CRT, twierdzenia Lagrange'a, Wilsona i Fermata, kryterium Eulera, symbole Legendre'a i Jacobiego: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Linia 536: Linia 536:
  
 
Z twierdzenia Lagrange'a wiemy, że wielomian <math>U(x)</math> nie może mieć więcej niż <math>p - 2</math> rozwiązań modulo <math>p</math>. Zatem z&nbsp;twierdzenia J14 wynika natychmiast, że liczba pierwsza <math>p</math> musi dzielić każdy współczynnik <math>a_k</math> wielomianu <math>U(x)</math> i&nbsp;w&nbsp;szczególności musi dzielić wyraz wolny, który jest równy <math>(p - 1) ! + 1</math>. Co należało pokazać.<br/>
 
Z twierdzenia Lagrange'a wiemy, że wielomian <math>U(x)</math> nie może mieć więcej niż <math>p - 2</math> rozwiązań modulo <math>p</math>. Zatem z&nbsp;twierdzenia J14 wynika natychmiast, że liczba pierwsza <math>p</math> musi dzielić każdy współczynnik <math>a_k</math> wielomianu <math>U(x)</math> i&nbsp;w&nbsp;szczególności musi dzielić wyraz wolny, który jest równy <math>(p - 1) ! + 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J18</span><br/>
 +
Liczba całkowita nieparzysta <math>p \geqslant 3</math> jest liczbą pierwszą wtedy i tylko wtedy, gdy
 +
 +
::<math>\left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia Wilsona wiemy, że liczba całkowita <math>p \geqslant 2</math> jest liczbą pierwszą wtedy i tylko wtedy, gdy
 +
 +
::<math>(p - 1) ! \equiv - 1 \pmod{p}</math>
 +
 +
W przypadku, gdy liczba <math>p</math> jest liczbą nieparzystą możemy powyższy wzór łatwo przekształcić. Ponieważ czynniki w <math>(p - 1) !</math> są określone modulo <math>p</math>, to odejmując od każdego czynnika większego od <math>{\small\frac{p - 1}{2}}</math> liczbę <math>p</math>, otrzymujemy
 +
 +
::<math>1 \cdot 2 \cdot \ldots \cdot {\small\frac{p - 3}{2}} \cdot {\small\frac{p - 1}{2}} \cdot \left( {\small\frac{p + 1}{2}} - p \right) \left( {\small\frac{p + 3}{2}} - p \right) \cdot \ldots \cdot (- 2) \cdot (- 1) \equiv - 1 \!\! \pmod{p}</math>
 +
 +
::<math>(- 1)^{\tfrac{p - 1}{2}} \cdot \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv - 1 \!\! \pmod{p}</math>
 +
 +
::<math>\left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p}</math>
 +
 +
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 544: Linia 568:
  
 
== Twierdzenie Fermata ==
 
== Twierdzenie Fermata ==
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J18 (Pierre de Fermat, 1640)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J19 (Pierre de Fermat, 1640)</span><br/>
 
Niech <math>a \in \mathbb{Z}</math>. Jeżeli <math>p</math> jest liczbą pierwszą
 
Niech <math>a \in \mathbb{Z}</math>. Jeżeli <math>p</math> jest liczbą pierwszą
  
Linia 581: Linia 605:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J19</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J20</span><br/>
 
Niech <math>x, y \in \mathbb{Z}</math>. Jeżeli <math>\gcd (x, y) = 1</math> i&nbsp;liczba pierwsza nieparzysta <math>p</math> dzieli <math>x^2 + y^2</math>, to <math>p</math> jest postaci <math>4 k + 1</math>.
 
Niech <math>x, y \in \mathbb{Z}</math>. Jeżeli <math>\gcd (x, y) = 1</math> i&nbsp;liczba pierwsza nieparzysta <math>p</math> dzieli <math>x^2 + y^2</math>, to <math>p</math> jest postaci <math>4 k + 1</math>.
  
Linia 599: Linia 623:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J20</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J21</span><br/>
 
Niech <math>x, y, n \geqslant 0</math>. Pokazać, że jedynymi rozwiązaniami równania
 
Niech <math>x, y, n \geqslant 0</math>. Pokazać, że jedynymi rozwiązaniami równania
  
Linia 632: Linia 656:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J21</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J22</span><br/>
 
Niech <math>x, y \in \mathbb{Z}_+</math>. Jeżeli <math>x \neq y</math>, to liczba <math>x^2 + y^2</math> ma dzielnik pierwszy postaci <math>4 k + 1</math>.
 
Niech <math>x, y \in \mathbb{Z}_+</math>. Jeżeli <math>x \neq y</math>, to liczba <math>x^2 + y^2</math> ma dzielnik pierwszy postaci <math>4 k + 1</math>.
  
Linia 638: Linia 662:
 
W&nbsp;przypadku, gdy <math>x = y</math> mamy <math>x^2 + y^2 = 2 y^2</math> i&nbsp;jeśli liczba <math>y</math> nie ma dzielnika pierwszego postaci <math>4 k + 1</math>, to nie ma go również liczba <math>2 y^2</math>. Przykładowo <math>x^2 + y^2 = 2 y^2 = 2^{2 r + 1}, 2 \cdot 3^{2 r}, 2 \cdot 7^{2 r}</math>. Dlatego zakładamy, że <math>x \neq y</math>. Analogiczna sytuacja ma miejsce, gdy jedna z&nbsp;liczb <math>x, y</math> jest równa zero. Dlatego zakładamy, że <math>x, y \in \mathbb{Z}_+</math>.
 
W&nbsp;przypadku, gdy <math>x = y</math> mamy <math>x^2 + y^2 = 2 y^2</math> i&nbsp;jeśli liczba <math>y</math> nie ma dzielnika pierwszego postaci <math>4 k + 1</math>, to nie ma go również liczba <math>2 y^2</math>. Przykładowo <math>x^2 + y^2 = 2 y^2 = 2^{2 r + 1}, 2 \cdot 3^{2 r}, 2 \cdot 7^{2 r}</math>. Dlatego zakładamy, że <math>x \neq y</math>. Analogiczna sytuacja ma miejsce, gdy jedna z&nbsp;liczb <math>x, y</math> jest równa zero. Dlatego zakładamy, że <math>x, y \in \mathbb{Z}_+</math>.
  
Niech <math>\gcd (x, y) = d</math>, zatem mamy <math>x = a d</math>, <math>y = b d</math>. Wynika stąd, że <math>x^2 + y^2 = d^2 (a^2 + b^2)</math>, gdzie <math>\gcd (a, b) = 1 \,</math> i <math>\, a \neq b</math>. Ponieważ <math>\, a \neq b</math>, to liczba <math>a^2 + b^2</math> musi mieć dzielnik pierwszy nieparzysty (zobacz J20). Z&nbsp;twierdzenia J19 zastosowanego do liczby <math>a^2 + b^2</math> wynika, że <math>a^2 + b^2</math> musi mieć dzielnik pierwszy postaci <math>4 k + 1</math>.<br/>
+
Niech <math>\gcd (x, y) = d</math>, zatem mamy <math>x = a d</math>, <math>y = b d</math>. Wynika stąd, że <math>x^2 + y^2 = d^2 (a^2 + b^2)</math>, gdzie <math>\gcd (a, b) = 1 \,</math> i <math>\, a \neq b</math>. Ponieważ <math>\, a \neq b</math>, to liczba <math>a^2 + b^2</math> musi mieć dzielnik pierwszy nieparzysty (zobacz J21). Z&nbsp;twierdzenia J20 zastosowanego do liczby <math>a^2 + b^2</math> wynika, że <math>a^2 + b^2</math> musi mieć dzielnik pierwszy postaci <math>4 k + 1</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 648: Linia 672:
 
== Kryterium Eulera ==
 
== Kryterium Eulera ==
  
<span style="font-size: 110%; font-weight: bold;">Definicja J22</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja J23</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą i <math>a \in \mathbb{Z}</math>. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math>, jeżeli kongruencja
 
Niech <math>p</math> będzie liczbą pierwszą i <math>a \in \mathbb{Z}</math>. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>p</math>, jeżeli kongruencja
  
Linia 663: Linia 687:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J23</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J24</span><br/>
 
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieje dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>.
 
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieje dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>.
  
Linia 702: Linia 726:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J24 (kryterium Eulera, 1748)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J25 (kryterium Eulera, 1748)</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>p \nmid a</math>. Modulo <math>p</math> mamy
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>p \nmid a</math>. Modulo <math>p</math> mamy
  
Linia 724: Linia 748:
 
::{| border=1 style="border-collapse: collapse;"
 
::{| border=1 style="border-collapse: collapse;"
 
|-style=height:2.5em
 
|-style=height:2.5em
| &nbsp;&nbsp;&nbsp;'''A'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| Q | = {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz J23
+
| &nbsp;&nbsp;&nbsp;'''A'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| Q | = {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz J24
 
|-style=height:2.5em
 
|-style=height:2.5em
 
| &nbsp;&nbsp;&nbsp;'''B'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| S | \leqslant {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz twierdzenie Lagrange'a J13
 
| &nbsp;&nbsp;&nbsp;'''B'''&nbsp;&nbsp;&nbsp; || &nbsp;&nbsp;&nbsp;<math>| S | \leqslant {\small\frac{p - 1}{2}}</math> || &nbsp;&nbsp;&nbsp;zobacz twierdzenie Lagrange'a J13
Linia 742: Linia 766:
 
::<math>| Q | = | S | = {\small\frac{p - 1}{2}}</math>
 
::<math>| Q | = | S | = {\small\frac{p - 1}{2}}</math>
  
Ponieważ <math>Q \subseteq S</math>, a&nbsp;zbiory <math>Q</math> i <math>S</math> są równoliczne, to zbiory te są równe (zobacz J25). Prostą konsekwencją równości zbiorów <math>Q</math> i <math>S</math> jest stwierdzenie
+
Ponieważ <math>Q \subseteq S</math>, a&nbsp;zbiory <math>Q</math> i <math>S</math> są równoliczne, to zbiory te są równe (zobacz J26). Prostą konsekwencją równości zbiorów <math>Q</math> i <math>S</math> jest stwierdzenie
  
 
::{| border=0 style="background: #EEEEEE;"
 
::{| border=0 style="background: #EEEEEE;"
Linia 781: Linia 805:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J25</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J26</span><br/>
 
Niech <math>A</math> i <math>B</math> będą zbiorami skończonymi. Pokazać, że jeżeli <math>A \subseteq B \;\; \text{i} \;\; | A | = | B |</math>, to <math>\; A = B</math>.
 
Niech <math>A</math> i <math>B</math> będą zbiorami skończonymi. Pokazać, że jeżeli <math>A \subseteq B \;\; \text{i} \;\; | A | = | B |</math>, to <math>\; A = B</math>.
  
Linia 813: Linia 837:
 
== Symbol Legendre'a ==
 
== Symbol Legendre'a ==
  
<span style="font-size: 110%; font-weight: bold;">Definicja J26</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja J27</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>a \in \mathbb{Z}</math>. Symbolem Legendre'a<ref name="legendre1"/> nazywamy funkcję <math>a</math> i <math>p</math> zdefiniowaną następująco
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą i <math>a \in \mathbb{Z}</math>. Symbolem Legendre'a<ref name="legendre1"/> nazywamy funkcję <math>a</math> i <math>p</math> zdefiniowaną następująco
  
Linia 825: Linia 849:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J27</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J28</span><br/>
 
Powyższa definicja pozwala nam zapisać kryterium Eulera w&nbsp;zwartej formie, która obejmuje również przypadek, gdy <math>p \, | \, a</math>
 
Powyższa definicja pozwala nam zapisać kryterium Eulera w&nbsp;zwartej formie, która obejmuje również przypadek, gdy <math>p \, | \, a</math>
  
Linia 832: Linia 856:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J28*</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J29*</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>p, q</math> będą nieparzystymi liczbami pierwszymi. Symbol Legendre'a ma następujące właściwości
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>p, q</math> będą nieparzystymi liczbami pierwszymi. Symbol Legendre'a ma następujące właściwości
  
Linia 878: Linia 902:
 
== Symbol Jacobiego ==
 
== Symbol Jacobiego ==
  
<span style="font-size: 110%; font-weight: bold;">Definicja J29</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja J30</span><br/>
 
Niech liczby <math>a \in \mathbb{Z}</math> i <math>m \in \mathbb{Z}_+</math> będą względnie pierwsze. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math>, jeżeli kongruencja
 
Niech liczby <math>a \in \mathbb{Z}</math> i <math>m \in \mathbb{Z}_+</math> będą względnie pierwsze. Powiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math>, jeżeli kongruencja
  
Linia 893: Linia 917:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J30</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J31</span><br/>
 
Ponieważ często można spotkać definicję liczb kwadratowych i&nbsp;niekwadratowych modulo <math>m</math>, w&nbsp;której warunek <math>\gcd (a, m) = 1</math> zostaje pominięty, to Czytelnik powinien zawsze upewnić się, jaka definicja jest stosowana. Najczęściej w&nbsp;takim przypadku liczba <math>0</math> nie jest uznawana za liczbę kwadratową modulo <math>m</math>.
 
Ponieważ często można spotkać definicję liczb kwadratowych i&nbsp;niekwadratowych modulo <math>m</math>, w&nbsp;której warunek <math>\gcd (a, m) = 1</math> zostaje pominięty, to Czytelnik powinien zawsze upewnić się, jaka definicja jest stosowana. Najczęściej w&nbsp;takim przypadku liczba <math>0</math> nie jest uznawana za liczbę kwadratową modulo <math>m</math>.
  
Linia 908: Linia 932:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J31</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J32</span><br/>
 
Niech liczby <math>m, n \in \mathbb{Z}_+</math> i <math>\gcd (m, n) = 1</math>. Pokazać, że liczba <math>a \in \mathbb{Z}</math> jest liczbą kwadratową modulo <math>m n</math> wtedy i&nbsp;tylko wtedy, gdy jest liczbą kwadratową modulo <math>m</math> i&nbsp;modulo <math>n</math>.
 
Niech liczby <math>m, n \in \mathbb{Z}_+</math> i <math>\gcd (m, n) = 1</math>. Pokazać, że liczba <math>a \in \mathbb{Z}</math> jest liczbą kwadratową modulo <math>m n</math> wtedy i&nbsp;tylko wtedy, gdy jest liczbą kwadratową modulo <math>m</math> i&nbsp;modulo <math>n</math>.
  
Linia 918: Linia 942:
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja J32</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja J33</span><br/>
 
Symbol Jacobiego<ref name="jacobi1"/> <math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}}</math> jest uogólnieniem symbolu Legendre'a <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}}</math> dla dodatnich liczb nieparzystych.  
 
Symbol Jacobiego<ref name="jacobi1"/> <math>\left( {\small\frac{a}{n}} \right)_{\small{\!\! J}}</math> jest uogólnieniem symbolu Legendre'a <math>\left( {\small\frac{a}{p}} \right)_{\small{\!\! L}}</math> dla dodatnich liczb nieparzystych.  
 
Niech <math>n = \prod_i p_i^{\alpha_i}</math> będzie rozkładem liczby <math>n</math> na czynniki pierwsze, wtedy
 
Niech <math>n = \prod_i p_i^{\alpha_i}</math> będzie rozkładem liczby <math>n</math> na czynniki pierwsze, wtedy
Linia 926: Linia 950:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J33</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J34</span><br/>
 
Zauważmy, że w&nbsp;przypadku gdy <math>n = 1</math>, po prawej stronie mamy „pusty” iloczyn (bez jakiegokolwiek czynnika). Podobnie jak „pustej” sumie przypisujemy wartość zero, tak „pustemu” iloczynowi przypisujemy wartość jeden. Zatem dla dowolnego <math>a \in \mathbb{Z}</math> jest <math>\left( {\small\frac{a}{1}} \right)_{\small{\!\! J}} = 1</math>.
 
Zauważmy, że w&nbsp;przypadku gdy <math>n = 1</math>, po prawej stronie mamy „pusty” iloczyn (bez jakiegokolwiek czynnika). Podobnie jak „pustej” sumie przypisujemy wartość zero, tak „pustemu” iloczynowi przypisujemy wartość jeden. Zatem dla dowolnego <math>a \in \mathbb{Z}</math> jest <math>\left( {\small\frac{a}{1}} \right)_{\small{\!\! J}} = 1</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J34*</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J35*</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>m, n \in \mathbb{Z}_+</math> i <math>m, n</math> będą liczbami nieparzystymi. Symbol Jacobiego ma następujące właściwości
 
Niech <math>a, b \in \mathbb{Z}</math> oraz <math>m, n \in \mathbb{Z}_+</math> i <math>m, n</math> będą liczbami nieparzystymi. Symbol Jacobiego ma następujące właściwości
  
Linia 973: Linia 997:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J35</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J36</span><br/>
Zauważmy, że poza zmienionym założeniem tabela z&nbsp;powyższego twierdzenia i&nbsp;tabela z&nbsp;twierdzenia J28 różnią się jedynie punktem czwartym. Oczywiście jest to tylko podobieństwo formalne – symbol Legendre'a i&nbsp;symbol Jacobiego są różnymi funkcjami.
+
Zauważmy, że poza zmienionym założeniem tabela z&nbsp;powyższego twierdzenia i&nbsp;tabela z&nbsp;twierdzenia J29 różnią się jedynie punktem czwartym. Oczywiście jest to tylko podobieństwo formalne – symbol Legendre'a i&nbsp;symbol Jacobiego są różnymi funkcjami.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J36</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J37</span><br/>
 
Zauważmy, że w&nbsp;przypadku, gdy <math>m</math> jest liczbą nieparzystą
 
Zauważmy, że w&nbsp;przypadku, gdy <math>m</math> jest liczbą nieparzystą
  
Linia 992: Linia 1016:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J37</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J38</span><br/>
 
Wszystkie liczby kwadratowe i&nbsp;niekwadratowe modulo <math>m</math> można łatwo znaleźć, wykorzystując prosty program:
 
Wszystkie liczby kwadratowe i&nbsp;niekwadratowe modulo <math>m</math> można łatwo znaleźć, wykorzystując prosty program:
  
Linia 1013: Linia 1037:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J38</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J39</span><br/>
 
Pokazać, że
 
Pokazać, że
  
Linia 1069: Linia 1093:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J39</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J40</span><br/>
 
Pokazać, że
 
Pokazać, że
  
Linia 1105: Linia 1129:
 
::<math>m = 12 k + 11 \equiv 3 \pmod{4}</math>
 
::<math>m = 12 k + 11 \equiv 3 \pmod{4}</math>
  
Ułatwi nam to znacznie wykonywanie przekształceń (zobacz J34 p.9)
+
Ułatwi nam to znacznie wykonywanie przekształceń (zobacz J35 p.9)
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 1125: Linia 1149:
 
'''Punkt 2.'''
 
'''Punkt 2.'''
  
Ponieważ <math>5 \equiv 1 \!\! \pmod{4}</math>, to nie ma już znaczenia, czy <math>m \equiv 1 \!\! \pmod{4}</math>, czy też <math>m \equiv 3 \!\! \pmod{4}</math>. Otrzymujemy natychmiast (zobacz J34 p.9)
+
Ponieważ <math>5 \equiv 1 \!\! \pmod{4}</math>, to nie ma już znaczenia, czy <math>m \equiv 1 \!\! \pmod{4}</math>, czy też <math>m \equiv 3 \!\! \pmod{4}</math>. Otrzymujemy natychmiast (zobacz J35 p.9)
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 1166: Linia 1190:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J40</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J41</span><br/>
Wykorzystując podane w&nbsp;twierdzeniu J34 właściwości symbolu Jacobiego, możemy napisać prostą funkcję w&nbsp;PARI/GP znajdującą jego wartość. Zauważmy, że nie potrzebujemy znać rozkładu liczby <math>n</math> na czynniki pierwsze.
+
Wykorzystując podane w&nbsp;twierdzeniu J35 właściwości symbolu Jacobiego, możemy napisać prostą funkcję w&nbsp;PARI/GP znajdującą jego wartość. Zauważmy, że nie potrzebujemy znać rozkładu liczby <math>n</math> na czynniki pierwsze.
  
 
  <span style="font-size: 90%; color:black;">jacobi(a, n) =  
 
  <span style="font-size: 90%; color:black;">jacobi(a, n) =  
Linia 1191: Linia 1215:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J41</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J42</span><br/>
 
Jeżeli <math>m</math> jest liczbą pierwszą, to symbol Jacobiego jest symbolem Legendre'a, czyli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math>. Jeżeli <math>m</math> jest liczbą złożoną, to symbol Legendre'a <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math> nie istnieje, a&nbsp;symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> dostarcza jedynie ograniczonych informacji.
 
Jeżeli <math>m</math> jest liczbą pierwszą, to symbol Jacobiego jest symbolem Legendre'a, czyli <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math>. Jeżeli <math>m</math> jest liczbą złożoną, to symbol Legendre'a <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! L}}</math> nie istnieje, a&nbsp;symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> dostarcza jedynie ograniczonych informacji.
  
Linia 1206: Linia 1230:
 
== Rozwiązywanie kongruencji <math>x^2 \equiv a \!\! \pmod{m}</math> ==
 
== Rozwiązywanie kongruencji <math>x^2 \equiv a \!\! \pmod{m}</math> ==
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J42</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J43</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, zaś <math>a</math> liczbą całkowitą taką, że <math>\gcd (a, p) = 1</math>. Kongruencja
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, zaś <math>a</math> liczbą całkowitą taką, że <math>\gcd (a, p) = 1</math>. Kongruencja
  
Linia 1275: Linia 1299:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J43</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J44</span><br/>
 
Dla niewielkich modułów rozwiązania dowolnej kongruencji możemy znaleźć przez bezpośrednie sprawdzenie. Omówimy teraz rozwiązania kongruencji <math>x^2 \equiv a \!\! \pmod{2^n}</math> dla <math>n = 1, 2, 3</math>. Ponieważ zakładamy, że <math>\gcd (a, m) = \gcd (a, 2^n) = 1</math>, to <math>a</math> musi być liczbą nieparzystą, zaś <math>x</math> nie może być liczbą parzystą. Istotnie, gdyby tak było, to mielibyśmy <math>0 \equiv 1 \!\! \pmod{2}</math>, bo <math>2 \, | \, 2^n</math>.
 
Dla niewielkich modułów rozwiązania dowolnej kongruencji możemy znaleźć przez bezpośrednie sprawdzenie. Omówimy teraz rozwiązania kongruencji <math>x^2 \equiv a \!\! \pmod{2^n}</math> dla <math>n = 1, 2, 3</math>. Ponieważ zakładamy, że <math>\gcd (a, m) = \gcd (a, 2^n) = 1</math>, to <math>a</math> musi być liczbą nieparzystą, zaś <math>x</math> nie może być liczbą parzystą. Istotnie, gdyby tak było, to mielibyśmy <math>0 \equiv 1 \!\! \pmod{2}</math>, bo <math>2 \, | \, 2^n</math>.
  
Linia 1298: Linia 1322:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J44</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J45</span><br/>
 
Niech <math>n \geqslant 3</math> i <math>a</math> będzie liczbą nieparzystą. Kongruencja
 
Niech <math>n \geqslant 3</math> i <math>a</math> będzie liczbą nieparzystą. Kongruencja
  
Linia 1360: Linia 1384:
  
  
<span style="font-size: 110%; font-weight: bold;">Wniosek J45</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Wniosek J46</span><br/>
 
Jeżeli <math>a</math> jest liczbą nieparzystą, to kongruencja <math>x^2 \equiv a \!\! \pmod{2^n}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy <math>a</math> jest postaci <math>2 k + 1</math>, <math>4 k + 1</math> lub <math>8 k + 1</math> w&nbsp;zależności od tego, czy <math>n = 1</math>, czy <math>n = 2</math>, czy <math>n \geqslant 3</math>.
 
