 +
Prawa strona nierówności jest dowolnie mała. Przykładowo dla dowolnego <math>\varepsilon > 0</math> wystarczy wybrać <math>\varepsilon_1 = {\small\frac{\varepsilon / 2}{A'}}</math> i <math>\varepsilon_2 = {\small\frac{\varepsilon / 2}{(M + 1) U}}</math>, aby otrzymać <math>| \delta_m | < \varepsilon</math> dla wszystkich <math>m > M + N</math>. Ponieważ prawie wszystkie wyrazy ciągu <math>\delta_m</math> spełniają warunek <math>| \delta_m | < \varepsilon</math>, to <math>\lim_{m \rightarrow \infty} \delta_m = 0</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D75" style="font-size: 110%; font-weight: bold;">Zadanie D75</span><br/>
 +
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z założenia szeregi <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> są bezwzględnie zbieżne, zatem możemy napisać
 +
 
 +
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math>
 +
 
 +
Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
 +
 
 +
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math>
 +
 
 +
:::<math>\; = \sum_{n = 0}^{m} \left| \sum_{k = 0}^{n} a_k b_{n - k} \right|</math>
 +
 
 +
:::<math>\; \leqslant \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k b_{n - k} |</math>
 +
 
 +
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math>
 +
 
 +
:::<math>\; = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} | a_i | | b_j | \qquad \qquad</math> (zmieniliśmy sposób sumowania)
 +
 
 +
:::<math>\; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j |</math>
 +
 
 +
:::<math>\; \leqslant A' B'</math>
 +
 
 +
Ponieważ ciąg sum częściowych <math>C'_m</math> jest rosnący (bo sumujemy wartości nieujemne) i&nbsp;ograniczony od góry, to jest zbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D76" style="font-size: 110%; font-weight: bold;">Zadanie D76</span><br/>
 +
Podać przykład szeregów zbieżnych, z&nbsp;których tylko jeden jest bezwzględnie zbieżny i&nbsp;których iloczyn Cauchy'ego jest warunkowo zbieżny.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że szereg <math>\sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}}</math> jest bezwzględnie zbieżny, bo <math>\sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2</math> jest zbieżny. Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest zbieżny na mocy kryterium Leibniza (zobacz [[#D5|D5]]), ale nie jest bezwzględnie zbieżny (zobacz [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]).
 +
 
 +
Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
 +
 
 +
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
 +
 
 +
jest zbieżny. Łatwo widzimy, że
 +
 
 +
::<math>| c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
 +
 
 +
:::<math>\; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
 +
 
 +
:::<math>\; \geqslant {\small\frac{1}{n + 1}}</math>
 +
 
 +
Ponieważ szereg <math>\sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}}</math> jest rozbieżny i
 +
 
 +
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n |</math>
 +
 
 +
to na mocy kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D77" style="font-size: 110%; font-weight: bold;">Zadanie D77</span><br/>
 +
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest warunkowo zbieżny (zobacz [[#D5|D5]], [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). Iloczyn Cauchy'ego dwóch takich szeregów jest równy <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
 +
 
 +
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
 +
 
 +
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}}</math>
 +
 
 +
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}}</math>
 +
 
 +
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right)</math>
 +
 
 +
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right)</math>
 +
 
 +
::<math>\;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}}</math>
 +
 
 +
 
 +
Ponieważ (zobacz [[#D17|D17]])
 +
 
 +
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
 +
 
 +
to
 +
 
 +
::<math>{\small\frac{2}{n + 2}} \cdot \log (n + 2) < | c_n | < {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1))</math>
 +
 
 +
Z twierdzenia o&nbsp;trzech ciągach wynika natychmiast, że <math>\lim_{n \rightarrow \infty} | c_n | = 0</math>. Pokażemy teraz, że ciąg <math>(| c_n |)</math> jest ciągiem malejącym.
 +
 
 +
::<math>| c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
 +
 
 +
:::::<math>\;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
 +
 
 +
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
 +
 
 +
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
 +
 
 +
:::::<math>\;\;\;\; \leqslant 0</math>
 +
 
 +
Bo <math>\; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1</math>. Ponieważ ciąg <math>(| c_n |)</math> jest malejący i&nbsp;zbieżny do zera, to z&nbsp;kryterium Leibniza (zobacz [[#D5|D5]]) szereg <math>\sum_{n = 0}^{\infty} (- 1)^n | c_n |</math> jest zbieżny. Zauważmy jeszcze, że dla <math>n \geqslant 1</math> mamy
 +
 
 +
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} < | c_n |</math>
 +
 
 +
Zatem na podstawie kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D78" style="font-size: 110%; font-weight: bold;">Uwaga D78</span><br/>
 +
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D80|D80]] pozwala przypisać wartość sumy do szeregów, których suma w&nbsp;zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w&nbsp;sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
 +
 
 +
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i&nbsp;tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy
 +
 
 +
::<math>x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}}
 +
= {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}}
 +
= {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa])
 +
 
 +
Zatem szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math> jest sumowalny w&nbsp;sensie Cesàro i&nbsp;jego suma jest równa <math>{\small\frac{1}{2}}</math>.
 +
 
 +
 
 +
 
 +
<span id="D79" style="font-size: 110%; font-weight: bold;">Twierdzenie D79</span><br/>
 +
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>\lim_{n \rightarrow \infty} a_n = 0</math>. Ze zbieżności ciągu <math>(a_k)</math> wynika, że
 +
 
 +
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| a_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C9|C9]])
 +
 
 +
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon</math> (zobacz [[Ciągi liczbowe#C4|C4]], [[Ciągi liczbowe#C6|C6]])
 +
 
 +
Możemy przyjąć, że warunek <math>| a_k | < \varepsilon</math> spełniają wszystkie wyrazy, poczynając od <math>N = N (\varepsilon)</math>. Zatem dla <math>n > N</math> możemy napisać
 +
 
 +
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}}</math>
 +
 
 +
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}}</math>
 +
 
 +
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + \varepsilon</math>
 +
 
 +
Ponieważ liczba <math>n</math> może być dowolnie duża, to wyrażenie <math>{\small\frac{U (N + 1)}{n + 1}}</math> może być dowolnie małe. W&nbsp;szczególności warunek
 +
 
 +
::<math>{\small\frac{U (N + 1)}{n + 1}} < \varepsilon</math>
 +
 
 +
jest spełniony dla <math>n > {\small\frac{U (N + 1)}{\varepsilon}} - 1</math> i&nbsp;otrzymujemy, że
 +
 
 +
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | < 2 \varepsilon</math>
 +
 
 +
dla wszystkich <math>n > \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right)</math>. Zatem <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D80" style="font-size: 110%; font-weight: bold;">Twierdzenie D80</span><br/>
 +
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia ciąg <math>(a_k)</math> jest zbieżny, zatem możemy napisać
 +
 
 +
::<math>\lim_{k \rightarrow \infty} a_k = g</math>
 +
 
 +
Z definicji ciągu <math>(x_n)</math> dostajemy
 +
 
 +
::<math>x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g
 +
= {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}}
 +
= {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}}
 +
= {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}}</math>
 +
 
 +
Wynika stąd, że
 +
 
 +
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math>
 +
 
 +
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D79|D79]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
 +
 
 +
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math>
 +
 
 +
Czyli <math>\lim_{n \rightarrow \infty} x_n = g</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2). Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D81" style="font-size: 110%; font-weight: bold;">Twierdzenie D81</span><br/>
 +
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 
 +
'''1. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n = 0}</math>
 +
 
 +
Ponieważ ciąg <math>(b_n)</math> jest zbieżny, to jest ograniczony (zobacz [[Ciągi liczbowe#C9|C9]]), czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| b_k | \leqslant U</math>. Zatem
 +
 
 +
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math>
 +
 
 +
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D79|D79]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
 +
 
 +
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math>
 +
 
 +
Czyli <math>\lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2).
 +
 
 +
 
 +
'''2. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0}</math>
 +
 
 +
Niech <math>x_n = a_n - a</math>. Oczywiście <math>\lim_{n \rightarrow \infty} x_n = 0</math>. Podstawiając, otrzymujemy
 +
 
 +
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k}</math>
 +
 
 +
:::::::<math>\, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
 +
 
 +
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
 +
 
 +
W granicy, gdy <math>n \longrightarrow \infty</math>, z&nbsp;twierdzenia [[#D80|D80]] i&nbsp;udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy
 +
 
 +
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>
 +
 
 +
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
 
 +
<span id="D82" style="font-size: 110%; font-weight: bold;">Twierdzenie D82 (Niels Henrik Abel)</span><br/>
 +
Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i&nbsp;ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Będziemy stosowali następujące oznaczenia
 +
 
 +
::<math>A_n = \sum_{i = 0}^{n} a_i \qquad \qquad \;\, B_n = \sum_{i = 0}^{n} b_i \qquad \qquad \;\; C_n = \sum_{i = 0}^{n} c_i</math>
 +
 
 +
Z założenia szeregi są zbieżne, zatem możemy napisać
 +
 
 +
::<math>\lim_{n \rightarrow \infty} A_n = A \qquad \qquad \lim_{n \rightarrow \infty} B_n = B \qquad \qquad \lim_{n \rightarrow \infty} C_n = C</math>
 +
 
 +
Rozważmy sumę
 +
 
 +
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{n = 0}^{m} c_n</math>
 +
 
 +
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
 +
 
 +
Od sumowania wyrazów <math>a_k b_{n - k}</math> po <math>m + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
 +
 
 +
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 +
 
 +
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i \sum^{m - i}_{j = 0} b_j</math>
 +
 
 +
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i B_{m - i}</math>
 +
 
 +
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k}</math>
 +
 
 +
Od sumowania wyrazów <math>a_k B_{m - k}</math> po <math>L + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>L + 1</math> kolejnych liniach pionowych (zobacz [[#D73|D73]]).
 +
 
 +
::<math>\sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i</math>
 +
 
 +
::::<math>\;\; = \sum_{i = 0}^{L} B_i \sum_{j = 0}^{L - i} a_j</math>
 +
 
 +
::::<math>\;\; = \sum_{i = 0}^{L} B_i A_{L - i}</math>
 +
 
 +
Zatem
 +
 
 +
::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math>
 +
 
 +
W&nbsp;granicy, gdy <math>L \longrightarrow \infty</math>, z&nbsp;twierdzeń [[#D80|D80]] i [[#D81|D81]] otrzymujemy <math>C = A B</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
== Przypisy ==
 +
<references>
 +
 
 +
<ref name="DirichletEta">Wikipedia, ''Funkcja η'', ([https://pl.wikipedia.org/wiki/Funkcja_%CE%B7 Wiki-pl]), ([https://en.wikipedia.org/wiki/Dirichlet_eta_function Wiki-en])</ref>
 +
 
 +
<ref name="RiemannZeta">Wikipedia, ''Funkcja dzeta Riemanna'', ([https://pl.wikipedia.org/wiki/Funkcja_dzeta_Riemanna Wiki-pl]), ([https://en.wikipedia.org/wiki/Riemann_zeta_function Wiki-en])</ref>
 +
 
 +
<ref name="calkowalnosc1">Twierdzenie: funkcja ciągła w&nbsp;przedziale domkniętym jest całkowalna w&nbsp;tym przedziale.</ref>
 +
 
 +
<ref name="calkowalnosc2">W szczególności: funkcja ograniczona i&nbsp;mająca skończoną liczbę punktów nieciągłości w&nbsp;przedziale domkniętym jest w&nbsp;tym przedziale całkowalna.</ref>
 +
 
 +
<ref name="Mertens1">Wikipedia, ''Twierdzenia Mertensa'', ([https://pl.wikipedia.org/wiki/Twierdzenia_Mertensa Wiki-pl]), ([https://en.wikipedia.org/wiki/Mertens%27_theorems Wiki-en])</ref>
 +
 
 +
<ref name="Mertens2">Wikipedia, ''Franciszek Mertens'', ([https://pl.wikipedia.org/wiki/Franciszek_Mertens Wiki-pl])</ref>
 +
 
 +
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
 +
 
 +
<ref name="twierdzenie">Zobacz twierdzenie [[#D42|D42]].</ref>
 +
 
 +
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>
 +
 
 +
<ref name="A083343">The On-Line Encyclopedia of Integer Sequences, ''A083343 - Decimal expansion of constant&#32;B3 (or B_3) related to the Mertens constant'', ([https://oeis.org/A083343 A083343])</ref>
 +
 
 +
<ref name="A138312">The On-Line Encyclopedia of Integer Sequences, ''A138312 - Decimal expansion of Mertens's constant minus Euler's constant'', ([https://oeis.org/A138312 A138312])</ref>
 +
 
 +
<ref name="Dusart10">Pierre Dusart, ''Estimates of Some Functions Over Primes without R.H.'', 2010, ([https://arxiv.org/abs/1002.0442 LINK])</ref>
 +
 
