Różnica pomiędzy stronami "Testy pierwszości. Liczby pseudopierwsze Lucasa i liczby silnie pseudopierwsze Lucasa. Test BPSW" i "Największy wspólny dzielnik, element odwrotny modulo, funkcja Eulera"

Z Henryk Dąbrowski
(Różnica między stronami)
Przejdź do nawigacji Przejdź do wyszukiwania
 
 
Linia 1: Linia 1:
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">11.01.2023</div>
+
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.12.2023</div>
  
 
__FORCETOC__
 
__FORCETOC__
Linia 5: Linia 5:
  
  
== Ciągi Lucasa ==
+
== Największy wspólny dzielnik ==
  
<span style="font-size: 110%; font-weight: bold;">Definicja L1</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Definicja H1</span><br/>
Niech <math>P, Q \in \mathbb{Z} \setminus \{0\}</math> oraz <math>D = P^2 - 4 Q \neq 0</math>. Ciągi Lucasa <math>U_n = U_n (P, Q)</math> i <math>V_n = V_n (P, Q)</math> definiujemy następująco
+
Niech będą dane dwie liczby całkowite <math>a</math> i <math>b</math> niebędące jednocześnie zerami. Największym wspólnym dzielnikiem<ref name="GCD1"/> liczb <math>a</math> i <math>b</math> będziemy nazywali liczbę całkowitą <math>D</math> taką, że
  
::<math>U_n = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} = {\small\frac{\alpha^n - \beta^n}{\sqrt{D}}}</math>
+
:#&nbsp;&nbsp;<math> D \mid a \quad \text{i} \quad D \mid b</math>
 +
:#&nbsp;&nbsp;<math>\,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D</math>
  
::<math>V_n = \alpha^n + \beta^n</math>
+
gdzie <math>d</math> jest dowolną liczbą całkowitą.
  
gdzie liczby
 
  
::<math>\alpha = {\small\frac{P + \sqrt{D}}{2}}</math>
 
  
::<math>\beta = {\small\frac{P - \sqrt{D}}{2}}</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga H2</span><br/>
 +
Tak zdefiniowaną liczbę <math>D</math> będziemy oznaczali przez <math>\gcd (a, b)</math>. Ponieważ <math>1 \mid a \;</math> i <math>\; 1 \mid b</math>, to z&nbsp;definicji wynika natychmiast, że <math>\gcd (a, b) \geqslant 1</math>.
  
są pierwiastkami równania <math>x^2 - P x + Q = 0</math>.
 
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie H3</span><br/>
 +
Pokazać, że
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L2</span><br/>
+
::<math>d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b</math>
Zauważmy, że:
 
  
::<math>P = \alpha + \beta</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
::<math>Q = \alpha \beta</math>
+
<math>\Large{\Longrightarrow}</math>
  
::<math>\sqrt{D} = \alpha - \beta</math>
+
Z założenia <math>d \mid \gcd (a, b)</math>. Z definicji największego wspólnego dzielnika <math>\gcd (a, b) \mid a</math>, zatem <math>d \mid a</math>. Analogicznie pokazujemy, że <math>d \mid b</math>.
  
::<math>U_0 = 0</math>, <math>U_1 = 1</math>, <math>V_0 = 2</math> i <math>V_1 = P</math>
+
<math>\Large{\Longleftarrow}</math>
  
 +
Z założenia <math>a = r d</math>, <math>b = s d</math>. Z lematu Bézouta (zobacz C73) istnieją takie liczby całkowite <math>x, y</math>, że
  
Warunek <math>P^2 - 4 Q \neq 0</math> wyklucza następujące pary <math>(P, Q)</math>
+
::<math>\gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y)</math>
  
::<math>(0, 0), (\pm 2, 1), (\pm 4, 4), (\pm 6, 9), (\pm 8, 16), (\pm 10, 25), (\pm 12, 36), ..., (\pm 2 n, n^2), ...</math>
+
Zatem <math>d \mid \gcd (a, b)</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L3</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H4</span><br/>
Oczywiście liczby <math>\alpha</math> i <math>\beta</math> są również pierwiastkami równania
+
Jeżeli liczby całkowite <math>a, b</math> nie są jednocześnie równe zero i <math>\gcd (a, b) = a x + b y</math>, to <math>\gcd (x, y) = 1</math>.
  
::<math>x^{n + 2} - P x^{n + 1} + Q x^n = 0</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite <math>x, y</math> zawsze istnieją. Niech <math>\gcd (a, b) = d > 0</math>, zatem <math>a = d k</math> i <math>b = d m</math>, czyli
  
Wynika stąd, że ciągi <math>(\alpha^n)</math> i <math>(\beta^n)</math> spełniają równania rekurencyjne
+
::<math>(d k) x + (d m) y = d</math>
  
::<math>\alpha^{n + 2} = P \alpha^{n + 1} - Q \alpha^n</math>
+
Co oznacza, że <math>k x + m y = 1</math>, ale <math>\gcd (x, y)</math> jest dzielnikiem <math>k x + m y</math> (bo jest dzielnikiem <math>x</math> i <math>y</math>), zatem <math>\gcd (x, y) \mid 1</math>, czyli <math>\gcd (x, y) = 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\beta^{n + 2} = P \beta^{n + 1} - Q \beta^n</math>
 
  
Ciągi Lucasa <math>(U_n)</math> i <math>(V_n)</math> spełniają identyczne równania rekurencyjne jak ciągi <math>(\alpha^n)</math> i <math>(\beta^n)</math>. Istotnie, odejmując i&nbsp;dodając stronami wypisane powyżej równania, otrzymujemy
 
  
::<math>U_{n + 2} = P U_{n + 1} - Q U_n</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H5</span><br/>
 +
Niech <math>a, b, k \in \mathbb{Z}</math>. Prawdziwy jest wzór
  
::<math>V_{n + 2} = P V_{n + 1} - Q V_n</math>
+
::<math>\gcd (a + k b, b) = \gcd (a, b)</math>
  
Dlatego możemy zdefiniować ciągi Lucasa <math>(U_n)</math> i <math>(V_n)</math> w&nbsp;sposób równoważny
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>d_1 = \gcd (a + k b, b) \;</math> i <math>\; d_2 = \gcd (a, b)</math>.
  
 +
Z definicji <math>d_1 \mid (a + k b) \;</math> i <math>\; d_1 \mid b</math>, zatem <math>a + k b = x d_1 \;</math> i <math>\; b = y d_1</math>, czyli <math>a + k x d_1 = x d_1</math>, skąd natychmiast wynika, że <math>d_1 \mid a</math>. Ponieważ <math>d_1 \mid b</math>, to <math>d_1 \mid d_2</math> (zobacz&nbsp;H2).
  
 +
Z definicji <math>d_2 \mid a \;</math> i <math>\; d_2 \mid b</math>, zatem <math>d_2 \mid (a + k b) \;</math> i <math>\; d_2 \mid b</math>, czyli <math>d_2 \mid d_1</math>.
  