Jeżeli <math>a</math> jest liczbą nieparzystą, to kongruencja <math>x^2 \equiv a \!\! \pmod{2^n}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy <math>a</math> jest postaci <math>2 k + 1</math>, <math>4 k + 1</math> lub <math>8 k + 1</math> w&nbsp;zależności od tego, czy <math>n = 1</math>, czy <math>n = 2</math>, czy <math>n \geqslant 3</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J46</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J47</span><br/>
 
Niech <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> i <math>\gcd (a, m) = 1</math>. Z&nbsp;chińskiego twierdzenia o&nbsp;resztach (zobacz J3 i&nbsp;J11) wynika, że kongruencja <math>x^2 \equiv a \!\! \pmod{m}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy ma rozwiązanie każda z&nbsp;kongruencji
 
Niech <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> i <math>\gcd (a, m) = 1</math>. Z&nbsp;chińskiego twierdzenia o&nbsp;resztach (zobacz J3 i&nbsp;J11) wynika, że kongruencja <math>x^2 \equiv a \!\! \pmod{m}</math> ma rozwiązanie wtedy i&nbsp;tylko wtedy, gdy ma rozwiązanie każda z&nbsp;kongruencji
  
Linia 1374: Linia 1398:
 
\end{align}</math>
 
\end{align}</math>
  
Z definicji J26, twierdzeń J42 i&nbsp;J44, uwagi J43 i&nbsp;wniosku J45 otrzymujemy
+
Z definicji J27, twierdzeń J43 i&nbsp;J45, uwagi J44 i&nbsp;wniosku J46 otrzymujemy
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J47</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J48</span><br/>
 
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
 
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
  
Linia 1396: Linia 1420:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J48</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J49</span><br/>
 
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
 
Niech <math>m \in \mathbb{Z}_+</math> i <math>\gcd (a, m) = 1</math>. Kongruencja
  
Linia 1426: Linia 1450:
 
miałaby rozwiązanie, ale jest to niemożliwe, bo założyliśmy, że <math>\left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1</math>, co oznacza, że <math>a</math> jest liczbą niekwadratową modulo <math>d</math>.
 
miałaby rozwiązanie, ale jest to niemożliwe, bo założyliśmy, że <math>\left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1</math>, co oznacza, że <math>a</math> jest liczbą niekwadratową modulo <math>d</math>.
  
Punkty 2. i 3. wynikają wprost z&nbsp;twierdzenia J47.<br/>
+
Punkty 2. i 3. wynikają wprost z&nbsp;twierdzenia J48.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1432: Linia 1456:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład J49</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J50</span><br/>
 
Zauważmy, że <math>\left( {\small\frac{17}{19}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{19}} \right)_{\small{\!\! J}} = 1</math> oraz <math>\left( {\small\frac{17}{23}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{23}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;tabelach zestawiliśmy kongruencje i&nbsp;ich rozwiązania.
 
Zauważmy, że <math>\left( {\small\frac{17}{19}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{19}} \right)_{\small{\!\! J}} = 1</math> oraz <math>\left( {\small\frac{17}{23}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{23}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;tabelach zestawiliśmy kongruencje i&nbsp;ich rozwiązania.
  
Linia 1462: Linia 1486:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J50</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J51</span><br/>
 
Rozwiązać kongruencję, gdzie <math>p</math> jest liczbą pierwszą nieparzystą
 
Rozwiązać kongruencję, gdzie <math>p</math> jest liczbą pierwszą nieparzystą
  
Linia 1498: Linia 1522:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J51</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J52</span><br/>
 
Rozwiązać kongruencję
 
Rozwiązać kongruencję
  
Linia 1537: Linia 1561:
 
== Najmniejsze liczby niekwadratowe modulo ==
 
== Najmniejsze liczby niekwadratowe modulo ==
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J52</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J53</span><br/>
 
Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i&nbsp;zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i&nbsp;symbol Jacobiego.
 
Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i&nbsp;zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i&nbsp;symbol Jacobiego.
  
Linia 1547: Linia 1571:
 
|}
 
|}
  
<span style="font-size: 110%; font-weight: bold;">Przykład J53</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J54</span><br/>
 
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>
 
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>
  
Linia 1560: Linia 1584:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J54</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J55</span><br/>
 
Do wyszukiwania liczb <math>\mathbb{n} = \mathbb{n} (p)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 
Do wyszukiwania liczb <math>\mathbb{n} = \mathbb{n} (p)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
  
Linia 1574: Linia 1598:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J55</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J56</span><br/>
 
Niech <math>\mathbb{n} \in \mathbb{Z}_+</math> i&nbsp;niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, to jest liczbą pierwszą.
 
Niech <math>\mathbb{n} \in \mathbb{Z}_+</math> i&nbsp;niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, to jest liczbą pierwszą.
  
Linia 1594: Linia 1618:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J56</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J57</span><br/>
 
Pokazać, że najmniejszą liczbą niekwadratową modulo <math>p</math> jest
 
Pokazać, że najmniejszą liczbą niekwadratową modulo <math>p</math> jest
  
Linia 1602: Linia 1626:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z właściwości symbolu Legendre'a (zobacz J28 p.7) wiemy, że  
+
Z właściwości symbolu Legendre'a (zobacz J29 p.7) wiemy, że  
  
 
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, =  
 
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, =  
Linia 1613: Linia 1637:
 
Wynika stąd natychmiast, dla liczb pierwszych <math>p</math> postaci <math>8 k \pm 3</math> (i tylko dla takich liczb) liczba <math>2</math> jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo <math>p</math>.
 
Wynika stąd natychmiast, dla liczb pierwszych <math>p</math> postaci <math>8 k \pm 3</math> (i tylko dla takich liczb) liczba <math>2</math> jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo <math>p</math>.
  
Z zadania J39 wynika, że liczba <math>3</math> jest liczbą niekwadratową jedynie dla liczb pierwszych postaci <math>12 k \pm 5</math>. Zatem dla liczb pierwszych, które są jednocześnie postaci <math>p = 8 k \pm 1</math> i <math>p = 12 j \pm 5</math>, liczba <math>3</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Z&nbsp;czterech warunków
+
Z zadania J40 wynika, że liczba <math>3</math> jest liczbą niekwadratową jedynie dla liczb pierwszych postaci <math>12 k \pm 5</math>. Zatem dla liczb pierwszych, które są jednocześnie postaci <math>p = 8 k \pm 1</math> i <math>p = 12 j \pm 5</math>, liczba <math>3</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Z&nbsp;czterech warunków
  
 
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5</math>
 
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5</math>
Linia 1667: Linia 1691:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J57</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J58</span><br/>
 
Dla każdej liczby pierwszej <math>p_n</math> istnieje nieskończenie wiele takich liczb pierwszych <math>q</math>, że <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>.
 
Dla każdej liczby pierwszej <math>p_n</math> istnieje nieskończenie wiele takich liczb pierwszych <math>q</math>, że <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>.
  
Linia 1690: Linia 1714:
  
  
Ponieważ <math>q \equiv 1 \!\! \pmod{8}</math>, to <math>\left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1</math> (zobacz J28), a&nbsp;dla wszystkich liczb pierwszych nieparzystych <math>p_k < p_n</math> mamy
+
Ponieważ <math>q \equiv 1 \!\! \pmod{8}</math>, to <math>\left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1</math> (zobacz J29), a&nbsp;dla wszystkich liczb pierwszych nieparzystych <math>p_k < p_n</math> mamy
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 1708: Linia 1732:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J58 (Sarvadaman Chowla)</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J59 (Sarvadaman Chowla)</span><br/>
 
Istnieje niekończenie wiele liczb pierwszych <math>p</math> takich, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math>, gdzie <math>L</math> jest stałą Linnika.
 
Istnieje niekończenie wiele liczb pierwszych <math>p</math> takich, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math>, gdzie <math>L</math> jest stałą Linnika.
  
Linia 1718: Linia 1742:
 
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1</math>
 
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1</math>
  
(zobacz J28 p.7). Oczywiście <math>p \equiv 1 \!\! \pmod{4}</math>, zatem dla dowolnej liczby pierwszej nieparzystej <math>q_i \leqslant m</math> z&nbsp;twierdzenia J28 p.9 otrzymujemy
+
(zobacz J29 p.7). Oczywiście <math>p \equiv 1 \!\! \pmod{4}</math>, zatem dla dowolnej liczby pierwszej nieparzystej <math>q_i \leqslant m</math> z&nbsp;twierdzenia J29 p.9 otrzymujemy
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 1742: Linia 1766:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J59</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J60</span><br/>
W twierdzeniu J57 pokazaliśmy, że dla każdej liczby pierwszej <math>\mathbb{n}</math> istnieją takie liczby pierwsze <math>p</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Zatem zbiór <math>S_\mathbb{n}</math> liczb pierwszych takich, że dla każdej liczby <math>p \in S_\mathbb{n}</math> liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> jest zbiorem niepustym. Wynika stąd, że zbiór <math>S_\mathbb{n}</math> ma element najmniejszy i&nbsp;możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w&nbsp;PARI/GP napisać proste polecenie
+
W twierdzeniu J58 pokazaliśmy, że dla każdej liczby pierwszej <math>\mathbb{n}</math> istnieją takie liczby pierwsze <math>p</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Zatem zbiór <math>S_\mathbb{n}</math> liczb pierwszych takich, że dla każdej liczby <math>p \in S_\mathbb{n}</math> liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> jest zbiorem niepustym. Wynika stąd, że zbiór <math>S_\mathbb{n}</math> ma element najmniejszy i&nbsp;możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w&nbsp;PARI/GP napisać proste polecenie
  
 
  <span style="font-size: 90%; color:black;">'''forprime'''(n = 2, 50, '''forprime'''(p = 2, 10^10, '''if'''( A(p) == n, '''print'''(n, "  ", p); '''break'''() )))</span>
 
  <span style="font-size: 90%; color:black;">'''forprime'''(n = 2, 50, '''forprime'''(p = 2, 10^10, '''if'''( A(p) == n, '''print'''(n, "  ", p); '''break'''() )))</span>
Linia 1760: Linia 1784:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J60</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J61</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Prawdziwe jest oszacowanie
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Prawdziwe jest oszacowanie
  
Linia 1802: Linia 1826:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J61*</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J62*</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Dla <math>p \geqslant 5</math> prawdziwe jest oszacowanie<ref name="Norton1"/><ref name="Trevino1"/><ref name="Trevino2"/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Dla <math>p \geqslant 5</math> prawdziwe jest oszacowanie<ref name="Norton1"/><ref name="Trevino1"/><ref name="Trevino2"/>
  
Linia 1809: Linia 1833:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J62</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J63</span><br/>
 
Liczby <math>\mathbb{n} = \mathbb{n} (p)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (p)</math>, gdzie <math>p</math> są nieparzystymi liczbami pierwszymi, jest równa<ref name="Erdos1"/>
 
Liczby <math>\mathbb{n} = \mathbb{n} (p)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (p)</math>, gdzie <math>p</math> są nieparzystymi liczbami pierwszymi, jest równa<ref name="Erdos1"/>
  
Linia 1816: Linia 1840:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J63</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J64</span><br/>
 
Na zakończenie tego tematu podamy jeszcze klika twierdzeń dotyczących liczb niekwadratowych modulo <math>p</math>.
 
Na zakończenie tego tematu podamy jeszcze klika twierdzeń dotyczących liczb niekwadratowych modulo <math>p</math>.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J64</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J65</span><br/>
 
Dla każdej liczby pierwszej <math>p \geqslant 5</math> najmniejsza '''nieparzysta''' liczba niekwadratowa modulo <math>p</math> jest liczbą pierwszą mniejszą od <math>p</math>.
 
Dla każdej liczby pierwszej <math>p \geqslant 5</math> najmniejsza '''nieparzysta''' liczba niekwadratowa modulo <math>p</math> jest liczbą pierwszą mniejszą od <math>p</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>S \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich '''nieparzystych''' liczb niekwadratowych modulo <math>p</math>. Z&nbsp;twierdzenia J23 wiemy, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to w&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> jest dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>. W&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> mamy też dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb parzystych i&nbsp;tyle samo liczb nieparzystych.
+
Niech <math>S \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich '''nieparzystych''' liczb niekwadratowych modulo <math>p</math>. Z&nbsp;twierdzenia J24 wiemy, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to w&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> jest dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>. W&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> mamy też dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb parzystych i&nbsp;tyle samo liczb nieparzystych.
  
 
Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo <math>p</math>, bo <math>4 = 2^2 < 5 \leqslant p</math> jest parzystą liczbą kwadratową modulo <math>p</math>, czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo <math>p</math>. Wynika stąd, że zbiór <math>S</math> nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru <math>S</math> jest liczbą pierwszą.
 
Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo <math>p</math>, bo <math>4 = 2^2 < 5 \leqslant p</math> jest parzystą liczbą kwadratową modulo <math>p</math>, czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo <math>p</math>. Wynika stąd, że zbiór <math>S</math> nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru <math>S</math> jest liczbą pierwszą.
Linia 1845: Linia 1869:
 
|}
 
|}
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J65</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J66</span><br/>
 
Najmniejsze liczby niekwadratowe modulo <math>m</math> są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo <math>p .</math> W&nbsp;jednym i&nbsp;drugim przypadku liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową w&nbsp;zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od <math>p</math> lub <math>m .</math> Dlatego będziemy je oznaczali również jako <math>\mathbb{n}(m) .</math>
 
Najmniejsze liczby niekwadratowe modulo <math>m</math> są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo <math>p .</math> W&nbsp;jednym i&nbsp;drugim przypadku liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową w&nbsp;zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od <math>p</math> lub <math>m .</math> Dlatego będziemy je oznaczali również jako <math>\mathbb{n}(m) .</math>
  
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja J66</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja J67</span><br/>
 
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Powiemy, że <math>\mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, gdy <math>\mathbb{n}</math> jest najmniejszą liczbą dodatnią względnie pierwszą z <math>m</math> taką, że kongruencja
 
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Powiemy, że <math>\mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, gdy <math>\mathbb{n}</math> jest najmniejszą liczbą dodatnią względnie pierwszą z <math>m</math> taką, że kongruencja
  
Linia 1859: Linia 1883:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład J67</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J68</span><br/>
 
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> i&nbsp;najmniejsze liczby niekwadratowe modulo <math>m .</math>
 
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> i&nbsp;najmniejsze liczby niekwadratowe modulo <math>m .</math>
  
Linia 1884: Linia 1908:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J68</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J69</span><br/>
 
Do wyszukiwania liczb <math>\mathbb{n} (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 
Do wyszukiwania liczb <math>\mathbb{n} (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
  
Linia 1928: Linia 1952:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J69</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J70</span><br/>
 
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to <math>\mathbb{n}</math> jest liczbą pierwszą.
 
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to <math>\mathbb{n}</math> jest liczbą pierwszą.
  
Linia 1948: Linia 1972:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J70</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J71</span><br/>
 
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli <math>m = 8 k \pm 3</math>, to <math>\mathbb{n} (m) = 2 .</math>
 
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli <math>m = 8 k \pm 3</math>, to <math>\mathbb{n} (m) = 2 .</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia J34 wiemy, że <math>\left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1</math>, gdy <math>m = 8 k \pm 3 .</math> Wynika stąd, że <math>2</math> jest liczbą niekwadratową modulo <math>m</math>, a&nbsp;jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo <math>m .</math> Co należało pokazać.<br/>
+
Z twierdzenia J35 wiemy, że <math>\left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1</math>, gdy <math>m = 8 k \pm 3 .</math> Wynika stąd, że <math>2</math> jest liczbą niekwadratową modulo <math>m</math>, a&nbsp;jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo <math>m .</math> Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1958: Linia 1982:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J71</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J72</span><br/>
 
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli spełniony jest jeden z&nbsp;warunków
 
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli spełniony jest jeden z&nbsp;warunków
  
Linia 1971: Linia 1995:
 
::<math>x^2 \equiv 3 \pmod{m}</math>
 
::<math>x^2 \equiv 3 \pmod{m}</math>
  
Z założenia <math>4 \, | \, m</math>, co nie wyklucza możliwości, że również <math>8 \, | \, m .</math> Ponieważ <math>4 \nmid (3 - 1)</math> i <math>8 \nmid (3 - 1)</math>, to z&nbsp;twierdzenia J48 wynika, że kongruencja <math>x^2 \equiv 3 \!\! \pmod{m}</math> nie ma rozwiązania. Jeśli tylko <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math> W&nbsp;pierwszym punkcie jest to założone wprost, w&nbsp;drugim łatwo widzimy, że <math>3 \nmid (12 k \pm 4) .</math>
+
Z założenia <math>4 \, | \, m</math>, co nie wyklucza możliwości, że również <math>8 \, | \, m .</math> Ponieważ <math>4 \nmid (3 - 1)</math> i <math>8 \nmid (3 - 1)</math>, to z&nbsp;twierdzenia J49 wynika, że kongruencja <math>x^2 \equiv 3 \!\! \pmod{m}</math> nie ma rozwiązania. Jeśli tylko <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math> W&nbsp;pierwszym punkcie jest to założone wprost, w&nbsp;drugim łatwo widzimy, że <math>3 \nmid (12 k \pm 4) .</math>
  
 
Można też zauważyć, że żądanie, aby <math>\gcd (3, m) = 1</math>, prowadzi do dwóch układów kongruencji
 
Można też zauważyć, że żądanie, aby <math>\gcd (3, m) = 1</math>, prowadzi do dwóch układów kongruencji
Linia 1997: Linia 2021:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J72</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J73</span><br/>
 
Niech <math>m = 24 k \pm 10 .</math> Pokazać, że <math>\mathbb{n} (m) = 3 .</math>
 
Niech <math>m = 24 k \pm 10 .</math> Pokazać, że <math>\mathbb{n} (m) = 3 .</math>
  
Linia 2009: Linia 2033:
 
::<math>x^2 \equiv 3 \pmod{m'}</math>
 
::<math>x^2 \equiv 3 \pmod{m'}</math>
  
miałaby rozwiązanie, ale jest to niemożliwe, bo <math>\left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J39), czyli <math>3</math> jest liczbą niekwadratową modulo <math>m' .</math> Ponieważ <math>2 \, | \, m</math>, to <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m .</math> Wynika stąd, że <math>\mathbb{n} (m) = 3 .</math><br/>
+
miałaby rozwiązanie, ale jest to niemożliwe, bo <math>\left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J40), czyli <math>3</math> jest liczbą niekwadratową modulo <math>m' .</math> Ponieważ <math>2 \, | \, m</math>, to <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m .</math> Wynika stąd, że <math>\mathbb{n} (m) = 3 .</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2015: Linia 2039:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J73</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J74</span><br/>
 
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą nieparzystą podzielną przez <math>p \in S_2</math>, to <math>\mathbb{n} (m) = 2 .</math>
 
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą nieparzystą podzielną przez <math>p \in S_2</math>, to <math>\mathbb{n} (m) = 2 .</math>
  
Linia 2023: Linia 2047:
 
::<math>x^2 \equiv 2 \pmod{m}</math>
 
::<math>x^2 \equiv 2 \pmod{m}</math>
  
nie ma rozwiązania (zobacz J48). Ponieważ <math>2 \nmid m</math>, to <math>\mathbb{n} (m) = 2 .</math>
+
nie ma rozwiązania (zobacz J49). Ponieważ <math>2 \nmid m</math>, to <math>\mathbb{n} (m) = 2 .</math>
  
Uwaga: zbiór <math>S_2</math> tworzą liczby pierwsze postaci <math>8 k \pm 3</math> (zobacz J34).<br/>
+
Uwaga: zbiór <math>S_2</math> tworzą liczby pierwsze postaci <math>8 k \pm 3</math> (zobacz J35).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2031: Linia 2055:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J74</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J75</span><br/>
 
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą parzystą niepodzielną przez <math>3</math> i&nbsp;podzielną przez <math>p \in S_3</math>, to <math>\mathbb{n} (m) = 3 .</math>
 
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą parzystą niepodzielną przez <math>3</math> i&nbsp;podzielną przez <math>p \in S_3</math>, to <math>\mathbb{n} (m) = 3 .</math>
  
Linia 2039: Linia 2063:
 
::<math>x^2 \equiv 3 \pmod{m}</math>
 
::<math>x^2 \equiv 3 \pmod{m}</math>
  
nie ma rozwiązania (zobacz J48). Ponieważ <math>2 \, | \, m</math> i <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math>
+
nie ma rozwiązania (zobacz J49). Ponieważ <math>2 \, | \, m</math> i <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math>
  
Uwaga: zbiór <math>S_3</math> tworzą liczby pierwsze postaci <math>12 k \pm 5</math> (zobacz J39).<br/>
+
Uwaga: zbiór <math>S_3</math> tworzą liczby pierwsze postaci <math>12 k \pm 5</math> (zobacz J40).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2047: Linia 2071:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J75</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J76</span><br/>
 
Jeżeli <math>m</math> jest liczbą dodatnią podzielną przez <math>6</math> i&nbsp;niepodzielną przez <math>5</math>, to <math>\mathbb{n} (m) = 5 .</math>
 
Jeżeli <math>m</math> jest liczbą dodatnią podzielną przez <math>6</math> i&nbsp;niepodzielną przez <math>5</math>, to <math>\mathbb{n} (m) = 5 .</math>
  
Linia 2055: Linia 2079:
 
::<math>x^2 \equiv 5 \pmod{m}</math>
 
::<math>x^2 \equiv 5 \pmod{m}</math>
  
nie ma rozwiązania (zobacz J48). Ponieważ <math>2 \, | \, m</math>, <math>3 \, | \, m</math> i <math>5 \nmid m</math>, to <math>\mathbb{n} (m) = 5 .</math><br/>
+
nie ma rozwiązania (zobacz J49). Ponieważ <math>2 \, | \, m</math>, <math>3 \, | \, m</math> i <math>5 \nmid m</math>, to <math>\mathbb{n} (m) = 5 .</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2061: Linia 2085:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J76</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J77</span><br/>
Uogólnienie twierdzenia J75 będzie wymagało udowodnienia twierdzenia pomocniczego J77.
+
Uogólnienie twierdzenia J76 będzie wymagało udowodnienia twierdzenia pomocniczego J78.
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J77</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J78</span><br/>
 
Niech <math>p \geqslant 5</math> będzie liczbą pierwszą. Istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math>
 
Niech <math>p \geqslant 5</math> będzie liczbą pierwszą. Istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math>
  
Linia 2074: Linia 2098:
 
::<math>\left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math>
 
::<math>\left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math>
  
(zobacz J34&nbsp;p.7). Zatem dowód wystarczy przeprowadzić dla <math>p \geqslant 13</math>.
+
(zobacz J35&nbsp;p.7). Zatem dowód wystarczy przeprowadzić dla <math>p \geqslant 13</math>.
  
 
'''Przypadek pierwszy:''' <math>\boldsymbol{p \equiv 1 \!\! \pmod{4}}</math>
 
'''Przypadek pierwszy:''' <math>\boldsymbol{p \equiv 1 \!\! \pmod{4}}</math>
  
Niech liczba <math>q</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Z&nbsp;twierdzenia J64 wiemy, że dla <math>p \geqslant 5</math> liczba <math>q</math> jest liczbą pierwszą i&nbsp;jest mniejsza od <math>p</math>. Ponieważ <math>p \equiv 1 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J34&nbsp;p.9 otrzymujemy natychmiast
+
Niech liczba <math>q</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Z&nbsp;twierdzenia J65 wiemy, że dla <math>p \geqslant 5</math> liczba <math>q</math> jest liczbą pierwszą i&nbsp;jest mniejsza od <math>p</math>. Ponieważ <math>p \equiv 1 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J35&nbsp;p.9 otrzymujemy natychmiast
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 2092: Linia 2116:
 
'''A. Liczby pierwsze postaci ''' <math>\boldsymbol{p = 12 j + 11}</math>
 
'''A. Liczby pierwsze postaci ''' <math>\boldsymbol{p = 12 j + 11}</math>
  
Wiemy, że w tym przypadku <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1</math> (zobacz J39). Mamy
+
Wiemy, że w tym przypadku <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1</math> (zobacz J40). Mamy
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 2102: Linia 2126:
 
'''B. Liczby pierwsze postaci ''' <math>\boldsymbol{p = 12 j + 7}</math>
 
'''B. Liczby pierwsze postaci ''' <math>\boldsymbol{p = 12 j + 7}</math>
  
Wiemy, że w tym przypadku <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J34&nbsp;p.6 oraz J39). Otrzymujemy
+
Wiemy, że w tym przypadku <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J35&nbsp;p.6 oraz J40). Otrzymujemy
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 2108: Linia 2132:
 
</div>
 
</div>
  
Ponieważ liczba <math>p - 12</math> jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy <math>q < p</math> liczby <math>p - 12</math> taki, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;przeciwnym razie z&nbsp;twierdzenia J34&nbsp;p.4 mielibyśmy <math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1</math>. Co kończy dowód.<br/>
+
Ponieważ liczba <math>p - 12</math> jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy <math>q < p</math> liczby <math>p - 12</math> taki, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;przeciwnym razie z&nbsp;twierdzenia J35&nbsp;p.4 mielibyśmy <math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2114: Linia 2138:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J78</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J79</span><br/>
 
Niech <math>m \in \mathbb{Z}_+</math> i <math>p \geqslant 5</math> będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od <math>p</math> dzieli <math>m</math> i <math>p \nmid m</math>, to <math>\mathbb{n} (m) = p</math>.
 
