Szeregi liczbowe
Szeregi nieskończone
Definicja D1
Sumę wszystkich wyrazów ciągu nieskończonego [math]\displaystyle{ (a_n) }[/math]
- [math]\displaystyle{ a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{k = 1}^{\infty} a_k }[/math]
nazywamy szeregiem nieskończonym o wyrazach [math]\displaystyle{ a_n }[/math].
Definicja D2
Ciąg [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] nazywamy ciągiem sum częściowych szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math].
Definicja D3
Szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będziemy nazywali zbieżnym, jeżeli ciąg sum częściowych [math]\displaystyle{ \left ( S_n \right ) }[/math] jest zbieżny.
Twierdzenie D4 (warunek konieczny zbieżności szeregu)
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny, to [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math].
Niech [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] będzie ciągiem sum częściowych, wtedy [math]\displaystyle{ a_{n + 1} = S_{n + 1} - S_n }[/math]. Z założenia ciąg [math]\displaystyle{ (S_n) }[/math] jest zbieżny, zatem
- [math]\displaystyle{ \lim_{n \to \infty} a_{n + 1} = \lim_{n \to \infty} \left ( S_{n+1} - S_{n} \right ) = \lim_{n \to \infty} S_{n + 1} - \lim_{n \to \infty} S_n = 0 }[/math]
- [math]\displaystyle{ \lim_{n \to \infty} a_{n + 1} = \lim_{n \to \infty} \left ( S_{n+1} - S_{n} \right ) = \lim_{n \to \infty} S_{n + 1} - \lim_{n \to \infty} S_n = 0 }[/math]
□
Okazuje się, że bardzo łatwo podać przykład szeregów, dla których warunek [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math] jest warunkiem wystarczającym. Opisany w poniższym twierdzeniu rodzaj szeregów nazywamy szeregami naprzemiennymi.
Twierdzenie D5 (kryterium Leibniza)
Niech ciąg [math]\displaystyle{ (a_n) }[/math] będzie ciągiem malejącym o wyrazach nieujemnych. Jeżeli
- [math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} a_n = 0 }[/math]
to szereg [math]\displaystyle{ \underset{k = 1}{\overset{\infty}{\sum}} (- 1)^{k + 1} \cdot a_k }[/math] jest zbieżny.
Grupując wyrazy szeregu po dwa, otrzymujemy sumę częściową postaci
- [math]\displaystyle{ S_{2 m} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2 m - 1} - a_{2 m}) }[/math]
Ponieważ ciąg [math]\displaystyle{ (a_n) }[/math] jest ciągiem malejącym, to każde wyrażenie w nawiasie jest liczbą nieujemną. Z drugiej strony
- [math]\displaystyle{ S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}} \lt a_1 }[/math]
Zatem dla każdego [math]\displaystyle{ m }[/math] ciąg sum częściowych [math]\displaystyle{ S_{2 m} }[/math] jest rosnący i ograniczony od góry, skąd na mocy twierdzenia C11 jest zbieżny, czyli
- [math]\displaystyle{ \lim_{m \to \infty} S_{2 m} = g }[/math]
Pozostaje zbadać sumy częściowe [math]\displaystyle{ S_{2 m + 1} }[/math]. Rezultat jest natychmiastowy
- [math]\displaystyle{ \lim_{m \to \infty} S_{2 m + 1} = \lim_{m \to \infty} (S_{2 m} + a_{2 m + 1}) = \lim_{m \to \infty} S_{2 m} + \lim_{m \to \infty} a_{2 m + 1} = g + 0 = g }[/math]
Co kończy dowód.
□
Twierdzenie D6
Dla [math]\displaystyle{ s \gt 1 }[/math] prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Zauważmy, że założenie [math]\displaystyle{ s \gt 1 }[/math] zapewnia zbieżność szeregu po prawej stronie. Zapiszmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math] w postaci sumy dla [math]\displaystyle{ k }[/math] parzystych i nieparzystych
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} = 1 + {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} + {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} + \ldots }[/math]
- [math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
- [math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Otrzymujemy wzór
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Podobnie rozpiszmy szereg naprzemienny
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = 1 - {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} - {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} - \ldots }[/math]
- [math]\displaystyle{ \;\;\,\, = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} - \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
- [math]\displaystyle{ \;\;\,\, = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} - {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
- [math]\displaystyle{ \;\;\,\, = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
gdzie skorzystaliśmy ze znalezionego wyżej wzoru dla sumy szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} }[/math]
□
Przykład D7
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta[1], którą definiuje szereg naprzemienny
- [math]\displaystyle{ \eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math]
lub funkcja dzeta Riemanna[2], którą definiuje inny szereg
- [math]\displaystyle{ \zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Na podstawie twierdzenia D6 funkcje te są związane wzorem
- [math]\displaystyle{ \eta (s) = (1 - 2^{1 - s}) \zeta (s) }[/math]
Dla [math]\displaystyle{ s \in \mathbb{R}_+ }[/math] funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math].
[math]\displaystyle{ s = {\small\frac{1}{2}} }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{\sqrt{k}}} = 0.604898643421 \ldots }[/math] WolframAlpha [math]\displaystyle{ s = 1 }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 = 0.693147180559 \ldots }[/math] WolframAlpha [math]\displaystyle{ s = 2 }[/math] [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^2}} = {\small\frac{\pi^2}{12}} = 0.822467033424 \ldots }[/math] WolframAlpha
Twierdzenie D8
Niech [math]\displaystyle{ N \in \mathbb{Z}_+ }[/math]. Szeregi [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N}^{\infty} a_k }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. W przypadku zbieżności zachodzi związek
- [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k }[/math]
Niech [math]\displaystyle{ S(n) =\sum_{k = 1}^{n} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant 1 }[/math]) oznacza sumę częściową pierwszego szeregu, a [math]\displaystyle{ T(n) = \sum_{k = N}^{\infty} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant N }[/math]) oznacza sumę częściową drugiego szeregu. Dla [math]\displaystyle{ n \geqslant N }[/math] mamy
- [math]\displaystyle{ S(n) = (a_1 + a_2 + \ldots + a_{N - 1}) + T (n) }[/math]
Widzimy, że dla [math]\displaystyle{ n }[/math] dążącego do nieskończoności zbieżność (rozbieżność) jednego ciągu implikuje zbieżność (rozbieżność) drugiego.
□
Twierdzenie D9 (kryterium porównawcze)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ k \gt N_0 }[/math] jest spełniony warunek
- [math]\displaystyle{ 0 \leqslant a_k \leqslant b_k }[/math]
to
- zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] pociąga za sobą zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]
- rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] pociąga za sobą rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]
Dowód przeprowadzimy dla szeregów [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math], które są (odpowiednio) jednocześnie zbieżne lub jednocześnie rozbieżne z szeregami [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math].
Punkt 1.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest zbieżny. Niech [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k = b }[/math], zatem z założonych w twierdzeniu nierówności dostajemy
- [math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k \leqslant b }[/math]
Zauważmy, że ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] jest ciągiem rosnącym (bo [math]\displaystyle{ a_k \geqslant 0 }[/math]) i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ \left ( A_n \right ) }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest zbieżny.
Punkt 2.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny, a z założonych w twierdzeniu nierówności dostajemy
- [math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k }[/math]
Rosnący ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] nie może być ograniczony od góry, bo przeczyłoby to założeniu, że szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny. Wynika stąd i z wypisanych wyżej nierówności, że również ciąg sum częściowych [math]\displaystyle{ B_n = \sum_{k = N_0}^{n} b_k }[/math] nie może być ograniczony od góry, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest rozbieżny.
□
Twierdzenie D10
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} \left | a_k \right | }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest również zbieżny.
Niech [math]\displaystyle{ b_k = a_k + | a_k | }[/math]. Z definicji prawdziwe jest następujące kryterium porównawcze
- [math]\displaystyle{ 0 \leqslant b_k \leqslant 2 | a_k | }[/math]
Zatem z punktu 1. twierdzenia D9 wynika, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] jest zbieżny. Z definicji wyrazów ciągu [math]\displaystyle{ \left ( b_k \right ) }[/math] mamy [math]\displaystyle{ a_k = b_k - | a_k | }[/math] i możemy napisać
- [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \sum_{k = 1}^{\infty} b_k - \sum_{k = 1}^{\infty} | a_k | }[/math]
Ponieważ szeregi po prawej stronie są zbieżne, to zbieżny jest też szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]. Zauważmy, że jedynie w przypadku, gdyby obydwa szeregi po prawej stronie były rozbieżne, nie moglibyśmy wnioskować o zbieżności / rozbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math], bo suma szeregów rozbieżnych może być zbieżna.
□
Twierdzenie D11
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] można zapisać w jednej z postaci
- [math]\displaystyle{ \quad a_k = f_k - f_{k + 1} }[/math]
- [math]\displaystyle{ \quad a_k = f_{k - 1} - f_k }[/math]
to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa
- [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1} }[/math]
- [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n }[/math]
- [math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_k - f_{k + 1}) = }[/math]
- [math]\displaystyle{ = (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + (f_{m + 2} - f_{m + 3}) + \ldots + (f_{n - 1} - f_n) + (f_n - f_{n + 1}) }[/math]
- [math]\displaystyle{ = f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + f_{m + 2} - f_{m + 3} + \ldots + f_{n - 1} - f_n + f_n - f_{n + 1} }[/math]
- [math]\displaystyle{ = f_m + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + f_{m + 2}) + (- f_{m + 3} + \ldots + f_{n - 1}) + (- f_n + f_n) - f_{n + 1} }[/math]
- [math]\displaystyle{ = f_m - f_{n + 1} }[/math]
- [math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_{k - 1} - f_k) = }[/math]
- [math]\displaystyle{ = (f_{m - 1} - f_m) + (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + \ldots + (f_{n - 2} - f_{n - 1}) + (f_{n - 1} - f_n) }[/math]
- [math]\displaystyle{ = f_{m - 1} - f_m + f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + \ldots + f_{n - 2} - f_{n - 1} + f_{n - 1} - f_n }[/math]
- [math]\displaystyle{ = f_{m - 1} + (- f_m + f_m) + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + \ldots + f_{n - 2}) + (- f_{n - 1} + f_{n - 1}) - f_n }[/math]
- [math]\displaystyle{ = f_{m - 1} - f_n }[/math]
- [math]\displaystyle{ = f_{m - 1} - f_n }[/math]
□
Twierdzenie D12
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1 }[/math] 2. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{1}{k (k - 1)}} = 1 }[/math] 3. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} = {\small\frac{3}{4}} }[/math] 4. [math]\displaystyle{ \quad \sum^{\infty}_{k = 1} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} = 1.644934066848 \ldots }[/math] A013661, WolframAlpha
Punkt 1.
Dla dowodu wykorzystamy fakt, że rozpatrywany szereg jest szeregiem teleskopowym
- [math]\displaystyle{ {\small\frac{1}{k (k + 1)}} = {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} }[/math]
Zatem
- [math]\displaystyle{ \sum^n_{k = 1} {\small\frac{1}{k (k + 1)}} = \sum^n_{k = 1} \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) = 1 - {\small\frac{1}{n + 1}} }[/math]
Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy
- [math]\displaystyle{ \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1 }[/math]
Punkt 2.
Szereg jest identyczny z szeregiem z punktu 1., co łatwo zauważyć zmieniając zmienną sumowania [math]\displaystyle{ k = s + 1 }[/math] i odpowiednio granice sumowania.
Punkt 3.
Należy skorzystać z tożsamości
- [math]\displaystyle{ {\small\frac{1}{k^2 - 1}} = {\small\frac{1}{2}} \left[ \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) + \left( {\small\frac{1}{k - 1}} - {\small\frac{1}{k}} \right) \right] }[/math]
Punkt 4.
Ponieważ dla [math]\displaystyle{ k \geqslant 2 }[/math] prawdziwa jest nierówność
- [math]\displaystyle{ 0 \lt {\small\frac{1}{k^2}} \lt {\small\frac{1}{k^2 - 1}} }[/math]
to na mocy kryterium porównawczego (twierdzenie D9) ze zbieżności szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]
□
Twierdzenie D13
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} = 1.860025079221 \ldots }[/math] 2. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} = 0.788530565911 \ldots }[/math] A085361 3. [math]\displaystyle{ \quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k - 1)}} = 1.257746886944 \ldots }[/math] A131688 4. [math]\displaystyle{ \quad \sum^{\infty}_{k = 3} {\small\frac{1}{k \cdot \log^2 \! k}} = 1.069058310734 \ldots }[/math] A115563
Punkt 1.