<span style="font-size: 110%; font-weight: bold;">Definicja L4</span><br/>
+
Ponieważ <math>d_1 \mid d_2 \;</math> i <math>\; d_2 \mid d_1</math>, to <math>| d_1 | = | d_2 |</math>. Co kończy dowód.<br/>
Niech <math>P, Q \in \mathbb{Z} \setminus \{0\}</math> oraz <math>D = P^2 - 4 Q \neq 0</math>. Ciągi Lucasa <math>(U_n)</math> i <math>(V_n)</math> określone są następującymi wzorami rekurencyjnymi
+
&#9633;
 +
{{\Spoiler}}
  
::<math>U_0 = 0</math>, <math>U_1 = 1</math>, <math>U_n = P U_{n - 1} - Q U_{n - 2}</math>
 
  
::<math>V_0 = 2</math>, <math>V_1 = P</math>, <math>V_n = P V_{n - 1} - Q V_{n - 2}</math>
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H6</span><br/>
 +
Niech <math>a, b, m \in \mathbb{Z}</math>. Prawdziwa jest następująca równoważność
  
 +
::<math>\gcd (a, m) = 1 \quad  \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład L5</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Początkowe wyrazy ciągów Lucasa
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{n}</math> !! <math>\boldsymbol{U_n (P, Q)}</math> !! <math>\boldsymbol{V_n (P, Q)}</math>
 
|-
 
| &nbsp;&nbsp;<math>0</math>&nbsp;&nbsp; || <math>0</math> || <math>2</math>
 
|-
 
| &nbsp;&nbsp;<math>1</math>&nbsp;&nbsp; || <math>1</math> || <math>P</math>
 
|-
 
| &nbsp;&nbsp;<math>2</math>&nbsp;&nbsp; || <math>P</math> || <math>P^2 - 2 Q</math>
 
|-
 
| &nbsp;&nbsp;<math>3</math>&nbsp;&nbsp; || <math>P^2 - Q</math> || <math>P^3 - 3 P Q</math>
 
|-
 
| &nbsp;&nbsp;<math>4</math>&nbsp;&nbsp; || <math>P^3 - 2 P Q</math> || <math>P^4 - 4 P^2 Q + 2 Q^2</math>
 
|-
 
| &nbsp;&nbsp;<math>5</math>&nbsp;&nbsp; || <math>P^4 - 3 P^2 Q + Q^2</math> || <math>P^5 - 5 P^3 Q + 5 P Q^2</math>
 
|-
 
| &nbsp;&nbsp;<math>6</math>&nbsp;&nbsp; || <math>P^5 - 4 P^3 Q + 3 P Q^2</math> || <math>P^6 - 6 P^4 Q + 9 P^2 Q^2 - 2 Q^3</math>
 
|-
 
| &nbsp;&nbsp;<math>7</math>&nbsp;&nbsp; || <math>P^6 - 5 P^4 Q + 6 P^2 Q^2 - Q^3</math> || <math>P^7 - 7 P^5 Q + 14 P^3 Q^2 - 7 P Q^3</math>
 
|-
 
| &nbsp;&nbsp;<math>8</math>&nbsp;&nbsp; || <math>P^7 - 6 P^5 Q + 10 P^3 Q^2 - 4 P Q^3</math> || <math>P^8 - 8 P^6 Q + 20 P^4 Q^2 - 16 P^2 Q^3 + 2 Q^4</math>
 
|-
 
| &nbsp;&nbsp;<math>9</math>&nbsp;&nbsp; || <math>P^8 - 7 P^6 Q + 15 P^4 Q^2 - 10 P^2 Q^3 + Q^4</math> || <math>P^9 - 9 P^7 Q + 27 P^5 Q^2 - 30 P^3 Q^3 + 9 P Q^4</math>
 
|}
 
  
 +
<math>\Large{\Longrightarrow}</math>
  
 +
Niech <math>\gcd (a b, m) = d</math>. Z&nbsp;definicji <math>d \mid a b</math> i <math>d \mid m</math>. Gdyby było <math>d > 1</math>, to istniałaby liczba pierwsza <math>p</math> taka, że <math>p \mid d</math> i&nbsp;mielibyśmy <math>p \mid a b</math> i <math>p \mid m</math>. Jeżeli <math>p \mid a b</math>, to <math>p \mid a</math> lub <math>p \mid b</math> (zobacz C74). W&nbsp;przypadku, gdy <math>p \mid a</math> dostajemy <math>\gcd (a, m) \geqslant p > 1</math>, wbrew założeniu, że <math>\gcd (a, m) = 1</math>. Analogicznie pokazujemy sprzeczność, gdy <math>p \mid b</math>.
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L6</span><br/>
+
<math>\Large{\Longleftarrow}</math>
W PARI/GP możemy napisać prosty kod, który pozwoli obliczyć wartości wyrazów <math>U_n (P, Q)</math> i <math>V_n (P, Q)</math>
 
  
<span style="font-size: 90%; color:black;">LucasU(n, P, Q) = '''if'''( n == 0, 0, '''if'''( n == 1, 1, P*LucasU(n-1, P, Q) - Q*LucasU(n-2, P, Q) ) )</span>
+
Niech <math>\gcd (a, m) = d</math>. Z&nbsp;definicji <math>d \mid a</math> i <math>d \mid m</math>, zatem również <math>d \mid a b</math> i <math>d \mid m</math>. Mamy stąd
  
<span style="font-size: 90%; color:black;">LucasV(n, P, Q) = '''if'''( n == 0, 2, '''if'''( n == 1, P, P*LucasV(n-1, P, Q) - Q*LucasV(n-2, P, Q) ) )</span>
+
::<math>1 = \gcd (a b, m) \geqslant d \geqslant 1</math>
  
 +
Czyli musi być <math>d = 1</math>. Analogicznie pokazujemy, że <math>\gcd (b, m) = 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L7</span><br/>
 
Niech <math>D = P^2 - 4 Q</math>. Wyrazy ciągów Lucasa można przedstawić w&nbsp;postaci sumy
 
  
::<math>2^{n - 1} U_n = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H7</span><br/>
 +
Dla <math>a, b, m \in \mathbb{Z}</math> jest
  
::<math>2^{n - 1} V_n = \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} D^k</math>
+
::<math>\gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m)</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Oznaczmy <math>\delta = \sqrt{D}</math>, zatem <math>2 \alpha = P + \delta</math> i <math>2 \beta = P - \delta</math>. Ze wzoru dwumianowego, mamy
+
Wprowadźmy oznaczenia
 
 
::<math>2^n \alpha^n = (P + \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} \delta^j</math>
 
 
 
::<math>2^n \beta^n = (P - \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (- \delta)^j</math>
 
 
 
Obliczając sumę powyższych wzorów, otrzymujemy
 
 
 
::<math>2^n (\alpha^n + \beta^n) = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (\delta^j + (- \delta)^j)</math>
 
 
 
:::::<math>\quad \: = \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} \cdot 2 \delta^{2 k}</math>
 
 
 
:::::<math>\quad \: = 2 \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} D^k</math>
 
 
 
gdzie <math>j = 2 k</math> i&nbsp;sumowanie przebiega od <math>k = 0</math> do <math>k = \lfloor n / 2 \rfloor</math>
 
 
 
Zatem
 
 
 
::<math>2^{n - 1} V_n = \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} D^k</math>
 
 
 
  
Obliczając różnicę tych wzorów, mamy
+
::<math>r = \gcd (a b, m)</math>
  
::<math>2^n (\alpha^n - \beta^n) = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (\delta^j - (- \delta)^j)</math>
+
::<math>s = \gcd (a, m)</math>
  
:::::<math>\quad \: = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} \cdot 2 \delta^{2 k + 1}</math>
+
::<math>t = \gcd (b, m)</math>
  
:::::<math>\quad \: = 2 \delta \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
+
Z lematu Bézouta (zobacz C73) istnieją takie liczby <math>x, y, X, Y</math>, że
  
gdzie <math>j = 2 k + 1</math> i&nbsp;sumowanie przebiega od <math>k = 0</math> do <math>k = \lfloor (n - 1) / 2 \rfloor</math>
+
::<math>s = a x + m y</math>
  
 +
::<math>t = b X + m Y</math>
  
 
Zatem
 
Zatem
  
::<math>2^{n - 1} \cdot {\small\frac{\alpha^n - \beta^n}{\sqrt{D}}} = 2^{n - 1} U_n = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
+
::<math>s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y</math>
  
Co należało pokazać.<br/>
+
ale <math>r \mid a b</math> i <math>r \mid m</math>, skąd otrzymujemy, że <math>r \mid s t</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 161: Linia 130:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L8</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H8</span><br/>
Korzystając z&nbsp;twierdzenia L7, możemy napisać proste funkcje do znajdowania postaci kolejnych wyrazów <math>U_n (P, Q)</math> i <math>V_n (P, Q)</math>
+
Jeżeli liczby <math>a, b</math> są względnie pierwsze, to
  
<span style="font-size: 90%; color:black;">U(n) = 2^(1 - n)*'''sum'''(k=0, '''floor'''((n-1)/2), '''binomial'''(n, 2*k+1) * P^(n-2*k-1) * (P^2-4*Q)^k)</span>
+
::<math>\gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m)</math>
 