 +
<ref name="Wiki1">Wikipedia, ''Stałe Bruna'', ([https://pl.wikipedia.org/wiki/Sta%C5%82e_Bruna Wiki-pl]), ([https://en.wikipedia.org/wiki/Brun%27s_theorem Wiki-en])</ref>
 +
 
 +
<ref name="A065421">The On-Line Encyclopedia of Integer Sequences, ''A065421 - Decimal expansion of Viggo Brun's constant B'', ([https://oeis.org/A065421 A065421])</ref>
 +
 
 +
<ref name="Erdos1">Paul Erdős, ''Über die Reihe'' <math>\textstyle \sum {\small\frac{1}{p}}</math>, Mathematica, Zutphen B 7, 1938, 1-2.</ref>
 +
 
 +
<ref name="sumowanie1">sumowanie przez części (ang. ''summation by parts'')</ref>
 +
 
 +
<ref name="convexseq1">ciąg wypukły (ang. ''convex sequence'')</ref>
  
 
<ref name="Dusart18">Pierre Dusart, ''Explicit estimates of some functions over primes'', The Ramanujan Journal, vol. 45(1), 2018, 227-251.</ref>
 
<ref name="Dusart18">Pierre Dusart, ''Explicit estimates of some functions over primes'', The Ramanujan Journal, vol. 45(1), 2018, 227-251.</ref>
 +
 +
<ref name="GeometricSeries1">Wikipedia, ''Szereg geometryczny'', ([https://pl.wikipedia.org/wiki/Szereg_geometryczny Wiki-pl]), ([https://en.wikipedia.org/wiki/Geometric_series Wiki-en])</ref>
 +
 +
<ref name="CesaroSum1">Wikipedia, ''Sumowalność metodą Cesàro'', ([https://pl.wikipedia.org/wiki/Sumowalno%C5%9B%C4%87_metod%C4%85_Ces%C3%A0ro Wiki-pl]), ([https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation Wiki-en])</ref>
  
 
</references>
 
</references>

Aktualna wersja na dzień 20:08, 25 cze 2024

07.04.2022



Szeregi nieskończone

Definicja D1
Sumę wszystkich wyrazów ciągu nieskończonego [math]\displaystyle{ (a_n) }[/math]

[math]\displaystyle{ a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{k = 1}^{\infty} a_k }[/math]

nazywamy szeregiem nieskończonym o wyrazach [math]\displaystyle{ a_n }[/math].


Definicja D2
Ciąg [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] nazywamy ciągiem sum częściowych szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math].


Definicja D3
Szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będziemy nazywali zbieżnym, jeżeli ciąg sum częściowych [math]\displaystyle{ \left ( S_n \right ) }[/math] jest zbieżny.


Twierdzenie D4 (warunek konieczny zbieżności szeregu)
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny, to [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math].

Dowód

Niech [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] będzie ciągiem sum częściowych, wtedy [math]\displaystyle{ a_{n + 1} = S_{n + 1} - S_n }[/math]. Z założenia ciąg [math]\displaystyle{ (S_n) }[/math] jest zbieżny, zatem

[math]\displaystyle{ \lim_{n \to \infty} a_{n + 1} = \lim_{n \to \infty} \left ( S_{n+1} - S_{n} \right ) = \lim_{n \to \infty} S_{n + 1} - \lim_{n \to \infty} S_n = 0 }[/math]


Okazuje się, że bardzo łatwo podać przykład szeregów, dla których warunek [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math] jest warunkiem wystarczającym. Opisany w poniższym twierdzeniu rodzaj szeregów nazywamy szeregami naprzemiennymi.
Twierdzenie D5 (kryterium Leibniza)
Niech ciąg [math]\displaystyle{ (a_n) }[/math] będzie ciągiem malejącym o wyrazach nieujemnych. Jeżeli

[math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} a_n = 0 }[/math]

to szereg [math]\displaystyle{ \underset{k = 1}{\overset{\infty}{\sum}} (- 1)^{k + 1} \cdot a_k }[/math] jest zbieżny.

Dowód

Grupując wyrazy szeregu po dwa, otrzymujemy sumę częściową postaci

[math]\displaystyle{ S_{2 m} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2 m - 1} - a_{2 m}) }[/math]

Ponieważ ciąg [math]\displaystyle{ (a_n) }[/math] jest ciągiem malejącym, to każde wyrażenie w nawiasie jest liczbą nieujemną. Z drugiej strony

[math]\displaystyle{ S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}} \lt a_1 }[/math]

Zatem dla każdego [math]\displaystyle{ m }[/math] ciąg sum częściowych [math]\displaystyle{ S_{2 m} }[/math] jest rosnący i ograniczony od góry, skąd na mocy twierdzenia C11 jest zbieżny, czyli

[math]\displaystyle{ \lim_{m \to \infty} S_{2 m} = g }[/math]

Pozostaje zbadać sumy częściowe [math]\displaystyle{ S_{2 m + 1} }[/math]. Rezultat jest natychmiastowy

[math]\displaystyle{ \lim_{m \to \infty} S_{2 m + 1} = \lim_{m \to \infty} (S_{2 m} + a_{2 m + 1}) = \lim_{m \to \infty} S_{2 m} + \lim_{m \to \infty} a_{2 m + 1} = g + 0 = g }[/math]

Co kończy dowód.


Twierdzenie D6
Dla [math]\displaystyle{ s \gt 1 }[/math] prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Dowód

Zauważmy, że założenie [math]\displaystyle{ s \gt 1 }[/math] zapewnia zbieżność szeregu po prawej stronie. Zapiszmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math] w postaci sumy dla [math]\displaystyle{ k }[/math] parzystych i nieparzystych

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} = 1 + {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} + {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} + \ldots }[/math]
[math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
[math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

Otrzymujemy wzór

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]


Podobnie rozpiszmy szereg naprzemienny

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = 1 - {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} - {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} - \ldots }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} - \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
[math]\displaystyle{ \;\;\,\, = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} - {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
[math]\displaystyle{ \;\;\,\, = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

gdzie skorzystaliśmy ze znalezionego wyżej wzoru dla sumy szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} }[/math]


Przykład D7
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta[1], którą definiuje szereg naprzemienny

[math]\displaystyle{ \eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math]

lub funkcja dzeta Riemanna[2], którą definiuje inny szereg

[math]\displaystyle{ \zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

Na podstawie twierdzenia D6 funkcje te są związane wzorem

[math]\displaystyle{ \eta (s) = (1 - 2^{1 - s}) \zeta (s) }[/math]

Dla [math]\displaystyle{ s \in \mathbb{R}_+ }[/math] funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math].


Twierdzenie D8
Niech [math]\displaystyle{ N \in \mathbb{Z}_+ }[/math]. Szeregi [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N}^{\infty} a_k }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. W przypadku zbieżności zachodzi związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k }[/math]
Dowód

Niech [math]\displaystyle{ S(n) =\sum_{k = 1}^{n} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant 1 }[/math]) oznacza sumę częściową pierwszego szeregu, a [math]\displaystyle{ T(n) = \sum_{k = N}^{\infty} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant N }[/math]) oznacza sumę częściową drugiego szeregu. Dla [math]\displaystyle{ n \geqslant N }[/math] mamy

[math]\displaystyle{ S(n) = (a_1 + a_2 + \ldots + a_{N - 1}) + T (n) }[/math]

Widzimy, że dla [math]\displaystyle{ n }[/math] dążącego do nieskończoności zbieżność (rozbieżność) jednego ciągu implikuje zbieżność (rozbieżność) drugiego.


Twierdzenie D9 (kryterium porównawcze)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ k \gt N_0 }[/math] jest spełniony warunek

[math]\displaystyle{ 0 \leqslant a_k \leqslant b_k }[/math]

to

  1.    zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] pociąga za sobą zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]
  2.    rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] pociąga za sobą rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]
Dowód

Dowód przeprowadzimy dla szeregów [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math], które są (odpowiednio) jednocześnie zbieżne lub jednocześnie rozbieżne z szeregami [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math].

Punkt 1.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest zbieżny. Niech [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k = b }[/math], zatem z założonych w twierdzeniu nierówności dostajemy

[math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k \leqslant b }[/math]

Zauważmy, że ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] jest ciągiem rosnącym (bo [math]\displaystyle{ a_k \geqslant 0 }[/math]) i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ \left ( A_n \right ) }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest zbieżny.

Punkt 2.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny, a z założonych w twierdzeniu nierówności dostajemy

[math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k }[/math]

Rosnący ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] nie może być ograniczony od góry, bo przeczyłoby to założeniu, że szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny. Wynika stąd i z wypisanych wyżej nierówności, że również ciąg sum częściowych [math]\displaystyle{ B_n = \sum_{k = N_0}^{n} b_k }[/math] nie może być ograniczony od góry, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest rozbieżny.


Twierdzenie D10
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} \left | a_k \right | }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest również zbieżny.

Dowód

Niech [math]\displaystyle{ b_k = a_k + | a_k | }[/math]. Z definicji prawdziwe jest następujące kryterium porównawcze

[math]\displaystyle{ 0 \leqslant b_k \leqslant 2 | a_k | }[/math]

Zatem z punktu 1. twierdzenia D9 wynika, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] jest zbieżny. Z definicji wyrazów ciągu [math]\displaystyle{ \left ( b_k \right ) }[/math] mamy [math]\displaystyle{ a_k = b_k - | a_k | }[/math] i możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \sum_{k = 1}^{\infty} b_k - \sum_{k = 1}^{\infty} | a_k | }[/math]

Ponieważ szeregi po prawej stronie są zbieżne, to zbieżny jest też szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]. Zauważmy, że jedynie w przypadku, gdyby obydwa szeregi po prawej stronie były rozbieżne, nie moglibyśmy wnioskować o zbieżności / rozbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math], bo suma szeregów rozbieżnych może być zbieżna.


Definicja D11
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest zbieżny.

Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest warunkowo zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest zbieżny, ale szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest rozbieżny.


Twierdzenie D12
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] można zapisać w jednej z postaci

  1. [math]\displaystyle{ \quad a_k = f_k - f_{k + 1} }[/math]
  2. [math]\displaystyle{ \quad a_k = f_{k - 1} - f_k }[/math]

to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa

  1. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1} }[/math]
  2. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n }[/math]
Dowód
[math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_k - f_{k + 1}) = }[/math]
[math]\displaystyle{ = (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + (f_{m + 2} - f_{m + 3}) + \ldots + (f_{n - 1} - f_n) + (f_n - f_{n + 1}) }[/math]
[math]\displaystyle{ = f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + f_{m + 2} - f_{m + 3} + \ldots + f_{n - 1} - f_n + f_n - f_{n + 1} }[/math]
[math]\displaystyle{ = f_m + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + f_{m + 2}) + (- f_{m + 3} + \ldots + f_{n - 1}) + (- f_n + f_n) - f_{n + 1} }[/math]
[math]\displaystyle{ = f_m - f_{n + 1} }[/math]


[math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_{k - 1} - f_k) = }[/math]
[math]\displaystyle{ = (f_{m - 1} - f_m) + (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + \ldots + (f_{n - 2} - f_{n - 1}) + (f_{n - 1} - f_n) }[/math]
[math]\displaystyle{ = f_{m - 1} - f_m + f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + \ldots + f_{n - 2} - f_{n - 1} + f_{n - 1} - f_n }[/math]
[math]\displaystyle{ = f_{m - 1} + (- f_m + f_m) + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + \ldots + f_{n - 2}) + (- f_{n - 1} + f_{n - 1}) - f_n }[/math]
[math]\displaystyle{ = f_{m - 1} - f_n }[/math]


Twierdzenie D13
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Dla dowodu wykorzystamy fakt, że rozpatrywany szereg jest szeregiem teleskopowym

[math]\displaystyle{ {\small\frac{1}{k (k + 1)}} = {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} }[/math]

Zatem

[math]\displaystyle{ \sum^n_{k = 1} {\small\frac{1}{k (k + 1)}} = \sum^n_{k = 1} \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) = 1 - {\small\frac{1}{n + 1}} }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1 }[/math]

Punkt 2.
Szereg jest identyczny z szeregiem z punktu 1., co łatwo zauważyć zmieniając zmienną sumowania [math]\displaystyle{ k = s + 1 }[/math] i odpowiednio granice sumowania.

Punkt 3.
Należy skorzystać z tożsamości

[math]\displaystyle{ {\small\frac{1}{k^2 - 1}} = {\small\frac{1}{2}} \left[ \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) + \left( {\small\frac{1}{k - 1}} - {\small\frac{1}{k}} \right) \right] }[/math]

Punkt 4.
Ponieważ dla [math]\displaystyle{ k \geqslant 2 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ 0 \lt {\small\frac{1}{k^2}} \lt {\small\frac{1}{k^2 - 1}} }[/math]

to na mocy kryterium porównawczego (twierdzenie D9) ze zbieżności szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]


Twierdzenie D14
Następujące szeregi są zbieżne

Dowód

Punkt 1.