Wystarczy zauważyć, że
- [math]\displaystyle{ {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} = {\small\frac{\sqrt{k + 1} - \sqrt{k}}{\sqrt{k} \cdot \sqrt{k + 1}}} }[/math]
- [math]\displaystyle{ \:\, = {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot \left( \sqrt{k + 1} + \sqrt{k} \right)}} }[/math]
- [math]\displaystyle{ \:\, \gt {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot 2 \sqrt{k + 1}}} }[/math]
- [math]\displaystyle{ \:\, = {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]
Zatem
- [math]\displaystyle{ \sum_{k = 1}^n {\small\frac{1}{(k + 1) \sqrt{k}}} = 2 \sum_{k = 1}^n {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]
- [math]\displaystyle{ \:\, \lt 2 \sum_{k = 1}^n \left( {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} \right) }[/math]
- [math]\displaystyle{ \:\, = 2 \left( 1 - {\small\frac{1}{\sqrt{n + 1}}} \right) }[/math]
- [math]\displaystyle{ \:\, \lt 2 }[/math]
Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.
Punkt 2.
Korzystając z twierdzenia A37 p.4, możemy napisać oszacowanie
- [math]\displaystyle{ 0 \lt {\small\frac{\log k}{k (k + 1)}} \lt {\small\frac{\sqrt{k}}{k (k + 1)}} = {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} }[/math]
Punkt 3.
Zauważmy, że
- [math]\displaystyle{ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} = {\small\frac{k \log (k - 1) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
- [math]\displaystyle{ \;\;\;\, = {\small\frac{k \log \left( k \left( 1 - {\normalsize\frac{1}{k}} \right) \right) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
- [math]\displaystyle{ \;\;\;\, = {\small\frac{k \log (k) + k \log \left( 1 - {\normalsize\frac{1}{k}} \right) - k \log (k) + \log (k)}{k (k - 1)}} }[/math]
- [math]\displaystyle{ \;\;\;\, \gt {\small\frac{\log (k) - k \cdot {\normalsize\frac{1}{k - 1}}}{k (k - 1)}} }[/math]
- [math]\displaystyle{ \;\;\;\, = {\small\frac{\log (k)}{k (k - 1)}} - {\small\frac{1}{(k - 1)^2}} }[/math]
Czyli prawdziwe jest oszacowanie
- [math]\displaystyle{ {\small\frac{\log (k)}{k (k - 1)}} \lt \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + {\small\frac{1}{(k - 1)^2}} }[/math]
Zatem możemy napisać
- [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\log (k)}{k (k - 1)}} \lt \sum_{k = 2}^{n} \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + \sum_{k = 2}^{n} {\small\frac{1}{(k - 1)^2}} }[/math]
- [math]\displaystyle{ \;\;\;\, \lt - {\small\frac{\log (n)}{n}} + \sum_{j = 1}^{n - 1} {\small\frac{1}{j^2}} }[/math]
- [math]\displaystyle{ \;\;\;\, \lt \sum_{j = 1}^{\infty} {\small\frac{1}{j^2}} }[/math]
- [math]\displaystyle{ \;\;\;\, = {\small\frac{\pi^2}{6}} }[/math]
Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.
Punkt 4.
Zauważmy, że
- [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log (k + 1) - \log (k)}{\log (k) \log (k + 1)}} }[/math]
- [math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]
- [math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log (k) \log (k + 1)}} }[/math]
- [math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]
Z drugiej strony mamy
- [math]\displaystyle{ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} = {\small\frac{\log (k) - \log (k - 1)}{\log (k - 1) \log (k)}} }[/math]
- [math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k - 1}} \right)}{\log (k - 1) \log (k)}} }[/math]
- [math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log (k - 1) \log (k)}} }[/math]
- [math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]
Wynika stąd następujący ciąg nierówności
- [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 \! k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]
Rezultat ten wykorzystamy w pełni w przykładzie D14, a do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy
- [math]\displaystyle{ \sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} \lt \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right] }[/math]
- [math]\displaystyle{ \;\;\;\, = {\small\frac{1}{\log 2}} - {\small\frac{1}{\log (n)}} }[/math]
- [math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{\log 2}} }[/math]
Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.
□
Przykład D14
Na przykładzie szeregu [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math] pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
Ponieważ nie jesteśmy w stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części
- [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math]
Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
Dowodząc twierdzenie D13, w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
- [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]
Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy
- [math]\displaystyle{ \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right) }[/math]
Ponieważ szeregi po lewej i po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}} }[/math]
Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy oszacowanie
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} \lt \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} }[/math]
Teraz pozostaje dodać sumę wyrazów szeregu od [math]\displaystyle{ k = 3 }[/math] do [math]\displaystyle{ k = m }[/math]
- [math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} }[/math]
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości [math]\displaystyle{ m }[/math]. Wystarczy proste polecenie
for(n = 1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print( "n= ", n, " a= ", s + 1/log(10^n+1), " b= ", s + 1/log(10^n) ))
[math]\displaystyle{ m = 10^1 }[/math] [math]\displaystyle{ 1.06 }[/math] [math]\displaystyle{ 1.07 }[/math] [math]\displaystyle{ m = 10^2 }[/math] [math]\displaystyle{ 1.068 }[/math] [math]\displaystyle{ 1.069 }[/math] [math]\displaystyle{ m = 10^3 }[/math] [math]\displaystyle{ 1.06904 }[/math] [math]\displaystyle{ 1.06906 }[/math] [math]\displaystyle{ m = 10^4 }[/math] [math]\displaystyle{ 1.069057 }[/math] [math]\displaystyle{ 1.069058 }[/math] [math]\displaystyle{ m = 10^5 }[/math] [math]\displaystyle{ 1.0690582 }[/math] [math]\displaystyle{ 1.0690583 }[/math] [math]\displaystyle{ m = 10^6 }[/math] [math]\displaystyle{ 1.06905830 }[/math] [math]\displaystyle{ 1.06905831 }[/math] [math]\displaystyle{ m = 10^7 }[/math] [math]\displaystyle{ 1.0690583105 }[/math] [math]\displaystyle{ 1.0690583109 }[/math] [math]\displaystyle{ m = 10^8 }[/math] [math]\displaystyle{ 1.06905831071 }[/math] [math]\displaystyle{ 1.06905831074 }[/math]
Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z dokładnością 10 miejsc po przecinku.
Natomiast samo zsumowanie [math]\displaystyle{ 10^8 }[/math] wyrazów szeregu daje wynik
- [math]\displaystyle{ \sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots }[/math]
Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.
Rozpatrywana wyżej sytuacja pokazuje, że w przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.
Szeregi nieskończone i całka oznaczona
Twierdzenie D15
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, n + 1] }[/math], to prawdziwy jest następujący ciąg nierówności
- [math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x }[/math]
Ponieważ funkcja [math]\displaystyle{ f(x) }[/math] jest z założenia ciągła, dodatnia i malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.
Przedstawiona na rysunku krzywa odpowiada funkcji [math]\displaystyle{ f(x) }[/math]. Dla współrzędnej [math]\displaystyle{ x = k }[/math] zaznaczyliśmy wartość funkcji [math]\displaystyle{ f(k) }[/math], a po lewej i prawej stronie tych punktów zaznaczyliśmy pasy o jednostkowej szerokości. Łatwo zauważamy, że
- po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości
- po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości
Korzystając z własności całki oznaczonej, otrzymujemy ciąg nierówności
- [math]\displaystyle{ \int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x }[/math]
W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z uczynionym założeniem funkcja [math]\displaystyle{ f(x) }[/math] może być funkcją słabo malejącą.
Sumując lewą nierówność od [math]\displaystyle{ k = m }[/math] do [math]\displaystyle{ k = n }[/math], a prawą od [math]\displaystyle{ k = m + 1 }[/math] do [math]\displaystyle{ k = n }[/math], dostajemy
- [math]\displaystyle{ \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) }[/math]
- [math]\displaystyle{ \sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x }[/math]
Dodając [math]\displaystyle{ f(m) }[/math] do obydwu stron drugiej z powyższych nierówności i łącząc je ze sobą, otrzymujemy kolejny i docelowy ciąg nierówności
- [math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]
- [math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]
□
Przykład D16
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math].
Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math] jest ciągła, dodatnia i silnie malejąca w przedziale [math]\displaystyle{ (0, + \infty) }[/math], zatem dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ \int_{1}^{n + 1} {\small\frac{d x}{x}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \int_{1}^{n} {\small\frac{d x}{x}} }[/math]
Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony WolframAlpha.
- [math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]
Ponieważ
- [math]\displaystyle{ \log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) \gt \log n + {\small\frac{1}{n + 1}} }[/math]
to dostajemy
- [math]\displaystyle{ {\small\frac{1}{n + 1}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \lt 1 }[/math]
Zauważmy: nie tylko wiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o zbieżności szeregów.
Twierdzenie D17 (kryterium całkowe zbieżności szeregów)
Załóżmy, że funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna [math]\displaystyle{ F(x) = \int f (x) d x }[/math] ma dla [math]\displaystyle{ x \rightarrow \infty }[/math] granicę skończoną, czy nie.
Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, będzie wykorzystane w czasie dowodu twierdzenia, ale rozważanie przypadku, gdy [math]\displaystyle{ f(x) }[/math] jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] (zobacz twierdzenie D4).
Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego [math]\displaystyle{ x_0 }[/math] byłoby [math]\displaystyle{ f(x_0) = 0 }[/math]. Ponieważ z założenia funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, zatem mielibyśmy [math]\displaystyle{ f(x) = 0 }[/math] dla [math]\displaystyle{ x \geqslant x_0 }[/math]. Odpowiadający tej funkcji szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] miałby dla [math]\displaystyle{ k \geqslant x_0 }[/math] tylko wyrazy zerowe i byłby w sposób oczywisty zbieżny.
Założenie ciągłości funkcji [math]\displaystyle{ f(x) }[/math] ma zapewnić całkowalność funkcji [math]\displaystyle{ f(x) }[/math][3]. Założenie to można osłabić[4], tutaj ograniczymy się tylko do podania przykładów. Niech [math]\displaystyle{ a, b \in \mathbb{R} }[/math], mamy
- [math]\displaystyle{ \int_a^b \text{sgn}(x) d x = | b | - | a | }[/math] [math]\displaystyle{ \qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1) }[/math] [math]\displaystyle{ \qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a }[/math]
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w twierdzeniu D15 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy
- [math]\displaystyle{ 0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x }[/math]
Z drugiej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych [math]\displaystyle{ C_j = \int_{m}^{j} f (x) d x }[/math] nie może być ograniczony od góry (w przeciwnym wypadku całka [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math] byłby zbieżna), zatem również rosnący ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f(k) }[/math] nie może być ograniczony od góry, co oznacza, że szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest rozbieżny.
Z trzeciej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest zbieżna, to ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f (k) }[/math] jest ciągiem rosnącym i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ F_j }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny.
Ponieważ zbieżność (rozbieżność) całki [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę [math]\displaystyle{ \lim_{x \to \infty} F (x) }[/math], gdzie [math]\displaystyle{ F(x) = \int f (x) d x }[/math] jest dowolną funkcją pierwotną.
□
Przykład D18
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony WolframAlpha.
szereg [math]\displaystyle{ \sum_{k = m}^{\infty} a_k }[/math] funkcja [math]\displaystyle{ f(x) }[/math] całka [math]\displaystyle{ F(x) = \int f(x) d x }[/math] granica [math]\displaystyle{ \lim_{x \to \infty} F(x) }[/math] wynik 1. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x}} }[/math] [math]\displaystyle{ \log x }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 2. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{\sqrt{k}}} }[/math] [math]\displaystyle{ {\small\frac{1}{\sqrt{x}}} }[/math] [math]\displaystyle{ 2 \sqrt{x} }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 3. [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] [math]\displaystyle{ {\small\frac{1}{x^2}} }[/math] [math]\displaystyle{ - {\small\frac{1}{x}} }[/math] [math]\displaystyle{ 0 }[/math] szereg zbieżny 4. [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x \log x}} }[/math] [math]\displaystyle{ \log \log x }[/math] [math]\displaystyle{ \infty }[/math] szereg rozbieżny 5. [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^2 \! k}} }[/math] [math]\displaystyle{ {\small\frac{1}{x \log^2 \! x}} }[/math] [math]\displaystyle{ - {\small\frac{1}{\log x}} }[/math] [math]\displaystyle{ 0 }[/math] szereg zbieżny
Stosując kryterium całkowe, można łatwo pokazać, że szeregi
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}} }[/math]
są zbieżne dla [math]\displaystyle{ s \gt 1 }[/math] i rozbieżne dla [math]\displaystyle{ s \leqslant 1 }[/math].
Twierdzenie D19
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, \infty) }[/math] oraz
- [math]\displaystyle{ R(m) = \int_{m}^{\infty} f(x) d x }[/math]
- [math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math]
gdzie [math]\displaystyle{ a \lt m }[/math], to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math]
- [math]\displaystyle{ S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m) }[/math]
Korzystając ze wzoru udowodnionego w twierdzeniu D15 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy
- [math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]
Czyli
- [math]\displaystyle{ R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m) }[/math]
Odejmując od każdej ze stron nierówności liczbę [math]\displaystyle{ f(m) }[/math] i dodając do każdej ze stron nierówności sumę skończoną [math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math], otrzymujemy
- [math]\displaystyle{ S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m) }[/math]
Co należało pokazać.