 
<span style="font-size: 90%; color:black;">V(n) = 2^(1 - n)*'''sum'''(k=0, '''floor'''(n/2), '''binomial'''(n, 2*k) * P^(n-2*k) * (P^2-4*Q)^k)</span>
 
 
 
 
 
 
 
Często możemy spotkać założenie <math>P \geqslant 1</math>. Poniższe twierdzenie wyjaśnia, dlaczego tak jest.
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L9</span><br/>
 
Jeżeli <math>(U_n)</math> i <math>(V_n)</math> są ciągami Lucasa, to
 
 
 
::<math>U_n (- P, Q) = (- 1)^{n - 1} U_n (P, Q)</math>
 
 
 
::<math>V_n (- P, Q) = (- 1)^n V_n (P, Q)</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech
+
Wprowadźmy oznaczenia
 
 
::<math>\alpha = \frac{P + \sqrt{D}}{2} \qquad \qquad \;\; \beta = \frac{P - \sqrt{D}}{2}</math>
 
 
 
::<math>a = \frac{- P + \sqrt{D}}{2} \qquad \qquad b = \frac{- P - \sqrt{D}}{2}</math>
 
 
 
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
 
 
 
::<math>x^2 - P x + Q = 0</math>
 
 
 
::<math>x^2 + P x + Q = 0</math>
 
 
 
Zatem definiują one ciągi Lucasa
 
 
 
::<math>U_n (P, Q) = \frac{\alpha^n - \beta^n}{\alpha - \beta} \qquad \qquad \;\; V_n (P, Q) = \alpha^n + \beta^n</math>
 
 
 
::<math>U_n (- P, Q) = \frac{a^n - b^n}{a - b} \qquad \qquad V_n (- P, Q) = a^n + b^n</math>
 
  
Zauważmy, że
+
::<math>r = \gcd (a b, m)</math>
  
::<math>\alpha - \beta = a - b = \sqrt{D}</math>
+
::<math>s = \gcd (a, m)</math>
  
::<math>\frac{a}{\beta} = \frac{b}{\alpha} = - 1</math>
+
::<math>t = \gcd (b, m)</math>
  
Łatwo znajdujemy
+
Z założenia <math>\gcd (a, b) = 1</math>. Ponieważ <math>s \mid a</math> oraz <math>t \mid b</math>, to <math>\gcd (s, t) = 1</math>, zatem (zobacz C75)
  
::<math>U_n (- P, Q) = \frac{a^n - b^n}{a - b} = \frac{(- \beta)^n - (- \alpha)^n}{\sqrt{D}} = (- 1)^n \cdot \frac{\beta^n - \alpha^n}{\alpha - \beta} = (- 1)^{n - 1} \cdot U_n (P, Q)</math>
+
::<math>s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b</math>
  
::<math>V_n (- P, Q) = a^n + b^n = (- \beta)^n + (- \alpha)^n = (- 1)^n \cdot (\alpha^n + \beta^n) = (- 1)^n \cdot V_n (P, Q)</math>
+
::<math>s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m</math>
  
Co należało pokazać.<br/>
+
Wynika stąd, że <math>s t \mid \gcd (a b, m)</math>, czyli <math>s t \mid r</math>. Z&nbsp;poprzedniego twierdzenia wiemy, że <math>r \mid s t</math>, zatem <math>|r| = |s t|</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 216: Linia 156:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie L10</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H9</span><br/>
Pokazać, że jeżeli <math>P, Q \in \mathbb{Z} \setminus \{ 0 \}</math> i <math>D = P^2 - 4 Q \neq 0</math>, to
+
Jeżeli dodatnie liczby <math>a, b</math> są względnie pierwsze, to każdy dzielnik <math>d</math> iloczynu <math>a b</math> można przedstawić jednoznacznie w postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a ,</math> <math>\; d_2 \mid b \;</math> <math>\text{i} \; \gcd (d_1, d_2) = 1</math>.
  
::<math>U_n (2 P, 4 Q) = 2^{n - 1} U_n (P, Q)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
+
Niech <math>d_1 = \gcd (d, a) \;</math> i <math>\; d_2 = \gcd (d, b)</math>. Z twierdzenia H8 mamy
::<math>V_n (2 P, 4 Q) = 2^n V_n (P, Q)</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d</math>
Niech
 
  
::<math>\alpha = {\small\frac{P + \sqrt{D}}{2}} \qquad \qquad \;\; \beta = {\small\frac{P - \sqrt{D}}{2}}</math>
+
Bo z założenia <math>d \mid a b</math>. Z definicji największego wspólnego dzielnika i zadania H3 dostajemy
  
::<math>a = P + \sqrt{D} \qquad \qquad \;\; b = P - \sqrt{D}</math>
+
::<math>\gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2</math>
  
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
+
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b)</math>
  
::<math>x^2 - P x + Q = 0</math>
+
::::::::<math>\, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b</math>
  
::<math>x^2 - 2 P x + 4 Q = 0</math>
+
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (a, b)</math>
  
Zatem definiują one ciągi Lucasa
+
::::::::<math>\, \Longrightarrow \qquad \gcd (a, b) \geqslant e</math>
  
::<math>U_n (P, Q) = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \qquad \qquad \;\;\; V_n (P, Q) = \alpha^n + \beta^n</math>
+
Gdyby było <math>\gcd (d_1, d_2) = e > 1</math>, to mielibyśmy <math>\gcd (a, b) \geqslant e > 1</math>. Wbrew założeniu, że <math>\gcd (a, b) = 1</math>. Co kończy dowód.<br/>
 
 
::<math>U_n (2 P, 4 Q) = {\small\frac{a^n - b^n}{a - b}} \qquad \qquad V_n (2 P, 4 Q) = a^n + b^n</math>
 
 
 
Zauważmy, że
 
 
 
::<math>\alpha - \beta = \sqrt{D}</math>
 
 
 
::<math>a - b = 2 \sqrt{D}</math>
 
 
 
::<math>{\small\frac{a}{\alpha}} = {\small\frac{b}{\beta}} = 2</math>
 
 
 
Łatwo znajdujemy
 
 
 
::<math>U_n (2 P, 4 Q) = {\small\frac{a^n - b^n}{a - b}} = {\small\frac{(2 \alpha)^n - (2 \beta)^n}{2 \sqrt{D}}} = 2^{n - 1} \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} = 2^{n - 1} U_n (P, Q)</math>
 
 
 
::<math>V_n (2 P, 4 Q) = a^n + b^n = (2 \alpha)^n + (2 \beta)^n = 2^n (\alpha^n + \beta^n) = 2^n V_n (P, Q)</math>
 
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 262: Linia 182:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie L11</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H10</span><br/>
Pokazać, że jeżeli <math>Q \in \mathbb{Z} \setminus \{ 0 \}</math> oraz <math>P = 4 Q - 1</math>, to
+
Jeżeli <math>a, m, n \in \mathbb{Z}_+</math>, to
  
::<math>U_{2 k} (P, P Q) = - (- P)^k U_{2 k} (1, Q)</math>
+
::<math>\gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1</math>
  
::<math>U_{2 k + 1} (P, P Q) = (- P)^k V_{2 k + 1} (1, Q)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Pokażemy najpierw, że jeżeli <math>d</math> jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i&nbsp;odwrotnie.
  
::<math>V_{2 k} (P, P Q) = (- P)^k V_{2 k} (1, Q)</math>
+
<math>\Large{\Longrightarrow}</math>
  
::<math>V_{2 k + 1} (P, P Q) = - (- P)^{k + 1} U_{2 k + 1} (1, Q)</math>
+
Z założenia <math>d</math> jest dzielnikiem <math>\gcd (a^m - 1, a^n - 1)</math>, czyli <math>d \mid (a^m - 1) \;</math> i <math>\; d \mid (a^n - 1)</math>, co możemy zapisać w&nbsp;postaci
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
Niech
 
  
::<math>\alpha = {\small\frac{1 + \sqrt{- P}}{2}} \qquad \qquad \beta = {\small\frac{1 - \sqrt{- P}}{2}}</math>
+
Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby <math>x, y</math>, że <math>\gcd (m, n) = m x + n y</math>. Łatwo znajdujemy, że
  
::<math>a = {\small\frac{P + \sqrt{- P}}{2}} \qquad \qquad b = {\small\frac{P - \sqrt{- P}}{2}}</math>
+
::<math>a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d}</math>
  
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
+
Czyli <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>.
  