Wystarczy zauważyć, że

[math]\displaystyle{ {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} = {\small\frac{\sqrt{k + 1} - \sqrt{k}}{\sqrt{k} \cdot \sqrt{k + 1}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot \left( \sqrt{k + 1} + \sqrt{k} \right)}} }[/math]
[math]\displaystyle{ \:\, \gt {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot 2 \sqrt{k + 1}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^n {\small\frac{1}{(k + 1) \sqrt{k}}} = 2 \sum_{k = 1}^n {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]
[math]\displaystyle{ \:\, \lt 2 \sum_{k = 1}^n \left( {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} \right) }[/math]
[math]\displaystyle{ \:\, = 2 \left( 1 - {\small\frac{1}{\sqrt{n + 1}}} \right) }[/math]
[math]\displaystyle{ \:\, \lt 2 }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.

Punkt 2.
Korzystając z twierdzenia A37 p.4, możemy napisać oszacowanie

[math]\displaystyle{ 0 \lt {\small\frac{\log k}{k (k + 1)}} \lt {\small\frac{\sqrt{k}}{k (k + 1)}} = {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]

Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} }[/math]

Punkt 3.
Zauważmy, że

[math]\displaystyle{ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} = {\small\frac{k \log (k - 1) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{k \log \left( k \left( 1 - {\normalsize\frac{1}{k}} \right) \right) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{k \log (k) + k \log \left( 1 - {\normalsize\frac{1}{k}} \right) - k \log (k) + \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{\log (k) - k \cdot {\normalsize\frac{1}{k - 1}}}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log (k)}{k (k - 1)}} - {\small\frac{1}{(k - 1)^2}} }[/math]

Czyli prawdziwe jest oszacowanie

[math]\displaystyle{ {\small\frac{\log (k)}{k (k - 1)}} \lt \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + {\small\frac{1}{(k - 1)^2}} }[/math]

Zatem możemy napisać

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\log (k)}{k (k - 1)}} \lt \sum_{k = 2}^{n} \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + \sum_{k = 2}^{n} {\small\frac{1}{(k - 1)^2}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt - {\small\frac{\log (n)}{n}} + \sum_{j = 1}^{n - 1} {\small\frac{1}{j^2}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt \sum_{j = 1}^{\infty} {\small\frac{1}{j^2}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\pi^2}{6}} }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.

Punkt 4.
Zauważmy, że

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log (k + 1) - \log (k)}{\log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]

Z drugiej strony mamy

[math]\displaystyle{ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} = {\small\frac{\log (k) - \log (k - 1)}{\log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k - 1}} \right)}{\log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]

Wynika stąd następujący ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 \! k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]


Rezultat ten wykorzystamy w pełni w przykładzie D15, a do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy

[math]\displaystyle{ \sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} \lt \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right] }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{1}{\log 2}} - {\small\frac{1}{\log (n)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{\log 2}} }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.


Przykład D15
Na przykładzie szeregu [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math] pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.

Ponieważ nie jesteśmy w stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części

[math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.

Dowodząc twierdzenie D14, w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]


Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy

[math]\displaystyle{ \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right) }[/math]


Ponieważ szeregi po lewej i po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}} }[/math]


Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy oszacowanie

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} \lt \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} }[/math]


Teraz pozostaje dodać sumę wyrazów szeregu od [math]\displaystyle{ k = 3 }[/math] do [math]\displaystyle{ k = m }[/math]

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości [math]\displaystyle{ m }[/math]. Wystarczy proste polecenie

for(n = 1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print( "n= ", n, "   a= ", s + 1/log(10^n+1), "   b= ", s + 1/log(10^n) ))

Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z dokładnością 10 miejsc po przecinku.

Natomiast samo zsumowanie [math]\displaystyle{ 10^8 }[/math] wyrazów szeregu daje wynik

[math]\displaystyle{ \sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots }[/math]

Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.

Rozpatrywana wyżej sytuacja pokazuje, że w przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.



Szeregi nieskończone i całka oznaczona

Twierdzenie D16
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, n + 1] }[/math], to prawdziwy jest następujący ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x }[/math]
Dowód

Ponieważ funkcja [math]\displaystyle{ f(x) }[/math] jest z założenia ciągła, dodatnia i malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.

D Szereg-i-calka-1.png

Przedstawiona na rysunku krzywa odpowiada funkcji [math]\displaystyle{ f(x) }[/math]. Dla współrzędnej [math]\displaystyle{ x = k }[/math] zaznaczyliśmy wartość funkcji [math]\displaystyle{ f(k) }[/math], a po lewej i prawej stronie tych punktów zaznaczyliśmy pasy o jednostkowej szerokości. Łatwo zauważamy, że

  • po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości
  • po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości

Korzystając z własności całki oznaczonej, otrzymujemy ciąg nierówności

[math]\displaystyle{ \int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x }[/math]

W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z uczynionym założeniem funkcja [math]\displaystyle{ f(x) }[/math] może być funkcją słabo malejącą.

Sumując lewą nierówność od [math]\displaystyle{ k = m }[/math] do [math]\displaystyle{ k = n }[/math], a prawą od [math]\displaystyle{ k = m + 1 }[/math] do [math]\displaystyle{ k = n }[/math], dostajemy

[math]\displaystyle{ \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) }[/math]
[math]\displaystyle{ \sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x }[/math]

Dodając [math]\displaystyle{ f(m) }[/math] do obydwu stron drugiej z powyższych nierówności i łącząc je ze sobą, otrzymujemy kolejny i docelowy ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]


Przykład D17
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math].

Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math] jest ciągła, dodatnia i silnie malejąca w przedziale [math]\displaystyle{ (0, + \infty) }[/math], zatem dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \int_{1}^{n + 1} {\small\frac{d x}{x}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \int_{1}^{n} {\small\frac{d x}{x}} }[/math]

Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

[math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]

Ponieważ

[math]\displaystyle{ \log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) \gt \log n + {\small\frac{1}{n + 1}} }[/math]

to dostajemy

[math]\displaystyle{ {\small\frac{1}{n + 1}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \lt 1 }[/math]

Zauważmy: nie tylko wiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o zbieżności szeregów.



Twierdzenie D18 (kryterium całkowe zbieżności szeregów)
Załóżmy, że funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna [math]\displaystyle{ F(x) = \int f (x) d x }[/math] ma dla [math]\displaystyle{ x \rightarrow \infty }[/math] granicę skończoną, czy nie.

Dowód

Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, będzie wykorzystane w czasie dowodu twierdzenia, ale rozważanie przypadku, gdy [math]\displaystyle{ f(x) }[/math] jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] (zobacz twierdzenie D4).

Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego [math]\displaystyle{ x_0 }[/math] byłoby [math]\displaystyle{ f(x_0) = 0 }[/math]. Ponieważ z założenia funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, zatem mielibyśmy [math]\displaystyle{ f(x) = 0 }[/math] dla [math]\displaystyle{ x \geqslant x_0 }[/math]. Odpowiadający tej funkcji szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] miałby dla [math]\displaystyle{ k \geqslant x_0 }[/math] tylko wyrazy zerowe i byłby w sposób oczywisty zbieżny.

Założenie ciągłości funkcji [math]\displaystyle{ f(x) }[/math] ma zapewnić całkowalność funkcji [math]\displaystyle{ f(x) }[/math][3]. Założenie to można osłabić[4], tutaj ograniczymy się tylko do podania przykładów. Niech [math]\displaystyle{ a, b \in \mathbb{R} }[/math], mamy

[math]\displaystyle{ \int_a^b \text{sgn}(x) d x = | b | - | a | }[/math] [math]\displaystyle{ \qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1) }[/math] [math]\displaystyle{ \qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a }[/math]


Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w twierdzeniu D16 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ 0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x }[/math]


Z drugiej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych [math]\displaystyle{ C_j = \int_{m}^{j} f (x) d x }[/math] nie może być ograniczony od góry (w przeciwnym wypadku całka [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math] byłby zbieżna), zatem również rosnący ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f(k) }[/math] nie może być ograniczony od góry, co oznacza, że szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest rozbieżny.

Z trzeciej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest zbieżna, to ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f (k) }[/math] jest ciągiem rosnącym i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ F_j }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny.

Ponieważ zbieżność (rozbieżność) całki [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę [math]\displaystyle{ \lim_{x \to \infty} F (x) }[/math], gdzie [math]\displaystyle{ F(x) = \int f (x) d x }[/math] jest dowolną funkcją pierwotną.


Przykład D19
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

Stosując kryterium całkowe, można łatwo pokazać, że szeregi

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}} }[/math]

są zbieżne dla [math]\displaystyle{ s \gt 1 }[/math] i rozbieżne dla [math]\displaystyle{ s \leqslant 1 }[/math].



Twierdzenie D20
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, \infty) }[/math] oraz

[math]\displaystyle{ R(m) = \int_{m}^{\infty} f(x) d x }[/math]
[math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math]

gdzie [math]\displaystyle{ a \lt m }[/math], to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math]

[math]\displaystyle{ S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m) }[/math]
Dowód

Korzystając ze wzoru udowodnionego w twierdzeniu D16 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]

Czyli

[math]\displaystyle{ R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m) }[/math]

Odejmując od każdej ze stron nierówności liczbę [math]\displaystyle{ f(m) }[/math] i dodając do każdej ze stron nierówności sumę skończoną [math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math], otrzymujemy

[math]\displaystyle{ S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m) }[/math]

Co należało pokazać.


Przykład D21
Twierdzenie D20 umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]. Mamy

[math]\displaystyle{ S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
[math]\displaystyle{ \int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right) }[/math]
[math]\displaystyle{ R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right) }[/math]

Zatem

[math]\displaystyle{ S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m) }[/math]

Dla kolejnych wartości [math]\displaystyle{ m }[/math] otrzymujemy


W programie PARI/GP wystarczy napisać:

f(k) = 1.0 / (k+1) / sqrt(k)
S(m) = sum( k = 1, m, f(k) )
R(m) = Pi - 2*atan( sqrt(m) )
for(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); print( "j= ", j, "   a= ", suma + reszta - f(m), "   b= ", suma + reszta ))



Prostym wnioskiem z twierdzenia D16 jest następujące
Twierdzenie D22
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli przy wyliczaniu sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math] (gdzie [math]\displaystyle{ a \lt m }[/math]) zastąpimy sumę [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] całką [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math], to błąd wyznaczenia sumy szeregu nie przekroczy [math]\displaystyle{ f(m) }[/math].

Dowód

Korzystając ze wzoru z twierdzenia D16 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]

Dodając do każdej ze stron nierówności wyrażenie [math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) }[/math], dostajemy

[math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x }[/math]

Skąd wynika natychmiast

[math]\displaystyle{ - f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 \lt f(m) }[/math]

Czyli

[math]\displaystyle{ \left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m) }[/math]

Co kończy dowód.


Twierdzenie D23
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny, to dla każdego [math]\displaystyle{ n \geqslant m }[/math] prawdziwe jest następujące oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) }[/math]

[math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]

gdzie [math]\displaystyle{ B }[/math] oraz [math]\displaystyle{ C }[/math] są dowolnymi stałymi spełniającymi nierówności

[math]\displaystyle{ B \geqslant 1 }[/math]
[math]\displaystyle{ C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x }[/math]
Dowód

Z twierdzenia D16 mamy

[math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]
[math]\displaystyle{ \;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]


Uwaga D24
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, \infty) }[/math]. Rozważmy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math]. Zauważmy, że:

  • korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny
  • jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie D23), możemy znaleźć oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math]

Jednak dysponując już oszacowaniem sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math], możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math]. Zauważmy, że wybór większego [math]\displaystyle{ B }[/math] ułatwia dowód indukcyjny. Stałą [math]\displaystyle{ C }[/math] najlepiej zaokrąglić w górę do wygodnej dla nas wartości.


Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna.

Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie D23.


Zadanie D25
Korzystając z twierdzenia D23, znaleźć oszacowania sumy częściowej szeregów

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad }[/math] oraz [math]\displaystyle{ \qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]
Rozwiązanie

Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (0, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 0 }[/math] jest

[math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad }[/math] (zobacz: WolframAlpha)
[math]\displaystyle{ C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2 }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math]


Rozważmy szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x (\log x)^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (1, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 1 }[/math] jest

[math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad }[/math] (zobacz: WolframAlpha)
[math]\displaystyle{ C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots }[/math]

Przyjmijmy [math]\displaystyle{ C = 2.5 }[/math], zatem

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math]


Zadanie D26
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest zbieżny.

Rozwiązanie

Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}} }[/math]
[math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} }[/math]
[math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right) }[/math]
[math]\displaystyle{ \: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}} }[/math]
[math]\displaystyle{ \: \lt 2 - {\small\frac{1}{n + 1}} }[/math]

Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} \lt 2 }[/math]

Czyli ciąg sum częściowych [math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} }[/math] szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.


Zadanie D27
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest zbieżny.

Rozwiązanie

Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 2 }[/math]

[math]\displaystyle{ \sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 \lt 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730 }[/math]

Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} }[/math]

Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy

[math]\displaystyle{ S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} \lt 2.5 }[/math]

Czyli ciąg sum częściowych [math]\displaystyle{ S(n) }[/math] szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.