□
Przykład D20
Twierdzenie D19 umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]. Mamy
- [math]\displaystyle{ S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
- [math]\displaystyle{ \int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right) }[/math]
- [math]\displaystyle{ R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right) }[/math]
Zatem
- [math]\displaystyle{ S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m) }[/math]
Dla kolejnych wartości [math]\displaystyle{ m }[/math] otrzymujemy
[math]\displaystyle{ m }[/math] [math]\displaystyle{ S(m) + R(m) - f(m) }[/math] [math]\displaystyle{ S(m) + R(m) }[/math] [math]\displaystyle{ 10^1 }[/math] [math]\displaystyle{ 1.84 }[/math] [math]\displaystyle{ 1.87 }[/math] [math]\displaystyle{ 10^2 }[/math] [math]\displaystyle{ 1.85 }[/math] [math]\displaystyle{ 1.86 }[/math] [math]\displaystyle{ 10^3 }[/math] [math]\displaystyle{ 1.86000 }[/math] [math]\displaystyle{ 1.86004 }[/math] [math]\displaystyle{ 10^4 }[/math] [math]\displaystyle{ 1.860024 }[/math] [math]\displaystyle{ 1.860025 }[/math] [math]\displaystyle{ 10^5 }[/math] [math]\displaystyle{ 1.86002506 }[/math] [math]\displaystyle{ 1.86002509 }[/math] [math]\displaystyle{ 10^6 }[/math] [math]\displaystyle{ 1.860025078 }[/math] [math]\displaystyle{ 1.860025079 }[/math] [math]\displaystyle{ 10^7 }[/math] [math]\displaystyle{ 1.86002507920 }[/math] [math]\displaystyle{ 1.86002507923 }[/math] [math]\displaystyle{ 10^8 }[/math] [math]\displaystyle{ 1.860025079220 }[/math] [math]\displaystyle{ 1.860025079221 }[/math] [math]\displaystyle{ 10^9 }[/math] [math]\displaystyle{ 1.8600250792211 }[/math] [math]\displaystyle{ 1.8600250792212 }[/math]
W programie PARI/GP wystarczy napisać:
f(k) = 1.0 / (k+1) / sqrt(k) S(m) = sum( k = 1, m, f(k) ) R(m) = Pi - 2*atan( sqrt(m) ) for(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); print( "j= ", j, " a= ", suma + reszta - f(m), " b= ", suma + reszta ))
Prostym wnioskiem z twierdzenia D15 jest następujące
Twierdzenie D21
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli przy wyliczaniu sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math] (gdzie [math]\displaystyle{ a \lt m }[/math]) zastąpimy sumę [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] całką [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math], to błąd wyznaczenia sumy szeregu nie przekroczy [math]\displaystyle{ f(m) }[/math].
Korzystając ze wzoru z twierdzenia D15 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy
- [math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]
Dodając do każdej ze stron nierówności wyrażenie [math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) }[/math], dostajemy
- [math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x }[/math]
Skąd wynika natychmiast
- [math]\displaystyle{ - f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 \lt f(m) }[/math]
Czyli
- [math]\displaystyle{ \left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m) }[/math]
Co kończy dowód.
□
Twierdzenie D22
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny, to dla każdego [math]\displaystyle{ n \geqslant m }[/math] prawdziwe jest następujące oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) }[/math]
- [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]
gdzie [math]\displaystyle{ B }[/math] oraz [math]\displaystyle{ C }[/math] są dowolnymi stałymi spełniającymi nierówności
- [math]\displaystyle{ B \geqslant 1 }[/math]
- [math]\displaystyle{ C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x }[/math]
Z twierdzenia D15 mamy
- [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]
- [math]\displaystyle{ \;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x }[/math]
- [math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
- [math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
- [math]\displaystyle{ \;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
- [math]\displaystyle{ \;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x }[/math]
- [math]\displaystyle{ \;\! \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]
- [math]\displaystyle{ \;\! \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]
□
Uwaga D23
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, \infty) }[/math]. Rozważmy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math]. Zauważmy, że:
- korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny
- jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie D22), możemy znaleźć oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math]
Jednak dysponując już oszacowaniem sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math], możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math]. Zauważmy, że wybór większego [math]\displaystyle{ B }[/math] ułatwia dowód indukcyjny. Stałą [math]\displaystyle{ C }[/math] najlepiej zaokrąglić w górę do wygodnej dla nas wartości.
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna.
Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie D22.
Zadanie D24
Korzystając z twierdzenia D22, znaleźć oszacowania sumy częściowej szeregów
- [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad }[/math] oraz [math]\displaystyle{ \qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (0, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 0 }[/math] jest
- [math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad }[/math] (zobacz: WolframAlpha)
- [math]\displaystyle{ C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2 }[/math]
Zatem
- [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math]
Rozważmy szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x (\log x)^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (1, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 1 }[/math] jest
- [math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad }[/math] (zobacz: WolframAlpha)
- [math]\displaystyle{ C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots }[/math]
Przyjmijmy [math]\displaystyle{ C = 2.5 }[/math], zatem
- [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math]
□
Zadanie D25
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest zbieżny.
Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]
- [math]\displaystyle{ \sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}} }[/math]
- [math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} }[/math]
- [math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right) }[/math]
- [math]\displaystyle{ \: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}} }[/math]
- [math]\displaystyle{ \: \lt 2 - {\small\frac{1}{n + 1}} }[/math]
Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy
- [math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} \lt 2 }[/math]
Czyli ciąg sum częściowych [math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} }[/math] szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.
□
Zadanie D26
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest zbieżny.
Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 2 }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 \lt 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730 }[/math]
Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]
- [math]\displaystyle{ \sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
- [math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
- [math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right) }[/math]
- [math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
- [math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
- [math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
- [math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
- [math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} }[/math]
Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy
- [math]\displaystyle{ S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} \lt 2.5 }[/math]
Czyli ciąg sum częściowych [math]\displaystyle{ S(n) }[/math] szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.
□
Szeregi nieskończone i liczby pierwsze
Twierdzenie D27
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{p_k}} = 0.269605966 \ldots }[/math] 2. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p^2}} = 0.452247420041 \ldots }[/math] A085548 3. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{(p - 1)^2}} = 1.375064994748 \ldots }[/math] A086242 4. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p (p - 1)}} = 0.773156669049 \ldots }[/math] A136141
Punkt 1.
Szereg jest szeregiem naprzemiennym i jego zbieżność wynika z twierdzenia D5.
Punkt 2.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p^2}} \lt \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} \lt {\small\frac{\pi^2}{6}} }[/math]
Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} \lt \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} }[/math]
Punkt 4.
Zbieżność wzoru wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest
- [math]\displaystyle{ 0 \lt {\small\frac{1}{p (p - 1)}} \lt {\small\frac{1}{(p - 1)^2}} }[/math]
- [math]\displaystyle{ 0 \lt {\small\frac{1}{p (p - 1)}} \lt {\small\frac{1}{(p - 1)^2}} }[/math]
□
Twierdzenie D28
Następujące szeregi są zbieżne
1. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = 1.636616323351 \ldots }[/math] A137245 2. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{1}{p^2 \log p}} = 0.507782187859 \ldots }[/math] A221711 3. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = 0.755366610831 \ldots }[/math] A138312 4. [math]\displaystyle{ \quad \sum_{p \geqslant 2} {\small\frac{\log p}{p^2}} = 0.493091109368 \ldots }[/math] A136271
Punkt 1.
Zbieżność tego szeregu udowodniliśmy w twierdzeniu B39, ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w postaci
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]
Wyrażenie w mianowniku ułamka możemy łatwo oszacować. Z twierdzenia A1 mamy ([math]\displaystyle{ a = 0.72 }[/math])
- [math]\displaystyle{ p_k \log p_k \gt a \cdot k \log k \cdot \log (a \cdot k \log k) = }[/math]
- [math]\displaystyle{ \;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) = }[/math]
- [math]\displaystyle{ \;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right) }[/math]
Ponieważ dla [math]\displaystyle{ k \gt \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots }[/math] jest
- [math]\displaystyle{ \log a + \log \log k \gt 0 }[/math]
to dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ p_k \log p_k \gt a \cdot k \cdot (\log k)^2 }[/math]
Wynika stąd, że dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwy jest ciąg nierówności
- [math]\displaystyle{ 0 \lt {\small\frac{1}{p_k \log p_k}} \lt {\small\frac{1}{a \cdot k \cdot (\log k)^2}} }[/math]
Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}} }[/math] (zobacz twierdzenie D13 p. 4 lub przykład D18 p. 5) wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]
Punkt 2.
Zbieżność szeregu wynika z kryterium porównawczego (twierdzenie D9), bo
- [math]\displaystyle{ 0 \lt {\small\frac{1}{p^2 \log p}} \lt {\small\frac{1}{p \log p}} }[/math]
Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} \lt \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots }[/math]
Punkt 4.
Zbieżność szeregu wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest
- [math]\displaystyle{ 0 \lt {\small\frac{\log p}{p^2}} \lt {\small\frac{\log p}{p (p - 1)}} }[/math]
- [math]\displaystyle{ 0 \lt {\small\frac{\log p}{p^2}} \lt {\small\frac{\log p}{p (p - 1)}} }[/math]
□
Twierdzenie D29
Szereg [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] jest rozbieżny.
Dla potrzeb dowodu zapiszmy szereg w innej postaci
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]
Zauważmy, że dla [math]\displaystyle{ k \geqslant 3 }[/math] wyrazy szeregów [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math] spełniają nierówności
- [math]\displaystyle{ 0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}} }[/math]
Ponieważ szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] jest rozbieżny (zobacz B37), to na mocy kryterium porównawczego rozbieżny jest również szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]
□
Uwaga D30
Moglibyśmy oszacować rozbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] podobnie, jak to uczyniliśmy w przypadku twierdzenia B37, ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
Twierdzenie D31
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Prawdziwe są następujące nierówności
[math]\displaystyle{ \quad 1. \quad }[/math] [math]\displaystyle{ n! \gt n^n e^{- n} }[/math] [math]\displaystyle{ \text{dla} \;\; n \geqslant 1 }[/math] [math]\displaystyle{ \quad 2. \quad }[/math] [math]\displaystyle{ n! \lt n^{n + 1} e^{- n} }[/math] [math]\displaystyle{ \text{dla} \;\; n \geqslant 7 }[/math]
Punkt 1. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 1 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]
- [math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \gt }[/math]
- [math]\displaystyle{ \;\;\; \gt n^n \cdot e^{- n} \cdot (n + 1) = }[/math]
- [math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} = }[/math]
- [math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} \gt }[/math]
- [math]\displaystyle{ \;\;\; \gt (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
- [math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} e^{- (n + 1)} }[/math]
Ponieważ [math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n \lt e }[/math], zatem [math]\displaystyle{ {\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} \gt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 1.
Punkt 2. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 7 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]
- [math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \lt }[/math]
- [math]\displaystyle{ \;\;\; \lt n^{n + 1} \cdot e^{- n} \cdot (n + 1) = }[/math]
- [math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} = }[/math]
- [math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} = }[/math]
- [math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} \lt }[/math]
- [math]\displaystyle{ \;\;\; \lt (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
- [math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)} }[/math]
Ostatnia nierówność wynika z faktu, że [math]\displaystyle{ \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \lt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 2.
□
Twierdzenie D32
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, prawdziwe są oszacowania
[math]\displaystyle{ \quad 1. \quad }[/math] [math]\displaystyle{ {\small\frac{n}{p}} - 1 \lt W_p (n!) \lt {\small\frac{n}{p - 1}} }[/math] [math]\displaystyle{ \quad 2. \quad }[/math] [math]\displaystyle{ {\small\frac{n + 1}{p}} - 1 \leqslant W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}} }[/math]
Punkt 1. (prawa nierówność)
Zauważmy, że
- [math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots }[/math]
- [math]\displaystyle{ \;\, \lt {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots }[/math]
- [math]\displaystyle{ \;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
- [math]\displaystyle{ \;\, = {\small\frac{n}{p - 1}} }[/math]
Punkt 1. (lewa nierówność)
Łatwo znajdujemy, że
- [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor \gt {\small\frac{n}{p}} - 1 }[/math]
Punkt 2. (prawa nierówność)
Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ (p - 1) W_p (n!) \lt n }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
- [math]\displaystyle{ (p - 1) W_p (n!) \leqslant n - 1 }[/math]
Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}} }[/math].
Punkt 2. (lewa nierówność)
Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ n - p \lt p \cdot W_p (n!) }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
- [math]\displaystyle{ n - p \leqslant p \cdot W_p (n!) - 1 }[/math]
Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1 }[/math].
□
Twierdzenie D33
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - 1 }[/math]
Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy
- [math]\displaystyle{ n! \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]
Ponieważ dla [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ n! \gt n^n e^{- n} }[/math] (zobacz punkt 1. twierdzenia D31), to
- [math]\displaystyle{ n^n e^{- n} \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]
Logarytmując, otrzymujemy
- [math]\displaystyle{ n \log n - n \lt \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math]
Dzieląc strony przez [math]\displaystyle{ n }[/math], dostajemy szukaną nierówność.