Niech <math>m \in \mathbb{Z}_+</math> i <math>p \geqslant 5</math> będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od <math>p</math> dzieli <math>m</math> i <math>p \nmid m</math>, to <math>\mathbb{n} (m) = p</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia J77 wiemy, że istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> Z&nbsp;założenia <math>q \, | \, m</math>, zatem kongruencja
+
Z twierdzenia J78 wiemy, że istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> Z&nbsp;założenia <math>q \, | \, m</math>, zatem kongruencja
  
 
::<math>x^2 \equiv p \pmod{m}</math>
 
::<math>x^2 \equiv p \pmod{m}</math>
  
nie ma rozwiązania (zobacz J48). Ponieważ wszystkie liczby pierwsze mniejsze od <math>p</math> dzielą <math>m</math>, to <math>\mathbb{n} (m) = p</math>. Co należało pokazać.<br/>
+
nie ma rozwiązania (zobacz J49). Ponieważ wszystkie liczby pierwsze mniejsze od <math>p</math> dzielą <math>m</math>, to <math>\mathbb{n} (m) = p</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2128: Linia 2152:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie J79</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie J80</span><br/>
 
Pokazać, że podanym w&nbsp;pierwszej kolumnie postaciom liczby <math>m</math> odpowiadają wymienione w&nbsp;drugiej kolumnie wartości <math>\mathbb{n} (m) .</math>
 
Pokazać, że podanym w&nbsp;pierwszej kolumnie postaciom liczby <math>m</math> odpowiadają wymienione w&nbsp;drugiej kolumnie wartości <math>\mathbb{n} (m) .</math>
  
Linia 2135: Linia 2159:
 
! Postać liczby <math>\boldsymbol{m}</math> || <math>\boldsymbol{𝕟(m)}</math> || Uwagi
 
! Postać liczby <math>\boldsymbol{m}</math> || <math>\boldsymbol{𝕟(m)}</math> || Uwagi
 
|-
 
|-
| <math>m=24k \pm 9</math> || style="text-align:center;" | <math>2</math> || rowspan="3" style="text-align:center;" | J73
+
| <math>m=24k \pm 9</math> || style="text-align:center;" | <math>2</math> || rowspan="3" style="text-align:center;" | J74
 
|-
 
|-
 
| <math>m=120k \pm 25</math> || style="text-align:center;" | <math>2</math>
 
| <math>m=120k \pm 25</math> || style="text-align:center;" | <math>2</math>
Linia 2141: Linia 2165:
 
| <math>m=120k \pm 55</math> || style="text-align:center;" | <math>2</math>
 
| <math>m=120k \pm 55</math> || style="text-align:center;" | <math>2</math>
 
|-
 
|-
| <math>m=120k \pm 50</math> || style="text-align:center;" | <math>3</math> || style="text-align:center;" | J74
+
| <math>m=120k \pm 50</math> || style="text-align:center;" | <math>3</math> || style="text-align:center;" | J75
 
|-
 
|-
| <math>m=30k \pm 6</math> || style="text-align:center;" | <math>5</math> || rowspan="2" style="text-align:center;" | J75, J78
+
| <math>m=30k \pm 6</math> || style="text-align:center;" | <math>5</math> || rowspan="2" style="text-align:center;" | J76, J79
 
|-
 
|-
 
| <math>m=30k \pm 12</math> || style="text-align:center;" | <math>5</math>
 
| <math>m=30k \pm 12</math> || style="text-align:center;" | <math>5</math>
 
|-
 
|-
| <math>m=210k \pm 30</math> || style="text-align:center;" | <math>7</math> || rowspan="3" style="text-align:center;" | J78
+
| <math>m=210k \pm 30</math> || style="text-align:center;" | <math>7</math> || rowspan="3" style="text-align:center;" | J79
 
|-
 
|-
 
| <math>m=210k \pm 60</math> || style="text-align:center;" | <math>7</math>  
 
| <math>m=210k \pm 60</math> || style="text-align:center;" | <math>7</math>  
Linia 2156: Linia 2180:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J80</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J81</span><br/>
 
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
 
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
  
Linia 2180: Linia 2204:
 
::<math>x^2 \equiv \mathbb{n} (m) \pmod{2 m}</math>
 
::<math>x^2 \equiv \mathbb{n} (m) \pmod{2 m}</math>
  
również nie ma rozwiązania (zobacz J48).
+
również nie ma rozwiązania (zobacz J49).
  
 
Zatem <math>\mathbb{n} (2 m) \leqslant \mathbb{n} (m) .</math> Niech <math>q</math> będzie liczbą pierwszą taką, że <math>2 < q <\mathbb{n} (m) .</math> Kongruencję
 
Zatem <math>\mathbb{n} (2 m) \leqslant \mathbb{n} (m) .</math> Niech <math>q</math> będzie liczbą pierwszą taką, że <math>2 < q <\mathbb{n} (m) .</math> Kongruencję
Linia 2207: Linia 2231:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J81</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J82</span><br/>
 
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
 
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
  
Linia 2219: Linia 2243:
 
'''Punkt 1.'''
 
'''Punkt 1.'''
  
Z twierdzenia J73 wynika, że w&nbsp;przypadku, gdy <math>3 \, | \, m</math>, to <math>\mathbb{n} (m) = 2 .</math> Ponieważ <math>2 \, | \, 4 m</math> i <math>3 \, | \, 4 m</math>, to <math>\mathbb{n} (4 m) \geqslant 5 .</math>
+
Z twierdzenia J74 wynika, że w&nbsp;przypadku, gdy <math>3 \, | \, m</math>, to <math>\mathbb{n} (m) = 2 .</math> Ponieważ <math>2 \, | \, 4 m</math> i <math>3 \, | \, 4 m</math>, to <math>\mathbb{n} (4 m) \geqslant 5 .</math>
  
 
'''Punkt 2.'''
 
'''Punkt 2.'''
  
Ponieważ <math>m</math> jest liczbą nieparzystą, to <math>8 \nmid 4 m</math>, ale <math>4 \, | \, 4 m \;</math> i <math>\; 4 \nmid (3 - 1)</math>, zatem z&nbsp;twierdzenia J48 wynika, że kongruencja
+
Ponieważ <math>m</math> jest liczbą nieparzystą, to <math>8 \nmid 4 m</math>, ale <math>4 \, | \, 4 m \;</math> i <math>\; 4 \nmid (3 - 1)</math>, zatem z&nbsp;twierdzenia J49 wynika, że kongruencja
  
 
::<math>x^2 \equiv 3 \pmod{4 m}</math>
 
::<math>x^2 \equiv 3 \pmod{4 m}</math>
Linia 2233: Linia 2257:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J82</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J83</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>p \,</math> i <math>\, p \, | \, m</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m .</math>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>p \,</math> i <math>\, p \, | \, m</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m .</math>
  
Linia 2255: Linia 2279:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J83</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J84</span><br/>
 
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to istnieje taki dzielnik pierwszy <math>p</math> liczby <math>m</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p .</math>
 
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to istnieje taki dzielnik pierwszy <math>p</math> liczby <math>m</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p .</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby <math>m</math>: <math>\{ p_1, \ldots, p_s \}</math> i&nbsp;powiązany z&nbsp;dzielnikami pierwszymi <math>p_k</math> zbiór najmniejszych liczb niekwadratowych modulo <math>p_k</math>: <math>\{ \mathbb{n}_1, \ldots, \mathbb{n}_s \}</math>, z&nbsp;których każda jest liczbą niekwadratową modulo <math>m</math> (zobacz J82). Wynika stąd, że liczba <math>\mathbb{n} = \mathbb{n} (m)</math> musi być mniejsza od każdej z&nbsp;liczb <math>\mathbb{n}_k .</math>
+
Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby <math>m</math>: <math>\{ p_1, \ldots, p_s \}</math> i&nbsp;powiązany z&nbsp;dzielnikami pierwszymi <math>p_k</math> zbiór najmniejszych liczb niekwadratowych modulo <math>p_k</math>: <math>\{ \mathbb{n}_1, \ldots, \mathbb{n}_s \}</math>, z&nbsp;których każda jest liczbą niekwadratową modulo <math>m</math> (zobacz J83). Wynika stąd, że liczba <math>\mathbb{n} = \mathbb{n} (m)</math> musi być mniejsza od każdej z&nbsp;liczb <math>\mathbb{n}_k .</math>
  
 
Z definicji liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest liczbą niekwadratową modulo <math>m</math>, co oznacza, że kongruencja
 
Z definicji liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest liczbą niekwadratową modulo <math>m</math>, co oznacza, że kongruencja
Linia 2269: Linia 2293:
 
::<math>x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k}</math>
 
::<math>x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k}</math>
  
musi nie mieć rozwiązania (zobacz J11). Z&nbsp;twierdzenia J42 wiemy, że wtedy kongruencja
+
musi nie mieć rozwiązania (zobacz J11). Z&nbsp;twierdzenia J43 wiemy, że wtedy kongruencja
  
 
::<math>x^2 \equiv \mathbb{n} \pmod{p_k}</math>
 
::<math>x^2 \equiv \mathbb{n} \pmod{p_k}</math>
Linia 2279: Linia 2303:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J84</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J85</span><br/>
 
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
 
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
  
Linia 2287: Linia 2311:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Twierdzenie to jest prostym wnioskiem z&nbsp;twierdzenia J83, ale musimy jeszcze pokazać, że <math>\gcd (\mathbb{n} (m), m) = 1 .</math> Przypuśćmy, że <math>p_k |\mathbb{n} (m)</math> dla pewnego <math>1 \leqslant k \leqslant s .</math> Ponieważ <math>\mathbb{n} (m)</math> jest liczbą pierwszą, to musi być <math>\mathbb{n} (m) = p_k</math>, ale wtedy
+
Twierdzenie to jest prostym wnioskiem z&nbsp;twierdzenia J84, ale musimy jeszcze pokazać, że <math>\gcd (\mathbb{n} (m), m) = 1 .</math> Przypuśćmy, że <math>p_k |\mathbb{n} (m)</math> dla pewnego <math>1 \leqslant k \leqslant s .</math> Ponieważ <math>\mathbb{n} (m)</math> jest liczbą pierwszą, to musi być <math>\mathbb{n} (m) = p_k</math>, ale wtedy
  
 
::<math>\mathbb{n} (p_k) < p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k)</math>
 
::<math>\mathbb{n} (p_k) < p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k)</math>
Linia 2297: Linia 2321:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J85</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J86</span><br/>
 
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>\mathbb{n}(m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m .</math> Prawdziwe są oszacowania
 
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>\mathbb{n}(m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m .</math> Prawdziwe są oszacowania
  
Linia 2305: Linia 2329:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>p</math> będzie dzielnikiem pierwszym liczby <math>m</math> takim, że <math>\mathbb{n}(m) = \mathbb{n} (p)</math> (z twierdzenia J83 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie <math>\mathbb{n}(p) < F (p)</math>, gdzie <math>F(x)</math> jest funkcją rosnącą, to
+
Niech <math>p</math> będzie dzielnikiem pierwszym liczby <math>m</math> takim, że <math>\mathbb{n}(m) = \mathbb{n} (p)</math> (z twierdzenia J84 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie <math>\mathbb{n}(p) < F (p)</math>, gdzie <math>F(x)</math> jest funkcją rosnącą, to
  
 
::<math>\mathbb{n}(m) = \mathbb{n} (p) < F (p) \leqslant F (m)</math>
 
::<math>\mathbb{n}(m) = \mathbb{n} (p) < F (p) \leqslant F (m)</math>
  
Podane w&nbsp;twierdzeniu oszacowania wynikają natychmiast z&nbsp;twierdzeń J60 i&nbsp;J61.<br/>
+
Podane w&nbsp;twierdzeniu oszacowania wynikają natychmiast z&nbsp;twierdzeń J61 i&nbsp;J62.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2315: Linia 2339:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J86</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J87</span><br/>
 
Liczby <math>\mathbb{n} (m)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (m)</math> wynosi<ref name="Pollack1"/>
 
Liczby <math>\mathbb{n} (m)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (m)</math> wynosi<ref name="Pollack1"/>
  
Linia 2328: Linia 2352:
 
|}
 
|}
  
<span style="font-size: 110%; font-weight: bold;">Przykład J87</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Przykład J88</span><br/>
 
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>, najmniejsze liczby niekwadratowe modulo <math>m</math> i&nbsp;najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>.
 
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>, najmniejsze liczby niekwadratowe modulo <math>m</math> i&nbsp;najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>.
  
Linia 2347: Linia 2371:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J88</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J89</span><br/>
 
Do wyszukiwania liczb <math>c = c (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 
Do wyszukiwania liczb <math>c = c (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
  
Linia 2359: Linia 2383:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga J89</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga J90</span><br/>
 
Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math> oznaczyliśmy jako <math>c(m)</math>. Zauważmy, że są to liczby inne od <math>\mathbb{n}(p)</math> i <math>\mathbb{n}(m)</math>. Wystarczy zwrócić uwagę na występujące w&nbsp;tabeli liczby <math>\mathbb{n}(p)</math>, <math>\mathbb{n}(m)</math> i <math>c(m)</math> dla <math>m = 15, 33, 39</math>. Różnice wynikają z&nbsp;innej definicji liczb <math>c(m)</math> – jeżeli liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> nie musi być równy <math>- 1</math>. I&nbsp;tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.
 
Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math> oznaczyliśmy jako <math>c(m)</math>. Zauważmy, że są to liczby inne od <math>\mathbb{n}(p)</math> i <math>\mathbb{n}(m)</math>. Wystarczy zwrócić uwagę na występujące w&nbsp;tabeli liczby <math>\mathbb{n}(p)</math>, <math>\mathbb{n}(m)</math> i <math>c(m)</math> dla <math>m = 15, 33, 39</math>. Różnice wynikają z&nbsp;innej definicji liczb <math>c(m)</math> – jeżeli liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> nie musi być równy <math>- 1</math>. I&nbsp;tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.
  
 
Ponieważ <math>c(m)</math> nie zawsze będzie najmniejszą liczbą kwadratową modulo <math>m</math>, to mamy natychmiast oszacowanie: <math>c(m) \geqslant \mathbb{n} (m)</math> (poza przypadkami, gdy <math>m = n^2</math>).
 
Ponieważ <math>c(m)</math> nie zawsze będzie najmniejszą liczbą kwadratową modulo <math>m</math>, to mamy natychmiast oszacowanie: <math>c(m) \geqslant \mathbb{n} (m)</math> (poza przypadkami, gdy <math>m = n^2</math>).
  
Dla <math>c(m)</math> nie są prawdziwe oszacowania podane w&nbsp;twierdzeniu J60. Łatwo zauważamy, że
+
Dla <math>c(m)</math> nie są prawdziwe oszacowania podane w&nbsp;twierdzeniu J61. Łatwo zauważamy, że
  
 
::<math>c = c (15) = 7 > \sqrt{15} + {\small\frac{1}{2}} \approx 4.37</math>
 
::<math>c = c (15) = 7 > \sqrt{15} + {\small\frac{1}{2}} \approx 4.37</math>
Linia 2378: Linia 2402:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J90</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie J91</span><br/>
 
Niech <math>c, m \in \mathbb{Z}_+</math> i&nbsp;niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>c</math> będzie najmniejszą liczbą taką, że <math>\left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1</math>. Liczba <math>c</math> musi być liczbą pierwszą.
 
Niech <math>c, m \in \mathbb{Z}_+</math> i&nbsp;niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>c</math> będzie najmniejszą liczbą taką, że <math>\left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1</math>. Liczba <math>c</math> musi być liczbą pierwszą.
  

Wersja z 10:07, 26 kwi 2023

22.03.2023



Chińskie twierdzenie o resztach

Twierdzenie J1
Niech [math]\displaystyle{ a, u \in \mathbb{Z} }[/math] i [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Kongruencja

[math]\displaystyle{ u \equiv a \pmod{m n} }[/math]

jest równoważna układowi kongruencji

[math]\displaystyle{ \begin{align} u &\equiv a \pmod{m} \\ u &\equiv a \pmod{n} \end{align} }[/math]
Dowód

[math]\displaystyle{ \Longrightarrow }[/math]
Jeżeli liczba [math]\displaystyle{ u - a }[/math] jest podzielna przez iloczyn [math]\displaystyle{ m n }[/math], to tym bardziej jest podzielna przez dowolny czynnik tego iloczynu, skąd wynika natychmiast wypisany układ kongruencji.

[math]\displaystyle{ \Longleftarrow }[/math]
Z kongruencji

[math]\displaystyle{ u \equiv a \pmod{m} }[/math]

wynika, że [math]\displaystyle{ u - a = k m }[/math], zaś z kongruencji

[math]\displaystyle{ u \equiv a \pmod{n} }[/math]

otrzymujemy [math]\displaystyle{ n \, | \, (u - a) }[/math], czyli [math]\displaystyle{ n \, | \, k m }[/math]. Ponieważ [math]\displaystyle{ \gcd (m, n) = 1 }[/math], zatem [math]\displaystyle{ n \, | \, k }[/math] (zobacz C72) i istnieje taka liczba całkowita [math]\displaystyle{ s }[/math], że [math]\displaystyle{ k = s n }[/math], czyli [math]\displaystyle{ u - a = s n m }[/math], a stąd [math]\displaystyle{ u \equiv a \!\! \pmod{m n} }[/math]. Co kończy dowód.


Twierdzenie J2
Dla dowolnych liczb [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] i względnie pierwszych liczb [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] istnieje dokładnie jedna taka liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m n }[/math]), że prawdziwy jest układ kongruencji

[math]\displaystyle{ \begin{align} c & \equiv a \pmod{m} \\ c & \equiv b \pmod{n} \end{align} }[/math]
Dowód

Z założenia liczby [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, zatem na mocy lematu Bézouta (C.71) istnieją takie liczby [math]\displaystyle{ x, y \in \mathbb{Z} }[/math], że

[math]\displaystyle{ m x + n y = 1 }[/math]

Niech [math]\displaystyle{ c = a n y + b m x }[/math]. Modulo [math]\displaystyle{ m }[/math] dostajemy

[math]\displaystyle{ c \equiv a n y \pmod{m} }[/math]
[math]\displaystyle{ c \equiv a (1 - m x) \pmod{m} }[/math]
[math]\displaystyle{ c \equiv a \pmod{m} }[/math]

Natomiast modulo [math]\displaystyle{ n }[/math] mamy

[math]\displaystyle{ c \equiv b m x \pmod{n} }[/math]
[math]\displaystyle{ c \equiv b (1 - n y) \pmod{n} }[/math]
[math]\displaystyle{ c \equiv b \pmod{n} }[/math]

Pokazaliśmy tym samym istnienie szukanej liczby [math]\displaystyle{ c }[/math]. Przypuśćmy, że istnieją dwie takie liczby [math]\displaystyle{ c }[/math] i [math]\displaystyle{ d }[/math]. Z założenia [math]\displaystyle{ m \, | \, (d - a) }[/math] i [math]\displaystyle{ m \, | \, (c - a) }[/math], zatem [math]\displaystyle{ m }[/math] dzieli różnicę tych liczb, czyli [math]\displaystyle{ m \, | \, (d - c) }[/math]. Podobnie pokazujemy, że [math]\displaystyle{ n \, | \, (d - c) }[/math]. Ponieważ liczby [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, to [math]\displaystyle{ m n \, | \, (d - c) }[/math] (zobacz C73), co oznacza, że

[math]\displaystyle{ d \equiv c \pmod{m n} }[/math].

Czyli możemy powiedzieć, że wybrana przez nas liczba [math]\displaystyle{ c }[/math] jest określona modulo [math]\displaystyle{ m n }[/math] i tak rozumiana jest dokładnie jedna. W szczególności istnieje tylko jedna liczba [math]\displaystyle{ c }[/math] taka, że [math]\displaystyle{ 1 \leqslant c \leqslant m n }[/math].


Twierdzenie J3 (chińskie twierdzenie o resztach)
Niech [math]\displaystyle{ a, b, c, u \in \mathbb{Z} }[/math] i [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] oraz niech [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Istnieje dokładnie jedna liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m n }[/math]) taka, że kongruencja

[math]\displaystyle{ u \equiv c \pmod{m n} }[/math]

jest równoważna układowi kongruencji

[math]\displaystyle{ \begin{align} u & \equiv a \pmod{m} \\ u & \equiv b \pmod{n} \end{align} }[/math]
Dowód

Z twierdzenia J2 wiemy, że istnieje dokładnie jedna liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m n }[/math]) taka, że prawdziwy jest układ kongruencji

[math]\displaystyle{ \begin{align} c & \equiv a \pmod{m} \\ c & \equiv b \pmod{n} \end{align} }[/math]

Korzystając z tego rezultatu i twierdzenia J1, otrzymujemy

[math]\displaystyle{ u \equiv c \pmod{m n} \qquad \Longleftrightarrow \qquad \begin{array}{l} u \equiv c \; \pmod{m} \\ u \equiv c \; \pmod{n} \\ \end{array} \qquad \Longleftrightarrow \qquad \begin{array}{l} u \equiv a \; \pmod{m} \\ u \equiv b \:\, \pmod{n} \\ \end{array} }[/math]

Co należało pokazać.


Uwaga J4
Chińskie twierdzenie o resztach[1] (CRT[2]) pozostaje prawdziwe w przypadku układu skończonej liczby kongruencji. Założenie, że moduły [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze, jest istotne. Przykładowo układ kongruencji

[math]\displaystyle{ \begin{align} u &\equiv 1 \pmod{4} \\ u &\equiv 3 \pmod{8} \end{align} }[/math]

nie może być zapisany w postaci jednej równoważnej kongruencji, bo nie istnieją liczby, które spełniałyby powyższy układ jednocześnie. Łatwo zauważamy, że rozwiązaniem pierwszego równania jest [math]\displaystyle{ u = 4 k + 1 }[/math], które dla liczb [math]\displaystyle{ k }[/math] parzystych i nieparzystych ma postać

[math]\displaystyle{ u = 8 j + 1, \qquad u = 8 j + 5 }[/math]

i nie może być [math]\displaystyle{ u \equiv 3 \!\! \pmod{8} }[/math].


Zadanie J5
Niech [math]\displaystyle{ u, a_1, \ldots, a_k \in \mathbb{Z} }[/math] i [math]\displaystyle{ m_1, \ldots, m_k \in \mathbb{Z}_+ }[/math]. Pokazać, że jeżeli liczby [math]\displaystyle{ m_1, \ldots, m_k }[/math] są parami względnie pierwsze (czyli [math]\displaystyle{ \gcd (m_i, m_j) = 1 }[/math] dla [math]\displaystyle{ i \neq j }[/math]), to istnieje dokładnie jedna liczba [math]\displaystyle{ c }[/math] (określona modulo [math]\displaystyle{ m_1 \cdot \ldots \cdot m_k }[/math]) taka, że układ kongruencji

[math]\displaystyle{ \begin{align} u & \equiv a_1 \pmod{m_1} \\ & \cdots \\ u & \equiv a_k \pmod{m_k} \end{align} }[/math]

można zapisać w sposób równoważny w postaci kongruencji

[math]\displaystyle{ u \equiv c \;\; \pmod{m_1 \cdot \ldots \cdot m_k} }[/math]
Rozwiązanie

Indukcja matematyczna. Twierdzenie jest prawdziwe dla liczby [math]\displaystyle{ k = 2 }[/math] (zobacz J3). Zakładając prawdziwość twierdzenia dla liczby naturalnej [math]\displaystyle{ k \geqslant 2 }[/math], dla liczby [math]\displaystyle{ k + 1 }[/math] otrzymujemy układ kongruencji

[math]\displaystyle{ \begin{align} u & \equiv c \quad \;\, \pmod{m_1 \cdot \ldots \cdot m_k} \\ u & \equiv a_{k + 1} \pmod{m_{k + 1}} \end{align} }[/math]

gdzie skorzystaliśmy z założenia indukcyjnego. Z twierdzenia J3 wynika, że układ ten można zapisać w sposób równoważny w postaci kongruencji

[math]\displaystyle{ u \equiv c' \pmod{m_1 \cdot \ldots \cdot m_k m_{k + 1}} }[/math]

gdzie liczba [math]\displaystyle{ c' }[/math] jest dokładnie jedna i jest określona modulo [math]\displaystyle{ m_1 \cdot \ldots \cdot m_k m_{k + 1} }[/math]. Zatem twierdzenie jest prawdziwe dla [math]\displaystyle{ k + 1 }[/math]. Co kończy dowód indukcyjny.