::<math>x^2 - x + {\small\frac{P + 1}{4}} = 0</math>
+
<math>\Large{\Longleftarrow}</math>
  
::<math>x^2 - P x + {\small\frac{P (P + 1)}{4}} = 0</math>
+
Z założenia <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>, czyli
  
Z założenia <math>P = 4 Q - 1</math>, zatem
+
::<math>a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d}</math>
  
::<math>x^2 - x + Q = 0</math>
+
Zatem
  
::<math>x^2 - P x + P Q = 0</math>
+
::<math>a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d}</math>
  
Czyli definiują one ciągi Lucasa
+
Podobnie otrzymujemy
  
::<math>U_n (1, Q) = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \qquad \qquad \:\:\: V_n (1, Q) = \alpha^n + \beta^n</math>
+
::<math>a^n \equiv 1 \!\! \pmod{d}</math>
  
::<math>U_n (P, P Q) = {\small\frac{a^n - b^n}{a - b}} \qquad \qquad V_n (P, P Q) = a^n + b^n</math>
+
Zatem <math>d</math> dzieli <math>a^m - 1 \;</math> i <math>\; a^n - 1</math>, czyli
  
Zauważmy, że
+
::<math>d \mid \gcd (a^m - 1, a^n - 1)</math>
  
::<math>\alpha - \beta = a - b = \sqrt{- P}</math>
 
  
::<math>{\small\frac{a}{\beta}} = {\small\frac{P + \sqrt{- P}}{1 - \sqrt{- P}}} = \sqrt{- P}</math>
+
W szczególności wynika stąd, że
  
::<math>{\small\frac{b}{\alpha}} = {\small\frac{P - \sqrt{- P}}{1 + \sqrt{- P}}} = - \sqrt{- P}</math>
+
:*&nbsp;&nbsp;&nbsp;<math>\gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>
  
 +
:*&nbsp;&nbsp;&nbsp;<math>\left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1)</math>
  
Łatwo znajdujemy
+
Czyli <math>\left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right|</math>. Co kończy dowód.<br/>
 
+
&#9633;
::<math>U_{2 k} (P, P Q) = \frac{a^{2 k} - b^{2 k}}{a - b} = \frac{\left( \beta \sqrt{- P} \right)^{2 k} - \left( - \alpha \sqrt{- P} \right)^{2 k}}{\sqrt{- P}} = \frac{(- P)^k (\beta^{2 k} - \alpha^{2 k})}{\alpha - \beta} = - (- P)^k U_{2 k} (1, Q)</math>
+
{{\Spoiler}}
  
  
::<math>U_{2 k + 1} (P, P Q) = \frac{a^{2 k + 1} - b^{2 k + 1}}{a - b} = \frac{\left( \beta \sqrt{- P} \right)^{2 k + 1} - \left( - \alpha \sqrt{- P} \right)^{2 k + 1}}{\sqrt{- P}} = (- P)^k (\beta^{2 k + 1} + \alpha^{2 k + 1}) = (- P)^k V_{2 k + 1} (1, Q)</math>
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga H11</span><br/>
 +
W dowodzie twierdzenia H10 pominęliśmy milczeniem fakt, że jedna z&nbsp;liczb <math>x, y</math> może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis
  
::<math>V_{2 k} (P, P Q) = a^{2 k} + b^{2 k} = \left( \beta \sqrt{- P} \right)^{2 k} + \left( - \alpha \sqrt{- P} \right)^{2 k} = (- P)^k (\alpha^{2 k} + \beta^{2 k}) = (- P)^k V_{2 k} (1, Q)</math>
+
::<math>a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d}</math>
  
 +
Omówimy ten problem w&nbsp;następnej sekcji. Zauważmy, wyprzedzając materiał, że z&nbsp;kongruencji
  
::<math>V_{2 k + 1} (P, P Q) = a^{2 k + 1} + b^{2 k + 1} = \left( \beta \sqrt{- P} \right)^{2 k + 1} + \left( - \alpha \sqrt{- P} \right)^{2 k + 1} = (- P)^{k + 1} \cdot \frac{\beta^{2 k + 1} - \alpha^{2 k + 1}}{\sqrt{- P}} = - (- P)^{k + 1} U_{2 k + 1} (1, Q)</math>
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
  
Co należało pokazać.<br/>
+
wynika, że <math>\gcd (a, d) = 1</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>d</math>.
&#9633;
 
{{\Spoiler}}
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie L12</span><br/>
 
Pokazać, że jeżeli <math>Q \in \mathbb{Z} \setminus \{ 0 \}</math> oraz <math>P = 4 Q + 1</math>, to
 
  
::<math>U_{2 k} (P, P Q) = P^k U_{2 k} (1, - Q)</math>
 
  
::<math>U_{2 k + 1} (P, P Q) = P^k V_{2 k + 1} (1, - Q)</math>
+
== Element odwrotny modulo <math>m</math> ==
  
::<math>V_{2 k} (P, P Q) = P^k V_{2 k} (1, - Q)</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H12</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Dla liczby <math>a \in \mathbb{Z}</math> istnieje taka liczba <math>x</math>, że
  
::<math>V_{2 k + 1} (P, P Q) = P^{k + 1} U_{2 k + 1} (1, - Q)</math>
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
wtedy i&nbsp;tylko wtedy, gdy <math>\gcd (a, m) = 1</math>.
Niech
 
  
::<math>\alpha = {\small\frac{1 + \sqrt{P}}{2}} \qquad \qquad \beta = {\small\frac{1 - \sqrt{P}}{2}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
::<math>a = {\small\frac{P + \sqrt{P}}{2}} \qquad \qquad b = {\small\frac{P - \sqrt{P}}{2}}</math>
+
<math>\Large{\Longrightarrow}</math>
  
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
+
Z założenia istnieje taka liczba <math>x</math>, że
  
::<math>x^2 - x - {\small\frac{P - 1}{4}} = 0</math>
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
::<math>x^2 - P x + {\small\frac{P (P - 1)}{4}} = 0</math>
+
Zatem dla pewnego <math>k \in \mathbb{Z}</math> jest
  
Z założenia <math>P = 4 Q + 1</math>, zatem
+
::<math>a x = 1 + k m</math>
  
::<math>x^2 - x - Q = 0</math>
+
Czyli <math>a x - k m = 1</math>. Wynika stąd, że <math>\gcd (a, m)</math> dzieli <math>1</math>, co oznacza, że <math>\gcd (a, m) = 1</math>.
  
::<math>x^2 - P x + P Q = 0</math>
+
<math>\Large{\Longleftarrow}</math>
  
Czyli definiują one ciągi Lucasa
+
Z założenia <math>\gcd (a, m) = 1</math>. Z&nbsp;lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite <math>x, y</math>, że
  
::<math>U_n (1, - Q) = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \qquad \qquad V_n (1, - Q) = \alpha^n + \beta^n</math>
+
::<math>a x + m y = 1</math>
  
::<math>U_n (P, P Q) = {\small\frac{a^n - b^n}{a - b}} \qquad \qquad V_n (P, P Q) = a^n + b^n</math>
+
Zatem modulo <math>m</math> dostajemy
  
Zauważmy, że
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
::<math>\alpha - \beta = a - b = \sqrt{P}</math>
+
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>{\small\frac{a}{\alpha}} = {\small\frac{P + \sqrt{P}}{1 + \sqrt{P}}} = \sqrt{P}</math>
 
  
::<math>{\small\frac{b}{\beta}} = {\small\frac{P - \sqrt{P}}{1 - \sqrt{P}}} = - \sqrt{P}</math>
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Definicja H13</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Liczbę <math>x</math> taką, że
  
Łatwo znajdujemy
+
::<math>a \cdot x \equiv 1 \!\! \pmod{m}</math>
  
::<math>U_{2 k} (P, P Q) = \frac{a^{2 k} - b^{2 k}}{a - b} = \frac{\left( \alpha \sqrt{P} \right)^{2 k} - \left( - \beta \sqrt{P} \right)^{2 k}}{\sqrt{P}} = \frac{P^k (\alpha^{2 k} - \beta^{2 k})}{\alpha - \beta} = P^k U_{2 k} (1, - Q)</math>
+
będziemy nazywali elementem odwrotnym liczby <math>a</math> modulo <math>m</math> i&nbsp;oznaczali jako <math>a^{- 1}</math>.
  