□
Twierdzenie D34 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1.755367 }[/math]
Ponieważ
- [math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}} }[/math]
to z twierdzenia D33 dostajemy
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \gt - 1 }[/math]
Czyli
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
- [math]\displaystyle{ \quad \;\: \gt - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
- [math]\displaystyle{ \quad \;\: = - 1 - 0.755366610831 \ldots }[/math]
- [math]\displaystyle{ \quad \;\: \gt - 1.755367 }[/math]
Gdzie wykorzystaliśmy zbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math] (twierdzenie D28 p. 3).
□
Twierdzenie D35 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt 0.386295 }[/math]
Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy
- [math]\displaystyle{ n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} }[/math]
Ponieważ dla [math]\displaystyle{ n \geqslant 7 }[/math] jest [math]\displaystyle{ n! \lt n^{n + 1} e^{- n} }[/math], to
- [math]\displaystyle{ \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} \lt n^{n + 1} e^{- n} }[/math]
Logarytmując, otrzymujemy
- [math]\displaystyle{ \sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p \lt (n + 1) \cdot \log n - n }[/math]
- [math]\displaystyle{ (n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p \lt (n + 1) \cdot \log n - n }[/math]
Skąd natychmiast wynika, że
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right) }[/math]
- [math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n)) }[/math]
- [math]\displaystyle{ \quad \;\: \lt - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}} }[/math]
- [math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}} }[/math]
- [math]\displaystyle{ \quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}} }[/math]
- [math]\displaystyle{ \quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}} }[/math]
- [math]\displaystyle{ \quad \;\: \lt \log 4 - 1 }[/math]
- [math]\displaystyle{ \quad \;\: = 0.386294361 \ldots }[/math]
Druga nierówność wynika z twierdzenia A9. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla [math]\displaystyle{ n \lt 7 }[/math].
□
Twierdzenie D36
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt 1.141661 }[/math]
Ponieważ
- [math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]
to z twierdzenia D35 dostajemy
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \lt \log 4 - 1 }[/math]
Czyli
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
- [math]\displaystyle{ \,\, \lt \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
- [math]\displaystyle{ \,\, = \log 4 - 1 + 0.755366610831 \ldots }[/math]
- [math]\displaystyle{ \,\, \lt 1.141661 }[/math]
- [math]\displaystyle{ \,\, \lt 1.141661 }[/math]
□
Uwaga D37
Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} }[/math] jest dane wzorem
gdzie [math]\displaystyle{ E = 1.332582275733 \ldots }[/math] Dla [math]\displaystyle{ n \geqslant 319 }[/math] mamy też[7]
|
Uwaga D38
Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math] jest dane wzorem
gdzie [math]\displaystyle{ \gamma = 0.5772156649 \ldots }[/math] jest stałą Eulera. Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie[8]
|
Uwaga D39
Dla [math]\displaystyle{ n \leqslant 10^{10} }[/math] wartości wyrażeń
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E }[/math]
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma }[/math]
są liczbami dodatnimi.
Twierdzenie D40
Prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma }[/math]
gdzie
- [math]\displaystyle{ \quad \gamma = 0.577215664901532 \ldots }[/math] jest stałą Eulera[9]
- [math]\displaystyle{ \quad E = 1.332582275733220 \ldots }[/math][10]
- [math]\displaystyle{ \quad E - \gamma = 0.755366610831688 \ldots }[/math][11]
Ponieważ
- [math]\displaystyle{ {\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}} }[/math]
zatem
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots) }[/math]
Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma }[/math]
Zauważmy teraz, że
- [math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
- [math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) }[/math]
- [math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots }[/math]
Zatem
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) }[/math]
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) }[/math]
□
Twierdzenie D41
Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie
- [math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]
Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w pracy Pierre'a Dusarta[12]
- [math]\displaystyle{ - \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} }[/math]
Ponieważ dla [math]\displaystyle{ x \gt e^2 \approx 7.389 }[/math] jest [math]\displaystyle{ 1 + {\small\frac{1}{\log x}} \lt 1.5 }[/math], to dla [math]\displaystyle{ n \geqslant 8 }[/math] mamy
- [math]\displaystyle{ {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \lt {\small\frac{0.3}{\log n}} }[/math]
Zatem wyjściowy układ nierówności możemy zapisać w postaci
- [math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]
Z tożsamości
- [math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]
wynika natychmiast, że
- [math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]
Prawa nierówność
Rozważmy prawą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 2974 }[/math]
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \lt {\small\frac{0.3}{\log n}} }[/math]
Z twierdzenia D40 wiemy, że
- [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma }[/math]
Zatem
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
- [math]\displaystyle{ \,\, \lt \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
- [math]\displaystyle{ \,\, = - \gamma + {\small\frac{0.3}{\log n}} }[/math]
- [math]\displaystyle{ \,\, \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]
Bezpośrednio obliczając, sprawdzamy, że nierówność
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]
jest prawdziwa dla wszystkich liczb [math]\displaystyle{ 318 \leqslant n \leqslant 3000 }[/math]
Lewa nierówność
Rozważmy teraz lewą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 8 }[/math]
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \gt - {\small\frac{0.3}{\log n}} }[/math]
Mamy
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
- [math]\displaystyle{ \,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
- [math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} }[/math]
- [math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}} }[/math]
- [math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}} }[/math]
Korzystając kolejno z twierdzeń D15 i C18, dostajemy
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x }[/math]
- [math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right) }[/math]
- [math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}} }[/math]
- [math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right) }[/math]
- [math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]
Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę WolframAlpha. Ostatnia nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 153 }[/math]. Bezpośrednio obliczając, sprawdzamy, że nierówność
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]
jest prawdziwa dla wszystkich [math]\displaystyle{ 2 \leqslant n \leqslant 200 }[/math].
□
Zadanie D42
Niech [math]\displaystyle{ r = 1 - \log (2) \approx 0.30685281944 }[/math]. Pokazać, że z nierówności prawdziwej dla [math]\displaystyle{ x \geqslant 32 }[/math]
- [math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]
wynika twierdzenie Czebyszewa.
Z twierdzenia D41 wiemy, że dla [math]\displaystyle{ x \geqslant 318 }[/math] jest
- [math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x \lt - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots \lt - 0.306852 \ldots = - r }[/math]
Zatem postulowane oszacowanie jest prawdziwe dla [math]\displaystyle{ n \geqslant 318 }[/math]. Sprawdzając bezpośrednio dla [math]\displaystyle{ 2 \leqslant x \leqslant 317 }[/math], łatwo potwierdzamy prawdziwość nierówności
- [math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]
dla [math]\displaystyle{ x \geqslant 32 }[/math].
Niech [math]\displaystyle{ a \in \mathbb{Z} }[/math] i [math]\displaystyle{ a \geqslant 32 }[/math]. Korzystając z twierdzenia D32, łatwo znajdujemy oszacowanie
- [math]\displaystyle{ a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n }[/math]
- [math]\displaystyle{ \quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n }[/math]
- [math]\displaystyle{ \quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1} }[/math]
gdzie [math]\displaystyle{ p_n \leqslant a \lt p_{n + 1} }[/math]. Oznaczając wyrażenie w nawiasie przez [math]\displaystyle{ U }[/math], mamy
- [math]\displaystyle{ \log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} \lt \log a - r }[/math]
gdzie skorzystaliśmy z oszacowania wskazanego w treści zadania. Zatem [math]\displaystyle{ U \lt a \cdot e^{- r} }[/math].
Przypuśćmy, że mnożymy liczbę [math]\displaystyle{ a! }[/math] przez kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math]. Możemy postawić pytanie: kiedy w rozkładzie na czynniki pierwsze liczby [math]\displaystyle{ b! }[/math] musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to
- [math]\displaystyle{ a! \cdot (a + 1) \cdot \ldots \cdot b = b! }[/math]
- [math]\displaystyle{ \;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n }[/math]
- [math]\displaystyle{ \;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n }[/math]
- [math]\displaystyle{ \;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1} }[/math]
- [math]\displaystyle{ \;\;\; = U^{b - 1} }[/math]
- [math]\displaystyle{ \;\;\; \lt (a \cdot e^{- r})^{b - 1} }[/math]
Jednocześnie z twierdzenia D31 wiemy, że prawdziwa jest nierówność [math]\displaystyle{ b! \gt b^b e^{- b} }[/math], zatem
- [math]\displaystyle{ b^b e^{- b} \lt b! \lt {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}} }[/math]
- [math]\displaystyle{ b e^{- 1} \lt \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}} }[/math]
- [math]\displaystyle{ b \lt \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}} }[/math]
Ponieważ [math]\displaystyle{ e^{1 - r} = e^{\log (2)} = 2 }[/math], to
- [math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt 2 a }[/math]
Z oszacowania [math]\displaystyle{ b \lt 2 a }[/math] wynika, że [math]\displaystyle{ (a \cdot e^{- r})^{1 / b} \gt (a \cdot e^{-r})^{1 / 2 a} }[/math]. Możemy teraz zapisać uzyskane wyżej oszacowanie w postaci, w której prawa strona nierówności nie zależy od [math]\displaystyle{ b }[/math]
- [math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} }[/math]
Ponieważ [math]\displaystyle{ e^{- r} = 0.735758 \ldots }[/math], to [math]\displaystyle{ (a \cdot e^{- r})^{1 / 2 a} \gt (a / 2)^{1 / 2 a} }[/math], co pozwala uprościć uzyskane oszacowanie
- [math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} \lt {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} }[/math]
Pokażemy, że dla [math]\displaystyle{ a \gt 303.05 }[/math]
- [math]\displaystyle{ {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} \lt 2 a - 5 }[/math]
Istotnie
- [math]\displaystyle{ {\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} \lt 1 - {\small\frac{5}{2 a}} }[/math]
- [math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} \gt 1 }[/math]
- [math]\displaystyle{ {\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 \gt 1 }[/math]
Wyrażenie w nawiasie kwadratowym jest funkcją rosnącą i ograniczoną (zobacz twierdzenie C17) i dla [math]\displaystyle{ a \geqslant 32 }[/math] przyjmuje wartości z przedziału [math]\displaystyle{ [0.353 \ldots, e^{- 1}) }[/math]. Zatem dla odpowiednio dużego [math]\displaystyle{ a }[/math] powyższa nierówność z pewnością jest prawdziwa. Łatwo sprawdzamy, że dla [math]\displaystyle{ a = 304 }[/math] jest
- [math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots }[/math]
Wynika stąd, że wszystkie kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math] mogą być liczbami złożonymi co najwyżej do chwili, gdy [math]\displaystyle{ b \lt 2 a -
5 }[/math], czyli [math]\displaystyle{ b \leqslant 2 a - 6 }[/math]. Zatem w przedziale [math]\displaystyle{ (a, 2 a) }[/math] musi znajdować się przynajmniej jedna liczba pierwsza. Dla [math]\displaystyle{ a \leqslant 303 }[/math] prawdziwość twierdzenia sprawdzamy bezpośrednio.
□
Definicja D43
Powiemy, że liczby pierwsze [math]\displaystyle{ p, q }[/math] są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli [math]\displaystyle{ \left | p - q \right | = 2 }[/math]
Twierdzenie D44* (Viggo Brun, 1919)
Suma odwrotności par liczb pierwszych [math]\displaystyle{ p }[/math] i [math]\displaystyle{ p + 2 }[/math], takich że liczba [math]\displaystyle{ p + 2 }[/math] jest również pierwsza, jest skończona
- [math]\displaystyle{ \underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} \right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2 }[/math]
gdzie [math]\displaystyle{ B_2 = 1.90216058 \ldots }[/math] jest stałą Bruna[13][14].
Zadanie D45
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
Niech [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q = p + 4 }[/math] będą liczbami pierwszymi i [math]\displaystyle{ n \geqslant 1 }[/math]. Ponieważ liczby [math]\displaystyle{ p q }[/math] i [math]\displaystyle{ p + 2 }[/math] są względnie pierwsze, to z twierdzenia Dirichleta wiemy, że wśród liczb [math]\displaystyle{ a_n = p q n + (p + 2) }[/math] jest nieskończenie wiele liczb pierwszych, a jednocześnie żadna z liczb [math]\displaystyle{ a_n }[/math] nie tworzy pary liczb bliźniaczych, bo
- [math]\displaystyle{ a_n - 2 = p q n + p = p (q n + 1) }[/math]
- [math]\displaystyle{ a_n + 2 = p q n + (p + 4) = q (p n + 1) }[/math]
są liczbami złożonymi. Najprostsze przykłady to [math]\displaystyle{ a_n = 21 n + 5 }[/math] i [math]\displaystyle{ b_n = 77 n + 9 }[/math]
Najłatwiej wszystkie przypadki takich ciągów wyszukać w programie PARI/GP. Polecenie
for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, " b= ",b) )))
wyszukuje wszystkie liczby dodatnie [math]\displaystyle{ a, b }[/math], gdzie [math]\displaystyle{ b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor }[/math], które tworzą ciągi [math]\displaystyle{ a k + b }[/math] o poszukiwanych właściwościach. Oczywiście ciągi [math]\displaystyle{ a k + (a - b) }[/math] również są odpowiednie. Przykładowo dla [math]\displaystyle{ a \leqslant 50 }[/math] mamy
- [math]\displaystyle{ 15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22 }[/math]
- [math]\displaystyle{ 15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22 }[/math]
□
Dowód z Księgi. Rozbieżność sumy [math]\displaystyle{ \textstyle \sum\limits_{p \geqslant 2} {\small\frac{1}{p}} }[/math]
Twierdzenie D46
Suma odwrotności liczb pierwszych jest rozbieżna.
