Twierdzenie Czebyszewa o funkcji π(n): Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Linia 251: Linia 251:
  
  
<span id="A7" style="font-size: 110%; font-weight: bold;">Twierdzenie A7</span><br/>
+
<span id="A7" style="font-size: 110%; font-weight: bold;">Zadanie A7</span><br/>
 +
Pokazać, że dla <math>n \geqslant 3</math> ciąg <math>a_n = {\small\frac{n}{\log n}}</math> jest silnie rosnący.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Definicję ciągu silnie rosnącego podajemy w [[Ciągi liczbowe#C3|C3]]. Z twierdzenia [[#A6|A6]] otrzymujemy natychmiast, że dla <math>n \geqslant 3</math> jest
 +
 
 +
::<math>n > \left( 1 + {\small\frac{1}{n}} \right)^n</math>
 +
 
 +
Zatem <math>n^{n + 1} > (n + 1)^n</math>. Logarytmując, dostajemy
 +
 
 +
::<math>(n + 1) \log n > n \log (n + 1)</math>
 +
 
 +
Czyli
 +
 
 +
::<math>{\small\frac{n + 1}{\log (n + 1)}} > {\small\frac{n}{\log n}}</math>
 +
 
 +
Łatwo sprawdzamy, że
 +
 
 +
::<math>{\small\frac{3}{\log 3}} < {\small\frac{2}{\log 2}}</math>
 +
 
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="A8" style="font-size: 110%; font-weight: bold;">Twierdzenie A8</span><br/>
 
Prawdziwe są następujące oszacowania:
 
Prawdziwe są następujące oszacowania:
  
Linia 267: Linia 293:
  
  
<span id="A8" style="font-size: 110%; font-weight: bold;">Twierdzenie A8</span><br/>
+
<span id="A9" style="font-size: 110%; font-weight: bold;">Twierdzenie A9</span><br/>
 
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>{\small\frac{P (2 n)}{P (n)}} < 4^{n - 1}</math>, gdzie <math>P (n)</math> oznacza iloczyn wszystkich liczb pierwszych nie większych od <math>n</math>.
 
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>{\small\frac{P (2 n)}{P (n)}} < 4^{n - 1}</math>, gdzie <math>P (n)</math> oznacza iloczyn wszystkich liczb pierwszych nie większych od <math>n</math>.
  
Linia 289: Linia 315:
  
  
<span id="A9" style="font-size: 110%; font-weight: bold;">Twierdzenie A9</span><br/>
+
<span id="A10" style="font-size: 110%; font-weight: bold;">Twierdzenie A10</span><br/>
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>P(n) < 4^n</math>
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>P(n) < 4^n</math>
  
Linia 297: Linia 323:
 
::<math>P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot {\small\frac{P (2 k + 2)}{P (k + 1)}} < 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1}</math>
 
::<math>P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot {\small\frac{P (2 k + 2)}{P (k + 1)}} < 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1}</math>
  
gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A8|A8]].
+
gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A9|A9]].
  
 
Jeżeli <math>n + 1 = 2 k</math> jest liczbą parzystą większą lub równą <math>4</math>, to mamy
 
Jeżeli <math>n + 1 = 2 k</math> jest liczbą parzystą większą lub równą <math>4</math>, to mamy
Linia 303: Linia 329:
 
::<math>P(n + 1) = P (2 k) = P (k) \cdot {\small\frac{P (2 k)}{P (k)}} < 4^k \cdot 4^{k - 1} = 4^{2 k - 1} < 4^{2 k} = 4^{n + 1}</math>
 
::<math>P(n + 1) = P (2 k) = P (k) \cdot {\small\frac{P (2 k)}{P (k)}} < 4^k \cdot 4^{k - 1} = 4^{2 k - 1} < 4^{2 k} = 4^{n + 1}</math>
  
gdzie ponownie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A8|A8]].<br/>
+
gdzie ponownie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia [[#A9|A9]].<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 309: Linia 335:
  
  
<span id="A10" style="font-size: 110%; font-weight: bold;">Twierdzenie A10</span><br/>
+
<span id="A11" style="font-size: 110%; font-weight: bold;">Twierdzenie A11</span><br/>
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>p_n > {\small\frac{1}{2 \log 2}} \cdot n \log n</math>.
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>p_n > {\small\frac{1}{2 \log 2}} \cdot n \log n</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ z&nbsp;definicji <math>P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n</math>, to korzystając z&nbsp;oszacowań uzyskanych w&nbsp;twierdzeniach [[#A7|A7]] i&nbsp;[[#A9|A9]] dostajemy dla <math>n \geqslant 13</math>
+
Ponieważ z&nbsp;definicji <math>P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n</math>, to korzystając z&nbsp;oszacowań uzyskanych w&nbsp;twierdzeniach [[#A8|A8]] i&nbsp;[[#A10|A10]] dostajemy dla <math>n \geqslant 13</math>
  
 
::<math>n^n < p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) < 4^{p_n}</math>
 
::<math>n^n < p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) < 4^{p_n}</math>
Linia 331: Linia 357:
  
  
<span id="A11" style="font-size: 110%; font-weight: bold;">Twierdzenie A11</span><br/>
+
<span id="A12" style="font-size: 110%; font-weight: bold;">Twierdzenie A12</span><br/>
 
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot {\small\frac{n}{\log n}}</math>.
 
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot {\small\frac{n}{\log n}}</math>.
  
Linia 355: Linia 381:
  
  
<span id="A12" style="font-size: 110%; font-weight: bold;">Twierdzenie A12</span><br/>
+
<span id="A13" style="font-size: 110%; font-weight: bold;">Twierdzenie A13</span><br/>
 
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (n) < 2 \cdot {\small\frac{n}{\log n}}</math>.
 
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (n) < 2 \cdot {\small\frac{n}{\log n}}</math>.
  
Linia 408: Linia 434:
  
  
<span id="A13" style="font-size: 110%; font-weight: bold;">Definicja A13</span><br/>
+
<span id="A14" style="font-size: 110%; font-weight: bold;">Definicja A14</span><br/>
 
Funkcję <math>\lfloor x \rfloor</math> (czytaj: całość z <math>x</math>) definiujemy jako największą liczbę całkowitą nie większą od <math>x</math>. Operacyjnie możemy ją zdefiniować następująco: niech liczby <math>x, \varepsilon \in \mathbb{R}</math>, liczba <math>k \in \mathbb{Z}</math> oraz <math>0 \leqslant \varepsilon < 1</math>, jeżeli <math>x = k + \varepsilon</math>, to <math>\lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k </math>.
 
Funkcję <math>\lfloor x \rfloor</math> (czytaj: całość z <math>x</math>) definiujemy jako największą liczbę całkowitą nie większą od <math>x</math>. Operacyjnie możemy ją zdefiniować następująco: niech liczby <math>x, \varepsilon \in \mathbb{R}</math>, liczba <math>k \in \mathbb{Z}</math> oraz <math>0 \leqslant \varepsilon < 1</math>, jeżeli <math>x = k + \varepsilon</math>, to <math>\lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k </math>.
  
  
  
<span id="A14" style="font-size: 110%; font-weight: bold;">Twierdzenie A14</span><br/>
+
<span id="A15" style="font-size: 110%; font-weight: bold;">Twierdzenie A15</span><br/>
 
Dla <math>n \in \mathbb{Z}_+</math>, <math>x \in \mathbb{R}</math> jest <math>\left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor</math>.
 
Dla <math>n \in \mathbb{Z}_+</math>, <math>x \in \mathbb{R}</math> jest <math>\left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając z&nbsp;definicji [[#A13|A13]], przedstawmy liczbę w&nbsp;postaci <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>.
+
Korzystając z&nbsp;definicji [[#A14|A14]], przedstawmy liczbę w&nbsp;postaci <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>.
  
 
Z&nbsp;twierdzenia&nbsp;o dzieleniu z&nbsp;resztą liczbę <math>k</math> możemy zapisać w&nbsp;postaci <math>k = q n + r</math>, gdzie <math>0 \leqslant r \leqslant n - 1</math>, mamy zatem <math>x = q n + r + \varepsilon</math>. Ponieważ <math>0 \leqslant r + \varepsilon < n</math>, to po podzieleniu przez <math>n</math> dostajemy
 
Z&nbsp;twierdzenia&nbsp;o dzieleniu z&nbsp;resztą liczbę <math>k</math> możemy zapisać w&nbsp;postaci <math>k = q n + r</math>, gdzie <math>0 \leqslant r \leqslant n - 1</math>, mamy zatem <math>x = q n + r + \varepsilon</math>. Ponieważ <math>0 \leqslant r + \varepsilon < n</math>, to po podzieleniu przez <math>n</math> dostajemy
Linia 439: Linia 465:
  
  
<span id="A15" style="font-size: 110%; font-weight: bold;">Twierdzenie A15</span><br/>
+
<span id="A16" style="font-size: 110%; font-weight: bold;">Twierdzenie A16</span><br/>
 
Niech <math>x \in \mathbb{R}</math>. Liczba <math>\lfloor 2 x \rfloor - 2 \lfloor x \rfloor</math> przyjmuje wartości <math>0</math> lub <math>1</math>.
 
Niech <math>x \in \mathbb{R}</math>. Liczba <math>\lfloor 2 x \rfloor - 2 \lfloor x \rfloor</math> przyjmuje wartości <math>0</math> lub <math>1</math>.
  
Linia 456: Linia 482:
  
  
<span id="A16" style="font-size: 110%; font-weight: bold;">Definicja A16</span><br/>
+
<span id="A17" style="font-size: 110%; font-weight: bold;">Definicja A17</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą, zaś <math>a</math> dowolną liczbą naturalną. Jeżeli liczba pierwsza <math>p</math> wchodzi do rozwinięcia liczby naturalnej <math>n \geqslant 2</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>a</math>, to powiemy, że funkcja <math>W_p (n)</math> przyjmuje wartość <math>a</math>. Fakt ten możemy zapisać następująco
 
Niech <math>p</math> będzie liczbą pierwszą, zaś <math>a</math> dowolną liczbą naturalną. Jeżeli liczba pierwsza <math>p</math> wchodzi do rozwinięcia liczby naturalnej <math>n \geqslant 2</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>a</math>, to powiemy, że funkcja <math>W_p (n)</math> przyjmuje wartość <math>a</math>. Fakt ten możemy zapisać następująco
  
Linia 463: Linia 489:
  
  
<span id="A17" style="font-size: 110%; font-weight: bold;">Przykład A17</span><br/>
+
<span id="A18" style="font-size: 110%; font-weight: bold;">Przykład A18</span><br/>
 
<math>W_5 (100) = 2</math>,&nbsp;&nbsp; <math>W_7 (42) = 1</math>,&nbsp;&nbsp; ponieważ <math>11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11</math>, to <math>W_3 (11!) = 4</math>
 
<math>W_5 (100) = 2</math>,&nbsp;&nbsp; <math>W_7 (42) = 1</math>,&nbsp;&nbsp; ponieważ <math>11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11</math>, to <math>W_3 (11!) = 4</math>
  
Linia 471: Linia 497:
  
  
<span id="A18" style="font-size: 110%; font-weight: bold;">Twierdzenie A18</span><br/>
+
<span id="A19" style="font-size: 110%; font-weight: bold;">Twierdzenie A19</span><br/>
  
 
Podstawowe własności funkcji <math>W_p (n)</math>
 
Podstawowe własności funkcji <math>W_p (n)</math>
Linia 482: Linia 508:
  
  
<span id="A19" style="font-size: 110%; font-weight: bold;">Twierdzenie A19</span><br/>
+
<span id="A20" style="font-size: 110%; font-weight: bold;">Twierdzenie A20</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą. Ilość liczb podzielnych przez <math>p</math> i&nbsp;występujących w&nbsp;ciągu <math>1, 2, 3, \ldots, n</math> wynosi <math>r = \left\lfloor {\small\frac{n}{p}} \right\rfloor</math>.
 
Niech <math>p</math> będzie liczbą pierwszą. Ilość liczb podzielnych przez <math>p</math> i&nbsp;występujących w&nbsp;ciągu <math>1, 2, 3, \ldots, n</math> wynosi <math>r = \left\lfloor {\small\frac{n}{p}} \right\rfloor</math>.
  
Linia 496: Linia 522:
  
  
<span id="A20" style="font-size: 110%; font-weight: bold;">Przykład A20</span><br/>
+
<span id="A21" style="font-size: 110%; font-weight: bold;">Przykład A21</span><br/>
 
Ilość liczb całkowitych dodatnich podzielnych przez <math>5</math> i&nbsp;nie większych od <math>63</math> wynosi <math>\left\lfloor {\small\frac{63}{5}} \right\rfloor = 12</math>. Liczby te to <math>5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60</math>.
 
Ilość liczb całkowitych dodatnich podzielnych przez <math>5</math> i&nbsp;nie większych od <math>63</math> wynosi <math>\left\lfloor {\small\frac{63}{5}} \right\rfloor = 12</math>. Liczby te to <math>5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60</math>.
  
  
  
Twierdzenie [[#A19|A19]] umożliwi nam określenie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w <math>n!</math>
+
Twierdzenie [[#A20|A20]] umożliwi nam określenie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w <math>n!</math>
  
<span id="A21" style="font-size: 110%; font-weight: bold;">Twierdzenie A21</span><br/>
+
<span id="A22" style="font-size: 110%; font-weight: bold;">Twierdzenie A22</span><br/>
 
Liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>
 
Liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>
  
Linia 519: Linia 545:
 
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{\lfloor n / p \rfloor}{p}} \right\rfloor \cdot p \right)</math>
 
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{\lfloor n / p \rfloor}{p}} \right\rfloor \cdot p \right)</math>
  
Z twierdzenia [[#A14|A14]] wiemy, że dla <math>x \in \mathbb{R}</math> i <math>n \in \mathbb{Z}_{+}</math> jest:
+
Z twierdzenia [[#A15|A15]] wiemy, że dla <math>x \in \mathbb{R}</math> i <math>n \in \mathbb{Z}_{+}</math> jest:
  
 
::<math>\left\lfloor {\small\frac{\lfloor x \rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{x}{n}} \right \rfloor</math>
 
::<math>\left\lfloor {\small\frac{\lfloor x \rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{x}{n}} \right \rfloor</math>
Linia 541: Linia 567:
  
  
<span id="A22" style="font-size: 110%; font-weight: bold;">Uwaga A22</span><br/>
+
<span id="A23" style="font-size: 110%; font-weight: bold;">Uwaga A23</span><br/>
 
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w&nbsp;postaci
 
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w&nbsp;postaci
  
Linia 554: Linia 580:
  
  
<span id="A23" style="font-size: 110%; font-weight: bold;">Przykład A23</span><br/>
+
<span id="A24" style="font-size: 110%; font-weight: bold;">Przykład A24</span><br/>
 
Niech <math>n = 30</math>, <math>p = 3</math>
 
Niech <math>n = 30</math>, <math>p = 3</math>
  
Linia 587: Linia 613:
  
  
<span id="A24" style="font-size: 110%; font-weight: bold;">Twierdzenie A24</span><br/>
+
<span id="A25" style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/>
 
Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>{\small\binom{2 n}{n}}</math> z&nbsp;wykładnikiem
 
Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>{\small\binom{2 n}{n}}</math> z&nbsp;wykładnikiem
  
Linia 602: Linia 628:
  
  
<span id="A25" style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/>
+
<span id="A26" style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/>
 
Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>u = 1</math> lub <math>u = 0</math>.
 
Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>u = 1</math> lub <math>u = 0</math>.
  
Linia 610: Linia 636:
 
::<math>u = \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = \left \lfloor {\small\frac{2 n}{p}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p}} \right \rfloor</math>
 
::<math>u = \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = \left \lfloor {\small\frac{2 n}{p}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p}} \right \rfloor</math>
  
Na mocy twierdzenia [[#A15|A15]] (dla <math>x = \tfrac{n}{p}</math>), dostajemy natychmiast, że <math>u = 1</math> lub <math>u = 0</math>.
+
Na mocy twierdzenia [[#A16|A16]] (dla <math>x = \tfrac{n}{p}</math>), dostajemy natychmiast, że <math>u = 1</math> lub <math>u = 0</math>.
 
<br/>
 
<br/>
 
&#9633;
 
&#9633;
Linia 617: Linia 643:
  
  
<span id="A26" style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/>
+
<span id="A27" style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/>
 
Niech <math>n \in \mathbb{N}_0 \,</math> i <math>\, p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \biggr\rvert {\small\binom{2 n}{n}}</math>, to <math>p^a \leqslant 2 n</math>. Równość w tym oszacowaniu jest możliwa tylko w przypadku, gdy <math>n = 1</math> (wtedy <math>p = 2 \;</math> i <math>\; a = 1</math>).
 
Niech <math>n \in \mathbb{N}_0 \,</math> i <math>\, p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \biggr\rvert {\small\binom{2 n}{n}}</math>, to <math>p^a \leqslant 2 n</math>. Równość w tym oszacowaniu jest możliwa tylko w przypadku, gdy <math>n = 1</math> (wtedy <math>p = 2 \;</math> i <math>\; a = 1</math>).
  
Linia 671: Linia 697:
 
== Oszacowanie <math>p_n</math> od góry i <math>\pi (n)</math> od dołu ==
 
== Oszacowanie <math>p_n</math> od góry i <math>\pi (n)</math> od dołu ==
  
Z twierdzenia [[#A26|A26]] wynika natychmiast
+
Z twierdzenia [[#A27|A27]] wynika natychmiast
  
  
<span id="A27" style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/>
+
<span id="A28" style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/>
 
Niech <math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>.
 
Niech <math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>.
  