Przykład J6
Dysponujemy pewną ilością kulek. Grupując je po [math]\displaystyle{ 5 }[/math], zostają nam [math]\displaystyle{ 3 }[/math], a kiedy próbujemy ustawić je po [math]\displaystyle{ 7 }[/math], zostają nam [math]\displaystyle{ 4 }[/math]. Jaka najmniejsza ilość kulek spełnia te warunki? Rozważmy układ kongruencji

[math]\displaystyle{ \begin{align} n &\equiv 3 \pmod{5} \\ n &\equiv 4 \pmod{7} \end{align} }[/math]

Z chińskiego twierdzenia o resztach wiemy, że powyższy układ możemy zapisać w postaci równoważnej kongruencji modulo [math]\displaystyle{ 35 }[/math]. Jeśli chcemy zaoszczędzić sobie trudu, to wystarczy skorzystać z PARI/GP. Wpisując proste polecenie

chinese( Mod(3,5), Mod(4,7) )

uzyskujemy wynik Mod(18, 35), zatem równoważna kongruencja ma postać

[math]\displaystyle{ n \equiv 18 \pmod{35} }[/math]

Jest to zarazem odpowiedź na postawione pytanie: najmniejsza liczba kulek wynosi [math]\displaystyle{ 18 }[/math].

Gdybyśmy chcieli rozważać bardziej rozbudowany układ kongruencji, przykładowo

[math]\displaystyle{ \begin{align} n &\equiv 1 \pmod{2} \\ n &\equiv 2 \pmod{3} \\ n &\equiv 3 \pmod{5} \\ n &\equiv 4 \pmod{7} \\ n &\equiv 5 \pmod{11} \end{align} }[/math]

to argumenty należy zapisać w postaci wektora

chinese( [Mod(1,2), Mod(2,3), Mod(3,5), Mod(4,7), Mod(5,11)] )

Otrzymujemy Mod(1523, 2310).



Wielomiany

Twierdzenie J7
Niech [math]\displaystyle{ W_n (x) }[/math] będzie dowolnym wielomianem stopnia [math]\displaystyle{ n }[/math]. Wielomian [math]\displaystyle{ W_n (x) }[/math] można przedstawić w postaci

[math]\displaystyle{ W_n (x) = W_n (s) + (x - s) V_{n - 1} (x) }[/math]

gdzie [math]\displaystyle{ V_{n - 1} (x) }[/math] jest wielomianem stopnia [math]\displaystyle{ n - 1 }[/math], a współczynniki wiodące wielomianów [math]\displaystyle{ W_n (x) }[/math] i [math]\displaystyle{ V_{n - 1} (x) }[/math] są sobie równe.

Dowód

Z założenia [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math], gdzie [math]\displaystyle{ a_n \neq 0 }[/math]. Zauważmy, że

[math]\displaystyle{ W_n (x) - W_n (s) = \sum_{k = 0}^{n} a_k x^k - \sum_{k = 0}^{n} a_k s^k }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 1}^{n} a_k (x^k - s^k) }[/math]

Dla [math]\displaystyle{ k \geqslant 1 }[/math] prawdziwy jest wzór

[math]\displaystyle{ x^k - s^k = (x - s) \sum_{j = 1}^{k} x^{k - j} s^{j - 1} }[/math]
[math]\displaystyle{ \;\,\, = (x - s) (x^{k - 1} + s x^{k - 2} + \ldots + s^{k - 2} x + s^{k - 1}) }[/math]
[math]\displaystyle{ \;\,\, = (x - s) U^{(k)} (x) }[/math]

Gdzie przez [math]\displaystyle{ U^{(k)} (x) = \sum_{j = 1}^{k} x^{k - j} s^{j - 1} }[/math] oznaczyliśmy wielomian, którego stopień jest równy [math]\displaystyle{ k - 1 }[/math]. Zatem możemy napisać

[math]\displaystyle{ W_n (x) - W_n (s) = (x - s) \sum_{k = 1}^{n} a_k U^{(k)} (x) }[/math]

Suma wypisana po prawej stronie jest pewnym wielomianem [math]\displaystyle{ V_{n - 1} (x) }[/math]. Ponieważ ze wszystkich wielomianów [math]\displaystyle{ a_k U^{(k)} (x) }[/math], wielomian [math]\displaystyle{ a_n U^{(n)} (x) }[/math] ma największy stopień równy [math]\displaystyle{ n - 1 }[/math], to stopień wielomianu [math]\displaystyle{ V_{n - 1} (x) }[/math] jest równy [math]\displaystyle{ n - 1 }[/math]. Czyli

[math]\displaystyle{ W_n (x) - W_n (s) = (x - s) V_{n - 1} (x) }[/math]

Niech [math]\displaystyle{ V_n (x) = \sum_{k = 0}^{n - 1} b_k x^k }[/math]. Mamy

[math]\displaystyle{ \sum_{k = 0}^{n} a_k x^k - W_n (s) = \sum_{k = 0}^{n - 1} b_k x^{k + 1} - s \sum_{k = 0}^{n - 1} b_k x^k }[/math]

Porównując wyrazy o największym stopniu, łatwo zauważamy, że [math]\displaystyle{ a_n = b_{n - 1} }[/math]. Czyli współczynnik wiodący wielomianu [math]\displaystyle{ V_{n - 1} (x) }[/math] jest równy [math]\displaystyle{ a_n }[/math]. Co należało pokazać.


Definicja J8
Wielomian [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math], gdzie [math]\displaystyle{ a_0, \ldots, a_n \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ a_n \neq 0 }[/math], będziemy nazywali wielomianem całkowitym stopnia [math]\displaystyle{ n }[/math].


Definicja J9
Powiemy, że wielomian całkowity [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] jest stopnia [math]\displaystyle{ n }[/math] modulo [math]\displaystyle{ p }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą, jeżeli [math]\displaystyle{ p \nmid a_n }[/math]. Jeżeli każdy współczynnik [math]\displaystyle{ a_k }[/math], gdzie [math]\displaystyle{ k = 0, 1, \ldots, n }[/math], jest podzielny przez [math]\displaystyle{ p }[/math], to stopień wielomianu [math]\displaystyle{ W_n (x) }[/math] modulo [math]\displaystyle{ p }[/math] jest nieokreślony.


Twierdzenie J10
Niech [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] będzie wielomianem całkowitym i [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Jeżeli prawdziwa jest kongruencja [math]\displaystyle{ x \equiv y \!\! \pmod{m} }[/math], to

[math]\displaystyle{ W_n (x) \equiv W_n (y) \pmod{m} }[/math]
Dowód

Dla [math]\displaystyle{ k \geqslant 1 }[/math] wyrażenie [math]\displaystyle{ x^k - y^k }[/math] jest podzielne przez [math]\displaystyle{ x - y }[/math], co łatwo pokazać stosując indukcję matematyczną lub zauważając, że

[math]\displaystyle{ x^k - y^k = (x - y) \sum_{j = 1}^{k} x^{k - j} y^{j - 1} }[/math]

Z założenia [math]\displaystyle{ m \, | \, (x - y) }[/math], zatem dla [math]\displaystyle{ k \geqslant 1 }[/math] mamy [math]\displaystyle{ m \, | \, (x^k - y^k) }[/math]. Wynika stąd, że prawdziwe są kongruencje

[math]\displaystyle{ \begin{align} a_0 & \equiv a_0 \;\;\:\, \pmod{m}\\ a_1 x & \equiv a_1 y \;\, \pmod{m}\\ a_2 x^2 & \equiv a_2 y^2 \pmod{m}\\ & \cdots \\ a_n x^n & \equiv a_n y^n \pmod{m} \end{align} }[/math]

Dodając wypisane kongruencje stronami, otrzymujemy

[math]\displaystyle{ W_n (x) \equiv W_n (y) \pmod{m} }[/math]

Co należało pokazać.


Uwaga J11
Niech [math]\displaystyle{ W(x) }[/math] będzie wielomianem całkowitym. Rozważmy kongruencję

[math]\displaystyle{ W(x) \equiv 0 \pmod{m n} \qquad \qquad \qquad (1) }[/math]

gdzie liczby [math]\displaystyle{ m }[/math] i [math]\displaystyle{ n }[/math] są względnie pierwsze.

Kongruencja ta jest równoważna układowi kongruencji

[math]\displaystyle{ \begin{align} W (x) &\equiv 0 \pmod{m}\\ W (x) &\equiv 0 \pmod{n} \end{align} \qquad \qquad \qquad \; (2) }[/math]

Zatem problem szukania rozwiązań kongruencji [math]\displaystyle{ (1) }[/math] możemy sprowadzić do szukania rozwiązań układu kongruencji [math]\displaystyle{ (2) }[/math]. W szczególności wynika stąd, że jeżeli któraś z kongruencji [math]\displaystyle{ (2) }[/math] nie ma rozwiązania, to kongruencja [math]\displaystyle{ W(x) \equiv 0 \!\! \pmod{m n} }[/math] również nie ma rozwiązania.

Załóżmy, że każda z kongruencji [math]\displaystyle{ (2) }[/math] ma przynajmniej jedno rozwiązanie i niech

  • [math]\displaystyle{ x \equiv a \!\! \pmod{m} }[/math] będzie pierwiastkiem kongruencji [math]\displaystyle{ W (x) \equiv 0 \!\! \pmod{m} }[/math]
  • [math]\displaystyle{ x \equiv b \!\! \pmod{n} }[/math] będzie pierwiastkiem kongruencji [math]\displaystyle{ W (x) \equiv 0 \!\! \pmod{n} }[/math]

Pierwiastki te tworzą układ kongruencji

[math]\displaystyle{ \begin{align} x &\equiv a \pmod{m} \\ x &\equiv b \pmod{n} \end{align} \qquad \qquad \qquad \qquad (3) }[/math]

Z chińskiego twierdzenia o resztach wiemy, że układ ten możemy zapisać w postaci równoważnej

[math]\displaystyle{ x \equiv c \pmod{m n} }[/math]

Zauważmy, że liczba [math]\displaystyle{ c }[/math] określona modulo [math]\displaystyle{ m n }[/math] jest rozwiązaniem kongruencji [math]\displaystyle{ (1) }[/math]. Istotnie z twierdzenia J10 mamy

[math]\displaystyle{ \begin{align} W (c) &\equiv W (a) \equiv 0 \pmod{m} \\ W (c) &\equiv W (b) \equiv 0 \pmod{n} \end{align} }[/math]

ale liczby [math]\displaystyle{ m, n }[/math] są względnie pierwsze, zatem otrzymujemy, że

[math]\displaystyle{ W (c) \equiv 0 \pmod{m n} }[/math]

Wynika stąd, że każdemu układowi rozwiązań [math]\displaystyle{ (3) }[/math] odpowiada dokładnie jedno rozwiązanie kongruencji [math]\displaystyle{ (1) }[/math].

Podsumujmy: jeżeli kongruencje

[math]\displaystyle{ \begin{align} W (x) &\equiv 0 \pmod{m}\\ W (x) &\equiv 0 \pmod{n} \end{align} }[/math]

mają odpowiednio [math]\displaystyle{ r }[/math] i [math]\displaystyle{ s }[/math] pierwiastków, to liczba różnych układów kongruencji [math]\displaystyle{ (3) }[/math] jest równa iloczynowi [math]\displaystyle{ r s }[/math] i istnieje [math]\displaystyle{ r s }[/math] różnych rozwiązań kongruencji

[math]\displaystyle{ W(x) \equiv 0 \pmod{m n} }[/math]



Twierdzenie Lagrange'a

Twierdzenie J12
Kongruencja

[math]\displaystyle{ a_1 x + a_0 \equiv 0 \pmod{p} }[/math]

gdzie [math]\displaystyle{ p \nmid a_1 }[/math], ma dokładnie jedno rozwiązanie modulo [math]\displaystyle{ p }[/math].

Dowód

A. Istnienie rozwiązania

Ponieważ rozpatrywaną kongruencję możemy zapisać w postaci [math]\displaystyle{ a_1 x + a_0 = k p }[/math], to istnienie liczb [math]\displaystyle{ x }[/math] i [math]\displaystyle{ k }[/math], dla których ta równość jest prawdziwa, wynika z twierdzenia C74. Poniżej przedstawimy jeszcze jeden sposób znalezienia rozwiązania.

Ponieważ [math]\displaystyle{ \gcd (a_1, p) = 1 }[/math], to istnieją takie liczby [math]\displaystyle{ r, s }[/math], że [math]\displaystyle{ a_1 r + p s = 1 }[/math] (zobacz C71 - lemat Bézouta). Zauważmy, że [math]\displaystyle{ p \nmid r }[/math], bo gdyby tak było, to liczba pierwsza [math]\displaystyle{ p }[/math] dzieliłaby wyrażenie [math]\displaystyle{ a_1 r + p s }[/math], ale jest to niemożliwe, bo [math]\displaystyle{ a_1 r + p s = 1 }[/math]. Czyli modulo [math]\displaystyle{ p }[/math] mamy

[math]\displaystyle{ a_1 r \equiv 1 \pmod{p} }[/math]

Mnożąc rozpatrywaną kongruencję przez [math]\displaystyle{ r }[/math], otrzymujemy

[math]\displaystyle{ a_1 r x + a_0 r \equiv 0 \pmod{p} }[/math]

Zatem

[math]\displaystyle{ x \equiv - a_0 r \pmod{p} }[/math]

B. Brak innych rozwiązań

Przypuśćmy, że istnieją dwa różne rozwiązania kongruencji

[math]\displaystyle{ a_1 x + a_0 \equiv 0 \pmod{p} }[/math]

Jeśli oznaczymy je przez [math]\displaystyle{ x_1 }[/math] i [math]\displaystyle{ x_2 }[/math], to otrzymamy

[math]\displaystyle{ a_1 x_1 + a_0 \equiv 0 \equiv a_1 x_2 + a_0 \pmod{p} }[/math]

Czyli

[math]\displaystyle{ a_1 x_1 \equiv a_1 x_2 \pmod{p} }[/math]
[math]\displaystyle{ p \, | \, a_1 (x_1 - x_2) }[/math]

Ponieważ [math]\displaystyle{ p \nmid a_1 }[/math], to z lematu Euklidesa (C72) otrzymujemy natychmiast [math]\displaystyle{ p \, | \, (x_1 - x_2) }[/math]. Skąd wynika, że [math]\displaystyle{ x_1 \equiv x_2 \!\! \pmod{p} }[/math], wbrew założeniu, że [math]\displaystyle{ x_1 }[/math] i [math]\displaystyle{ x_2 }[/math] są dwoma różnymi rozwiązaniami. Co kończy dowód.


Twierdzenie J13 (Joseph Louis Lagrange, 1768)
Jeżeli wielomian [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] ma stopień [math]\displaystyle{ n }[/math] modulo [math]\displaystyle{ p }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], to kongruencja

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

ma co najwyżej [math]\displaystyle{ n }[/math] rozwiązań.

Dowód

Indukcja matematyczna. Z J12 wiemy, że dowodzone twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Załóżmy, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n - 1 }[/math]. Niech wielomian [math]\displaystyle{ W_n (x) }[/math] ma stopień [math]\displaystyle{ n }[/math] modulo [math]\displaystyle{ p }[/math]. Jeżeli kongruencja

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

nie ma żadnego rozwiązania, to dowodzone twierdzenie jest prawdziwe dla [math]\displaystyle{ n }[/math]. Przypuśćmy teraz, że wypisana wyżej kongruencja ma przynajmniej jeden pierwiastek [math]\displaystyle{ x \equiv s \!\! \pmod{p} }[/math]. Korzystając z twierdzenia J7, możemy napisać

[math]\displaystyle{ W_n (x) - W_n (s) = (x - s) V_{n - 1} (x) }[/math]

gdzie wielomian [math]\displaystyle{ V_{n - 1} (x) }[/math] ma stopień [math]\displaystyle{ n - 1 }[/math] modulo [math]\displaystyle{ p }[/math], bo wielomiany [math]\displaystyle{ W_n (x) }[/math] oraz [math]\displaystyle{ V_{n - 1} (x) }[/math] mają jednakowe współczynniki wiodące.


Z założenia [math]\displaystyle{ x \equiv s \!\! \pmod{p} }[/math] jest jednym z pierwiastków kongruencji [math]\displaystyle{ W_n (x) \equiv 0 \!\! \pmod{p} }[/math], zatem modulo [math]\displaystyle{ p }[/math] otrzymujemy

[math]\displaystyle{ W_n (x) \equiv (x - s) V_{n - 1} (x) \pmod{p} }[/math]

Ponieważ [math]\displaystyle{ p }[/math] jest liczbą pierwszą, to z rozpatrywanej kongruencji

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

wynika, że musi być (zobacz C72)

[math]\displaystyle{ x \equiv s \pmod{p} \qquad \qquad \text{lub} \qquad \qquad V_{n - 1} (x) \equiv 0 \pmod{p} }[/math]


Z założenia indukcyjnego kongruencja

[math]\displaystyle{ V_{n - 1} (x) \pmod{p} }[/math]

ma co najwyżej [math]\displaystyle{ n - 1 }[/math] rozwiązań, zatem kongruencja

[math]\displaystyle{ W_n (x) \equiv 0 \pmod{p} }[/math]

ma nie więcej niż [math]\displaystyle{ n }[/math] rozwiązań. Co należało pokazać.


Twierdzenie J14
Jeżeli kongruencja

[math]\displaystyle{ a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \equiv 0 \pmod{p} }[/math]

ma więcej niż [math]\displaystyle{ n }[/math] rozwiązań, to wszystkie współczynniki [math]\displaystyle{ a_k }[/math], gdzie [math]\displaystyle{ k = 0, \ldots, n }[/math], muszą być podzielne przez [math]\displaystyle{ p }[/math].

Dowód

Niech [math]\displaystyle{ S \subset \{ 0, 1, \ldots, n \} }[/math] będzie zbiorem takim, że dla każdego [math]\displaystyle{ k \in S }[/math] jest [math]\displaystyle{ p \nmid a_k }[/math]. Przypuśćmy, że [math]\displaystyle{ S }[/math] jest zbiorem niepustym. Niech [math]\displaystyle{ j }[/math] oznacza największy element zbioru [math]\displaystyle{ S }[/math]. Jeżeli [math]\displaystyle{ j = 0 }[/math], to wielomian [math]\displaystyle{ W_n (x) = \sum_{k = 0}^{n} a_k x^k }[/math] jest stopnia [math]\displaystyle{ 0 }[/math] modulo [math]\displaystyle{ p }[/math] i

[math]\displaystyle{ a_0 \not\equiv 0 \pmod{p} }[/math]

Konsekwentnie, dla dowolnego [math]\displaystyle{ x \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ a_n x^n + a_{n - 1} x^{n - 1} + \ldots + a_1 x + a_0 \not\equiv 0 \pmod{p} }[/math]

bo dla każdego [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math] mamy [math]\displaystyle{ a_k \equiv 0 \!\! \pmod{p} }[/math]. Zatem rozpatrywana kongruencja nie ma ani jednego rozwiązania, czyli rozwiązań nie może być więcej niż [math]\displaystyle{ n }[/math].

W przypadku gdy [math]\displaystyle{ j \neq 0 }[/math], z twierdzenia Lagrange'a wynika, że rozpatrywana kongruencja ma nie więcej niż [math]\displaystyle{ j \leqslant n }[/math] rozwiązań, ponownie wbrew założeniu, że kongruencja ta ma więcej niż [math]\displaystyle{ n }[/math] rozwiązań. Uczynione przypuszczenie, że [math]\displaystyle{ S }[/math] jest zbiorem niepustym, okazało się fałszywe, zatem zbiór [math]\displaystyle{ S }[/math] musi być zbiorem pustym. Co należało pokazać.


Przykład J15
Z twierdzenia Lagrange'a wynika, że kongruencja

[math]\displaystyle{ x^p - x - 1 \equiv 0 \pmod{p} }[/math]

ma co najwyżej [math]\displaystyle{ p }[/math] rozwiązań. W rzeczywistości nie ma ani jednego rozwiązania, bo z twierdzenia Fermata wiemy, że dla dowolnej liczby pierwszej [math]\displaystyle{ p }[/math] jest

[math]\displaystyle{ x^p \equiv x \pmod{p} }[/math]


Przykład J16
Zauważmy, że w przypadku, gdy [math]\displaystyle{ n \geqslant p }[/math], możemy zawsze wielomian przekształcić do postaci takiej, że [math]\displaystyle{ n \lt p }[/math]. Niech [math]\displaystyle{ p = 5 }[/math] i

[math]\displaystyle{ W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1 }[/math]

Ponieważ [math]\displaystyle{ x^5 \equiv x \!\! \pmod{5} }[/math], to

[math]\displaystyle{ W(x) \equiv x^3 + 11 x^3 + 5 x + 2 x^2 + x + 1 \equiv 12 x^3 + 2 x^2 + 6 x + 1 \pmod{5} }[/math]

Co wynika również z faktu, że [math]\displaystyle{ W(x) }[/math] można zapisać w postaci

[math]\displaystyle{ W(x) = x^{15} + 11 x^{11} + 5 x^5 + 2 x^2 + x + 1 = (x^5 - x) (x^{10} + 12 x^6 + 12 x^2 + 5) + 12 x^3 + 2 x^2 + 6 x + 1 }[/math]

ale [math]\displaystyle{ x^5 - x \equiv 0 \!\! \pmod{5} }[/math] na mocy twierdzenia Fermata.



Twierdzenie Wilsona

Twierdzenie J17 (John Wilson, 1770)
Liczba całkowita [math]\displaystyle{ p \geqslant 2 }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy

[math]\displaystyle{ (p - 1) ! \equiv - 1 \pmod{p} }[/math]
Dowód

[math]\displaystyle{ \Longleftarrow }[/math]
Przypuśćmy, że prawdziwa jest kongruencja [math]\displaystyle{ (p - 1) ! \equiv - 1 \!\! \pmod{p} }[/math] oraz [math]\displaystyle{ p }[/math] jest liczbą złożoną. Zatem liczba [math]\displaystyle{ p }[/math] ma dzielnik [math]\displaystyle{ d }[/math] taki, że [math]\displaystyle{ 2 \leqslant d \leqslant p - 1 }[/math]. Ponieważ [math]\displaystyle{ d \, | \, p }[/math], to prawdziwa jest kongruencja

[math]\displaystyle{ (p - 1) ! \equiv - 1 \pmod{d} }[/math]

czyli

[math]\displaystyle{ 0 \equiv - 1 \pmod{d} }[/math]

co jest niemożliwe.