  
::<math>U_{2 k + 1} (P, P Q) = \frac{a^{2 k + 1} - b^{2 k + 1}}{a - b} = \frac{\left( \alpha \sqrt{P} \right)^{2 k + 1} - \left( - \beta \sqrt{P} \right)^{2 k + 1}}{\sqrt{P}} = P^k (\alpha^{2 k + 1} + \beta^{2 k + 1}) = P^k V_{2 k + 1} (1, - Q)</math>
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Uwaga H14</span><br/>
 +
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli <math>b \mid a</math> oraz <math>b</math> ma element odwrotny modulo <math>m</math>, to prawdziwa jest kongruencja
  
::<math>V_{2 k} (P, P Q) = a^{2 k} + b^{2 k} = \left( \alpha \sqrt{P} \right)^{2 k} + \left( - \beta \sqrt{P} \right)^{2 k} = P^k (\alpha^{2 k} + \beta^{2 k}) = P^k V_{2 k} (1, - Q)</math>
+
::<math>{\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m}</math>
  
 +
Istotnie
  
::<math>V_{2 k + 1} (P, P Q) = a^{2 k + 1} + b^{2 k + 1} = \left( \alpha \sqrt{P} \right)^{2 k + 1} + \left( - \beta \sqrt{P} \right)^{2 k + 1} = P^{k + 1} \cdot \frac{\alpha^{2 k + 1} - \beta^{2 k + 1}}{\sqrt{P}} = P^{k + 1} U_{2 k + 1} (1, - Q)</math>
+
::<math>{\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m}</math>
  
Co należało pokazać.<br/>
+
W PARI/GP odwrotność liczby <math>a</math> modulo <math>m</math> znajdujemy, wpisując <code>Mod(a, m)^(-1)</code>.
&#9633;
 
{{\Spoiler}}
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L13</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H15</span><br/>
Dla wyrazów ciągów Lucasa prawdziwe są wzory
+
Niech <math>a, k \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math>. Poniższa tabelka przedstawia elementy odwrotne do elementu <math>a</math> w&nbsp;przypadku niektórych modułów <math>m</math>. W&nbsp;szczególności, jeżeli moduł <math>m</math> jest liczbą nieparzystą, to <math>2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m}</math>.
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 100%; text-align: left;"
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
|-
| <math>1.</math> || <math>U_{m + n} = U_m U_{n + 1} - Q U_{m - 1} U_n</math> ||
+
|| postać <br/> modułu <math>\boldsymbol{m}</math> || odwrotność <br/> elementu <math>\boldsymbol{a}</math> || uwagi
 
|-
 
|-
| <math>2.</math> || <math>V_{m + n} = V_m V_n - Q^n V_{m - n}</math> || <math>m \geqslant n</math>
+
| <math>1.</math> || <math>m = 2</math> || <math>1</math> || rowspan = 3 | liczba <math>a</math> <br/> jest liczbą <br/> nieparzystą
 
|-
 
|-
| <math>3.</math> || <math>U_{m + n} = U_m V_n - Q^n U_{m - n}</math> || <math>m \geqslant n</math>
+
| <math>2.</math> || <math>m = 4</math> || <math>R_4(a)</math>
 
|-
 
|-
| <math>4.</math> || <math>V_{m + n} = D U_m U_n + Q^n V_{m - n}</math> || <math>m \geqslant n</math>
+
| <math>3.</math> || <math>m = 8</math> || <math>R_8(a)</math>
 
|-
 
|-
| <math>5.</math> || <math>U_m V_n - V_m U_n = 2 Q^n U_{m - n}</math> || <math>m \geqslant n</math>
+
| <math>4.</math> || <math>m = a k - 1</math> || <math>{\small\frac{m + 1}{a}}</math> || <math></math>
 
|-
 
|-
| <math>6.</math> || <math>U^2_n = U_{n - 1} U_{n + 1} + Q^{n - 1}</math> ||  
+
| <math>5.</math> || <math>m = a k + 1</math> || <math>- {\small\frac{m - 1}{a}}</math> || <math></math>
 
|-
 
|-
| <math>7.</math> || <math>V^2_n = V_{n - 1} V_{n + 1} - D Q^{n - 1}</math> ||  
+
| <math>6.</math> || <math>m = a k - 2</math> || <math>{\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}}</math> || rowspan = 2 | liczby <math>a , m</math> <br/> są liczbami <br/> nieparzystymi
|}
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 100%; text-align: left;"
 
 
|-
 
|-
| <math>\;\; 8.</math> || <math>2 U_{m + n} = U_m V_n + V_m U_n</math> ||
+
| <math>7.</math> || <math>m = a k + 2</math> || <math>{\small\frac{m - 1}{2}} \cdot {\small\frac{m - 2}{2}}</math>  
|-
 
| <math>\;\; 9.</math> || <math>2 V_{m + n} = V_m V_n + D U_m U_n</math> ||
 
|-
 
| <math>10.</math> || <math>V_m V_n - D U_m U_n = 2 Q^n V_{m - n}</math> || <math>m \geqslant n</math>
 
|-
 
| <math>11.</math> || <math>U_{2 n} = U_n V_n</math> ||
 
|-
 
| <math>12.</math> || <math>V_{2 n} = V^2_n - 2 Q^n</math> ||
 
|-
 
| <math>13.</math> || <math>V_{2 n} = D U^2_n + 2 Q^n</math> ||
 
|-
 
| <math>14.</math> || <math>V^2_n - D U^2_n = 4 Q^n</math> ||
 
|-
 
| <math>15.</math> || <math>D U_n = 2 V_{n + 1} - P V_n</math> ||
 
|-
 
| <math>16.</math> || <math>V_n = 2 U_{n + 1} - P U_n</math> ||
 
|-
 
| <math>17.</math> || <math>D U_n = V_{n + 1} - Q V_{n - 1}</math> || <math>n \geqslant 1</math>
 
|-
 
| <math>18.</math> || <math>V_n = U_{n + 1} - Q U_{n - 1}</math> || <math>n \geqslant 1</math>
 
|}
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 100%; text-align: left;"
 
|-
 
| <math>19.</math> || <math>U_{2 n} = 2 U_n U_{n + 1} - P U^2_n</math>
 
|-
 
| <math>20.</math> || <math>U_{2 n + 1} = U^2_{n + 1} - Q U^2_n</math>
 
|-
 
| <math>21.</math> || <math>U_{2 n + 2} = P U^2_{n + 1} - 2 Q U_n U_{n + 1}</math>
 
 
|}
 
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Wzory 1. - 7. najłatwiej udowodnić korzystając z&nbsp;definicji L1.'''
 
  
Wzór 1.
+
'''Punkty 1. - 3.'''
  
::<math>U_{m + n} = {\small\frac{\alpha^{m + n} - \beta^{m + n}}{\alpha - \beta}}</math>
+
Ponieważ dla liczb nieparzystych jest
  
:::<math>\quad \: = {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}} \cdot {\small\frac{\alpha^{n + 1} - \beta^{n + 1}}{\alpha - \beta}} - \alpha \beta \cdot {\small\frac{\alpha^{m - 1} - \beta^{m - 1}}{\alpha - \beta}} \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}}</math>
+
::<math>a^2 \equiv 1 \!\! \pmod{2}</math>
  
:::<math>\quad \: = U_m U_{n + 1} - Q U_{m - 1} U_n</math>
+
::<math>a^2 \equiv 1 \!\! \pmod{4}</math>
  
 +
::<math>a^2 \equiv 1 \!\! \pmod{8}</math>
  
Wzór 2.
+
to liczba nieparzysta <math>a</math> jest swoją odwrotnością modulo <math>2</math>, <math>4</math> i <math>8</math>. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać
  
::<math>V_{m + n} = \alpha^{m + n} + \beta^{m + n}</math>
+
::<math>a^{- 1} \equiv R_2 (a) \!\! \pmod{2}</math>
  
:::<math>\quad \;\! = (\alpha^m + \beta^m) (\alpha^n + \beta^n) - \alpha^n \beta^n \cdot (\alpha^{m - n} + \beta^{m - n})</math>
+
::<math>a^{- 1} \equiv R_4 (a) \!\! \pmod{4}</math>
  
:::<math>\quad \;\! = V_m V_n - Q^n V_{m - n}</math>
+
::<math>a^{- 1} \equiv R_8 (a) \!\! \pmod{8}</math>
  
 +
W pierwszym przypadku wynik jest oczywisty, bo <math>R_2 (a) = 1</math>.
  