Linia 681: Linia 707:
  
  
<span id="A28" style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/>
+
<span id="A29" style="font-size: 110%; font-weight: bold;">Twierdzenie A29</span><br/>
 
Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math>
 
Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>{\small\binom{2 n}{n}}</math>
  
Linia 687: Linia 713:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Dowód wynika natychmiast z&nbsp;twierdzenia [[#A27|A27]], bo
+
Dowód wynika natychmiast z&nbsp;twierdzenia [[#A28|A28]], bo
  
 
::<math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 
::<math>{\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
Linia 695: Linia 721:
  
  
<span id="A29" style="font-size: 110%; font-weight: bold;">Twierdzenie A29</span><br/>
+
<span id="A30" style="font-size: 110%; font-weight: bold;">Twierdzenie A30</span><br/>
 
Dla <math>n \geqslant 3</math> prawdziwe jest następujące oszacowanie
 
Dla <math>n \geqslant 3</math> prawdziwe jest następujące oszacowanie
  
Linia 705: Linia 731:
 
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < {\small\binom{2 n}{n}}</math>
 
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < {\small\binom{2 n}{n}}</math>
  
Nierówności te są prawdziwe dla <math>n \geqslant 80</math>. Z&nbsp;twierdzenia [[#A28|A28]] mamy
+
Nierówności te są prawdziwe dla <math>n \geqslant 80</math>. Z&nbsp;twierdzenia [[#A29|A29]] mamy
  
 
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
Linia 733: Linia 759:
  
  
<span id="A30" style="font-size: 110%; font-weight: bold;">Twierdzenie A30</span><br/>
+
<span id="A31" style="font-size: 110%; font-weight: bold;">Twierdzenie A31</span><br/>
 
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 2 n \log n</math>
 
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 2 n \log n</math>
  
Linia 754: Linia 780:
  
  
Z twierdzenia [[#A29|A29]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>
+
Z twierdzenia [[#A30|A30]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>
  
 
::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>
 
::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>
Linia 798: Linia 824:
  
  
Dowód twierdzenia [[#A30|A30]] kończy dowód całego twierdzenia&nbsp;[[#A1|A1]]. Możemy teraz dokończyć dowód twierdzenia&nbsp;[[#A7|A7]] i&nbsp;pokazać, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie:
+
Dowód twierdzenia [[#A31|A31]] kończy dowód całego twierdzenia&nbsp;[[#A1|A1]]. Możemy teraz dokończyć dowód twierdzenia&nbsp;[[#A8|A8]] i&nbsp;pokazać, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie:
  
 
::<math>p_1 \cdot \ldots \cdot p_n < (n \log n)^n</math>
 
::<math>p_1 \cdot \ldots \cdot p_n < (n \log n)^n</math>
Linia 815: Linia 841:
 
::::::<math>\quad = [(n + 1) \cdot \log (n + 1)]^{n + 1}</math>
 
::::::<math>\quad = [(n + 1) \cdot \log (n + 1)]^{n + 1}</math>
  
Gdzie skorzystaliśmy z&nbsp;twierdzenia [[#A30|A30]] oraz z&nbsp;faktu, że ciąg <math>a_n = \left( 1 + {\small\frac{1}{n}} \right)^n</math> jest ciągiem ograniczonym <math>2 \leqslant a_n < 3</math> (zobacz twierdzenie [[#A6|A6]]).<br/>
+
Gdzie skorzystaliśmy z&nbsp;twierdzenia [[#A31|A31]] oraz z&nbsp;faktu, że ciąg <math>a_n = \left( 1 + {\small\frac{1}{n}} \right)^n</math> jest ciągiem ograniczonym <math>2 \leqslant a_n < 3</math> (zobacz twierdzenie [[#A6|A6]]).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 827: Linia 853:
  
  
<span id="A31" style="font-size: 110%; font-weight: bold;">Twierdzenie A31</span><br/>
+
<span id="A32" style="font-size: 110%; font-weight: bold;">Twierdzenie A32</span><br/>
 
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 1.875 \cdot n \log n</math>
 
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 1.875 \cdot n \log n</math>
  
Linia 844: Linia 870:
  
  
Z twierdzenia [[#A29|A29]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>
+
Z twierdzenia [[#A30|A30]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Kładąc <math>n = p_k</math>, otrzymujemy dla <math>k \geqslant 2</math>
  
 
::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>
 
::<math>k = \pi (p_k) > {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}}</math>
Linia 880: Linia 906:
  
  
<span id="A32" style="font-size: 110%; font-weight: bold;">Twierdzenie A32</span><br/>
+
<span id="A33" style="font-size: 110%; font-weight: bold;">Twierdzenie A33</span><br/>
 
Niech <math>n \geqslant 2</math>. Dla funkcji <math>\pi (n)</math> prawdziwe jest oszacowanie
 
Niech <math>n \geqslant 2</math>. Dla funkcji <math>\pi (n)</math> prawdziwe jest oszacowanie
  
Linia 894: Linia 920:
 
::<math>{\small\frac{2}{3}} \cdot {\small\frac{x}{\log x}} > x^{4 / 5}</math>
 
::<math>{\small\frac{2}{3}} \cdot {\small\frac{x}{\log x}} > x^{4 / 5}</math>
  
Korzystając z&nbsp;twierdzenia [[#A9|A9]] możemy napisać ciąg nierówności
+
Korzystając z&nbsp;twierdzenia [[#A10|A10]] możemy napisać ciąg nierówności
  
 
::<math>4^n > P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} > \pi (n)^{\pi (n)} > (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5}</math>
 
::<math>4^n > P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} > \pi (n)^{\pi (n)} > (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5}</math>
Linia 910: Linia 936:
  
  
<span id="A33" style="font-size: 110%; font-weight: bold;">Uwaga A33</span><br/>
+
<span id="A34" style="font-size: 110%; font-weight: bold;">Uwaga A34</span><br/>
Dowód twierdzenia [[#A31|A31]] wymagał wykorzystania polecenia PARI/GP, w&nbsp;którym wielokrotnie była wywoływana funkcja <span style="font-size: 90%; color:black;"><code>prime(n)</code></span>. Analogiczna sytuacja miała miejsce w&nbsp;przypadku twierdzenia&nbsp;[[#A32|A32]] – tam musieliśmy wielokrotnie wywoływać funkcję <span style="font-size: 90%; color:black;"><code>primepi(n)</code></span>. Znacznie lepiej w&nbsp;takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w&nbsp;sposób ciągły w&nbsp;całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy <span style="font-size: 90%; color:black;"><code>Test1(n)</code></span> i <span style="font-size: 90%; color:black;"><code>Test2(n)</code></span> wywołane z&nbsp;parametrami <span style="font-size: 90%; color:black;"><code>n = 520000</code></span> i&nbsp;odpowiednio <span style="font-size: 90%; color:black;"><code>n = 8*10^6</code></span> odpowiadają poleceniom
+
Dowód twierdzenia [[#A32|A32]] wymagał wykorzystania polecenia PARI/GP, w&nbsp;którym wielokrotnie była wywoływana funkcja <span style="font-size: 90%; color:black;"><code>prime(n)</code></span>. Analogiczna sytuacja miała miejsce w&nbsp;przypadku twierdzenia&nbsp;[[#A33|A33]] – tam musieliśmy wielokrotnie wywoływać funkcję <span style="font-size: 90%; color:black;"><code>primepi(n)</code></span>. Znacznie lepiej w&nbsp;takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w&nbsp;sposób ciągły w&nbsp;całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy <span style="font-size: 90%; color:black;"><code>Test1(n)</code></span> i <span style="font-size: 90%; color:black;"><code>Test2(n)</code></span> wywołane z&nbsp;parametrami <span style="font-size: 90%; color:black;"><code>n = 520000</code></span> i&nbsp;odpowiednio <span style="font-size: 90%; color:black;"><code>n = 8*10^6</code></span> odpowiadają poleceniom
  
 
  <span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span>
 
  <span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span>
Linia 949: Linia 975:
  
  
<span id="A34" style="font-size: 110%; font-weight: bold;">Uwaga A34</span><br/>
+
<span id="A35" style="font-size: 110%; font-weight: bold;">Uwaga A35</span><br/>
 
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji <math>\pi (n)</math> lub <math>p_n</math>. Już osiągnięcie tą drogą oszacowania <math>p_n < 1.6 \cdot n \log n</math> przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność
 
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji <math>\pi (n)</math> lub <math>p_n</math>. Już osiągnięcie tą drogą oszacowania <math>p_n < 1.6 \cdot n \log n</math> przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność
  
Linia 962: Linia 988:
 
== Zastosowania ==
 
== Zastosowania ==
  
Ciekawy rezultat wynika z&nbsp;twierdzenia&nbsp;[[#A7|A7]], ale wcześniej musimy udowodnić twierdzenie o&nbsp;średniej arytmetycznej i&nbsp;geometrycznej.
+
Ciekawy rezultat wynika z&nbsp;twierdzenia&nbsp;[[#A8|A8]], ale wcześniej musimy udowodnić twierdzenie o&nbsp;średniej arytmetycznej i&nbsp;geometrycznej.
  
<span id="A35" style="font-size: 110%; font-weight: bold;">Twierdzenie A35</span><br/>
+
<span id="A36" style="font-size: 110%; font-weight: bold;">Twierdzenie A36</span><br/>
 
Dla dowolnych liczb dodatnich <math>a_1, a_2, \ldots, a_n</math> średnia arytmetyczna jest nie mniejsza od średniej geometrycznej
 
Dla dowolnych liczb dodatnich <math>a_1, a_2, \ldots, a_n</math> średnia arytmetyczna jest nie mniejsza od średniej geometrycznej
  
Linia 1028: Linia 1054:
  
  
<span id="A36" style="font-size: 110%; font-weight: bold;">Twierdzenie A36</span><br/>
+
<span id="A37" style="font-size: 110%; font-weight: bold;">Twierdzenie A37</span><br/>
 
Dla <math>n \geqslant 1</math> prawdziwa jest nierówność <math>p_1 + p_2 + \ldots + p_n > n^2</math>.
 
Dla <math>n \geqslant 1</math> prawdziwa jest nierówność <math>p_1 + p_2 + \ldots + p_n > n^2</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając z&nbsp;twierdzeń [[#A7|A7]] i [[#A35|A35]], możemy napisać następujący ciąg nierówności dla <math>n</math> kolejnych liczb pierwszych
+
Korzystając z&nbsp;twierdzeń [[#A8|A8]] i [[#A36|A36]], możemy napisać następujący ciąg nierówności dla <math>n</math> kolejnych liczb pierwszych
  
 
::<math>{\small\frac{p_1 + p_2 + \ldots + p_n}{n}} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} > \sqrt[n]{n^n} = n</math>
 
::<math>{\small\frac{p_1 + p_2 + \ldots + p_n}{n}} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} > \sqrt[n]{n^n} = n</math>
Linia 1047: Linia 1073:
  
  
<span id="A37" style="font-size: 110%; font-weight: bold;">Twierdzenie A37</span><br/>
+
<span id="A38" style="font-size: 110%; font-weight: bold;">Twierdzenie A38</span><br/>
 
Prawdziwe są następujące nierówności:
 
Prawdziwe są następujące nierówności:
  
Linia 1115: Linia 1141:
  
  
<span id="A38" style="font-size: 110%; font-weight: bold;">Zadanie A38</span><br/>
+
<span id="A39" style="font-size: 110%; font-weight: bold;">Zadanie A39</span><br/>
 
Niech <math>x \in \mathbb{R}_+</math>. Pokazać, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla każdego <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>.
 
Niech <math>x \in \mathbb{R}_+</math>. Pokazać, że dla dowolnego <math>n \in \mathbb{Z}_+</math> istnieje takie <math>x_0</math>, że dla każdego <math>x > x_0</math> jest <math>\log x < x^{1 / n}</math>.
  
Linia 1124: Linia 1150:
 
::<math>\log x < n \cdot x^{1 / 2 n} < x^{1 / n}</math>
 
::<math>\log x < n \cdot x^{1 / 2 n} < x^{1 / n}</math>
  
Z twierdzenia [[#A37|A37]] p.5 wiemy, że pierwsza nierówność jest prawdziwa dla dowolnych <math>x \in \mathbb{R}_+</math> i <math>n \in \mathbb{Z}_+</math>. Podnosząc strony drugiej nierówności do potęgi <math>2 n</math>, otrzymujemy <math>n^{2 n} \cdot x < x^2</math>, czyli nierówność ta jest prawdziwa dla <math>x > n^{2 n}</math>. Wynika stąd, że wystarczy przyjąć <math>x_0 = n^{2 n}</math>.
+
Z twierdzenia [[#A38|A38]] p.5 wiemy, że pierwsza nierówność jest prawdziwa dla dowolnych <math>x \in \mathbb{R}_+</math> i <math>n \in \mathbb{Z}_+</math>. Podnosząc strony drugiej nierówności do potęgi <math>2 n</math>, otrzymujemy <math>n^{2 n} \cdot x < x^2</math>, czyli nierówność ta jest prawdziwa dla <math>x > n^{2 n}</math>. Wynika stąd, że wystarczy przyjąć <math>x_0 = n^{2 n}</math>.
  
 
<span style="border-bottom-style: double;">Drugi sposób</span><br/>
 
<span style="border-bottom-style: double;">Drugi sposób</span><br/>
Linia 1141: Linia 1167:
  
  
<span id="A39" style="font-size: 110%; font-weight: bold;">Twierdzenie A39</span><br/>
+
<span id="A40" style="font-size: 110%; font-weight: bold;">Twierdzenie A40</span><br/>
 
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:
 
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:
  
Linia 1160: Linia 1186:
  
  
<span style="border-bottom-style: double;">Prawa górna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>p_n < 2 n \log n</math>. Zatem wystarczy pokazać, że <math>2 n \log n < n^2</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A37|A37]] p.5, łatwo zauważmy, że dla <math>n > 4</math> jest:
+
<span style="border-bottom-style: double;">Prawa górna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>p_n < 2 n \log n</math>. Zatem wystarczy pokazać, że <math>2 n \log n < n^2</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A38|A38]] p.5, łatwo zauważmy, że dla <math>n > 4</math> jest:
  
 
::<math>n - 2 \log n > n - 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 2 \right) > 0</math>
 
::<math>n - 2 \log n > n - 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 2 \right) > 0</math>
Linia 1167: Linia 1193:
  
  
<span style="border-bottom-style: double;">Lewa dolna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Zatem wystarczy pokazać, że <math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > \sqrt{n}</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A37|A37]] p.5, łatwo zauważmy, że dla <math>n > 3^4 = 81</math> jest:
+
<span style="border-bottom-style: double;">Lewa dolna nierówność.</span> Z&nbsp;twierdzenia&nbsp;[[#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> jest <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Zatem wystarczy pokazać, że <math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} > \sqrt{n}</math>. Korzystając z&nbsp;twierdzenia&nbsp;[[#A38|A38]] p.5, łatwo zauważmy, że dla <math>n > 3^4 = 81</math> jest:
  
 
::<math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} - \sqrt{n} > {\small\frac{2}{3}} \cdot {\small\frac{n}{2 \cdot n^{1 / 4}}} - \sqrt{n} = {\small\frac{1}{3}} \cdot n^{3 / 4} - \sqrt{n} = {\small\frac{1}{3}} \sqrt{n} (n^{1 / 4} - 3) > 0</math>
 
::<math>{\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} - \sqrt{n} > {\small\frac{2}{3}} \cdot {\small\frac{n}{2 \cdot n^{1 / 4}}} - \sqrt{n} = {\small\frac{1}{3}} \cdot n^{3 / 4} - \sqrt{n} = {\small\frac{1}{3}} \sqrt{n} (n^{1 / 4} - 3) > 0</math>
Linia 1200: Linia 1226:
  
  
<span id="A40" style="font-size: 110%; font-weight: bold;">Twierdzenie A40</span><br/>
+
<span id="A41" style="font-size: 110%; font-weight: bold;">Twierdzenie A41</span><br/>
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie
 
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie
  
Linia 1206: Linia 1232:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając kolejno z&nbsp;twierdzeń [[#A30|A30]], [[#A37|A37]] p.5 i [[#A7|A7]], łatwo otrzymujemy
+
Korzystając kolejno z&nbsp;twierdzeń [[#A31|A31]], [[#A38|A38]] p.5 i [[#A8|A8]], łatwo otrzymujemy
  
 
::<math>(p_{n^{\large 2}})^{n / 3} < (2 n^2 \log n^2)^{n / 3}</math>
 
::<math>(p_{n^{\large 2}})^{n / 3} < (2 n^2 \log n^2)^{n / 3}</math>
Linia 1228: Linia 1254:
  
  
<span id="A41" style="font-size: 110%; font-weight: bold;">Zadanie A41</span><br/>
+
<span id="A42" style="font-size: 110%; font-weight: bold;">Zadanie A42</span><br/>
Korzystając z&nbsp;twierdzenia [[#A40|A40]] pokazać, że
+
Korzystając z&nbsp;twierdzenia [[#A41|A41]] pokazać, że
  
 
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4</math>
 
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4</math>
Linia 1256: Linia 1282:
  
  
<span id="A42" style="font-size: 110%; font-weight: bold;">Twierdzenie A42</span><br/>
+
<span id="A43" style="font-size: 110%; font-weight: bold;">Twierdzenie A43</span><br/>
 
Każda liczba pierwsza <math>p</math> taka, że <math>p \in \left( {\small\frac{n}{2}}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
Każda liczba pierwsza <math>p</math> taka, że <math>p \in \left( {\small\frac{n}{2}}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#A21|A21]] wiemy, że każda liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>
+
Z twierdzenia [[#A22|A22]] wiemy, że każda liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor</math>
  
 
Z założenia <math>p \leqslant n</math> i <math>2 p > n</math>, zatem:
 
Z założenia <math>p \leqslant n</math> i <math>2 p > n</math>, zatem:
Linia 1272: Linia 1298:
  
  
Rezultat uzyskany w&nbsp;twierdzeniu [[#A25|A25]] zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia [[#A43|A43]] i [[#A45|A45]] udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady [[#A44|A44]] i [[#A46|A46]] to tylko twierdzenia [[#A43|A43]] i [[#A45|A45]] dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń [[#A43|A43]] i [[#A45|A45]], to może je pominąć.
+
Rezultat uzyskany w&nbsp;twierdzeniu [[#A26|A26]] zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia [[#A44|A44]] i [[#A46|A46]] udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady [[#A45|A45]] i [[#A47|A47]] to tylko twierdzenia [[#A44|A44]] i [[#A46|A46]] dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń [[#A44|A44]] i [[#A46|A46]], to może je pominąć.
  