[math]\displaystyle{ \Longrightarrow }[/math]
Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ p = 2 }[/math]. Niech teraz [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Rozważmy wielomiany

[math]\displaystyle{ W(x) = (x - 1) (x - 2) \cdot \ldots \cdot (x - (p - 1)) }[/math]

oraz

[math]\displaystyle{ V(x) = x^{p - 1} - 1 }[/math]

Zauważmy, że

  • stopnie tych wielomianów są równe [math]\displaystyle{ p - 1 }[/math]
  • współczynniki wiodące są równe [math]\displaystyle{ 1 }[/math]
  • wyrazy wolne są równe odpowiednio [math]\displaystyle{ (p - 1) ! }[/math] oraz [math]\displaystyle{ - 1 }[/math]
  • wielomiany mają [math]\displaystyle{ p - 1 }[/math] rozwiązań modulo [math]\displaystyle{ p }[/math]

Niech

[math]\displaystyle{ U(x) = W (x) - V (x) }[/math]

Zauważmy, że

  • stopień wielomianu [math]\displaystyle{ U(x) }[/math] jest równy [math]\displaystyle{ p - 2 \geqslant 1 }[/math], ponieważ wyrazy o najwyższym stopniu uległy redukcji
  • wielomian [math]\displaystyle{ U(x) }[/math] ma [math]\displaystyle{ p - 1 }[/math] rozwiązań modulo [math]\displaystyle{ p }[/math], bo dla każdego [math]\displaystyle{ k \in \{ 1, 2, \ldots, p - 1 \} }[/math] mamy [math]\displaystyle{ U(k) = W (k) - V (k) \equiv 0 \!\! \pmod{p} }[/math]

Z twierdzenia Lagrange'a wiemy, że wielomian [math]\displaystyle{ U(x) }[/math] nie może mieć więcej niż [math]\displaystyle{ p - 2 }[/math] rozwiązań modulo [math]\displaystyle{ p }[/math]. Zatem z twierdzenia J14 wynika natychmiast, że liczba pierwsza [math]\displaystyle{ p }[/math] musi dzielić każdy współczynnik [math]\displaystyle{ a_k }[/math] wielomianu [math]\displaystyle{ U(x) }[/math] i w szczególności musi dzielić wyraz wolny, który jest równy [math]\displaystyle{ (p - 1) ! + 1 }[/math]. Co należało pokazać.


Twierdzenie J18
Liczba całkowita nieparzysta [math]\displaystyle{ p \geqslant 3 }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy

[math]\displaystyle{ \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p} }[/math]
Dowód

Z twierdzenia Wilsona wiemy, że liczba całkowita [math]\displaystyle{ p \geqslant 2 }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy

[math]\displaystyle{ (p - 1) ! \equiv - 1 \pmod{p} }[/math]

W przypadku, gdy liczba [math]\displaystyle{ p }[/math] jest liczbą nieparzystą możemy powyższy wzór łatwo przekształcić. Ponieważ czynniki w [math]\displaystyle{ (p - 1) ! }[/math] są określone modulo [math]\displaystyle{ p }[/math], to odejmując od każdego czynnika większego od [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczbę [math]\displaystyle{ p }[/math], otrzymujemy

[math]\displaystyle{ 1 \cdot 2 \cdot \ldots \cdot {\small\frac{p - 3}{2}} \cdot {\small\frac{p - 1}{2}} \cdot \left( {\small\frac{p + 1}{2}} - p \right) \left( {\small\frac{p + 3}{2}} - p \right) \cdot \ldots \cdot (- 2) \cdot (- 1) \equiv - 1 \!\! \pmod{p} }[/math]
[math]\displaystyle{ (- 1)^{\tfrac{p - 1}{2}} \cdot \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv - 1 \!\! \pmod{p} }[/math]
[math]\displaystyle{ \left[ \left( {\small\frac{p - 1}{2}} \right) ! \right]^2 \equiv (- 1)^{\tfrac{p + 1}{2}} \!\! \pmod{p} }[/math]

Co należało pokazać.



Twierdzenie Fermata

Twierdzenie J19 (Pierre de Fermat, 1640)
Niech [math]\displaystyle{ a \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą

  • to liczba [math]\displaystyle{ a^p - a }[/math] jest podzielna przez [math]\displaystyle{ p }[/math], czyli [math]\displaystyle{ a^p \equiv a \!\! \pmod p }[/math]
  • i jeśli dodatkowo [math]\displaystyle{ p \nmid a }[/math], to liczba [math]\displaystyle{ a^{p - 1} - 1 }[/math] jest podzielna przez [math]\displaystyle{ p }[/math], czyli [math]\displaystyle{ a^{p - 1} \equiv 1 \!\! \pmod p }[/math]
Dowód

Punkt 1.

Zauważmy, że
a) twierdzenie jest prawdziwe dla [math]\displaystyle{ a = 0 }[/math]
b) w przypadku, gdy [math]\displaystyle{ p = 2 }[/math] wyrażenie [math]\displaystyle{ a^p - a = a^2 - a = a (a - 1) }[/math] jest podzielne przez [math]\displaystyle{ 2 }[/math], bo jedna z liczb [math]\displaystyle{ a - 1 }[/math] i [math]\displaystyle{ a }[/math] jest liczbą parzystą
c) w przypadku, gdy [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą i twierdzenie jest prawdziwe dla [math]\displaystyle{ a \geqslant 1 }[/math], to jest też prawdziwe dla [math]\displaystyle{ - a }[/math], bo

[math]\displaystyle{ (- a)^p - (- a) = (- 1)^p a^p + a = - a^p + a = - (a^p - a) }[/math]


Zatem wystarczy pokazać, że dla ustalonej liczby pierwszej nieparzystej [math]\displaystyle{ p }[/math] twierdzenie jest prawdziwe dla każdego [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math].

Indukcja matematyczna. Dla [math]\displaystyle{ a = 1 }[/math] mamy [math]\displaystyle{ 1^p - 1 = 0 }[/math] zatem liczba pierwsza [math]\displaystyle{ p }[/math] jest dzielnikiem rozważanego wyrażenia. Zakładając, że twierdzenie jest prawdziwe dla [math]\displaystyle{ a }[/math], czyli [math]\displaystyle{ p|a^p - a }[/math], otrzymujmy dla [math]\displaystyle{ a + 1 }[/math]

[math]\displaystyle{ (a + 1)^p - (a + 1) = \sum_{k = 0}^{p} \binom{p}{k} \cdot a^k - a - 1 }[/math]
[math]\displaystyle{ \;\;\,\, = 1 + \sum_{k = 1}^{p - 1} \binom{p}{k} \cdot a^k + a^p - a - 1 }[/math]
[math]\displaystyle{ \;\;\,\, = a^p - a + \sum^{p - 1}_{k = 1} \binom{p}{k} \cdot a^k }[/math]


Z założenia indukcyjnego [math]\displaystyle{ p|a^p - a }[/math], zaś [math]\displaystyle{ \binom{p}{k} = {\small\frac{p!}{k! \cdot (p - k) !}} }[/math] dla [math]\displaystyle{ k = 1, 2, \ldots, p - 1 }[/math] jest podzielne przez [math]\displaystyle{ p }[/math] (ponieważ [math]\displaystyle{ p }[/math] dzieli licznik, ale nie dzieli mianownika). Zatem [math]\displaystyle{ (a + 1)^p - (a + 1) }[/math] jest podzielne przez liczbę pierwszą [math]\displaystyle{ p }[/math].

Punkt 2.

Z punktu 1. wiemy, że liczba pierwsza [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ a^p - a = a (a^{p - 1} - 1) }[/math]. Jeżeli [math]\displaystyle{ p \nmid a }[/math], to z lematu Euklidesa (zobacz twierdzenie C72) wynika natychmiast, że [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ a^{p - 1} - 1 }[/math].


Twierdzenie J20
Niech [math]\displaystyle{ x, y \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ \gcd (x, y) = 1 }[/math] i liczba pierwsza nieparzysta [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ x^2 + y^2 }[/math], to [math]\displaystyle{ p }[/math] jest postaci [math]\displaystyle{ 4 k + 1 }[/math].

Dowód

Z założenia

[math]\displaystyle{ x^2 \equiv - y^2 \!\! \pmod{p} }[/math]

Przypuśćmy, że [math]\displaystyle{ p|y }[/math]. Wtedy z powyższej kongruencji mamy natychmiast, że [math]\displaystyle{ p|x }[/math], wbrew założeniu, że [math]\displaystyle{ \gcd (x, y) = 1 }[/math]. Zatem [math]\displaystyle{ p \nmid y }[/math] i z twierdzenia Fermata dostajemy

[math]\displaystyle{ 1 \equiv x^{p - 1} \equiv (x^2)^{\tfrac{p - 1}{2}} \equiv (- y^2)^{\tfrac{p - 1}{2}} \equiv y^{p - 1} \cdot (- 1)^{\tfrac{p - 1}{2}} \equiv (- 1)^{\tfrac{p - 1}{2}} \!\! \pmod{p} }[/math]

Wynika stąd, że [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] musi być liczbą parzystą, czyli [math]\displaystyle{ p = 4 k + 1 }[/math]. Co należało pokazać.


Zadanie J21
Niech [math]\displaystyle{ x, y, n \geqslant 0 }[/math]. Pokazać, że jedynymi rozwiązaniami równania

[math]\displaystyle{ x^2 + y^2 = 2^n }[/math]

są liczby

  • [math]\displaystyle{ x = 2^{n / 2} \, }[/math] i [math]\displaystyle{ \, y = 0 \, }[/math] lub [math]\displaystyle{ \, x = 0 \, }[/math] i [math]\displaystyle{ \, y = 2^{n / 2} }[/math], gdy [math]\displaystyle{ 2 \, | \, n }[/math]
  • [math]\displaystyle{ x = y = 2^{(n - 1) / 2} }[/math], gdy [math]\displaystyle{ 2 \nmid n }[/math]
Rozwiązanie

A. Gdy jedna z liczb [math]\displaystyle{ x, y }[/math] jest równa [math]\displaystyle{ 0 }[/math] (powiedzmy [math]\displaystyle{ y }[/math]), to mamy [math]\displaystyle{ x = 2^{n / 2} }[/math], gdy [math]\displaystyle{ n }[/math] jest parzyste. Gdy [math]\displaystyle{ n }[/math] jest nieparzyste, to rozwiązanie nie istnieje. Od tej pory będziemy zakładali, że [math]\displaystyle{ x, y \geqslant 1 }[/math]

B. Wiemy, że kwadrat liczby nieparzystej przystaje do [math]\displaystyle{ 1 }[/math] modulo [math]\displaystyle{ 4 }[/math]. Gdy obie liczby [math]\displaystyle{ x, y }[/math] są nieparzyste, to modulo [math]\displaystyle{ 4 }[/math] mamy

[math]\displaystyle{ 2 \equiv 2^n \!\! \pmod{4} }[/math]

Kongruencja ta jest prawdziwa tylko dla [math]\displaystyle{ n = 1 }[/math] i w tym przypadku mamy [math]\displaystyle{ (x, y) = (1, 1) }[/math].

C. W przypadku, gdy obie liczby są parzyste, możemy napisać [math]\displaystyle{ x = 2^a u }[/math], [math]\displaystyle{ y = 2^b w }[/math], gdzie liczby [math]\displaystyle{ u, w }[/math] są nieparzyste. Nie zmniejszając ogólności możemy założyć, że [math]\displaystyle{ 1 \leqslant a \leqslant b \lt {\small\frac{n}{2}} }[/math]. Dostajemy

[math]\displaystyle{ u^2 + 2^{2 b - 2 a} w^2 = 2^{n - 2 a} }[/math]

Widzimy, że nie może być [math]\displaystyle{ a \lt b }[/math], bo suma liczby nieparzystej i parzystej nie jest liczbą parzystą. Zatem [math]\displaystyle{ a = b }[/math] i otrzymujemy równanie

[math]\displaystyle{ u^2 + w^2 = 2^{n - 2 a} }[/math]

które ma rozwiązanie w liczbach nieparzystych tylko dla wykładnika [math]\displaystyle{ n - 2 a = 1 }[/math]. Mamy [math]\displaystyle{ u = w = 1 }[/math], zatem [math]\displaystyle{ x = y = 2^{(n - 1) / 2} }[/math] i [math]\displaystyle{ n }[/math] musi być liczbą nieparzystą.


Twierdzenie J22
Niech [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ x \neq y }[/math], to liczba [math]\displaystyle{ x^2 + y^2 }[/math] ma dzielnik pierwszy postaci [math]\displaystyle{ 4 k + 1 }[/math].

Dowód

W przypadku, gdy [math]\displaystyle{ x = y }[/math] mamy [math]\displaystyle{ x^2 + y^2 = 2 y^2 }[/math] i jeśli liczba [math]\displaystyle{ y }[/math] nie ma dzielnika pierwszego postaci [math]\displaystyle{ 4 k + 1 }[/math], to nie ma go również liczba [math]\displaystyle{ 2 y^2 }[/math]. Przykładowo [math]\displaystyle{ x^2 + y^2 = 2 y^2 = 2^{2 r + 1}, 2 \cdot 3^{2 r}, 2 \cdot 7^{2 r} }[/math]. Dlatego zakładamy, że [math]\displaystyle{ x \neq y }[/math]. Analogiczna sytuacja ma miejsce, gdy jedna z liczb [math]\displaystyle{ x, y }[/math] jest równa zero. Dlatego zakładamy, że [math]\displaystyle{ x, y \in \mathbb{Z}_+ }[/math].

Niech [math]\displaystyle{ \gcd (x, y) = d }[/math], zatem mamy [math]\displaystyle{ x = a d }[/math], [math]\displaystyle{ y = b d }[/math]. Wynika stąd, że [math]\displaystyle{ x^2 + y^2 = d^2 (a^2 + b^2) }[/math], gdzie [math]\displaystyle{ \gcd (a, b) = 1 \, }[/math] i [math]\displaystyle{ \, a \neq b }[/math]. Ponieważ [math]\displaystyle{ \, a \neq b }[/math], to liczba [math]\displaystyle{ a^2 + b^2 }[/math] musi mieć dzielnik pierwszy nieparzysty (zobacz J21). Z twierdzenia J20 zastosowanego do liczby [math]\displaystyle{ a^2 + b^2 }[/math] wynika, że [math]\displaystyle{ a^2 + b^2 }[/math] musi mieć dzielnik pierwszy postaci [math]\displaystyle{ 4 k + 1 }[/math].



Kryterium Eulera

Definicja J23
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą i [math]\displaystyle{ a \in \mathbb{Z} }[/math]. Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

ma rozwiązanie, czyli istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że [math]\displaystyle{ p \, | \, (k^2 - a) }[/math].

Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

nie ma rozwiązania.


Twierdzenie J24
Jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to wśród liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] istnieje dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].

Dowód

Zauważmy, że w rozważanym zbiorze liczb [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math], kwadraty liczb [math]\displaystyle{ k }[/math] i [math]\displaystyle{ p - k }[/math] są takimi samymi liczbami modulo [math]\displaystyle{ p }[/math], co wynika z oczywistej kongruencji

[math]\displaystyle{ k^2 \equiv (p - k)^2 \pmod{p} }[/math]

Pozwala to wypisać pary liczb, których kwadraty są identyczne modulo [math]\displaystyle{ p }[/math]

[math]\displaystyle{ (1, p - 1), (2, p - 2), \ldots, \left( {\small\frac{p - 1}{2}}, p - {\small\frac{p - 1}{2}} \right) }[/math]

Ponieważ

[math]\displaystyle{ p - {\small\frac{p - 1}{2}} = {\small\frac{p + 1}{2}} = {\small\frac{p - 1}{2}} + 1 }[/math]

to wypisane pary wyczerpują cały zbiór [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math]. Co więcej, liczby [math]\displaystyle{ 1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2 }[/math] są wszystkie różne modulo [math]\displaystyle{ p }[/math]. Istotnie, przypuśćmy, że [math]\displaystyle{ 1 \leqslant i, j \leqslant {\small\frac{p - 1}{2}} }[/math] oraz [math]\displaystyle{ i \neq j }[/math], a jednocześnie [math]\displaystyle{ i^2 \equiv j^2 \!\! \pmod{p} }[/math]. Gdyby tak było, to mielibyśmy

[math]\displaystyle{ (i - j) (i + j) \equiv 0 \pmod{p} }[/math]

Łatwo zauważamy, że jest to niemożliwe, bo żaden z czynników nie jest podzielny przez [math]\displaystyle{ p }[/math], co wynika z prostych oszacowań

[math]\displaystyle{ 1 \leqslant | i - j | \leqslant i + j \lt p - 1 }[/math]
[math]\displaystyle{ 2 \lt i + j \lt p - 1 }[/math]


Ponieważ (z definicji) liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

ma rozwiązanie, to liczba kwadratowa modulo [math]\displaystyle{ p }[/math] musi przystawać do pewnego kwadratu modulo [math]\displaystyle{ p }[/math].

Wynika stąd, że różnych liczb kwadratowych modulo [math]\displaystyle{ p }[/math] jest tyle samo, co kwadratów [math]\displaystyle{ 1^2, 2^2, \ldots, \left( {\small\frac{p - 1}{2}} \right)^2 }[/math]. Czyli jest ich dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math]. Pozostałe liczby w zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] to liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] i jest ich również [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math]. Co należało pokazać.


Twierdzenie J25 (kryterium Eulera, 1748)
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą i [math]\displaystyle{ p \nmid a }[/math]. Modulo [math]\displaystyle{ p }[/math] mamy

●    liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv 1 \pmod{p} }[/math]
●    liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv - 1 \pmod{p} }[/math]
Dowód

Punkt 1.

Niech [math]\displaystyle{ Q \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich liczb kwadratowych modulo [math]\displaystyle{ p }[/math], a [math]\displaystyle{ S \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich rozwiązań kongruencji

[math]\displaystyle{ x^{(p - 1) / 2} \equiv 1 \pmod{p} }[/math]

Zauważmy, że

   A       [math]\displaystyle{ | Q | = {\small\frac{p - 1}{2}} }[/math]    zobacz J24
   B       [math]\displaystyle{ | S | \leqslant {\small\frac{p - 1}{2}} }[/math]    zobacz twierdzenie Lagrange'a J13
   C       jeżeli [math]\displaystyle{ a \in Q }[/math], to [math]\displaystyle{ a \in S \qquad }[/math]    wynika z ciągu implikacji:
         [math]\displaystyle{ a \in Q \qquad \Longrightarrow \qquad a \equiv k^2 \pmod{p} }[/math]
         [math]\displaystyle{ a \equiv k^2 \pmod{p} \qquad \Longrightarrow \qquad a^{(p - 1) / 2} \equiv (k^2)^{(p - 1) / 2} \equiv k^{p - 1} \equiv 1 \pmod{p} }[/math]   
         [math]\displaystyle{ a^{(p - 1) / 2} \equiv 1 \pmod{p} \qquad \Longrightarrow \qquad a \in S }[/math]
   D       [math]\displaystyle{ Q \subseteq S }[/math]    z punktu C wynika, że każdy element zbioru [math]\displaystyle{ Q }[/math] należy do zbioru [math]\displaystyle{ S }[/math]


Łącząc rezultaty z tabeli, otrzymujemy

[math]\displaystyle{ {\small\frac{p - 1}{2}} = | Q | \leqslant | S | \leqslant {\small\frac{p - 1}{2}} }[/math]

Skąd łatwo widzimy, że

[math]\displaystyle{ | Q | = | S | = {\small\frac{p - 1}{2}} }[/math]

Ponieważ [math]\displaystyle{ Q \subseteq S }[/math], a zbiory [math]\displaystyle{ Q }[/math] i [math]\displaystyle{ S }[/math] są równoliczne, to zbiory te są równe (zobacz J26). Prostą konsekwencją równości zbiorów [math]\displaystyle{ Q }[/math] i [math]\displaystyle{ S }[/math] jest stwierdzenie

   liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv 1 \pmod{p} }[/math]   

Co kończy dowód punktu pierwszego.

Punkt 2.

Z udowodnionego już punktu pierwszego wynika[3], że

   liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \not\equiv 1 \pmod{p} }[/math]   

Z twierdzenia Fermata

[math]\displaystyle{ a^{p - 1} - 1 = (a^{(p - 1) / 2} - 1) \cdot (a^{(p - 1) / 2} + 1) \equiv 0 \pmod{p} }[/math]

wynika natychmiast, że jeżeli [math]\displaystyle{ a^{(p - 1) / 2} - 1 \not\equiv 0 \pmod{p} }[/math], to musi być

[math]\displaystyle{ a^{(p - 1) / 2} + 1 \equiv 0 \pmod{p} }[/math]

Fakt ten pozwala sformułować uzyskaną równoważność bardziej precyzyjnie

   liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a^{(p - 1) / 2} \equiv - 1 \pmod{p} }[/math]   

Co należało pokazać.


Zadanie J26
Niech [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] będą zbiorami skończonymi. Pokazać, że jeżeli [math]\displaystyle{ A \subseteq B \;\; \text{i} \;\; | A | = | B | }[/math], to [math]\displaystyle{ \; A = B }[/math].

Rozwiązanie

Ponieważ zbiór [math]\displaystyle{ A }[/math] jest podzbiorem zbioru [math]\displaystyle{ B }[/math], to zbiór [math]\displaystyle{ B }[/math] można przedstawić w postaci sumy zbiorów [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] takich, że żaden element zbioru [math]\displaystyle{ C }[/math] nie jest elementem zbioru [math]\displaystyle{ A }[/math]. Zatem

[math]\displaystyle{ B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing }[/math]

Ponieważ z założenia zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są rozłączne, to wiemy, że

[math]\displaystyle{ | A \cup C | = | A | + | C | }[/math]

Czyli

[math]\displaystyle{ | B | = | A \cup C | = | A | + | C | }[/math]

Skąd wynika, że [math]\displaystyle{ | C | = 0 }[/math], zatem zbiór [math]\displaystyle{ C }[/math] jest zbiorem pustym i otrzymujemy natychmiast [math]\displaystyle{ B = A }[/math]. Co należało pokazać.


Uwaga (przypadek zbiorów skończonych)
Najczęściej prawdziwe jest jedynie oszacowanie [math]\displaystyle{ | A \cup C | \leqslant | A | + | C | }[/math], bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math], zatem od sumy [math]\displaystyle{ | A | + | C | }[/math] musimy odjąć liczbę elementów iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math]. Co daje ogólny wzór[4]

[math]\displaystyle{ | A \cup C | = | A | + | C | - | A \cap C | }[/math]



Symbol Legendre'a

Definicja J27
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą i [math]\displaystyle{ a \in \mathbb{Z} }[/math]. Symbolem Legendre'a[5] nazywamy funkcję [math]\displaystyle{ a }[/math] i [math]\displaystyle{ p }[/math] zdefiniowaną następująco

[math]\displaystyle{ \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = \begin{cases} \;\;\: 1 & \text{gdy } \, a \, \text{ jest liczbą kwadratową modulo } \, p \, \text{ oraz } \, p \nmid a \\ - 1 & \text{gdy } \, a \, \text{ jest liczbą niekwadratową modulo } \, p \\ \;\;\: 0 & \text{gdy } \, p \, | \, a \end{cases} }[/math]


Uwaga J28
Powyższa definicja pozwala nam zapisać kryterium Eulera w zwartej formie, która obejmuje również przypadek, gdy [math]\displaystyle{ p \, | \, a }[/math]

[math]\displaystyle{ a^{(p - 1) / 2} \equiv \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} \pmod{p} }[/math]


Twierdzenie J29*
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ p, q }[/math] będą nieparzystymi liczbami pierwszymi. Symbol Legendre'a ma następujące właściwości



Symbol Jacobiego

Definicja J30
Niech liczby [math]\displaystyle{ a \in \mathbb{Z} }[/math] i [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] będą względnie pierwsze. Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

ma rozwiązanie, czyli istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że [math]\displaystyle{ m \, | \, (k^2 - a) }[/math].

Powiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], jeżeli kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

nie ma rozwiązania.


Uwaga J31
Ponieważ często można spotkać definicję liczb kwadratowych i niekwadratowych modulo [math]\displaystyle{ m }[/math], w której warunek [math]\displaystyle{ \gcd (a, m) = 1 }[/math] zostaje pominięty, to Czytelnik powinien zawsze upewnić się, jaka definicja jest stosowana. Najczęściej w takim przypadku liczba [math]\displaystyle{ 0 }[/math] nie jest uznawana za liczbę kwadratową modulo [math]\displaystyle{ m }[/math].

Przykładowo:

[math]\displaystyle{ \left\{ 0^2, 1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2 \right\} \equiv \left\{ 0, 1, 4, 9, 6, 5, 6, 9, 4, 1 \right\} \pmod{10} }[/math]

Liczby kwadratowe modulo [math]\displaystyle{ 10 }[/math] to [math]\displaystyle{ \left\{ 1, 9 \right\} }[/math], a niekwadratowe to [math]\displaystyle{ \left\{ 3, 7 \right\} }[/math]. Liczby [math]\displaystyle{ \left\{ 0, 2, 4, 5, 6, 8 \right\} }[/math] nie są ani liczbami kwadratowymi, ani liczbami niekwadratowymi modulo [math]\displaystyle{ 10 }[/math].

Jeśli odrzucimy warunek [math]\displaystyle{ \gcd (a, m) = 1 }[/math], to liczbami kwadratowymi modulo [math]\displaystyle{ 10 }[/math] będą [math]\displaystyle{ \left\{ 0, 1, 4, 5, 6, 9 \right\} }[/math], a niekwadratowymi [math]\displaystyle{ \left\{ 2, 3, 7, 8 \right\} }[/math].

