Liczby kwadratowe i niekwadratowe modulo. Wybrane zagadnienia
Element odwrotny modulo [math]\displaystyle{ m }[/math]
Twierdzenie K1
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Dla liczby [math]\displaystyle{ k }[/math] istnieje taka liczba [math]\displaystyle{ x }[/math], że
- [math]\displaystyle{ x k \equiv 1 \!\! \pmod{m} }[/math]
wtedy i tylko wtedy, gdy [math]\displaystyle{ \gcd (k, m) = 1 }[/math].
[math]\displaystyle{ \Large{\Longrightarrow} }[/math]
Z założenia istnieje taka liczba [math]\displaystyle{ x }[/math], że
- [math]\displaystyle{ x k \equiv 1 \!\! \pmod{m} }[/math]
Zatem dla pewnego [math]\displaystyle{ r \in \mathbb{Z} }[/math] jest
- [math]\displaystyle{ x k = 1 + r m }[/math]
Czyli [math]\displaystyle{ x k - r m = 1 }[/math]. Wynika stąd, że [math]\displaystyle{ \gcd (k, m) }[/math] dzieli [math]\displaystyle{ 1 }[/math], co oznacza, że [math]\displaystyle{ \gcd (k, m) = 1 }[/math].
[math]\displaystyle{ \Large{\Longleftarrow} }[/math]
Z założenia [math]\displaystyle{ \gcd (k, m) = 1 }[/math]. Z lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że
- [math]\displaystyle{ k x + m y = 1 }[/math]
Zatem modulo [math]\displaystyle{ m }[/math] dostajemy
- [math]\displaystyle{ k x \equiv 1 \!\! \pmod{m} }[/math]
Co kończy dowód.
□
Definicja K2
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Liczbę [math]\displaystyle{ x }[/math] taką, że
- [math]\displaystyle{ x \cdot k \equiv 1 \!\! \pmod{m} }[/math]
będziemy nazywali elementem odwrotnym liczby [math]\displaystyle{ k }[/math] modulo [math]\displaystyle{ m }[/math] i oznaczali jako [math]\displaystyle{ k^{- 1} }[/math].
Uwaga K3
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli [math]\displaystyle{ b \mid a }[/math] oraz [math]\displaystyle{ b }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], to prawdziwa jest kongruencja
- [math]\displaystyle{ {\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m} }[/math]
Istotnie
- [math]\displaystyle{ {\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1}\!\! \pmod{m} }[/math]
W PARI/GP odwrotność liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] znajdujemy, wpisując Mod(a, m)^(-1)
.
Twierdzenie K4
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a liczby [math]\displaystyle{ a, b }[/math] będą względnie pierwsze z [math]\displaystyle{ p }[/math]. Jeżeli liczby [math]\displaystyle{ a, b }[/math] są różne modulo [math]\displaystyle{ p }[/math], to ich elementy odwrotne [math]\displaystyle{ a^{-1}, b^{- 1} }[/math] też są różne modulo [math]\displaystyle{ p }[/math].
Z założenia [math]\displaystyle{ a \not\equiv b \!\! \pmod{p} }[/math]. Gdyby było
- [math]\displaystyle{ a^{- 1} \equiv b^{- 1} \!\! \pmod{p} }[/math]
to mielibyśmy
- [math]\displaystyle{ a^{- 1} a b \equiv b^{- 1} a b \!\! \pmod{p} }[/math]
Czyli
- [math]\displaystyle{ b \equiv a \!\! \pmod{p} }[/math]
Wbrew uczynionemu założeniu. Co kończy dowód.
□
Twierdzenie K5
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, zbiór [math]\displaystyle{ R = \{ 1, 2, \ldots, p - 1 \} }[/math], a zbiór [math]\displaystyle{ S }[/math] będzie identyczny ze zbiorem [math]\displaystyle{ R }[/math] modulo [math]\displaystyle{ p }[/math]. Jeżeli liczby [math]\displaystyle{ x_k \in S }[/math] przebiegają cały zbiór [math]\displaystyle{ S }[/math], to liczby [math]\displaystyle{ x^{- 1}_k }[/math] przebiegają zbiór [math]\displaystyle{ T }[/math] identyczny ze zbiorem [math]\displaystyle{ R }[/math] modulo [math]\displaystyle{ p }[/math].
Z założenia zbiory [math]\displaystyle{ R }[/math] i [math]\displaystyle{ S }[/math] są identyczne modulo [math]\displaystyle{ R }[/math]. Zatem każdej liczbie [math]\displaystyle{ k \in R }[/math] odpowiada dokładnie jedna liczba [math]\displaystyle{ x_k \in S }[/math] taka, że
- [math]\displaystyle{ x_k \equiv k \!\! \pmod{p} }[/math]
Ponieważ [math]\displaystyle{ \gcd (k, p) = 1 }[/math], to również [math]\displaystyle{ \gcd (x_k, p) = 1 }[/math]. Zatem liczba [math]\displaystyle{ x_k }[/math] ma element odwrotny [math]\displaystyle{ x^{- 1}_k }[/math] modulo [math]\displaystyle{ p }[/math]. Ponieważ wszystkie liczby [math]\displaystyle{ x_k }[/math] są różne modulo [math]\displaystyle{ p }[/math], to elementy odwrotne [math]\displaystyle{ x^{- 1}_k }[/math] też są wszystkie różne modulo [math]\displaystyle{ p }[/math]. Ponieważ liczb [math]\displaystyle{ x^{- 1}_k }[/math] jest dokładnie [math]\displaystyle{ p - 1 }[/math], to tworzą one pewien zbiór [math]\displaystyle{ T }[/math] identyczny ze zbiorem [math]\displaystyle{ R }[/math] modulo [math]\displaystyle{ p }[/math]. Co kończy dowód.
□
Przykłady sum symboli Legendre'a
Twierdzenie K6
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, [math]\displaystyle{ a, d \in \mathbb{Z} }[/math] i [math]\displaystyle{ p \nmid d }[/math]. Pokazać, że
- [math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
- [math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1 }[/math]
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
Punkt 1.
Wystarczy zauważyć, że wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Zatem
- [math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) = 0 }[/math]
Punkt 2.
Wystarczy zauważyć, że
- [math]\displaystyle{ \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2} }[/math]
oraz że wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Zatem
- [math]\displaystyle{ \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1^2 + {\small\frac{p - 1}{2}} \cdot (- 1)^2 = p - 1 }[/math]
Punkt 3.
Z założenia liczby [math]\displaystyle{ p }[/math] i [math]\displaystyle{ d }[/math] są względnie pierwsze. Z twierdzenia C57 wiemy, że reszty [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] z dzielenia [math]\displaystyle{ p }[/math] kolejnych liczb postaci
- [math]\displaystyle{ x_k = a + k d }[/math]
przez liczbę [math]\displaystyle{ p }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, p - 1 \} }[/math]. Czyli wśród reszt [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math], tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], a jedna z tych reszt jest podzielna przez [math]\displaystyle{ p }[/math]. Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J31 p. 2). Zatem możemy napisać
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = \sum_{j = 0}^{p - 1} \left( {\small\frac{r_j}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) + 0 = 0 }[/math]
Co należało pokazać.
□
Twierdzenie K7* (George Pólya, Iwan Winogradow, 1918)
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ m, n \in \mathbb{N}_0 }[/math], to prawdziwe jest oszacowanie
- [math]\displaystyle{ \left| \sum_{t = m}^{m + n} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}} \right| \lt \sqrt{p} \log p }[/math]
Twierdzenie K8
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], to
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (a - b) \\ p - 1 & \text{gdy } \, p \mid (a - b) \\ \end{cases} }[/math]
1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \mid (a - b)} }[/math]
Z założenia [math]\displaystyle{ b \equiv a \!\! \pmod{p} }[/math]
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2} }[/math]
Z twierdzenia C57 wiemy, że reszty [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] z dzielenia [math]\displaystyle{ p }[/math] kolejnych liczb postaci
- [math]\displaystyle{ x_k = a + k }[/math]
przez liczbę [math]\displaystyle{ p }[/math] są wszystkie różne i tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, p - 1 \} }[/math]. Czyli wśród reszt [math]\displaystyle{ r_1, r_2, \ldots, r_p }[/math] jest [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math], tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], a jedna z tych reszt jest podzielna przez [math]\displaystyle{ p }[/math]. Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J31 p. 2). Zatem możemy napisać
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2} = \sum_{k = 0}^{p - 1} \left( {\small\frac{r_k}{p}} \right)_{\small{\!\! L}}^{\! 2} = p - 1 }[/math]
Co należało pokazać.
2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \nmid (a - b)} }[/math]
Kładąc [math]\displaystyle{ j = k + a }[/math] i sumując od [math]\displaystyle{ a }[/math] do [math]\displaystyle{ p - 1 + a }[/math], otrzymujemy
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \sum_{j = a}^{p - 1 + a} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}} }[/math]
Wśród [math]\displaystyle{ p }[/math] kolejnych liczb [math]\displaystyle{ a, a + 1, \ldots, p - 1 + a }[/math] istnieje dokładnie jedna liczba podzielna przez [math]\displaystyle{ p }[/math]. Możemy ją pominąć, bo nie wnosi ona wkładu do wyliczanej sumy.
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + (b - a) j j^{- 1}}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}} }[/math]
Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik. Wiemy też, że gdy liczby [math]\displaystyle{ j }[/math] przebiegają zbiór identyczny (modulo [math]\displaystyle{ p }[/math]) ze zbiorem [math]\displaystyle{ R = \{ 1, 2, \ldots, p - 1 \} }[/math], to liczby [math]\displaystyle{ j^{- 1} }[/math] przebiegają pewien zbiór [math]\displaystyle{ S }[/math] identyczny (modulo [math]\displaystyle{ p }[/math]) ze zbiorem [math]\displaystyle{ R }[/math] (zobacz K5). Zatem od sumowania po [math]\displaystyle{ j }[/math] możemy przejść do sumowania po [math]\displaystyle{ r \in R }[/math].
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}} = \sum_{r = 1}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\, = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum_{r = 0}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\, = - 1 }[/math]
Ostatnia z wypisanych sum jest równa zero, co wynika z trzeciego wzoru twierdzenia K6 i faktu, że [math]\displaystyle{ p \nmid (b - a) }[/math]. Co należało pokazać.
□
Twierdzenie K9
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ n \in \mathbb{Z} }[/math], to
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid n \\ p - 1 & \text{gdy } \, p \mid n \\ \end{cases} }[/math]
Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \mid n} }[/math]
Z drugiego wzoru twierdzenia K6 otrzymujemy
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1 }[/math]
Przypadek, gdy [math]\displaystyle{ \boldsymbol{p \nmid n} }[/math]
Jeżeli liczby [math]\displaystyle{ a, b }[/math] są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], to istnieje taka liczba [math]\displaystyle{ r }[/math], że
- [math]\displaystyle{ a \equiv b r^2 \!\! \pmod{p} }[/math]
(zobacz J32). Zatem
- [math]\displaystyle{ S(a) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + a}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\; = \sum^{p - 1}_{k = 0} \left( {\small\frac{k^2 + b r^2}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^2 \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\; = \left( {\small\frac{r^2}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}} }[/math]
Z twierdzenia C57 wiemy, że gdy [math]\displaystyle{ k }[/math] przebiega zbiór [math]\displaystyle{ T = \{ 0, 1, \ldots, p - 1 \} }[/math], to [math]\displaystyle{ k r^{- 1} }[/math] przebiega zbiór [math]\displaystyle{ T' }[/math] identyczny ze zbiorem [math]\displaystyle{ T }[/math] modulo [math]\displaystyle{ p }[/math]. Zatem
- [math]\displaystyle{ S(a) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + b}{p}} \right)_{\small{\!\! L}} = S (b) }[/math]
Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo [math]\displaystyle{ p }[/math] wyrażenie [math]\displaystyle{ S(n) }[/math] ma taką samą wartość i jeśli wybierzemy liczby [math]\displaystyle{ a, b }[/math] tak, aby jedna była liczbą kwadratową, a druga liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to możemy napisać
- [math]\displaystyle{ \sum_{n = 1}^{p - 1} S (n) = {\small\frac{p - 1}{2}} (S (a) + S (b)) }[/math]
Z drugiej strony
- [math]\displaystyle{ \sum_{n = 1}^{p - 1} S (n) = \sum_{n = 1}^{p - 1} \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\;\: = \sum_{k = 0}^{p - 1} \sum_{n = 1}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\;\: = \sum_{k = 0}^{p - 1} \left[ - \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{n = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} \right] }[/math]
- [math]\displaystyle{ \;\;\;\: = - \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2} }[/math]
- [math]\displaystyle{ \;\;\;\: = - (p - 1) }[/math]
bo z twierdzenia K6 wiemy, że
- [math]\displaystyle{ \sum_{n = 0}^{p - 1} \left( {\small\frac{n + k^2}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
Łącząc uzyskane rezultaty, dostajemy
- [math]\displaystyle{ - (p - 1) = {\small\frac{p - 1}{2}} (S (a) + S (b)) }[/math]
Zatem
- [math]\displaystyle{ S(a) + S (b) = - 2 }[/math]
Z twierdzenia K8 mamy
- [math]\displaystyle{ S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 - 1}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{k = 0} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
bo [math]\displaystyle{ p \nmid 2 }[/math]. Dla ustalenia uwagi przyjmijmy, że [math]\displaystyle{ a }[/math] jest liczbą kwadratową, a [math]\displaystyle{ b }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Jeżeli [math]\displaystyle{ - 1 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], to [math]\displaystyle{ S(a) = - 1 }[/math] i natychmiast otrzymujemy, że [math]\displaystyle{ S(b) = - 1 }[/math]. Jeżeli [math]\displaystyle{ - 1 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to [math]\displaystyle{ S(b) = - 1 }[/math] i natychmiast otrzymujemy, że [math]\displaystyle{ S(a) = - 1 }[/math]. Zatem bez względu na to, czy [math]\displaystyle{ n }[/math] jest liczbą kwadratową, czy liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], musi być [math]\displaystyle{ S(n) = - 1 }[/math]. Co należało pokazać.
□
Zadanie K10
Pokazać, że jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ r , s \in \mathbb{Z} }[/math], to
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (r^2 - 4 s) \\ p - 1 & \text{gdy } \, p \mid (r^2 - 4 s) \\ \end{cases} }[/math]
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\;\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{4 k^2 + 4 r k + 4 s}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\;\;\, = \sum^{p - 1}_{k = 0} \left( {\small\frac{(2 k + r)^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}} }[/math]
Z twierdzenia C57 wiemy, że gdy [math]\displaystyle{ k }[/math] przebiega zbiór [math]\displaystyle{ T = \{ 0, 1, \ldots, p - 1 \} }[/math], to [math]\displaystyle{ 2 k + r }[/math] przebiega zbiór [math]\displaystyle{ T' }[/math] identyczny ze zbiorem [math]\displaystyle{ T }[/math] modulo [math]\displaystyle{ p }[/math]. Zatem
- [math]\displaystyle{ \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}} }[/math]
Z twierdzenia K9 wynika natychmiast teza dowodzonego twierdzenia.
□
Twierdzenie K11
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ n \in \mathbb{Z} }[/math], to dla sumy
- [math]\displaystyle{ S(n) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
prawdziwe są następujące wzory
- (a) [math]\displaystyle{ \;\; S(n) = 0 \qquad \qquad \text{gdy } \; p = 4 k + 3 }[/math]
- (b) [math]\displaystyle{ \;\; | S (n) | \lt 2 \sqrt{p} \qquad \text{gdy } \; p = 4 k + 1 }[/math]
Punkt (a)
Zauważmy, że zbiory [math]\displaystyle{ R = \{ 0, 1, 2, \ldots, p - 1 \} }[/math] oraz [math]\displaystyle{ T = \{ - p + 1, - p + 2, \ldots, - p + (p - 1), 0 \} }[/math] są identyczne modulo [math]\displaystyle{ p }[/math]. Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J31 p.2). Zatem możemy sumowanie po [math]\displaystyle{ k \in R }[/math] zastąpić sumowaniem po [math]\displaystyle{ j \in T . }[/math] Otrzymujemy
- [math]\displaystyle{ S(n) = \sum_{j = - p + 1}^{0} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
Kładąc [math]\displaystyle{ j = - r }[/math] i sumując po [math]\displaystyle{ r }[/math] od [math]\displaystyle{ 0 }[/math] do [math]\displaystyle{ p - 1 }[/math], dostajemy
- [math]\displaystyle{ S(n) = \sum_{r = 0}^{p - 1} \left( {\small\frac{- r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{(- r)^2 + n}{p}} \right)_{\small{\!\! L}} = \sum_{r = 0}^{p - 1} \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r^2 + n}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} S (n) }[/math]
Jeżeli [math]\displaystyle{ p = 4 k + 3 }[/math], to [math]\displaystyle{ S (n) = - S (n) }[/math], czyli [math]\displaystyle{ S(n) = 0 }[/math].
Punkt (b)
Pomysł dowodu zaczerpnęliśmy z materiałów szkoleniowych Międzynarodowej Olimpiady Matematycznej[1].