  
<span id="A43" style="font-size: 110%; font-weight: bold;">Twierdzenie A43</span><br/>
+
<span id="A44" style="font-size: 110%; font-weight: bold;">Twierdzenie A44</span><br/>
 
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
  
Linia 1323: Linia 1349:
  
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
+
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
 
Rozważmy najpierw pierwszy składnik sumy
 
Rozważmy najpierw pierwszy składnik sumy
  
Linia 1370: Linia 1396:
  
  
<span id="A44" style="font-size: 110%; font-weight: bold;">Przykład A44</span><br/>
+
<span id="A45" style="font-size: 110%; font-weight: bold;">Przykład A45</span><br/>
 
Jeżeli <math>n \geqslant 6</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
Jeżeli <math>n \geqslant 6</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
  
Linia 1397: Linia 1423:
  
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
+
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
 
Rozważmy najpierw pierwszy składnik sumy
 
Rozważmy najpierw pierwszy składnik sumy
  
Linia 1433: Linia 1459:
  
  
<span id="A45" style="font-size: 110%; font-weight: bold;">Twierdzenie A45</span><br/>
+
<span id="A46" style="font-size: 110%; font-weight: bold;">Twierdzenie A46</span><br/>
 
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
 
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
  
Linia 1467: Linia 1493:
  
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
+
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
 
Rozważmy najpierw pierwszy składnik sumy
 
Rozważmy najpierw pierwszy składnik sumy
  
Linia 1510: Linia 1536:
  
  
<span id="A46" style="font-size: 110%; font-weight: bold;">Przykład A46</span><br/>
+
<span id="A47" style="font-size: 110%; font-weight: bold;">Przykład A47</span><br/>
 
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
 
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>{\small\binom{2 n}{n}}</math> na czynniki pierwsze.
  
Linia 1537: Linia 1563:
  
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A24|A24]]</span><br/><br/>
+
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia [[#A25|A25]]</span><br/><br/>
 
Rozważmy najpierw pierwszy składnik sumy
 
Rozważmy najpierw pierwszy składnik sumy
  
Linia 1583: Linia 1609:
  
  
<span id="A47" style="font-size: 110%; font-weight: bold;">Uwaga A47</span><br/>
+
<span id="A48" style="font-size: 110%; font-weight: bold;">Uwaga A48</span><br/>
Z przykładu [[#A44|A44]] nie wynika, że w&nbsp;przedziale <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;[[#A46|A46]] oraz twierdzeń&nbsp;[[#A43|A43]] i&nbsp;[[#A45|A45]]. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
+
Z przykładu [[#A45|A45]] nie wynika, że w&nbsp;przedziale <math>\left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;[[#A47|A47]] oraz twierdzeń&nbsp;[[#A44|A44]] i&nbsp;[[#A46|A46]]. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
  
  
  
<span id="A48" style="font-size: 110%; font-weight: bold;">Przykład A48</span><br/>
+
<span id="A49" style="font-size: 110%; font-weight: bold;">Przykład A49</span><br/>
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń [[#A43|A43]] i [[#A45|A45]] do współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.
+
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń [[#A44|A44]] i [[#A46|A46]] do współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
 
Wybraliśmy współczynnik dwumianowy <math>{\small\binom{2 \cdot 3284}{3284}}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
 
Wybraliśmy współczynnik dwumianowy <math>{\small\binom{2 \cdot 3284}{3284}}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
  
Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;[[#A43|A43]] i [[#A45|A45]] nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
+
Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;[[#A44|A44]] i [[#A46|A46]] nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
  
  
Linia 1603: Linia 1629:
 
Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>
 
Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>
  
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A43|A43]], jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A45|A45]], jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;[[#A43|A43]] i [[#A45|A45]] można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
+
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A44|A44]], jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;[[#A46|A46]], jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;[[#A44|A44]] i [[#A46|A46]] można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
  
 
Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>
 
Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>{\small\binom{2 \cdot 3284}{3284}}</math> na czynniki pierwsze.<br/>
Linia 1777: Linia 1803:
 
<ref name="Czebyszew1">Wikipedia, ''Pafnuty Czebyszew (1821 - 1893)'', ([https://pl.wikipedia.org/wiki/Pafnutij_Czebyszow Wiki-pl]), ([https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B1%D1%8B%D1%88%D1%91%D0%B2,_%D0%9F%D0%B0%D1%84%D0%BD%D1%83%D1%82%D0%B8%D0%B9_%D0%9B%D1%8C%D0%B2%D0%BE%D0%B2%D0%B8%D1%87 Wiki-ru])</ref>
 
<ref name="Czebyszew1">Wikipedia, ''Pafnuty Czebyszew (1821 - 1893)'', ([https://pl.wikipedia.org/wiki/Pafnutij_Czebyszow Wiki-pl]), ([https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B1%D1%8B%D1%88%D1%91%D0%B2,_%D0%9F%D0%B0%D1%84%D0%BD%D1%83%D1%82%D0%B8%D0%B9_%D0%9B%D1%8C%D0%B2%D0%BE%D0%B2%D0%B8%D1%87 Wiki-ru])</ref>
  
<ref name="Czebyszew2">P. L. Chebyshev, ''Mémoire sur les nombres premiers'', J. de Math. Pures Appl. (1) 17 (1852), 366-390, ([http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf LINK])</ref>
+
<ref name="Czebyszew2">P. L. Chebyshev, ''Mémoire sur les nombres premiers'', J. de Math. Pures Appl. (1) 17 (1852), 366-390, ([http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A20_0.pdf LINK])</ref>
  
 
<ref name="Erdos">P. Erdos, ''Beweis eines Satzes von Tschebyschef'', Acta Litt. Sci. Szeged 5 (1932), 194-198, ([https://old.renyi.hu/~p_erdos/1932-01.pdf LINK1]), ([http://acta.bibl.u-szeged.hu/13396/1/math_005_194-198.pdf LINK2])</ref>
 
<ref name="Erdos">P. Erdos, ''Beweis eines Satzes von Tschebyschef'', Acta Litt. Sci. Szeged 5 (1932), 194-198, ([https://old.renyi.hu/~p_erdos/1932-01.pdf LINK1]), ([http://acta.bibl.u-szeged.hu/13396/1/math_005_194-198.pdf LINK2])</ref>

Wersja z 19:25, 7 lis 2025

07.11.2021



Oznaczenia

Będziemy stosowali następujące oznaczenia:

[math]\displaystyle{ \mathbb{Z} }[/math] — zbiór liczb całkowitych
[math]\displaystyle{ \mathbb{Z}_+ }[/math] — zbiór liczb całkowitych dodatnich
[math]\displaystyle{ \mathbb{N} }[/math] — zbiór liczb naturalnych [math]\displaystyle{ \mathbb{N} = \mathbb{Z}_{+} }[/math]
[math]\displaystyle{ \mathbb{N}_0 }[/math] — zbiór liczb całkowitych nieujemnych [math]\displaystyle{ \mathbb{N}_0 = \mathbb{Z}_{+} \cup \left \{ 0 \right \} }[/math]
[math]\displaystyle{ \mathbb{R} }[/math] — zbiór liczb rzeczywistych
[math]\displaystyle{ d \mid n }[/math] — czytaj: d dzieli n ([math]\displaystyle{ d }[/math] jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ d \nmid n }[/math] — czytaj: d nie dzieli n ([math]\displaystyle{ d }[/math] nie jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ p_n }[/math][math]\displaystyle{ n }[/math]-ta liczba pierwsza
[math]\displaystyle{ \pi (n) }[/math] — ilość liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ P(n) }[/math] — iloczyn liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ \lfloor x \rfloor }[/math] — największa liczba całkowita nie większa od [math]\displaystyle{ x }[/math]
[math]\displaystyle{ {\small\binom{n}{m}} }[/math] — współczynnik dwumianowy (symbol Newtona), [math]\displaystyle{ {\small\binom{n}{m}} = {\small\frac{n!}{m! \cdot (n - m) !}} }[/math]
[math]\displaystyle{ \log (x) }[/math] — logarytm naturalny liczby [math]\displaystyle{ x \gt 0 }[/math]
[math]\displaystyle{ W_p (n) }[/math] — wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ n }[/math]
[math]\displaystyle{ n }[/math] — oznacza zawsze liczbę naturalną
[math]\displaystyle{ p }[/math] — oznacza zawsze liczbę pierwszą


Przykładowe wartości niektórych wypisanych wyżej funkcji:

[math]\displaystyle{ p_2 = 3 }[/math],   [math]\displaystyle{ p_{10} = 29 }[/math],   [math]\displaystyle{ p_{100} = 541 }[/math]
[math]\displaystyle{ \pi (10) = 4 }[/math],   [math]\displaystyle{ \pi (100) = 25 }[/math],   [math]\displaystyle{ \pi (541) = 100 }[/math]
[math]\displaystyle{ P(5) = 30 }[/math],   [math]\displaystyle{ P(10) = 210 }[/math],   [math]\displaystyle{ P(50) = 614889782588491410 }[/math]
[math]\displaystyle{ \lfloor 1.2 \rfloor = 1 }[/math],   [math]\displaystyle{ \lfloor 2.8 \rfloor = 2 }[/math],   [math]\displaystyle{ \lfloor - 1.5 \rfloor = - 2 }[/math]
[math]\displaystyle{ {\small\binom{5}{2}} = 10 }[/math],   [math]\displaystyle{ {\small\binom{10}{5}} = 252 }[/math],   [math]\displaystyle{ {\small\binom{9}{3}} = 84 }[/math]
[math]\displaystyle{ W_2 (8) = 3 }[/math],   [math]\displaystyle{ W_3 (18) = 2 }[/math],   [math]\displaystyle{ W_7 (28) = 1 }[/math]


Funkcje te są zaimplementowane w PARI/GP[1]

[math]\displaystyle{ p_n }[/math] = prime(n)
[math]\displaystyle{ \pi (n) }[/math] = primepi(n)
[math]\displaystyle{ P(n) }[/math] = prodeuler(p=2, n, p)
[math]\displaystyle{ \lfloor x \rfloor }[/math] = floor(x)
[math]\displaystyle{ {\small\binom{n}{m}} }[/math] = binomial(n, m)
[math]\displaystyle{ W_p (n) }[/math] = valuation(n, p)



Twierdzenie Czebyszewa

W 1852 roku rosyjski matematyk Czebyszew[2][3] udowodnił, że dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ a \cdot {\small\frac{n}{\log n}} \: \underset{n \geqslant 11}{\lt } \: \pi (n) \: \underset{n \geqslant 96098}{\lt } \: b \cdot {\small\frac{n}{\log n}} }[/math]

gdzie

[math]\displaystyle{ a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022 \qquad \quad b = \tfrac{6}{5} a = 1.105550428 }[/math]


Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z nierównościami udowodnionymi przez Czebyszewa w teorii prawdopodobieństwa), a twierdzeniem Czebyszewa nazywany jest łatwy wniosek z tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math]

Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] nabrało nowego życia, gdy w 1936 Erdos[4] zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.


Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami[5][6][7][8] funkcji [math]\displaystyle{ \pi (n) }[/math] oraz [math]\displaystyle{ p_n }[/math]


[math]\displaystyle{ {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \underset{n \geqslant 599}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1.28}{\log n}} \right) }[/math]


[math]\displaystyle{ n (\log n + \log \log n - 1) \underset{n \geqslant 2}{\lt } p_n \underset{n \geqslant 6}{\lt } n (\log n + \log \log n) }[/math]


Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] oraz analogiczne oszacowanie dla funkcji [math]\displaystyle{ p_n }[/math].


Twierdzenie A1
Prawdziwe są następujące oszacowania:


[math]\displaystyle{ 0.72 \cdot n \log n \underset{n \geqslant 1}{\lt } p_n \underset{n \geqslant 3}{\lt } 2n \log n }[/math]


[math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} \underset{n \geqslant 3}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } {\small\frac{2 n}{\log n}} }[/math]


Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.



Oszacowanie [math]\displaystyle{ p_n }[/math] od dołu i [math]\displaystyle{ \pi (n) }[/math] od góry

Rozpoczniemy od oszacowania liczby [math]\displaystyle{ {\small\binom{2n}{n}} }[/math]. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.

Twierdzenie A2
Niech [math]\displaystyle{ n, k \in \mathbb{N} }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{n}{k}} }[/math] jest zawsze liczbą całkowitą dodatnią.

Dowód

Indukcja matematyczna. Ponieważ

[math]\displaystyle{ {\small\binom{0}{0}} = {\small\binom{1}{0}} = {\small\binom{1}{1}} = 1 }[/math]

to twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Zakładając prawdziwość twierdzenia dla wszystkich liczb całkowitych należących do przedziału [math]\displaystyle{ [1, n] }[/math] mamy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ {\small\binom{n + 1}{0}} = {\small\binom{n + 1}{n + 1}} = 1 }[/math]

Dla [math]\displaystyle{ k }[/math] spełniającego warunek [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math], jest

[math]\displaystyle{ {\small\binom{n + 1}{k}} = {\small\binom{n}{k}} + {\small\binom{n}{k - 1}} }[/math]

Na podstawie założenia indukcyjnego liczby po prawej stronie są liczbami całkowitymi dodatnimi, zatem [math]\displaystyle{ {\small\binom{n + 1}{k}} }[/math] dla wszystkich wartości [math]\displaystyle{ k }[/math] jest liczbą całkowitą dodatnią. Co należało pokazać.


Twierdzenie A3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] jest liczbą parzystą.

Dowód

Łatwo zauważamy, że

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1)!}{n \cdot (n - 1) ! \cdot n!}} = 2 \cdot {\small\binom{2 n - 1}{n - 1}} }[/math]


Twierdzenie A4
Prawdziwe są następujące oszacowania współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]

[math]\displaystyle{ 3.8^{n + 1} \underset{n \geqslant 80}{\lt } {\small\binom{2 n}{n}} \underset{n \geqslant 5}{\lt } 4^{n - 1} }[/math]
Dowód

Indukcja matematyczna[a]. W przypadku lewej nierówności łatwo sprawdzamy, że [math]\displaystyle{ 3.8^{81} \lt {\small\binom{160}{80}} }[/math]. Zakładając prawdziwość nierówności dla [math]\displaystyle{ n \geqslant 80 }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ {\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} \gt 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{80 + 1}} \right) \gt 3.8^{n + 1} \cdot 3.9753 \gt 3.8^{n + 2} }[/math]


Prawa nierówność jest prawdziwa dla [math]\displaystyle{ n = 5 }[/math]. Zakładając prawdziwość nierówności dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ {\small\binom{2 (n + 1)}{n + 1}} = {\small\binom{2 n}{n}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)}} \lt 4^{n -1} \cdot 2 \cdot \left( 2 - {\small\frac{1}{n + 1}} \right) \lt 4^n }[/math]



[a] Warto znać asymptotykę współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math], aby lepiej zrozumieć dowodzone w twierdzeniu oszacowanie. Ze wzoru Stirlinga[9]

[math]\displaystyle{ \log n! \sim n \log n - n + {\small\frac{1}{2}} \log (2 \pi n) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{1260 n^5}} - {\small\frac{1}{1680 n^7}} + {\small\frac{1}{1188 n^9}} + \ldots + {\small\frac{B_{2 k}}{(2 k - 1) 2 k \cdot n^{2 k - 1}}} + \ldots }[/math]
[math]\displaystyle{ n! \sim \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \exp \left( \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2 k (2 k - 1) n^{2 k - 1}}} \right) }[/math]
[math]\displaystyle{ \;\;\;\,\, = \sqrt{2 \pi n} \cdot \left( {\small\frac{n}{e}} \right)^n \cdot \left( 1 + {\small\frac{1}{12 n}} + {\small\frac{1}{288 n^2}} - {\small\frac{139}{51840 n^3}} - {\small\frac{571}{2488320 n^4}} + {\small\frac{163879}{209018880 n^5}} + {\small\frac{5246819}{75246796800 n^6}} - \ldots \right) }[/math]

gdzie [math]\displaystyle{ B_i }[/math] są liczbami Bernoulliego, wynika, że

[math]\displaystyle{ {\small\binom{2 n}{n}} \sim {\small\frac{4^n}{\sqrt{\pi n}}} \cdot \left( 1 - {\small\frac{1}{8 n}} + {\small\frac{1}{128 n^2}} + {\small\frac{5}{1024 n^3}} - {\small\frac{21}{32768 n^4}} - \ldots \right) }[/math]


Twierdzenie A5
Dla [math]\displaystyle{ n \geqslant 12 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt 3 n }[/math].

Dowód

Indukcja matematyczna. Dowód oprzemy na spostrzeżeniu, że wśród kolejnych sześciu liczb naturalnych [math]\displaystyle{ 6 k, 6 k + 1, 6 k + 2, 6 k + 3, 6 k + 4, 6 k + 5 }[/math] jedynie dwie: [math]\displaystyle{ 6 k + 1 }[/math] i [math]\displaystyle{ 6 k + 5 }[/math] mogą być pierwsze. Wynika stąd, że [math]\displaystyle{ p_{n + 2} \geqslant p_n + 6 }[/math] dla [math]\displaystyle{ n \geqslant 4 }[/math]. Dowód indukcyjny przeprowadzimy, stosując krok równy [math]\displaystyle{ 2 }[/math]. Twierdzenie jest oczywiście prawdziwe dla [math]\displaystyle{ n = 12 }[/math], bo [math]\displaystyle{ p_{12} = 37 \gt 3 \cdot 12 = 36 }[/math], podobnie [math]\displaystyle{ p_{13} = 41 \gt 3 \cdot 13 = 39 }[/math]. Zakładając prawdziwość twierdzenia dla wszystkich liczb naturalnych [math]\displaystyle{ k \in [12, n] }[/math], otrzymujemy dla [math]\displaystyle{ n + 2 }[/math]:

[math]\displaystyle{ p_{n + 2} \geqslant p_n + 6 \gt 3 n + 6 = 3 \cdot (n + 2) }[/math]

Uwaga: inaczej mówiąc, dowodzimy twierdzenie osobno dla [math]\displaystyle{ n }[/math] parzystych [math]\displaystyle{ (n \geqslant 12) }[/math] i osobno dla [math]\displaystyle{ n }[/math] nieparzystych [math]\displaystyle{ (n \geqslant 13) }[/math].