Wzór 3.
+
'''Punkt 4.'''
  
::<math>U_{m + n} = {\small\frac{\alpha^{m + n} - \beta^{m + n}}{\alpha - \beta}}</math>
+
Zauważmy, że
  
:::<math>\quad \: = {\small\frac{(\alpha^m - \beta^m) (\alpha^n + \beta^n)}{\alpha - \beta}} - {\small\frac{\alpha^n \beta^n \cdot (\alpha^{m - n} - \beta^{m - n})}{\alpha - \beta}}</math>
+
::<math>\gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1</math>
  
:::<math>\quad \: = U_m V_n - Q^n U_{m - n}</math>
+
oraz <math>a \mid (m + 1)</math>. Zatem
  
 +
::<math>a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m}</math>
  
Wzór 4.
+
'''Punkt 5.'''
  
::<math>V_{m + n} = \alpha^{m + n} + \beta^{m + n}</math>
+
Zauważmy, że
  
:::<math>\quad \;\! = (\alpha - \beta)^2 \cdot {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}} \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} + \alpha^n \beta^n \cdot (\alpha^{m - n} + \beta^{m - n})</math>
+
::<math>\gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1</math>
  
:::<math>\quad \;\! = D U_m U_n + Q^n V_{m - n}</math>
+
oraz <math>a \mid (m - 1)</math>. Zatem
  
 +
::<math>a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m}</math>
  
Wzór 5.
+
'''Punkt 6.'''
  
::<math>U_m V_n - V_m U_n = {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}} \cdot (\alpha^n + \beta^n) - (\alpha^m + \beta^m) \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}}</math>
+
Ponieważ zakładamy, że <math>2 \mid (m + 1)</math>, to <math>m</math> musi być liczbą nieparzystą, czyli <math>a</math> też musi być liczbą nieparzystą. Zauważmy, że
  
::::::<math>\;\;\: = 2 \cdot \alpha^n \beta^n \cdot {\small\frac{\alpha^{m - n} - \beta^{m - n}}{\alpha - \beta}}</math>
+
::<math>\gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1</math>
  
::::::<math>\;\;\: = 2 Q^n U_{m - n}</math>
+
oraz <math>a \mid (m + 2)</math>. Zatem
  
 +
::<math>a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m}</math>
  
Wzór 6.
+
Podobnie pokazujemy punkt 7. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>U^2_n = \left( {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \right)^2</math>
 
  
:::<math>\;\! = {\small\frac{\alpha^{n - 1} - \beta^{n - 1}}{\alpha - \beta}} \cdot {\small\frac{\alpha^{n + 1} - \beta^{n + 1}}{\alpha - \beta}} + \alpha^{n - 1} \beta^{n - 1}</math>
 
  
:::<math>\;\! = U_{n - 1} U_{n + 1} + Q^{n - 1}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H16</span><br/>
 +
Niech <math>a, b \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>m</math>. Jeżeli liczby <math>u_1, u_2, \ldots, u_r</math> są liczbami różnymi modulo <math>m</math>, to liczby
  
 +
::1.&nbsp;&nbsp;&nbsp;<math>a u_1, a u_2, \ldots, a u_r</math>
  
Wzór 7.
+
::2.&nbsp;&nbsp;&nbsp;<math>a u_1 + b, a u_2 + b, \ldots, a u_r + b</math>
  
::<math>V^2_n = (\alpha^n + \beta^n)^2</math>
+
są liczbami różnymi modulo <math>m</math>. Jeżeli ponadto liczby <math>u_1, u_2, \ldots, u_r</math> są względnie pierwsze z <math>m</math>, to również liczby
  
:::<math>\;\! = (\alpha^{n - 1} + \beta^{n - 1}) (\alpha^{n + 1} + \beta^{n + 1}) - (\alpha - \beta)^2 \cdot \alpha^{n - 1} \beta^{n - 1}</math>
+
::3.&nbsp;&nbsp;&nbsp;<math>u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r</math>
  
:::<math>\;\! = V_{n - 1} V_{n + 1} - D Q^{n - 1}</math>
+
są liczbami różnymi modulo <math>m</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
'''Wzory 8. - 18. można łatwo udowodnić, korzystając ze wzorów 1. - 7.'''
+
'''Punkt 1.'''
  
Wzór 8. Policzyć sumę wzoru 3. pomnożonego przez <math>2</math> i&nbsp;wzoru 5.
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
Wzór 9. Policzyć sumę wzorów 2. i 4.
+
::<math>a u_i \equiv a u_j \!\! \pmod{m}</math>
  
Wzór 10. Połączyć wzory 2. i 4.
+
Z założenia liczba <math>a</math> ma element odwrotny modulo <math>m</math>, zatem mnożąc obie strony kongruencji przez <math>a^{- 1}</math>, otrzymujemy
  
Wzór 11. We wzorze 3. położyć <math>m = n</math>.
+
::<math>u_i \equiv u_j \!\! \pmod{m}</math>
  
Wzór 12. We wzorze 2. położyć <math>m = n</math>.
+
dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Dowód punktu 2. jest analogiczny.
  
Wzór 13. We wzorze 4. położyć <math>m = n</math>.
+
'''Punkt 3.'''
  
Wzór 14. We wzorze 10. położyć <math>m = n</math> lub połączyć wzory 12. i 13.
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
Wzór 15. We wzorze 9. położyć <math>m = 1</math>.
+
::<math>u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m}</math>
  
Wzór 16. We wzorze 8. położyć <math>m = 1</math>.
+
::<math>u_j u^{- 1}_i \equiv 1 \!\! \pmod{m}</math>
  
Wzór 17. We wzorze 15. położyć <math>V_{n + 1} = P V_n - Q V_{n - 1}</math>.
+
::<math>u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m}</math>
  
Wzór 18. We wzorze 16. położyć <math>U_{n + 1} = P U_n - Q U_{n - 1}</math>.
+
::<math>u_j \equiv u_i \!\! \pmod{m}</math>
  
 +
Ponownie otrzymujemy <math>u_i \equiv u_j \!\! \pmod{m}</math> dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
'''Wzory 19. - 21. to wzory, które wykorzystamy w&nbsp;przyszłości do szybkiego obliczania wartości wyrazów <math>U_n</math> i <math>V_n</math> modulo.'''
 
  
Wzór 19. Wystarczy połączyć wzory 11. oraz 16.
 