Jeżeli liczby [math]\displaystyle{ a, b }[/math] są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], to istnieje taka liczba [math]\displaystyle{ r }[/math], że
- [math]\displaystyle{ a \equiv b r^2 \!\! \pmod{p} }[/math]
(zobacz J32). Zatem
- [math]\displaystyle{ S(a) = S (b r^2) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + b r^2)}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\:\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^3 (k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\:\, = \left( {\small\frac{r^3}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\:\, = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}} }[/math]
Z twierdzenia C57 wiemy, że gdy [math]\displaystyle{ k }[/math] przebiega zbiór [math]\displaystyle{ T = \{ 0, 1, \ldots, p - 1 \} }[/math], to [math]\displaystyle{ k r^{- 1} }[/math] przebiega zbiór [math]\displaystyle{ T' }[/math] identyczny ze zbiorem [math]\displaystyle{ T }[/math] modulo [math]\displaystyle{ p }[/math]. Zatem
- [math]\displaystyle{ S(a) = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{x = 0}^{p - 1} \left( {\small\frac{x (x^2 + b)}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} S (b) }[/math]
Czyli [math]\displaystyle{ S (a)^2 = S (b)^2 }[/math]. Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo [math]\displaystyle{ p }[/math] wyrażenie [math]\displaystyle{ S (n)^2 }[/math] ma taką samą wartość i jeśli wybierzemy liczby [math]\displaystyle{ a, b }[/math] tak, aby jedna była liczbą kwadratową, a druga liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to prawdziwa jest równość
- [math]\displaystyle{ \sum_{n = 1}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) }[/math]
Jak łatwo zauważyć [math]\displaystyle{ S(0) = 0 }[/math], zatem możemy napisać
- [math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) }[/math]
Z drugiej strony
- [math]\displaystyle{ S (n)^2 = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
Zatem
- [math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = \sum_{n = 0}^{p - 1} \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \;\! = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}} }[/math]
Z twierdzenia K8 wiemy, że
- [math]\displaystyle{ \sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\:\, - 1 & \text{gdy } \, p \nmid (k^2 - j^2) \\ p - 1 & \text{gdy } \, p \mid (k^2 - j^2) \\ \end{cases} }[/math]
Zbadajmy, kiedy [math]\displaystyle{ p \mid (k^2 - j^2) }[/math], czyli kiedy [math]\displaystyle{ p \mid [(k - j) (k + j)] }[/math]. Mamy
- [math]\displaystyle{ \; 0 \leqslant | k - j | \leqslant p - 2 }[/math]
- [math]\displaystyle{ \; 2 \leqslant k + j \leqslant 2 p - 2 }[/math]
Zatem [math]\displaystyle{ p \mid [(k - j) (k + j)] }[/math] gdy
- [math]\displaystyle{ \; j = k }[/math]
- [math]\displaystyle{ \; j = p - k }[/math]
Pozwala to zapisać rozpatrywaną sumę w postaci
- [math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \cdot \left\{ \begin{array}{rll} - 1 & \text{gdy } \; j \neq k \;\;\;\; \text{ i } \;\;\;\; j \neq p - k \\ p - 1 & \text{gdy } \; j = k \;\; \text{ lub } \;\; j = p - k \\ \end{array} \right\} }[/math]
- [math]\displaystyle{ \:\! = (p - 1) \underset{j = k \; \text{ lub } \; j = p - k}{\sum^{p - 1}_{k = 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} - \underset{j \neq k \; \text{ i } \; j \neq p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \:\! = (p - 1) \left[ \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} + \underset{j = k \; \text{ lub } \; j = p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \:\! = (p - 1) \left[ (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \:\! = (p - 1) \left[ (p - 1) + \left( {\small\frac{-1}{p}} \right)_{\small{\!\! L}} \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} \right] + (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \:\! = (p - 1) \cdot 2 (p - 1) + (p - 1) + (p - 1) }[/math]
- [math]\displaystyle{ \:\! = 2 p (p - 1) }[/math]
Zauważmy, że [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} = 1 }[/math], bo [math]\displaystyle{ p = 4 k + 1 }[/math].
Ponieważ wcześniej pokazaliśmy, że
- [math]\displaystyle{ \sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) }[/math]
to otrzymujemy
- [math]\displaystyle{ {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) = 2 p (p - 1) }[/math]
Czyli
- [math]\displaystyle{ S (a)^2 + S (b)^2 = 4 p }[/math]
Wynika stąd, że bez względu na to, czy [math]\displaystyle{ n }[/math] jest liczbą kwadratową, czy liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], prawdziwe jest oszacowanie
- [math]\displaystyle{ | S (n) | \leqslant 2 \sqrt{p} }[/math]
Równość [math]\displaystyle{ S (n)^2 = 4 p }[/math] nie jest możliwa, bo dzielnik pierwszy [math]\displaystyle{ p }[/math] występuje po prawej stronie w potędze nieparzystej. Zatem mamy nieco silniejsze oszacowanie
- [math]\displaystyle{ | S (n) | \lt 2 \sqrt{p} }[/math]
Co kończy dowód.
□
Twierdzenie K12
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], to dla sumy
- [math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math]
prawdziwe są następujące wzory
- (a) [math]\displaystyle{ \;\; S(a, b) = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} \qquad \qquad \, \text{gdy } \; p \mid (4 a^3 + 27 b^2) }[/math]
- (b) [math]\displaystyle{ \;\; | S (a, b) | \lt 2 \sqrt{p} \qquad \qquad \;\;\;\; \text{gdy } \; p \nmid (4 a^3 + 27 b^2) }[/math]
Niech [math]\displaystyle{ p \geqslant 5 }[/math]. W ogólnym przypadku interesująca nas suma ma postać
- [math]\displaystyle{ \sum_{t = 0}^{p - 1} \left( {\small\frac{a t^3 + b t^2 + c t + d}{p}} \right)_{\small{\!\! L}} }[/math]
gdzie [math]\displaystyle{ p \nmid a }[/math]. Mnożąc licznik przez [math]\displaystyle{ a^2 }[/math] nie zmieniamy wartości sumy
- [math]\displaystyle{ \sum_{t = 0}^{p - 1} \left( {\small\frac{a^3 t^3 + a^2 b t^2 + a^2 c t + a^2 d}{p}} \right)_{\small{\!\! L}} }[/math]
Podstawiając [math]\displaystyle{ x \equiv a t + r \!\! \pmod{p} }[/math], dostajemy
- [math]\displaystyle{ \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x^2 (b - 3 r) + x [a c - r (2 b - 3 r)] + [a^2 d - a c r + r^2 (b - r)]}{p}} \right)_{\small{\!\! L}} }[/math]
bo, gdy [math]\displaystyle{ t }[/math] przebiega zbiór [math]\displaystyle{ \{ 0, 1, \ldots, p - 1 \} }[/math], to (modulo [math]\displaystyle{ p }[/math]) liczby [math]\displaystyle{ a t + r }[/math] przebiegają taki sam zbiór (zobacz C57). Ponieważ [math]\displaystyle{ p \geqslant 5 }[/math], to liczbę [math]\displaystyle{ r }[/math] możemy wybrać tak, aby było
- [math]\displaystyle{ 3 r \equiv b \!\! \pmod{p} }[/math]
Ostatecznie otrzymujemy
- [math]\displaystyle{ \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x (a c - 3 r^2) + (a^2 d - a c r + 2 r^3)}{p}} \right)_{\small{\!\! L}} }[/math]
Widzimy, że bez zmniejszania ogólności, możemy ograniczyć się do badania sumy postaci
- [math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math]
Liczbę [math]\displaystyle{ - \left( 4 a^3 + 27 b^2 \right) }[/math] nazywamy wyróżnikiem wielomianu [math]\displaystyle{ x^3 + a x + b }[/math].
Pokażemy, że w przypadku, gdy [math]\displaystyle{ 4 a^3 + 27 b^2 \equiv 0 \!\! \pmod{p} }[/math] i [math]\displaystyle{ p \geqslant 3 }[/math] prawdziwy jest wzór
- [math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} }[/math]
W przypadku, gdy [math]\displaystyle{ p = 3 }[/math] z warunku [math]\displaystyle{ 4 a^3 + 27 b^2 \equiv 0 \pmod{3} }[/math] wynika, że [math]\displaystyle{ 3 \mid a }[/math]. Zakładając, że reszta z dzielenia liczby [math]\displaystyle{ b }[/math] przez [math]\displaystyle{ 3 }[/math] wynosi [math]\displaystyle{ r }[/math], otrzymujemy
- [math]\displaystyle{ S(a, b) = \sum_{x = 0}^{2} \left( {\small\frac{x^3 + b}{3}} \right)_{\small{\!\! L}} = \left( {\small\frac{b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1 + b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{8 + b}{3}} \right)_{\small{\!\! L}} = \left( {\small\frac{r}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 2}{3}} \right)_{\small{\!\! L}} = \left( {\small\frac{0}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{2}{3}} \right)_{\small{\!\! L}} = 0 }[/math]
Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] i [math]\displaystyle{ p \mid a }[/math], to [math]\displaystyle{ p \mid b }[/math] i łatwo znajdujemy, że
- [math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3}{p}} \right)_{\small{\!\! L}} = 0 }[/math]
Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] i [math]\displaystyle{ p \nmid a }[/math], to
- [math]\displaystyle{ x^3 + a x + b \equiv (x - x_1) (x - x_2)^2 \!\! \pmod{p} }[/math]
gdzie
- [math]\displaystyle{ x_1 \equiv 3 b a^{- 1} \!\! \pmod{p} }[/math]
- [math]\displaystyle{ x_2 \equiv - 3 b 2^{- 1} a^{- 1} \!\! \pmod{p} }[/math]
Co Czytelnik może łatwo sprawdzić, pamiętając o tym, że [math]\displaystyle{ 27 b^2 \cdot 2^{- 2} a^{- 3} \equiv - 1 \!\! \pmod{p} }[/math]. Mamy
- [math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x - x_2}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{x - x_1}{p}} \right)_{\small{\!\! L}} }[/math]
Niech [math]\displaystyle{ t = x - x_2 }[/math]. Jeżeli [math]\displaystyle{ x }[/math] przebiega zbiór [math]\displaystyle{ \{ 0, 1, \ldots, p - 1 \} }[/math], to (modulo [math]\displaystyle{ p }[/math]) [math]\displaystyle{ t }[/math] przebiega taki sam zbiór (zobacz C57). Zatem
- [math]\displaystyle{ S(a, b) = \sum_{t = 0}^{p - 1} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}} = \sum_{t = 1}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} + \sum_{t = 0}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} }[/math]
Uwzględniając, że
- [math]\displaystyle{ x_2 - x_1 \equiv - 3 b 2^{- 1} a^{- 1} - 3 b a^{- 1} \equiv - 3 b 2^{- 1} a^{- 1} - 6 b 2^{- 1} a^{- 1} \equiv - 9 b 2^{- 1} a^{- 1} \!\! \pmod{p} }[/math]
otrzymujemy
- [math]\displaystyle{ S(a, b) = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 9 b 2^{- 1} a^{- 1}}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 2 a b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 8 a^3 b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 2 b \cdot (- 27 b^2)}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} }[/math]
W przypadku, gdy [math]\displaystyle{ 4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p} }[/math], pokażemy, że wartość sumy
- [math]\displaystyle{ S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math]
jest ściśle związana z ilością rozwiązań kongruencji
- [math]\displaystyle{ y^2 \equiv x^3 + a x + b \!\! \pmod{p} }[/math]
Niech [math]\displaystyle{ N_p }[/math] oznacza ilość rozwiązań powyższej kongruencji i niech [math]\displaystyle{ N_+, N_0, N_- }[/math] oznaczają ilości liczb [math]\displaystyle{ k \in \{ 0, 1, \ldots, p - 1 \} }[/math], dla których symbol Legendre'a [math]\displaystyle{ \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} }[/math] jest równy odpowiednio [math]\displaystyle{ + 1, 0, - 1 }[/math]. Oczywiście
- [math]\displaystyle{ N_+ + N_0 + N_- = p }[/math]
- [math]\displaystyle{ S(a, b) = N_+ - N_- }[/math]
Zauważmy, że jeżeli dla pewnego [math]\displaystyle{ x }[/math] jest [math]\displaystyle{ p \mid (x^3 + a x + b) }[/math], to [math]\displaystyle{ \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = 0 }[/math] i mamy dokładnie jedno rozwiązanie rozważanej kongruencji
- [math]\displaystyle{ 0^2 \equiv x^3 + a x + b \!\! \pmod{p} }[/math]
Jeżeli dla pewnego [math]\displaystyle{ x }[/math] jest [math]\displaystyle{ \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = + 1 }[/math], to [math]\displaystyle{ p \nmid (x^3 + a x + b) }[/math], a liczba [math]\displaystyle{ x^3 + a x + b }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], czyli istnieje taka liczba [math]\displaystyle{ y \in \mathbb{Z} }[/math], że
- [math]\displaystyle{ y^2 \equiv x^3 + a x + b \!\! \pmod{p} }[/math]
i mamy dwa rozwiązania rozpatrywanej kongruencji: jedno stanowi para [math]\displaystyle{ (x, y) }[/math], a drugie para [math]\displaystyle{ (x, - y) }[/math]. Zatem
- [math]\displaystyle{ N_p = 2 N_+ + N_0 }[/math]
Łatwo zauważamy, że
- [math]\displaystyle{ N_p - p = (2 N_+ + N_0) - (N_+ + N_0 + N_-) = N_+ - N_- = S (a, b) }[/math]
W 1936 roku Helmut Hasse[2][3] udowodnił, że
- [math]\displaystyle{ | N_p - p | \lt 2 \sqrt{p} }[/math]
Elementarny dowód tego twierdzenia podał Jurij Manin[4].
Wynika stąd, że w przypadku, gdy [math]\displaystyle{ 4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p} }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ | S (a, b) | = \left| \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} \right| \lt 2 \sqrt{p} }[/math]
Co należało pokazać.
□
Zadanie K13
Pokazać, że jeżeli [math]\displaystyle{ p \geqslant 7 }[/math] jest liczbą pierwszą, to wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] istnieją:
- dwie kolejne liczby będące liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]
- dwie kolejne liczby będące liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math]
Dla [math]\displaystyle{ p = 7 }[/math] łatwo sprawdzamy, że twierdzenie jest prawdziwe.
Punkt 1.
Zauważmy, że przynajmniej jedna z liczb [math]\displaystyle{ 2, 5, 10 }[/math] jest liczbą kwadratową. Zakładając, że tak nie jest, otrzymujemy natychmiast sprzeczność
- [math]\displaystyle{ -1 = \left( {\small\frac{10}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{5}{p}} \right)_{\small{\!\! L}} = (- 1) \cdot (- 1) = 1 }[/math]
W zależności od tego, która z liczb [math]\displaystyle{ 2, 5, 10 }[/math] jest liczbą kwadratową, mamy następujące pary kolejnych liczb kwadratowych
[math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 1, 2 \; \text{ oraz } \; 8, 9 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 4, 5 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 9, 10 }[/math]
Punkt 2.
Rozważmy wszystkie możliwe wartości [math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} }[/math] dla [math]\displaystyle{ k = 1, 2, 3, 4 }[/math] i [math]\displaystyle{ p \geqslant 11 }[/math]. Zauważmy, że [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! L}} }[/math].
[math]\displaystyle{ \boldsymbol{k} }[/math] [math]\displaystyle{ \,\, \boldsymbol{1} \,\, }[/math] [math]\displaystyle{ \boldsymbol{2} }[/math] [math]\displaystyle{ \boldsymbol{3} }[/math] [math]\displaystyle{ \,\, \boldsymbol{4} \,\, }[/math] [math]\displaystyle{ \,\, \boldsymbol{5} \,\, }[/math] [math]\displaystyle{ \boldsymbol{6} }[/math] [math]\displaystyle{ \boldsymbol{(…)} }[/math] [math]\displaystyle{ \boldsymbol{p-1} }[/math] [math]\displaystyle{ \boldsymbol{A.} }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \boldsymbol{B.} }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \boldsymbol{C.} }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \boldsymbol{D.} }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ -1 }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ 1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math]
A. W tym przypadku liczby [math]\displaystyle{ 2, 3 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Gdyby w pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], to musielibyśmy [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb niekwadratowych umieścić wśród pozostałych [math]\displaystyle{ p - 5 }[/math] komórek tak, aby między nimi zawsze była liczba kwadratowa modulo [math]\displaystyle{ p }[/math]. Wartość [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} }[/math] wymusza, aby liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] umieszczać w komórkach „nieparzystych”. Po wypełnieniu tych komórek pozostaną nam dwie liczby, które będziemy zmuszeni umieścić w komórkach „parzystych”. Co oznacza, że muszą pojawić się dwie pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math]
B. i C. W tym przypadku dokładnie jedna z liczb [math]\displaystyle{ 2, 3 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Gdyby w pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math], to musielibyśmy [math]\displaystyle{ {\small\frac{p - 3}{2}} }[/math] liczb niekwadratowych umieścić wśród pozostałych [math]\displaystyle{ p - 5 }[/math] komórek tak, aby między nimi zawsze była liczba kwadratowa modulo [math]\displaystyle{ p }[/math]. Wartość [math]\displaystyle{ \left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} }[/math] wymusza, aby liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] umieszczać w komórkach „parzystych”. Po wypełnieniu tych komórek pozostanie nam jedna liczba, którą będziemy zmuszeni umieścić w komórce „nieparzystej”. Co oznacza, że musi pojawić się jedna para kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math]
D. W tym przypadku nie musimy niczego dowodzić, bo liczby [math]\displaystyle{ 2, 3 }[/math] są kolejnymi liczbami niekwadratowymi modulo [math]\displaystyle{ p . }[/math]
□
Uwaga K14
Wzmocnimy wynik uzyskany w poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem.
Twierdzenie K15
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to
- istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor }[/math] różnych par kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math]
- istnieje [math]\displaystyle{ \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor }[/math] różnych par kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]
Punkt 1.
Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 2 \} }[/math], dla których
- [math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = 1 }[/math]
Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a
- [math]\displaystyle{ N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
Tylko w przypadku, gdy obie liczby [math]\displaystyle{ k }[/math] i [math]\displaystyle{ k + 1 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 4 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{4}} }[/math] przed sumą).
- [math]\displaystyle{ 4 N = \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
- [math]\displaystyle{ \: = p - 2 + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} }[/math]
Po kolei wyliczamy sumy po prawej stronie
- [math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{p - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum^{p - 1}_{k = 0} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
- [math]\displaystyle{ \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
(zobacz K6 i K8). Zatem
- [math]\displaystyle{ N = {\small\frac{1}{4}} \left[ p - 4 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
Czyli
- [math]\displaystyle{ N = \begin{cases} {\large\frac{p - 5}{4}} & \text{ gdy } \; p = 4 k + 1 \\ {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\ \end{cases} }[/math]
Powyższy wynik można zapisać w postaci
- [math]\displaystyle{ N = \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor }[/math]
Punkt 2.
Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 2 \} }[/math], dla których
- [math]\displaystyle{ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a
- [math]\displaystyle{ N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
Tylko w przypadku, gdy obie liczby [math]\displaystyle{ k }[/math] i [math]\displaystyle{ k + 1 }[/math] są liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 4 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{4}} }[/math] przed sumą).
- [math]\displaystyle{ 4 N = \sum_{k = 1}^{p - 2} \left[ 1 - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
- [math]\displaystyle{ \: = p - 2 - \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} }[/math]
Wartości sum wyliczyliśmy już w punkcie 1. Zatem
- [math]\displaystyle{ N = {\small\frac{1}{4}} \left[ p - 2 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
Czyli
- [math]\displaystyle{ N = \begin{cases} {\large\frac{p - 1}{4}} & \text{ gdy } \; p = 4 k + 1 \\ {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\ \end{cases} }[/math]
Powyższy wynik można zapisać w postaci
- [math]\displaystyle{ N = \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor }[/math]
Co należało pokazać.
□
Twierdzenie K16
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Słowo „trójka” oznacza tutaj trzy kolejne liczby kwadratowe (niekwadratowe) modulo [math]\displaystyle{ p }[/math].
Jeżeli [math]\displaystyle{ p = 4 k + 3 }[/math], to liczba różnych trójek liczb kwadratowych (niekwadratowych) jest równa
- [math]\displaystyle{ N = \left\lfloor {\small\frac{p - 3}{8}} \right\rfloor }[/math]
Jeżeli [math]\displaystyle{ p = 4 k + 1 }[/math], to liczba różnych trójek liczb niekwadratowych jest równa
- [math]\displaystyle{ N = {\small\frac{p - 3 - S (- 1)}{8}} \gt {\small\frac{p - 3 - 2 \sqrt{p}}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 4 k + 1 }[/math], to liczba różnych trójek liczb kwadratowych jest równa
- [math]\displaystyle{ N = {\small\frac{p - 15 + S (- 1)}{8}} \gt {\small\frac{p - 15 - 2 \sqrt{p}}{8}} \qquad \quad \text{ gdy } \; p = 8 k + 1 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 7 + S (- 1)}{8}} \gt {\small\frac{p - 7 - 2 \sqrt{p}}{8}} \qquad \quad \;\;\; \text{ gdy } \; p = 8 k + 5 }[/math]
Gdzie przez [math]\displaystyle{ S(- 1) }[/math] oznaczyliśmy sumę
- [math]\displaystyle{ S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} }[/math]
Przypadek pierwszy: trójki liczb kwadratowych modulo [math]\displaystyle{ \boldsymbol{p} }[/math]
Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 2, 3, \ldots, p - 2 \} }[/math], dla których
- [math]\displaystyle{ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = + 1 }[/math]
Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a
- [math]\displaystyle{ N = {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
Tylko w przypadku, gdy wszystkie trzy liczby [math]\displaystyle{ k - 1, k, k + 1 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ 8 }[/math] (stąd czynnik [math]\displaystyle{ {\small\frac{1}{8}} }[/math] przed sumą).
- [math]\displaystyle{ 8 N = \sum_{k = 2}^{p - 2} \left[ 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
- [math]\displaystyle{ \: = p - 3 + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} }[/math]
Po kolei wyliczamy sumy po prawej stronie
- [math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{k = 0} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = S (- 1) }[/math]
(zobacz K6, K8 i K11). Oznaczenie [math]\displaystyle{ S(- 1) }[/math] nawiązuje do oznaczenia wprowadzonego w twierdzeniu K11. Wykorzystamy też znalezione w tym twierdzeniu oszacowanie [math]\displaystyle{ | S (- 1) | }[/math].
Zatem
- [math]\displaystyle{ 8 N = p - 8 - 3 \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - 3 \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} + S (- 1) }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 1 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 15 + S (- 1)}{8}} \gt {\small\frac{p - 15 - 2 \sqrt{p}}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 3 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 3}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 5 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 7 + S (- 1)}{8}} \gt {\small\frac{p - 7 - 2 \sqrt{p}}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 7 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 7}{8}} }[/math]
Przypadek drugi: trójki liczb niekwadratowych modulo [math]\displaystyle{ \boldsymbol{p} }[/math]
Chcemy znaleźć ilość takich liczb [math]\displaystyle{ k \in \{ 2, 3, \ldots, p - 2 \} }[/math], dla których
- [math]\displaystyle{ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]
Ilość liczb [math]\displaystyle{ k }[/math] spełniających powyższy warunek łatwo zapisać korzystając z symbolu Legendre'a
- [math]\displaystyle{ N = - {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ - 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
Tylko w przypadku, gdy wszystkie trzy liczby [math]\displaystyle{ k - 1, k, k + 1 }[/math] są liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], iloczyn wyrażeń w nawiasach kwadratowych jest różny od zera i równy [math]\displaystyle{ - 8 }[/math] (stąd czynnik [math]\displaystyle{ - {\small\frac{1}{8}} }[/math] przed sumą).
- [math]\displaystyle{ 8 N = \sum_{k = 2}^{p - 2} \left[ 1 - \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right] }[/math]
- [math]\displaystyle{ \: = p - 3 - \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} - \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} - \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} }[/math]
Wartości sum już policzyliśmy, rozpatrując przypadek liczb kwadratowych modulo [math]\displaystyle{ p }[/math]. Zatem
- [math]\displaystyle{ 8 N = p - 4 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} - S (- 1) }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 1 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 3 - S (- 1)}{8}} \gt {\small\frac{p - 3 - 2 \sqrt{p}}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 3 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 3}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 5 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 3 - S (- 1)}{8}} \gt {\small\frac{p - 3 - 2 \sqrt{p}}{8}} }[/math]
Jeżeli [math]\displaystyle{ p = 8 k + 7 }[/math]
- [math]\displaystyle{ N = {\small\frac{p - 7}{8}} }[/math]
Co kończy dowód.
□
Uwaga K17
Korzystając z twierdzenia K16, łatwo można pokazać, że każda liczba pierwsza [math]\displaystyle{ p \geqslant 19 }[/math] ma co najmniej dwie różne trójki kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i co najmniej dwie różne trójki kolejnych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].
Najmniejsze liczby niekwadratowe modulo
A. Najmniejsze dodatnie liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] |
Przykład K18
W tabeli przedstawiliśmy najmniejsze dodatnie liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( p )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math]
Uwaga K19
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP
A(p) =
{
if( p == 2, return(0) );
if( !isprime(p), return(0) );
forprime(q = 2, p, if( jacobi(q, p) == -1, return(q) ));
}
Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w rzeczywistości symbol Legendre'a, bo wiemy, że liczba [math]\displaystyle{ p }[/math] jest liczbą pierwszą (w przypadku, gdy [math]\displaystyle{ p }[/math] jest liczbą złożoną, funkcja zwraca zero).
Twierdzenie K20
Niech [math]\displaystyle{ \mathbb{n} \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to jest liczbą pierwszą.
Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} }[/math]. Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że
- [math]\displaystyle{ r^2 \equiv a \pmod{p} }[/math]
- [math]\displaystyle{ s^2 \equiv b \pmod{p} }[/math]
Skąd wynika, że
- [math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{p} }[/math]
Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].
□
Zadanie K21
Pokazać, że najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest
- liczba [math]\displaystyle{ 2 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 8 k \pm 3 }[/math]
- liczba [math]\displaystyle{ 3 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 7 }[/math]
- liczba [math]\displaystyle{ \geqslant 5 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 1 }[/math]
Z właściwości symbolu Legendre'a (zobacz J31 p.7) wiemy, że
- [math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, \begin{cases} \;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\ - 1 & \text{gdy } p \equiv 3, 5 \pmod{8} \end{cases} }[/math]
Wynika stąd natychmiast, dla liczb pierwszych [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (i tylko dla takich liczb) liczba [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].
Z zadania J44 wynika, że liczba [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową jedynie dla liczb pierwszych postaci [math]\displaystyle{ 12 k \pm 5 }[/math]. Zatem dla liczb pierwszych, które są jednocześnie postaci [math]\displaystyle{ p = 8 k \pm 1 }[/math] i [math]\displaystyle{ p = 12 j \pm 5 }[/math], liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z czterech warunków
- [math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5 }[/math]
- [math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 7 }[/math]
- [math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 5 }[/math]
- [math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 7 }[/math]
Drugi i trzeci nie są możliwe, bo modulo [math]\displaystyle{ 4 }[/math] otrzymujemy
- [math]\displaystyle{ p \equiv 1 \pmod{4} \quad \text{i} \quad p \equiv 3 \pmod{4} }[/math]
- [math]\displaystyle{ p \equiv 3 \pmod{4} \quad \text{i} \quad p \equiv 1 \pmod{4} }[/math]
a z pierwszego i czwartego mamy
- [math]\displaystyle{ 3 p = 24 k + 3 \quad \text{i} \quad 2 p = 24 j + 10 \qquad \;\: \Longrightarrow \qquad p = 24 (k - j) - 7 \qquad \Longrightarrow \qquad p \equiv - 7 \pmod{24} }[/math]
- [math]\displaystyle{ 3 p = 24 k + 21 \quad \text{i} \quad 2 p = 24 j + 14 \qquad \Longrightarrow \qquad p = 24 (k - j) + 7 \qquad \Longrightarrow \qquad p \equiv 7 \pmod{24} }[/math]
Zauważmy, że problem mogliśmy zapisać w postaci układu kongruencji
- [math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
- [math]\displaystyle{ p \equiv \pm 5 \pmod{12} }[/math]
Gdyby moduły tych kongruencji były względnie pierwsze, to każdemu wyborowi znaków odpowiadałaby pewna kongruencja równoważna (zobacz J3). Widzimy, że w przypadku, gdy moduły nie są względnie pierwsze, kongruencja równoważna może istnieć, ale nie musi. Rozwiązując taki problem, wygodnie jest skorzystać z programu PARI/GP. Wystarczy wpisać
chinese(Mod(1, 8), Mod(5, 12)) = Mod(17, 24) chinese(Mod(1, 8), Mod(-5, 12)) - błąd chinese(Mod(-1, 8), Mod(5, 12)) - błąd chinese(Mod(-1, 8), Mod(-5, 12)) = Mod(7, 24)
Ostatni punkt zadania rozwiążemy tą metodą. Liczba większa lub równa [math]\displaystyle{ 5 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy liczby [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ 3 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], co oznacza, że liczba pierwsza [math]\displaystyle{ p }[/math] spełnia kongruencje
- [math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
- [math]\displaystyle{ p \equiv \pm 1 \pmod{12} }[/math]
Postępując jak wyżej, otrzymujemy
chinese(Mod(1, 8), Mod(1, 12)) = Mod(1, 24) chinese(Mod(1, 8), Mod(-1, 12)) - błąd chinese(Mod(-1, 8), Mod(1, 12)) - błąd chinese(Mod(-1, 8), Mod(-1, 12)) = Mod(23, 24)
Co należało pokazać.
□
Twierdzenie K22
Dla każdej liczby pierwszej [math]\displaystyle{ p_n }[/math] istnieje nieskończenie wiele takich liczb pierwszych [math]\displaystyle{ q }[/math], że [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math].
Niech [math]\displaystyle{ 2, p_2, \ldots, p_{n - 1}, p_n }[/math] będą kolejnymi liczbami pierwszymi. Wybierzmy liczbę [math]\displaystyle{ u }[/math] tak, aby spełniała układ kongruencji
- [math]\displaystyle{ \begin{align} u & \equiv 1 \pmod{8 p_2 \cdot \ldots \cdot p_{n - 1}} \\ u & \equiv a \pmod{p_n} \end{align} }[/math]
gdzie [math]\displaystyle{ a }[/math] oznacza dowolną liczbą niekwadratową modulo [math]\displaystyle{ p_n }[/math]. Na podstawie chińskiego twierdzenia o resztach (zobacz J3) powyższy układ kongruencji może być zapisany w postaci kongruencji równoważnej
- [math]\displaystyle{ u \equiv c \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math]
Zauważmy, że żadna z liczb pierwszych [math]\displaystyle{ p_k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math] nie dzieli liczby [math]\displaystyle{ c }[/math], bo mielibyśmy
- [math]\displaystyle{ u \equiv 0 \pmod{p_k} }[/math]
wbrew wypisanemu wyżej układowi kongruencji. Zatem [math]\displaystyle{ \gcd (c, 8 p_2 \cdot \ldots \cdot p_n) = 1 }[/math] i z twierdzenia Dirichleta (zobacz C27) wiemy, że wśród liczb [math]\displaystyle{ u }[/math] spełniających kongruencję [math]\displaystyle{ u \equiv c \!\! \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math] występuje nieskończenie wiele liczb pierwszych (bo wśród tych liczb są liczby postaci [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]). Oznaczmy przez [math]\displaystyle{ q }[/math] dowolną z tych liczb pierwszych.
Ponieważ [math]\displaystyle{ q \equiv 1 \!\! \pmod{8} }[/math], to [math]\displaystyle{ \left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1 }[/math] (zobacz J31), a dla wszystkich liczb pierwszych nieparzystych [math]\displaystyle{ p_k \lt p_n }[/math] mamy
- [math]\displaystyle{ \left( {\small\frac{p_k}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_k - 1}{2}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{p_k}} \right)_{\small{\!\! L}} = 1 }[/math]
bo [math]\displaystyle{ 8 \mid (q - 1) }[/math]. Dla liczby pierwszej [math]\displaystyle{ p_n }[/math] jest
- [math]\displaystyle{ \left( {\small\frac{p_n}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_n - 1}{2}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p_n}} \right)_{\small{\!\! L}} = - 1 }[/math]
Zatem wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p_n }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ q }[/math], a liczba pierwsza [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math]. Zauważmy, że [math]\displaystyle{ q }[/math] była dowolnie wybraną liczbą pierwszą z nieskończenie wielu liczb pierwszych występujących w ciągu arytmetycznym [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Co kończy dowód.
□
Twierdzenie K23 (Sarvadaman Chowla)
Istnieje niekończenie wiele liczb pierwszych [math]\displaystyle{ p }[/math] takich, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math], gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika.
Niech [math]\displaystyle{ a = 4 P (m) }[/math], gdzie [math]\displaystyle{ P(m) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ m }[/math]. Z twierdzenia Dirichleta (zobacz C27) wiemy, że w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math] występuje nieskończenie wiele liczb pierwszych. Niech [math]\displaystyle{ p }[/math] oznacza dowolną z nich.
Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{8} }[/math], to
- [math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1 }[/math]
(zobacz J31 p.7). Oczywiście [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], zatem dla dowolnej liczby pierwszej nieparzystej [math]\displaystyle{ q_i \leqslant m }[/math] z twierdzenia J31 p.9 otrzymujemy
- [math]\displaystyle{ \left( {\small\frac{q_i}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{p}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{a k + 1}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{q_i}} \right)_{\small{\!\! L}} = 1 }[/math]
Wynika stąd, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ m }[/math]. Wiemy też, że (zobacz A9)
- [math]\displaystyle{ a = 4 P (m) \lt 4 \cdot 4^m = 4^{m + 1} }[/math]
Załóżmy teraz, że [math]\displaystyle{ p }[/math] jest najmniejszą liczbą pierwszą w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math], a liczba [math]\displaystyle{ m }[/math] została wybrana tak, że liczba [math]\displaystyle{ a = 4 P (m) }[/math] jest dostatecznie duża i możliwe jest skorzystanie z twierdzenia Linnika (zobacz C30). Dostajemy natychmiast oszacowanie
- [math]\displaystyle{ p = p_{\min} (a, 1) \lt a^L }[/math]
gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika (możemy przyjąć [math]\displaystyle{ L = 5 }[/math]). Łącząc powyższe oszacowania, łatwo otrzymujemy oszacowanie najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ p }[/math]
- [math]\displaystyle{ \mathbb{n}(p) \geqslant m + 1 \gt \log_4 a = {\small\frac{\log a}{\log 4}} = {\small\frac{\log a^L}{2 L \log 2}} \gt {\small\frac{\log p}{2 L \log 2}} }[/math]
Każdemu wyborowi innej liczby [math]\displaystyle{ m' \gt m }[/math] takiej, że [math]\displaystyle{ P(m') \gt P (m) }[/math] odpowiada inna liczba pierwsza [math]\displaystyle{ p' }[/math] taka, że [math]\displaystyle{ \mathbb{n}(p') \gt {\small\frac{\log p'}{2 L \log 2}} }[/math], zatem liczb pierwszych [math]\displaystyle{ p }[/math] dla których najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math] jest nieskończenie wiele.
□
Uwaga K24
W twierdzeniu K22 pokazaliśmy, że dla każdej liczby pierwszej [math]\displaystyle{ \mathbb{n} }[/math] istnieją takie liczby pierwsze [math]\displaystyle{ p }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Zatem zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] liczb pierwszych takich, że dla każdej liczby [math]\displaystyle{ p \in S_\mathbb{n} }[/math] liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest zbiorem niepustym. Wynika stąd, że zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] ma element najmniejszy i możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w PARI/GP napisać proste polecenie
forprime(n = 2, 50, forprime(p = 2, 10^10, if( A(p) == n, print(n, " ", p); break() )))
W tabeli przedstawiamy uzyskane rezultaty (zobacz też A000229).
[math]\displaystyle{ \boldsymbol{\mathbb{n}} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ \boldsymbol{p} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 71 }[/math] [math]\displaystyle{ 311 }[/math] [math]\displaystyle{ 479 }[/math] [math]\displaystyle{ 1559 }[/math] [math]\displaystyle{ 5711 }[/math] [math]\displaystyle{ 10559 }[/math] [math]\displaystyle{ 18191 }[/math] [math]\displaystyle{ 31391 }[/math] [math]\displaystyle{ 422231 }[/math] [math]\displaystyle{ 701399 }[/math] [math]\displaystyle{ 366791 }[/math] [math]\displaystyle{ 3818929 }[/math]
Uwaga K25
Z nierówności Pólyi-Winogradowa (zobacz K7) wynika natychmiast oszacowanie najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ p }[/math]. Ponieważ najdłuższy ciąg kolejnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math] nie może być dłuższy od [math]\displaystyle{ \left\lfloor \sqrt{p} \log p \right\rfloor }[/math], to
- [math]\displaystyle{ \mathbb{n} (p) \leqslant \left\lfloor \sqrt{p} \log p \right\rfloor + 1 \lt \sqrt{p} \log p + 1 }[/math]
Pokażemy, że powyższe oszacowanie można łatwo wzmocnić.