Twierdzenie A6
Ciąg [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] jest rosnący i ograniczony. Dla wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math].

Dowód

W artykule, w którym pojęcie współczynnika dwumianowego odgrywa główną rolę, nie mogło zabraknąć dowodu odwołującego się do wzoru dwumianowego

[math]\displaystyle{ \left ( x + y \right )^{n} = \sum_{k=0}^{n} {\small\binom{n}{k}} x^{n-k}y^{k} = {\small\binom{n}{0}} x^{n} + {\small\binom{n}{1}}x^{n-1}y + {\small\binom{n}{2}}x^{n-2}y^{2} + \ldots + {\small\binom{n}{n}}y^{n} }[/math]

gdzie [math]\displaystyle{ {\small\binom{n}{k}} = {\small\frac{n!}{k! \cdot (n - k)!}} }[/math].


Dowód opiera się na spostrzeżeniu, że [math]\displaystyle{ e = \sum_{k=0}^{\infty} {\small\frac{1}{k!}} = 2.718281828 \ldots }[/math], a wykorzystanie wzoru dwumianowego pozwala przekształcić wyrażenie [math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] do postaci sumy z wyraźnie wydzielonym czynnikiem [math]\displaystyle{ {\small\frac{1}{k!}} }[/math]. Stosując wzór dwumianowy, możemy zapisać [math]\displaystyle{ n }[/math]-ty wyraz ciągu [math]\displaystyle{ (a_n) }[/math] w postaci

[math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n = }[/math]
[math]\displaystyle{ \quad \; = \sum_{k=0}^{n} {\small\binom{n}{k}} {\small\frac{1}{n^k}} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} {\small\frac{n!}{k! \cdot (n - k)!}} \cdot {\small\frac{1}{n^k}} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot {\small\frac{n \cdot (n - 1) \cdot \ldots \cdot (n - (k - 1))}{n^k}} = }[/math]
[math]\displaystyle{ \quad \; = 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n}} \right) }[/math]


Odpowiednio dla wyrazu [math]\displaystyle{ a_{n + 1} }[/math] mamy

[math]\displaystyle{ a_{n + 1} = \left( 1 + {\small\frac{1}{n + 1}} \right)^{n + 1} = }[/math]
[math]\displaystyle{ \qquad \: = 2 + \sum_{k=2}^{n + 1} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n + 1}} \right) \gt }[/math]
[math]\displaystyle{ \qquad \: \gt 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n + 1}} \right) \gt }[/math]
[math]\displaystyle{ \qquad \: \gt 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n}} \right) = }[/math]
[math]\displaystyle{ \qquad \: = a_n }[/math]

Ostatnia nierówność jest prawdziwa, bo dla dowolnej liczby [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] jest [math]\displaystyle{ 1 - {\small\frac{x}{n + 1}} \gt 1 - {\small\frac{x}{n}} }[/math]

Zatem ciąg [math]\displaystyle{ (a_n) }[/math] jest rosnący. Musimy jeszcze wykazać, że jest ograniczony od góry. Pokazaliśmy wyżej, że wyraz [math]\displaystyle{ a_n }[/math] może być zapisany w postaci

[math]\displaystyle{ a_n = 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} \cdot \left( 1 - {\small\frac{1}{n}} \right) \cdot \ldots \cdot \left( 1 - {\small\frac{k - 1}{n}} \right) }[/math]


Ponieważ czynniki w nawiasach są dodatnie i mniejsze od jedności, to

[math]\displaystyle{ a_n \leqslant 2 + \sum_{k=2}^{n} {\small\frac{1}{k!}} = }[/math]
[math]\displaystyle{ \quad \; \leqslant 1 + 1 + \sum_{k=2}^{n} {\small\frac{1}{2^{k-1}}} = }[/math]
[math]\displaystyle{ \quad \; = 1 + \left ( 1 + {\small\frac{1}{2}} + {\small\frac{1}{2^2}} + \ldots + {\small\frac{1}{2^{n-1}}}\right ) = }[/math]
[math]\displaystyle{ \quad \; = 1 + {\small\frac{1 - \left ( \tfrac{1}{2} \right )^{n}}{1 - \tfrac{1}{2}}} = }[/math]
[math]\displaystyle{ \quad \; = 1 + 2 - {\small\frac{1}{2^{n-1}}} \lt }[/math]
[math]\displaystyle{ \quad \; \lt 3 }[/math]


Druga nierówność (nieostra) jest prawdziwa, bo dla [math]\displaystyle{ k \geqslant 2 }[/math] zachodzi oczywista nierówność [math]\displaystyle{ k! \geqslant 2^{k - 1} }[/math]. Do sumy ujętej w nawiasy zastosowaliśmy wzór na sumę częściową szeregu geometrycznego.

Ponieważ [math]\displaystyle{ a_1 = 2 }[/math], to prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math]. Zauważmy jeszcze (już bez dowodu), że ciąg [math]\displaystyle{ (a_n) }[/math], jako rosnący i ograniczony od góry[10], jest zbieżny. Granicą ciągu [math]\displaystyle{ (a_n) }[/math] jest liczba niewymierna [math]\displaystyle{ e = 2.718281828 \ldots }[/math], która jest podstawą logarytmu naturalnego.


Zadanie A7
Pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] ciąg [math]\displaystyle{ a_n = {\small\frac{n}{\log n}} }[/math] jest silnie rosnący.

Rozwiązanie

Definicję ciągu silnie rosnącego podajemy w C3. Z twierdzenia A6 otrzymujemy natychmiast, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest

[math]\displaystyle{ n \gt \left( 1 + {\small\frac{1}{n}} \right)^n }[/math]

Zatem [math]\displaystyle{ n^{n + 1} \gt (n + 1)^n }[/math]. Logarytmując, dostajemy

[math]\displaystyle{ (n + 1) \log n \gt n \log (n + 1) }[/math]

Czyli

[math]\displaystyle{ {\small\frac{n + 1}{\log (n + 1)}} \gt {\small\frac{n}{\log n}} }[/math]

Łatwo sprawdzamy, że

[math]\displaystyle{ {\small\frac{3}{\log 3}} \lt {\small\frac{2}{\log 2}} }[/math]

Co należało pokazać.


Twierdzenie A8
Prawdziwe są następujące oszacowania:

[math]\displaystyle{ n^n \underset{n \geqslant 13}{\lt } p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{\lt } (n \log n)^n }[/math]
Dowód

Indukcja matematyczna. Udowodnimy tylko oszacowanie od dołu. Dowód oszacowania od góry przedstawimy po zakończeniu dowodu twierdzenia A1. Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 13 }[/math]. Zakładając prawdziwość twierdzenia dla liczb naturalnych [math]\displaystyle{ k \in [13, n] }[/math] mamy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n p_{n + 1} \gt n^n \cdot p_{n + 1} \gt n^n \cdot 3 (n + 1) \gt n^n \cdot \left( 1 + {\small\frac{1}{n}} \right)^n \cdot (n + 1) = (n + 1)^{n + 1} }[/math]

Gdzie skorzystaliśmy z faktu, że [math]\displaystyle{ p_n \gt 3 n }[/math] dla [math]\displaystyle{ n \geqslant 12 }[/math] oraz z właściwości rosnącego ciągu [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n \lt e = 2.718281828 \ldots \lt 3 }[/math] (zobacz twierdzenie A6).


Twierdzenie A9
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{P (2 n)}{P (n)}} \lt 4^{n - 1} }[/math], gdzie [math]\displaystyle{ P (n) }[/math] oznacza iloczyn wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math].

Dowód

Rozważmy współczynnik dwumianowy

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}} }[/math]

Każda liczba pierwsza należąca do przedziału [math]\displaystyle{ [n + 1, 2 n] }[/math] występuje w liczniku wypisanego wyżej ułamka i nie występuje w mianowniku. Wynika stąd oszacowanie

[math]\displaystyle{ {\small\binom{2 n}{n}} = C \cdot \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} \gt \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} = {\small\frac{P (2 n)}{P (n)}} }[/math]

Zauważmy, że wypisany w powyższej nierówności iloczyn liczb pierwszych jest liczbą nieparzystą. Ponieważ współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] jest dodatnią liczbą całkowitą parzystą, zatem również czynnik [math]\displaystyle{ C \geqslant 2 }[/math] musi być dodatnią liczbą całkowitą parzystą. Łącząc uzyskaną nierówność z oszacowaniem z twierdzenia A4, otrzymujemy natychmiast:

[math]\displaystyle{ {\small\frac{P (2 n)}{P (n)}} \lt {\small\binom{2 n}{n}} \lt 4^{n - 1} }[/math]

Dla [math]\displaystyle{ n = 2, 3, 4 }[/math] sprawdzamy uzyskany rezultat bezpośrednio.


Twierdzenie A10
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ P(n) \lt 4^n }[/math]

Dowód

Indukcja matematyczna. Oszacowanie [math]\displaystyle{ P(n) \lt 4^n }[/math] jest prawdziwe dla [math]\displaystyle{ n = 1, 2 }[/math]. Zakładając prawdziwość oszacowania dla wszystkich liczb całkowitych nie większych od [math]\displaystyle{ n }[/math], dla [math]\displaystyle{ n + 1 }[/math] rozpatrzymy dwa przypadki. Jeżeli [math]\displaystyle{ n + 1 = 2 k + 1 }[/math] jest liczbą nieparzystą większą lub równą [math]\displaystyle{ 3 }[/math], to mamy

[math]\displaystyle{ P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot {\small\frac{P (2 k + 2)}{P (k + 1)}} \lt 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1} }[/math]

gdzie skorzystaliśmy z założenia indukcyjnego i oszacowania z twierdzenia A9.

Jeżeli [math]\displaystyle{ n + 1 = 2 k }[/math] jest liczbą parzystą większą lub równą [math]\displaystyle{ 4 }[/math], to mamy

[math]\displaystyle{ P(n + 1) = P (2 k) = P (k) \cdot {\small\frac{P (2 k)}{P (k)}} \lt 4^k \cdot 4^{k - 1} = 4^{2 k - 1} \lt 4^{2 k} = 4^{n + 1} }[/math]

gdzie ponownie skorzystaliśmy z założenia indukcyjnego i oszacowania z twierdzenia A9.


Twierdzenie A11
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt {\small\frac{1}{2 \log 2}} \cdot n \log n }[/math].

Dowód

Ponieważ z definicji [math]\displaystyle{ P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n }[/math], to korzystając z oszacowań uzyskanych w twierdzeniach A8A10 dostajemy dla [math]\displaystyle{ n \geqslant 13 }[/math]

[math]\displaystyle{ n^n \lt p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) \lt 4^{p_n} }[/math]

Logarytmując obie strony nierówności, mamy

[math]\displaystyle{ n \log n \lt p_n \cdot \log 4 }[/math]

Skąd natychmiast wynika dowodzone oszacowanie

[math]\displaystyle{ p_n \gt {\small\frac{1}{2 \log 2}} \cdot n \log n \gt 0.72 \cdot n \log n }[/math]

Prawdziwość powyższej nierówności dla [math]\displaystyle{ n \leqslant 12 }[/math] sprawdzamy bezpośrednio.


Twierdzenie A12
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (2 n) - \pi (n) \lt 2 \log 2 \cdot {\small\frac{n}{\log n}} }[/math].

Dowód

Każda liczba pierwsza należąca do przedziału [math]\displaystyle{ [n + 1, 2 n] }[/math] jest dzielnikiem współczynnika dwumianowego

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{n! \cdot n!}} = {\small\frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}} }[/math]

bo dzieli licznik i nie dzieli mianownika. Ponieważ dla każdej z tych liczb jest [math]\displaystyle{ p \gt n }[/math], to

[math]\displaystyle{ n^{\pi (2 n) - \pi (n)} \lt \prod_{n \lt p_i \leqslant 2 n} p_i \lt {\small\binom{2 n}{n}} \lt 4^n }[/math]

Ostatnia nierówność wynika z twierdzenia A4. Logarytmując, dostajemy

[math]\displaystyle{ [\pi (2 n) - \pi (n)] \cdot \log n \lt 2 n \cdot \log 2 }[/math]

Czyli

[math]\displaystyle{ \pi (2 n) - \pi (n) \lt 2 \log 2 \cdot {\small\frac{n}{\log n}} }[/math]


Twierdzenie A13
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \lt 2 \cdot {\small\frac{n}{\log n}} }[/math].

Dowód

Indukcja matematyczna. Oszacowanie [math]\displaystyle{ \pi (n) \lt 2 \cdot {\small\frac{n}{\log n}} }[/math] jest prawdziwe dla [math]\displaystyle{ 2 \leqslant n \leqslant 62 }[/math], co łatwo sprawdzamy przez bezpośrednie wyliczenie. W programie GP/PARI wystarczy wpisać polecenie:

for(n = 2, 62, if( primepi(n) >= 2 * n/log(n), print(n) ))

Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych należących do przedziału [math]\displaystyle{ [2, n] }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

a) jeżeli [math]\displaystyle{ n + 1 }[/math] jest liczbą parzystą, to:

[math]\displaystyle{ \pi (n + 1) = \pi (n) = 2 \cdot {\small\frac{n}{\log n}} \lt 2 \cdot {\small\frac{n + 1}{\log (n + 1)}} }[/math]

Ostatnia nierówność wynika z twierdzenia A6. Wystarczy zauważyć, że [math]\displaystyle{ n \gt \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] dla [math]\displaystyle{ n \geqslant 3 }[/math]. Zatem [math]\displaystyle{ n^{n + 1} \gt (n + 1)^n }[/math]. Logarytmując, otrzymujemy [math]\displaystyle{ (n + 1) \log n \gt n \log (n + 1) }[/math].

b) jeżeli [math]\displaystyle{ n + 1 }[/math] jest liczbą nieparzystą, to możemy położyć [math]\displaystyle{ n + 1 = 2 k + 1 }[/math] i otrzymujemy:

[math]\displaystyle{ \pi (n + 1) = \pi (2 k + 1) }[/math]
[math]\displaystyle{ \quad = \pi (2 k + 2) }[/math]
[math]\displaystyle{ \quad = \pi (k + 1) + [\pi (2 k + 2) - \pi (k + 1)] }[/math]
[math]\displaystyle{ \quad \lt 2 \cdot {\small\frac{k + 1}{\log (k + 1)}} + 2 \log 2 \cdot {\small\frac{k + 1}{\log (k + 1)}} }[/math]
[math]\displaystyle{ \quad = (1 + \log 2) \cdot {\small\frac{2 k + 2}{\log (k + 1)}} }[/math]
[math]\displaystyle{ \quad \lt \left[ 1.7 \cdot {\small\frac{2 k + 2}{\log (k + 1)}} \cdot {\small\frac{\log (2 k + 1)}{2 k + 1}} \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot {\small\frac{2 k + 2}{2 k + 1}} \cdot {\small\frac{\log (2 k + 2)}{\log (k + 1)}} \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot \left( 1 + {\small\frac{1}{2 k + 1}} \right) \cdot {\small\frac{\log (k + 1) + \log 2}{\log (k + 1)}} \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = \left[ 1.7 \cdot \left( 1 + {\small\frac{1}{2 k + 1}} \right) \cdot \left( 1 + {\small\frac{\log 2}{\log (k + 1)}} \right) \right] \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad \lt 2 \cdot {\small\frac{2 k + 1}{\log (2 k + 1)}} }[/math]
[math]\displaystyle{ \quad = 2 \cdot {\small\frac{n + 1}{\log (n + 1)}} }[/math]

Ostatnia nierówność wynika z faktu, że czynnik w nawiasie kwadratowym maleje wraz ze wzrostem [math]\displaystyle{ k }[/math] i dla [math]\displaystyle{ k = 63 }[/math] osiąga wartość [math]\displaystyle{ 1.9989 \ldots }[/math]



Wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} }[/math].


Definicja A14
Funkcję [math]\displaystyle{ \lfloor x \rfloor }[/math] (czytaj: całość z [math]\displaystyle{ x }[/math]) definiujemy jako największą liczbę całkowitą nie większą od [math]\displaystyle{ x }[/math]. Operacyjnie możemy ją zdefiniować następująco: niech liczby [math]\displaystyle{ x, \varepsilon \in \mathbb{R} }[/math], liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math], jeżeli [math]\displaystyle{ x = k + \varepsilon }[/math], to [math]\displaystyle{ \lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k }[/math].


Twierdzenie A15
Dla [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], [math]\displaystyle{ x \in \mathbb{R} }[/math] jest [math]\displaystyle{ \left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor }[/math].

Dowód

Korzystając z definicji A14, przedstawmy liczbę w postaci [math]\displaystyle{ x = k + \varepsilon }[/math], gdzie [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math].

Z twierdzenia o dzieleniu z resztą liczbę [math]\displaystyle{ k }[/math] możemy zapisać w postaci [math]\displaystyle{ k = q n + r }[/math], gdzie [math]\displaystyle{ 0 \leqslant r \leqslant n - 1 }[/math], mamy zatem [math]\displaystyle{ x = q n + r + \varepsilon }[/math]. Ponieważ [math]\displaystyle{ 0 \leqslant r + \varepsilon \lt n }[/math], to po podzieleniu przez [math]\displaystyle{ n }[/math] dostajemy

[math]\displaystyle{ 0 \leqslant {\small\frac{r + \varepsilon}{n}} \lt 1 }[/math]

czyli

[math]\displaystyle{ \left \lfloor {\small\frac{x}{n}} \right \rfloor = \left \lfloor {\small\frac{qn + r + \varepsilon }{n}} \right \rfloor = \left \lfloor q + {\small\frac{r + \varepsilon }{n}} \right \rfloor = q }[/math]

Podobnie, ponieważ [math]\displaystyle{ 0 \leqslant r \lt n }[/math], to [math]\displaystyle{ 0 \leqslant {\small\frac{r}{n}} \lt 1 }[/math] i otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{\left \lfloor x \right\rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor qn + r + \varepsilon \right \rfloor}{n}} \right \rfloor = \left \lfloor {\small\frac{qn + r}{n}} \right \rfloor = \left \lfloor q + {\small\frac{r}{n}} \right \rfloor = q }[/math]


Twierdzenie A16
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Liczba [math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor }[/math] przyjmuje wartości [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math].