Poniższy dowód został przedstawiony przez Erdősa w pracy[15] z 1938 roku. Jest to bardzo elegancki i chyba najprostszy dowód tego twierdzenia.
Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C }[/math], gdzie [math]\displaystyle{ C }[/math] jest pewną stałą. Zbieżność szeregu o wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby [math]\displaystyle{ r }[/math] takiej, że [math]\displaystyle{ \sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} \lt {\small\frac{1}{2}} }[/math].
Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory [math]\displaystyle{ P = \{ p_1, p_2, \ldots, p_r \} \; }[/math] i [math]\displaystyle{ \; Q = \{ p_{r + 1}, p_{r + 2,} \ldots \} }[/math].
Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór [math]\displaystyle{ \mathbb{Z}_Q }[/math] liczb podzielnych przez dowolną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math] i zbiór [math]\displaystyle{ \mathbb{Z}_P }[/math] liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math]. Czyli liczby ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] muszą być iloczynami potęg liczb pierwszych ze zbioru [math]\displaystyle{ P }[/math].
Niech [math]\displaystyle{ M }[/math] będzie dostatecznie dużą liczbą całkowitą.
Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_Q }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]
Zauważmy, że liczb nie większych od [math]\displaystyle{ M }[/math] i podzielnych przez liczbę pierwszą [math]\displaystyle{ p }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor {\small\frac{M}{p}} \right\rfloor }[/math] (zobacz A19). Łatwo otrzymujemy oszacowanie[a]
- [math]\displaystyle{ \sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor \lt M \cdot \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} M }[/math]
bo z założenia [math]\displaystyle{ \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} }[/math]. Zatem liczb takich, że [math]\displaystyle{ k \in \mathbb{Z}_Q \, }[/math] i [math]\displaystyle{ \, k \leqslant M }[/math] jest mniej niż [math]\displaystyle{ {\small\frac{M}{2}} }[/math].
Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]
Każdą liczbę ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] możemy zapisać w postaci [math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r }[/math]. Niech [math]\displaystyle{ \alpha_i = 2 \beta_i + \delta_i }[/math], gdzie [math]\displaystyle{ \delta_i }[/math] jest resztą z dzielenia liczby [math]\displaystyle{ \alpha_i }[/math] przez [math]\displaystyle{ 2 }[/math]. Zatem
- [math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r) }[/math]
Ponieważ [math]\displaystyle{ \delta_i }[/math] może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci [math]\displaystyle{ p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r }[/math] jest dokładnie [math]\displaystyle{ 2^r }[/math], a kwadratów liczb całkowitych nie większych od [math]\displaystyle{ M }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M} }[/math]. Zatem liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest nie więcej niż [math]\displaystyle{ 2^r \sqrt{M} \, }[/math][b].
Ponieważ [math]\displaystyle{ \mathbb{Z}_P \cup \mathbb{Z}_Q =\mathbb{Z}_+ }[/math] i liczb [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest po prostu [math]\displaystyle{ M }[/math], to musi być prawdziwe oszacowanie
- [math]\displaystyle{ M \lt 2^r \sqrt{M} + {\small\frac{M}{2}} }[/math]
Czyli
- [math]\displaystyle{ 2^{r + 1} \gt \sqrt{M} }[/math]
Co jest niemożliwe, bo [math]\displaystyle{ r }[/math] jest ustalone, a [math]\displaystyle{ M }[/math] może być dowolnie duże. Wystarczy przyjąć [math]\displaystyle{ M \geqslant 2^{2 r + 2} }[/math].
[a] Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb [math]\displaystyle{ k }[/math]. Dla przykładu: gdy [math]\displaystyle{ M \gt p_{r + 1} p_{r + 2} }[/math], to liczba [math]\displaystyle{ p_{r + 1} p_{r + 2} }[/math] zostanie policzona dwukrotnie: raz jako podzielna przez [math]\displaystyle{ p_{r + 1} }[/math] i drugi raz jako podzielna przez [math]\displaystyle{ p_{r + 2} }[/math]. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.
[b] Zauważmy, że dla [math]\displaystyle{ M \gt 8 }[/math] liczba [math]\displaystyle{ a^2 }[/math] taka, że [math]\displaystyle{ a^2 \leqslant M \lt (a + 1)^2 }[/math] wystąpi dokładnie jeden raz (jako [math]\displaystyle{ a^2 \cdot 1 }[/math]), ale my oszacujemy, że pojawiła się [math]\displaystyle{ 2^r }[/math] razy. Można pokazać, że dla dowolnych [math]\displaystyle{ r \geqslant 1 \; }[/math] i [math]\displaystyle{ \; M \geqslant 1 }[/math], liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math], jest mniej niż [math]\displaystyle{ 2^r \sqrt{M} }[/math]. Jest ich nawet mniej niż [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor }[/math], poza przypadkami [math]\displaystyle{ r = 1 \; }[/math] i [math]\displaystyle{ \; M = 2, 3, 8 }[/math], kiedy to ilość takich liczb jest równa [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor \lt 2^r \sqrt{M} }[/math].
□
Sumowanie przez części
Uwaga D47
Omawianie metody sumowania przez części[16] rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
- [math]\displaystyle{ D(k) = \begin{cases} 1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\ 0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\ \end{cases} }[/math]
Łatwo znajdujemy związek funkcji [math]\displaystyle{ D(k) }[/math] z funkcją [math]\displaystyle{ \pi (k) }[/math]
- [math]\displaystyle{ \pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1 }[/math]
- [math]\displaystyle{ \; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
- [math]\displaystyle{ \; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
- [math]\displaystyle{ \; = D (k) }[/math]
Twierdzenie D48
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]. Prawdziwy jest następujący związek
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Rozpatrywaną sumę możemy zapisać w postaci
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{D (k)}{k}} }[/math]
- [math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k) - \pi (k - 1)}{k}} }[/math]
- [math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^n {\small\frac{\pi (k - 1)}{k}} }[/math]
W drugiej sumie zmieniamy zmienną sumowania. Niech [math]\displaystyle{ j = k - 1 }[/math]. Sumowanie po [math]\displaystyle{ k }[/math] przebiegało od [math]\displaystyle{ 2 }[/math] do [math]\displaystyle{ n }[/math], zatem sumowanie po [math]\displaystyle{ j }[/math] będzie przebiegało od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ n - 1 }[/math]. Otrzymujemy
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{j = 1}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{j = 2}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]
Ponieważ [math]\displaystyle{ \pi (1) = 0 }[/math]. Zmieniając jedynie oznaczenie zmiennej sumowania, mamy
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k + 1}} }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^n \pi (k) \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Co należało pokazać.
□
Zadanie D49
Pokazać, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math].
Z twierdzenia D48 wiemy, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwy jest wzór
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Zatem dla [math]\displaystyle{ n \geqslant 4 }[/math] jest
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + {\small\frac{1}{3}} + \sum_{k = 4}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
- [math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot {\small\frac{1}{\log n}} + {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{k}{\log k \cdot k (k + 1)}} }[/math]
- [math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log k}} }[/math]
- [math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log (k + 1)}} }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}} }[/math]
Korzystając z twierdzenia D15, otrzymujemy
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}} }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log x \biggr\rvert_{5}^{n + 1} + {\small\frac{1}{3}} }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log (n + 1) - {\small\frac{2}{3}} \cdot \log \log 5 + {\small\frac{1}{3}} }[/math]
- [math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math]
Zauważmy, że znacznie mniejszym nakładem pracy otrzymaliśmy lepsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] (porównaj B37).
□
Zadanie D50
Pokazać, że oszacowanie [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math], gdzie [math]\displaystyle{ \varepsilon \in (0, 1) }[/math], nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Zatem istnieje taka liczba [math]\displaystyle{ n_0 }[/math], że dla wszystkich [math]\displaystyle{ n \geqslant n_0 }[/math] jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Korzystając ze wzoru (zobacz D48)
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
dla liczby [math]\displaystyle{ n \gt n_0 }[/math] otrzymujemy oszacowanie
- [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \lt {\small\frac{n^{1 - \varepsilon}}{n}} + \sum_{k = 2}^{n_0 - 1} {\small\frac{\pi (k)}{k (k + 1)}} + \sum_{k = n_0}^{n - 1} {\small\frac{k^{1 - \varepsilon}}{k (k + 1)}} }[/math]
- [math]\displaystyle{ \quad \; = {\small\frac{1}{n^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n - 1} {\small\frac{1}{k^{\varepsilon} (k + 1)}} }[/math]
- [math]\displaystyle{ \quad \; \lt {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n} {\small\frac{1}{k^{1 + \varepsilon}}} }[/math]
- [math]\displaystyle{ \quad \; \leqslant {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + {\small\frac{1}{(n_0)^{1 + \varepsilon}}} + \int^n_{n_0} {\small\frac{d x}{x^{1 + \varepsilon}}} }[/math]
- [math]\displaystyle{ \quad \; = C_2 + \left[ - {\small\frac{1}{\varepsilon \cdot x^{\varepsilon}}} \biggr\rvert_{n_0}^{n} \right] }[/math]
- [math]\displaystyle{ \quad \; = C_2 - {\small\frac{1}{\varepsilon n^{\varepsilon}}} + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
- [math]\displaystyle{ \quad \; \lt C_2 + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
- [math]\displaystyle{ \quad \; = C_3 }[/math]
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem [math]\displaystyle{ n }[/math] (zobacz B37, D46, D49).
□
Twierdzenie D51 (sumowanie przez części)
Niech [math]\displaystyle{ a_j }[/math], [math]\displaystyle{ b_j }[/math] będą ciągami określonymi przynajmniej dla [math]\displaystyle{ s \leqslant j \leqslant n }[/math]. Prawdziwy jest następujący wzór
- [math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Wzór ten nazywamy wzorem na sumowanie przez części.
Jeżeli potrafimy wyliczyć lub oszacować sumę liczoną dla jednego z czynników (powiedzmy, że dla [math]\displaystyle{ b_j }[/math]), to do wyliczenia lub oszacowania sumy [math]\displaystyle{ \sum_{j = s}^{n} a_j b_j }[/math] może być pomocny dowodzony wzór
- [math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Nim przejdziemy do dowodu, zauważmy, że wprost z definicji funkcji [math]\displaystyle{ B(k) }[/math] otrzymujemy
- [math]\displaystyle{ B(s) = \sum_{j = s}^{s} b_j = b_s }[/math]
oraz
- [math]\displaystyle{ B(k) - B (k - 1) = \sum_{j = s}^{k} b_j - \sum^{k - 1}_{j = s} b_j = b_k + \sum_{j = s}^{k - 1} b_j - \sum_{j = s}^{k - 1} b_j = b_k }[/math]
Przekształcając prawą stronę dowodzonego wzoru, pokażemy, że obie strony są równe.
- [math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
- [math]\displaystyle{ \;\;\,\, = a_n B (n) - \sum^{n - 1}_{k = s} a_{k + 1} B (k) + \sum_{k = s}^{n - 1} a_k B (k) }[/math]
W pierwszej sumie po prawej stronie zmieniamy wskaźnik sumowania na [math]\displaystyle{ j = k + 1 }[/math], a w drugiej sumie zmieniamy tylko nazwę wskaźnika
- [math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n B (n) - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n - 1} a_j B (j) }[/math]
- [math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n} a_j B (j) }[/math]
- [math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s + 1}^{n} a_j B (j) + a_s B (s) }[/math]
- [math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j [B (j) - B (j - 1)] + a_s b_s }[/math]
- [math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j b_j + a_s b_s }[/math]
- [math]\displaystyle{ \;\;\,\, = \sum_{j = s}^{n} a_j b_j }[/math]
Co należało pokazać.
□
Zadanie D52
Pokazać, że [math]\displaystyle{ \sum_{k = 1}^{n} k 2^k = (n - 1) 2^{n + 1} + 2 }[/math].