Szeregi nieskończone i liczby pierwsze

Twierdzenie D28
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Szereg jest szeregiem naprzemiennym i jego zbieżność wynika z twierdzenia D5.

Punkt 2.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p^2}} \lt \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} \lt {\small\frac{\pi^2}{6}} }[/math]

Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} \lt \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} }[/math]

Punkt 4.
Zbieżność wzoru wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest

[math]\displaystyle{ 0 \lt {\small\frac{1}{p (p - 1)}} \lt {\small\frac{1}{(p - 1)^2}} }[/math]


Twierdzenie D29
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Zbieżność tego szeregu udowodniliśmy w twierdzeniu B39, ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w postaci

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]

Wyrażenie w mianowniku ułamka możemy łatwo oszacować. Z twierdzenia A1 mamy ([math]\displaystyle{ a = 0.72 }[/math])

[math]\displaystyle{ p_k \log p_k \gt a \cdot k \log k \cdot \log (a \cdot k \log k) = }[/math]
[math]\displaystyle{ \;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) = }[/math]
[math]\displaystyle{ \;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right) }[/math]

Ponieważ dla [math]\displaystyle{ k \gt \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots }[/math] jest

[math]\displaystyle{ \log a + \log \log k \gt 0 }[/math]

to dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_k \log p_k \gt a \cdot k \cdot (\log k)^2 }[/math]

Wynika stąd, że dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwy jest ciąg nierówności

[math]\displaystyle{ 0 \lt {\small\frac{1}{p_k \log p_k}} \lt {\small\frac{1}{a \cdot k \cdot (\log k)^2}} }[/math]

Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}} }[/math] (zobacz twierdzenie D14 p. 4 lub przykład D19 p. 5) wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]

Punkt 2.
Zbieżność szeregu wynika z kryterium porównawczego (twierdzenie D9), bo

[math]\displaystyle{ 0 \lt {\small\frac{1}{p^2 \log p}} \lt {\small\frac{1}{p \log p}} }[/math]

Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} \lt \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots }[/math]

Punkt 4.
Zbieżność szeregu wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest

[math]\displaystyle{ 0 \lt {\small\frac{\log p}{p^2}} \lt {\small\frac{\log p}{p (p - 1)}} }[/math]


Twierdzenie D30
Szereg [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] jest rozbieżny.

Dowód

Dla potrzeb dowodu zapiszmy szereg w innej postaci

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]

Zauważmy, że dla [math]\displaystyle{ k \geqslant 3 }[/math] wyrazy szeregów [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math] spełniają nierówności

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}} }[/math]

Ponieważ szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] jest rozbieżny (zobacz B37), to na mocy kryterium porównawczego rozbieżny jest również szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]


Uwaga D31
Moglibyśmy oszacować rozbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] podobnie, jak to uczyniliśmy w przypadku twierdzenia B37, ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.


Twierdzenie D32
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Prawdziwe są następujące nierówności

Dowód

Punkt 1. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 1 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \gt }[/math]
[math]\displaystyle{ \;\;\; \gt n^n \cdot e^{- n} \cdot (n + 1) = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} \gt }[/math]
[math]\displaystyle{ \;\;\; \gt (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} e^{- (n + 1)} }[/math]

Ponieważ [math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n \lt e }[/math], zatem [math]\displaystyle{ {\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} \gt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 1.


Punkt 2. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 7 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \lt }[/math]
[math]\displaystyle{ \;\;\; \lt n^{n + 1} \cdot e^{- n} \cdot (n + 1) = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} \lt }[/math]
[math]\displaystyle{ \;\;\; \lt (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)} }[/math]

Ostatnia nierówność wynika z faktu, że [math]\displaystyle{ \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \lt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 2.


Twierdzenie D33
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, prawdziwe są oszacowania

Dowód

Punkt 1. (prawa nierówność)

Zauważmy, że

[math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots }[/math]
[math]\displaystyle{ \;\, \lt {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots }[/math]
[math]\displaystyle{ \;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
[math]\displaystyle{ \;\, = {\small\frac{n}{p - 1}} }[/math]

Punkt 1. (lewa nierówność)

Łatwo znajdujemy, że

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor \gt {\small\frac{n}{p}} - 1 }[/math]

Punkt 2. (prawa nierówność)

Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ (p - 1) W_p (n!) \lt n }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać

[math]\displaystyle{ (p - 1) W_p (n!) \leqslant n - 1 }[/math]

Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}} }[/math].

Punkt 2. (lewa nierówność)

Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ n - p \lt p \cdot W_p (n!) }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać

[math]\displaystyle{ n - p \leqslant p \cdot W_p (n!) - 1 }[/math]

Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1 }[/math].


Twierdzenie D34
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - 1 }[/math]
Dowód

Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy

[math]\displaystyle{ n! \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]

Ponieważ dla [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ n! \gt n^n e^{- n} }[/math] (zobacz punkt 1. twierdzenia D32), to

[math]\displaystyle{ n^n e^{- n} \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ n \log n - n \lt \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math]

Dzieląc strony przez [math]\displaystyle{ n }[/math], dostajemy szukaną nierówność.


Twierdzenie D35 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1.755367 }[/math]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}} }[/math]


to z twierdzenia D34 dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \gt - 1 }[/math]

Czyli

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \quad \;\: \gt - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \quad \;\: = - 1 - 0.755366610831 \ldots }[/math]
[math]\displaystyle{ \quad \;\: \gt - 1.755367 }[/math]

Gdzie wykorzystaliśmy zbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math] (twierdzenie D29 p. 3).


Twierdzenie D36 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt 0.386295 }[/math]
Dowód

Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} }[/math]

Ponieważ dla [math]\displaystyle{ n \geqslant 7 }[/math] jest [math]\displaystyle{ n! \lt n^{n + 1} e^{- n} }[/math], to

[math]\displaystyle{ \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} \lt n^{n + 1} e^{- n} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p \lt (n + 1) \cdot \log n - n }[/math]
[math]\displaystyle{ (n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p \lt (n + 1) \cdot \log n - n }[/math]


Skąd natychmiast wynika, że

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right) }[/math]
[math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n)) }[/math]
[math]\displaystyle{ \quad \;\: \lt - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: \lt \log 4 - 1 }[/math]
[math]\displaystyle{ \quad \;\: = 0.386294361 \ldots }[/math]

Druga nierówność wynika z twierdzenia A9. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla [math]\displaystyle{ n \lt 7 }[/math].


Twierdzenie D37
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt 1.141661 }[/math]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]

to z twierdzenia D36 dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \lt \log 4 - 1 }[/math]

Czyli

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, \lt \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, = \log 4 - 1 + 0.755366610831 \ldots }[/math]
[math]\displaystyle{ \,\, \lt 1.141661 }[/math]


Uwaga D38

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots }[/math]

gdzie [math]\displaystyle{ E = 1.332582275733 \ldots }[/math]

Dla [math]\displaystyle{ n \geqslant 319 }[/math] mamy też[7]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D39

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots }[/math]

gdzie [math]\displaystyle{ \gamma = 0.5772156649 \ldots }[/math] jest stałą Eulera.

Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie[8]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D40
Dla [math]\displaystyle{ n \leqslant 10^{10} }[/math] wartości wyrażeń

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E }[/math]
[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma }[/math]

są liczbami dodatnimi.


Twierdzenie D41
Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma }[/math]

gdzie

  • [math]\displaystyle{ \quad \gamma = 0.577215664901532 \ldots }[/math] jest stałą Eulera[9]
  • [math]\displaystyle{ \quad E = 1.332582275733220 \ldots }[/math][10]
  • [math]\displaystyle{ \quad E - \gamma = 0.755366610831688 \ldots }[/math][11]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}} }[/math]

zatem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots) }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma }[/math]


Zauważmy teraz, że

[math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots }[/math]

Zatem

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) }[/math]


Twierdzenie D42
Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]
Dowód

Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w pracy Pierre'a Dusarta[12]

[math]\displaystyle{ - \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} }[/math]

Ponieważ dla [math]\displaystyle{ x \gt e^2 \approx 7.389 }[/math] jest [math]\displaystyle{ 1 + {\small\frac{1}{\log x}} \lt 1.5 }[/math], to dla [math]\displaystyle{ n \geqslant 8 }[/math] mamy

[math]\displaystyle{ {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \lt {\small\frac{0.3}{\log n}} }[/math]


Zatem wyjściowy układ nierówności możemy zapisać w postaci

[math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]


Z tożsamości

[math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]


wynika natychmiast, że

[math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]


Prawa nierówność

Rozważmy prawą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 2974 }[/math]

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \lt {\small\frac{0.3}{\log n}} }[/math]


Z twierdzenia D41 wiemy, że

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma }[/math]

Zatem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, \lt \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = - \gamma + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]


Bezpośrednio obliczając, sprawdzamy, że nierówność

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]

jest prawdziwa dla wszystkich liczb [math]\displaystyle{ 318 \leqslant n \leqslant 3000 }[/math]


Lewa nierówność

Rozważmy teraz lewą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 8 }[/math]

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \gt - {\small\frac{0.3}{\log n}} }[/math]

Mamy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}} }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}} }[/math]


Korzystając kolejno z twierdzeń D16C18, dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right) }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}} }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right) }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]


Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę WolframAlpha. Ostatnia nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 153 }[/math]. Bezpośrednio obliczając, sprawdzamy, że nierówność

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]

jest prawdziwa dla wszystkich [math]\displaystyle{ 2 \leqslant n \leqslant 200 }[/math].


Zadanie D43
Niech [math]\displaystyle{ r = 1 - \log (2) \approx 0.30685281944 }[/math]. Pokazać, że z nierówności prawdziwej dla [math]\displaystyle{ x \geqslant 32 }[/math]

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]

wynika twierdzenie Czebyszewa.

Rozwiązanie

Z twierdzenia D42 wiemy, że dla [math]\displaystyle{ x \geqslant 318 }[/math] jest

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x \lt - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots \lt - 0.306852 \ldots = - r }[/math]

Zatem postulowane oszacowanie jest prawdziwe dla [math]\displaystyle{ n \geqslant 318 }[/math]. Sprawdzając bezpośrednio dla [math]\displaystyle{ 2 \leqslant x \leqslant 317 }[/math], łatwo potwierdzamy prawdziwość nierówności

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]

dla [math]\displaystyle{ x \geqslant 32 }[/math].


Niech [math]\displaystyle{ a \in \mathbb{Z} }[/math] i [math]\displaystyle{ a \geqslant 32 }[/math]. Korzystając z twierdzenia D33, łatwo znajdujemy oszacowanie

[math]\displaystyle{ a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n }[/math]
[math]\displaystyle{ \quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n }[/math]
[math]\displaystyle{ \quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1} }[/math]

gdzie [math]\displaystyle{ p_n \leqslant a \lt p_{n + 1} }[/math]. Oznaczając wyrażenie w nawiasie przez [math]\displaystyle{ U }[/math], mamy

[math]\displaystyle{ \log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} \lt \log a - r }[/math]

gdzie skorzystaliśmy z oszacowania wskazanego w treści zadania. Zatem [math]\displaystyle{ U \lt a \cdot e^{- r} }[/math].