Dowód

Niech [math]\displaystyle{ x = k + \varepsilon }[/math], gdzie [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math]. Mamy

[math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor = \lfloor 2 k + 2 \varepsilon \rfloor - 2 \lfloor k + \varepsilon \rfloor = 2 k + \lfloor 2 \varepsilon \rfloor - 2 k -2 \lfloor \varepsilon \rfloor = \lfloor 2 \varepsilon \rfloor }[/math]

Ponieważ [math]\displaystyle{ 0 \leqslant 2 \varepsilon \lt 2 }[/math], zatem [math]\displaystyle{ \lfloor 2 \varepsilon \rfloor = 0 }[/math] lub [math]\displaystyle{ \lfloor 2 \varepsilon \rfloor = 1 }[/math].


Bardzo istotnym rezultatem (z punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n! }[/math]


Definicja A17
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą, zaś [math]\displaystyle{ a }[/math] dowolną liczbą naturalną. Jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ a }[/math], to powiemy, że funkcja [math]\displaystyle{ W_p (n) }[/math] przyjmuje wartość [math]\displaystyle{ a }[/math]. Fakt ten możemy zapisać następująco

[math]\displaystyle{ W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n }[/math]


Przykład A18
[math]\displaystyle{ W_5 (100) = 2 }[/math],   [math]\displaystyle{ W_7 (42) = 1 }[/math],   ponieważ [math]\displaystyle{ 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11 }[/math], to [math]\displaystyle{ W_3 (11!) = 4 }[/math]


Wprost z definicji funkcji [math]\displaystyle{ W_p (n) }[/math] wynikają następujące właściwości:


Twierdzenie A19

Podstawowe własności funkcji [math]\displaystyle{ W_p (n) }[/math]

  1. [math]\displaystyle{ \;\; W_p (n \cdot m) = W_p (n) + W_p (m) }[/math]
  2. [math]\displaystyle{ \;\; W_p (n \cdot p^a) = a + W_p (n) }[/math]
  3. [math]\displaystyle{ \;\; W_{p}\left ( {\small\frac{n}{m}} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad {\small\frac{n}{m}}\in \mathbb{Z}_{+} }[/math]
  4. [math]\displaystyle{ \;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0 }[/math]


Twierdzenie A20
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Ilość liczb podzielnych przez [math]\displaystyle{ p }[/math] i występujących w ciągu [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] wynosi [math]\displaystyle{ r = \left\lfloor {\small\frac{n}{p}} \right\rfloor }[/math].

Dowód

Wśród liczb naturalnych [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] istnieje pewna ilość liczb podzielnych przez [math]\displaystyle{ p }[/math]. Liczby te możemy z łatwością wypisać, będą nimi

[math]\displaystyle{ 1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, r \cdot p }[/math]

Gdzie [math]\displaystyle{ r }[/math] jest największą liczbą całkowitą nie większą niż [math]\displaystyle{ {\small\frac{n}{p}} }[/math], czyli [math]\displaystyle{ r = \left\lfloor {\small\frac{n}{p}} \right\rfloor }[/math].


Przykład A21
Ilość liczb całkowitych dodatnich podzielnych przez [math]\displaystyle{ 5 }[/math] i nie większych od [math]\displaystyle{ 63 }[/math] wynosi [math]\displaystyle{ \left\lfloor {\small\frac{63}{5}} \right\rfloor = 12 }[/math]. Liczby te to [math]\displaystyle{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 }[/math].


Twierdzenie A20 umożliwi nam określenie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Twierdzenie A22
Liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

Dowód

Dowód sprowadza się do znalezienia wartości funkcji [math]\displaystyle{ W_p (n!) }[/math].

[math]\displaystyle{ W_p (n!) = W_p (1 \cdot 2 \cdot 3 \cdot \ldots \cdot n) = W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p}} \right\rfloor \cdot p \right) }[/math]

Pozostawiliśmy jedynie czynniki podzielne przez [math]\displaystyle{ p }[/math] (czynniki niepodzielne przez [math]\displaystyle{ p }[/math] nie dają wkładu do wykładnika, z jakim [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]), wyłączając czynnik [math]\displaystyle{ p }[/math] z każdej z liczb [math]\displaystyle{ p, 2 p, 3 p, \ldots, \left\lfloor {\small\frac{n}{p}} \right\rfloor \cdot p }[/math] mamy

[math]\displaystyle{ W_p (n!) = W_p \left( p^{\lfloor n / p \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p}} \right\rfloor \right) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p}} \right\rfloor \right) }[/math]

Otrzymane wyrażenie przekształcamy analogicznie jak wyżej

[math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{\lfloor n / p \rfloor}{p}} \right\rfloor \cdot p \right) }[/math]

Z twierdzenia A15 wiemy, że dla [math]\displaystyle{ x \in \mathbb{R} }[/math] i [math]\displaystyle{ n \in \mathbb{Z}_{+} }[/math] jest:

[math]\displaystyle{ \left\lfloor {\small\frac{\lfloor x \rfloor}{n}} \right\rfloor = \left \lfloor {\small\frac{x}{n}} \right \rfloor }[/math]

zatem

[math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p^2}} \right\rfloor \cdot p \right) = }[/math]
[math]\displaystyle{ \;\, = \left\lfloor {\small\frac{n}{p}} \right\rfloor + W_p \left( p^{\lfloor n / p^2 \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p^2}} \right\rfloor \right) = }[/math]
[math]\displaystyle{ \;\, = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor {\small\frac{n}{p^2}} \right\rfloor \right) }[/math]

Oczywiście opisaną wyżej procedurę możemy powtarzać wielokrotnie. Zakończenie następuje wtedy, gdy wykładnik liczby pierwszej [math]\displaystyle{ p }[/math] osiągnie wartość tak dużą, że [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]. Ponieważ nie wiemy, jaka to wartość (choć możemy ją oszacować), to stosujemy zapis

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

zdając sobie sprawę z tego, że w rzeczywistości sumowanie obejmuje jedynie skończoną liczbę składników.


Uwaga A23
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w postaci

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^B \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

gdzie [math]\displaystyle{ B = \lfloor \log_2 (n) \rfloor }[/math]. Jest tak dlatego, że jeżeli [math]\displaystyle{ k }[/math] przekroczy [math]\displaystyle{ \lfloor \log_2 (n) \rfloor }[/math], to dla liczby pierwszej [math]\displaystyle{ p = 2 }[/math], jak również dla wszystkich innych liczb pierwszych, mamy

[math]\displaystyle{ {\small\frac{n}{p^k}} \lt 1 }[/math]

czyli dla [math]\displaystyle{ k \gt B }[/math] sumujemy same zera.


Przykład A24
Niech [math]\displaystyle{ n = 30 }[/math], [math]\displaystyle{ p = 3 }[/math]

[math]\displaystyle{ W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3 \cdot 6 \cdot 9) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + 1 = }[/math]
[math]\displaystyle{ \quad = 14 }[/math]

Co jest zgodne ze wzorem:

[math]\displaystyle{ W_3 (30!) = \left\lfloor {\small\frac{30}{3}} \right\rfloor + \left\lfloor {\small\frac{30}{3^2}} \right\rfloor + \left\lfloor {\small\frac{30}{3^3}} \right\rfloor = 10 + 3 + 1 = 14 }[/math]



Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.


Twierdzenie A25
Liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] z wykładnikiem

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right) }[/math]
Dowód

Ponieważ [math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] z wykładnikiem:

[math]\displaystyle{ W_p \left( {\small\binom{2 n}{n}} \right) = W_p ((2 n) !) - 2 W_p (n!) = \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \sum^{\infty}_{k = 1} \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right) }[/math]



Twierdzenie A26
Liczby pierwsze spełniające warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math] występują w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].

Dowód

Jeżeli [math]\displaystyle{ p \gt \sqrt{2 n} }[/math], to dla [math]\displaystyle{ k \geqslant 2 }[/math] mamy [math]\displaystyle{ p^k \geqslant p^2 \gt 2 n \gt n }[/math]. Zatem dla [math]\displaystyle{ k \geqslant 2 }[/math] jest [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math] i otrzymujemy

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = \left \lfloor {\small\frac{2 n}{p}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p}} \right \rfloor }[/math]

Na mocy twierdzenia A16 (dla [math]\displaystyle{ x = \tfrac{n}{p} }[/math]), dostajemy natychmiast, że [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].


Twierdzenie A27
Niech [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \, p }[/math] będzie liczbą pierwszą. Jeżeli [math]\displaystyle{ p^a \biggr\rvert {\small\binom{2 n}{n}} }[/math], to [math]\displaystyle{ p^a \leqslant 2 n }[/math]. Równość w tym oszacowaniu jest możliwa tylko w przypadku, gdy [math]\displaystyle{ n = 1 }[/math] (wtedy [math]\displaystyle{ p = 2 \; }[/math] i [math]\displaystyle{ \; a = 1 }[/math]).

Dowód

Niech [math]\displaystyle{ u }[/math] oznacza wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze. Mamy

[math]\displaystyle{ u = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \right) }[/math]

gdzie sumowanie przebiega w rzeczywistości od [math]\displaystyle{ k = 1 }[/math] do [math]\displaystyle{ k = s }[/math], a wartość liczby [math]\displaystyle{ s }[/math] wynika z warunku [math]\displaystyle{ p^s \leqslant 2 n \lt p^{s + 1} }[/math]. Ponieważ sumowane wyrazy są równe [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy natychmiast oszacowanie [math]\displaystyle{ u \leqslant s }[/math], skąd wynika następujący ciąg nierówności

[math]\displaystyle{ p^a \leqslant p^u \leqslant p^s \leqslant 2 n }[/math]


Rozważmy przypadek, gdy [math]\displaystyle{ p^a = 2 n }[/math]. Liczba pierwsza [math]\displaystyle{ p }[/math] nie może być liczbą nieparzystą, bo po prawej stronie równości mamy liczbę parzystą. Zatem może jedynie być [math]\displaystyle{ p = 2 }[/math] i nie może być [math]\displaystyle{ a = 0 . }[/math] Czyli dostajemy [math]\displaystyle{ 2^a = 2 n }[/math], a stąd [math]\displaystyle{ n = 2^{a - 1} \; }[/math] i [math]\displaystyle{ \; a \geqslant 1 }[/math].

Zauważmy teraz, że dla [math]\displaystyle{ a \geqslant 1 }[/math] mamy

[math]\displaystyle{ \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2^a}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{2^{a - 1}}{2^k}} \right\rfloor \right) = \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{k = 1}^{a - 1} \lfloor 2^{a - (k + 1)} \rfloor }[/math]
[math]\displaystyle{ = \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{j = 2}^{a} \lfloor 2^{a - j} \rfloor }[/math]
[math]\displaystyle{ = \lfloor 2^{a - 1} \rfloor + \sum_{k = 2}^{a} \lfloor 2^{a - k} \rfloor - 2 \sum_{j = 2}^{a} \lfloor 2^{a - j} \rfloor }[/math]
[math]\displaystyle{ = \lfloor 2^{a - 1} \rfloor - \sum_{k = 2}^{a} \lfloor 2^{a - k} \rfloor }[/math]
[math]\displaystyle{ = 2 \lfloor 2^{a - 1} \rfloor - \sum_{k = 1}^{a} \lfloor 2^{a - k} \rfloor }[/math]
[math]\displaystyle{ = 2^a - \sum_{k = 1}^{a} 2^{a - k} }[/math]
[math]\displaystyle{ = 2^a - 2^a \sum_{k = 1}^{a} {\small\frac{1}{2^k}} }[/math]
[math]\displaystyle{ = 1 }[/math]


Zatem

[math]\displaystyle{ a = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2 n}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{2^k}} \right\rfloor \right) = \sum_{k = 1}^{\infty} \left( \left\lfloor {\small\frac{2^a}{2^k}} \right\rfloor - 2 \left\lfloor {\small\frac{2^{a - 1}}{2^k}} \right\rfloor \right) = 1 }[/math]


Wynika stąd, że [math]\displaystyle{ n = 2^{a - 1} = 1 }[/math]. Istotnie, dla [math]\displaystyle{ n = 1 }[/math] dostajemy

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\binom{2}{1}} = 2 }[/math]

Widzimy, że dla [math]\displaystyle{ p = 2 \; }[/math] i [math]\displaystyle{ \; n = 1 \; }[/math] jest [math]\displaystyle{ \; p \biggr\rvert {\small\binom{2 n}{n}} \; }[/math] i [math]\displaystyle{ \; p = 2 n }[/math]. Co należało pokazać.



Oszacowanie [math]\displaystyle{ p_n }[/math] od góry i [math]\displaystyle{ \pi (n) }[/math] od dołu

Z twierdzenia A27 wynika natychmiast


Twierdzenie A28
Niech [math]\displaystyle{ {\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math] będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej [math]\displaystyle{ q_i }[/math], [math]\displaystyle{ i = 1, \ldots, s }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ q^{\alpha_i}_i \leqslant 2 n }[/math].

Uwaga: w powyższym twierdzeniu [math]\displaystyle{ q_i }[/math] nie oznacza [math]\displaystyle{ i }[/math]-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie [math]\displaystyle{ i }[/math] ze zboru liczb pierwszych [math]\displaystyle{ q_1, \ldots q_s }[/math], które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera.


Twierdzenie A29
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest następujące oszacowanie współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]

[math]\displaystyle{ {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]
Dowód

Dowód wynika natychmiast z twierdzenia A28, bo

[math]\displaystyle{ {\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]


Twierdzenie A30
Dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]
Dowód

W twierdzeniu A4 oszacowaliśmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]. Przepiszemy, to twierdzenie w postaci bardziej czytelnej dla potrzeb tego dowodu

[math]\displaystyle{ \left( \sqrt{3.8} \right)^{2 n} \lt \left( \sqrt{3.8} \right)^{2 n + 1} \lt \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} \lt {\small\binom{2 n}{n}} }[/math]

Nierówności te są prawdziwe dla [math]\displaystyle{ n \geqslant 80 }[/math]. Z twierdzenia A29 mamy

[math]\displaystyle{ \left( \sqrt{3.8} \right)^{2 n} \lt \left( \sqrt{3.8} \right)^{2 n + 1} \lt {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]

Łącząc odpowiednie oszacowania współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] od góry z odpowiednimi oszacowaniami od dołu, dostajemy

[math]\displaystyle{ (2 n + 1)^{\pi (2 n + 1)} \gt \left( \sqrt{3.8} \right)^{2 n + 1} }[/math]
[math]\displaystyle{ (2 n)^{\pi (2 n)} \gt \left( \sqrt{3.8} \right)^{2 n} }[/math]

Zatem zarówno dla parzystych, jak i nieparzystych liczb [math]\displaystyle{ m \geqslant 160 }[/math] jest

[math]\displaystyle{ m^{\pi (m)} \gt \left( \sqrt{3.8} \right)^m }[/math]
[math]\displaystyle{ \pi (m) \cdot \log m \gt m \cdot \log \left( \sqrt{3.8} \right) }[/math]

Czyli

[math]\displaystyle{ \pi (m) \gt {\small\frac{1}{2}} \cdot \log \left ( 3.8 \right ) \cdot {\small\frac{m}{\log m}} \gt 0.6675 \cdot {\small\frac{m}{\log m}} \gt {\small\frac{2}{3}} \cdot {\small\frac{m}{\log m}} }[/math]

Dla [math]\displaystyle{ m = 3, 4, \ldots, 159 }[/math] prawdziwość nierówności sprawdzamy przez bezpośrednie wyliczenie. W programie GP/PARI wystarczy wykonać polecenie

for(n = 2, 200, if( primepi(n) <= 2/3 * n/log(n), print(n) ))


Twierdzenie A31
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 2 n \log n }[/math]

Dowód

Rozpoczniemy od pokazania, że dla [math]\displaystyle{ x \gt 83499.14 }[/math] prawdziwe jest następujące oszacowanie funkcji [math]\displaystyle{ \log x }[/math] od góry

[math]\displaystyle{ \log x \lt {\small\frac{2}{3}} \cdot x^{1 / 4} }[/math]

Wiemy, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla [math]\displaystyle{ x \gt x_0 }[/math] jest [math]\displaystyle{ \log x \lt x^{1 / n} }[/math]. Zatem dla odpowiednio dużych [math]\displaystyle{ x }[/math] z pewnością będzie [math]\displaystyle{ \tfrac{2}{3} \cdot x^{1 / 4} \gt \log x \, }[/math][a]. Zamieszczony niżej obrazek przedstawia wykres funkcji [math]\displaystyle{ f( x ) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x }[/math].