We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 0 }[/math], [math]\displaystyle{ a_k = k }[/math] i [math]\displaystyle{ b_k = 2^k }[/math]. Zauważmy, że sumowanie od [math]\displaystyle{ k = 0 }[/math] nic nie zmienia, a nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
- [math]\displaystyle{ \sum_{k = 0}^{n} k 2^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k) }[/math]
gdzie
- [math]\displaystyle{ B(k) = \sum_{j = 0}^{k} 2^j = {\small\frac{2^{k + 1} - 1}{2 - 1}} = 2^{k + 1} - 1 }[/math]
Zatem
- [math]\displaystyle{ \sum_{k = 0}^{n} k 2^k = n \cdot (2^{n + 1} - 1) - \sum_{k = 0}^{n - 1} (2^{k + 1} - 1) }[/math]
- [math]\displaystyle{ \;\: = n 2^{n + 1} - n - \sum_{k = 0}^{n - 1} 2^{k + 1} + \sum_{k = 0}^{n - 1} 1 }[/math]
- [math]\displaystyle{ \;\: = n 2^{n + 1} - n - 2 \sum_{k = 0}^{n - 1} 2^k + n }[/math]
- [math]\displaystyle{ \;\: = n 2^{n + 1} - 2 \cdot {\small\frac{2^n - 1}{2 - 1}} }[/math]
- [math]\displaystyle{ \;\: = n 2^{n + 1} - 2^{n + 1} + 2 }[/math]
- [math]\displaystyle{ \;\: = 2^{n + 1} (n - 1) + 2 }[/math]
Co należało pokazać.
□
Twierdzenie D53 (kryterium Dirichleta)
Niech [math]\displaystyle{ (a_k) \; }[/math] i [math]\displaystyle{ \; (b_k) }[/math] będą ciągami liczb rzeczywistych. Jeżeli
- ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny
- ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny
- [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = 0 }[/math]
- istnieje taka stała [math]\displaystyle{ M }[/math], że [math]\displaystyle{ \left| \sum_{j = 1}^{k} b_j \right| \leqslant M }[/math] dla dowolnej liczby [math]\displaystyle{ k }[/math]
to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] jest zbieżny.
Korzystając ze wzoru na sumowanie przez części, możemy napisać
- [math]\displaystyle{ \sum_{k = 1}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = 1}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
- [math]\displaystyle{ \;\;\,\, = a_n \cdot B (n) + \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) B (k) }[/math]
gdzie [math]\displaystyle{ B(k) = \sum_{j = 1}^{k} b_j }[/math]. Z założenia ciąg [math]\displaystyle{ B(n) }[/math] jest ograniczony i [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], zatem (zobacz C13)
- [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n \cdot B (n) = 0 }[/math]
Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny. Jeżeli jest malejący, to
- [math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_k - a_{k + 1}) }[/math]
- [math]\displaystyle{ \;\;\; = M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
- [math]\displaystyle{ \;\;\; = M (a_1 - a_n) }[/math]
(zobacz D11). Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest rosnący, to
- [math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k) }[/math]
- [math]\displaystyle{ \;\;\; = - M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
- [math]\displaystyle{ \;\;\; = - M (a_1 - a_n) }[/math]
Łącząc uzyskane rezultaty możemy napisać
- [math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M | a_1 | }[/math]
Sumy częściowe szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) | }[/math] tworzą ciąg rosnący i ograniczony od góry, czyli szereg ten jest zbieżny (zobacz C10). Wynika stąd zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k) }[/math] (zobacz D10). Zatem szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] musi być zbieżny. Co należało pokazać.
□
Zadanie D54
Udowodnić następujące wzory
[math]\displaystyle{ \quad \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]
[math]\displaystyle{ \quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]
Punkt 1.
Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór
- [math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) }[/math]
Ponieważ
- [math]\displaystyle{ 2 \sin x \cdot \sin y = \cos (x - y) - \cos (x + y) }[/math]
to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]
- [math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \sin j = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j + 2 \sin \left( \tfrac{1}{2} \right) \sin (k + 1) }[/math]
- [math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) + \cos \left( k + \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
- [math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.
Punkt 2.
Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór
- [math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = \sin (k + 1) - \sin (1) }[/math]
Ponieważ
- [math]\displaystyle{ 2 \sin x \cos y = \sin (x - y) + \sin (x + y) }[/math]
to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]
- [math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \cos \left( j + \tfrac{1}{2} \right) = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) + 2 \sin \left( \tfrac{1}{2} \right) \cdot \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
- [math]\displaystyle{ \quad \,\, = \sin (k + 1) - \sin (1) - \sin (k + 1) + \sin (k + 2) }[/math]
- [math]\displaystyle{ \quad \,\, = \sin (k + 2) - \sin (1) }[/math]
Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.
□
Zadanie D55
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny.
W zadaniu D54 p.1 pokazaliśmy, że prawdziwy jest wzór
- [math]\displaystyle{ \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} }[/math]
Skąd natychmiast otrzymujemy oszacowanie[a]
- [math]\displaystyle{ \left| \sum_{j = 1}^{k} \sin j \right| =
\left| {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \right| \leqslant
{\small\frac{1}{\sin \left( \tfrac{1}{2} \right)}} }[/math]
- [math]\displaystyle{ \left| \sum_{j = 1}^{k} \sin j \right| =
\left| {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \right| \leqslant
{\small\frac{1}{\sin \left( \tfrac{1}{2} \right)}} }[/math]
Ponieważ spełnione są założenia kryterium Dirichleta, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny. Wiemy, że [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} = \tfrac{1}{2} (\pi - 1) = 1.070796 \ldots }[/math] (WolframAlpha).
[a] Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie
- [math]\displaystyle{ - 0.127671 \lt {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} \lt 1.958159 }[/math]
- [math]\displaystyle{ - 0.127671 \lt {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} \lt 1.958159 }[/math]
□
Zadanie D56
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math] jest zbieżny, a suma tego szeregu jest w przybliżeniu równa [math]\displaystyle{ 0.6839137864 \ldots }[/math]
Zbieżność szeregu wynika z kryterium Dirichleta, co pokazujemy tak samo jak w zadaniu poprzednim. Oszacowanie sumy szeregu jest znacznie trudniejsze, bo ciąg sum częściowych [math]\displaystyle{ S_n = \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} }[/math] silnie oscyluje i dopiero dla bardzo dużych [math]\displaystyle{ n }[/math] wynik sumowania mógłby być znaczący. Przykładowo:
- [math]\displaystyle{ S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078 }[/math]
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = \sin k }[/math]. Korzystając ze wzoru pokazanego w zadaniu D54 p.1, otrzymujemy
- [math]\displaystyle{ B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) }[/math]
gdzie
- [math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]
Sumując przez części, dostajemy
- [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k)}} \right) B (k) }[/math]
- [math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + \sum^{n - 1}_{k = 2} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \left( C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) \right) }[/math]
- [math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
- [math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, mamy
- [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika [math]\displaystyle{ \cos \left( k + \tfrac{1}{2} \right) }[/math], bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz D11). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum
- [math]\displaystyle{ S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
otrzymujemy
- [math]\displaystyle{ S_{10^6} = 0.683913783004 \qquad S_{10^7} = 0.683913786642 \qquad S_{10^8} = 0.683913786411 \qquad S_{10^9} = 0.683913786415 }[/math]
Jest to przybliżona wartość sumy szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math].
Oszacowanie błędu z jakim wyznaczona została wartość sumy
Kolejne sumowanie przez części pozwoli określić błąd z jakim wyznaczona została wartość sumy [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math]. Rozważmy sumę
- [math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \; }[/math] i [math]\displaystyle{ \; b_k = \cos \left( k + \tfrac{1}{2} \right) }[/math]. Korzystając ze wzoru pokazanego w zadaniu D54 p.2, otrzymujemy
- [math]\displaystyle{ B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1) }[/math]
gdzie
- [math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]
Wzór na sumowanie przez części ma teraz postać
- [math]\displaystyle{ \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} - {\small\frac{1}{\log (k)}} + {\small\frac{1}{\log (k + 1)}} \right) B (k) }[/math]
- [math]\displaystyle{ \;\;\, = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) + \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) (C_3 + C_4 \cdot \sin (k + 1)) }[/math]
Zauważmy, że
- [math]\displaystyle{ C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) = C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) }[/math]
- [math]\displaystyle{ \:\, = C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) - C_3 \left( {\small\frac{1}{\log (3)}} - {\small\frac{1}{\log (n + 1)}} \right) }[/math]
bo szeregi po prawej stronie są szeregami teleskopowymi.
Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy
- [math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = {\small\frac{C_3}{\log (2)}} - {\small\frac{C_3}{\log (3)}} + C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]
Zbierając, otrzymaliśmy wzór
- [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]
gdzie
- [math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad \quad \: C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]
- [math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]
Dla sum
- [math]\displaystyle{ S_n = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]
dostajemy
- [math]\displaystyle{ S_{10^7} = 0.68391378641827479894 \qquad S_{10^8} = 0.68391378641827482233 \qquad S_{10^9} = 0.68391378641827482268 }[/math]
Łatwo oszacujemy błąd z jakim wyliczyliśmy wartość sumy szeregu [math]\displaystyle{ S }[/math]
- [math]\displaystyle{ | S - S_n | = \left| C_2 C_4 \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
- [math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left| \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
- [math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) | }[/math]
- [math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| }[/math] (zobacz przypis [a])
- [math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right] }[/math]
- [math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log (n + 2)}} \right) }[/math]
Dla [math]\displaystyle{ n = 10^9 }[/math] otrzymujemy
- [math]\displaystyle{ | S - S_n | \lt 2.533 \cdot 10^{- 12} }[/math]
Zatem [math]\displaystyle{ S = 0.6839137864 \ldots }[/math], gdzie wszystkie wypisane cyfry są prawidłowe.
[a] Z łatwego do sprawdzenia wzoru
- [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]
wynika, że wyrażenie [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] maleje ze wzrostem [math]\displaystyle{ k }[/math], czyli ciąg [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] jest ciągiem malejącym, zatem
- [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \gt {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} }[/math]
Ciągi [math]\displaystyle{ (a_k)_{k = 1}^n }[/math] liczb rzeczywistych takie, że [math]\displaystyle{ 2 a_k \leqslant a_{k - 1} + a_{k + 1} }[/math] dla [math]\displaystyle{ k = 2, \ldots, n - 1 }[/math] nazywamy ciągami wypukłymi[17]. Wprost z definicji funkcji wypukłej wynika, że jeżeli [math]\displaystyle{ f(x) }[/math] jest funkcją wypukłą i [math]\displaystyle{ a_k = f (k) }[/math], to ciąg [math]\displaystyle{ (a_k) }[/math] jest ciągiem wypukłym.
□
Zadanie D57
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że
- [math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Korzystając ze wzoru na sumowanie przez części, połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = \log k \; }[/math] i [math]\displaystyle{ \; b_k = D (k) }[/math]. Otrzymujemy
- [math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k) }[/math]
gdzie
- [math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) = \pi (k) }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \sum_{p \leqslant n} \log p = \theta (n) }[/math]
Zatem
- [math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Co należało pokazać.
□
Twierdzenie D58
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math], gdzie [math]\displaystyle{ A, B \in \mathbb{R}_+ }[/math], to istnieje granica
- [math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Z definicji funkcji [math]\displaystyle{ \theta (n) }[/math] łatwo otrzymujemy
- [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p \lt \sum_{p \leqslant n} \log n = \log n \cdot \pi (n) }[/math]
Skąd wynika, że
- [math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]
Oszacowanie wyrażenia [math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} }[/math] od dołu będzie wymagało więcej pracy. Ze wzoru
- [math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
(zobacz D57) otrzymujemy
- [math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Z twierdzenia C18 i założonego oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math]
- [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math]
dostajemy
- [math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{\log n}{\log n \cdot A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{k}} \cdot {\small\frac{B \cdot k}{\log k}} }[/math]
- [math]\displaystyle{ \quad \; \lt {\small\frac{B}{A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} }[/math]
Nie możemy oszacować sumy całką, bo całka [math]\displaystyle{ \int {\small\frac{d x}{\log x}} }[/math] jest funkcją nieelementarną. Nie możemy też pozwolić sobie na zbyt niedokładne oszacowanie sumy i nie możemy napisać
- [math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} \lt {\small\frac{n - 2}{\log 2}} \lt {\small\frac{n}{\log 2}} }[/math]
Wyjściem z tej sytuacji jest odpowiedni podział przedziału sumowania i szacowanie w każdym przedziale osobno. Niech punkt podziału [math]\displaystyle{ M }[/math] spełnia warunek [math]\displaystyle{ \sqrt{n} \leqslant M \lt \sqrt{n} + 1 }[/math]. Mamy
- [math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} = \sum_{k = 2}^{M - 1} {\small\frac{1}{\log k}} + \sum^{n - 1}_{k = M} {\small\frac{1}{\log k}} }[/math]
- [math]\displaystyle{ \;\;\;\; \lt {\small\frac{M - 2}{\log 2}} + {\small\frac{n - M}{\log M}} }[/math]
- [math]\displaystyle{ \;\;\;\; \lt {\small\frac{M}{\log 2}} + {\small\frac{n}{\log M}} }[/math]
- [math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{n}{\log \sqrt{n}}} }[/math]
- [math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} }[/math]
Zatem
- [math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{B}{A \cdot n}} \cdot \left( {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} \right) }[/math]
- [math]\displaystyle{ \quad \; \lt {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) }[/math]
Łącząc otrzymane rezultaty, otrzymujemy
- [math]\displaystyle{ 1 - {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) \lt {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]
Na mocy twierdzenia o trzech ciągach (zobacz C9) mamy
- [math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Co należało pokazać.