  
Wzór 20. Wystarczy we wzorze 1. położyć <math>m = n + 1</math>.
+
<span style="font-size: 110%; font-weight: bold;">Zadanie H17</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą. Pokazać, że dla <math>k \in [0, p - 1]</math> prawdziwa jest kongruencja
  
Wzór 21. Kładąc we wzorze 19. <math>n \rightarrow n + 1</math>, otrzymujemy
+
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
  
::<math>U_{2 n + 2} = 2 U_{n + 1} U_{n + 2} - P U^2_{n + 1} \qquad (*)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
+
Zauważmy, że modulo <math>p</math> mamy
Kładąc we wzorze 1. <math>m = n + 2</math>, mamy
 
  
::<math>U_{2 n + 2} = U_{n + 2} U_{n + 1} - Q U_{n + 1} U_n</math>
+
::<math>\binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}}</math>
  
Czyli
+
::::<math>\;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}}</math>
  
::<math>2 U_{2 n + 2} = 2 U_{n + 1} U_{n + 2} - 2 Q U_n U_{n + 1}</math>
+
::::<math>\;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1}</math>
  
Odejmując od powyższego wzoru wzór <math>(*)</math>, dostajemy wzór 21.
+
::::<math>\;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1}</math>
  
::<math>U_{2 n + 2} = P U^2_{n + 1} - 2 Q U_n U_{n + 1}</math>
+
::::<math>\;\;\;\; \equiv (- 1)^k \pmod{p}</math>
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 561: Linia 458:
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie H18</span><br/>
 +
Niech <math>A</math> i <math>B</math> będą zbiorami skończonymi. Pokazać, że jeżeli <math>A \subseteq B \;\; \text{i} \;\; | A | = | B |</math>, to <math>\; A = B</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/><br/>
 +
Z definicji zbiory <math>A</math> i <math>B</math> są równe wtedy i&nbsp;tylko wtedy, gdy jednocześnie spełnione są warunki
  
== Obliczanie wyrazów ciągu Lucasa modulo <math>m</math> ==
+
:#&nbsp;&nbsp;<math>x \in A \qquad \Longrightarrow \qquad x \in B</math>
 +
:#&nbsp;&nbsp;<math>x \in B \qquad \Longrightarrow \qquad x \in A</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład L14</span><br/>
+
Z założenia <math>A \subseteq B</math>, zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element <math>x</math>, że <math>x \in B</math>, ale <math>x \notin A</math>. Jeśli tak, to
Pokażemy, jak wykorzystać podane w&nbsp;twierdzeniu L13 wzory 19, 20, 21 i 16
 
  
::<math>U_{2 n} = 2 U_n U_{n + 1} - P U^2_n</math>
+
::<math>| B | = | A | + 1</math>
  
::<math>U_{2 n + 1} = U^2_{n + 1} - Q U^2_n</math>
+
Co jest sprzeczne z&nbsp;założeniem, że <math>| A | = | B |</math>.
  
::<math>U_{2 n + 2} = P U^2_{n + 1} - 2 Q U_n U_{n + 1}</math>
+
'''Uwaga'''<br/>
 +
Łatwo zauważyć, że wybierając z&nbsp;trzech warunków <math>A \subseteq B</math>, <math>B \subseteq A</math> i <math>| A | = | B |</math> dowolne dwa, zawsze otrzymamy z&nbsp;nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych<ref name="cardinality1"/>, ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.
  
::<math>V_n = 2 U_{n + 1} - P U_n</math>
 
  
do szybkiego obliczania wyrazów ciągu Lucasa modulo <math>m</math>.
+
<span style="border-bottom-style: double;">Drugi sposób</span><br/><br/>
 +
Ponieważ zbiór <math>A</math> jest z&nbsp;założenia podzbiorem zbioru <math>B</math>, to zbiór <math>B</math> można przedstawić w&nbsp;postaci sumy zbioru <math>A</math> i&nbsp;pewnego zbioru <math>C</math> takiego, że żaden element zbioru <math>C</math> nie jest elementem zbioru <math>A</math>. Zatem
  
 +
::<math>B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing</math>
  
Niech <math>P = 3</math>, <math>Q = 1</math>, <math>D = P^2 - 4 Q = 5</math>, <math>n = 22 = (10110)_2 = \sum_{j = 0}^{4} a_j \cdot 2^j</math>.
+
Ponieważ zbiory <math>A</math> i <math>C</math> są rozłączne, to wiemy, że
  
W tabeli przedstawione są kolejne kroki, jakie musimy wykonać, aby policzyć <math>U_n = U_{22}</math> modulo <math>m = 23</math>.
+
::<math>| A \cup C | = | A | + | C |</math>
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
Czyli
|-
 
! <math>\boldsymbol{j}</math> !! <math>\boldsymbol{a_j}</math> !! <math>\boldsymbol{k_j}</math> !! <math>\boldsymbol{U_{k_j}}</math> !! <math>\boldsymbol{U_{k_j + 1}}</math>
 
|-
 
| <math>4</math> || <math>1</math> || <math>(1)_2 = 1</math> || <math>U_1 = 1</math> || <math>U_2 = P = 3</math>
 
|-
 
| <math>3</math> || <math>0</math> || <math>(10)_2 = 2</math> || <math>U_2 = 2 U_1 U_2 - 3 U^2_1 = 6 - 3 = 3</math> || <math>U_3 = U^2_2 - 1 = 8</math>
 
|-
 
| <math>2</math> || <math>1</math> || <math>(101)_2 = 5</math> || <math>U_5 = U^2_3 - U^2_2 = 64 - 9 = 55 \equiv 9</math> || <math>U_6 = 3 U_3^2 - 2 U_2 U_3 = 192 - 48 = 144 \equiv 6</math>
 
|-
 
| <math>1</math> || <math>1</math> || <math>(1011)_2 = 11</math> || <math>U_{11} = U^2_6 - U^2_5 \equiv 36 - 81 \equiv - 45 \equiv 1</math> || <math>U_{12} = 3 U_6^2 - 2 U_5 U_6 \equiv 108 - 108 \equiv 0</math>
 
|-
 
| <math>0</math> || <math>0</math> || <math>(10110)_2 = 22</math> || <math>U_{22} = 2 U_{11} U_{12} - 3 U^2_{11} \equiv 0 - 3 \equiv 20</math> || <math>U_{23} = U^2_{12} - U^2_{11} \equiv 0 - 1 \equiv 22</math>
 
|}
 
  
W kolumnie <math>a_j</math> wypisujemy kolejne cyfry liczby <math>n = 22 = (10110)_2</math> zapisanej w&nbsp;układzie dwójkowym. Liczby w&nbsp;kolumnie <math>k_j</math> tworzymy, biorąc kolejne (od prawej do lewej) cyfry liczby <math>n</math> w&nbsp;zapisie dwójkowym. Postępując w&nbsp;ten sposób, w&nbsp;ostatnim wierszu mamy <math>k_j = n</math> i&nbsp;wyliczamy liczby <math>U_n</math> i <math>U_{n + 1}</math> modulo <math>m</math>.
+
::<math>| B | = | A \cup C | = | A | + | C |</math>
  
Dla uproszczenia zapisu i&nbsp;ułatwienia zrozumienia liczbę <math>k_j</math> oznaczymy jako <math>r</math>, a <math>k_{j + 1}</math> jako <math>s</math>. Zauważmy, że
+
Skąd wynika, że <math>| C | = 0</math>, zatem zbiór <math>C</math> jest zbiorem pustym i&nbsp;otrzymujemy natychmiast <math>B = A</math>. Co należało pokazać.
  
:* tabela jest zbudowana tak, że musimy znaleźć wyrazy ciągu Lucasa o&nbsp;indeksie <math>r = k_j</math> oraz o&nbsp;indeksie o&nbsp;jeden większym: <math>r + 1 = k_j + 1</math>
+
'''Uwaga (przypadek zbiorów skończonych)'''<br/>
:* przejście do następnego wiersza (w dół) oznacza, że musimy znaleźć wyrazy o&nbsp;indeksie <math>s = k_{j + 1}</math> oraz o&nbsp;indeksie o&nbsp;jeden większym: <math>s + 1</math>
+
Najczęściej prawdziwe jest jedynie oszacowanie <math>| A \cup C | \leqslant | A | + | C |</math>, bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów <math>| A |</math> i <math>| C |</math>, zatem od sumy <math>| A | + | C |</math> musimy odjąć liczbę elementów iloczynu zbiorów <math>| A |</math> i <math>| C |</math>. Co daje ogólny wzór<ref name="sumazbiorow"/>
:* przechodząc do następnego wiersza, dotychczasowa liczba <math>r = k_j</math> powiększa się o&nbsp;kolejną cyfrę ( <math>0</math> lub <math>1</math> ), którą dopisujemy z&nbsp;prawej strony
 
:* dodanie na końcu liczby <math>r = k_j</math> zera podwaja liczbę <math>r</math>, czyli <math>s = k_{j + 1} = 2 r</math> oraz <math>s + 1 = 2 r + 1</math>
 
:* dodanie na końcu liczby <math>r = k_j</math> jedynki podwaja liczbę <math>r</math> i&nbsp;zwiększą ją o&nbsp;jeden, czyli <math>s = k_{j + 1} = 2 r + 1</math> oraz <math>s + 1 = 2 r + 2</math>
 
  
 +
::<math>| A \cup C | = | A | + | C | - | A \cap C |</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Dlatego, jeżeli kolejną dodaną cyfrą jest zero, to korzystamy ze wzorów
 
  
::<math>U_s = U_{2 r} = 2 U_r U_{r + 1} - P U^2_r</math>
 
  
::<math>U_{s + 1} = U_{2 r + 1} = U^2_{r + 1} - Q U^2_r</math>
+
<span style="font-size: 110%; font-weight: bold;">Definicja H19</span><br/>
 +
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Powiemy, że zbiory <math>A, B</math> są równe modulo <math>m</math>, jeżeli dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja <math>a_k \equiv b_j \!\! \pmod{m}</math>.
  