Twierdzenie K26
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Prawdziwe jest oszacowanie
- [math]\displaystyle{ \mathbb{n} (p) \lt \sqrt{p} + {\small\frac{1}{2}} }[/math]
Ponieważ [math]\displaystyle{ \mathbb{n} \nmid p }[/math], to z oszacowania [math]\displaystyle{ x - 1 \lt \lfloor x \rfloor \leqslant x }[/math] wynika, że
- [math]\displaystyle{ {\small\frac{p}{\mathbb{n}}} - 1 \lt \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor \lt {\small\frac{p}{\mathbb{n}}} }[/math]
- [math]\displaystyle{ p \lt \mathbb{n} \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + \mathbb{n} \lt p + \mathbb{n} }[/math]
Niech [math]\displaystyle{ u = \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 }[/math], mamy
- [math]\displaystyle{ 0 \lt \mathbb{n} u - p \lt \mathbb{n} }[/math]
Liczba [math]\displaystyle{ \mathbb{n} u - p }[/math] musi być liczbą kwadratową modulo [math]\displaystyle{ p }[/math], zatem
- [math]\displaystyle{ 1 = \left( {\small\frac{\mathbb{n} u - p}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} }[/math]
Ale z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]. Wynika stąd, że musi być [math]\displaystyle{ \mathbb{n} \leqslant u }[/math] i łatwo znajdujemy, że
- [math]\displaystyle{ \mathbb{n} \leqslant \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 \lt {\small\frac{p}{\mathbb{n}}} + 1 }[/math]
- [math]\displaystyle{ \mathbb{n}^2 \lt p + \mathbb{n} }[/math]
Ponieważ wypisane liczby są liczbami całkowitymi, to ostatnią nierówność możemy zapisać w postaci
- [math]\displaystyle{ \mathbb{n}^2 \leqslant p + \mathbb{n} - 1 }[/math]
Skąd otrzymujemy
- [math]\displaystyle{ \left( \mathbb{n} - {\small\frac{1}{2}} \right)^2 \leqslant p - {\small\frac{3}{4}} }[/math]
- [math]\displaystyle{ \mathbb{n} \leqslant {\small\frac{1}{2}} + \sqrt{p - {\small\frac{3}{4}}} \lt {\small\frac{1}{2}} + \sqrt{p} }[/math]
Co należało pokazać.
□
Twierdzenie K27*
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Dla [math]\displaystyle{ p \geqslant 5 }[/math] prawdziwe jest oszacowanie[5][6][7]
- [math]\displaystyle{ \mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p }[/math]
Uwaga K28
Liczby [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math], gdzie [math]\displaystyle{ p }[/math] są nieparzystymi liczbami pierwszymi, jest równa[8]
- [math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots }[/math]
Uwaga K29
Możemy też badać najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze nieparzyste liczby niekwadratowe modulo [math]\displaystyle{ p }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}_1( p )} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math]
Twierdzenie K30
Dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 5 }[/math] najmniejsza nieparzysta liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest liczbą pierwszą mniejszą od [math]\displaystyle{ p }[/math].
Niech [math]\displaystyle{ S \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich nieparzystych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Z twierdzenia J27 wiemy, że jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to w zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] jest dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. W zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] mamy też dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb parzystych i tyle samo liczb nieparzystych.
Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], bo [math]\displaystyle{ 4 = 2^2 \lt 5 \leqslant p }[/math] jest parzystą liczbą kwadratową modulo [math]\displaystyle{ p }[/math], czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że zbiór [math]\displaystyle{ S }[/math] nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru [math]\displaystyle{ S }[/math] jest liczbą pierwszą.
Niech [math]\displaystyle{ 3 \leqslant \mathbb{n}_\boldsymbol{1} \leqslant p - 2 }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że każda liczba [math]\displaystyle{ a \lt \mathbb{n}_\boldsymbol{1} }[/math] musi być liczbą parzystą lub liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Przypuśćmy, że [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] jest liczbą złożoną, czyli [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n}_\boldsymbol{1} }[/math]. Zauważmy, że żadna z liczb [math]\displaystyle{ a, b }[/math] nie może być liczbą parzystą, bo wtedy liczba [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] również byłaby liczbą parzystą wbrew określeniu liczby [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math]. Zatem obie liczby [math]\displaystyle{ a, b }[/math] muszą być nieparzystymi liczbami kwadratowymi, co jest niemożliwe, bo
- [math]\displaystyle{ - 1 = \left( {\small\frac{\mathbb{n}_\boldsymbol{1}}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! J}} }[/math]
i jeden z czynników po prawej stronie musi być ujemny. Co oznacza, że jedna z liczb [math]\displaystyle{ a, b }[/math] jest nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] mniejszą od [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] wbrew określeniu liczby [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math]. Uzyskana sprzeczność pokazuje, że liczba [math]\displaystyle{ \mathbb{n}_\boldsymbol{1} }[/math] jest liczbą pierwszą. Co kończy dowód.
□
B. Najmniejsze dodatnie liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] |
Uwaga K31
Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math] W jednym i drugim przypadku liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową w zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od [math]\displaystyle{ p }[/math] lub [math]\displaystyle{ m . }[/math] Dlatego będziemy je oznaczali również jako [math]\displaystyle{ \mathbb{n}(m) . }[/math]
Definicja K32
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Powiemy, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], gdy [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą dodatnią względnie pierwszą z [math]\displaystyle{ m }[/math] taką, że kongruencja
- [math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]
nie ma rozwiązania.
Przykład K33
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] i najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m . }[/math]
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( p )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( m )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math]
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 18 }[/math] [math]\displaystyle{ 20 }[/math] [math]\displaystyle{ 22 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 26 }[/math] [math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 30 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 34 }[/math] [math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 38 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 42 }[/math] [math]\displaystyle{ 44 }[/math] [math]\displaystyle{ 46 }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ 50 }[/math] [math]\displaystyle{ 52 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( m )} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math]
Uwaga K34
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP
B(m) =
{
local(p, res);
p = 1;
while( p < m,
p = nextprime(p + 1);
if( m%p == 0, next() );
res = -1;
for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
if( res == -1, return(p) );
);
}
Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby [math]\displaystyle{ m . }[/math] Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.
B(m) =
{
local(p, res, t);
t = m%8;
if( t == 3 || t == 5, return(2) );
t = m%12;
if( t == 4 || t == 8, return(3) );
t = m%24;
if( t == 9 || t == 15, return(2) );
if( t == 10 || t == 14, return(3) );
t = m%30;
if( t == 6 || t == 12 || t == 18 || t == 24, return(5) );
p = 1;
while( p < m,
p = nextprime(p + 1);
if( m%p == 0, next() );
res = -1;
for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
if( res == -1, return(p) );
);
}
Twierdzenie K35
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą pierwszą.
Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} . }[/math] Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ m . }[/math] Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że
- [math]\displaystyle{ r^2 \equiv a \pmod{m} }[/math]
- [math]\displaystyle{ s^2 \equiv b \pmod{m} }[/math]
Skąd wynika, że
- [math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{m} }[/math]
Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]
□
Zadanie K36
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli [math]\displaystyle{ m = 8 k \pm 3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]
Z twierdzenia J39 wiemy, że [math]\displaystyle{ \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1 }[/math], gdy [math]\displaystyle{ m = 8 k \pm 3 . }[/math] Wynika stąd, że [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], a jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Co należało pokazać.
□
Zadanie K37
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli spełniony jest jeden z warunków
- [math]\displaystyle{ 4 \mid m \; }[/math] i [math]\displaystyle{ \; \gcd (3, m) = 1 }[/math]
- [math]\displaystyle{ m = 12 k \pm 4 }[/math]
to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
Zauważmy, że [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ 2 \mid m . }[/math] Rozważmy kongruencję
- [math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]
Z założenia [math]\displaystyle{ 4 \mid m }[/math], co nie wyklucza możliwości, że również [math]\displaystyle{ 8 \mid m . }[/math] Ponieważ [math]\displaystyle{ 4 \nmid (3 - 1) }[/math] i [math]\displaystyle{ 8 \nmid (3 - 1) }[/math], to z twierdzenia J53 wynika, że kongruencja [math]\displaystyle{ x^2 \equiv 3 \!\! \pmod{m} }[/math] nie ma rozwiązania. Jeśli tylko [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math] W pierwszym punkcie jest to założone wprost, w drugim łatwo widzimy, że [math]\displaystyle{ 3 \nmid (12 k \pm 4) . }[/math]
Można też zauważyć, że żądanie, aby [math]\displaystyle{ \gcd (3, m) = 1 }[/math], prowadzi do dwóch układów kongruencji
- [math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 1 \pmod{3} \end{align} }[/math]
oraz
- [math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 2 \pmod{3} \end{align} }[/math]
którym, na mocy chińskiego twierdzenia o resztach, odpowiadają dwie kongruencje równoważne
- [math]\displaystyle{ m \equiv \pm 4 \pmod{12} }[/math]
Co należało pokazać.
□
Zadanie K38
Niech [math]\displaystyle{ m = 24 k \pm 10 . }[/math] Pokazać, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
Zapiszmy [math]\displaystyle{ m }[/math] w postaci [math]\displaystyle{ m = 2 m' }[/math], gdzie [math]\displaystyle{ m' = 12 k \pm 5 . }[/math] Gdyby kongruencja
- [math]\displaystyle{ x^2 \equiv 3 \pmod{2 m'} }[/math]
miała rozwiązanie, to również kongruencja
- [math]\displaystyle{ x^2 \equiv 3 \pmod{m'} }[/math]
miałaby rozwiązanie, ale jest to niemożliwe, bo [math]\displaystyle{ \left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J44), czyli [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m' . }[/math] Ponieważ [math]\displaystyle{ 2 \mid m }[/math], to [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
□
Twierdzenie K39
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą nieparzystą podzielną przez [math]\displaystyle{ p \in S_2 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]
Z założenia [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja
- [math]\displaystyle{ x^2 \equiv 2 \pmod{m} }[/math]
nie ma rozwiązania (zobacz J53). Ponieważ [math]\displaystyle{ 2 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]
Uwaga: zbiór [math]\displaystyle{ S_2 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (zobacz J39).
□
Twierdzenie K40
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą parzystą niepodzielną przez [math]\displaystyle{ 3 }[/math] i podzielną przez [math]\displaystyle{ p \in S_3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
Z założenia [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja
- [math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]
nie ma rozwiązania (zobacz J53). Ponieważ [math]\displaystyle{ 2 \mid m }[/math] i [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]
Uwaga: zbiór [math]\displaystyle{ S_3 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 12 k \pm 5 }[/math] (zobacz J44).
□
Twierdzenie K41
Jeżeli [math]\displaystyle{ m }[/math] jest liczbą dodatnią podzielną przez [math]\displaystyle{ 6 }[/math] i niepodzielną przez [math]\displaystyle{ 5 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]
Z założenia [math]\displaystyle{ 3 \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja
- [math]\displaystyle{ x^2 \equiv 5 \pmod{m} }[/math]
nie ma rozwiązania (zobacz J53). Ponieważ [math]\displaystyle{ 2 \mid m }[/math], [math]\displaystyle{ 3 \mid m }[/math] i [math]\displaystyle{ 5 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]
□
Twierdzenie K42
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ p \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math].
Z twierdzenia K74 wiemy, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math] Z założenia [math]\displaystyle{ q \mid m }[/math], zatem kongruencja
- [math]\displaystyle{ x^2 \equiv p \pmod{m} }[/math]
nie ma rozwiązania (zobacz J53). Ponieważ wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p }[/math] dzielą [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math]. Co należało pokazać.
□
Zadanie K43
Pokazać, że podanym w pierwszej kolumnie postaciom liczby [math]\displaystyle{ m }[/math] odpowiadają wymienione w drugiej kolumnie wartości [math]\displaystyle{ \mathbb{n} (m) . }[/math]
Postać liczby [math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ \boldsymbol{𝕟(m)} }[/math] Uwagi [math]\displaystyle{ m=24k \pm 9 }[/math] [math]\displaystyle{ 2 }[/math] K39 [math]\displaystyle{ m=120k \pm 25 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ m=120k \pm 55 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ m=120k \pm 50 }[/math] [math]\displaystyle{ 3 }[/math] K40 [math]\displaystyle{ m=30k \pm 6 }[/math] [math]\displaystyle{ 5 }[/math] K41, K42 [math]\displaystyle{ m=30k \pm 12 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ m=210k \pm 30 }[/math] [math]\displaystyle{ 7 }[/math] K42 [math]\displaystyle{ m=210k \pm 60 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ m=210k \pm 90 }[/math] [math]\displaystyle{ 7 }[/math]
Twierdzenie K44
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy
- [math]\displaystyle{ \begin{array}{lll} \mathbb{n} (2 m) \gt \mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) = 2 \\ \mathbb{n} (2 m) =\mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) \gt 2 \end{array} }[/math]
Punkt 1.
W przypadku, gdy [math]\displaystyle{ \mathbb{n} (m) = 2 }[/math], mamy [math]\displaystyle{ \mathbb{n} (2 m) \gt 2 = \mathbb{n} (m) }[/math], bo [math]\displaystyle{ \mathbb{n} (2 m) }[/math] musi być liczbą względnie pierwszą z [math]\displaystyle{ 2 m . }[/math]
Punkt 2.
Z definicji najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ m }[/math] wiemy, że kongruencja
- [math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{m} }[/math]
nie ma rozwiązania. Oznacza to, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \mid m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{\mathbb{n} (m)}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Ponieważ [math]\displaystyle{ p \mid 2 m }[/math], to wynika stąd natychmiast, że kongruencja
- [math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{2 m} }[/math]
również nie ma rozwiązania (zobacz J53).
Zatem [math]\displaystyle{ \mathbb{n} (2 m) \leqslant \mathbb{n} (m) . }[/math] Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą taką, że [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Kongruencję
- [math]\displaystyle{ x^2 \equiv q \pmod{2 m} \qquad \qquad (1) }[/math]
możemy zapisać w postaci układu kongruencji równoważnych (zobacz J1)
- [math]\displaystyle{ \begin{align} x^2 & \equiv q \pmod{m} \qquad \qquad \;\: (2) \\ x^2 & \equiv q \pmod{2} \qquad \qquad \;\;\,\, (3) \\ \end{align} }[/math]
Z definicji [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], zatem kongruencja [math]\displaystyle{ (2) }[/math] ma rozwiązanie – oznaczmy to rozwiązanie przez [math]\displaystyle{ x_0 . }[/math] Łatwo zauważamy, że liczba
- [math]\displaystyle{ x'_0 = \begin{cases} \;\;\;\; x_0 & \text{gdy} \quad x_0 \equiv 1 \pmod{2} \\ x_0 + m & \text{gdy} \quad x_0 \equiv 0 \pmod{2} \\ \end{cases} }[/math]
jest rozwiązaniem układu kongruencji [math]\displaystyle{ (2) }[/math] i [math]\displaystyle{ (3) }[/math], a tym samym kongruencja [math]\displaystyle{ (1) }[/math] ma rozwiązanie dla każdego [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (2 m) =\mathbb{n} (m) . }[/math]
□
Twierdzenie K45
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy
- [math]\displaystyle{ \begin{array}{lllll} \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2 & & \text{gdy } \;\; 3 \mid m \\ \mathbb{n} (4 m) = 3 & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\ \end{array} }[/math]
Punkt 1.
Z twierdzenia K39 wynika, że w przypadku, gdy [math]\displaystyle{ 3 \mid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math] Ponieważ [math]\displaystyle{ 2 \mid 4 m }[/math] i [math]\displaystyle{ 3 \mid 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) \geqslant 5 . }[/math]
Punkt 2.
Ponieważ [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 8 \nmid 4 m }[/math], ale [math]\displaystyle{ 4 \mid 4 m \; }[/math] i [math]\displaystyle{ \; 4 \nmid (3 - 1) }[/math], zatem z twierdzenia J53 wynika, że kongruencja
- [math]\displaystyle{ x^2 \equiv 3 \pmod{4 m} }[/math]
nie ma rozwiązania. Ponieważ [math]\displaystyle{ 2 \mid 4 m \; }[/math] i [math]\displaystyle{ \; 3 \nmid 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) = 3 . }[/math]
□
Twierdzenie K46
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p \, }[/math] i [math]\displaystyle{ \, p \mid m }[/math], to [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]
Wiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy kongruencja
- [math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]
ma rozwiązanie. Przypuśćmy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m . }[/math] Zatem istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że
- [math]\displaystyle{ k^2 \equiv a \pmod{m} }[/math]
Ponieważ z założenia [math]\displaystyle{ p \mid m }[/math], to prawdziwa jest też kongruencja
- [math]\displaystyle{ k^2 \equiv a \pmod{p} }[/math]
co przeczy założeniu, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]
□
Twierdzenie K47
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to istnieje taki dzielnik pierwszy [math]\displaystyle{ p }[/math] liczby [math]\displaystyle{ m }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]
Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby [math]\displaystyle{ m }[/math]: [math]\displaystyle{ \{ p_1, \ldots, p_s \} }[/math] i powiązany z dzielnikami pierwszymi [math]\displaystyle{ p_k }[/math] zbiór najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p_k }[/math]: [math]\displaystyle{ \{ \mathbb{n}_1, \ldots, \mathbb{n}_s \} }[/math], z których każda jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz K46). Wynika stąd, że liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] musi być mniejsza od każdej z liczb [math]\displaystyle{ \mathbb{n}_k . }[/math]
Z definicji liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], co oznacza, że kongruencja
- [math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]
nie ma rozwiązania. Niech [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s . }[/math] Zatem przynajmniej jedna z kongruencji
- [math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k} }[/math]
musi nie mieć rozwiązania (zobacz J11). Z twierdzenia J47 wiemy, że wtedy kongruencja
- [math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p_k} }[/math]
również nie ma rozwiązania. Zatem [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p_k \, }[/math] i [math]\displaystyle{ \, \mathbb{n} \lt \mathbb{n}_k }[/math], co przeczy definicji liczby [math]\displaystyle{ \mathbb{n}_k . }[/math]
□
Twierdzenie K48
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to
- [math]\displaystyle{ \mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) ) }[/math]
gdzie [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], a [math]\displaystyle{ \mathbb{n}(p_k) }[/math] są najmniejszymi liczbami kwadratowymi modulo [math]\displaystyle{ p_k . }[/math]
Twierdzenie to jest prostym wnioskiem z twierdzenia K47, ale musimy jeszcze pokazać, że [math]\displaystyle{ \gcd (\mathbb{n} (m), m) = 1 . }[/math] Przypuśćmy, że [math]\displaystyle{ p_k |\mathbb{n} (m) }[/math] dla pewnego [math]\displaystyle{ 1 \leqslant k \leqslant s . }[/math] Ponieważ [math]\displaystyle{ \mathbb{n} (m) }[/math] jest liczbą pierwszą, to musi być [math]\displaystyle{ \mathbb{n} (m) = p_k }[/math], ale wtedy
- [math]\displaystyle{ \mathbb{n} (p_k) \lt p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k) }[/math]
Otrzymana sprzeczność dowodzi, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest względnie pierwsza z każdą z liczb pierwszych [math]\displaystyle{ p_i }[/math], gdzie [math]\displaystyle{ 1 \leqslant i \leqslant s . }[/math] Co kończy dowód.