□
Uwaga D59
Funkcja [math]\displaystyle{ \theta (n) }[/math] jest ściśle związana z dobrze nam znaną funkcją [math]\displaystyle{ P (n) }[/math]. Ponieważ [math]\displaystyle{ P(n) = \prod_{p \leqslant n} p }[/math], to
- [math]\displaystyle{ \log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n) }[/math].
Z twierdzenia D58 wynika, że jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math]. Jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math] (zobacz C12 p.3).
Wiemy, że dla funkcji [math]\displaystyle{ \theta (n) }[/math], gdzie [math]\displaystyle{ n \geqslant 2 }[/math], prawdziwe jest oszacowanie[18]
- [math]\displaystyle{ \left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}} }[/math]
Zadanie D60
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że
- [math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Kładąc we wzorze na sumowanie przez części (zobacz D51) [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = D (k) \cdot \log k }[/math]. Otrzymujemy
- [math]\displaystyle{ \sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k) }[/math]
gdzie
- [math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) \cdot \log k = \sum_{p \leqslant k} \log p = \theta (k) }[/math]
- [math]\displaystyle{ \sum_{k = 2}^{n} D (k) = \sum_{p \leqslant n} 1 = \pi (n) }[/math]
Zatem
- [math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) \theta (k) }[/math]
- [math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} {\small\frac{\log k - \log (k + 1)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
- [math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Co należało pokazać.
□
Iloczyn Cauchy'ego szeregów
Twierdzenie D61 (kryterium d'Alemberta)
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem liczb rzeczywistych i istnieje granica
- [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| }[/math]
Jeżeli
- [math]\displaystyle{ g \lt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny
- [math]\displaystyle{ g \gt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest rozbieżny
Rozważmy najpierw przypadek, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt 1 }[/math]. Niech [math]\displaystyle{ r }[/math] będzie dowolną liczbą rzeczywistą taką, że [math]\displaystyle{ g \lt r \lt 1 }[/math] i przyjmijmy [math]\displaystyle{ \varepsilon = r - g }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek
- [math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]
Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math]. Z prawej nierówności otrzymujemy, że dla [math]\displaystyle{ n \geqslant N }[/math] jest
- [math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt r }[/math]
- [math]\displaystyle{ | a_{n + 1} | \lt r | a_n | }[/math]
- [math]\displaystyle{ | a_{n + k} | \lt r^k | a_n | }[/math]
Ostatnią nierówność można łatwo udowodnić metodą indukcji matematycznej względem [math]\displaystyle{ k }[/math]. Korzystając ze wzoru na sumę szeregu geometrycznego[19], otrzymujemy
- [math]\displaystyle{ \sum_{k = N + 1}^{\infty} | a_k | = \sum_{k = 1}^{\infty} | a_{N + k} | \lt \sum_{k = 1}^{\infty} r^k | a_n | = r | a_n | \sum_{k = 1}^{\infty} r^{k - 1} = | a_n | \cdot {\small\frac{r}{1 - r}} }[/math]
Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest bezwzględnie zbieżny.
W przypadku, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt 1 }[/math] wybieramy liczbę [math]\displaystyle{ r }[/math] tak, aby spełniała warunek [math]\displaystyle{ 1 \lt r \lt g }[/math] i przyjmujemy [math]\displaystyle{ \varepsilon = g - r }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek
- [math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]
Przyjmując, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math], z lewej nierówności otrzymujemy dla [math]\displaystyle{ n \geqslant N }[/math]
- [math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt r \gt 1 }[/math]
Czyli [math]\displaystyle{ | a_{n + 1} | \gt | a_n | }[/math], zatem dla wszystkich [math]\displaystyle{ k \gt N }[/math] jest [math]\displaystyle{ | a_k | \gt | a_N | \gt 0 }[/math] i nie może być spełniony podstawowy warunek zbieżności szeregu (zobacz D4). Zatem szereg jest rozbieżny. Co kończy dowód.
□
Uwaga C62
W przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1 }[/math] kryterium d'Alemberta nie rozstrzyga o zbieżności lub rozbieżności szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math]. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
- [math]\displaystyle{ \sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}} }[/math]
Przykład D63
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Zbadamy zbieżność szeregu
- [math]\displaystyle{ e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
Ponieważ
- [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0 }[/math]
to z kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.
Zadanie D64
Pokazać, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}} }[/math] jest rozbieżny.
Łatwo znajdujemy, że
- [math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| = {\small\frac{(n + 1)^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{n^n}} = {\small\frac{(n + 1) (n + 1)^n}{(n + 1) n!}} \cdot {\small\frac{n!}{n^n}} = \left( 1 + {\small\frac{1}{n}} \right)^n \xrightarrow{\; n \rightarrow \infty \;} e \gt 1 }[/math]
Z kryterium d'Alemberta wynika, że szereg jest rozbieżny.
□
Uwaga D65
W twierdzeniu A37, korzystając z następującej definicji funkcji [math]\displaystyle{ e^x }[/math]
- [math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
pominęliśmy dowód własności [math]\displaystyle{ e^x e^{- x} = 1 }[/math]. Spróbujemy teraz pokazać, że [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].
- [math]\displaystyle{ e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} }[/math]
Oznaczmy [math]\displaystyle{ a_i = {\small\frac{x^i}{i!}} }[/math] oraz [math]\displaystyle{ b_j = {\small\frac{y^j}{j!}} }[/math] i przyjrzyjmy się sumowaniu po [math]\displaystyle{ i, j }[/math]. W podwójnej sumie po prawej stronie [math]\displaystyle{ \sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j }[/math] sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ a_5 b_1 }[/math] [math]\displaystyle{ a_5 b_2 }[/math] [math]\displaystyle{ a_5 b_3 }[/math] [math]\displaystyle{ a_5 b_4 }[/math] [math]\displaystyle{ a_5 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ a_4 b_2 }[/math] [math]\displaystyle{ a_4 b_3 }[/math] [math]\displaystyle{ a_4 b_4 }[/math] [math]\displaystyle{ a_4 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ a_3 b_3 }[/math] [math]\displaystyle{ a_3 b_4 }[/math] [math]\displaystyle{ a_3 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ a_2 b_4 }[/math] [math]\displaystyle{ a_2 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ a_1 b_5 }[/math] [math]\displaystyle{ \cdots }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ \; \cdots \; }[/math]
Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]
Co odpowiada sumie [math]\displaystyle{ \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k} b_{n - k} }[/math], gdzie [math]\displaystyle{ n }[/math] numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru
- [math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} }[/math]
Ponieważ
- [math]\displaystyle{ {\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot \binom{n}{k} }[/math]
to otrzymujemy
- [math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot \binom{n}{k} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} \binom{n}{k} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y} }[/math]
Pokazaliśmy tym samym, że z definicji
- [math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]
wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].
Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i w związku z tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.
Definicja D66
Iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0 }[/math]
W przypadku szeregów, których wyrazy są numerowane od liczby [math]\displaystyle{ 1 }[/math], iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 1}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 1}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} c_n }[/math], gdzie
- [math]\displaystyle{ c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1 }[/math]
Zadanie D67
Niech [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]. Pokazać, że
- jeżeli [math]\displaystyle{ (a_n) = (1, 0, 0, 0, 0, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = b_n }[/math]
- jeżeli [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = \sum_{k = 0}^{n} b_k = B_n }[/math]
- jeżeli [math]\displaystyle{ a_n = b_n = r^n }[/math], to [math]\displaystyle{ c_n = (n + 1) r^n }[/math]
- jeżeli [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ q \neq r }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Punkt 1.
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n = b_n }[/math]
Punkt 2.
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_{n - k} = \sum^n_{j = 0} b_j = B_n }[/math]
Punkt 3.
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} r^k r^{n - k} = \sum_{k = 0}^{n} r^n = (n + 1) r^n }[/math]
Punkt 4.
Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ c_0 = a_0 b_0 = a b }[/math]
Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ c_1 = a_0 b_1 + a_1 b_0 = a r + b q }[/math]
Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
- [math]\displaystyle{ \;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k} }[/math]
- [math]\displaystyle{ \;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k} }[/math]
Jeżeli [math]\displaystyle{ r = 0 }[/math], to [math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = 0 }[/math]. Jeżeli [math]\displaystyle{ r \neq 0 }[/math], to
- [math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( \frac{q}{r} \right)^k = r^n \cdot \frac{\left( \frac{q}{r} \right)^n - \frac{q}{r}}{\frac{q}{r} - 1} = \frac{r q^n - q r^n}{q - r} }[/math]
Zauważmy, że znaleziony wzór obejmuje również przypadek [math]\displaystyle{ r = 0 }[/math]. Zatem
- [math]\displaystyle{ c_n = a r^n + b q^n + \frac{r q^n - q r^n}{q - r} }[/math]
- [math]\displaystyle{ \;\;\;\:\, = q^n \left( b + \frac{r}{q - r} \right) + r^n \left( a - \frac{q}{q - r} \right) }[/math]
Zbierając, otrzymujemy
- [math]\displaystyle{ c_n =
\begin{cases}
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
\end{cases} }[/math]
- [math]\displaystyle{ c_n =
\begin{cases}
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
\end{cases} }[/math]
□
Uwaga D68
W związku z definicją D66 pojawia się natychmiast pytanie: czy zawsze prawdziwa jest równość
- [math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Odpowiedź brzmi: nie, a odpowiednie przykłady podamy niżej w zadaniach. Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
Zadanie D69
Podać przykład szeregów, z których jeden jest zbieżny, a drugi rozbieżny i których iloczyn Cauchy'ego jest zbieżny.
Niech
- [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math]
- [math]\displaystyle{ (b_n) = (1, - 1, 0, 0, 0, \ldots) }[/math]
Szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest rozbieżny, a szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] jest zbieżny. Łatwo znajdujemy wyrazy ciągu [math]\displaystyle{ (c_n) }[/math]
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_k =
\begin{cases}
1 & \text{gdy } n = 0 \\
0 & \text{gdy } n \geqslant 1 \\
\end{cases} }[/math]
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_k =
\begin{cases}
1 & \text{gdy } n = 0 \\
0 & \text{gdy } n \geqslant 1 \\
\end{cases} }[/math]
Czyli [math]\displaystyle{ (c_n) = (1, 0, 0, 0, 0, \ldots) }[/math] i szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math] jest zbieżny.
□
Zadanie D70
Podać przykład szeregów rozbieżnych, których iloczyn Cauchy'ego jest zbieżny.
Rozważmy ciągi
- [math]\displaystyle{ (a_n) = \left( {\small\frac{1}{2}}, - 1, 1, - 1, 1, \ldots \right) }[/math]
- [math]\displaystyle{ (b_n) = \left( {\small\frac{1}{2}}, 1, 1, 1, 1, \ldots \right) }[/math]
Szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] są rozbieżne, bo [math]\displaystyle{ A_n = {\small\frac{1}{2}} \cdot (- 1)^n \; }[/math] i [math]\displaystyle{ \; B_n = {\small\frac{1}{2}} + n }[/math]. Policzmy wyrazy ciągu [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ c_0 = a_0 b_0 = {\small\frac{1}{4}} }[/math]
Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ c_1 = a_0 b_1 + a_1 b_0 = {\small\frac{1}{2}} \cdot 1 + (- 1) \cdot {\small\frac{1}{2}} = 0 }[/math]
Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest
- [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
- [math]\displaystyle{ \;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k} }[/math]
- [math]\displaystyle{ \;\;\;\:\, = {\small\frac{1}{2}} + {\small\frac{1}{2}} \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k }[/math]
Dla [math]\displaystyle{ n \geqslant 2 }[/math] parzystego mamy
- [math]\displaystyle{ c_n = {\small\frac{1}{2}} + {\small\frac{1}{2}} \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k = {\small\frac{1}{2}} + {\small\frac{1}{2}} - 1 = 0 }[/math]
Dla [math]\displaystyle{ n \geqslant 3 }[/math] nieparzystego mamy
- [math]\displaystyle{ c_n = {\small\frac{1}{2}} + {\small\frac{1}{2}} \cdot (- 1)^n + \sum_{k = 1}^{n - 1} (- 1)^k = {\small\frac{1}{2}} - {\small\frac{1}{2}} + 0 = 0 }[/math]
Zatem [math]\displaystyle{ (c_n) = \left( {\small\frac{1}{4}}, 0, 0, 0, 0, \ldots \right) }[/math] i szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math] jest zbieżny.
□
Zadanie D71
Podać przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny.