Inny przykład. Niech [math]\displaystyle{ m = 210 = 2 \cdot 3 \cdot 5 \cdot 7 }[/math]. W zależności od przyjętej definicji najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] będzie albo [math]\displaystyle{ 11 }[/math], albo [math]\displaystyle{ 2 }[/math].


Zadanie J32
Niech liczby [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Pokazać, że liczba [math]\displaystyle{ a \in \mathbb{Z} }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m n }[/math] wtedy i tylko wtedy, gdy jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] i modulo [math]\displaystyle{ n }[/math].

Rozwiązanie

Niech [math]\displaystyle{ W(x) = x^2 - a }[/math]. Zauważmy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy kongruencja [math]\displaystyle{ W(x) \equiv 0 \!\! \pmod{m} }[/math] ma rozwiązanie. Dalsza analiza problemu przebiega dokładnie tak, jak to zostało przedstawione w uwadze J11.


Definicja J33
Symbol Jacobiego[6] [math]\displaystyle{ \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} }[/math] jest uogólnieniem symbolu Legendre'a [math]\displaystyle{ \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} }[/math] dla dodatnich liczb nieparzystych. Niech [math]\displaystyle{ n = \prod_i p_i^{\alpha_i} }[/math] będzie rozkładem liczby [math]\displaystyle{ n }[/math] na czynniki pierwsze, wtedy

[math]\displaystyle{ \left( {\small\frac{a}{n}} \right)_{\small{\!\! J}} = \prod_i \left( {\small\frac{a}{p_i}} \right)_{\small{\!\! L}}^{\!\! \alpha_i} }[/math]


Uwaga J34
Zauważmy, że w przypadku gdy [math]\displaystyle{ n = 1 }[/math], po prawej stronie mamy „pusty” iloczyn (bez jakiegokolwiek czynnika). Podobnie jak „pustej” sumie przypisujemy wartość zero, tak „pustemu” iloczynowi przypisujemy wartość jeden. Zatem dla dowolnego [math]\displaystyle{ a \in \mathbb{Z} }[/math] jest [math]\displaystyle{ \left( {\small\frac{a}{1}} \right)_{\small{\!\! J}} = 1 }[/math].


Twierdzenie J35*
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ m, n }[/math] będą liczbami nieparzystymi. Symbol Jacobiego ma następujące właściwości


Uwaga J36
Zauważmy, że poza zmienionym założeniem tabela z powyższego twierdzenia i tabela z twierdzenia J29 różnią się jedynie punktem czwartym. Oczywiście jest to tylko podobieństwo formalne – symbol Legendre'a i symbol Jacobiego są różnymi funkcjami.


Uwaga J37
Zauważmy, że w przypadku, gdy [math]\displaystyle{ m }[/math] jest liczbą nieparzystą

  • jeżeli [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math], to [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math]
  • jeżeli [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to nie musi być [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math]
  • jeżeli [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1 }[/math], to [math]\displaystyle{ a }[/math] nie musi być liczbą kwadratową modulo [math]\displaystyle{ m }[/math]
  • jeżeli [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], to jest [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = + 1 }[/math]

Przykład: jeżeli [math]\displaystyle{ \gcd (a, m) = 1 }[/math], to [math]\displaystyle{ \left( {\small\frac{a}{m^2}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}^2 = + 1 }[/math], ale [math]\displaystyle{ a }[/math] może być liczbą niekwadratową modulo [math]\displaystyle{ m^2 }[/math].

Modulo [math]\displaystyle{ 9 }[/math] liczbami niekwadratowymi są: [math]\displaystyle{ 2, 5, 8 }[/math]. Modulo [math]\displaystyle{ 25 }[/math] liczbami niekwadratowymi są: [math]\displaystyle{ 2, 3, 7, 8, 12, 13, 17, 18, 22, 23 }[/math].


Uwaga J38
Wszystkie liczby kwadratowe i niekwadratowe modulo [math]\displaystyle{ m }[/math] można łatwo znaleźć, wykorzystując prosty program:

Pokaż kod
QRandQNR(m) = 
{
local(k, S, V);
S = [];
V = [];
for(k = 1,  m - 1, if( gcd(k, m) > 1, next() ); S = concat(S, k));
S = Set(S); \\ zbiór liczb względnie pierwszych z m
for(k = 1,  m - 1, if( gcd(k, m) > 1, next() ); V = concat(V, k^2 % m));
V = Set(V); \\ zbiór liczb kwadratowych modulo m
print("QR: ", V);
print("QNR: ", setminus(S, V)); \\ różnica zbiorów S i V
}



Zadanie J39
Pokazać, że

[math]\displaystyle{ \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} = \begin{cases} \;\;\: 1 & \text{gdy } m = 6 k + 1 \\ \;\;\: 0 & \text{gdy } m = 6 k + 3 \\ - 1 & \text{gdy } m = 6 k + 5 \end{cases} }[/math]
Rozwiązanie

Zauważmy, że

[math]\displaystyle{ \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 1}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = (- 1)^{\tfrac{m - 1}{2}} \cdot (- 1)^{\tfrac{m - 1}{2} \cdot \tfrac{3 - 1}{2}} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = (- 1)^{m - 1} \cdot \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]

bo [math]\displaystyle{ m }[/math] jest liczbą nieparzystą.

Rozważmy liczby nieparzyste [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ 6 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5 }[/math]. Mamy

[math]\displaystyle{ \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \left( {\small\frac{6 k + r}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \left( {\small\frac{r}{3}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \; = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ \;\;\: 0 & \text{gdy } r = 3 \\ - 1 & \text{gdy } r = 5 \end{cases} }[/math]

bo odpowiednio dla [math]\displaystyle{ r = 1, 3, 5 }[/math] jest

[math]\displaystyle{ \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{3}} \right)_{\small{\!\! J}} = 0 }[/math]
[math]\displaystyle{ \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{9 - 1}{8}} = - 1 }[/math]

Łatwo zauważamy, że

[math]\displaystyle{ \left( {\small\frac{- 12}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3 \cdot 2^2}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}}^{\! 2} = \left( {\small\frac{- 3}{m}} \right)_{\small{\!\! J}} }[/math]

Co należało pokazać.


Zadanie J40
Pokazać, że

[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \begin{cases} \;\;\: 1 & \text{gdy } m = 12 k \pm 1 \\ \;\;\: 0 & \text{gdy } m = 12 k \pm 3 \\ - 1 & \text{gdy } m = 12 k \pm 5 \end{cases} }[/math]


[math]\displaystyle{ \left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = \begin{cases} \;\;\: 1 & \text{gdy } m = 10 k \pm 1 \\ \;\;\: 0 & \text{gdy } m = 10 k + 5 \\ - 1 & \text{gdy } m = 10 k \pm 3 \end{cases} }[/math]
Rozwiązanie

Punkt 1.

Przy wyliczaniu symboli Legendre'a i Jacobiego, zawsze warto sprawdzić, czy da się ustalić przystawanie liczb modulo [math]\displaystyle{ 4 }[/math]. W tym przypadku mamy

[math]\displaystyle{ 3 \equiv 3 \pmod{4} }[/math]

i odpowiednio dla różnych postaci liczby [math]\displaystyle{ m }[/math] jest

[math]\displaystyle{ m = 12 k + 1 \equiv 1 \pmod{4} }[/math]
[math]\displaystyle{ m = 12 k + 5 \equiv 1 \pmod{4} }[/math]
[math]\displaystyle{ m = 12 k + 7 \equiv 3 \pmod{4} }[/math]
[math]\displaystyle{ m = 12 k + 11 \equiv 3 \pmod{4} }[/math]

Ułatwi nam to znacznie wykonywanie przekształceń (zobacz J35 p.9)

[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 1}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 1}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 5}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{12 k + 5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 7}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{7}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{1}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{12 k + 11}} \right)_{\small{\!\! J}} = (- 1) \cdot \left( {\small\frac{12 k + 11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = 1 }[/math]

Punkt 2.

Ponieważ [math]\displaystyle{ 5 \equiv 1 \!\! \pmod{4} }[/math], to nie ma już znaczenia, czy [math]\displaystyle{ m \equiv 1 \!\! \pmod{4} }[/math], czy też [math]\displaystyle{ m \equiv 3 \!\! \pmod{4} }[/math]. Otrzymujemy natychmiast (zobacz J35 p.9)

[math]\displaystyle{ \left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = (+ 1) \cdot \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} }[/math]

Rozważmy liczby nieparzyste [math]\displaystyle{ m }[/math] postaci [math]\displaystyle{ 10 k + r }[/math], gdzie [math]\displaystyle{ r = 1, 3, 5, 7, 9 }[/math]. Mamy

[math]\displaystyle{ \left( {\small\frac{5}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{m}{5}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \:\, \quad = \left( {\small\frac{10 k + r}{5}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \:\, \quad = \left( {\small\frac{r}{5}} \right)_{\small{\!\! J}} }[/math]
[math]\displaystyle{ \:\, \quad = \begin{cases} \;\;\: 1 & \text{gdy } r = 1 \\ - 1 & \text{gdy } r = 3 \\ \;\;\: 0 & \text{gdy } r = 5 \\ - 1 & \text{gdy } r = 7 \\ \;\;\: 1 & \text{gdy } r = 9 \end{cases} }[/math]

bo odpowiednio dla [math]\displaystyle{ r = 1, 3, 5, 7, 9 }[/math] jest

[math]\displaystyle{ \left( {\small\frac{1}{5}} \right)_{\small{\!\! J}} = 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{3}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{-2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{(5 - 1)(5 - 3)}{8}} = -1 }[/math]
[math]\displaystyle{ \left( {\small\frac{5}{5}} \right)_{\small{\!\! J}} = 0 }[/math]
[math]\displaystyle{ \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{5}} \right)_{\small{\!\! J}} = (- 1)^{\tfrac{25 - 1}{8}} = - 1 }[/math]
[math]\displaystyle{ \left( {\small\frac{9}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{5}} \right)_{\small{\!\! J}}^{\! 2} = 1 }[/math]

Co należało pokazać.


Uwaga J41
Wykorzystując podane w twierdzeniu J35 właściwości symbolu Jacobiego, możemy napisać prostą funkcję w PARI/GP znajdującą jego wartość. Zauważmy, że nie potrzebujemy znać rozkładu liczby [math]\displaystyle{ n }[/math] na czynniki pierwsze.

jacobi(a, n) = 
{
local(r, w);
if( n <= 0 || n % 2 == 0, return("Error") );
a = a % n; \\ korzystamy ze wzoru (a|n) = (b|n), gdy a ≡ b (mod n)
w = 1;
while( a <> 0,
       while( a % 2 == 0, a = a/2; r = n % 8; if( r == 3 || r == 5, w = -w ) );
       \\ usunęliśmy czynnik 2 ze zmiennej a, uwzględniając, że (2|n) = -1, gdy n ≡ 3,5 (mod 8)
       \\ teraz zmienne a oraz n są nieparzyste
       r = a; \\ zmienna r tylko przechowuje wartość a
       a = n;
       n = r;
       if( a % 4 == 3 && n % 4 == 3, w = -w );
       \\ zamieniliśmy zmienne, uwzględniając, że (a|n) = - (n|a), gdy a ≡ n ≡ 3 (mod 4)
       a = a % n;
     );
if( n == 1, return(w), return(0) ); \\ n jest teraz równe gcd(a, n)
}


Uwaga J42
Jeżeli [math]\displaystyle{ m }[/math] jest liczbą pierwszą, to symbol Jacobiego jest symbolem Legendre'a, czyli [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}} }[/math]. Jeżeli [math]\displaystyle{ m }[/math] jest liczbą złożoną, to symbol Legendre'a [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! L}} }[/math] nie istnieje, a symbol Jacobiego [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math] dostarcza jedynie ograniczonych informacji.

W przyszłości symbol Legendre'a / Jacobiego będziemy zapisywali w formie uproszczonej [math]\displaystyle{ (a \, | \, m) }[/math] i nie będziemy rozróżniali tych symboli. Interpretacja zapisu jest prosta:

  • jeżeli wiemy, że [math]\displaystyle{ m }[/math] jest liczbą pierwszą, to symbol [math]\displaystyle{ (a \, | \, m) }[/math] jest symbolem Legendre'a
  • jeżeli wiemy, że [math]\displaystyle{ m }[/math] jest liczbą złożoną, to symbol [math]\displaystyle{ (a \, | \, m) }[/math] jest symbolem Jacobiego
  • jeżeli nie wiemy, czy [math]\displaystyle{ m }[/math] jest liczbą pierwszą, czy złożoną, to symbol [math]\displaystyle{ (a \, | \, m) }[/math] jest symbolem Jacobiego



Rozwiązywanie kongruencji [math]\displaystyle{ x^2 \equiv a \!\! \pmod{m} }[/math]

Twierdzenie J43
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, zaś [math]\displaystyle{ a }[/math] liczbą całkowitą taką, że [math]\displaystyle{ \gcd (a, p) = 1 }[/math]. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p^n} }[/math]

ma rozwiązanie wtedy i tylko wtedy, gdy kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p} }[/math]

ma rozwiązanie.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{p^n} }[/math] ma rozwiązanie. Zatem istnieje taka liczba [math]\displaystyle{ r \in \mathbb{Z} }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{p^n} }[/math]

Ponieważ [math]\displaystyle{ p^n \, | \, (r^2 - a) }[/math], to tym bardziej [math]\displaystyle{ p \, | \, (r^2 - a) }[/math], co oznacza, że prawdziwa jest kongruencja

[math]\displaystyle{ r^2 \equiv a \pmod{p} }[/math]

Skąd wynika natychmiast, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{p} }[/math] ma rozwiązanie.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Indukcja matematyczna. Z uczynionego w twierdzeniu założenia wiemy, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{p} }[/math] ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Załóżmy teraz (założenie indukcyjne), że kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p^n} }[/math]

ma rozwiązanie [math]\displaystyle{ x \equiv u_n \!\! \pmod{p^n} }[/math] i pokażmy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n + 1 }[/math], czyli że rozwiązanie ma kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{p^{n + 1}} }[/math]

Wiemy, że liczba [math]\displaystyle{ u_n }[/math] jest określona modulo [math]\displaystyle{ p^n }[/math]. Nie tracąc ogólności, możemy założyć, że [math]\displaystyle{ 1 \leqslant u_n \lt p^n }[/math]. Wartość [math]\displaystyle{ u_n }[/math] może zostać wybrana dowolnie (modulo [math]\displaystyle{ p^n }[/math]), ale musi zostać ustalona — wymaga tego precyzja i czytelność dowodu. Zatem

[math]\displaystyle{ u^2_n - a = k p^n }[/math]

Zauważmy, że liczba [math]\displaystyle{ k }[/math] jest jednoznacznie określona, bo wartość [math]\displaystyle{ u_n }[/math] została ustalona. Ponieważ [math]\displaystyle{ \gcd (2 u_n, p) = 1 }[/math], to równanie

[math]\displaystyle{ 2 u_n \cdot s - p \cdot l = - k }[/math]

ma rozwiązanie (zobacz C74). Niech liczby [math]\displaystyle{ s_0 }[/math] i [math]\displaystyle{ l_0 }[/math] będą rozwiązaniem tego równania. Zatem

[math]\displaystyle{ 2 u_n \cdot s_0 - p \cdot l_0 = - k }[/math]
[math]\displaystyle{ 2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - k p^n }[/math]
[math]\displaystyle{ 2 u_n \cdot s_0 p^n - l_0 \cdot p^{n + 1} = - ( u^2_n - a ) }[/math]
[math]\displaystyle{ u^2_n + 2 u_n \cdot s_0 p^n = a + l_0 \cdot p^{n + 1} }[/math]

Modulo [math]\displaystyle{ p^{n + 1} }[/math] dostajemy

[math]\displaystyle{ u^2_n + 2 u_n \cdot s_0 p^n \equiv a \pmod{p^{n + 1}} }[/math]
[math]\displaystyle{ (u_n + s_0 p^n)^2 \equiv a \pmod{p^{n + 1}} }[/math]

bo [math]\displaystyle{ p^{n + 1} \, | \, p^{2 n} }[/math]. Zatem liczba [math]\displaystyle{ u_{n + 1} = u_n + s_0 p^n }[/math] jest rozwiązaniem kongruencji

[math]\displaystyle{ x^2 \equiv a \pmod{p^{n + 1}} }[/math]

Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.


Uwaga J44
Dla niewielkich modułów rozwiązania dowolnej kongruencji możemy znaleźć przez bezpośrednie sprawdzenie. Omówimy teraz rozwiązania kongruencji [math]\displaystyle{ x^2 \equiv a \!\! \pmod{2^n} }[/math] dla [math]\displaystyle{ n = 1, 2, 3 }[/math]. Ponieważ zakładamy, że [math]\displaystyle{ \gcd (a, m) = \gcd (a, 2^n) = 1 }[/math], to [math]\displaystyle{ a }[/math] musi być liczbą nieparzystą, zaś [math]\displaystyle{ x }[/math] nie może być liczbą parzystą. Istotnie, gdyby tak było, to mielibyśmy [math]\displaystyle{ 0 \equiv 1 \!\! \pmod{2} }[/math], bo [math]\displaystyle{ 2 \, | \, 2^n }[/math].

Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2} }[/math]

ma dokładnie jedno rozwiązanie [math]\displaystyle{ x \equiv 1 \!\! \pmod{2} }[/math].

Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{4} }[/math]

ma dwa rozwiązania, gdy [math]\displaystyle{ a \equiv 1 \!\! \pmod{4} }[/math]. Rozwiązaniami są: [math]\displaystyle{ x \equiv 1, 3 \!\! \pmod{4} }[/math]. W przypadku, gdy [math]\displaystyle{ a \equiv 3 \!\! \pmod{4} }[/math] kongruencja nie ma rozwiązań.

Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{8} }[/math]

ma cztery rozwiązania, gdy [math]\displaystyle{ a \equiv 1 \!\! \pmod{8} }[/math]. Rozwiązaniami są: [math]\displaystyle{ x \equiv 1, 3, 5, 7 \!\! \pmod{8} }[/math]. W przypadku, gdy [math]\displaystyle{ a \equiv 3, 5, 7 \!\! \pmod{8} }[/math] kongruencja nie ma rozwiązań.


Twierdzenie J45
Niech [math]\displaystyle{ n \geqslant 3 }[/math] i [math]\displaystyle{ a }[/math] będzie liczbą nieparzystą. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2^n} }[/math]

ma rozwiązanie wtedy i tylko wtedy, gdy kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{8} }[/math]

ma rozwiązanie.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{2^n} }[/math] ma rozwiązanie, zatem istnieje taka liczba [math]\displaystyle{ r \in \mathbb{Z} }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{2^n} }[/math]

Ponieważ [math]\displaystyle{ 2^n \, | \, (r^2 - a) }[/math], gdzie [math]\displaystyle{ n \geqslant 3 }[/math], to tym bardziej [math]\displaystyle{ 2^3 \, | \, (r^2 - a) }[/math]. Co oznacza, że prawdziwa jest kongruencja

[math]\displaystyle{ r^2 \equiv a \pmod{2^3} }[/math]

Skąd wynika natychmiast, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{8} }[/math] ma rozwiązanie.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Indukcja matematyczna. Z uczynionego w twierdzeniu założenia wiemy, że kongruencja [math]\displaystyle{ x^2 \equiv a \pmod{8} }[/math] ma rozwiązanie. Zatem twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 3 }[/math]. Załóżmy teraz (założenie indukcyjne), że kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2^n} }[/math]

ma rozwiązanie [math]\displaystyle{ x \equiv u_n \!\! \pmod{2^n} }[/math] i pokażemy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n + 1 }[/math], czyli że rozwiązanie ma kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{2^{n + 1}} }[/math]

Z założenia istnieje taka liczba [math]\displaystyle{ k }[/math], że [math]\displaystyle{ u^2_n - a = k \cdot 2^n }[/math]. Niech

[math]\displaystyle{ r = \begin{cases} 0 & \text{gdy } k \text{ jest liczbą parzystą}\\ 1 & \text{gdy } k \text{ jest liczbą nieparzystą} \end{cases} }[/math]

Zauważmy, że

[math]\displaystyle{ (u_n + r \cdot 2^{n - 1})^2 - a = u^2_n - a + 2^n r + r^2 \cdot 2^{2 n - 2} }[/math]
[math]\displaystyle{ \;\! = k \cdot 2^n + 2^n r + r^2 \cdot 2^{2 n - 2} }[/math]
[math]\displaystyle{ \;\! = 2^n (k + r) + r^2 \cdot 2^{2 n - 2} }[/math]
[math]\displaystyle{ \;\! \equiv 0 \pmod{2^{n + 1}} }[/math]

bo [math]\displaystyle{ k + r }[/math] jest liczbą parzystą, a dla [math]\displaystyle{ n \geqslant 3 }[/math] mamy [math]\displaystyle{ 2 n - 2 \geqslant n + 1 }[/math]. Zatem liczba [math]\displaystyle{ u_{n + 1} = u_n + r \cdot 2^{n - 1} }[/math] jest rozwiązaniem kongruencji

[math]\displaystyle{ x^2 \equiv a \pmod{2^{n + 1}} }[/math]

Pokazaliśmy tym samym prawdziwość tezy indukcyjnej, co kończy dowód indukcyjny.


Wniosek J46
Jeżeli [math]\displaystyle{ a }[/math] jest liczbą nieparzystą, to kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{2^n} }[/math] ma rozwiązanie wtedy i tylko wtedy, gdy [math]\displaystyle{ a }[/math] jest postaci [math]\displaystyle{ 2 k + 1 }[/math], [math]\displaystyle{ 4 k + 1 }[/math] lub [math]\displaystyle{ 8 k + 1 }[/math] w zależności od tego, czy [math]\displaystyle{ n = 1 }[/math], czy [math]\displaystyle{ n = 2 }[/math], czy [math]\displaystyle{ n \geqslant 3 }[/math].


Uwaga J47
Niech [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math] i [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Z chińskiego twierdzenia o resztach (zobacz J3 i J11) wynika, że kongruencja [math]\displaystyle{ x^2 \equiv a \!\! \pmod{m} }[/math] ma rozwiązanie wtedy i tylko wtedy, gdy ma rozwiązanie każda z kongruencji

[math]\displaystyle{ \begin{align} x^2 & \equiv a \pmod{p^{\alpha_1}_1} \\ & \,\,\,\cdots \\ x^2 & \equiv a \pmod{p^{\alpha_s}_s} \\ \end{align} }[/math]

Z definicji J27, twierdzeń J43 i J45, uwagi J44 i wniosku J46 otrzymujemy


Twierdzenie J48
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

ma rozwiązanie wtedy i tylko wtedy, gdy

●    dla każdego nieparzystego dzielnika pierwszego [math]\displaystyle{ p }[/math] liczby [math]\displaystyle{ m }[/math] jest  [math]\displaystyle{ \left( {\small\frac{a}{p}} \right)_{\small{\!\! L}} = 1 }[/math]
●    jeżeli  [math]\displaystyle{ 8 \, | \, m }[/math],  to  [math]\displaystyle{ 8 \, | \, ( a - 1 ) }[/math]
●    jeżeli  [math]\displaystyle{ 8 \nmid m }[/math],  ale  [math]\displaystyle{ 4 \, | \, m }[/math],  to  [math]\displaystyle{ 4 \, | \, ( a - 1 ) }[/math]


Twierdzenie J49
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

nie ma rozwiązania wtedy i tylko wtedy, gdy spełniony jest co najmniej jeden z warunków

●    jeżeli dla dowolnego nieparzystego dzielnika [math]\displaystyle{ d }[/math] liczby [math]\displaystyle{ m }[/math] jest [math]\displaystyle{ \left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1 }[/math]
●    jeżeli  [math]\displaystyle{ 8 \, | \, m }[/math]  i  [math]\displaystyle{ 8 \nmid ( a - 1 ) }[/math]
●    jeżeli  [math]\displaystyle{ 8 \nmid m }[/math],  ale  [math]\displaystyle{ 4 \, | \, m }[/math]  i  [math]\displaystyle{ 4 \nmid ( a - 1 ) }[/math]
Dowód

Punkt 1.