□
Twierdzenie K49
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Prawdziwe są oszacowania
- [math]\displaystyle{ \mathbb{n}(m) \lt \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3 }[/math]
- [math]\displaystyle{ \mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5 }[/math]
Niech [math]\displaystyle{ p }[/math] będzie dzielnikiem pierwszym liczby [math]\displaystyle{ m }[/math] takim, że [math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) }[/math] (z twierdzenia K47 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ \mathbb{n}(p) \lt F (p) }[/math], gdzie [math]\displaystyle{ F(x) }[/math] jest funkcją rosnącą, to
- [math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) \lt F (p) \leqslant F (m) }[/math]
Podane w twierdzeniu oszacowania wynikają natychmiast z twierdzeń K26 i K27.
□
Uwaga K50
Liczby [math]\displaystyle{ \mathbb{n} (m) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] wynosi[9]
- [math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots }[/math]
C. Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] |
Przykład K51
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math], najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] i najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 45 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 49 }[/math] [math]\displaystyle{ 51 }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( p )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ \boldsymbol{\mathbb{n}( m )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ \boldsymbol{c( m )} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 2 }[/math]
Uwaga K52
Do wyszukiwania liczb [math]\displaystyle{ c = c (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP
C(m) =
{
if( m%2 == 0, return(0) );
if( issquare(m), return(0) );
forprime(p = 2, m, if( jacobi(p, m) == -1, return(p) ));
}
Uwaga K53
Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] oznaczyliśmy jako [math]\displaystyle{ c(m) }[/math]. Zauważmy, że są to liczby inne od [math]\displaystyle{ \mathbb{n}(p) }[/math] i [math]\displaystyle{ \mathbb{n}(m) }[/math]. Wystarczy zwrócić uwagę na występujące w tabeli liczby [math]\displaystyle{ \mathbb{n}(p) }[/math], [math]\displaystyle{ \mathbb{n}(m) }[/math] i [math]\displaystyle{ c(m) }[/math] dla [math]\displaystyle{ m = 15, 33, 39 }[/math]. Różnice wynikają z innej definicji liczb [math]\displaystyle{ c(m) }[/math] – jeżeli liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to symbol Jacobiego [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math] nie musi być równy [math]\displaystyle{ - 1 }[/math]. I tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.
Ponieważ [math]\displaystyle{ c(m) }[/math] nie zawsze będzie najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], to mamy natychmiast oszacowanie: [math]\displaystyle{ c(m) \geqslant \mathbb{n} (m) }[/math] (poza przypadkami, gdy [math]\displaystyle{ m = n^2 }[/math]).
Dla [math]\displaystyle{ c(m) }[/math] nie są prawdziwe oszacowania podane w twierdzeniu K26. Łatwo zauważamy, że
- [math]\displaystyle{ c = c (15) = 7 \gt \sqrt{15} + {\small\frac{1}{2}} \approx 4.37 }[/math]
- [math]\displaystyle{ c = c (39) = 7 \gt \sqrt{39} + {\small\frac{1}{2}} \approx 6.74 }[/math]
- [math]\displaystyle{ c = c (105) = 11 \gt \sqrt{105} + {\small\frac{1}{2}} \approx 10.75 }[/math]
- [math]\displaystyle{ c = c (231) = 17 \gt \sqrt{231} + {\small\frac{1}{2}} \approx 15.7 }[/math]
Nie ma więcej takich przypadków dla [math]\displaystyle{ m \lt 10^9 }[/math].
Twierdzenie K54
Niech [math]\displaystyle{ c, m \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ c }[/math] będzie najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1 }[/math]. Liczba [math]\displaystyle{ c }[/math] musi być liczbą pierwszą.
Przypuśćmy, że [math]\displaystyle{ c = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt c }[/math]. Mamy
- [math]\displaystyle{ - 1 = \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math][math]\displaystyle{ \left( {\small\frac{b}{m}} \right)_{\small{\!\! J}} }[/math]
Zatem jeden z czynników po prawej stronie musi być równy [math]\displaystyle{ - 1 }[/math] wbrew definicji liczby [math]\displaystyle{ c }[/math].
□
Liczby pierwsze postaci [math]\displaystyle{ x^2 + n y^2 }[/math]
Przykład K55
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 85 }[/math] na sumę postaci [math]\displaystyle{ x^2 + y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math]. Rozkłady różniące się jedynie kolejnością liczb [math]\displaystyle{ x , y }[/math] nie zostały uwzględnione.
[math]\displaystyle{ \boldsymbol{n} }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 5 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 9 }[/math] | [math]\displaystyle{ 10 }[/math] | [math]\displaystyle{ 13 }[/math] | [math]\displaystyle{ 16 }[/math] | [math]\displaystyle{ 17 }[/math] | [math]\displaystyle{ 18 }[/math] | [math]\displaystyle{ 20 }[/math] | [math]\displaystyle{ 25 }[/math] | [math]\displaystyle{ 26 }[/math] | [math]\displaystyle{ 29 }[/math] | [math]\displaystyle{ 32 }[/math] | [math]\displaystyle{ 34 }[/math] | [math]\displaystyle{ 36 }[/math] | [math]\displaystyle{ 37 }[/math] | [math]\displaystyle{ 40 }[/math] | [math]\displaystyle{ 41 }[/math] | [math]\displaystyle{ 45 }[/math] | [math]\displaystyle{ 49 }[/math] | [math]\displaystyle{ 50 }[/math] | [math]\displaystyle{ 52 }[/math] | [math]\displaystyle{ 53 }[/math] | [math]\displaystyle{ 58 }[/math] | [math]\displaystyle{ 61 }[/math] | [math]\displaystyle{ 64 }[/math] | [math]\displaystyle{ 65 }[/math] | [math]\displaystyle{ 68 }[/math] | [math]\displaystyle{ 72 }[/math] | [math]\displaystyle{ 73 }[/math] | [math]\displaystyle{ 74 }[/math] | [math]\displaystyle{ 80 }[/math] | [math]\displaystyle{ 81 }[/math] | [math]\displaystyle{ 82 }[/math] | [math]\displaystyle{ 85 }[/math] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ 1,0 }[/math] | [math]\displaystyle{ 1,1 }[/math] | [math]\displaystyle{ 2,0 }[/math] | [math]\displaystyle{ 2,1 }[/math] | [math]\displaystyle{ 2,2 }[/math] | [math]\displaystyle{ 3,0 }[/math] | [math]\displaystyle{ 3,1 }[/math] | [math]\displaystyle{ 3,2 }[/math] | [math]\displaystyle{ 4,0 }[/math] | [math]\displaystyle{ 4,1 }[/math] | [math]\displaystyle{ 3,3 }[/math] | [math]\displaystyle{ 4,2 }[/math] | [math]\displaystyle{ 5,0 }[/math] | [math]\displaystyle{ 5,1 }[/math] | [math]\displaystyle{ 5,2 }[/math] | [math]\displaystyle{ 4,4 }[/math] | [math]\displaystyle{ 5,3 }[/math] | [math]\displaystyle{ 6,0 }[/math] | [math]\displaystyle{ 6,1 }[/math] | [math]\displaystyle{ 6,2 }[/math] | [math]\displaystyle{ 5,4 }[/math] | [math]\displaystyle{ 6,3 }[/math] | [math]\displaystyle{ 7,0 }[/math] | [math]\displaystyle{ 7,1 }[/math] | [math]\displaystyle{ 6,4 }[/math] | [math]\displaystyle{ 7,2 }[/math] | [math]\displaystyle{ 7,3 }[/math] | [math]\displaystyle{ 6,5 }[/math] | [math]\displaystyle{ 8,0 }[/math] | [math]\displaystyle{ 8,1 }[/math] | [math]\displaystyle{ 8,2 }[/math] | [math]\displaystyle{ 6,6 }[/math] | [math]\displaystyle{ 8,3 }[/math] | [math]\displaystyle{ 7,5 }[/math] | [math]\displaystyle{ 8,4 }[/math] | [math]\displaystyle{ 9,0 }[/math] | [math]\displaystyle{ 9,1 }[/math] | [math]\displaystyle{ 9,2 }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 5,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 7,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 7,6 }[/math] |
Zauważmy, że liczba złożona [math]\displaystyle{ 21 }[/math] nie ma rozkładu na sumę kwadratów, a liczba złożona [math]\displaystyle{ 65 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 4 k + 1 }[/math].
Przykład K56
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 73 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].
[math]\displaystyle{ \boldsymbol{n} }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 2 }[/math] | [math]\displaystyle{ 3 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 6 }[/math] | [math]\displaystyle{ 8 }[/math] | [math]\displaystyle{ 9 }[/math] | [math]\displaystyle{ 11 }[/math] | [math]\displaystyle{ 12 }[/math] | [math]\displaystyle{ 16 }[/math] | [math]\displaystyle{ 17 }[/math] | [math]\displaystyle{ 18 }[/math] | [math]\displaystyle{ 19 }[/math] | [math]\displaystyle{ 22 }[/math] | [math]\displaystyle{ 24 }[/math] | [math]\displaystyle{ 25 }[/math] | [math]\displaystyle{ 27 }[/math] | [math]\displaystyle{ 32 }[/math] | [math]\displaystyle{ 33 }[/math] | [math]\displaystyle{ 34 }[/math] | [math]\displaystyle{ 36 }[/math] | [math]\displaystyle{ 38 }[/math] | [math]\displaystyle{ 41 }[/math] | [math]\displaystyle{ 43 }[/math] | [math]\displaystyle{ 44 }[/math] | [math]\displaystyle{ 48 }[/math] | [math]\displaystyle{ 49 }[/math] | [math]\displaystyle{ 50 }[/math] | [math]\displaystyle{ 51 }[/math] | [math]\displaystyle{ 54 }[/math] | [math]\displaystyle{ 57 }[/math] | [math]\displaystyle{ 59 }[/math] | [math]\displaystyle{ 64 }[/math] | [math]\displaystyle{ 66 }[/math] | [math]\displaystyle{ 67 }[/math] | [math]\displaystyle{ 68 }[/math] | [math]\displaystyle{ 72 }[/math] | [math]\displaystyle{ 73 }[/math] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ 1,0 }[/math] | [math]\displaystyle{ 0,1 }[/math] | [math]\displaystyle{ 1,1 }[/math] | [math]\displaystyle{ 2,0 }[/math] | [math]\displaystyle{ 2,1 }[/math] | [math]\displaystyle{ 0,2 }[/math] | [math]\displaystyle{ 3,0 }[/math] | [math]\displaystyle{ 3,1 }[/math] | [math]\displaystyle{ 2,2 }[/math] | [math]\displaystyle{ 4,0 }[/math] | [math]\displaystyle{ 3,2 }[/math] | [math]\displaystyle{ 4,1 }[/math] | [math]\displaystyle{ 1,3 }[/math] | [math]\displaystyle{ 2,3 }[/math] | [math]\displaystyle{ 4,2 }[/math] | [math]\displaystyle{ 5,0 }[/math] | [math]\displaystyle{ 5,1 }[/math] | [math]\displaystyle{ 0,4 }[/math] | [math]\displaystyle{ 5,2 }[/math] | [math]\displaystyle{ 4,3 }[/math] | [math]\displaystyle{ 6,0 }[/math] | [math]\displaystyle{ 6,1 }[/math] | [math]\displaystyle{ 3,4 }[/math] | [math]\displaystyle{ 5,3 }[/math] | [math]\displaystyle{ 6,2 }[/math] | [math]\displaystyle{ 4,4 }[/math] | [math]\displaystyle{ 7,0 }[/math] | [math]\displaystyle{ 0,5 }[/math] | [math]\displaystyle{ 7,1 }[/math] | [math]\displaystyle{ 6,3 }[/math] | [math]\displaystyle{ 7,2 }[/math] | [math]\displaystyle{ 3,5 }[/math] | [math]\displaystyle{ 8,0 }[/math] | [math]\displaystyle{ 8,1 }[/math] | [math]\displaystyle{ 7,3 }[/math] | [math]\displaystyle{ 6,4 }[/math] | [math]\displaystyle{ 8,2 }[/math] | [math]\displaystyle{ 1,6 }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 3,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 2,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,5 }[/math] | [math]\displaystyle{ 2,5 }[/math] | [math]\displaystyle{ 5,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,6 }[/math] | [math]\displaystyle{ }[/math] |
Zauważmy, że liczba złożona [math]\displaystyle{ 65 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 33 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 1 }[/math].
Zauważmy też, że liczba złożona [math]\displaystyle{ 35 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 2 y^2 }[/math], a liczba złożona [math]\displaystyle{ 27 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 8 k + 3 }[/math].
Przykład K57
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od [math]\displaystyle{ 103 }[/math] na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], gdzie [math]\displaystyle{ x, y \in \mathbb{N}_0 }[/math].
[math]\displaystyle{ \boldsymbol{n} }[/math] | [math]\displaystyle{ 1 }[/math] | [math]\displaystyle{ 3 }[/math] | [math]\displaystyle{ 4 }[/math] | [math]\displaystyle{ 7 }[/math] | [math]\displaystyle{ 9 }[/math] | [math]\displaystyle{ 12 }[/math] | [math]\displaystyle{ 13 }[/math] | [math]\displaystyle{ 16 }[/math] | [math]\displaystyle{ 19 }[/math] | [math]\displaystyle{ 21 }[/math] | [math]\displaystyle{ 25 }[/math] | [math]\displaystyle{ 27 }[/math] | [math]\displaystyle{ 28 }[/math] | [math]\displaystyle{ 31 }[/math] | [math]\displaystyle{ 36 }[/math] | [math]\displaystyle{ 37 }[/math] | [math]\displaystyle{ 39 }[/math] | [math]\displaystyle{ 43 }[/math] | [math]\displaystyle{ 48 }[/math] | [math]\displaystyle{ 49 }[/math] | [math]\displaystyle{ 52 }[/math] | [math]\displaystyle{ 57 }[/math] | [math]\displaystyle{ 61 }[/math] | [math]\displaystyle{ 63 }[/math] | [math]\displaystyle{ 64 }[/math] | [math]\displaystyle{ 67 }[/math] | [math]\displaystyle{ 73 }[/math] | [math]\displaystyle{ 75 }[/math] | [math]\displaystyle{ 76 }[/math] | [math]\displaystyle{ 79 }[/math] | [math]\displaystyle{ 81 }[/math] | [math]\displaystyle{ 84 }[/math] | [math]\displaystyle{ 91 }[/math] | [math]\displaystyle{ 93 }[/math] | [math]\displaystyle{ 97 }[/math] | [math]\displaystyle{ 100 }[/math] | [math]\displaystyle{ 103 }[/math] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ 1,0 }[/math] | [math]\displaystyle{ 0,1 }[/math] | [math]\displaystyle{ 2,0 }[/math] | [math]\displaystyle{ 2,1 }[/math] | [math]\displaystyle{ 3,0 }[/math] | [math]\displaystyle{ 3,1 }[/math] | [math]\displaystyle{ 1,2 }[/math] | [math]\displaystyle{ 4,0 }[/math] | [math]\displaystyle{ 4,1 }[/math] | [math]\displaystyle{ 3,2 }[/math] | [math]\displaystyle{ 5,0 }[/math] | [math]\displaystyle{ 0,3 }[/math] | [math]\displaystyle{ 5,1 }[/math] | [math]\displaystyle{ 2,3 }[/math] | [math]\displaystyle{ 6,0 }[/math] | [math]\displaystyle{ 5,2 }[/math] | [math]\displaystyle{ 6,1 }[/math] | [math]\displaystyle{ 4,3 }[/math] | [math]\displaystyle{ 6,2 }[/math] | [math]\displaystyle{ 7,0 }[/math] | [math]\displaystyle{ 7,1 }[/math] | [math]\displaystyle{ 3,4 }[/math] | [math]\displaystyle{ 7,2 }[/math] | [math]\displaystyle{ 6,3 }[/math] | [math]\displaystyle{ 8,0 }[/math] | [math]\displaystyle{ 8,1 }[/math] | [math]\displaystyle{ 5,4 }[/math] | [math]\displaystyle{ 0,5 }[/math] | [math]\displaystyle{ 8,2 }[/math] | [math]\displaystyle{ 2,5 }[/math] | [math]\displaystyle{ 9,0 }[/math] | [math]\displaystyle{ 9,1 }[/math] | [math]\displaystyle{ 8,3 }[/math] | [math]\displaystyle{ 9,2 }[/math] | [math]\displaystyle{ 7,4 }[/math] | [math]\displaystyle{ 10,0 }[/math] | [math]\displaystyle{ 10,1 }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,1 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 2,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,2 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 3,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 0,4 }[/math] | [math]\displaystyle{ 1,4 }[/math] | [math]\displaystyle{ 5,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 4,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 7,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 6,4 }[/math] | [math]\displaystyle{ 4,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 5,5 }[/math] | [math]\displaystyle{ }[/math] |
[math]\displaystyle{ \boldsymbol{x,y} }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,3 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 2,4 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 1,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ 3,5 }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] |
Zauważmy, że liczba złożona [math]\displaystyle{ 55 }[/math] nie ma rozkładu na sumę postaci [math]\displaystyle{ x^2 + 3 y^2 }[/math], a liczba złożona [math]\displaystyle{ 91 }[/math] ma dwa takie rozkłady. Obie liczby są postaci [math]\displaystyle{ 6 k + 1 }[/math].