Przypuśćmy, że mnożymy liczbę [math]\displaystyle{ a! }[/math] przez kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math]. Możemy postawić pytanie: kiedy w rozkładzie na czynniki pierwsze liczby [math]\displaystyle{ b! }[/math] musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to

[math]\displaystyle{ a! \cdot (a + 1) \cdot \ldots \cdot b = b! }[/math]
[math]\displaystyle{ \;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n }[/math]
[math]\displaystyle{ \;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n }[/math]
[math]\displaystyle{ \;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1} }[/math]
[math]\displaystyle{ \;\;\; = U^{b - 1} }[/math]
[math]\displaystyle{ \;\;\; \lt (a \cdot e^{- r})^{b - 1} }[/math]


Jednocześnie z twierdzenia D32 wiemy, że prawdziwa jest nierówność [math]\displaystyle{ b! \gt b^b e^{- b} }[/math], zatem

[math]\displaystyle{ b^b e^{- b} \lt b! \lt {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}} }[/math]
[math]\displaystyle{ b e^{- 1} \lt \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}} }[/math]
[math]\displaystyle{ b \lt \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}} }[/math]


Ponieważ [math]\displaystyle{ e^{1 - r} = e^{\log (2)} = 2 }[/math], to

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt 2 a }[/math]


Z oszacowania [math]\displaystyle{ b \lt 2 a }[/math] wynika, że [math]\displaystyle{ (a \cdot e^{- r})^{1 / b} \gt (a \cdot e^{-r})^{1 / 2 a} }[/math]. Możemy teraz zapisać uzyskane wyżej oszacowanie w postaci, w której prawa strona nierówności nie zależy od [math]\displaystyle{ b }[/math]

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} }[/math]


Ponieważ [math]\displaystyle{ e^{- r} = 0.735758 \ldots }[/math], to [math]\displaystyle{ (a \cdot e^{- r})^{1 / 2 a} \gt (a / 2)^{1 / 2 a} }[/math], co pozwala uprościć uzyskane oszacowanie

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} \lt {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} }[/math]


Pokażemy, że dla [math]\displaystyle{ a \gt 303.05 }[/math]

[math]\displaystyle{ {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} \lt 2 a - 5 }[/math]

Istotnie

[math]\displaystyle{ {\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} \lt 1 - {\small\frac{5}{2 a}} }[/math]
[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} \gt 1 }[/math]
[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 \gt 1 }[/math]

Wyrażenie w nawiasie kwadratowym jest funkcją rosnącą i ograniczoną (zobacz twierdzenie C17) i dla [math]\displaystyle{ a \geqslant 32 }[/math] przyjmuje wartości z przedziału [math]\displaystyle{ [0.353 \ldots, e^{- 1}) }[/math]. Zatem dla odpowiednio dużego [math]\displaystyle{ a }[/math] powyższa nierówność z pewnością jest prawdziwa. Łatwo sprawdzamy, że dla [math]\displaystyle{ a = 304 }[/math] jest

[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots }[/math]

Wynika stąd, że wszystkie kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math] mogą być liczbami złożonymi co najwyżej do chwili, gdy [math]\displaystyle{ b \lt 2 a - 5 }[/math], czyli [math]\displaystyle{ b \leqslant 2 a - 6 }[/math]. Zatem w przedziale [math]\displaystyle{ (a, 2 a) }[/math] musi znajdować się przynajmniej jedna liczba pierwsza. Dla [math]\displaystyle{ a \leqslant 303 }[/math] prawdziwość twierdzenia sprawdzamy bezpośrednio.


Definicja D44
Powiemy, że liczby pierwsze [math]\displaystyle{ p, q }[/math] są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli [math]\displaystyle{ \left | p - q \right | = 2 }[/math]


Twierdzenie D45* (Viggo Brun, 1919)
Suma odwrotności par liczb pierwszych [math]\displaystyle{ p }[/math] i [math]\displaystyle{ p + 2 }[/math], takich że liczba [math]\displaystyle{ p + 2 }[/math] jest również pierwsza, jest skończona

[math]\displaystyle{ \underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} \right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2 }[/math]

gdzie [math]\displaystyle{ B_2 = 1.90216058 \ldots }[/math] jest stałą Bruna[13][14].


Zadanie D46
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.

Rozwiązanie

Niech [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q = p + 4 }[/math] będą liczbami pierwszymi i [math]\displaystyle{ n \geqslant 1 }[/math]. Ponieważ liczby [math]\displaystyle{ p q }[/math] i [math]\displaystyle{ p + 2 }[/math] są względnie pierwsze, to z twierdzenia Dirichleta wiemy, że wśród liczb [math]\displaystyle{ a_n = p q n + (p + 2) }[/math] jest nieskończenie wiele liczb pierwszych, a jednocześnie żadna z liczb [math]\displaystyle{ a_n }[/math] nie tworzy pary liczb bliźniaczych, bo

[math]\displaystyle{ a_n - 2 = p q n + p = p (q n + 1) }[/math]
[math]\displaystyle{ a_n + 2 = p q n + (p + 4) = q (p n + 1) }[/math]

są liczbami złożonymi. Najprostsze przykłady to [math]\displaystyle{ a_n = 21 n + 5 }[/math] i [math]\displaystyle{ b_n = 77 n + 9 }[/math]

Najłatwiej wszystkie przypadki takich ciągów wyszukać w programie PARI/GP. Polecenie

for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, "   b= ",b) )))

wyszukuje wszystkie liczby dodatnie [math]\displaystyle{ a, b }[/math], gdzie [math]\displaystyle{ b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor }[/math], które tworzą ciągi [math]\displaystyle{ a k + b }[/math] o poszukiwanych właściwościach. Oczywiście ciągi [math]\displaystyle{ a k + (a - b) }[/math] również są odpowiednie. Przykładowo dla [math]\displaystyle{ a \leqslant 50 }[/math] mamy

[math]\displaystyle{ 15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22 }[/math]



Dowód z Księgi. Rozbieżność sumy [math]\displaystyle{ \textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}} }[/math]

Twierdzenie D47
Suma odwrotności liczb pierwszych jest rozbieżna.

Dowód

Poniższy dowód został przedstawiony przez Erdősa w pracy[15] z 1938 roku. Jest to bardzo elegancki i chyba najprostszy dowód tego twierdzenia.

Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C }[/math], gdzie [math]\displaystyle{ C }[/math] jest pewną stałą. Zbieżność szeregu o wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby [math]\displaystyle{ r }[/math] takiej, że [math]\displaystyle{ \sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} \lt {\small\frac{1}{2}} }[/math].

Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory [math]\displaystyle{ P = \{ p_1, p_2, \ldots, p_r \} \; }[/math] i [math]\displaystyle{ \; Q = \{ p_{r + 1}, p_{r + 2,} \ldots \} }[/math].

Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór [math]\displaystyle{ \mathbb{Z}_Q }[/math] liczb podzielnych przez dowolną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math] i zbiór [math]\displaystyle{ \mathbb{Z}_P }[/math] liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math]. Czyli liczby ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] muszą być iloczynami potęg liczb pierwszych ze zbioru [math]\displaystyle{ P }[/math].


Niech [math]\displaystyle{ M }[/math] będzie dostatecznie dużą liczbą całkowitą.

Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_Q }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]

Zauważmy, że liczb nie większych od [math]\displaystyle{ M }[/math] i podzielnych przez liczbę pierwszą [math]\displaystyle{ p }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor {\small\frac{M}{p}} \right\rfloor }[/math] (zobacz A19). Łatwo otrzymujemy oszacowanie[a]

[math]\displaystyle{ \sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor \lt M \cdot \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} M }[/math]

bo z założenia [math]\displaystyle{ \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} }[/math]. Zatem liczb takich, że [math]\displaystyle{ k \in \mathbb{Z}_Q \, }[/math] i [math]\displaystyle{ \, k \leqslant M }[/math] jest mniej niż [math]\displaystyle{ {\small\frac{M}{2}} }[/math].

Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]

Każdą liczbę ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] możemy zapisać w postaci [math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r }[/math]. Niech [math]\displaystyle{ \alpha_i = 2 \beta_i + \delta_i }[/math], gdzie [math]\displaystyle{ \delta_i }[/math] jest resztą z dzielenia liczby [math]\displaystyle{ \alpha_i }[/math] przez [math]\displaystyle{ 2 }[/math]. Zatem

[math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r) }[/math]

Ponieważ [math]\displaystyle{ \delta_i }[/math] może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci [math]\displaystyle{ p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r }[/math] jest dokładnie [math]\displaystyle{ 2^r }[/math], a kwadratów liczb całkowitych nie większych od [math]\displaystyle{ M }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M} }[/math]. Zatem liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest nie więcej niż [math]\displaystyle{ 2^r \sqrt{M} \, }[/math][b].


Ponieważ [math]\displaystyle{ \mathbb{Z}_P \cup \mathbb{Z}_Q =\mathbb{Z}_+ }[/math] i liczb [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest po prostu [math]\displaystyle{ M }[/math], to musi być prawdziwe oszacowanie

[math]\displaystyle{ M \lt 2^r \sqrt{M} + {\small\frac{M}{2}} }[/math]

Czyli

[math]\displaystyle{ 2^{r + 1} \gt \sqrt{M} }[/math]

Co jest niemożliwe, bo [math]\displaystyle{ r }[/math] jest ustalone, a [math]\displaystyle{ M }[/math] może być dowolnie duże. Wystarczy przyjąć [math]\displaystyle{ M \geqslant 2^{2 r + 2} }[/math].



[a] Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb [math]\displaystyle{ k }[/math]. Dla przykładu: gdy [math]\displaystyle{ M \gt p_{r + 1} p_{r + 2} }[/math], to liczba [math]\displaystyle{ p_{r + 1} p_{r + 2} }[/math] zostanie policzona dwukrotnie: raz jako podzielna przez [math]\displaystyle{ p_{r + 1} }[/math] i drugi raz jako podzielna przez [math]\displaystyle{ p_{r + 2} }[/math]. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.

[b] Zauważmy, że dla [math]\displaystyle{ M \gt 8 }[/math] liczba [math]\displaystyle{ a^2 }[/math] taka, że [math]\displaystyle{ a^2 \leqslant M \lt (a + 1)^2 }[/math] wystąpi dokładnie jeden raz (jako [math]\displaystyle{ a^2 \cdot 1 }[/math]), ale my oszacujemy, że pojawiła się [math]\displaystyle{ 2^r }[/math] razy. Można pokazać, że dla dowolnych [math]\displaystyle{ r \geqslant 1 \; }[/math] i [math]\displaystyle{ \; M \geqslant 1 }[/math], liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math], jest mniej niż [math]\displaystyle{ 2^r \sqrt{M} }[/math]. Jest ich nawet mniej niż [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor }[/math], poza przypadkami [math]\displaystyle{ r = 1 \; }[/math] i [math]\displaystyle{ \; M = 2, 3, 8 }[/math], kiedy to ilość takich liczb jest równa [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor \lt 2^r \sqrt{M} }[/math].



Sumowanie przez części

Uwaga D48
Omawianie metody sumowania przez części[16] rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja

[math]\displaystyle{ D(k) = \begin{cases} 1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\ 0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\ \end{cases} }[/math]


Łatwo znajdujemy związek funkcji [math]\displaystyle{ D(k) }[/math] z funkcją [math]\displaystyle{ \pi (k) }[/math]

[math]\displaystyle{ \pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1 }[/math]
[math]\displaystyle{ \; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) }[/math]


Twierdzenie D49
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]. Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Dowód

Rozpatrywaną sumę możemy zapisać w postaci

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{D (k)}{k}} }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k) - \pi (k - 1)}{k}} }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^n {\small\frac{\pi (k - 1)}{k}} }[/math]

W drugiej sumie zmieniamy zmienną sumowania. Niech [math]\displaystyle{ j = k - 1 }[/math]. Sumowanie po [math]\displaystyle{ k }[/math] przebiegało od [math]\displaystyle{ 2 }[/math] do [math]\displaystyle{ n }[/math], zatem sumowanie po [math]\displaystyle{ j }[/math] będzie przebiegało od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ n - 1 }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{j = 1}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{j = 2}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]

Ponieważ [math]\displaystyle{ \pi (1) = 0 }[/math]. Zmieniając jedynie oznaczenie zmiennej sumowania, mamy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k + 1}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^n \pi (k) \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

Co należało pokazać.


Zadanie D50
Pokazać, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math].

Rozwiązanie

Z twierdzenia D49 wiemy, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Zatem dla [math]\displaystyle{ n \geqslant 4 }[/math] jest

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + {\small\frac{1}{3}} + \sum_{k = 4}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot {\small\frac{1}{\log n}} + {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{k}{\log k \cdot k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log k}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}} }[/math]

Korzystając z twierdzenia D16, otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log x \biggr\rvert_{5}^{n + 1} + {\small\frac{1}{3}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log (n + 1) - {\small\frac{2}{3}} \cdot \log \log 5 + {\small\frac{1}{3}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math]

Zauważmy, że znacznie mniejszym nakładem pracy otrzymaliśmy lepsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] (porównaj B37).


Zadanie D51
Pokazać, że oszacowanie [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math], gdzie [math]\displaystyle{ \varepsilon \in (0, 1) }[/math], nie może być prawdziwe dla prawie wszystkich liczb naturalnych.

Rozwiązanie

Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Zatem istnieje taka liczba [math]\displaystyle{ n_0 }[/math], że dla wszystkich [math]\displaystyle{ n \geqslant n_0 }[/math] jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Korzystając ze wzoru (zobacz D49)

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

dla liczby [math]\displaystyle{ n \gt n_0 }[/math] otrzymujemy oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \lt {\small\frac{n^{1 - \varepsilon}}{n}} + \sum_{k = 2}^{n_0 - 1} {\small\frac{\pi (k)}{k (k + 1)}} + \sum_{k = n_0}^{n - 1} {\small\frac{k^{1 - \varepsilon}}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{1}{n^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n - 1} {\small\frac{1}{k^{\varepsilon} (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n} {\small\frac{1}{k^{1 + \varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; \leqslant {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + {\small\frac{1}{(n_0)^{1 + \varepsilon}}} + \int^n_{n_0} {\small\frac{d x}{x^{1 + \varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; = C_2 + \left[ - {\small\frac{1}{\varepsilon \cdot x^{\varepsilon}}} \biggr\rvert_{n_0}^{n} \right] }[/math]
[math]\displaystyle{ \quad \; = C_2 - {\small\frac{1}{\varepsilon n^{\varepsilon}}} + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; \lt C_2 + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; = C_3 }[/math]

Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem [math]\displaystyle{ n }[/math] (zobacz B37, D47, D50).