Z założenia [math]\displaystyle{ d \, | \, m }[/math]. Gdyby kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

miała rozwiązanie, to również kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{d} }[/math]

miałaby rozwiązanie, ale jest to niemożliwe, bo założyliśmy, że [math]\displaystyle{ \left( {\small\frac{a}{d}} \right)_{\small{\!\! J}} = - 1 }[/math], co oznacza, że [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ d }[/math].

Punkty 2. i 3. wynikają wprost z twierdzenia J48.


Przykład J50
Zauważmy, że [math]\displaystyle{ \left( {\small\frac{17}{19}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{19}} \right)_{\small{\!\! J}} = 1 }[/math] oraz [math]\displaystyle{ \left( {\small\frac{17}{23}} \right)_{\small{\!\! J}} = \left( {\small\frac{5}{23}} \right)_{\small{\!\! J}} = - 1 }[/math]. W tabelach zestawiliśmy kongruencje i ich rozwiązania.


Zadanie J51
Rozwiązać kongruencję, gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą

[math]\displaystyle{ x^2 + rx + s \equiv 0 \pmod{p} }[/math]
Rozwiązanie

Ponieważ [math]\displaystyle{ \gcd (2, p) = 1 }[/math], to nie zmniejszając ogólności kongruencję powyższą możemy zapisać w postaci

[math]\displaystyle{ 4 x^2 + 4 rx + 4 s \equiv 0 \pmod{p} }[/math]
[math]\displaystyle{ (2 x + r)^2 - r^2 + 4 s \equiv 0 \pmod{p} }[/math]
[math]\displaystyle{ (2 x + r)^2 \equiv r^2 - 4 s \pmod{p} }[/math]

Widzimy, że rozpatrywana kongruencja ma rozwiązanie wtedy i tylko wtedy, gdy liczba [math]\displaystyle{ r^2 - 4 s }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Istotnie, jeśli jest liczbą kwadratową, to istnieje taka liczba [math]\displaystyle{ b }[/math], że [math]\displaystyle{ b^2 \equiv r^2 - 4 s \!\! \pmod{p} }[/math], zatem otrzymujemy

[math]\displaystyle{ (2 x + r)^2 \equiv b^2 \pmod{p} }[/math]
[math]\displaystyle{ 2 x + r \equiv \pm b \pmod{p} }[/math]
[math]\displaystyle{ x \equiv {\small\frac{p + 1}{2}} \cdot (- r \pm b) \pmod{p} }[/math]

Jeśli [math]\displaystyle{ r^2 - 4 s }[/math] nie jest liczbą kwadratową modulo [math]\displaystyle{ p }[/math], to kongruencja

[math]\displaystyle{ (2 x + r)^2 \equiv r^2 - 4 s \pmod{p} }[/math]

nie ma rozwiązania. Wynika stąd, że równoważna jej kongruencja

[math]\displaystyle{ x^2 + rx + s \equiv 0 \pmod{p} }[/math]

również nie ma rozwiązania.


Zadanie J52
Rozwiązać kongruencję

[math]\displaystyle{ 5 x^2 + 6 x + 8 \equiv 0 \pmod{19} }[/math]
Rozwiązanie

Rozwiązywanie kongruencji w przypadku konkretnych wartości liczb [math]\displaystyle{ r, s }[/math] jest łatwiejsze niż w przypadku ogólnym. Mnożąc obie strony kongruencji przez [math]\displaystyle{ 4 }[/math], otrzymujemy

[math]\displaystyle{ x^2 + 24 x + 32 \equiv 0 \pmod{19} }[/math]
[math]\displaystyle{ x^2 + 24 x + 13 \equiv 0 \pmod{19} }[/math]

Celowo zostawiliśmy parzysty współczynnik przy [math]\displaystyle{ x }[/math]. Gdyby był nieparzysty, to zawsze możemy dodać do niego nieparzysty moduł.

[math]\displaystyle{ (x + 12)^2 - 144 + 13 \equiv 0 \pmod{19} }[/math]
[math]\displaystyle{ (x + 12)^2 + 2 \equiv 0 \pmod{19} }[/math]
[math]\displaystyle{ (x + 12)^2 \equiv - 2 \pmod{19} }[/math]
[math]\displaystyle{ (x + 12)^2 \equiv 6^2 \pmod{19} }[/math]
[math]\displaystyle{ x + 12 \equiv \pm 6 \pmod{19} }[/math]

Otrzymujemy: [math]\displaystyle{ x \equiv 1 \!\! \pmod{19} }[/math] lub [math]\displaystyle{ x \equiv 13 \!\! \pmod{19} }[/math].


Nieco spostrzegawczości pozwala znaleźć rozwiązanie kongruencji natychmiast. W naszym przypadku wystarczyło zauważyć, że

[math]\displaystyle{ x^2 + 24 x + 13 \equiv x^2 - 14 x + 13 \equiv (x - 1) (x - 13) \equiv 0 \pmod{19} }[/math]



Najmniejsze liczby niekwadratowe modulo

Uwaga J53
Najmniejsze liczby niekwadratowe modulo przedstawiamy Czytelnikowi jedynie jako pewną ciekawostkę. Jednocześnie jest to nietrudny temat, który pozwala lepiej poznać i zrozumieć liczby kwadratowe modulo, liczby niekwadratowe modulo, symbol Legendre'a i symbol Jacobiego.



 A. Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] 

Przykład J54
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math]


Uwaga J55
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

A(p) = 
{
if( p == 2, return(0) );
if( !isprime(p), return(0) );
forprime(q = 2, p, if( jacobi(q, p) == -1, return(q) ));
}

Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w rzeczywistości symbol Legendre'a, bo wiemy, że liczba [math]\displaystyle{ p }[/math] jest liczbą pierwszą (w przypadku, gdy [math]\displaystyle{ p }[/math] jest liczbą złożoną, funkcja zwraca zero).


Twierdzenie J56
Niech [math]\displaystyle{ \mathbb{n} \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], to jest liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} }[/math]. Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math]. Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{p} }[/math]
[math]\displaystyle{ s^2 \equiv b \pmod{p} }[/math]

Skąd wynika, że

[math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{p} }[/math]

Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].


Zadanie J57
Pokazać, że najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest

  •  liczba [math]\displaystyle{ 2 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 8 k \pm 3 }[/math]
  •  liczba [math]\displaystyle{ 3 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 7 }[/math]
  •  liczba [math]\displaystyle{ \geqslant 5 }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ p = 24 k \pm 1 }[/math]
Rozwiązanie

Z właściwości symbolu Legendre'a (zobacz J29 p.7) wiemy, że

[math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, = \,\, \begin{cases} \;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\ - 1 & \text{gdy } p \equiv 3, 5 \pmod{8} \end{cases} }[/math]

Wynika stąd natychmiast, dla liczb pierwszych [math]\displaystyle{ p }[/math] postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (i tylko dla takich liczb) liczba [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math].

Z zadania J40 wynika, że liczba [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową jedynie dla liczb pierwszych postaci [math]\displaystyle{ 12 k \pm 5 }[/math]. Zatem dla liczb pierwszych, które są jednocześnie postaci [math]\displaystyle{ p = 8 k \pm 1 }[/math] i [math]\displaystyle{ p = 12 j \pm 5 }[/math], liczba [math]\displaystyle{ 3 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z czterech warunków

[math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5 }[/math]
[math]\displaystyle{ p = 8 k + 1 \quad \text{i} \quad p = 12 j + 7 }[/math]
[math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 5 }[/math]
[math]\displaystyle{ p = 8 k + 7 \quad \text{i} \quad p = 12 j + 7 }[/math]

Drugi i trzeci nie są możliwe, bo modulo [math]\displaystyle{ 4 }[/math] otrzymujemy

[math]\displaystyle{ p \equiv 1 \pmod{4} \quad \text{i} \quad p \equiv 3 \pmod{4} }[/math]
[math]\displaystyle{ p \equiv 3 \pmod{4} \quad \text{i} \quad p \equiv 1 \pmod{4} }[/math]

a z pierwszego i czwartego mamy

[math]\displaystyle{ 3 p = 24 k + 3 \quad \text{i} \quad 2 p = 24 j + 10 \qquad \;\: \Longrightarrow \qquad p = 24 (k - j) - 7 \qquad \Longrightarrow \qquad p \equiv - 7 \pmod{24} }[/math]
[math]\displaystyle{ 3 p = 24 k + 21 \quad \text{i} \quad 2 p = 24 j + 14 \qquad \Longrightarrow \qquad p = 24 (k - j) + 7 \qquad \Longrightarrow \qquad p \equiv 7 \pmod{24} }[/math]

Zauważmy, że problem mogliśmy zapisać w postaci układu kongruencji

[math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
[math]\displaystyle{ p \equiv \pm 5 \pmod{12} }[/math]

Gdyby moduły tych kongruencji były względnie pierwsze, to każdemu wyborowi znaków odpowiadałaby pewna kongruencja równoważna (zobacz J3). Widzimy, że w przypadku, gdy moduły nie są względnie pierwsze, kongruencja równoważna może istnieć, ale nie musi. Rozwiązując taki problem, wygodnie jest skorzystać z programu PARI/GP. Wystarczy wpisać

chinese(Mod(1, 8), Mod(5, 12)) = Mod(17, 24)
chinese(Mod(1, 8), Mod(-5, 12)) - błąd 
chinese(Mod(-1, 8), Mod(5, 12)) - błąd 
chinese(Mod(-1, 8), Mod(-5, 12)) = Mod(7, 24)

Ostatni punkt zadania rozwiążemy tą metodą. Liczba większa lub równa [math]\displaystyle{ 5 }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] wtedy i tylko wtedy, gdy liczby [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ 3 }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ p }[/math], co oznacza, że liczba pierwsza [math]\displaystyle{ p }[/math] spełnia kongruencje

[math]\displaystyle{ p \equiv \pm 1 \pmod{8} }[/math]
[math]\displaystyle{ p \equiv \pm 1 \pmod{12} }[/math]

Postępując jak wyżej, otrzymujemy

chinese(Mod(1, 8), Mod(1, 12)) = Mod(1, 24)
chinese(Mod(1, 8), Mod(-1, 12)) - błąd 
chinese(Mod(-1, 8), Mod(1, 12)) - błąd 
chinese(Mod(-1, 8), Mod(-1, 12)) = Mod(23, 24)

Co należało pokazać.


Twierdzenie J58
Dla każdej liczby pierwszej [math]\displaystyle{ p_n }[/math] istnieje nieskończenie wiele takich liczb pierwszych [math]\displaystyle{ q }[/math], że [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math].

Dowód

Niech [math]\displaystyle{ 2, p_2, \ldots, p_{n - 1}, p_n }[/math] będą kolejnymi liczbami pierwszymi. Wybierzmy liczbę [math]\displaystyle{ u }[/math] tak, aby spełniała układ kongruencji

[math]\displaystyle{ \begin{align} u & \equiv 1 \pmod{8 p_2 \cdot \ldots \cdot p_{n - 1}} \\ u & \equiv a \pmod{p_n} \end{align} }[/math]

gdzie [math]\displaystyle{ a }[/math] oznacza dowolną liczbą niekwadratową modulo [math]\displaystyle{ p_n }[/math]. Na podstawie chińskiego twierdzenia o resztach (zobacz J3) powyższy układ kongruencji może być zapisany w postaci kongruencji równoważnej

[math]\displaystyle{ u \equiv c \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math]


Zauważmy, że żadna z liczb pierwszych [math]\displaystyle{ p_k }[/math], gdzie [math]\displaystyle{ 1 \leqslant k \leqslant n }[/math] nie dzieli liczby [math]\displaystyle{ c }[/math], bo mielibyśmy

[math]\displaystyle{ u \equiv 0 \pmod{p_k} }[/math]

wbrew wypisanemu wyżej układowi kongruencji. Zatem [math]\displaystyle{ \gcd (c, 8 p_2 \cdot \ldots \cdot p_n) = 1 }[/math] i z twierdzenia Dirichleta wiemy, że wśród liczb [math]\displaystyle{ u }[/math] spełniających kongruencję [math]\displaystyle{ u \equiv c \!\! \pmod{8 p_2 \cdot \ldots \cdot p_n} }[/math] występuje nieskończenie wiele liczb pierwszych (bo wśród tych liczb są liczby postaci [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]). Oznaczmy przez [math]\displaystyle{ q }[/math] dowolną z tych liczb pierwszych.


Ponieważ [math]\displaystyle{ q \equiv 1 \!\! \pmod{8} }[/math], to [math]\displaystyle{ \left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1 }[/math] (zobacz J29), a dla wszystkich liczb pierwszych nieparzystych [math]\displaystyle{ p_k \lt p_n }[/math] mamy

[math]\displaystyle{ \left( {\small\frac{p_k}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_k - 1}{2}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{p_k}} \right)_{\small{\!\! L}} = 1 }[/math]

bo [math]\displaystyle{ 8 \, | \, (q - 1) }[/math]. Dla liczby pierwszej [math]\displaystyle{ p_n }[/math] jest

[math]\displaystyle{ \left( {\small\frac{p_n}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_n - 1}{2}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p_n}} \right)_{\small{\!\! L}} = - 1 }[/math]

Zatem wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p_n }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ q }[/math], a liczba pierwsza [math]\displaystyle{ p_n }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ q }[/math]. Zauważmy, że [math]\displaystyle{ q }[/math] była dowolnie wybraną liczbą pierwszą z nieskończenie wielu liczb pierwszych występujących w ciągu arytmetycznym [math]\displaystyle{ 8 p_2 \cdot \ldots \cdot p_n \cdot k + c }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Co kończy dowód.


Twierdzenie J59 (Sarvadaman Chowla)
Istnieje niekończenie wiele liczb pierwszych [math]\displaystyle{ p }[/math] takich, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math], gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika.

Dowód

Niech [math]\displaystyle{ a = 4 P (m) }[/math], gdzie [math]\displaystyle{ P(m) }[/math] jest iloczynem wszystkich liczb pierwszych nie większych od [math]\displaystyle{ m }[/math]. Z twierdzenia Dirichleta wiemy, że w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math] występuje nieskończenie wiele liczb pierwszych. Niech [math]\displaystyle{ p }[/math] oznacza dowolną z nich.

Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{8} }[/math], to

[math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1 }[/math]

(zobacz J29 p.7). Oczywiście [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], zatem dla dowolnej liczby pierwszej nieparzystej [math]\displaystyle{ q_i \leqslant m }[/math] z twierdzenia J29 p.9 otrzymujemy

[math]\displaystyle{ \left( {\small\frac{q_i}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{p}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{a k + 1}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{q_i}} \right)_{\small{\!\! L}} = 1 }[/math]

Wynika stąd, że najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ m }[/math]. Wiemy też, że (zobacz A9)

[math]\displaystyle{ a = 4 P (m) \lt 4 \cdot 4^m = 4^{m + 1} }[/math]

Załóżmy teraz, że [math]\displaystyle{ p }[/math] jest najmniejszą liczbą pierwszą w ciągu arytmetycznym [math]\displaystyle{ u_k = a k + 1 }[/math], a liczba [math]\displaystyle{ m }[/math] została wybrana tak, że liczba [math]\displaystyle{ a = 4 P (m) }[/math] jest dostatecznie duża i możliwe jest skorzystanie z twierdzenia Linnika (zobacz C30). Dostajemy natychmiast oszacowanie

[math]\displaystyle{ p = p_{\min} (a, 1) \lt a^L }[/math]

gdzie [math]\displaystyle{ L }[/math] jest stałą Linnika (możemy przyjąć [math]\displaystyle{ L = 5 }[/math]). Łącząc powyższe oszacowania, łatwo otrzymujemy oszacowanie najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ p }[/math]

[math]\displaystyle{ \mathbb{n}(p) \geqslant m + 1 \gt \log_4 a = {\small\frac{\log a}{\log 4}} = {\small\frac{\log a^L}{2 L \log 2}} \gt {\small\frac{\log p}{2 L \log 2}} }[/math]

Każdemu wyborowi innej liczby [math]\displaystyle{ m' \gt m }[/math] takiej, że [math]\displaystyle{ P(m') \gt P (m) }[/math] odpowiada inna liczba pierwsza [math]\displaystyle{ p' }[/math] taka, że [math]\displaystyle{ \mathbb{n}(p') \gt {\small\frac{\log p'}{2 L \log 2}} }[/math], zatem liczb pierwszych [math]\displaystyle{ p }[/math] dla których najmniejsza liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest większa od [math]\displaystyle{ {\small\frac{\log p}{2 L \log 2}} }[/math] jest nieskończenie wiele.


Uwaga J60
W twierdzeniu J58 pokazaliśmy, że dla każdej liczby pierwszej [math]\displaystyle{ \mathbb{n} }[/math] istnieją takie liczby pierwsze [math]\displaystyle{ p }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Zatem zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] liczb pierwszych takich, że dla każdej liczby [math]\displaystyle{ p \in S_\mathbb{n} }[/math] liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] jest zbiorem niepustym. Wynika stąd, że zbiór [math]\displaystyle{ S_\mathbb{n} }[/math] ma element najmniejszy i możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w PARI/GP napisać proste polecenie

forprime(n = 2, 50, forprime(p = 2, 10^10, if( A(p) == n, print(n, "   ", p); break() )))

W tabeli przedstawiamy uzyskane rezultaty (zobacz też A000229).


Twierdzenie J61
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Prawdziwe jest oszacowanie

[math]\displaystyle{ \mathbb{n} (p) \lt \sqrt{p} + {\small\frac{1}{2}} }[/math]
Dowód

Ponieważ [math]\displaystyle{ \mathbb{n} \nmid p }[/math], to z oszacowania [math]\displaystyle{ x - 1 \lt \lfloor x \rfloor \leqslant x }[/math] wynika, że

[math]\displaystyle{ {\small\frac{p}{\mathbb{n}}} - 1 \lt \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor \lt {\small\frac{p}{\mathbb{n}}} }[/math]
[math]\displaystyle{ p \lt \mathbb{n} \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + \mathbb{n} \lt p + \mathbb{n} }[/math]

Niech [math]\displaystyle{ u = \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 }[/math], mamy

[math]\displaystyle{ 0 \lt \mathbb{n} u - p \lt \mathbb{n} }[/math]

Liczba [math]\displaystyle{ \mathbb{n} u - p }[/math] musi być liczbą kwadratową modulo [math]\displaystyle{ p }[/math], zatem

[math]\displaystyle{ 1 = \left( {\small\frac{\mathbb{n} u - p}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} }[/math]

Ale z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} = - 1 }[/math]. Wynika stąd, że musi być [math]\displaystyle{ \mathbb{n} \leqslant u }[/math] i łatwo znajdujemy, że

[math]\displaystyle{ \mathbb{n} \leqslant \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 \lt {\small\frac{p}{\mathbb{n}}} + 1 }[/math]
[math]\displaystyle{ \mathbb{n}^2 \lt p + \mathbb{n} }[/math]

Ponieważ wypisane liczby są liczbami całkowitymi, to ostatnią nierówność możemy zapisać w postaci

[math]\displaystyle{ \mathbb{n}^2 \leqslant p + \mathbb{n} - 1 }[/math]

Skąd otrzymujemy

[math]\displaystyle{ \left( \mathbb{n} - {\small\frac{1}{2}} \right)^2 \leqslant p - {\small\frac{3}{4}} }[/math]
[math]\displaystyle{ \mathbb{n} \leqslant {\small\frac{1}{2}} + \sqrt{p - {\small\frac{3}{4}}} \lt {\small\frac{1}{2}} + \sqrt{p} }[/math]

Co należało pokazać.


Twierdzenie J62*
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą, a [math]\displaystyle{ \mathbb{n} }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Dla [math]\displaystyle{ p \geqslant 5 }[/math] prawdziwe jest oszacowanie[7][8][9]

[math]\displaystyle{ \mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p }[/math]


Uwaga J63
Liczby [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (p) }[/math], gdzie [math]\displaystyle{ p }[/math] są nieparzystymi liczbami pierwszymi, jest równa[10]

[math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots }[/math]


Uwaga J64
Na zakończenie tego tematu podamy jeszcze klika twierdzeń dotyczących liczb niekwadratowych modulo [math]\displaystyle{ p }[/math].


Twierdzenie J65
Dla każdej liczby pierwszej [math]\displaystyle{ p \geqslant 5 }[/math] najmniejsza nieparzysta liczba niekwadratowa modulo [math]\displaystyle{ p }[/math] jest liczbą pierwszą mniejszą od [math]\displaystyle{ p }[/math].

Dowód

Niech [math]\displaystyle{ S \subset \{ 1, 2, \ldots, p - 1 \} }[/math] będzie zbiorem wszystkich nieparzystych liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. Z twierdzenia J24 wiemy, że jeżeli [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, to w zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] jest dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb kwadratowych modulo [math]\displaystyle{ p }[/math] i tyle samo liczb niekwadratowych modulo [math]\displaystyle{ p }[/math]. W zbiorze [math]\displaystyle{ \{ 1, 2, \ldots, p - 1 \} }[/math] mamy też dokładnie [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] liczb parzystych i tyle samo liczb nieparzystych.

Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo [math]\displaystyle{ p }[/math], bo [math]\displaystyle{ 4 = 2^2 \lt 5 \leqslant p }[/math] jest parzystą liczbą kwadratową modulo [math]\displaystyle{ p }[/math], czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że zbiór [math]\displaystyle{ S }[/math] nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru [math]\displaystyle{ S }[/math] jest liczbą pierwszą.

Niech [math]\displaystyle{ 3 \leqslant q \leqslant p - 2 }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Wynika stąd, że każda liczba [math]\displaystyle{ a \lt q }[/math] musi być liczbą parzystą lub liczbą kwadratową modulo [math]\displaystyle{ p }[/math]. Przypuśćmy, że [math]\displaystyle{ q }[/math] jest liczbą złożoną, czyli [math]\displaystyle{ q = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a, b \lt q }[/math]. Zauważmy, że żadna z liczb [math]\displaystyle{ a, b }[/math] nie może być liczbą parzystą, bo wtedy liczba [math]\displaystyle{ q }[/math] również byłaby liczbą parzystą wbrew określeniu liczby [math]\displaystyle{ q }[/math]. Zatem obie liczby [math]\displaystyle{ a, b }[/math] muszą być nieparzystymi liczbami kwadratowymi, co jest niemożliwe, bo

[math]\displaystyle{ - 1 = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! J}} }[/math]

i jeden z czynników po prawej stronie musi być ujemny. Co oznacza, że jedna z liczb [math]\displaystyle{ a, b }[/math] jest nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math] mniejszą od [math]\displaystyle{ q }[/math] wbrew określeniu liczby [math]\displaystyle{ q }[/math]. Uzyskana sprzeczność pokazuje, że liczba [math]\displaystyle{ q }[/math] jest liczbą pierwszą. Co kończy dowód.



 B. Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math]

Uwaga J66
Najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p . }[/math] W jednym i drugim przypadku liczba [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową w zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od [math]\displaystyle{ p }[/math] lub [math]\displaystyle{ m . }[/math] Dlatego będziemy je oznaczali również jako [math]\displaystyle{ \mathbb{n}(m) . }[/math]


Definicja J67
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Powiemy, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], gdy [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą dodatnią względnie pierwszą z [math]\displaystyle{ m }[/math] taką, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]

nie ma rozwiązania.


Przykład J68
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math] i najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m . }[/math]


Uwaga J69
Do wyszukiwania liczb [math]\displaystyle{ \mathbb{n} (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

B(m) = 
{
local(p, res);
p = 1;
while( p < m,
       p = nextprime(p + 1);
       if( m%p == 0, next() );
       res = -1;
       for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
       if( res == -1, return(p) );
     );
}

Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby [math]\displaystyle{ m . }[/math] Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.