Twierdzenie K58
Jeżeli liczba nieparzysta postaci [math]\displaystyle{ Q = x^2 + n y^2 }[/math], gdzie [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math], ma dwa różne takie przedstawienia w liczbach całkowitych dodatnich, to jest liczbą złożoną.
W dowodzie wyróżniliśmy miejsca, które wymagają oddzielnej analizy ze względu na wartość liczby [math]\displaystyle{ n }[/math].
Niech
- [math]\displaystyle{ Q = x^2 + n y^2 = a^2 + n b^2 }[/math]
[math]\displaystyle{ \boldsymbol{n = 1} }[/math]
Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby występujące w rozkładach [math]\displaystyle{ x^2 + y^2 = a^2 + b^2 }[/math] muszą mieć przeciwną parzystość. Nie zmniejszając ogólności, możemy założyć, że liczby [math]\displaystyle{ x, a }[/math] są nieparzyste, a liczby [math]\displaystyle{ y, b }[/math] parzyste.
[math]\displaystyle{ \boldsymbol{n = 2} }[/math]
Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby [math]\displaystyle{ x, a }[/math] występująca w rozkładach [math]\displaystyle{ x^2 + 2 y^2 = a^2 + 2 b^2 }[/math] muszą być nieparzyste. Pokażemy, że liczby [math]\displaystyle{ y, b }[/math] muszą mieć taką samą parzystość. Przypuśćmy, że [math]\displaystyle{ y }[/math] jest parzysta, a [math]\displaystyle{ b }[/math] nieparzysta, wtedy modulo [math]\displaystyle{ 4 }[/math] dostajemy
- [math]\displaystyle{ 1 + 2 \cdot 0 \equiv 1 + 2 \cdot 1 \!\! \pmod{4} }[/math]
Co jest niemożliwe.
[math]\displaystyle{ \boldsymbol{n = 3} }[/math]
Z założenia [math]\displaystyle{ Q }[/math] jest liczbą nieparzystą, zatem liczby występujące w rozkładach [math]\displaystyle{ x^2 + 3 y^2 = a^2 + 3 b^2 }[/math] muszą mieć przeciwną parzystość. Pokażemy, że liczby [math]\displaystyle{ x, a }[/math] muszą mieć taką samą parzystość. Gdyby liczba [math]\displaystyle{ x }[/math] była nieparzysta, a liczba [math]\displaystyle{ a }[/math] parzysta, to modulo [math]\displaystyle{ 4 }[/math] mielibyśmy
- [math]\displaystyle{ 1 + 3 \cdot 0 \equiv 0 + 3 \cdot 1 \!\! \pmod{4} }[/math]
Co jest niemożliwe.
Z powyższego zestawienia wynika, że liczby [math]\displaystyle{ x, a }[/math] i liczby [math]\displaystyle{ y, b }[/math] mają taką samą parzystość. Mamy
- [math]\displaystyle{ x^2 - a^2 = n (b^2 - y^2) }[/math]
- [math]\displaystyle{ (x - a) (x + a) = n (b - y) (b + y) }[/math]
Niech [math]\displaystyle{ f = \gcd (x - a, b - y) }[/math], zatem [math]\displaystyle{ f }[/math] jest liczbą parzystą i
- [math]\displaystyle{ x - a = f r , \qquad \qquad b - y = f s , \qquad \qquad \gcd (r, s) = 1 }[/math]
Czyli
- [math]\displaystyle{ r(x + a) = n s (y + b) }[/math]
ale liczby [math]\displaystyle{ r, s }[/math] są względnie pierwsze, zatem [math]\displaystyle{ s \mid (x + a) }[/math] i musi być
- [math]\displaystyle{ x + a = k s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = k r }[/math]
Gdyby [math]\displaystyle{ k }[/math] było liczbą nieparzystą, to liczby [math]\displaystyle{ r, s }[/math] musiałyby być parzyste, co jest niemożliwe, bo [math]\displaystyle{ \gcd (r, s) = 1 }[/math]. Zatem [math]\displaystyle{ k }[/math] jest liczbą parzystą i [math]\displaystyle{ 2 s \mid (x + a) }[/math], czyli możemy pokazać więcej. Musi być
- [math]\displaystyle{ x + a = 2 l s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = 2 l r }[/math]
W przypadku gdy [math]\displaystyle{ n = 2 }[/math] lub [math]\displaystyle{ n = 3 }[/math], zauważmy, że [math]\displaystyle{ n \mid l }[/math] lub [math]\displaystyle{ n \mid r }[/math].
Łatwo otrzymujemy
- [math]\displaystyle{ x = {\small\frac{1}{2}} (2 l s + f r) }[/math]
- [math]\displaystyle{ y = {\small\frac{1}{2 n}} (2 l r - n f s) }[/math]
Ostatecznie
- [math]\displaystyle{ Q = x^2 + n y^2 }[/math]
- [math]\displaystyle{ \;\;\;\: = \left[ {\small\frac{1}{2}} (2 l s + f r) \right]^2 + n \left[ {\small\frac{1}{2 n}} (2 l r - n f s) \right]^2 }[/math]
- [math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s + f r)^2 + (2 l r - n f s)^2] }[/math]
- [math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s)^2 + n (f r)^2 + (2 l r)^2 + (n f s)^2] }[/math]
- [math]\displaystyle{ \;\;\;\: = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) }[/math]
[math]\displaystyle{ \boldsymbol{n = 1} }[/math]
- [math]\displaystyle{ Q = {\small\frac{1}{4}} [(2 l)^2 + f^2] (r^2 + s^2) = \left[ l^2 + \left( {\small\frac{f}{2}} \right)^2 \right] (r^2 + s^2) }[/math]
[math]\displaystyle{ \boldsymbol{n = 2 , 3} }[/math]
W zależności od tego, która z liczb [math]\displaystyle{ l, r }[/math] jest podzielna przez [math]\displaystyle{ n }[/math], możemy napisać
- [math]\displaystyle{ Q = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4 n}} \right] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4}} \right] \left( {\small\frac{r^2 + n s^2}{n}} \right) }[/math]
Co kończy dowód.
□
Uwaga K59
Zauważmy, że iloczyn liczb postaci [math]\displaystyle{ x^2 + n y^2 }[/math] jest liczbą tej samej postaci.
- [math]\displaystyle{ (a^2 + n b^2) (x^2 + n y^2) = (a x + n b y)^2 + n (a y - b x)^2 }[/math]
- [math]\displaystyle{ \;\;\;\:\, = (a x - n b y)^2 + n (a y + b x)^2 }[/math]
Twierdzenie K60
Niech [math]\displaystyle{ x, y, a, b \in \mathbb{Z} }[/math] i [math]\displaystyle{ n \in \{ 1, 2, 3 \} }[/math]. Jeżeli liczba parzysta [math]\displaystyle{ Q = x^2 + n y^2 }[/math], to [math]\displaystyle{ Q = 2^{\alpha} R }[/math], gdzie [math]\displaystyle{ R = a^2 + n b^2 }[/math] jest liczbą nieparzystą.
W szczególnym przypadku, gdy [math]\displaystyle{ R = 1 }[/math], mamy [math]\displaystyle{ R = 1^2 + n \cdot 0^2 }[/math].
Dowód sprowadza się do podania wzorów, które pozwalają obniżyć wykładnik, z jakim liczba [math]\displaystyle{ 2 }[/math] występuje w rozwinięciu na czynniki pierwsze liczby [math]\displaystyle{ Q }[/math]. Zauważmy, że wynik jest zawsze liczbą, której postać jest taka sama, jak postać liczby [math]\displaystyle{ Q }[/math]. Stosując te wzory odpowiednią ilość razy, otrzymujmy rozkład [math]\displaystyle{ Q = 2^{\alpha} R }[/math], gdzie [math]\displaystyle{ R }[/math] jest liczbą nieparzystą postaci [math]\displaystyle{ a^2 + n b^2 }[/math].
1. [math]\displaystyle{ \boldsymbol{Q = x^2 + y^2} }[/math]
a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + \left( {\small\frac{y}{2}} \right)^2 }[/math]
b) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste, to [math]\displaystyle{ {\small\frac{Q}{2}} = \left( {\small\frac{x + y}{2}} \right)^2 + \left( {\small\frac{x - y}{2}} \right)^2 }[/math]
2. [math]\displaystyle{ \boldsymbol{Q = x^2 + 2 y^2} }[/math]
a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 2 \left( {\small\frac{y}{2}} \right)^2 }[/math]
b) jeżeli liczba [math]\displaystyle{ x }[/math] jest parzysta, a [math]\displaystyle{ y }[/math] nieparzysta, to [math]\displaystyle{ {\small\frac{Q}{2}} = y^2 + 2 \left( {\small\frac{x}{2}} \right)^2 }[/math]
3. [math]\displaystyle{ \boldsymbol{Q = x^2 + 3 y^2} }[/math]
a) jeżeli liczby [math]\displaystyle{ x, y }[/math] są parzyste, to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 3 \left( {\small\frac{y}{2}} \right)^2 }[/math]
b) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste i [math]\displaystyle{ 4 \mid (x + y) }[/math], to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x - 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x + y}{4}} \right)^2 }[/math]
c) jeżeli liczby [math]\displaystyle{ x, y }[/math] są nieparzyste i [math]\displaystyle{ 4 \mid (x - y) }[/math], to [math]\displaystyle{ {\small\frac{Q}{4}} = \left( {\small\frac{x + 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x - y}{4}} \right)^2 }[/math]
Co należało pokazać.
□
Twierdzenie K61
Liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] jest postaci
- (a) [math]\displaystyle{ 4 k + 1 }[/math]
- (b) [math]\displaystyle{ 8 k + 1 \, }[/math] lub [math]\displaystyle{ \: 8 k + 3 }[/math]
- (c) [math]\displaystyle{ 6 k + 1 }[/math]
wtedy i tylko wtedy, gdy istnieje dokładnie jedna para liczb całkowitych dodatnich [math]\displaystyle{ x, y }[/math], że
- (a) [math]\displaystyle{ p = x^2 + y^2 }[/math]
- (b) [math]\displaystyle{ p = x^2 + 2 y^2 }[/math]
- (c) [math]\displaystyle{ p = x^2 + 3 y^2 }[/math]
[math]\displaystyle{ \Large{\Longleftarrow} }[/math]
Niech [math]\displaystyle{ n = 1, 2, 3 }[/math]. Z założenia liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] może być przedstawiona w postaci [math]\displaystyle{ p = x_0^2 + n y_0^2 }[/math], gdzie [math]\displaystyle{ x_0, y_0 }[/math] są liczbami takimi, że [math]\displaystyle{ 1 \leqslant x_0, y_0 \lt p }[/math]. Zatem [math]\displaystyle{ p \nmid x_0 }[/math] i [math]\displaystyle{ p \nmid y_0 }[/math], a rozpatrując równanie [math]\displaystyle{ p = x_0^2 + n y_0^2 }[/math] modulo [math]\displaystyle{ p }[/math] dostajemy
- [math]\displaystyle{ x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p} }[/math]
Zauważmy, że liczba [math]\displaystyle{ x_0 }[/math] jest rozwiązaniem kongruencji
- [math]\displaystyle{ x^2 \equiv - n y_0^2 \!\! \pmod{p} }[/math]
Wynika stąd, że liczba [math]\displaystyle{ - n y_0^2 }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Zatem
- [math]\displaystyle{ \left( {\small\frac{- n y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1 }[/math]
Z twierdzenia J39 i zadania J43 otrzymujemy natychmiast
- (a) jeżeli [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 4 k + 1 }[/math]
- (b) jeżeli [math]\displaystyle{ \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math]
- (c) jeżeli [math]\displaystyle{ \left( {\small\frac{- 3}{p}} \right)_{\small{\!\! J}} = 1 }[/math], to liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ 6 k + 1 }[/math]
Co należało pokazać.
[math]\displaystyle{ \Large{\Longrightarrow} }[/math]
A. Istnienie rozwiązania kongruencji [math]\displaystyle{ \boldsymbol{x^2 + n y^2 \equiv 0 \!\! \pmod{p}} }[/math]
Z założenia liczba pierwsza [math]\displaystyle{ p \geqslant 3 }[/math] jest postaci
- (a) [math]\displaystyle{ 4 k + 1 }[/math]
- (b) [math]\displaystyle{ 8 k + 1 \, }[/math] lub [math]\displaystyle{ \: 8 k + 3 }[/math]
- (c) [math]\displaystyle{ 6 k + 1 }[/math]
Wynika stąd, że dla (a) [math]\displaystyle{ n = 1 }[/math], (b) [math]\displaystyle{ n = 2 }[/math], (c) [math]\displaystyle{ n = 3 }[/math] mamy
- [math]\displaystyle{ \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1 }[/math]
(zobacz J39 i J43) i liczba [math]\displaystyle{ - n }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Zatem kongruencja
- [math]\displaystyle{ x^2 \equiv - n \!\! \pmod{p} }[/math]
ma rozwiązanie, czyli istnieje taka liczba [math]\displaystyle{ k }[/math], że
- [math]\displaystyle{ k^2 + n \equiv 0 \!\! \pmod{p} }[/math]
Zauważmy, że liczby [math]\displaystyle{ x_0 = k }[/math] i [math]\displaystyle{ y_0 = 1 }[/math] są szczególnymi przypadkami rozwiązania kongruencji
- [math]\displaystyle{ x^2 + n y^2 \equiv 0 \!\! \pmod{p} }[/math]
W przypadku (a), korzystając z twierdzenia Wilsona (zobacz J18), liczbę [math]\displaystyle{ x_0 }[/math] możemy jawnie wypisać: [math]\displaystyle{ x_0 = \left( {\small\frac{p - 1}{2}} \right) ! }[/math]
B. Zmniejszenie rozwiązania początkowego
Niech liczby [math]\displaystyle{ x_0, y_0 }[/math] takie, że [math]\displaystyle{ p \nmid x_0 \, }[/math] i [math]\displaystyle{ \, p \nmid y_0 }[/math] spełniają kongruencję
- [math]\displaystyle{ x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p} }[/math]
Wybierzmy liczby [math]\displaystyle{ r, s }[/math] tak, aby były najbliższymi liczbami całkowitymi odpowiednio dla liczb [math]\displaystyle{ {\small\frac{x_0}{p}} \, }[/math] i [math]\displaystyle{ \, {\small\frac{y_0}{p}} }[/math]. Z definicji mamy
- [math]\displaystyle{ \left| {\small\frac{x_0}{p}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y_0}{p}} - s \right| \leqslant {\small\frac{1}{2}} }[/math]
Zatem
- [math]\displaystyle{ | x_0 - r p | \leqslant {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \leqslant {\small\frac{p}{2}} }[/math]
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie [math]\displaystyle{ {\small\frac{p}{2}} }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
- [math]\displaystyle{ | x_0 - r p | \lt {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \lt {\small\frac{p}{2}} }[/math]
Wynika stąd, że dla dowolnego rozwiązania początkowego [math]\displaystyle{ x_0, y_0 }[/math] możemy wybrać liczby
- [math]\displaystyle{ x = x_0 - r p \qquad \qquad \text{i} \qquad \qquad y = y_0 - s p }[/math]
takie, że [math]\displaystyle{ p \nmid x }[/math] oraz [math]\displaystyle{ p \nmid y }[/math] i dla których
- [math]\displaystyle{ 0 \lt x^2 + n y^2 \lt \left( {\small\frac{p}{2}} \right)^2 + n \left( {\small\frac{p}{2}} \right)^2 = {\small\frac{(n + 1) p}{4}} \cdot p }[/math]
Ponieważ modulo [math]\displaystyle{ p }[/math] jest [math]\displaystyle{ x \equiv x_0 \, }[/math] i [math]\displaystyle{ \, y \equiv y_0 }[/math], to liczby [math]\displaystyle{ x, y }[/math] spełniają kongruencję
- [math]\displaystyle{ x^2 + n y^2 \equiv 0 \!\! \pmod{p} }[/math]
Zatem wynikające z powyższej kongruencji równanie
- [math]\displaystyle{ x^2 + n y^2 = m p }[/math]
ma rozwiązanie dla liczb
- [math]\displaystyle{ | x | \lt {\small\frac{p}{2}} , \qquad \qquad | y | \lt {\small\frac{p}{2}}, \qquad \qquad 1 \leqslant m \lt {\small\frac{(n + 1) p}{4}} }[/math]
Pomysł ze zmniejszaniem liczb stanowiących rozwiązanie za chwilę wykorzystamy ponownie i będzie to istotny element dowodu.
C. Metoda nieskończonego schodzenia Fermata[10][11]
Pomysł dowodu został zaczerpnięty z książki Hardy'ego i Wrighta[12].
Jeżeli w rozwiązaniu [math]\displaystyle{ m = 1 }[/math], to [math]\displaystyle{ p = x^2 + n y^2 }[/math] i twierdzenie jest udowodnione. W przypadku gdy [math]\displaystyle{ m \gt 1 }[/math] wskażemy sposób postępowania, który pozwoli nam z istniejącego rozwiązania równania
- [math]\displaystyle{ x^2 + n y^2 = m p }[/math]
otrzymać nowe rozwiązanie tej samej postaci
- [math]\displaystyle{ x_1^2 + n y_1^2 = m_1 p }[/math]
takie, że [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math]. Powtarzając tę procedurę odpowiednią ilość razy, otrzymamy rozwiązanie [math]\displaystyle{ x_k, y_k, m_k }[/math], gdzie [math]\displaystyle{ m_k = 1 }[/math]. Istnienie takiej procedury stanowi dowód prawdziwości twierdzenia.