Twierdzenie D52 (sumowanie przez części)
Niech [math]\displaystyle{ a_j }[/math], [math]\displaystyle{ b_j }[/math] będą ciągami określonymi przynajmniej dla [math]\displaystyle{ s \leqslant j \leqslant n }[/math]. Prawdziwy jest następujący wzór

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Wzór ten nazywamy wzorem na sumowanie przez części.

Dowód

Jeżeli potrafimy wyliczyć lub oszacować sumę liczoną dla jednego z czynników (powiedzmy, że dla [math]\displaystyle{ b_j }[/math]), to do wyliczenia lub oszacowania sumy [math]\displaystyle{ \sum_{j = s}^{n} a_j b_j }[/math] może być pomocny dowodzony wzór

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Nim przejdziemy do dowodu, zauważmy, że wprost z definicji funkcji [math]\displaystyle{ B(k) }[/math] otrzymujemy

[math]\displaystyle{ B(s) = \sum_{j = s}^{s} b_j = b_s }[/math]

oraz

[math]\displaystyle{ B(k) - B (k - 1) = \sum_{j = s}^{k} b_j - \sum^{k - 1}_{j = s} b_j = b_k + \sum_{j = s}^{k - 1} b_j - \sum_{j = s}^{k - 1} b_j = b_k }[/math]


Przekształcając prawą stronę dowodzonego wzoru, pokażemy, że obie strony są równe.

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
[math]\displaystyle{ \;\;\,\, = a_n B (n) - \sum^{n - 1}_{k = s} a_{k + 1} B (k) + \sum_{k = s}^{n - 1} a_k B (k) }[/math]

W pierwszej sumie po prawej stronie zmieniamy wskaźnik sumowania na [math]\displaystyle{ j = k + 1 }[/math], a w drugiej sumie zmieniamy tylko nazwę wskaźnika

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n B (n) - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n - 1} a_j B (j) }[/math]
[math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n} a_j B (j) }[/math]
[math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s + 1}^{n} a_j B (j) + a_s B (s) }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j [B (j) - B (j - 1)] + a_s b_s }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j b_j + a_s b_s }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s}^{n} a_j b_j }[/math]

Co należało pokazać.


Zadanie D53
Niech [math]\displaystyle{ r \neq 1 }[/math]. Pokazać, że [math]\displaystyle{ \sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math].

Rozwiązanie

Korzystając ze wzoru na sumowanie przez części, połóżmy [math]\displaystyle{ s = 0 }[/math], [math]\displaystyle{ a_k = k \; }[/math] i [math]\displaystyle{ \; b_k = r^k }[/math]. Zauważmy, że sumowanie od [math]\displaystyle{ k = 0 }[/math] nic nie zmienia, a nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy

[math]\displaystyle{ \sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}} }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r) }[/math]
[math]\displaystyle{ \;\, = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math]

Co należało pokazać.


Twierdzenie D54 (kryterium Dirichleta)
Niech [math]\displaystyle{ (a_k) \; }[/math] i [math]\displaystyle{ \; (b_k) }[/math] będą ciągami liczb rzeczywistych. Jeżeli

  •    ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny

  •    [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = 0 }[/math]
  •    istnieje taka stała [math]\displaystyle{ M }[/math], że [math]\displaystyle{ \left| \sum_{j = 1}^{k} b_j \right| \leqslant M }[/math] dla dowolnej liczby [math]\displaystyle{ k }[/math]

to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] jest zbieżny.

Dowód

Korzystając ze wzoru na sumowanie przez części, możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = 1}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
[math]\displaystyle{ \;\;\,\, = a_n \cdot B (n) + \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = 1}^{k} b_j }[/math]. Z założenia ciąg [math]\displaystyle{ B(n) }[/math] jest ograniczony i [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], zatem (zobacz C13)

[math]\displaystyle{ \lim_{n \rightarrow \infty} a_n \cdot B (n) = 0 }[/math]

Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny. Jeżeli jest malejący, to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = M (a_1 - a_n) }[/math]

(zobacz D12). Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest rosnący, to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k) }[/math]
[math]\displaystyle{ \;\;\; = - M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = - M (a_1 - a_n) }[/math]

Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg [math]\displaystyle{ (a_n) }[/math] jest ograniczony, bo jest zbieżny (zobacz C9), możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U }[/math]

Ponieważ sumy częściowe szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) | }[/math] tworzą ciąg rosnący i ograniczony od góry, to szereg ten jest zbieżny (zobacz C10). Wynika stąd zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k) }[/math] (zobacz D10). Zatem szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] musi być zbieżny. Co należało pokazać.


Zadanie D55
Udowodnić następujące wzory

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

Rozwiązanie

Punkt 1.

Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) }[/math]

Ponieważ

[math]\displaystyle{ 2 \sin x \cdot \sin y = \cos (x - y) - \cos (x + y) }[/math]

to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \sin j = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j + 2 \sin \left( \tfrac{1}{2} \right) \sin (k + 1) }[/math]
[math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) + \cos \left( k + \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]

Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.


Punkt 2.

Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = \sin (k + 1) - \sin (1) }[/math]

Ponieważ

[math]\displaystyle{ 2 \sin x \cos y = \sin (x - y) + \sin (x + y) }[/math]

to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \cos \left( j + \tfrac{1}{2} \right) = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) + 2 \sin \left( \tfrac{1}{2} \right) \cdot \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \quad \,\, = \sin (k + 1) - \sin (1) - \sin (k + 1) + \sin (k + 2) }[/math]
[math]\displaystyle{ \quad \,\, = \sin (k + 2) - \sin (1) }[/math]

Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.


Zadanie D56
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny.

Rozwiązanie

W zadaniu D55 p.1 pokazaliśmy, że prawdziwy jest wzór

[math]\displaystyle{ \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} }[/math]

Skąd natychmiast otrzymujemy oszacowanie[a]

[math]\displaystyle{ \left| \sum_{j = 1}^{k} \sin j \right| = \left| {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \right| \leqslant {\small\frac{1}{\sin \left( \tfrac{1}{2} \right)}} }[/math]

Ponieważ spełnione są założenia kryterium Dirichleta, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny. Wiemy, że [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} = \tfrac{1}{2} (\pi - 1) = 1.070796 \ldots }[/math] (WolframAlpha).



[a] Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie

[math]\displaystyle{ - 0.127671 \lt {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} \lt 1.958159 }[/math]


Zadanie D57
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math] jest zbieżny, a suma tego szeregu jest w przybliżeniu równa [math]\displaystyle{ 0.6839137864 \ldots }[/math]

Rozwiązanie

Zbieżność szeregu wynika z kryterium Dirichleta, co pokazujemy tak samo jak w zadaniu poprzednim. Oszacowanie sumy szeregu jest znacznie trudniejsze, bo ciąg sum częściowych [math]\displaystyle{ S_n = \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} }[/math] silnie oscyluje i dopiero dla bardzo dużych [math]\displaystyle{ n }[/math] wynik sumowania mógłby być znaczący. Przykładowo:

[math]\displaystyle{ S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078 }[/math]

Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = \sin k }[/math]. Korzystając ze wzoru pokazanego w zadaniu D55 p.1, otrzymujemy

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) }[/math]

gdzie

[math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Sumując przez części, dostajemy

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k)}} \right) B (k) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + \sum^{n - 1}_{k = 2} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \left( C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, mamy

[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika [math]\displaystyle{ \cos \left( k + \tfrac{1}{2} \right) }[/math], bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz D12). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum

[math]\displaystyle{ S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

otrzymujemy

[math]\displaystyle{ S_{10^6} = 0.683913783004 \qquad S_{10^7} = 0.683913786642 \qquad S_{10^8} = 0.683913786411 \qquad S_{10^9} = 0.683913786415 }[/math]

Jest to przybliżona wartość sumy szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math].


Oszacowanie błędu z jakim wyznaczona została wartość sumy

Kolejne sumowanie przez części pozwoli określić błąd z jakim wyznaczona została wartość sumy [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math]. Rozważmy sumę

[math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \; }[/math] i [math]\displaystyle{ \; b_k = \cos \left( k + \tfrac{1}{2} \right) }[/math]. Korzystając ze wzoru pokazanego w zadaniu D55 p.2, otrzymujemy

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1) }[/math]

gdzie

[math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Wzór na sumowanie przez części ma teraz postać

[math]\displaystyle{ \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} - {\small\frac{1}{\log (k)}} + {\small\frac{1}{\log (k + 1)}} \right) B (k) }[/math]
[math]\displaystyle{ \;\;\, = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) + \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) (C_3 + C_4 \cdot \sin (k + 1)) }[/math]

Zauważmy, że

[math]\displaystyle{ C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) = C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) }[/math]
[math]\displaystyle{ \:\, = C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) - C_3 \left( {\small\frac{1}{\log (3)}} - {\small\frac{1}{\log (n + 1)}} \right) }[/math]

bo szeregi po prawej stronie są szeregami teleskopowymi.

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = {\small\frac{C_3}{\log (2)}} - {\small\frac{C_3}{\log (3)}} + C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]


Zbierając, otrzymaliśmy wzór

[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]

gdzie

[math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad \quad \: C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]
[math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Dla sum

[math]\displaystyle{ S_n = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]

dostajemy

[math]\displaystyle{ S_{10^7} = 0.68391378641827479894 \qquad S_{10^8} = 0.68391378641827482233 \qquad S_{10^9} = 0.68391378641827482268 }[/math]

Łatwo oszacujemy błąd z jakim wyliczyliśmy wartość sumy szeregu [math]\displaystyle{ S }[/math]

[math]\displaystyle{ | S - S_n | = \left| C_2 C_4 \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left| \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
[math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) | }[/math]
[math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| }[/math]                (zobacz przypis [a])
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right] }[/math]
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log (n + 2)}} \right) }[/math]

Dla [math]\displaystyle{ n = 10^9 }[/math] otrzymujemy

[math]\displaystyle{ | S - S_n | \lt 2.533 \cdot 10^{- 12} }[/math]

Zatem [math]\displaystyle{ S = 0.6839137864 \ldots }[/math], gdzie wszystkie wypisane cyfry są prawidłowe.



[a] Z łatwego do sprawdzenia wzoru

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]

wynika, że wyrażenie [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] maleje ze wzrostem [math]\displaystyle{ k }[/math], czyli ciąg [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] jest ciągiem malejącym, zatem

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \gt {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} }[/math]

Ciągi [math]\displaystyle{ (a_k)_{k = 1}^n }[/math] liczb rzeczywistych takie, że [math]\displaystyle{ 2 a_k \leqslant a_{k - 1} + a_{k + 1} }[/math] dla [math]\displaystyle{ k = 2, \ldots, n - 1 }[/math] nazywamy ciągami wypukłymi[17]. Wprost z definicji funkcji wypukłej wynika, że jeżeli [math]\displaystyle{ f(x) }[/math] jest funkcją wypukłą i [math]\displaystyle{ a_k = f (k) }[/math], to ciąg [math]\displaystyle{ (a_k) }[/math] jest ciągiem wypukłym.


Zadanie D58
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Rozwiązanie

Korzystając ze wzoru na sumowanie przez części, połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = \log k \; }[/math] i [math]\displaystyle{ \; b_k = D (k) }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) = \pi (k) }[/math]
[math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \sum_{p \leqslant n} \log p = \theta (n) }[/math]

Zatem

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

Co należało pokazać.


Twierdzenie D59
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math], gdzie [math]\displaystyle{ A, B \in \mathbb{R}_+ }[/math], to istnieje granica

[math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Dowód

Z definicji funkcji [math]\displaystyle{ \theta (n) }[/math] łatwo otrzymujemy

[math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p \lt \sum_{p \leqslant n} \log n = \log n \cdot \pi (n) }[/math]

Skąd wynika, że

[math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]

Oszacowanie wyrażenia [math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} }[/math] od dołu będzie wymagało więcej pracy. Ze wzoru

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

(zobacz D58) otrzymujemy

[math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

Z twierdzenia C18 i założonego oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math]

[math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math]

dostajemy

[math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{\log n}{\log n \cdot A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{k}} \cdot {\small\frac{B \cdot k}{\log k}} }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{B}{A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} }[/math]

Nie możemy oszacować sumy całką, bo całka [math]\displaystyle{ \int {\small\frac{d x}{\log x}} }[/math] jest funkcją nieelementarną. Nie możemy też pozwolić sobie na zbyt niedokładne oszacowanie sumy i nie możemy napisać

[math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} \lt {\small\frac{n - 2}{\log 2}} \lt {\small\frac{n}{\log 2}} }[/math]

Wyjściem z tej sytuacji jest odpowiedni podział przedziału sumowania i szacowanie w każdym przedziale osobno. Niech punkt podziału [math]\displaystyle{ M }[/math] spełnia warunek [math]\displaystyle{ \sqrt{n} \leqslant M \lt \sqrt{n} + 1 }[/math]. Mamy

[math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} = \sum_{k = 2}^{M - 1} {\small\frac{1}{\log k}} + \sum^{n - 1}_{k = M} {\small\frac{1}{\log k}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{M - 2}{\log 2}} + {\small\frac{n - M}{\log M}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{M}{\log 2}} + {\small\frac{n}{\log M}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{n}{\log \sqrt{n}}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{B}{A \cdot n}} \cdot \left( {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} \right) }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) }[/math]

Łącząc otrzymane rezultaty, otrzymujemy

[math]\displaystyle{ 1 - {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) \lt {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]

Na mocy twierdzenia o trzech ciągach (zobacz C9) mamy

[math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]

Co należało pokazać.