Rozważmy zbieżny szereg (zobacz D5, WolframAlpha)
- [math]\displaystyle{ \sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots }[/math]
Mamy
- [math]\displaystyle{ \left( \sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{\sqrt{i + 1}}} \right) \cdot \left( \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{\sqrt{j + 1}}} \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} \right) = \sum_{n = 0}^{\infty} (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} }[/math]
Ale [math]\displaystyle{ k \leqslant n }[/math] i [math]\displaystyle{ n - k \leqslant n }[/math], zatem
- [math]\displaystyle{ {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}} }[/math]
Czyli
- [math]\displaystyle{ | c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1 }[/math]
Ponieważ [math]\displaystyle{ \lim_{n \rightarrow \infty} c_n \neq 0 }[/math], to iloczyn Cauchy'ego jest rozbieżny (zobacz D4).
□
Uwaga D72
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy [math]\displaystyle{ m = 5 }[/math].
[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]
Przejście do sumowania po liniach poziomych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii poziomej.
Przejście do sumowania po liniach pionowych
- [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i }[/math]
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii pionowej.
Twierdzenie D73 (Franciszek Mertens)
Jeżeli szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] jest zbieżny bezwzględnie, szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] jest zbieżny, to ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny i [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].
Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny bezwzględnie, oznaczmy [math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' }[/math]. Niech
- [math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad B_n = \sum_{j = 0}^{n} b_j \qquad \qquad C_n = \sum_{k = 0}^{n} c_k \qquad \qquad \beta_n = B_n - B }[/math]
Przekształcając sumę [math]\displaystyle{ C_m }[/math], otrzymujemy
- [math]\displaystyle{ C_m = \sum_{n = 0}^{m} c_n }[/math]
- [math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
Przechodzimy od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D72).
- [math]\displaystyle{ C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
- [math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \sum_{j = 0}^{m - i} b_j }[/math]
- [math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
- [math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \left( {B + \beta_{m - i}} \right) }[/math]
- [math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
- [math]\displaystyle{ \; = B \sum_{i = 0}^{m} a_i + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
- [math]\displaystyle{ \; = A_m B + \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]
Zatem
- [math]\displaystyle{ C_m - A_m B = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]
Niech
- [math]\displaystyle{ \delta_m = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]
Oczywiście chcemy pokazać, że [math]\displaystyle{ C_m \longrightarrow A B }[/math]. Ponieważ [math]\displaystyle{ A_m B \longrightarrow A B }[/math], to wystarczy pokazać, że [math]\displaystyle{ \delta_m \longrightarrow 0 }[/math].
Z założenia [math]\displaystyle{ B_m \longrightarrow B }[/math], zatem [math]\displaystyle{ \beta_m \longrightarrow 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (\beta_k) }[/math] wynika, że
- ciąg [math]\displaystyle{ (\beta_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | \beta_k | \leqslant U }[/math] (zobacz C9)
Możemy przyjąć, że warunek [math]\displaystyle{ | \beta_k | \lt \varepsilon_1 }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ M = M (\varepsilon_1) }[/math]. Zatem dla [math]\displaystyle{ m \gt M }[/math] dostajemy
- [math]\displaystyle{ | \delta_m | \leqslant \sum_{k = 0}^{M} | \beta_k | | a_{m - k} | + \sum_{k = M + 1}^{m} | \beta_k | | a_{m - k} | }[/math]
- [math]\displaystyle{ \;\; \lt U (| a_m | + \ldots + | a_{m - M} |) + \varepsilon_1 \sum_{k = M + 1}^{m} | a_{m - k} | }[/math]
- [math]\displaystyle{ \;\; \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]
Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny, zatem musi być [math]\displaystyle{ \lim_{m \rightarrow \infty} a_m = 0 }[/math] (zobacz D4). Czyli dla dowolnego [math]\displaystyle{ \varepsilon_2 \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_k) }[/math] spełniają warunek [math]\displaystyle{ | a_k | \lt \varepsilon_2 }[/math]. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon_2) }[/math]. Zatem dla [math]\displaystyle{ m \gt M + N }[/math] otrzymujemy
- [math]\displaystyle{ | \delta_m | \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]
- [math]\displaystyle{ \;\; \lt \varepsilon_2 (M + 1) U + \varepsilon_1 A' }[/math]
Prawa strona nierówności jest dowolnie mała. Przykładowo dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] wystarczy wybrać [math]\displaystyle{ \varepsilon_1 = {\small\frac{\varepsilon / 2}{A'}} }[/math] i [math]\displaystyle{ \varepsilon_2 = {\small\frac{\varepsilon / 2}{(M + 1) U}} }[/math], aby otrzymać [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math] dla wszystkich [math]\displaystyle{ m \gt M + N }[/math]. Ponieważ prawie wszystkie wyrazy ciągu [math]\displaystyle{ \delta_m }[/math] spełniają warunek [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math], to [math]\displaystyle{ \lim_{m \rightarrow \infty} \delta_m = 0 }[/math]. Co należało pokazać.
□
Zadanie D74
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
Z założenia szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] są bezwzględnie zbieżne, zatem możemy napisać
- [math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B' }[/math]
Zauważmy, że suma [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math] obejmuje [math]\displaystyle{ m + 1 }[/math] przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D72).
- [math]\displaystyle{ C'_m = \sum_{n = 0}^{m} | c_n | }[/math]
- [math]\displaystyle{ \; = \sum_{n = 0}^{m} \left| \sum_{k = 0}^{n} a_k b_{n - k} \right| }[/math]
- [math]\displaystyle{ \; \leqslant \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k b_{n - k} | }[/math]
- [math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math]
- [math]\displaystyle{ \; = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} | a_i | | b_j | \qquad \qquad }[/math] (zmieniliśmy sposób sumowania)
- [math]\displaystyle{ \; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j | }[/math]
- [math]\displaystyle{ \; \lt A' B' }[/math]
Ponieważ ciąg sum częściowych [math]\displaystyle{ C'_m }[/math] jest rosnący (bo sumujemy wartości nieujemne) i ograniczony od góry, to jest zbieżny.
□
Uwaga D75
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie D77 pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro[20]. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
Rozważmy szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math]. Sumy częściowe tego szeregu wynoszą [math]\displaystyle{ S_k = {\small\frac{1 + (- 1)^k}{2}} }[/math] i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu [math]\displaystyle{ (S_k) }[/math] jest równy (WolframAlfa)
- [math]\displaystyle{ x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} }[/math]
Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math] jest sumowalny w sensie Cesàro i jego suma jest równa [math]\displaystyle{ {\small\frac{1}{2}} }[/math].
Twierdzenie D76
Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math].
Z założenia [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (a_k) }[/math] wynika, że
- ciąg [math]\displaystyle{ (a_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | a_k | \leqslant U }[/math] (zobacz C9)
Możemy przyjąć, że warunek [math]\displaystyle{ | a_k | \lt \varepsilon }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon) }[/math]. Zatem dla [math]\displaystyle{ n \gt N }[/math] możemy napisać
- [math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}} }[/math]
- [math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}} }[/math]
- [math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + \varepsilon }[/math]
Ponieważ liczba [math]\displaystyle{ n }[/math] może być dowolnie duża, to wyrażenie [math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} }[/math] może być dowolnie małe. W szczególności warunek
- [math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} \lt \varepsilon }[/math]
jest spełniony dla [math]\displaystyle{ n \gt {\small\frac{U (N + 1)}{\varepsilon}} - 1 }[/math] i otrzymujemy, że
- [math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | \lt 2 \varepsilon }[/math]
dla wszystkich [math]\displaystyle{ n \gt \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right) }[/math]. Zatem [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math]. Co należało pokazać.
□
Twierdzenie D77
Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, to ciąg kolejnych średnich arytmetycznych [math]\displaystyle{ x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}} }[/math] jest zbieżny do tej samej granicy.
Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, zatem możemy napisać
- [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = g }[/math]
Z definicji ciągu [math]\displaystyle{ (x_n) }[/math] dostajemy
- [math]\displaystyle{ x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g = {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}} = {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}} = {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}} }[/math]
Wynika stąd, że
- [math]\displaystyle{ 0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g | }[/math]
W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D76 i twierdzenia o trzech ciągach (zobacz C10) otrzymujemy
- [math]\displaystyle{ \lim_{n \rightarrow \infty} | x_n - g | = 0 }[/math]
Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = g }[/math] (zobacz C8 p.2). Co należało pokazać.
□
Twierdzenie D78
Niech [math]\displaystyle{ (a_n) }[/math] i [math]\displaystyle{ (b_n) }[/math] będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math] i [math]\displaystyle{ \lim_{n \rightarrow \infty} b_n = b }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math].
1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n = 0} }[/math]
Ponieważ ciąg [math]\displaystyle{ (b_n) }[/math] jest zbieżny, to jest ograniczony (zobacz C9), czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | b_k | \leqslant U }[/math]. Zatem
- [math]\displaystyle{ 0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k | }[/math]
W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D76 i twierdzenia o trzech ciągach (zobacz C10) otrzymujemy
- [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0 }[/math]
Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0 }[/math] (zobacz C8 p.2).
2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0} }[/math]
Niech [math]\displaystyle{ x_n = a_n - a }[/math]. Oczywiście [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = 0 }[/math]. Podstawiając, otrzymujemy
- [math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k} }[/math]
- [math]\displaystyle{ \, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]
- [math]\displaystyle{ \, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]
W granicy, gdy [math]\displaystyle{ n \longrightarrow \infty }[/math], z twierdzenia D77 i udowodnionego wyżej przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], dostajemy
- [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math]
Co kończy dowód.
□
Twierdzenie D79 (Niels Henrik Abel)
Jeżeli szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] są zbieżne i ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny, to [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].
Będziemy stosowali następujące oznaczenia
- [math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad \;\, B_n = \sum_{i = 0}^{n} b_i \qquad \qquad \;\; C_n = \sum_{i = 0}^{n} c_i }[/math]
Z założenia szeregi są zbieżne, zatem możemy napisać
- [math]\displaystyle{ \lim_{n \rightarrow \infty} A_n = A \qquad \qquad \lim_{n \rightarrow \infty} B_n = B \qquad \qquad \lim_{n \rightarrow \infty} C_n = C }[/math]
Rozważmy sumę
- [math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{n = 0}^{m} c_n }[/math]
- [math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
Od sumowania wyrazów [math]\displaystyle{ a_k b_{n - k} }[/math] po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D72).
- [math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
- [math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i \sum^{m - i}_{j = 0} b_j }[/math]
- [math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
- [math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k} }[/math]
Od sumowania wyrazów [math]\displaystyle{ a_k B_{m - k} }[/math] po [math]\displaystyle{ L + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ L + 1 }[/math] kolejnych liniach pionowych (zobacz D72).
- [math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i }[/math]
- [math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i \sum_{j = 0}^{L - i} a_j }[/math]
- [math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i A_{L - i} }[/math]
Zatem
- [math]\displaystyle{ {\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i} }[/math]
W granicy, gdy [math]\displaystyle{ L \longrightarrow \infty }[/math], z twierdzeń D77 i D78 otrzymujemy [math]\displaystyle{ C = A B }[/math]. Co należało pokazać.
□
Przypisy
- ↑ Wikipedia, Funkcja η, (Wiki-pl), (Wiki-en)
- ↑ Wikipedia, Funkcja dzeta Riemanna, (Wiki-pl), (Wiki-en)
- ↑ Twierdzenie: funkcja ciągła w przedziale domkniętym jest całkowalna w tym przedziale.
- ↑ W szczególności: funkcja ograniczona i mająca skończoną liczbę punktów nieciągłości w przedziale domkniętym jest w tym przedziale całkowalna.
- ↑ 5,0 5,1 Wikipedia, Twierdzenia Mertensa, (Wiki-pl), (Wiki-en)
- ↑ 6,0 6,1 Wikipedia, Franciszek Mertens, (Wiki-pl)
- ↑ J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94, (LINK)
- ↑ Zobacz twierdzenie D41.
- ↑ The On-Line Encyclopedia of Integer Sequences, A001620 - Decimal expansion of Euler's constant, (A001620)
- ↑ The On-Line Encyclopedia of Integer Sequences, A083343 - Decimal expansion of constant B3 (or B_3) related to the Mertens constant, (A083343)
- ↑ The On-Line Encyclopedia of Integer Sequences, A138312 - Decimal expansion of Mertens's constant minus Euler's constant, (A138312)
- ↑ Pierre Dusart, Estimates of Some Functions Over Primes without R.H., 2010, (LINK)
- ↑ Wikipedia, Stałe Bruna, (Wiki-pl), (Wiki-en)
- ↑ The On-Line Encyclopedia of Integer Sequences, A065421 - Decimal expansion of Viggo Brun's constant B, (A065421)
- ↑ Paul Erdős, Über die Reihe [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math], Mathematica, Zutphen B 7, 1938, 1-2.
- ↑ sumowanie przez części (ang. summation by parts)
- ↑ ciąg wypukły (ang. convex sequence)
- ↑ Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, vol. 45(1), 2018, 227-251.
- ↑ Wikipedia, Szereg geometryczny, (Wiki-pl), (Wiki-en)
- ↑ Wikipedia, Sumowalność metodą Cesàro, (Wiki-pl), (Wiki-en)