A Czebyszew-wykres-1.png

Wpisując w PARI/GP polecenie

solve(x = 80000, 10^5, 2/3 * x^(1/4) - log(x))

wyliczamy, że funkcja [math]\displaystyle{ f( x ) }[/math] przecina oś [math]\displaystyle{ O X }[/math] w punkcie [math]\displaystyle{ x = 83499.136 \ldots }[/math] Wynika stąd, że dla [math]\displaystyle{ x \gt 83499.14 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ \log x \lt {\small\frac{2}{3}} \cdot x^{1 / 4} }[/math]


Z twierdzenia A30 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Kładąc [math]\displaystyle{ n = p_k }[/math], otrzymujemy dla [math]\displaystyle{ k \geqslant 2 }[/math]

[math]\displaystyle{ k = \pi (p_k) \gt {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}} }[/math]

Zatem

[math]\displaystyle{ p_k \lt {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1) }[/math]

Korzystając z wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla [math]\displaystyle{ p_k \gt 83499 }[/math]

[math]\displaystyle{ p_k \lt {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 4} }[/math]

czyli

[math]\displaystyle{ (p_k)^{3 / 4} \lt k }[/math]
[math]\displaystyle{ p_k \lt k^{4 / 3} }[/math]

Wstawiając to oszacowanie ponownie do [math]\displaystyle{ (1) }[/math], dostajemy

[math]\displaystyle{ p_k \lt {\small\frac{3}{2}} \cdot k \cdot {\small\frac{4}{3}} \cdot \log k = 2 k \log k }[/math]

Wpisując w PARI/GP polecenie

for(k = 1, 10^5, p = prime(k); if( p > 83499, print("end"); break() ); if( p >= 2 * k * log(k), print(k) ))

łatwo sprawdzamy, że oszacowanie [math]\displaystyle{ p_k \lt 2 k \log k }[/math] jest prawdziwe dla [math]\displaystyle{ k \geqslant 3 }[/math].



[a] Bardziej precyzyjnie: pochodna funkcji [math]\displaystyle{ f(x) = \tfrac{2}{3} \cdot x^{1 / 4} - \log x }[/math] jest równa [math]\displaystyle{ {\small\frac{1}{6 x^{3 / 4}}} - {\small\frac{1}{x}} }[/math] (zobacz WolframAlpha). Łatwo sprawdzamy, że pochodna jest ujemna w przedziale [math]\displaystyle{ (0, 1296) }[/math] i dodatnia w przedziale [math]\displaystyle{ (1296, \infty) }[/math]. Wynika stąd, że funkcja [math]\displaystyle{ f( x ) }[/math] jest funkcją malejącą dla [math]\displaystyle{ x \lt 1296 }[/math] i rosnącą dla [math]\displaystyle{ x \gt 1296 }[/math].






Dowód twierdzenia A31 kończy dowód całego twierdzenia A1. Możemy teraz dokończyć dowód twierdzenia A8 i pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n \lt (n \log n)^n }[/math]
Dowód

Indukcja matematyczna. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 3 }[/math]. Zakładając prawdziwość twierdzenia dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n p_{n + 1} \lt (n \log n)^n \cdot p_{n + 1} \lt }[/math]
[math]\displaystyle{ \quad \lt n^n \cdot (\log n)^n \cdot 2 (n + 1) \log (n + 1) \leqslant }[/math]
[math]\displaystyle{ \quad \leqslant n^n \cdot \left( 1 + {\small\frac{1}{n}} \right)^n \cdot (n + 1) \cdot (\log n)^n \cdot \log (n + 1) \lt }[/math]
[math]\displaystyle{ \quad \lt (n + 1)^{n + 1} \cdot [\log (n + 1)]^n \cdot \log (n + 1) = }[/math]
[math]\displaystyle{ \quad = [(n + 1) \cdot \log (n + 1)]^{n + 1} }[/math]

Gdzie skorzystaliśmy z twierdzenia A31 oraz z faktu, że ciąg [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] jest ciągiem ograniczonym [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math] (zobacz twierdzenie A6).



Uwagi do dowodu

Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i udowodnić


Twierdzenie A32
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 1.875 \cdot n \log n }[/math]

Dowód

Rozpoczniemy od pokazania, że dla [math]\displaystyle{ x \gt 7572437.23 }[/math] prawdziwe jest następujące oszacowanie funkcji [math]\displaystyle{ \log x }[/math] od góry

[math]\displaystyle{ \log x \lt {\small\frac{2}{3}} \cdot x^{1 / 5} }[/math]

Wiemy, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla [math]\displaystyle{ x \gt x_0 }[/math] jest [math]\displaystyle{ \log x \lt x^{1 / n} }[/math]. Zatem dla odpowiednio dużych [math]\displaystyle{ x }[/math] z pewnością będzie [math]\displaystyle{ \tfrac{2}{3} \cdot x^{1 / 5} \gt \log x \, }[/math][a]. Wpisując w PARI/GP polecenie

solve(x = 10^6, 10^7, 2/3 * x^(1/5) - log(x))

wyliczamy, że funkcja [math]\displaystyle{ f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x }[/math] przecina oś [math]\displaystyle{ O X }[/math] w punkcie [math]\displaystyle{ x = 7572437.223 \ldots }[/math] Wynika stąd, że dla [math]\displaystyle{ x \gt 7572437.23 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ \log x \lt {\small\frac{2}{3}} \cdot x^{1 / 5} }[/math]


Z twierdzenia A30 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Kładąc [math]\displaystyle{ n = p_k }[/math], otrzymujemy dla [math]\displaystyle{ k \geqslant 2 }[/math]

[math]\displaystyle{ k = \pi (p_k) \gt {\small\frac{2}{3}} \cdot {\small\frac{p_k}{\log p_k}} }[/math]

Zatem

[math]\displaystyle{ p_k \lt {\small\frac{3}{2}} \cdot k \cdot \log p_k \qquad \qquad (1) }[/math]

Korzystając z wcześniej pokazanego oszacowania, otrzymujemy nierówność prawdziwą dla [math]\displaystyle{ p_k \gt 7572437 }[/math]

[math]\displaystyle{ p_k \lt {\small\frac{3}{2}} \cdot k \cdot {\small\frac{2}{3}} \cdot (p_k)^{1 / 5} }[/math]

czyli

[math]\displaystyle{ (p_k)^{4 / 5} \lt k }[/math]
[math]\displaystyle{ p_k \lt k^{5 / 4} }[/math]

Wstawiając to oszacowanie ponownie do [math]\displaystyle{ (1) }[/math], dostajemy

[math]\displaystyle{ p_k \lt {\small\frac{3}{2}} \cdot k \cdot {\small\frac{5}{4}} \cdot \log k = 1.875 \cdot k \log k }[/math]

Wpisując w PARI/GP polecenie

for(k = 1, 10^7, p = prime(k); if( p > 7572437, print("end"); break() ); if( p >= 2 * k * log(k), print(k) ))

łatwo sprawdzamy, że oszacowanie [math]\displaystyle{ p_k \lt 1.875 \cdot k \log k }[/math] jest prawdziwe dla [math]\displaystyle{ k \geqslant 3 }[/math].



[a] Bardziej precyzyjnie: pochodna funkcji [math]\displaystyle{ f(x) = \tfrac{2}{3} \cdot x^{1 / 5} - \log x }[/math] jest równa [math]\displaystyle{ {\small\frac{2}{15 x^{4 / 5}}} - {\small\frac{1}{x}} }[/math] (zobacz WolframAlpha). Łatwo sprawdzamy, że pochodna jest ujemna w przedziale [math]\displaystyle{ (0, 23730.46875) }[/math] i dodatnia w przedziale [math]\displaystyle{ (23730.46875, \infty) }[/math]. Wynika stąd, że funkcja [math]\displaystyle{ f( x ) }[/math] jest funkcją malejącą dla [math]\displaystyle{ x \lt 23730.46875 }[/math] i rosnącą dla [math]\displaystyle{ x \gt 23730.46875 }[/math].


Twierdzenie A33
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) \lt 1.733 \cdot {\small\frac{n}{\log n}} }[/math]
Dowód

Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest

[math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} \gt n^{4 / 5} }[/math]

Ostatnia nierówność wynika z faktu, że dla [math]\displaystyle{ x \gt 7572437.223 \ldots }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{x}{\log x}} \gt x^{4 / 5} }[/math]

Korzystając z twierdzenia A10 możemy napisać ciąg nierówności

[math]\displaystyle{ 4^n \gt P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} \gt \pi (n)^{\pi (n)} \gt (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5} }[/math]

skąd otrzymujemy, że dla [math]\displaystyle{ n \geqslant 7572438 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) \lt 1.733 \cdot {\small\frac{n}{\log n}} }[/math]

W GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 2 }[/math]

for(n = 2, 8*10^6, if( primepi(n) >= 1.733 * n/log(n), print(n) ))


Uwaga A34
Dowód twierdzenia A32 wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja prime(n). Analogiczna sytuacja miała miejsce w przypadku twierdzenia A33 – tam musieliśmy wielokrotnie wywoływać funkcję primepi(n). Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy Test1(n) i Test2(n) wywołane z parametrami n = 520000 i odpowiednio n = 8*10^6 odpowiadają poleceniom

for(s = 1, 520000, if( prime(s) >= s^(5/4), print(s) ))
for(n = 2, 8 * 10^6, if( primepi(n) >= 1.733 * n / log(n), print(n) ))

ale wykonywane są znacznie szybciej.

Test1(n) = 
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
{
local(p, k);
k = 1;
p = 2;
while( k <= n,
       if( p >= k^(5/4), print(k) );
       k = k + 1;
       p = nextprime(p + 1);  \\ liczba p ma wartość prime(k)
     );
}
Test2(n) = 
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
local(s, k);
s = 1;
k = 2;
while( k <= n,
       if( s >= 1.733 * k / log(k), print(k) );
       k = k + 1;
       s = s + isprime(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
     );
}


Uwaga A35
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] lub [math]\displaystyle{ p_n }[/math]. Już osiągnięcie tą drogą oszacowania [math]\displaystyle{ p_n \lt 1.6 \cdot n \log n }[/math] przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność

[math]\displaystyle{ \log x \lt {\small\frac{2}{3}} \cdot x^{1 / 16} }[/math]

jest prawdziwa dla [math]\displaystyle{ x \gt 7.671 \cdot 10^{32} }[/math].



Zastosowania

Ciekawy rezultat wynika z twierdzenia A8, ale wcześniej musimy udowodnić twierdzenie o średniej arytmetycznej i geometrycznej.

Twierdzenie A36
Dla dowolnych liczb dodatnich [math]\displaystyle{ a_1, a_2, \ldots, a_n }[/math] średnia arytmetyczna jest nie mniejsza od średniej geometrycznej

[math]\displaystyle{ {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n} }[/math]
Dowód

Twierdzenie jest w sposób oczywisty prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Równie łatwo stwierdzamy prawdziwość nierówności dla [math]\displaystyle{ n = 2 }[/math]

[math]\displaystyle{ (a_1 - a_2)^2 \geqslant 0 }[/math]
[math]\displaystyle{ a^2_1 - 2 a_1 a_2 + a^2_2 \geqslant 0 }[/math]
[math]\displaystyle{ a^2_1 + 2 a_1 a_2 + a^2_2 \geqslant 4 a_1 a_2 }[/math]
[math]\displaystyle{ (a_1 + a_2)^2 \geqslant 4 a_1 a_2 }[/math]
[math]\displaystyle{ {\small\frac{a_1 + a_2}{2}} \geqslant \sqrt{a_1 a_2} }[/math]

Dla potrzeb dowodu zapiszemy dowodzoną nierówność w postaci

[math]\displaystyle{ \left( {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \right)^n \geqslant a_1 a_2 \cdot \ldots \cdot a_n }[/math]

Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] dla [math]\displaystyle{ n + 1 }[/math] mamy

a) w przypadku gdy [math]\displaystyle{ n + 1 = 2 k }[/math] jest liczbą parzystą

[math]\displaystyle{ \left( {\small\frac{a_1 + a_2 + \ldots + a_{n + 1}}{n + 1}} \right)^{n + 1} = \left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k}}{2 k}} \right)^{2 k} = }[/math]
[math]\displaystyle{ \;\;\, = \left[ \left( \frac{ \tfrac{a_{\large 1} + a_{\large 2}}{2} + \tfrac{a_{\large 3} + a_{\large 4}}{2} + \ldots + \tfrac{a_{\large 2 k - 1} + a_{\large 2 k}}{2}}{k} \right)^k \right]^2 \geqslant }[/math]
[math]\displaystyle{ \;\;\, \geqslant \left( {\small\frac{a_1 + a_2}{2}} \cdot {\small\frac{a_3 + a_4}{2}} \cdot \ldots \cdot {\small\frac{a_{2 k - 1} + a_{2 k}}{2}} \right)^2 \geqslant }[/math]
[math]\displaystyle{ \;\;\, \geqslant \left( \sqrt{a_1 a_2} \cdot \sqrt{a_3 a_4} \cdot \ldots \cdot \sqrt{a_{2 k - 1} a_{2 k}} \right)^2 = }[/math]
[math]\displaystyle{ \;\;\, = a_1 a_2 \cdot \ldots \cdot a_{2 k} = }[/math]
[math]\displaystyle{ \;\;\, = a_1 a_2 \cdot \ldots \cdot a_{n + 1} }[/math]

Gdzie skorzystaliśmy z założenia indukcyjnego i prawdziwości dowodzonego twierdzenia dla [math]\displaystyle{ n = 2 }[/math].

b) w przypadku gdy [math]\displaystyle{ n + 1 = 2 k - 1 }[/math] jest liczbą nieparzystą, możemy skorzystać z udowodnionego wyżej punktu a) dla parzystej ilości liczb

[math]\displaystyle{ a_1, a_2, \ldots, a_{2 k - 1}, S }[/math]

gdzie przez [math]\displaystyle{ S }[/math] oznaczyliśmy średnią arytmetyczną liczb [math]\displaystyle{ a_1, a_2, \ldots, a_{2 k - 1} }[/math]

[math]\displaystyle{ S = {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1}}{2 k - 1}} }[/math]

Na mocy punktu a) prawdziwa jest nierówność

[math]\displaystyle{ \left( {\small\frac{a_1 + a_2 + \ldots + a_{2 k - 1} + S}{2 k}} \right)^{2 k} = \left( {\small\frac{(2 k - 1) S + S}{2 k}} \right)^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S }[/math]

Skąd otrzymujemy

[math]\displaystyle{ S^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S }[/math]
[math]\displaystyle{ S^{2 k - 1} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} }[/math]

Co należało pokazać.


Twierdzenie A37
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność [math]\displaystyle{ p_1 + p_2 + \ldots + p_n \gt n^2 }[/math].

Dowód

Korzystając z twierdzeń A8 i A36, możemy napisać następujący ciąg nierówności dla [math]\displaystyle{ n }[/math] kolejnych liczb pierwszych

[math]\displaystyle{ {\small\frac{p_1 + p_2 + \ldots + p_n}{n}} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} \gt \sqrt[n]{n^n} = n }[/math]

Stąd otrzymujemy natychmiast tezę twierdzenia, którą sprawdzamy dla [math]\displaystyle{ n \lt 13 }[/math]. Do sprawdzenia można wykorzystać proste polecenie w PARI/GP

for(n = 1, 20, s = 0; for(k = 1, n, s = s + prime(k)); if( s <= n^2, print(n) ))


Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] i [math]\displaystyle{ p_n }[/math], które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] istnieje takie [math]\displaystyle{ n_0 }[/math], że dla każdego [math]\displaystyle{ n \gt n_0 }[/math] prawdziwa jest nierówność [math]\displaystyle{ \log x \lt x^{\varepsilon} }[/math]. Inaczej mówiąc, funkcja [math]\displaystyle{ \log x }[/math] rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.


Twierdzenie A38
Prawdziwe są następujące nierówności:

1.    [math]\displaystyle{ e^x \gt x \qquad \qquad \qquad \quad \:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
2.    [math]\displaystyle{ e^x \geqslant x + 1 \qquad \qquad \quad \;\:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]   (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 0 }[/math])
3.    [math]\displaystyle{ e^x \gt 2 x \qquad \qquad \qquad \;\;\,\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
4.    [math]\displaystyle{ \log x \lt n \cdot x^{1 / n} \qquad \quad \;\;\: }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
5.    [math]\displaystyle{ \log x \lt \tfrac{1}{2} n \cdot x^{1 / n} \qquad \quad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
6.    [math]\displaystyle{ \log x \leqslant n (x^{1 / n} - 1) \qquad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]   (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 1 }[/math])
Dowód

Nim przejdziemy do dowodu trzech pierwszych punktów, pokażemy, że funkcja [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią. Ponieważ funkcję [math]\displaystyle{ e^x }[/math] możemy zdefiniować w sposób równoważny wzorem[11]

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

to funkcja [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią, bo dla [math]\displaystyle{ x \gt 0 }[/math] sumujemy tylko wyrazy dodatnie, dla [math]\displaystyle{ x = 0 }[/math] mamy [math]\displaystyle{ e^0 = 1 }[/math], a dla [math]\displaystyle{ x \lt 0 }[/math] możemy napisać [math]\displaystyle{ e^x = {\small\frac{1}{e^{- x}}} \gt 0 \, }[/math][a][b].

Punkt 1. i punkt 3.

Pokazaliśmy, że funkcja [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią. Ponieważ funkcje [math]\displaystyle{ x \, }[/math] i [math]\displaystyle{ \, 2 x }[/math] są ujemne lub równe zero dla [math]\displaystyle{ x \leqslant 0 }[/math], to pozostaje rozważyć jedynie przypadek, gdy [math]\displaystyle{ x \gt 0 }[/math]. Łatwo zauważamy, że

[math]\displaystyle{ e^x - x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - x = 1 + \sum^{\infty}_{k = 2} {\small\frac{x^k}{k!}} \gt 0 }[/math]
[math]\displaystyle{ e^x - 2 x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} - 2 x = 1 - x + {\small\frac{x^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} = {\small\frac{1}{2}} + {\small\frac{(x - 1)^2}{2}} + \sum_{k = 3}^{\infty} {\small\frac{x^k}{k!}} \gt 0 }[/math]

Punkt 2.