Uwaga D60
Funkcja [math]\displaystyle{ \theta (n) }[/math] jest ściśle związana z dobrze nam znaną funkcją [math]\displaystyle{ P (n) }[/math]. Ponieważ [math]\displaystyle{ P(n) = \prod_{p \leqslant n} p }[/math], to

[math]\displaystyle{ \log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n) }[/math].

Z twierdzenia D59 wynika, że jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math]. Jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math] (zobacz C12 p.3).

Wiemy, że dla funkcji [math]\displaystyle{ \theta (n) }[/math], gdzie [math]\displaystyle{ n \geqslant 2 }[/math], prawdziwe jest oszacowanie[18]

[math]\displaystyle{ \left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}} }[/math]


Zadanie D61
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Rozwiązanie

Kładąc we wzorze na sumowanie przez części (zobacz D52) [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = D (k) \cdot \log k }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) \cdot \log k = \sum_{p \leqslant k} \log p = \theta (k) }[/math]
[math]\displaystyle{ \sum_{k = 2}^{n} D (k) = \sum_{p \leqslant n} 1 = \pi (n) }[/math]

Zatem

[math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) \theta (k) }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} {\small\frac{\log k - \log (k + 1)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]

Co należało pokazać.



Iloczyn Cauchy'ego szeregów

Twierdzenie D62 (kryterium d'Alemberta)
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem liczb rzeczywistych i istnieje granica

[math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| }[/math]

Jeżeli

  •    [math]\displaystyle{ g \lt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny
  •    [math]\displaystyle{ g \gt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest rozbieżny
Dowód

Rozważmy najpierw przypadek, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt 1 }[/math]. Niech [math]\displaystyle{ r }[/math] będzie dowolną liczbą rzeczywistą taką, że [math]\displaystyle{ g \lt r \lt 1 }[/math] i przyjmijmy [math]\displaystyle{ \varepsilon = r - g }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek

[math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]

Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math]. Z prawej nierówności otrzymujemy, że dla [math]\displaystyle{ n \geqslant N }[/math] jest

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt r }[/math]
[math]\displaystyle{ | a_{n + 1} | \lt r | a_n | }[/math]
[math]\displaystyle{ | a_{n + k} | \lt r^k | a_n | }[/math]

Ostatnią nierówność można łatwo udowodnić metodą indukcji matematycznej względem [math]\displaystyle{ k }[/math]. Korzystając ze wzoru na sumę szeregu geometrycznego[19], otrzymujemy

[math]\displaystyle{ \sum_{k = N + 1}^{\infty} | a_k | = \sum_{k = 1}^{\infty} | a_{N + k} | \lt \sum_{k = 1}^{\infty} r^k | a_n | = r | a_n | \sum_{k = 1}^{\infty} r^{k - 1} = | a_n | \cdot {\small\frac{r}{1 - r}} }[/math]

Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest bezwzględnie zbieżny.


W przypadku, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt 1 }[/math] wybieramy liczbę [math]\displaystyle{ r }[/math] tak, aby spełniała warunek [math]\displaystyle{ 1 \lt r \lt g }[/math] i przyjmujemy [math]\displaystyle{ \varepsilon = g - r }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek

[math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]

Przyjmując, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math], z lewej nierówności otrzymujemy dla [math]\displaystyle{ n \geqslant N }[/math]

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt r \gt 1 }[/math]

Czyli [math]\displaystyle{ | a_{n + 1} | \gt | a_n | }[/math], zatem dla wszystkich [math]\displaystyle{ k \gt N }[/math] jest [math]\displaystyle{ | a_k | \gt | a_N | \gt 0 }[/math] i nie może być spełniony podstawowy warunek zbieżności szeregu (zobacz D4). Zatem szereg jest rozbieżny. Co kończy dowód.


Uwaga C62
W przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1 }[/math] kryterium d'Alemberta nie rozstrzyga o zbieżności lub rozbieżności szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math]. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów

[math]\displaystyle{ \sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}} }[/math]


Przykład D64
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Zbadamy zbieżność szeregu

[math]\displaystyle{ e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

Ponieważ

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0 }[/math]

to z kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.


Zadanie D65
Pokazać, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}} }[/math] jest rozbieżny.

Rozwiązanie

Łatwo znajdujemy, że

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| = {\small\frac{(n + 1)^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{n^n}} = {\small\frac{(n + 1) (n + 1)^n}{(n + 1) n!}} \cdot {\small\frac{n!}{n^n}} = \left( 1 + {\small\frac{1}{n}} \right)^n \xrightarrow{\; n \rightarrow \infty \;} e \gt 1 }[/math]

Z kryterium d'Alemberta wynika, że szereg jest rozbieżny.


Uwaga D66
W twierdzeniu A37, korzystając z następującej definicji funkcji [math]\displaystyle{ e^x }[/math]

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

pominęliśmy dowód własności [math]\displaystyle{ e^x e^{- x} = 1 }[/math]. Spróbujemy teraz pokazać, że [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

[math]\displaystyle{ e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} }[/math]

Oznaczmy [math]\displaystyle{ a_i = {\small\frac{x^i}{i!}} }[/math] oraz [math]\displaystyle{ b_j = {\small\frac{y^j}{j!}} }[/math] i przyjrzyjmy się sumowaniu po [math]\displaystyle{ i, j }[/math]. W podwójnej sumie po prawej stronie [math]\displaystyle{ \sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j }[/math] sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ a_5 b_1 }[/math] [math]\displaystyle{ a_5 b_2 }[/math] [math]\displaystyle{ a_5 b_3 }[/math] [math]\displaystyle{ a_5 b_4 }[/math] [math]\displaystyle{ a_5 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ a_4 b_2 }[/math] [math]\displaystyle{ a_4 b_3 }[/math] [math]\displaystyle{ a_4 b_4 }[/math] [math]\displaystyle{ a_4 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ a_3 b_3 }[/math] [math]\displaystyle{ a_3 b_4 }[/math] [math]\displaystyle{ a_3 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ a_2 b_4 }[/math] [math]\displaystyle{ a_2 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ a_1 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ \; \cdots \; }[/math]

Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Co odpowiada sumie [math]\displaystyle{ \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k} b_{n - k} }[/math], gdzie [math]\displaystyle{ n }[/math] numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} }[/math]

Ponieważ

[math]\displaystyle{ {\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} }[/math]

to otrzymujemy

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y} }[/math]

Pokazaliśmy tym samym, że z definicji

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i w związku z tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.


Definicja D67
Iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0 }[/math]

W przypadku szeregów, których wyrazy są numerowane od liczby [math]\displaystyle{ 1 }[/math], iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 1}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 1}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1 }[/math]


Zadanie D68
Niech [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]. Pokazać, że

  •    jeżeli [math]\displaystyle{ (a_n) = (1, 0, 0, 0, 0, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = b_n }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = \sum_{k = 0}^{n} b_k = B_n }[/math]
  •    jeżeli [math]\displaystyle{ a_n = b_n = r^n }[/math], to [math]\displaystyle{ c_n = (n + 1) r^n }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ q \neq r }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Rozwiązanie

Punkt 1.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n = b_n }[/math]

Punkt 2.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_{n - k} = \sum^n_{j = 0} b_j = B_n }[/math]

Punkt 3.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} r^k r^{n - k} = \sum_{k = 0}^{n} r^n = (n + 1) r^n }[/math]

Punkt 4.

Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ c_0 = a_0 b_0 = a b }[/math]

Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ c_1 = a_0 b_1 + a_1 b_0 = a r + b q }[/math]

Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k} }[/math]

Jeżeli [math]\displaystyle{ r = 0 }[/math], to [math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = 0 }[/math]. Jeżeli [math]\displaystyle{ r \neq 0 }[/math], to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot \frac{\left( {\small\frac{q}{r}} \right)^n - {\small\frac{q}{r}}}{{\small\frac{q}{r}} - 1} = {\small\frac{r q^n - q r^n}{q - r}} }[/math]

Zauważmy, że znaleziony wzór obejmuje również przypadek [math]\displaystyle{ r = 0 }[/math]. Zatem

[math]\displaystyle{ c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right) }[/math]

Zbierając, otrzymujemy

[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]


Przykład D69
Ostatni punkt zadania D68 pozwala stworzyć wiele przykładowych szeregów i ich iloczynów Cauchy'ego. Przypomnijmy, że

[math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ \quad (b_n) = (b, r, r^2, r^3, \ldots) }[/math],  gdzie [math]\displaystyle{ \, q \neq r }[/math]
[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]


Przykłady zebraliśmy w tabeli.


Przykład D70
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz D5)

[math]\displaystyle{ \sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad }[/math] (WolframAlpha)

Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} }[/math]

Ale [math]\displaystyle{ k \leqslant n \; }[/math] i [math]\displaystyle{ \; n - k \leqslant n }[/math], zatem

[math]\displaystyle{ {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}} }[/math]

Czyli

[math]\displaystyle{ | c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1 }[/math]

Ponieważ [math]\displaystyle{ \lim_{n \rightarrow \infty} c_n \neq 0 }[/math], to iloczyn Cauchy'ego jest rozbieżny (zobacz D4).


Zadanie D71
Pokazać, że jeżeli [math]\displaystyle{ a_n = b_n = r^n \; }[/math] i [math]\displaystyle{ \; c_n = (n + 1) r^n }[/math] (zobacz D68 p.3), to szeregi [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] oraz [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Rozwiązanie

Zbieżność szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] łatwo zbadamy, stosując kryterium d'Alemberta.

[math]\displaystyle{ \left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r | }[/math]

Zatem szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] jest zbieżny, gdy [math]\displaystyle{ | r | \lt 1 }[/math] i rozbieżny, gdy [math]\displaystyle{ | r | \gt 1 }[/math], tak samo, jak szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n }[/math]. W przypadku, gdy [math]\displaystyle{ r = \pm 1 }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n }[/math] jest rozbieżny, a odpowiednie sumy częściowe szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] są równe

  •     gdy [math]\displaystyle{ r = 1 }[/math], [math]\displaystyle{ c_n = n + 1 }[/math], [math]\displaystyle{ \quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad }[/math] (zobacz [a], WolframAlpha)
  •     gdy [math]\displaystyle{ r = - 1 }[/math], [math]\displaystyle{ c_n = (n + 1) (- 1)^n }[/math], [math]\displaystyle{ \quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad }[/math] (zobacz D53, WolframAlpha)

W przypadku, gdy [math]\displaystyle{ | r | \lt 1 }[/math] wiemy[19], że [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}} }[/math]. Korzystając z zadania D53, otrzymujemy

[math]\displaystyle{ \sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}} }[/math]


Ponieważ szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] jest zbieżny, gdy [math]\displaystyle{ | r | \lt 1 }[/math], to musi być [math]\displaystyle{ \lim_{n \rightarrow \infty} (n + 1) r^n = 0 }[/math] (zobacz D4). Pokazaliśmy, że w rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów.



[a] Zauważmy, że

[math]\displaystyle{ \sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}} }[/math]


Uwaga D72
Przykłady D69 i D70 pokazują, że w ogólności nie jest prawdziwy wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]

Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.


Uwaga D73
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy [math]\displaystyle{ m = 5 }[/math].

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Przejście do sumowania po liniach poziomych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii poziomej.


Przejście do sumowania po liniach pionowych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii pionowej.


Twierdzenie D74 (Franciszek Mertens)
Jeżeli szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] jest zbieżny bezwzględnie, szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] jest zbieżny, to ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny i [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód

Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny bezwzględnie, oznaczmy [math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' }[/math]. Niech

[math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad B_n = \sum_{j = 0}^{n} b_j \qquad \qquad C_n = \sum_{k = 0}^{n} c_k \qquad \qquad \beta_n = B_n - B }[/math]

Przekształcając sumę [math]\displaystyle{ C_m }[/math], otrzymujemy

[math]\displaystyle{ C_m = \sum_{n = 0}^{m} c_n }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

Przechodzimy od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D73).

[math]\displaystyle{ C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \sum_{j = 0}^{m - i} b_j }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \left( {B + \beta_{m - i}} \right) }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
[math]\displaystyle{ \; = B \sum_{i = 0}^{m} a_i + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
[math]\displaystyle{ \; = A_m B + \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Zatem

[math]\displaystyle{ C_m - A_m B = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Niech

[math]\displaystyle{ \delta_m = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Oczywiście chcemy pokazać, że [math]\displaystyle{ C_m \longrightarrow A B }[/math]. Ponieważ [math]\displaystyle{ A_m B \longrightarrow A B }[/math], to wystarczy pokazać, że [math]\displaystyle{ \delta_m \longrightarrow 0 }[/math].