Zauważmy, że podział na parzyste i nieparzyste liczby [math]\displaystyle{ m }[/math] jest konieczny tylko w przypadku gdy [math]\displaystyle{ n = 3 }[/math]. W pozostałych przypadkach nie musimy wzmacniać nierówności, aby prawdziwe było oszacowanie [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math].
Przypadek, gdy [math]\displaystyle{ \boldsymbol{m \gt 1} }[/math] jest liczbą parzystą
Jeżeli [math]\displaystyle{ m \gt 1 }[/math] jest liczbą parzystą, to z twierdzenia K60 wiemy, że liczba [math]\displaystyle{ x^2 + n y^2 }[/math] może być zapisana w postaci
- [math]\displaystyle{ x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1) }[/math]
gdzie [math]\displaystyle{ x^2_1 + n y^2_1 }[/math] jest liczbą nieparzystą. Wystarczy położyć [math]\displaystyle{ m_1 = {\small\frac{m}{2^{\alpha}}} }[/math], aby z istniejącego rozwiązania otrzymać nowe rozwiązanie tej samej postaci
- [math]\displaystyle{ x_1^2 + n y_1^2 = m_1 p }[/math]
gdzie [math]\displaystyle{ m_1 }[/math] jest liczbą nieparzystą i [math]\displaystyle{ 1 \leqslant m_1 \lt m }[/math].
Przypadek, gdy [math]\displaystyle{ \boldsymbol{m \gt 1} }[/math] jest liczbą nieparzystą
Niech liczby [math]\displaystyle{ r, s }[/math] będą liczbami całkowitymi najbliższymi liczbom [math]\displaystyle{ {\small\frac{x}{m}} \, }[/math] i [math]\displaystyle{ \, {\small\frac{y}{m}} }[/math]. Z definicji mamy
- [math]\displaystyle{ \left| {\small\frac{x}{m}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y}{m}} - s \right| \leqslant {\small\frac{1}{2}} }[/math]
Zatem
- [math]\displaystyle{ | x - r m | \leqslant {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \leqslant {\small\frac{m}{2}} }[/math]
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie [math]\displaystyle{ {\small\frac{m}{2}} }[/math], gdzie [math]\displaystyle{ m }[/math] jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
- [math]\displaystyle{ | x - r m | \lt {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \lt {\small\frac{m}{2}} }[/math]
Połóżmy
- [math]\displaystyle{ a = x - r m \qquad \qquad \text{i} \qquad \qquad b = y - s m }[/math]
Zauważmy, że liczba [math]\displaystyle{ m }[/math] nie może jednocześnie dzielić liczb [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ m^2 \mid (x^2 + n y^2) }[/math], czyli [math]\displaystyle{ m \mid p }[/math], co jest niemożliwe. Zatem przynajmniej jedna z liczb [math]\displaystyle{ a, b }[/math] musi być różna od [math]\displaystyle{ 0 }[/math].
Rozpatrując równanie [math]\displaystyle{ x^2 + n y^2 = m p }[/math] modulo [math]\displaystyle{ m }[/math] i uwzględniając, że
- [math]\displaystyle{ x \equiv a \!\! \pmod{m} }[/math]
- [math]\displaystyle{ y \equiv b \!\! \pmod{m} }[/math]
otrzymujemy
- [math]\displaystyle{ a^2 + n b^2 \equiv 0 \pmod{m} }[/math]
Mamy też oszacowanie
- [math]\displaystyle{ 0 \lt a^2 + n b^2 \lt \left( {\small\frac{m}{2}} \right)^2 + n \cdot \left( {\small\frac{m}{2}} \right)^2 = {\small\frac{(n + 1) m^2}{4}} = {\small\frac{(n + 1) m}{4}} \cdot m }[/math]
Wynika stąd, że istnieje taka liczba [math]\displaystyle{ m_1 }[/math] spełniająca warunek [math]\displaystyle{ 1 \leqslant m_1 \lt {\small\frac{(n + 1) m}{4}} }[/math], że
- [math]\displaystyle{ a^2 + n b^2 = m_1 m }[/math]
Mnożąc stronami powyższe równanie i równanie [math]\displaystyle{ x^2 + n y^2 = m p }[/math], otrzymujemy
- [math]\displaystyle{ m_1 m^2 p = (a^2 + n b^2) (x^2 + n y^2) }[/math]
- [math]\displaystyle{ \;\; = (a x + n b y)^2 + n (a y - b x)^2 }[/math]
(zobacz K59). Zauważmy teraz, że
- [math]\displaystyle{ a x + n b y = (x - r m) x + n (y - s m) y }[/math]
- [math]\displaystyle{ \quad \; = x^2 - r m x + n y^2 - n s m y }[/math]
- [math]\displaystyle{ \quad \; = m (p - r x - n s y) }[/math]
- [math]\displaystyle{ \quad \; = m x_1 }[/math]
- [math]\displaystyle{ a y - b x = (x - r m) y - (y - s m) x }[/math]
- [math]\displaystyle{ \;\;\, = x y - r m y - y x + s m x }[/math]
- [math]\displaystyle{ \;\;\, = m (s x - r y) }[/math]
- [math]\displaystyle{ \;\;\, = m y_1 }[/math]
Gdzie oznaczyliśmy
- [math]\displaystyle{ x_1 = p - r x - n s y }[/math]
- [math]\displaystyle{ y_1 = s x - r y }[/math]
Wynika stąd, że
- [math]\displaystyle{ m_1 m^2 p = (m x_1)^2 + n (m y_1)^2 }[/math]
Zatem
- [math]\displaystyle{ x^2_1 + n y^2_1 = m_1 p }[/math]
gdzie
- [math]\displaystyle{ 1 \leqslant m_1 \lt {\small\frac{(n + 1) m}{4}} }[/math]
Czyli powtarzając odpowiednią ilość razy opisaną powyżej procedurę, otrzymamy [math]\displaystyle{ m_k = 1 }[/math].
D. Jednoznaczność rozkładu
Z założenia [math]\displaystyle{ p }[/math] jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z twierdzenia K58. Co kończy dowód.
□
Uwaga K62
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni.
SumOfTwoSquares(p) =
{
local(m, r, s, x, y, x1, y1);
if( p%4 <> 1 || !isprime(p), return("Error") );
x = 1;
for(k = 2, (p-1)/2, x = (x*k)%p); \\ x = { [(p-1)/2]! } % p
x = x - round(x/p)*p;
y = 1;
m = (x^2 + y^2)/p;
while( m > 1,
r = round(x/m);
s = round(y/m);
x1 = p - r*x - s*y;
y1 = r*y - s*x;
x = x1;
y = y1;
m = (x^2 + y^2)/p;
);
return([ abs(x), abs(y), p ]);
}
Zadanie K63
Niech liczby pierwsze [math]\displaystyle{ p, q }[/math] będą postaci [math]\displaystyle{ 4 k + 1 }[/math], a liczba pierwsza [math]\displaystyle{ r }[/math]
będzie postaci [math]\displaystyle{ 4 k + 3 }[/math]. Pokazać, że
- liczby [math]\displaystyle{ r, p r \, }[/math] i [math]\displaystyle{ \, r^2 }[/math] nie rozkładają się na sumę dwóch kwadratów liczb całkowitych dodatnich
- liczby [math]\displaystyle{ p }[/math], [math]\displaystyle{ 2 p }[/math], [math]\displaystyle{ p^2 \, }[/math] i [math]\displaystyle{ \, p r^2 }[/math] mają jeden rozkład na sumę dwóch kwadratów liczb całkowitych dodatnich
- liczba [math]\displaystyle{ p q }[/math], [math]\displaystyle{ p \neq q }[/math] ma dwa rozkłady na sumę dwóch kwadratów liczb całkowitych dodatnich
Punkt 1.
Ponieważ liczby [math]\displaystyle{ r \, }[/math] i [math]\displaystyle{ \, p r }[/math] są postaci [math]\displaystyle{ 4 k + 3 }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy
- [math]\displaystyle{ r, p r \equiv 3 \!\! \pmod{4} }[/math]
Suma [math]\displaystyle{ x^2 + y^2 }[/math] musi być liczbą nieparzystą, zatem liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość i modulo [math]\displaystyle{ 4 }[/math] mamy
- [math]\displaystyle{ x^2 + y^2 \equiv 1 \!\! \pmod{4} }[/math]
Przypuśćmy, że
- [math]\displaystyle{ r^2 = x^2 + y^2 }[/math]
gdzie [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math]. Liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość, zatem [math]\displaystyle{ x \neq y }[/math]. Z twierdzenia J22 wynika, że liczba [math]\displaystyle{ x^2 + y^2 }[/math] musi mieć dzielnik pierwszy postaci [math]\displaystyle{ 4 k + 1 }[/math], co w sposób oczywisty jest niemożliwe.
Punkt 2.
W przypadku liczby pierwszej [math]\displaystyle{ p }[/math] odpowiedzi udziela twierdzenie K61. Niech [math]\displaystyle{ p = x^2 + y^2 }[/math], mamy
- [math]\displaystyle{ 2 p = (x + y)^2 + (x - y)^2 }[/math]
- [math]\displaystyle{ p^2 = (x^2 - y^2)^2 + (2 x y)^2 }[/math]
- [math]\displaystyle{ p r^2 = (r x)^2 + (r y)^2 }[/math]
Punkt 3.
Niech [math]\displaystyle{ p = x^2 + y^2 }[/math] i [math]\displaystyle{ q = a^2 + b^2 }[/math]. Ze wzorów podanych w uwadze K59 mamy
- [math]\displaystyle{ p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2 }[/math]
- [math]\displaystyle{ \:\, = (a x - b y)^2 + (a y + b x)^2 }[/math]
Co należało pokazać.
□
Twierdzenia o istnieniu liczb pierwszych kwadratowych i niekwadratowych modulo
Zadanie K64
Niech [math]\displaystyle{ s = \pm 1 }[/math]. Zbadać podzielność liczby [math]\displaystyle{ p - s a^2 }[/math]
- przez [math]\displaystyle{ 4 }[/math], gdy [math]\displaystyle{ p = 4 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3 }[/math]
- przez [math]\displaystyle{ 8 }[/math], gdy [math]\displaystyle{ p = 8 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5, 7 }[/math]
Problem sprowadza się do uzyskania odpowiedzi, kiedy kongruencja
- [math]\displaystyle{ p - s a^2 \equiv 0 \pmod{2^n} }[/math]
gdzie [math]\displaystyle{ n = 2, 3 }[/math], ma rozwiązanie. Podstawiając, dostajemy
- [math]\displaystyle{ 2^n k + r \equiv s a^2 \pmod{2^n} }[/math]
- [math]\displaystyle{ s a^2 \equiv r \pmod{2^n} }[/math]
- [math]\displaystyle{ a^2 \equiv s r \pmod{2^n} }[/math]
Z twierdzenia J52 wiemy, że aby powyższa kongruencja miała rozwiązanie, musi być [math]\displaystyle{ 2^n \mid (s r - 1) }[/math], co jest możliwe tylko, gdy
- [math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 3 \\ \end{cases} }[/math]
dla [math]\displaystyle{ 2^n = 4 }[/math] i gdy
- [math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 7 \\ \end{cases} }[/math]
dla [math]\displaystyle{ 2^n = 8 }[/math]. Dla [math]\displaystyle{ 2^n = 8 }[/math] i [math]\displaystyle{ r = 3, 5 }[/math] rozpatrywana kongruencja nie ma rozwiązania.
□
Uwaga K65
Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Pomysł ujęcia problemu zaczerpnęliśmy z pracy Alexandru Gicy[13]. Zadanie K64 należy traktować jako uzupełnienie do dowodu twierdzenia K66. Z zadania łatwo widzimy, że powiązanie liczby [math]\displaystyle{ s }[/math] z postacią liczby pierwszej [math]\displaystyle{ p }[/math] nie jest przypadkowe.
Zauważmy, że twierdzenia ograniczają się do liczb pierwszych [math]\displaystyle{ p }[/math], ponieważ dla liczb złożonych nieparzystych [math]\displaystyle{ m \gt 0 }[/math] wynik [math]\displaystyle{ \left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1 }[/math] nie oznacza, że liczba pierwsza [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math].
W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].
[math]\displaystyle{ \boldsymbol{p} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 53 }[/math] [math]\displaystyle{ 59 }[/math] [math]\displaystyle{ 61 }[/math] [math]\displaystyle{ 67 }[/math] [math]\displaystyle{ 71 }[/math] [math]\displaystyle{ 73 }[/math] [math]\displaystyle{ 79 }[/math] [math]\displaystyle{ 83 }[/math] [math]\displaystyle{ 89 }[/math] [math]\displaystyle{ 97 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 53 }[/math]
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowe modulo [math]\displaystyle{ p }[/math].
[math]\displaystyle{ \boldsymbol{p} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 41 }[/math] [math]\displaystyle{ 43 }[/math] [math]\displaystyle{ 47 }[/math] [math]\displaystyle{ 53 }[/math] [math]\displaystyle{ 59 }[/math] [math]\displaystyle{ 61 }[/math] [math]\displaystyle{ 67 }[/math] [math]\displaystyle{ 71 }[/math] [math]\displaystyle{ 73 }[/math] [math]\displaystyle{ 79 }[/math] [math]\displaystyle{ 83 }[/math] [math]\displaystyle{ 89 }[/math] [math]\displaystyle{ 97 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math]
Twierdzenie K66
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 17 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
Niech
- [math]\displaystyle{ s = \begin{cases} \;\;\: 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 1 \\ - 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 3 \\ \end{cases} }[/math]
Dla ustalonych liczb [math]\displaystyle{ n }[/math] i [math]\displaystyle{ s }[/math] rozważmy liczbę [math]\displaystyle{ u(a) = {\small\frac{p - s a^2}{2^n}} }[/math] taką, że [math]\displaystyle{ 3 \leqslant u (a) \lt p }[/math]. Jeżeli liczba ta jest postaci [math]\displaystyle{ 4 k + 3 }[/math], to ma dzielnik pierwszy [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] (zobacz C21). Zatem możemy napisać [math]\displaystyle{ u (a) = t q }[/math], co oznacza, że
- [math]\displaystyle{ p - s a^2 = 2^n u (a) = 2^n t q }[/math]
Czyli
- [math]\displaystyle{ p \equiv s a^2 \pmod{q} }[/math]
i otrzymujemy
- [math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s a^2}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{a^2}{q}} \right)_{\small{\!\! J}} =s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} = 1 }[/math]
Zatem liczba [math]\displaystyle{ q \lt p }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math].
Pomysł dowodu polega na wskazaniu kilku liczb [math]\displaystyle{ u(a_1), \ldots, u(a_r) }[/math] takich, że
- [math]\displaystyle{ 3 \leqslant u(a_1) \lt \ldots \lt u(a_r) \lt p }[/math]
z których jedna musi być postaci [math]\displaystyle{ 4 k + 3 }[/math].
Przypadek pierwszy: [math]\displaystyle{ \boldsymbol{p \equiv 3 \!\! \pmod{8}} }[/math]
Mamy [math]\displaystyle{ s = - 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 2 }[/math]. Rozważmy liczby
- [math]\displaystyle{ 3 \leqslant {\small\frac{p + 1}{4}} \lt {\small\frac{p + 9}{4}} \lt p }[/math]
Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 11 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 3 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ 2 k + 1, 2 k + 3 \} }[/math]. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z nich jest postaci [math]\displaystyle{ 4 k + 3 }[/math].
Przypadek drugi: [math]\displaystyle{ \boldsymbol{p \equiv 5 \!\! \pmod{8}} }[/math]
Mamy [math]\displaystyle{ s = + 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 2 }[/math]. Rozważmy liczby
- [math]\displaystyle{ 3 \leqslant {\small\frac{p - 9}{4}} \lt {\small\frac{p - 1}{4}} \lt p }[/math]
Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 21 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 5 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ 2 k - 1, 2 k + 1 \} }[/math]. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z nich jest postaci [math]\displaystyle{ 4 k + 3 }[/math].
Przypadek trzeci: [math]\displaystyle{ \boldsymbol{p \equiv 7 \!\! \pmod{8}} }[/math]
Mamy [math]\displaystyle{ s = - 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 3 }[/math]. Rozważmy liczby
- [math]\displaystyle{ 3 \leqslant {\small\frac{p + 1}{8}} \lt {\small\frac{p + 9}{8}} \lt {\small\frac{p + 25}{8}} \lt {\small\frac{p + 49}{8}} \lt p }[/math]
Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 23 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 7 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ k + 1, k + 2, k + 4, k + 7 \} }[/math]. Jeżeli [math]\displaystyle{ k \equiv r \!\! \pmod{4} }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy zbiór [math]\displaystyle{ \{ r + 1, r + 2, r, r + 3 \} }[/math]. Zatem jedna z liczb w tym zbiorze jest postaci [math]\displaystyle{ 4 k + 3 }[/math].
Przypadek czwarty: [math]\displaystyle{ \boldsymbol{p \equiv 1 \!\! \pmod{8}} }[/math]
Mamy [math]\displaystyle{ s = + 1 }[/math] i przyjmujemy [math]\displaystyle{ n = 3 }[/math]. Rozważmy liczby
- [math]\displaystyle{ 3 \leqslant {\small\frac{p - 49}{8}} \lt {\small\frac{p - 25}{8}} \lt {\small\frac{p - 9}{8}} \lt {\small\frac{p - 1}{8}} \lt p }[/math]
Oszacowania są jednocześnie spełnione dla [math]\displaystyle{ p \geqslant 73 }[/math]. Z założenia [math]\displaystyle{ p = 8 k + 1 }[/math], zatem rozpatrywane liczby to [math]\displaystyle{ \{ k - 6, k - 3, k - 1, k \} }[/math]. Jeżeli [math]\displaystyle{ k \equiv r \!\! \pmod{4} }[/math], to modulo [math]\displaystyle{ 4 }[/math] mamy zbiór [math]\displaystyle{ \{ r + 2, r + 1, r + 3, r \} }[/math]. Zatem jedna z liczb w tym zbiorze jest postaci [math]\displaystyle{ 4 k + 3 }[/math].