Rozważymy kolejno przypadki

  •     gdy [math]\displaystyle{ x \gt 0 }[/math], to [math]\displaystyle{ e^x - (x + 1) = {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots \gt 0 }[/math], bo sumujemy wyrazy dodatnie
  •     gdy [math]\displaystyle{ x = 0 }[/math], to [math]\displaystyle{ e^x - (x + 1) = 0 }[/math]
  •     gdy [math]\displaystyle{ - 1 \lt x \lt 0 }[/math], to [math]\displaystyle{ e^x - (x + 1) = \left( {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} \right) + \left( {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} \right) + \ldots \gt 0 }[/math], bo dla [math]\displaystyle{ k \geqslant 1 }[/math] jest [math]\displaystyle{ {\small\frac{x^{2 k}}{(2 k) !}} + {\small\frac{x^{2 k + 1}}{(2 k + 1) !}} = {\small\frac{x^{2 k} (2 k + 1 + x)}{(2 k + 1) !}} \gt 0 }[/math]
  •     gdy [math]\displaystyle{ x \leqslant - 1 }[/math], to [math]\displaystyle{ e^x \gt x + 1 }[/math], bo [math]\displaystyle{ x + 1 \leqslant 0 }[/math], a [math]\displaystyle{ e^x }[/math] jest funkcją dodatnią

Punkt 4.

W rozpatrywanej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^t }[/math]. Dostajemy [math]\displaystyle{ t \lt n \cdot (e^t)^{1 / n} }[/math], czyli [math]\displaystyle{ e^{t / n} \gt {\small\frac{t}{n}} }[/math]. Otrzymana nierówność jest prawdziwa dla dowolnego [math]\displaystyle{ {\small\frac{t}{n}} \in \mathbb{R} }[/math] na mocy punktu 1. tego twierdzenia.

Punkt 5.

W rozpatrywanej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^t }[/math]. Dostajemy [math]\displaystyle{ t \lt {\small\frac{1}{2}} n \cdot (e^t)^{1 / n} }[/math], czyli [math]\displaystyle{ e^{t / n} \gt 2 \cdot {\small\frac{t}{n}} }[/math]. Otrzymana nierówność jest prawdziwa dla dowolnego [math]\displaystyle{ {\small\frac{t}{n}} \in \mathbb{R} }[/math] na mocy punktu 3. tego twierdzenia.

Punkt 6.

W rozpatrywanej nierówności połóżmy zmienną pomocniczą [math]\displaystyle{ x = e^t }[/math]. Dostajemy [math]\displaystyle{ t \leqslant n (e^{t / n} - 1) }[/math], czyli [math]\displaystyle{ e^{t / n} \geqslant {\small\frac{t}{n}} + 1 }[/math]. Otrzymana nierówność jest prawdziwa dla dowolnego [math]\displaystyle{ {\small\frac{t}{n}} \in \mathbb{R} }[/math] na mocy punktu 2. tego twierdzenia.



[a] Czytelnik zapewne zauważył, że własność [math]\displaystyle{ e^x e^{- x} = 1 }[/math] przyjęliśmy bez dowodu. Można pokazać, że z definicji

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math], ale dowód wymaga znajomości iloczynu Cauchy'ego szeregów[12][13] i twierdzenia Mertensa o zbieżności takiego iloczynu.

[b] Zadanie: pokazać, że jeżeli funkcja [math]\displaystyle{ f(x) }[/math] spełnia warunek [math]\displaystyle{ f (x + y) = f (x) f (y) }[/math], to albo [math]\displaystyle{ f(x) }[/math] jest tożsamościowo równa zero, albo jest funkcją dodatnią. Wskazówka: [math]\displaystyle{ f(x) = f \left( {\small\frac{x}{2}} + {\small\frac{x}{2}} \right) }[/math], [math]\displaystyle{ f(x) = f (x_0 + (x - x_0)) }[/math]


Zadanie A39
Niech [math]\displaystyle{ x \in \mathbb{R}_+ }[/math]. Pokazać, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla każdego [math]\displaystyle{ x \gt x_0 }[/math] jest [math]\displaystyle{ \log x \lt x^{1 / n} }[/math].

Rozwiązanie

Pierwszy sposób
Rozważmy ciąg nierówności

[math]\displaystyle{ \log x \lt n \cdot x^{1 / 2 n} \lt x^{1 / n} }[/math]

Z twierdzenia A38 p.5 wiemy, że pierwsza nierówność jest prawdziwa dla dowolnych [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Podnosząc strony drugiej nierówności do potęgi [math]\displaystyle{ 2 n }[/math], otrzymujemy [math]\displaystyle{ n^{2 n} \cdot x \lt x^2 }[/math], czyli nierówność ta jest prawdziwa dla [math]\displaystyle{ x \gt n^{2 n} }[/math]. Wynika stąd, że wystarczy przyjąć [math]\displaystyle{ x_0 = n^{2 n} }[/math].

Drugi sposób
Nierówność [math]\displaystyle{ \log x \lt x^{1 / n} }[/math] możemy równoważnie zapisać w postaci [math]\displaystyle{ x \lt \exp (x^{1 / n}) }[/math]. Jeżeli położymy [math]\displaystyle{ x = t^n }[/math], to otrzymamy nierówność [math]\displaystyle{ t^n {\lt e^t} }[/math]. Ponieważ[11]

[math]\displaystyle{ e^t = \sum_{k = 0}^{\infty} {\small\frac{t^k}{k!}} = 1 + t + {\small\frac{t^2}{2}} + {\small\frac{t^3}{6}} + {\small\frac{t^4}{24}} + {\small\frac{t^5}{120}} + \ldots }[/math]

to

[math]\displaystyle{ e^t \gt {\small\frac{t^{n + 1}}{(n + 1) !}} \gt t^n }[/math]

Pierwsza nierówność jest prawdziwa dla [math]\displaystyle{ t \gt 0 }[/math], bo pomijamy wyrazy dodatnie, a druga jest prawdziwa dla [math]\displaystyle{ t \gt (n + 1) ! }[/math] Wystarczy zatem przyjąć [math]\displaystyle{ x_0 = [(n + 1) !]^n }[/math]. Ponieważ [math]\displaystyle{ [(n + 1) !]^n \gt n^{2 n} }[/math] dla [math]\displaystyle{ n \geqslant 1 }[/math], to jest to gorsze oszacowanie wartości [math]\displaystyle{ x_0 }[/math].


Twierdzenie A40
Dla funkcji [math]\displaystyle{ p_n }[/math] i [math]\displaystyle{ \pi (n) }[/math] prawdziwe są następujące oszacowania:

[math]\displaystyle{ 10 n \underset{n \geqslant 6473}{\lt } p_n \underset{n \geqslant 2}{\lt } n^2 }[/math]
[math]\displaystyle{ \sqrt{n} \underset{n \geqslant 5}{\lt } \pi (n) \underset{n \geqslant 64721}{\lt } {\small\frac{n}{10}} }[/math]
Dowód

Lewa górna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ p_n \gt 0.72 \cdot n \log n }[/math]. Wystarczy rozwiązać nierówność:

[math]\displaystyle{ 0.72 \cdot \log n \gt 10 }[/math]

czyli [math]\displaystyle{ n \gt \exp \left( {\small\frac{10}{0.72}} \right) = 1076137.5 }[/math]

W PARI/GP wpisujemy polecenie:

for(n = 1, 11 * 10^5, if( prime(n) <= 10 * n, print(n) ))


Prawa górna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest [math]\displaystyle{ p_n \lt 2 n \log n }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ 2 n \log n \lt n^2 }[/math]. Korzystając z twierdzenia A38 p.5, łatwo zauważmy, że dla [math]\displaystyle{ n \gt 4 }[/math] jest:

[math]\displaystyle{ n - 2 \log n \gt n - 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 2 \right) \gt 0 }[/math]

Przypadki [math]\displaystyle{ n \leqslant 4 }[/math] sprawdzamy bezpośrednio.


Lewa dolna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] jest [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} \gt \sqrt{n} }[/math]. Korzystając z twierdzenia A38 p.5, łatwo zauważmy, że dla [math]\displaystyle{ n \gt 3^4 = 81 }[/math] jest:

[math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} - \sqrt{n} \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{2 \cdot n^{1 / 4}}} - \sqrt{n} = {\small\frac{1}{3}} \cdot n^{3 / 4} - \sqrt{n} = {\small\frac{1}{3}} \sqrt{n} (n^{1 / 4} - 3) \gt 0 }[/math]

Sprawdzenie przypadków [math]\displaystyle{ n \leqslant 81 }[/math] sprowadza się do wpisania w PARI/GP polecenia:

for(n = 1, 100, if( primepi(n) <= sqrt(n), print(n) ))


Prawa dolna nierówność. Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 2 }[/math] jest [math]\displaystyle{ \pi (n) \lt {\small\frac{2 n}{\log n}} }[/math]. Zatem wystarczy pokazać, że [math]\displaystyle{ {\small\frac{2 n}{\log n}} \lt {\small\frac{n}{10}} }[/math]. Nierówność ta jest prawdziwa dla [math]\displaystyle{ \log n \gt 20 }[/math], czyli dla

[math]\displaystyle{ n \gt e^{20} \gt 485165195.4 }[/math]

Sprawdzenie przypadków dla [math]\displaystyle{ n \leqslant 490 \cdot 10^6 }[/math] będzie wymagało napisania w PARI/GP krótkiego programu i wywołania go z parametrem n = 490 * 10^6

Test3(n) =
\\ test oszacowania: primepi(k) < k/10 dla 2 <= k <= n 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
local(s, k);
s = 1;
k = 2;
while( k <= n,
       if( s >= k/10, print(k) );
       k = k + 1;
       s = s + isprime(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
     );
}


Twierdzenie A41
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n^2})^{n / 3} }[/math]
Dowód

Korzystając kolejno z twierdzeń A31, A38 p.5 i A8, łatwo otrzymujemy

[math]\displaystyle{ (p_{n^{\large 2}})^{n / 3} \lt (2 n^2 \log n^2)^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: = (4 n^2 \log n)^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: \lt (4 n^2 \cdot 2 n^{1 / 4})^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: = (8 n^{9 / 4})^{n / 3} }[/math]
[math]\displaystyle{ \;\;\: = (2 n^{3 / 4})^n }[/math]
[math]\displaystyle{ \;\;\: \leqslant n^n }[/math]
[math]\displaystyle{ \;\;\: \lt p_1 p_2 \cdot \ldots \cdot p_n }[/math]

Zauważmy, że nierówność [math]\displaystyle{ 2 n^{3 / 4} \leqslant n }[/math] jest prawdziwa dla [math]\displaystyle{ n \geqslant 2^4 }[/math]. Sprawdzając bezpośrednio dla [math]\displaystyle{ n \lt 16 }[/math], stwierdzamy, że dowodzona nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 1 }[/math].


Zadanie A42
Korzystając z twierdzenia A41 pokazać, że

  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4 }[/math]
  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{2 n})^3 \qquad \qquad \;\; \text{dla } \; n \geqslant 7 }[/math]
Rozwiązanie

Punkt 1.

Ponieważ [math]\displaystyle{ n^2 \gt n + 1 }[/math] dla [math]\displaystyle{ n \geqslant 2 }[/math] oraz [math]\displaystyle{ {\small\frac{n}{3}} \gt 2 }[/math] dla [math]\displaystyle{ n \gt 6 }[/math], to dla [math]\displaystyle{ n \gt 6 }[/math] jest

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n^2})^{n / 3} \gt (p_{n + 1})^2 }[/math]

Sprawdzając bezpośrednio dla [math]\displaystyle{ n \leqslant 6 }[/math], łatwo stwierdzamy prawdziwość oszacowania dla [math]\displaystyle{ n \geqslant 4 }[/math].

Punkt 2.

Ponieważ [math]\displaystyle{ n^2 \gt 2 n }[/math] dla [math]\displaystyle{ n \gt 2 }[/math] oraz [math]\displaystyle{ {\small\frac{n}{3}} \gt 3 }[/math] dla [math]\displaystyle{ n \gt 9 }[/math], to dla [math]\displaystyle{ n \gt 9 }[/math] jest

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n^2})^{n / 3} \gt (p_{2 n})^3 }[/math]

Sprawdzając bezpośrednio dla [math]\displaystyle{ n \leqslant 9 }[/math], łatwo stwierdzamy prawdziwość oszacowania dla [math]\displaystyle{ n \geqslant 7 }[/math].


Twierdzenie A43
Każda liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, n \right] }[/math] występuje w rozwinięciu [math]\displaystyle{ n! }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Z twierdzenia A22 wiemy, że każda liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

Z założenia [math]\displaystyle{ p \leqslant n }[/math] i [math]\displaystyle{ 2 p \gt n }[/math], zatem:

1.    [math]\displaystyle{ {\small\frac{n}{p}} \geqslant 1 }[/math]   oraz   [math]\displaystyle{ {\small\frac{n}{p}} \lt 2 }[/math],   czyli   [math]\displaystyle{ \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1 }[/math]
2.    [math]\displaystyle{ {\small\frac{n}{p^2}} \lt {\small\frac{2}{p}} \leqslant 1 }[/math],   czyli   [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^2}} \right\rfloor = 0 }[/math]   i tym bardziej   [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]   dla   [math]\displaystyle{ k \geqslant 3 }[/math]


Rezultat uzyskany w twierdzeniu A26 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza [math]\displaystyle{ p }[/math], aby występowała w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia A44 i A46 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A45 i A47 to tylko twierdzenia A44 i A46 dla wybranych wartości liczby [math]\displaystyle{ k }[/math]. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A44 i A46, to może je pominąć.


Twierdzenie A44
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą naturalną. Jeżeli [math]\displaystyle{ n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right) }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Najpierw udowodnimy przypadek [math]\displaystyle{ k = 0 }[/math].

Zauważmy, że każda liczba pierwsza [math]\displaystyle{ p \in (n, 2 n] }[/math] występuje dokładnie jeden raz w liczniku ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

i nie występuje w mianowniku. Zatem w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze wystąpi z wykładnikiem równym [math]\displaystyle{ 1 }[/math].

Co kończy dowód twierdzenia w przypadku, gdy [math]\displaystyle{ k = 0 }[/math].

Możemy teraz przejść do dowodu dla wszystkich [math]\displaystyle{ k \geqslant 1 }[/math].


Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ k p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w mianowniku
  • [math]\displaystyle{ (k + 1) p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku (jako [math]\displaystyle{ p, 2 p, \ldots, k p }[/math])
  • [math]\displaystyle{ (2 k + 1) p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (k + 1) p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k + 1 }[/math] razy w liczniku
  • [math]\displaystyle{ (2 k + 2) p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (2 k + 1) p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k + 1 }[/math] razy w liczniku (jako [math]\displaystyle{ (k + 1) p, (k + 2) p, \ldots, (2 k + 1) p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math] pojawia się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku i dokładnie [math]\displaystyle{ k + 1 }[/math] razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Zatem występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem jeden.

Niech [math]\displaystyle{ q }[/math] będzie największą liczbą pierwszą nie większą od ustalonej liczby [math]\displaystyle{ 2 k + 1 }[/math]. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ r_i \in \{ 2, 3, \ldots, q \} }[/math]. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek

[math]\displaystyle{ r_i \notin \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math]

Warunek ten będzie z pewnością spełniony, gdy

[math]\displaystyle{ q \leqslant 2 k + 1 \leqslant {\small\frac{n}{k + 1}} }[/math]

czyli dla [math]\displaystyle{ n }[/math] spełniających nierówność [math]\displaystyle{ n \geqslant (k + 1) (2 k + 1) }[/math].

Oczywiście nie wyklucza to możliwości, że istnieją liczby [math]\displaystyle{ n \lt 2 (k + 1) (k + \tfrac{1}{2}) }[/math], dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby [math]\displaystyle{ k }[/math]) bezpośrednio sprawdzić prawdziwość twierdzenia dla [math]\displaystyle{ n \lt 2 (k + 1) (k + \tfrac{1}{2}) }[/math].


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 1 }[/math], to będziemy szukali oszacowania od dołu. Z założenia mamy

1)    [math]\displaystyle{ p \gt {\small\frac{n}{k + 1}} \qquad \; \Longrightarrow \qquad {\small\frac{n}{p}} \lt k + 1 \qquad \;\;\; \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant k }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 2 k + 1 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2 k + 1 - 2 k = 1 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 2 (k + 1)^2 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt {\small\frac{n}{k + 1}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \lt 2 k + 2 }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} \lt (2 k + 2)^s }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} \lt {\small\frac{(2 k + 2)^2}{2 n}} \cdot \left( {\small\frac{2 k + 2}{2 n}} \right)^{s - 2} }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} \lt {\small\frac{(2 k + 2)^2}{2 n}} }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} \lt 1 }[/math]
[math]\displaystyle{ \;\;\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 2 (k + 1)^2 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 1 }[/math]

Pozostaje bezpośrednio sprawdzić, dla jakich wartości [math]\displaystyle{ n \lt 2 (k + 1)^2 }[/math] twierdzenie pozostaje prawdziwe.

Ponieważ analiza krotności pojawiania się liczby pierwszej [math]\displaystyle{ p }[/math] jest bardziej precyzyjna, to podajemy, że twierdzenie jest z pewnością prawdziwe dla [math]\displaystyle{ n \geqslant 2 (k + 1) (k + \tfrac{1}{2}) }[/math]


Przykład A45
Jeżeli [math]\displaystyle{ n \geqslant 6 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej jeden raz w mianowniku
  • [math]\displaystyle{ 2 p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie jeden raz w mianowniku (jako [math]\displaystyle{ p }[/math])
  • [math]\displaystyle{ 3 p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 2 p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w liczniku
  • [math]\displaystyle{ 4 p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 3 p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w liczniku (jako [math]\displaystyle{ 2 p }[/math] i [math]\displaystyle{ 3 p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] pojawia się dokładnie jeden raz w mianowniku i dokładnie dwa razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Zatem występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem jeden.

Wielokrotności liczby [math]\displaystyle{ p }[/math] podnoszą wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ p = 2, 3 }[/math]. Dlatego zakładamy, że [math]\displaystyle{ n \geqslant 6 }[/math], bo dla [math]\displaystyle{ n \geqslant 6 }[/math] liczby pierwsze [math]\displaystyle{ p = 2, 3 }[/math] nie spełniają warunku [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math].

Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 5 }[/math] i liczba [math]\displaystyle{ 3^2 }[/math] dzieli liczbę [math]\displaystyle{ {\small\binom{10}{5}} = 252 = 9 \cdot 28 }[/math]


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 1 }[/math], to będziemy szukali oszacowania od dołu. Z założenia mamy

1)    [math]\displaystyle{ p \gt {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} \lt 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 1 }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{2 n}{3}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \geqslant 3 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \geqslant 3 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 3 - 2 = 1 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 1 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 9 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt {\small\frac{n}{2}} \quad \implies \quad {\small\frac{(2 n)^k}{p^k}} \lt 4^k \quad \implies \quad {\small\frac{2 n}{p^k}} \lt {\small\frac{16}{2 n}} \cdot \left( {\small\frac{4}{2 n}} \right)^{k - 2} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{2 n}} \quad \implies \quad {\small\frac{2 n}{p^k}} \leqslant {\small\frac{16}{18}} \quad \implies \quad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 9 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 1 }[/math]

Dla [math]\displaystyle{ n = 6, 7 }[/math] żadna liczba pierwsza nie należy do [math]\displaystyle{ \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math]. Dla [math]\displaystyle{ n = 8 }[/math] łatwo sprawdzamy, że liczba [math]\displaystyle{ 5 }[/math] wchodzi do rozkładu liczby [math]\displaystyle{ {\small\binom{16}{8}} = 12870 }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Zatem dla [math]\displaystyle{ n \geqslant 6 }[/math] liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] wchodzi do rozkładu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.


Twierdzenie A46
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math], to dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math] liczba [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą [math]\displaystyle{ p }[/math] występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ k p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w mianowniku
  • [math]\displaystyle{ (k + 1) p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku (jako [math]\displaystyle{ p, 2 p, \ldots, k p }[/math])
  • [math]\displaystyle{ 2 k p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ (k + 1) p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej [math]\displaystyle{ k }[/math] razy w liczniku
  • [math]\displaystyle{ (2 k + 1) p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 2 k p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie [math]\displaystyle{ k }[/math] razy w liczniku (jako [math]\displaystyle{ (k + 1) p, (k + 2) p, \ldots, 2 k p }[/math])


Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math] pojawia się dokładnie [math]\displaystyle{ k }[/math] razy w mianowniku i dokładnie [math]\displaystyle{ k }[/math] razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Co oznacza, że [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Niech [math]\displaystyle{ q }[/math] będzie największą liczbą pierwszą nie większą od ustalonej liczby [math]\displaystyle{ 2 k }[/math]. Rozpatrywane przez nas wielokrotności liczby [math]\displaystyle{ p }[/math] zwiększają wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ r_i \in \{ 2, 3, \ldots, q \} }[/math]. Dlatego twierdzenie nie może dotyczyć tych liczb i musimy nałożyć warunek

[math]\displaystyle{ r_i \notin \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math]

Warunek ten będzie z pewnością spełniony, gdy

[math]\displaystyle{ q \leqslant 2 k \leqslant {\small\frac{n}{k + \tfrac{1}{2}}} }[/math]

czyli dla [math]\displaystyle{ n }[/math] spełniających nierówność [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math]. Oczywiście nie wyklucza to możliwości, że istnieją liczby [math]\displaystyle{ n \lt 2 k (k + \tfrac{1}{2}) }[/math], dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby [math]\displaystyle{ k }[/math]) bezpośrednio sprawdzić prawdziwość twierdzenia dla [math]\displaystyle{ n \lt 2 k (k + \tfrac{1}{2}) }[/math].


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 0 }[/math], to będziemy szukali oszacowania od góry. Z założenia mamy

1)    [math]\displaystyle{ p \gt {\small\frac{n}{k + \tfrac{1}{2}}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \lt 2 k + 1 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 2 k }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{n}{k}} \qquad \quad \;\,\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant k \qquad \qquad \;\:\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant k }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 2 k - 2 k = 0 }[/math]

Ponieważ każdy ze składników sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0 }[/math]


Założenie, że [math]\displaystyle{ 2 n \geqslant (2 k + 1)^2 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt {\small\frac{2 n}{2 k + 1}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^s}{p^s}} \lt (2 k + 1)^s }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} \lt {\small\frac{(2 k + 1)^2}{2 n}} \cdot \left( {\small\frac{2 k + 1}{2 n}} \right)^{s - 2} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} \lt {\small\frac{(2 k + 1)^2}{2 n}} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^s}} \lt 1 }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^s}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^s}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ 2 n \geqslant (2 k + 1)^2 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{s = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{s}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{s}}} \right \rfloor \right ) = 0 }[/math]

Pozostaje bezpośrednio sprawdzić, dla jakich wartości [math]\displaystyle{ n \lt {\small\frac{1}{2}} (2 k + 1)^2 }[/math] twierdzenie pozostaje prawdziwe.

Ponieważ analiza krotności pojawiania się liczby pierwszej [math]\displaystyle{ p }[/math] jest bardziej precyzyjna, to podajemy, że twierdzenie jest z pewnością prawdziwe dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math].


Przykład A47
Jeżeli [math]\displaystyle{ n \geqslant 8 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math], to [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Dowód

Dowód na podstawie analizy krotności pojawiania się liczby [math]\displaystyle{ p }[/math]

Zapiszmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] w postaci ułamka

[math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Rozważmy dowolną liczbę pierwszą [math]\displaystyle{ p }[/math] występującą w mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby [math]\displaystyle{ p }[/math] spełniała następujące warunki:

  • [math]\displaystyle{ 2 p \leqslant n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w mianowniku
  • [math]\displaystyle{ 3 p \gt n }[/math] — warunek ten zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w mianowniku (jako [math]\displaystyle{ p }[/math] i [math]\displaystyle{ 2 p }[/math])
  • [math]\displaystyle{ 4 p \leqslant 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 3 p \gt n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się co najmniej dwa razy w liczniku
  • [math]\displaystyle{ 5 p \gt 2 n }[/math] — warunek ten (łącznie z warunkiem [math]\displaystyle{ 4 p \leqslant 2 n }[/math]) zapewnia nam, że liczba [math]\displaystyle{ p }[/math] pojawi się dokładnie dwa razy w liczniku (jako [math]\displaystyle{ 3 p }[/math] i [math]\displaystyle{ 4 p }[/math])

Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math] pojawia się dokładnie dwa razy w mianowniku i dokładnie dwa razy w liczniku ułamka

[math]\displaystyle{ {\small\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}} }[/math]

Zatem nie występuje w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Wielokrotności liczby [math]\displaystyle{ p }[/math] podnoszą wykładniki, z jakimi występują liczby pierwsze [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ 3 }[/math]. Dlatego zakładamy, że [math]\displaystyle{ n \geqslant 8 }[/math], bo dla [math]\displaystyle{ n \geqslant 8 }[/math] liczby pierwsze [math]\displaystyle{ 2, 3 }[/math] nie spełniają warunku [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math].

Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 7 }[/math] i liczba [math]\displaystyle{ 3 }[/math] dzieli liczbę [math]\displaystyle{ {\small\binom{14}{7}} = 3432 }[/math]


Dowód na podstawie twierdzenia A25

Rozważmy najpierw pierwszy składnik sumy

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) }[/math]

Ponieważ przypuszczamy, że składnik ten będzie równy [math]\displaystyle{ 0 }[/math], to będziemy szukali oszacowania od góry. Z założenia mamy

1)    [math]\displaystyle{ p \gt {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{2 n}{p}} \lt 5 \qquad \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p}} \right\rfloor \leqslant 4 }[/math]
2)    [math]\displaystyle{ p \leqslant {\small\frac{n}{2}} \qquad \;\, \Longrightarrow \qquad {\small\frac{n}{p}} \geqslant 2 \qquad \;\, \Longrightarrow \qquad \left\lfloor {\small\frac{n}{p}} \right\rfloor \geqslant 2 }[/math]

Zatem

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor \leqslant 4 - 4 = 0 }[/math]

Ponieważ każdy ze składników szukanej sumy może być równy tylko [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math], to otrzymujemy

[math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p}} \right\rfloor - 2 \left\lfloor {\small\frac{n}{p}} \right\rfloor = 0 }[/math]


Założenie, że [math]\displaystyle{ n \geqslant 13 }[/math] pozwoli uprościć obliczenia dla drugiego i następnych składników sumy

[math]\displaystyle{ p \gt {\small\frac{2 n}{5}} \qquad \Longrightarrow \qquad {\small\frac{(2 n)^k}{p^k}} \lt 5^k }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} \lt {\small\frac{25}{2 n}} \cdot \left( {\small\frac{5}{2 n}} \right)^{k - 2} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} \lt {\small\frac{25}{2 n}} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad {\small\frac{2 n}{p^k}} \lt {\small\frac{25}{26}} }[/math]
[math]\displaystyle{ \;\;\;\,\, \Longrightarrow \qquad \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math]

Jeżeli [math]\displaystyle{ \left\lfloor {\small\frac{2 n}{p^k}} \right\rfloor = 0 }[/math], to również musi być [math]\displaystyle{ \left\lfloor {\small\frac{n}{p^k}} \right\rfloor = 0 }[/math]. Pokazaliśmy, że dla [math]\displaystyle{ n \geqslant 13 }[/math] jest

[math]\displaystyle{ \sum^{\infty}_{k = 1} \left ( \left \lfloor {\small\frac{2 n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right ) = 0 }[/math]

Dla [math]\displaystyle{ n = 8, 9 }[/math] żadna liczba pierwsza nie należy do [math]\displaystyle{ \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math].

Dla [math]\displaystyle{ n = 10, 11, 12 }[/math] łatwo sprawdzamy, że liczba [math]\displaystyle{ 5 }[/math] nie dzieli liczb [math]\displaystyle{ {\small\binom{20}{10}} = 184756 }[/math], [math]\displaystyle{ {\small\binom{22}{11}} = 705432 }[/math] oraz [math]\displaystyle{ {\small\binom{24}{12}} = 2704156 }[/math].

Zatem dla [math]\displaystyle{ n \geqslant 8 }[/math] liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math] nie dzieli liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math].


Uwaga A48
Z przykładu A45 nie wynika, że w przedziale [math]\displaystyle{ \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] znajduje się choćby jedna liczba pierwsza [math]\displaystyle{ p }[/math]. Analogiczna uwaga jest prawdziwa w przypadku przykładu A47 oraz twierdzeń A44A46. Istnienie liczby pierwszej w określonym przedziale będzie tematem kolejnego artykułu.


Przykład A49
Pokazujemy i omawiamy wynik zastosowania twierdzeń A44 i A46 do współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math]. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math], co w naszym przypadku daje [math]\displaystyle{ p \gt \sqrt{2 \cdot 3284} \approx 81.04 }[/math].

Pokaż przykład

Wybraliśmy współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] dlatego, że w rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze [math]\displaystyle{ p \leqslant 107 }[/math], co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z wykładnikiem większym niż jeden. Ponieważ [math]\displaystyle{ \sqrt{2 \cdot 3284} \approx 81.043 }[/math], zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z wykładnikiem większym niż jeden i tak właśnie jest.

Poniżej wypisaliśmy wszystkie liczby pierwsze [math]\displaystyle{ p \leqslant 3284 }[/math], które występują w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w tabeli. Ostatnią pogrubioną i dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w tabeli – oczywiście tak się nie stanie, bo twierdzeń A44 i A46 nie można stosować bez ograniczeń dla coraz większych liczb [math]\displaystyle{ k }[/math].


26, 38, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 592, 612, 67, 71, 732, 792, 83, 89, 97, 101, 103, 107, 127, 137, 139, 151, 157, 167, 173, 197, 199, 211, 223, 239, 241, 257, 277, 281, 283, 307, 311, 331, 337, 367, 373, 379, 383, 419, 421, 431, 433, 479, 487, 491, 499, 503, 557, 563, 569, 571, 577, 587, 593, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179


Liczba 821 została pogrubiona (w tabeli), bo jest liczbą pierwszą i wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w rozkładzie współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] na czynniki pierwsze.

Czytelnik łatwo sprawdzi, że największą wartością liczby [math]\displaystyle{ k }[/math], dla jakiej można jeszcze stosować twierdzenie A44, jest [math]\displaystyle{ k = 39 }[/math]. Podobnie największą wartością liczby [math]\displaystyle{ k }[/math], dla jakiej można jeszcze stosować twierdzenie A46, jest [math]\displaystyle{ k = 40 }[/math]. Wartości te i odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia A44 i A46 można stosować dla liczb pierwszych [math]\displaystyle{ p }[/math] spełniających warunek [math]\displaystyle{ p \gt 81.09 }[/math]. Co bardzo dokładnie pokrywa się z warunkiem [math]\displaystyle{ p \gt \sqrt{2 \cdot 3284} \approx 81.04 }[/math]

Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i 67, które występują w rozwinięciu współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math] na czynniki pierwsze.

[math]\displaystyle{ k }[/math] [math]\displaystyle{ {\small\frac{3284}{k+1}} }[/math] [math]\displaystyle{ p \in \left ( {\small\frac{3284}{k + 1}}, \frac{3284}{k + \tfrac{1}{2}} \right ] }[/math] [math]\displaystyle{ \frac{3284}{k+\tfrac{1}{2}} }[/math] [math]\displaystyle{ {\small\frac{3284}{k}} }[/math]
0 3284 {3299, 3301, ..., 6553, 6563} 6568
1 1642 {1657, 1663, ..., 2161, 2179} 2189,33 3284
2 1094,67 {1097, 1103, ..., 1303, 1307} 1313,60 1642
3 821 {823, 827, ..., 929, 937} 938,29 1094,67
4 656,80 {659, 661, 673, 677, 683, 691, 701, 709, 719, 727} 729,78 821
5 547,33 {557, 563, 569, 571, 577, 587, 593} 597,09 656,80
6 469,14 {479, 487, 491, 499, 503} 505,23 547,33
7 410,50 {419, 421, 431, 433} 437,87 469,14
8 364,89 {367, 373, 379, 383} 386,35 410,50
9 328,40 {331, 337} 345,68 364,89
10 298,55 {307, 311} 312,76 328,40
11 273,67 {277, 281, 283} 285,57 298,55
12 252,62 {257} 262,72 273,67
13 234,57 {239, 241} 243,26 252,62
14 218,93 {223} 226,48 234,57
15 205,25 {211} 211,87 218,93
16 193,18 {197, 199} 199,03 205,25
17 182,44 {} 187,66 193,18
18 172,84 {173} 177,51 182,44
19 164,20 {167} 168,41 172,84
20 156,38 {157} 160,20 164,20
21 149,27 {151} 152,74 156,38
22 142,78 {} 145,96 149,27
23 136,83 {137, 139} 139,74 142,78
24 131,36 {} 134,04 136,83
25 126,31 {127} 128,78 131,36
26 121,63 {} 123,92 126,31
27 117,29 {} 119,42 121,63
28 113,24 {} 115,23 117,29
29 109,47 {} 111,32 113,24
30 105,94 {107} 107,67 109,47
31 102,63 {103} 104,25 105,94
32 99,52 {101} 101,05 102,63
33 96,59 {97} 98,03 99,52
34 93,83 {} 95,19 96,59
35 91,22 {} 92,51 93,83
36 88,76 {89} 89,97 91,22
37 86,42 {} 87,57 88,76
38 84,21 {} 85,30 86,42
39 82,10 {83} 83,14 84,21
40 80,10 {} 81,09 82,10
41 78,19 {79} 79,13 80,10
42 76,37 {} 77,27 78,19
43 74,64 {} 75,49 76,37
44 72,98 {73} 73,80 74,64
45 71,39 {} 72,18 72,98
46 69,87 {} 70,62 71,39
47 68,42 {} 69,14 69,87
48 67,02 {} 67,71 68,42
49 65,68 {} 66,34 67,02
50 64,39 {} 65,03 65,68
51 63,15 {} 63,77 64,39
52 61,96 {} 62,55 63,15
53 60,81 {61} 61,38 61,96
54 59,71 {} 60,26 60,81
55 58,64 {59} 59,17 59,71
56 57,61 {} 58,12 58,64
57 56,62 {} 57,11 57,61
58 55,66 {} 56,14 56,62
59 54,73 {} 55,19 55,66
60 53,84 {} 54,28 54,73
61 52,97 {53} 53,40 53,84
62 52,13 {} 52,54 52,97
63 51,31 {} 51,72 52,13
64 50,52 {} 50,91 51,31
65 49,76 {} 50,14 50,52
66 49,01 {} 49,38 49,76
67 48,29 {} 48,65 49,01
68 47,59 {} 47,94 48,29
69 46,91 {47} 47,25 47,59
70 46,25 {} 46,58 46,91









Przypisy

  1. Wikipedia, PARI/GP, (Wiki-en)
  2. Wikipedia, Pafnuty Czebyszew (1821 - 1893), (Wiki-pl), (Wiki-ru)
  3. P. L. Chebyshev, Mémoire sur les nombres premiers, J. de Math. Pures Appl. (1) 17 (1852), 366-390, (LINK)
  4. P. Erdos, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198, (LINK1), (LINK2)
  5. P. Dusart, The [math]\displaystyle{ k^{th} }[/math] prime is greater than [math]\displaystyle{ k (\ln k + \ln \ln k - 1) }[/math] for [math]\displaystyle{ k \geqslant 2 }[/math], Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.
  6. P. Dusart, Sharper bounds for [math]\displaystyle{ \psi }[/math], [math]\displaystyle{ \theta }[/math], [math]\displaystyle{ \pi }[/math], [math]\displaystyle{ p_k }[/math], Rapport de recherche no. 1998-06, Université de Limoges
  7. P. Dusart, Estimates of some functions over primes without R.H., (2010), (LINK)
  8. P. Dusart, Explicit estimates of some functions over primes, Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.
  9. Wikipedia, Wzór Stirlinga, (Wiki-pl), (Wiki-en)
  10. Wikipedia, Twierdzenie o zbieżności ciągu monotonicznego, (LINK)
  11. 11,0 11,1 Wikipedia, Characterizations of the exponential function, (Wiki-en)
  12. Wikipedia, Cauchy product, (Wiki-en)
  13. Wikipedia, Szereg (matematyka) - Działania, (Wiki-pl)