Z założenia [math]\displaystyle{ B_m \longrightarrow B }[/math], zatem [math]\displaystyle{ \beta_m \longrightarrow 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (\beta_k) }[/math] wynika, że

  •    ciąg [math]\displaystyle{ (\beta_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | \beta_k | \leqslant U }[/math] (zobacz C9)
  •    dla dowolnego [math]\displaystyle{ \varepsilon_1 \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (\beta_k) }[/math] spełniają warunek [math]\displaystyle{ | \beta_k | \lt \varepsilon_1 }[/math] (zobacz C4, C6)

Możemy przyjąć, że warunek [math]\displaystyle{ | \beta_k | \lt \varepsilon_1 }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ M = M (\varepsilon_1) }[/math]. Zatem dla [math]\displaystyle{ m \gt M }[/math] dostajemy

[math]\displaystyle{ | \delta_m | \leqslant \sum_{k = 0}^{M} | \beta_k | | a_{m - k} | + \sum_{k = M + 1}^{m} | \beta_k | | a_{m - k} | }[/math]
[math]\displaystyle{ \;\; \lt U (| a_m | + \ldots + | a_{m - M} |) + \varepsilon_1 \sum_{k = M + 1}^{m} | a_{m - k} | }[/math]
[math]\displaystyle{ \;\; \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]

Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny, zatem musi być [math]\displaystyle{ \lim_{m \rightarrow \infty} a_m = 0 }[/math] (zobacz D4). Czyli dla dowolnego [math]\displaystyle{ \varepsilon_2 \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_k) }[/math] spełniają warunek [math]\displaystyle{ | a_k | \lt \varepsilon_2 }[/math]. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon_2) }[/math]. Zatem dla [math]\displaystyle{ m \gt M + N }[/math] otrzymujemy

[math]\displaystyle{ | \delta_m | \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]
[math]\displaystyle{ \;\; \lt \varepsilon_2 (M + 1) U + \varepsilon_1 A' }[/math]


Prawa strona nierówności jest dowolnie mała. Przykładowo dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] wystarczy wybrać [math]\displaystyle{ \varepsilon_1 = {\small\frac{\varepsilon / 2}{A'}} }[/math] i [math]\displaystyle{ \varepsilon_2 = {\small\frac{\varepsilon / 2}{(M + 1) U}} }[/math], aby otrzymać [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math] dla wszystkich [math]\displaystyle{ m \gt M + N }[/math]. Ponieważ prawie wszystkie wyrazy ciągu [math]\displaystyle{ \delta_m }[/math] spełniają warunek [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math], to [math]\displaystyle{ \lim_{m \rightarrow \infty} \delta_m = 0 }[/math]. Co należało pokazać.


Zadanie D75
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.

Rozwiązanie

Z założenia szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] są bezwzględnie zbieżne, zatem możemy napisać

[math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B' }[/math]

Zauważmy, że suma [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math] obejmuje [math]\displaystyle{ m + 1 }[/math] przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D73).

[math]\displaystyle{ C'_m = \sum_{n = 0}^{m} | c_n | }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \left| \sum_{k = 0}^{n} a_k b_{n - k} \right| }[/math]
[math]\displaystyle{ \; \leqslant \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k b_{n - k} | }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} | a_i | | b_j | \qquad \qquad }[/math] (zmieniliśmy sposób sumowania)
[math]\displaystyle{ \; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j | }[/math]
[math]\displaystyle{ \; \leqslant A' B' }[/math]

Ponieważ ciąg sum częściowych [math]\displaystyle{ C'_m }[/math] jest rosnący (bo sumujemy wartości nieujemne) i ograniczony od góry, to jest zbieżny.


Zadanie D76
Podać przykład szeregów zbieżnych, z których tylko jeden jest bezwzględnie zbieżny i których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie

Zauważmy, że szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}} }[/math] jest bezwzględnie zbieżny, bo [math]\displaystyle{ \sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2 }[/math] jest zbieżny. Szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2 }[/math] jest zbieżny na mocy kryterium Leibniza (zobacz D5), ale nie jest bezwzględnie zbieżny (zobacz D17, D19 p.1, B34).

Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]

jest zbieżny. Łatwo widzimy, że

[math]\displaystyle{ | c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]
[math]\displaystyle{ \; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]
[math]\displaystyle{ \; \geqslant {\small\frac{1}{n + 1}} }[/math]

Ponieważ szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}} }[/math] jest rozbieżny i

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n | }[/math]

to na mocy kryterium porównawczego (zobacz D9) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | c_n | }[/math] jest rozbieżny. Co należało pokazać.


Zadanie D77
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie

Szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2 }[/math] jest warunkowo zbieżny (zobacz D5, D17, D19 p.1, B34). Iloczyn Cauchy'ego dwóch takich szeregów jest równy [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} }[/math]


Ponieważ (zobacz D17)

[math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]

to

[math]\displaystyle{ {\small\frac{2}{n + 2}} \cdot \log (n + 2) \lt | c_n | \lt {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1)) }[/math]

Z twierdzenia o trzech ciągach wynika natychmiast, że [math]\displaystyle{ \lim_{n \rightarrow \infty} | c_n | = 0 }[/math]. Pokażemy teraz, że ciąg [math]\displaystyle{ (| c_n |) }[/math] jest ciągiem malejącym.

[math]\displaystyle{ | c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; \leqslant 0 }[/math]

Bo [math]\displaystyle{ \; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1 }[/math]. Ponieważ ciąg [math]\displaystyle{ (| c_n |) }[/math] jest malejący i zbieżny do zera, to z kryterium Leibniza (zobacz D5) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (- 1)^n | c_n | }[/math] jest zbieżny. Zauważmy jeszcze, że dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} \lt | c_n | }[/math]

Zatem na podstawie kryterium porównawczego (zobacz D9) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | c_n | }[/math] jest rozbieżny.


Uwaga D78
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie D80 pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro[20]. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.

Rozważmy szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math]. Sumy częściowe tego szeregu wynoszą [math]\displaystyle{ S_k = {\small\frac{1 + (- 1)^k}{2}} }[/math] i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu [math]\displaystyle{ (S_k) }[/math] jest równy

[math]\displaystyle{ x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad }[/math] (WolframAlfa)

Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math] jest sumowalny w sensie Cesàro i jego suma jest równa [math]\displaystyle{ {\small\frac{1}{2}} }[/math].


Twierdzenie D79
Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math].

Dowód

Z założenia [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (a_k) }[/math] wynika, że

  •    ciąg [math]\displaystyle{ (a_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | a_k | \leqslant U }[/math] (zobacz C9)
  •    dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_k) }[/math] spełniają warunek [math]\displaystyle{ | a_k | \lt \varepsilon }[/math] (zobacz C4, C6)

Możemy przyjąć, że warunek [math]\displaystyle{ | a_k | \lt \varepsilon }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon) }[/math]. Zatem dla [math]\displaystyle{ n \gt N }[/math] możemy napisać

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}} }[/math]
[math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}} }[/math]
[math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + \varepsilon }[/math]

Ponieważ liczba [math]\displaystyle{ n }[/math] może być dowolnie duża, to wyrażenie [math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} }[/math] może być dowolnie małe. W szczególności warunek

[math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} \lt \varepsilon }[/math]

jest spełniony dla [math]\displaystyle{ n \gt {\small\frac{U (N + 1)}{\varepsilon}} - 1 }[/math] i otrzymujemy, że

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | \lt 2 \varepsilon }[/math]

dla wszystkich [math]\displaystyle{ n \gt \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right) }[/math]. Zatem [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math]. Co należało pokazać.


Twierdzenie D80
Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, to ciąg kolejnych średnich arytmetycznych [math]\displaystyle{ x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}} }[/math] jest zbieżny do tej samej granicy.

Dowód

Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, zatem możemy napisać

[math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = g }[/math]

Z definicji ciągu [math]\displaystyle{ (x_n) }[/math] dostajemy

[math]\displaystyle{ x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g = {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}} = {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}} = {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}} }[/math]

Wynika stąd, że

[math]\displaystyle{ 0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g | }[/math]

W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D79 i twierdzenia o trzech ciągach (zobacz C10) otrzymujemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} | x_n - g | = 0 }[/math]

Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = g }[/math] (zobacz C8 p.2). Co należało pokazać.


Twierdzenie D81
Niech [math]\displaystyle{ (a_n) }[/math] i [math]\displaystyle{ (b_n) }[/math] będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math] i [math]\displaystyle{ \lim_{n \rightarrow \infty} b_n = b }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math].

Dowód

1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n = 0} }[/math]

Ponieważ ciąg [math]\displaystyle{ (b_n) }[/math] jest zbieżny, to jest ograniczony (zobacz C9), czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | b_k | \leqslant U }[/math]. Zatem

[math]\displaystyle{ 0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k | }[/math]

W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D79 i twierdzenia o trzech ciągach (zobacz C10) otrzymujemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0 }[/math]

Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0 }[/math] (zobacz C8 p.2).


2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0} }[/math]

Niech [math]\displaystyle{ x_n = a_n - a }[/math]. Oczywiście [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = 0 }[/math]. Podstawiając, otrzymujemy

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k} }[/math]
[math]\displaystyle{ \, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]
[math]\displaystyle{ \, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]

W granicy, gdy [math]\displaystyle{ n \longrightarrow \infty }[/math], z twierdzenia D80 i udowodnionego wyżej przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], dostajemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math]

Co kończy dowód.



Twierdzenie D82 (Niels Henrik Abel)
Jeżeli szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] są zbieżne i ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny, to [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód

Będziemy stosowali następujące oznaczenia

[math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad \;\, B_n = \sum_{i = 0}^{n} b_i \qquad \qquad \;\; C_n = \sum_{i = 0}^{n} c_i }[/math]

Z założenia szeregi są zbieżne, zatem możemy napisać

[math]\displaystyle{ \lim_{n \rightarrow \infty} A_n = A \qquad \qquad \lim_{n \rightarrow \infty} B_n = B \qquad \qquad \lim_{n \rightarrow \infty} C_n = C }[/math]

Rozważmy sumę

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{n = 0}^{m} c_n }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

Od sumowania wyrazów [math]\displaystyle{ a_k b_{n - k} }[/math] po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D73).

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i \sum^{m - i}_{j = 0} b_j }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k} }[/math]

Od sumowania wyrazów [math]\displaystyle{ a_k B_{m - k} }[/math] po [math]\displaystyle{ L + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ L + 1 }[/math] kolejnych liniach pionowych (zobacz D73).

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i }[/math]
[math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i \sum_{j = 0}^{L - i} a_j }[/math]
[math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i A_{L - i} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i} }[/math]

W granicy, gdy [math]\displaystyle{ L \longrightarrow \infty }[/math], z twierdzeń D80 i D81 otrzymujemy [math]\displaystyle{ C = A B }[/math]. Co należało pokazać.








Przypisy

  1. Wikipedia, Funkcja η, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Funkcja dzeta Riemanna, (Wiki-pl), (Wiki-en)
  3. Twierdzenie: funkcja ciągła w przedziale domkniętym jest całkowalna w tym przedziale.
  4. W szczególności: funkcja ograniczona i mająca skończoną liczbę punktów nieciągłości w przedziale domkniętym jest w tym przedziale całkowalna.
  5. 5,0 5,1 Wikipedia, Twierdzenia Mertensa, (Wiki-pl), (Wiki-en)
  6. 6,0 6,1 Wikipedia, Franciszek Mertens, (Wiki-pl)
  7. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94, (LINK)
  8. Zobacz twierdzenie D42.
  9. The On-Line Encyclopedia of Integer Sequences, A001620 - Decimal expansion of Euler's constant, (A001620)
  10. The On-Line Encyclopedia of Integer Sequences, A083343 - Decimal expansion of constant B3 (or B_3) related to the Mertens constant, (A083343)
  11. The On-Line Encyclopedia of Integer Sequences, A138312 - Decimal expansion of Mertens's constant minus Euler's constant, (A138312)
  12. Pierre Dusart, Estimates of Some Functions Over Primes without R.H., 2010, (LINK)
  13. Wikipedia, Stałe Bruna, (Wiki-pl), (Wiki-en)
  14. The On-Line Encyclopedia of Integer Sequences, A065421 - Decimal expansion of Viggo Brun's constant B, (A065421)
  15. Paul Erdős, Über die Reihe [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math], Mathematica, Zutphen B 7, 1938, 1-2.
  16. sumowanie przez części (ang. summation by parts)
  17. ciąg wypukły (ang. convex sequence)
  18. Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, vol. 45(1), 2018, 227-251.
  19. 19,0 19,1 Wikipedia, Szereg geometryczny, (Wiki-pl), (Wiki-en)
  20. Wikipedia, Sumowalność metodą Cesàro, (Wiki-pl), (Wiki-en)