Pozostaje sprawdzić twierdzenie dla liczb pierwszych [math]\displaystyle{ p \lt 73 }[/math]. Co kończy dowód.
□
Twierdzenie K67
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
W przypadku, gdy liczba pierwsza [math]\displaystyle{ p }[/math] jest postaci [math]\displaystyle{ 8 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 3 }[/math], to istnieją takie liczby całkowite dodatnie [math]\displaystyle{ x, y }[/math], że [math]\displaystyle{ p = x^2 + 2 y^2 }[/math] (zobacz K61). Ponieważ z założenia [math]\displaystyle{ p \geqslant 11 }[/math], to musi być [math]\displaystyle{ x \neq y }[/math]. Z twierdzenia J22 wynika, że liczba [math]\displaystyle{ x^2 + y^2 }[/math] ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math]. Łatwo widzimy, że [math]\displaystyle{ q \leqslant x^2 + y^2 \lt x^2 + 2 y^2 = p }[/math].
Modulo [math]\displaystyle{ q }[/math] możemy napisać
- [math]\displaystyle{ x^2 + y^2 \equiv 0 \!\! \pmod{q} }[/math]
Liczba pierwsza [math]\displaystyle{ q \lt p }[/math] nie może dzielić [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ q \mid x }[/math], czyli [math]\displaystyle{ q \mid p }[/math], co jest niemożliwe. Rozpatrując równość [math]\displaystyle{ p = x^2 + 2 y^2 }[/math] modulo [math]\displaystyle{ q }[/math], dostajemy
- [math]\displaystyle{ p \equiv y^2 \!\! \pmod{q} }[/math]
Wynika stąd natychmiast (zobacz J39 p.9)
- [math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = 1 }[/math]
Co kończy dowód.
□
Twierdzenie K68
Jeżeli [math]\displaystyle{ p \geqslant 19 }[/math] jest liczbą pierwszą postaci [math]\displaystyle{ 12 k + 7 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
Z założenia [math]\displaystyle{ p \equiv 1 \!\! \pmod{6} }[/math], zatem istnieją takie liczby [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math], że [math]\displaystyle{ p = x^2 + 3 y^2 }[/math] (zobacz K61). Liczby [math]\displaystyle{ x, y }[/math] muszą mieć przeciwną parzystość i być względnie pierwsze. Gdyby liczba [math]\displaystyle{ x }[/math] była nieparzysta, to modulo [math]\displaystyle{ 4 }[/math] mielibyśmy
- [math]\displaystyle{ 1 + 3 \cdot 0 \equiv 3 \!\! \pmod{4} }[/math]
Co jest niemożliwe. Zatem [math]\displaystyle{ x = 2 k }[/math], a liczba [math]\displaystyle{ y }[/math] musi być nieparzysta. Otrzymujemy
- [math]\displaystyle{ p = 4 k^2 + 3 y^2 = 4 (k^2 + y^2) - y^2 }[/math]
Ponieważ [math]\displaystyle{ p }[/math] jest liczbą pierwszą, to jedynie w przypadku gdy [math]\displaystyle{ k = y = 1 }[/math] możliwa jest sytuacja, że [math]\displaystyle{ k = y }[/math]. Mielibyśmy wtedy [math]\displaystyle{ p = 7 }[/math], ale z założenia musi być [math]\displaystyle{ p \geqslant 19 }[/math]. Wynika stąd, że [math]\displaystyle{ k \neq y }[/math], zatem liczba [math]\displaystyle{ k^2 + y^2 }[/math] ma dzielnik pierwszy [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] (zobacz J22). Oczywiście [math]\displaystyle{ q \leqslant k^2 + y^2 \lt 4 k^2 + 3 y^2 = p }[/math].
Modulo [math]\displaystyle{ q }[/math] możemy napisać
- [math]\displaystyle{ k^2 + y^2 \equiv 0 \!\! \pmod{q} }[/math]
Liczba pierwsza [math]\displaystyle{ q }[/math] nie może dzielić [math]\displaystyle{ y }[/math], bo mielibyśmy [math]\displaystyle{ q \mid k }[/math], czyli [math]\displaystyle{ q \mid p }[/math], co jest niemożliwe. Rozpatrując równość [math]\displaystyle{ p = 4 (k^2 + y^2) - y^2 }[/math] modulo [math]\displaystyle{ q }[/math], dostajemy
- [math]\displaystyle{ p \equiv - y^2 \!\! \pmod{q} }[/math]
Wynika stąd natychmiast (zobacz J39 p.9 i p.6)
- [math]\displaystyle{ \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- y^2}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} = 1 }[/math]
Co kończy dowód.
□
Twierdzenia K67 i K68 można uogólnić na wszystkie liczby pierwsze.[13]
Twierdzenie K69*
Jeżeli [math]\displaystyle{ p \geqslant 11 }[/math] jest liczbą pierwszą i [math]\displaystyle{ p \neq 13, 37 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] kwadratowa modulo [math]\displaystyle{ p }[/math].
Uwaga K70
W tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 18 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 20 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 22 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 26 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 30 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 34 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 38 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math]
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze [math]\displaystyle{ q }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math].
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 2 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 18 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 20 }[/math] [math]\displaystyle{ 21 }[/math] [math]\displaystyle{ 22 }[/math] [math]\displaystyle{ 23 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 25 }[/math] [math]\displaystyle{ 26 }[/math] [math]\displaystyle{ 27 }[/math] [math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 29 }[/math] [math]\displaystyle{ 30 }[/math] [math]\displaystyle{ 31 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 33 }[/math] [math]\displaystyle{ 34 }[/math] [math]\displaystyle{ 35 }[/math] [math]\displaystyle{ 36 }[/math] [math]\displaystyle{ 37 }[/math] [math]\displaystyle{ 38 }[/math] [math]\displaystyle{ 39 }[/math] [math]\displaystyle{ 40 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math]
Twierdzenie K71
Jeżeli [math]\displaystyle{ m \geqslant 7 }[/math] jest liczbą całkowitą postaci [math]\displaystyle{ 4 k + 3 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].
Ponieważ liczba [math]\displaystyle{ m - 4 \geqslant 3 }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math], to ma dzielnik pierwszy [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] (zobacz C21). Czyli [math]\displaystyle{ m - 4 = k q }[/math] i z twierdzenia J39 p.9 dostajemy
- [math]\displaystyle{ \left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = - \left( {\small\frac{m}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{k q + 4}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{4}{q}} \right)_{\small{\!\! J}} = - 1 }[/math]
Zatem [math]\displaystyle{ q }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math]. Co należało pokazać.
□
Można też pokazać, że[14]
Twierdzenie K72*
A. Jeżeli [math]\displaystyle{ p \geqslant 13 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].
B. Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ p }[/math].
Zauważmy, że twierdzenie K72 można łatwo uogólnić na liczby całkowite dodatnie.
Twierdzenie K73
A. Jeżeli [math]\displaystyle{ m \geqslant 6 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 10 , 11 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].
B. Jeżeli [math]\displaystyle{ m \geqslant 4 }[/math] jest liczbą całkowitą i [math]\displaystyle{ m \neq 6 , 9 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt m }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] niekwadratowa modulo [math]\displaystyle{ m }[/math].
Punkt B
Rozważmy liczby [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ m = 2^a 3^b }[/math].
Jeżeli [math]\displaystyle{ 3 \mid m }[/math], to [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J53 i K46).
Jeżeli [math]\displaystyle{ 3 \nmid m }[/math], ale [math]\displaystyle{ 8 \mid m }[/math], to [math]\displaystyle{ 8 \nmid (11 - 1) }[/math], zatem liczba [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J53).
Jeżeli [math]\displaystyle{ 3 \nmid m }[/math] i [math]\displaystyle{ 8 \nmid m }[/math], ale [math]\displaystyle{ 4 \mid m }[/math], to [math]\displaystyle{ 4 \nmid (11 - 1) }[/math], zatem liczba [math]\displaystyle{ 11 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J53).
Jeżeli [math]\displaystyle{ m = 2 }[/math], to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo [math]\displaystyle{ 2 }[/math].
Zbierając:
- jeśli liczba [math]\displaystyle{ m \geqslant 12 }[/math] nie ma dzielnika pierwszego [math]\displaystyle{ p \geqslant 5 }[/math], czyli jest postaci [math]\displaystyle{ m = 2^a 3^b }[/math], to liczba pierwsza [math]\displaystyle{ q = 11 }[/math] jest mniejsza od [math]\displaystyle{ m }[/math], jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].
- jeśli liczba [math]\displaystyle{ m \geqslant 12 }[/math] ma dzielnik pierwszy [math]\displaystyle{ p \geqslant 5 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p \leqslant m }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz K72 i K46).
Pozostaje wypisać dla liczb [math]\displaystyle{ 3 \leqslant m \leqslant 11 }[/math] najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci [math]\displaystyle{ 4 k + 3 }[/math].
for(m = 3, 15, forprimestep(q = 3, 100, 4, if( isQR(q,m) == -1, print(m, " ", q); break() )))
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 7 }[/math]
Widzimy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ m \geqslant 4 }[/math], o ile [math]\displaystyle{ m \neq 6 , 9 }[/math].
Punkt A
Rozważmy liczby [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ m = 2^a 3^b 5^c 7^d 11^e }[/math].
Jeżeli jedna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] dzieli [math]\displaystyle{ m }[/math], to [math]\displaystyle{ 17 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ \left( {\small\frac{17}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{7}} \right)_{\small{\!\! J}} = \left( {\small\frac{17}{11}} \right)_{\small{\!\! J}} = - 1 }[/math].
Jeżeli żadna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] nie dzieli [math]\displaystyle{ m }[/math], ale [math]\displaystyle{ 8 \mid m }[/math], to [math]\displaystyle{ 8 \nmid (5 - 1) }[/math], zatem liczba [math]\displaystyle{ 5 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].
Jeżeli żadna z liczb [math]\displaystyle{ 3, 5, 7, 11 }[/math] nie dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ 8 \nmid m }[/math], ale [math]\displaystyle{ 4 \mid m }[/math], to nie istnieją liczby pierwsze postaci [math]\displaystyle{ 4 k + 1 }[/math] niekwadratowe modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ 4 \mid [(4 k + 1) - 1] }[/math]
Jeżeli [math]\displaystyle{ m = 2 }[/math], to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo [math]\displaystyle{ 2 }[/math].
Zbierając:
- jeśli liczba [math]\displaystyle{ m \geqslant 18 }[/math] nie ma dzielnika pierwszego [math]\displaystyle{ p \geqslant 13 }[/math], czyli jest postaci [math]\displaystyle{ m = 2^a 3^b 5^c 7^d 11^e }[/math], to liczba pierwsza [math]\displaystyle{ q = 5 }[/math] lub [math]\displaystyle{ q = 17 }[/math] jest mniejsza od [math]\displaystyle{ m }[/math], jest postaci [math]\displaystyle{ 4 k + 1 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math].
- jeśli liczba [math]\displaystyle{ m \geqslant 18 }[/math] ma dzielnik pierwszy [math]\displaystyle{ p \geqslant 13 }[/math], to istnieje liczba pierwsza [math]\displaystyle{ q \lt p \leqslant m }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 1 }[/math] i jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz K72 i K46).
Pozostaje wypisać dla liczb [math]\displaystyle{ 3 \leqslant m \leqslant 17 }[/math] najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci [math]\displaystyle{ 4 k + 1 }[/math].
for(m = 3, 20, forprimestep(q = 1, 100, 4, if( isQR(q,m) == -1, print(m, " ", q); break() )))
[math]\displaystyle{ \boldsymbol{m} }[/math] [math]\displaystyle{ 3 }[/math] [math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 6 }[/math] [math]\displaystyle{ 7 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 9 }[/math] [math]\displaystyle{ 10 }[/math] [math]\displaystyle{ 11 }[/math] [math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 14 }[/math] [math]\displaystyle{ 15 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 17 }[/math] [math]\displaystyle{ 18 }[/math] [math]\displaystyle{ 19 }[/math] [math]\displaystyle{ 20 }[/math] [math]\displaystyle{ \boldsymbol{q} }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ - }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 5 }[/math] [math]\displaystyle{ 13 }[/math] [math]\displaystyle{ 13 }[/math]
Widzimy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ m \geqslant 6 }[/math], o ile [math]\displaystyle{ m \neq 10 , 11 }[/math].
□
Twierdzenie K74
Jeżeli [math]\displaystyle{ p \geqslant 5 }[/math] jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math]
Łatwo sprawdzamy, że
- [math]\displaystyle{ \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]
(zobacz J39 p.7). Zatem dowód wystarczy przeprowadzić dla [math]\displaystyle{ p \geqslant 13 }[/math].
A. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{4 k + 1} }[/math]
Niech liczba [math]\displaystyle{ q }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z twierdzenia K30 wiemy, że dla [math]\displaystyle{ p \geqslant 5 }[/math] liczba [math]\displaystyle{ q }[/math] jest liczbą pierwszą i jest mniejsza od [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], to z twierdzenia J39 p.9 otrzymujemy natychmiast
- [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]
B. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{4 k + 3} }[/math]
Z twierdzenia K66 wynika, że dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 11 }[/math] postaci [math]\displaystyle{ 4 k + 3 }[/math] istnieje liczba pierwsza [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ q }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math] i jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ p \equiv q \equiv 3 \!\! \pmod{4} }[/math], to z twierdzenia J39 p.9 otrzymujemy natychmiast
- [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]
Co kończy dowód.
□
Zadanie K75
Udowodnić twierdzenie K74 w przypadku, gdy liczba pierwsza [math]\displaystyle{ p \geqslant 19 }[/math] jest postaci [math]\displaystyle{ 4 k + 3 }[/math], nie korzystając z twierdzenia K66.
Z założenia [math]\displaystyle{ p = 4 k + 3 }[/math]. Liczba [math]\displaystyle{ k }[/math] może być postaci [math]\displaystyle{ k = 3 j }[/math], [math]\displaystyle{ k = 3 j + 1 }[/math] i [math]\displaystyle{ k = 3 j + 2 }[/math]. Odpowiada to liczbom pierwszym postaci [math]\displaystyle{ p = 12 j + 3 }[/math], [math]\displaystyle{ p = 12 j + 7 }[/math] i [math]\displaystyle{ p = 12 j + 11 }[/math].
Ponieważ nie ma liczb pierwszych [math]\displaystyle{ p \geqslant 19 }[/math] i będących postaci [math]\displaystyle{ p = 12 j + 3 }[/math], to pozostaje rozważyć przypadki [math]\displaystyle{ p = 12 j + 7 }[/math] i [math]\displaystyle{ p = 12 j + 11 }[/math].
A. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{12 j + 11} }[/math]
Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1 }[/math] (zobacz J44). Mamy
- [math]\displaystyle{ \left( {\small\frac{p}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]
Czyli wystarczy przyjąć [math]\displaystyle{ q = 3 }[/math].
B. Liczba pierwsza [math]\displaystyle{ \, \boldsymbol{p} \, }[/math] jest postaci [math]\displaystyle{ \, \boldsymbol{12 j + 7} }[/math]
Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J39 p.6 oraz J44). Otrzymujemy
- [math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = - \left( {\small\frac{p - 12}{p}} \right)_{\small{\!\! J}} = - \left( {\small\frac{- 12}{p}} \right)_{\small{\!\! J}} = \left[ - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} \right] \cdot \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = -1 }[/math]
Ponieważ liczba [math]\displaystyle{ p - 12 \geqslant 7 }[/math] jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy [math]\displaystyle{ q \lt p }[/math] liczby [math]\displaystyle{ p - 12 }[/math] taki, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 }[/math]. W przeciwnym razie z twierdzenia J39 p.4 mielibyśmy [math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1 }[/math]. Co kończy dowód.
□
Przypisy
- ↑ Dušan Đukić, Quadratic Congruences, International Mathematical Olympiad training materials, (IMOmath.com)
- ↑ Helmut Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper. I. Die Struktur der Gruppe der Divisisorenklassen endlicher Ordnung. II. Automorphismen und Meromorphismen. Das Additionstheorem. III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung, Journal für die reine und angewandte Mathematik 175 (1936) 55–62, 69–88, 193–207.
- ↑ Wikipedia, Hasse's theorem on elliptic curves, (Wiki-en), (Wiki-ru)
- ↑ Yu. I. Manin, On cubic congruences to a prime modulus, Izv. Akad. Nauk SSSR Ser. Mat., 1956, Volume 20, Issue 5, 673–678
- ↑ Karl K. Norton, Numbers with Small Prime Factors, and the Least kth Power Non-Residue, Memoirs of the American Mathematical Society, No. 106 (1971)
- ↑ Enrique Treviño, The least k-th power non-residue, Journal of Number Theory, Volume 149 (2015)
- ↑ Kevin J. McGown and Enrique Treviño, The least quadratic non-residue, Mexican Mathematicians in the World (2021)
- ↑ Paul Erdős, Számelméleti megjegyzések I, Afar. Lapok, v. 12 (1961)
- ↑ Paul Pollack, The average least quadratic nonresidue modulo [math]\displaystyle{ m }[/math] and other variations on a theme of Erdős, Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.
- ↑ Wikipedia, Proof by infinite descent, (Wiki-en)
- ↑ W. H. Bussey, Fermat's Method of Infinite Descent, The American Mathematical Monthly, Vol. 25, No. 8 (1918)
- ↑ G. H. Hardy and Edward M. Wright, An Introduction to the Theory of Numbers, New York: Oxford University Press, 5th Edition, zobacz dowód Twierdzenia 366 w sekcji 20.4 na stronie 301.
- ↑ 13,0 13,1 Alexandru Gica, Quadratic Residues of Certain Types, Rocky Mountain J. Math. 36 (2006), no. 6, 1867-1871.
- ↑ Paul Pollack, The least prime quadratic nonresidue in a prescribed residue class mod 4, Journal of Number Theory 187 (2018), 403-414