Pokaż kod
B(m) = 
{
local(p, res, t);
t = m%8;
if( t == 3 || t == 5, return(2) );
t = m%12;
if( t == 4 || t == 8, return(3) );
t = m%24;
if( t == 9 || t == 15, return(2) );
if( t == 10 || t == 14, return(3) );
t = m%30;
if( t == 6 || t == 12 || t == 18 || t == 24, return(5) );
p = 1;
while( p < m,
       p = nextprime(p + 1);
       if( m%p == 0, next() );
       res = -1;
       for( k = 2, floor(m/2), if( k^2%m == p, res = 1; break() ) );
       if( res == -1, return(p) );
     );
}


Twierdzenie J70
Niech [math]\displaystyle{ m \in \mathbb{Z} \, }[/math] i [math]\displaystyle{ \, m \geqslant 3 . }[/math] Jeżeli [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ \mathbb{n} = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt \mathbb{n} . }[/math] Z założenia [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], zatem liczby [math]\displaystyle{ a, b }[/math] są liczbami kwadratowymi modulo [math]\displaystyle{ m . }[/math] Z definicji liczb kwadratowych muszą istnieć takie liczby [math]\displaystyle{ r, s }[/math], że

[math]\displaystyle{ r^2 \equiv a \pmod{m} }[/math]
[math]\displaystyle{ s^2 \equiv b \pmod{m} }[/math]

Skąd wynika, że

[math]\displaystyle{ \mathbb{n} = a b \equiv (r s)^2 \pmod{m} }[/math]

Wbrew założeniu, że [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]


Zadanie J71
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli [math]\displaystyle{ m = 8 k \pm 3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Rozwiązanie

Z twierdzenia J35 wiemy, że [math]\displaystyle{ \left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1 }[/math], gdy [math]\displaystyle{ m = 8 k \pm 3 . }[/math] Wynika stąd, że [math]\displaystyle{ 2 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], a jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Co należało pokazać.


Zadanie J72
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \, \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Pokazać, że jeżeli spełniony jest jeden z warunków

  •   [math]\displaystyle{ 4 \, | \, m \; }[/math] i [math]\displaystyle{ \; \gcd (3, m) = 1 }[/math]
  •   [math]\displaystyle{ m = 12 k \pm 4 }[/math]

to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Rozwiązanie

Zauważmy, że [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], bo [math]\displaystyle{ 2 \, | \, m . }[/math] Rozważmy kongruencję

[math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]

Z założenia [math]\displaystyle{ 4 \, | \, m }[/math], co nie wyklucza możliwości, że również [math]\displaystyle{ 8 \, | \, m . }[/math] Ponieważ [math]\displaystyle{ 4 \nmid (3 - 1) }[/math] i [math]\displaystyle{ 8 \nmid (3 - 1) }[/math], to z twierdzenia J49 wynika, że kongruencja [math]\displaystyle{ x^2 \equiv 3 \!\! \pmod{m} }[/math] nie ma rozwiązania. Jeśli tylko [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math] W pierwszym punkcie jest to założone wprost, w drugim łatwo widzimy, że [math]\displaystyle{ 3 \nmid (12 k \pm 4) . }[/math]

Można też zauważyć, że żądanie, aby [math]\displaystyle{ \gcd (3, m) = 1 }[/math], prowadzi do dwóch układów kongruencji

[math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 1 \pmod{3} \end{align} }[/math]

oraz

[math]\displaystyle{ \begin{align} m &\equiv 0 \pmod{4} \\ m &\equiv 2 \pmod{3} \end{align} }[/math]

którym, na mocy chińskiego twierdzenia o resztach, odpowiadają dwie kongruencje równoważne

[math]\displaystyle{ m \equiv \pm 4 \pmod{12} }[/math]

Co należało pokazać.


Zadanie J73
Niech [math]\displaystyle{ m = 24 k \pm 10 . }[/math] Pokazać, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Rozwiązanie

Zapiszmy [math]\displaystyle{ m }[/math] w postaci [math]\displaystyle{ m = 2 m' }[/math], gdzie [math]\displaystyle{ m' = 12 k \pm 5 . }[/math] Gdyby kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{2 m'} }[/math]

miała rozwiązanie, to również kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{m'} }[/math]

miałaby rozwiązanie, ale jest to niemożliwe, bo [math]\displaystyle{ \left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J40), czyli [math]\displaystyle{ 3 }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m' . }[/math] Ponieważ [math]\displaystyle{ 2 \, | \, m }[/math], to [math]\displaystyle{ 2 }[/math] nie może być najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]


Twierdzenie J74
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą nieparzystą podzielną przez [math]\displaystyle{ p \in S_2 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Dowód

Z założenia [math]\displaystyle{ p \, | \, m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 2 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J49). Ponieważ [math]\displaystyle{ 2 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math]

Uwaga: zbiór [math]\displaystyle{ S_2 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 8 k \pm 3 }[/math] (zobacz J35).


Twierdzenie J75
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ \; }[/math] i [math]\displaystyle{ \; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \} }[/math] będzie zbiorem liczb pierwszych [math]\displaystyle{ p }[/math] takich, że [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Jeżeli [math]\displaystyle{ m }[/math] jest liczbą parzystą niepodzielną przez [math]\displaystyle{ 3 }[/math] i podzielną przez [math]\displaystyle{ p \in S_3 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Dowód

Z założenia [math]\displaystyle{ p \, | \, m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J49). Ponieważ [math]\displaystyle{ 2 \, | \, m }[/math] i [math]\displaystyle{ 3 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 3 . }[/math]

Uwaga: zbiór [math]\displaystyle{ S_3 }[/math] tworzą liczby pierwsze postaci [math]\displaystyle{ 12 k \pm 5 }[/math] (zobacz J40).


Twierdzenie J76
Jeżeli [math]\displaystyle{ m }[/math] jest liczbą dodatnią podzielną przez [math]\displaystyle{ 6 }[/math] i niepodzielną przez [math]\displaystyle{ 5 }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]

Dowód

Z założenia [math]\displaystyle{ 3 \, | \, m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 . }[/math] Zatem kongruencja

[math]\displaystyle{ x^2 \equiv 5 \pmod{m} }[/math]

nie ma rozwiązania (zobacz J49). Ponieważ [math]\displaystyle{ 2 \, | \, m }[/math], [math]\displaystyle{ 3 \, | \, m }[/math] i [math]\displaystyle{ 5 \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 5 . }[/math]


Uwaga J77
Uogólnienie twierdzenia J76 będzie wymagało udowodnienia twierdzenia pomocniczego J78.


Twierdzenie J78
Niech [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math]

Dowód

Łatwo sprawdzamy, że

[math]\displaystyle{ \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1 }[/math]

(zobacz J35 p.7). Zatem dowód wystarczy przeprowadzić dla [math]\displaystyle{ p \geqslant 13 }[/math].

Przypadek pierwszy: [math]\displaystyle{ \boldsymbol{p \equiv 1 \!\! \pmod{4}} }[/math]

Niech liczba [math]\displaystyle{ q }[/math] będzie najmniejszą nieparzystą liczbą niekwadratową modulo [math]\displaystyle{ p }[/math]. Z twierdzenia J65 wiemy, że dla [math]\displaystyle{ p \geqslant 5 }[/math] liczba [math]\displaystyle{ q }[/math] jest liczbą pierwszą i jest mniejsza od [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ p \equiv 1 \!\! \pmod{4} }[/math], to z twierdzenia J35 p.9 otrzymujemy natychmiast

[math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

Przypadek drugi: [math]\displaystyle{ \boldsymbol{p \equiv 3 \!\! \pmod{4}} }[/math]

Z założenia [math]\displaystyle{ p \equiv 3 \!\! \pmod{4} }[/math], zatem [math]\displaystyle{ p = 4 k + 3 }[/math]. Liczba [math]\displaystyle{ k }[/math] może być postaci [math]\displaystyle{ k = 3 j }[/math], [math]\displaystyle{ \, k = 3 j + 1 \, }[/math] i [math]\displaystyle{ \, k = 3 j + 2 }[/math], co odpowiada liczbom pierwszym postaci [math]\displaystyle{ p = 12 j + 3 }[/math], [math]\displaystyle{ \, p = 12 j + 7 \, }[/math] i [math]\displaystyle{ \, p = 12 j + 11 }[/math].

Ponieważ nie ma liczb pierwszych [math]\displaystyle{ p \geqslant 13 }[/math] i będących postaci [math]\displaystyle{ p = 12 j + 3 }[/math], to pozostaje rozważyć przypadki [math]\displaystyle{ p = 12 j + 7 \, }[/math] i [math]\displaystyle{ \, p = 12 j + 11 . }[/math]

A. Liczby pierwsze postaci [math]\displaystyle{ \boldsymbol{p = 12 j + 11} }[/math]

Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1 }[/math] (zobacz J40). Mamy

[math]\displaystyle{ \left( {\small\frac{p}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math]

Czyli wystarczy przyjąć [math]\displaystyle{ q = 3 }[/math].

B. Liczby pierwsze postaci [math]\displaystyle{ \boldsymbol{p = 12 j + 7} }[/math]

Wiemy, że w tym przypadku [math]\displaystyle{ \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 }[/math] (zobacz J35 p.6 oraz J40). Otrzymujemy

[math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = - \left( {\small\frac{p - 12}{p}} \right)_{\small{\!\! J}} = - \left( {\small\frac{- 12}{p}} \right)_{\small{\!\! J}} = \left[ - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} \right] \cdot \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = -1 }[/math]

Ponieważ liczba [math]\displaystyle{ p - 12 }[/math] jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy [math]\displaystyle{ q \lt p }[/math] liczby [math]\displaystyle{ p - 12 }[/math] taki, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 }[/math]. W przeciwnym razie z twierdzenia J35 p.4 mielibyśmy [math]\displaystyle{ \left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1 }[/math]. Co kończy dowód.


Twierdzenie J79
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ p \geqslant 5 }[/math] będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od [math]\displaystyle{ p }[/math] dzieli [math]\displaystyle{ m }[/math] i [math]\displaystyle{ p \nmid m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math].

Dowód

Z twierdzenia J78 wiemy, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ q \lt p }[/math] taka, że [math]\displaystyle{ \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 . }[/math] Z założenia [math]\displaystyle{ q \, | \, m }[/math], zatem kongruencja

[math]\displaystyle{ x^2 \equiv p \pmod{m} }[/math]

nie ma rozwiązania (zobacz J49). Ponieważ wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ p }[/math] dzielą [math]\displaystyle{ m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = p }[/math]. Co należało pokazać.


Zadanie J80
Pokazać, że podanym w pierwszej kolumnie postaciom liczby [math]\displaystyle{ m }[/math] odpowiadają wymienione w drugiej kolumnie wartości [math]\displaystyle{ \mathbb{n} (m) . }[/math]


Twierdzenie J81
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy

[math]\displaystyle{ \begin{array}{lll} \mathbb{n} (2 m) \gt \mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) = 2 \\ \mathbb{n} (2 m) =\mathbb{n} (m) & & \text{gdy} \;\; \mathbb{n} (m) \gt 2 \end{array} }[/math]
Dowód

Punkt 1.

W przypadku, gdy [math]\displaystyle{ \mathbb{n} (m) = 2 }[/math], mamy [math]\displaystyle{ \mathbb{n} (2 m) \gt 2 = \mathbb{n} (m) }[/math], bo [math]\displaystyle{ \mathbb{n} (2 m) }[/math] musi być liczbą względnie pierwszą z [math]\displaystyle{ 2 m . }[/math]

Punkt 2.

Z definicji najmniejszej liczby niekwadratowej modulo [math]\displaystyle{ m }[/math] wiemy, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{m} }[/math]

nie ma rozwiązania. Oznacza to, że istnieje liczba pierwsza nieparzysta [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \, | \, m \; }[/math] i [math]\displaystyle{ \; \left( {\small\frac{\mathbb{n} (m)}{p}} \right)_{\small{\!\! J}} = - 1 . }[/math] Ponieważ [math]\displaystyle{ p \, | \, 2 m }[/math], to wynika stąd natychmiast, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} (m) \pmod{2 m} }[/math]

również nie ma rozwiązania (zobacz J49).

Zatem [math]\displaystyle{ \mathbb{n} (2 m) \leqslant \mathbb{n} (m) . }[/math] Niech [math]\displaystyle{ q }[/math] będzie liczbą pierwszą taką, że [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Kongruencję

[math]\displaystyle{ x^2 \equiv q \pmod{2 m} \qquad \qquad (1) }[/math]

możemy zapisać w postaci układu kongruencji równoważnych (zobacz J1)

[math]\displaystyle{ \begin{align} x^2 & \equiv q \pmod{m} \qquad \qquad \;\: (2) \\ x^2 & \equiv q \pmod{2} \qquad \qquad \;\;\,\, (3) \\ \end{align} }[/math]

Z definicji [math]\displaystyle{ q }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math], zatem kongruencja [math]\displaystyle{ (2) }[/math] ma rozwiązanie – oznaczmy to rozwiązanie przez [math]\displaystyle{ x_0 . }[/math] Łatwo zauważamy, że liczba

[math]\displaystyle{ x'_0 = \begin{cases} \;\;\;\; x_0 & \text{gdy} \quad x_0 \equiv 1 \pmod{2} \\ x_0 + m & \text{gdy} \quad x_0 \equiv 0 \pmod{2} \\ \end{cases} }[/math]

jest rozwiązaniem układu kongruencji [math]\displaystyle{ (2) }[/math] i [math]\displaystyle{ (3) }[/math], a tym samym kongruencja [math]\displaystyle{ (1) }[/math] ma rozwiązanie dla każdego [math]\displaystyle{ 2 \lt q \lt \mathbb{n} (m) . }[/math] Wynika stąd, że [math]\displaystyle{ \mathbb{n} (2 m) =\mathbb{n} (m) . }[/math]


Twierdzenie J82
Niech [math]\displaystyle{ m }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n} (m) }[/math] będzie najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Mamy

[math]\displaystyle{ \begin{array}{lllll} \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2 & & \text{gdy } \;\; 3 \, | \, m \\ \mathbb{n} (4 m) = 3 & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\ \end{array} }[/math]
Dowód

Punkt 1.

Z twierdzenia J74 wynika, że w przypadku, gdy [math]\displaystyle{ 3 \, | \, m }[/math], to [math]\displaystyle{ \mathbb{n} (m) = 2 . }[/math] Ponieważ [math]\displaystyle{ 2 \, | \, 4 m }[/math] i [math]\displaystyle{ 3 \, | \, 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) \geqslant 5 . }[/math]

Punkt 2.

Ponieważ [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 8 \nmid 4 m }[/math], ale [math]\displaystyle{ 4 \, | \, 4 m \; }[/math] i [math]\displaystyle{ \; 4 \nmid (3 - 1) }[/math], zatem z twierdzenia J49 wynika, że kongruencja

[math]\displaystyle{ x^2 \equiv 3 \pmod{4 m} }[/math]

nie ma rozwiązania. Ponieważ [math]\displaystyle{ 2 \, | \, 4 m \; }[/math] i [math]\displaystyle{ \; 3 \nmid 4 m }[/math], to [math]\displaystyle{ \mathbb{n} (4 m) = 3 . }[/math]


Twierdzenie J83
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Jeżeli [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p \, }[/math] i [math]\displaystyle{ \, p \, | \, m }[/math], to [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math]

Dowód

Wiemy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy kongruencja

[math]\displaystyle{ x^2 \equiv a \pmod{m} }[/math]

ma rozwiązanie. Przypuśćmy, że liczba [math]\displaystyle{ a }[/math] jest liczbą kwadratową modulo [math]\displaystyle{ m . }[/math] Zatem istnieje taka liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math], że

[math]\displaystyle{ k^2 \equiv a \pmod{m} }[/math]

Ponieważ z założenia [math]\displaystyle{ p \, | \, m }[/math], to prawdziwa jest też kongruencja

[math]\displaystyle{ k^2 \equiv a \pmod{p} }[/math]

co przeczy założeniu, że liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]


Twierdzenie J84
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to istnieje taki dzielnik pierwszy [math]\displaystyle{ p }[/math] liczby [math]\displaystyle{ m }[/math], że [math]\displaystyle{ \mathbb{n} }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ p . }[/math]

Dowód

Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby [math]\displaystyle{ m }[/math]: [math]\displaystyle{ \{ p_1, \ldots, p_s \} }[/math] i powiązany z dzielnikami pierwszymi [math]\displaystyle{ p_k }[/math] zbiór najmniejszych liczb niekwadratowych modulo [math]\displaystyle{ p_k }[/math]: [math]\displaystyle{ \{ \mathbb{n}_1, \ldots, \mathbb{n}_s \} }[/math], z których każda jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math] (zobacz J83). Wynika stąd, że liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] musi być mniejsza od każdej z liczb [math]\displaystyle{ \mathbb{n}_k . }[/math]

Z definicji liczba [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], co oznacza, że kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{m} }[/math]

nie ma rozwiązania. Niech [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s . }[/math] Zatem przynajmniej jedna z kongruencji

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k} }[/math]

musi nie mieć rozwiązania (zobacz J11). Z twierdzenia J43 wiemy, że wtedy kongruencja

[math]\displaystyle{ x^2 \equiv \mathbb{n} \pmod{p_k} }[/math]

również nie ma rozwiązania. Zatem [math]\displaystyle{ \mathbb{n} }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ p_k \, }[/math] i [math]\displaystyle{ \, \mathbb{n} \lt \mathbb{n}_k }[/math], co przeczy definicji liczby [math]\displaystyle{ \mathbb{n}_k . }[/math]


Twierdzenie J85
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą. Jeżeli [math]\displaystyle{ m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to

[math]\displaystyle{ \mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) ) }[/math]

gdzie [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], a [math]\displaystyle{ \mathbb{n}(p_k) }[/math] są najmniejszymi liczbami kwadratowymi modulo [math]\displaystyle{ p_k . }[/math]

Dowód

Twierdzenie to jest prostym wnioskiem z twierdzenia J84, ale musimy jeszcze pokazać, że [math]\displaystyle{ \gcd (\mathbb{n} (m), m) = 1 . }[/math] Przypuśćmy, że [math]\displaystyle{ p_k |\mathbb{n} (m) }[/math] dla pewnego [math]\displaystyle{ 1 \leqslant k \leqslant s . }[/math] Ponieważ [math]\displaystyle{ \mathbb{n} (m) }[/math] jest liczbą pierwszą, to musi być [math]\displaystyle{ \mathbb{n} (m) = p_k }[/math], ale wtedy

[math]\displaystyle{ \mathbb{n} (p_k) \lt p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k) }[/math]

Otrzymana sprzeczność dowodzi, że [math]\displaystyle{ \mathbb{n} (m) }[/math] jest względnie pierwsza z każdą z liczb pierwszych [math]\displaystyle{ p_i }[/math], gdzie [math]\displaystyle{ 1 \leqslant i \leqslant s . }[/math] Co kończy dowód.


Twierdzenie J86
Niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ \mathbb{n}(m) }[/math] jest najmniejszą liczbą niekwadratową modulo [math]\displaystyle{ m . }[/math] Prawdziwe są oszacowania

[math]\displaystyle{ \mathbb{n}(m) \lt \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3 }[/math]
[math]\displaystyle{ \mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5 }[/math]
Dowód

Niech [math]\displaystyle{ p }[/math] będzie dzielnikiem pierwszym liczby [math]\displaystyle{ m }[/math] takim, że [math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) }[/math] (z twierdzenia J84 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ \mathbb{n}(p) \lt F (p) }[/math], gdzie [math]\displaystyle{ F(x) }[/math] jest funkcją rosnącą, to

[math]\displaystyle{ \mathbb{n}(m) = \mathbb{n} (p) \lt F (p) \leqslant F (m) }[/math]

Podane w twierdzeniu oszacowania wynikają natychmiast z twierdzeń J61 i J62.


Uwaga J87
Liczby [math]\displaystyle{ \mathbb{n} (m) }[/math] są zaskakująco małe. Średnia wartość [math]\displaystyle{ \mathbb{n} = \mathbb{n} (m) }[/math] wynosi[11]

[math]\displaystyle{ \lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots }[/math]



 C. Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] 

Przykład J88
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ p }[/math], najmniejsze liczby niekwadratowe modulo [math]\displaystyle{ m }[/math] i najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math].


Uwaga J89
Do wyszukiwania liczb [math]\displaystyle{ c = c (m) }[/math] Czytelnik może wykorzystać prostą funkcję napisaną w PARI/GP

C(m) = 
{
if( m%2 == 0, return(0) );
if( issquare(m), return(0) );
forprime(p = 2, m, if( jacobi(p, m) == -1, return(p) ));
}


Uwaga J90
Najmniejsze dodatnie liczby niekwadratowe [math]\displaystyle{ a }[/math] takie, że [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1 }[/math] oznaczyliśmy jako [math]\displaystyle{ c(m) }[/math]. Zauważmy, że są to liczby inne od [math]\displaystyle{ \mathbb{n}(p) }[/math] i [math]\displaystyle{ \mathbb{n}(m) }[/math]. Wystarczy zwrócić uwagę na występujące w tabeli liczby [math]\displaystyle{ \mathbb{n}(p) }[/math], [math]\displaystyle{ \mathbb{n}(m) }[/math] i [math]\displaystyle{ c(m) }[/math] dla [math]\displaystyle{ m = 15, 33, 39 }[/math]. Różnice wynikają z innej definicji liczb [math]\displaystyle{ c(m) }[/math] – jeżeli liczba [math]\displaystyle{ a }[/math] jest liczbą niekwadratową modulo [math]\displaystyle{ m }[/math], to symbol Jacobiego [math]\displaystyle{ \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math] nie musi być równy [math]\displaystyle{ - 1 }[/math]. I tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.

Ponieważ [math]\displaystyle{ c(m) }[/math] nie zawsze będzie najmniejszą liczbą kwadratową modulo [math]\displaystyle{ m }[/math], to mamy natychmiast oszacowanie: [math]\displaystyle{ c(m) \geqslant \mathbb{n} (m) }[/math] (poza przypadkami, gdy [math]\displaystyle{ m = n^2 }[/math]).

Dla [math]\displaystyle{ c(m) }[/math] nie są prawdziwe oszacowania podane w twierdzeniu J61. Łatwo zauważamy, że

[math]\displaystyle{ c = c (15) = 7 \gt \sqrt{15} + {\small\frac{1}{2}} \approx 4.37 }[/math]
[math]\displaystyle{ c = c (39) = 7 \gt \sqrt{39} + {\small\frac{1}{2}} \approx 6.74 }[/math]
[math]\displaystyle{ c = c (105) = 11 \gt \sqrt{105} + {\small\frac{1}{2}} \approx 10.75 }[/math]
[math]\displaystyle{ c = c (231) = 17 \gt \sqrt{231} + {\small\frac{1}{2}} \approx 15.7 }[/math]

Nie ma więcej takich przypadków dla [math]\displaystyle{ m \lt 10^9 }[/math].


Twierdzenie J91
Niech [math]\displaystyle{ c, m \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ m \geqslant 3 }[/math] będzie liczbą nieparzystą, a [math]\displaystyle{ c }[/math] będzie najmniejszą liczbą taką, że [math]\displaystyle{ \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1 }[/math]. Liczba [math]\displaystyle{ c }[/math] musi być liczbą pierwszą.

Dowód

Przypuśćmy, że [math]\displaystyle{ c = a b }[/math] jest liczbą złożoną, gdzie [math]\displaystyle{ 1 \lt a, b \lt c }[/math]. Mamy

[math]\displaystyle{ - 1 = \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} }[/math][math]\displaystyle{ \left( {\small\frac{b}{m}} \right)_{\small{\!\! J}} }[/math]

Zatem jeden z czynników po prawej stronie musi być równy [math]\displaystyle{ - 1 }[/math] wbrew definicji liczby [math]\displaystyle{ c }[/math].








Przypisy

  1. Wikipedia, Chińskie twierdzenie o resztach, (Wiki-pl), (Wiki-en)
  2. CRT to często używany skrót od angielskiej nazwy twierdzenia: Chinese remainder theorem
  3. Wikipedia, Logical equivalence, (Wiki-en)
  4. Wikipedia, Zasada włączeń i wyłączeń, (Wiki-pl), (Wiki-en)
  5. Wikipedia, Symbol Legendre’a, (Wiki-pl), (Wiki-en)
  6. Wikipedia, Symbol Jacobiego, (Wiki-pl), (Wiki-en)
  7. Karl K. Norton, Numbers with Small Prime Factors, and the Least kth Power Non-Residue, Memoirs of the American Mathematical Society, No. 106 (1971)
  8. Enrique Treviño, The least k-th power non-residue, Journal of Number Theory, Volume 149 (2015)
  9. Kevin J. McGown and Enrique Treviño, The least quadratic non-residue, Mexican Mathematicians in the World (2021)
  10. Paul Erdős, Számelméleti megjegyzések I, Afar. Lapok, v. 12 (1961)
  11. Paul Pollack, The average least quadratic nonresidue modulo [math]\displaystyle{ m }[/math] and other variations on a theme of Erdős, Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.