Gdy kolejną dodaną cyfrą jest jeden, to stosujemy wzory
 
  
::<math>U_s = U_{2 r + 1} = U^2_{r + 1} - Q U^2_r</math>
 
  
::<math>U_{s + 1} = U_{2 r + 2} = P U^2_{r + 1} - 2 Q U_r U_{r + 1}</math>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H20</span><br/>
 +
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Zbiory <math>A, B</math> są równe modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy zbiory <math>A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \}</math> i <math>B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \}</math> są równe.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
Korzystając ze wzoru <math>V_n = 2 U_{n + 1} - P U_n</math>, mamy
+
<math>\Large{\Longrightarrow}</math>
  
::<math>V_{22} = 2 U_{23} - 3 U_{22} \equiv 44 - 60 \equiv - 16 \equiv 7 \pmod{23}</math>
+
Ponieważ elementy każdego ze zbiorów <math>A, B</math> są różne modulo <math>m</math>, to elementy zbiorów <math>A'</math> i <math>B'</math> są wszystkie różne. Czyli <math>| A' | = | B' | = r</math>. Ponieważ warunek
  
Ostatecznie otrzymujemy
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
::<math>U_{22} \equiv 20 \pmod{23} \quad</math> oraz <math>\quad V_{22} \equiv 7 \pmod{23}</math>
+
oznacza, że reszty z&nbsp;dzielenia liczb <math>a_k</math> i <math>b_j</math> przez <math>m</math> są równe, to z&nbsp;założenia dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że
  
 +
::<math>R_m (a_k) = R_m (b_j)</math>
  
 +
A to oznacza, że każdy element zbioru <math>A'</math> należy do zbioru <math>B'</math>, czyli <math>A' \subseteq B'</math>. Wynika stąd, że <math>A' = B'</math> (zobacz H18). Co należało pokazać.
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L15</span><br/>
+
<math>\Large{\Longleftarrow}</math>
Uogólniając postępowanie przedstawione w&nbsp;przykładzie L14, możemy napisać program w&nbsp;PARI/GP do szybkiego obliczania wyrazów ciągu Lucasa <math>U_n (P, Q)</math> i <math>V_n (P, Q)</math> modulo <math>m</math>.
 
  
<span style="font-size: 90%; color:black;">modLucas(n, P, Q, m) =
+
Ponieważ zbiory <math>A', B'</math> są równe, to zbiór <math>A'</math> jest podzbiorem zbioru <math>B'</math>, czyli dla każdego elementu <math>R_m (a_k) \in A'</math> istnieje taki element <math>R_m (b_j) \in B'</math>, że
{
 
'''local'''(A, i, s, U, U2, V, W, W2);
 
'''if'''( m == 1, '''return'''([0, 0]) );
 
'''if'''( n == 0, '''return'''([0, 2 % m]) );
 
A = '''digits'''(n, 2); \\ otrzymujemy wektor cyfr liczby n w układzie dwójkowym
 
s = '''length'''(A); \\ długość wektora A
 
U = 1;
 
W = P;
 
i = 1;
 
'''while'''( i++ <= s,
 
        '''if'''( A[i] == 0,  U2 = 2*U*W - P*U^2;  W2 = W^2 - Q*U^2 );
 
        '''if'''( A[i] == 1,  U2 = W^2 - Q*U^2;  W2 = P*W^2 - 2*Q*U*W );
 
        U = U2 % m;
 
        W = W2 % m;
 
      );
 
V = (2*W - P*U) % m;
 
'''return'''([U, V]);
 
}</span>
 
  
 +
::<math>R_m (a_k) = R_m (b_j)</math>
  
 +
Ponieważ równość reszt oznacza równość modulo, zatem
  
 +
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
 +
Wynika stąd, że dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja
  
== Podzielność wyrazów <math>U_n (P, Q)</math> przez liczbę pierwszą nieparzystą ==
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L16</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. W&nbsp;przypadku, gdy <math>p \nmid P Q</math> nie możemy nic powiedzieć o&nbsp;podzielności wyrazów <math>U_n</math> przez <math>p</math>. Przykładowo, jeżeli <math>P \equiv 1 \pmod{p} \;</math> <math>\text{i} \;\; Q \equiv 1 \pmod{p}</math>, to modulo <math>p</math>, mamy
 
 
 
::<math>(U_n) \equiv (0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, \ldots)</math>
 
 
 
W przypadku, gdy <math>P \equiv 2 \pmod{p} \;</math> <math>\text{i} \;\; Q \equiv 1 \pmod{p}</math>, to modulo <math>p</math> mamy
 
 
 
::<math>(U_n) \equiv (0, 1, 2, \ldots, p - 1, 0, 1, 2, \ldots, p - 1, 0, 1, 2, \ldots, p - 1, \ldots)</math>
 
 
 
Sytuacja wygląda inaczej, gdy <math>p \, | \, P Q</math>.
 
 
 
  
 +
czyli zbiory <math>A, B</math> są równe modulo <math>m</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L17</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą.
 
  
::{| border="0"
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \, | \, P \;</math> <math>\text{i} \;\; p \, | \, Q , \;</math> to <math>\; p \, | \, U_n \;</math> dla <math>n \geqslant 2</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \, | \, P \;</math> <math>\text{i} \;\; p \nmid Q , \;</math> to <math>\; p \, | \, U_{2 n} \;</math> i <math>\; p \nmid U_{2 n + 1}</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \nmid P \;</math> <math>\text{i} \;\; p \, | \, Q , \;</math> to <math>\; p \nmid U_n \;</math> dla <math>n \geqslant 1</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \, | \, Q , \;</math> to <math>\; p \, | \, U_n</math>, gdzie <math>n \geqslant 2</math>, wtedy i&nbsp;tylko wtedy, gdy <math>\; p \, | \, P</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \nmid P \;</math> <math>\text{i} \;\; p \, | \, D , \;</math> to <math>\; p \, | \, U_n \;</math> wtedy i&nbsp;tylko wtedy, gdy <math>p \, | \, n</math>
 
|}
 
  
Założenie, że <math>p \nmid P</math> w&nbsp;ostatnim punkcie jest istotne. Gdy <math>\; p \, | \, P \;</math> i <math>\; p \, | \, D , \;</math> to <math>\; p \, | \, Q \;</math> i&nbsp;otrzymujemy punkt pierwszy.
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H21</span><br/>
 +
Niech będą dane zbiory <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, <math>B = \{ b_1, b_2, \ldots, b_{p - 1} \}</math>, gdzie <math>p</math> jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru <math>B</math> są różne modulo <math>p</math> i&nbsp;żadna z&nbsp;liczb <math>b_k \in B</math> nie jest podzielna przez <math>p</math>, to zbiory <math>A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \}</math> są równe modulo <math>p</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Punkt 1.'''
+
Z definicji zbioru <math>A</math> wszystkie elementy tego zbioru są różne modulo <math>p</math>. Łatwo zauważamy, że
 
 
Ponieważ <math>U_2 = P</math>, zatem <math>p \, | \, U_2</math>. Dla <math>n \geqslant 3</math> wyrażenie <math>U_n = P U_{n - 1} - Q U_{n - 2}</math> jest podzielne przez <math>p</math>.
 
 
 
'''Punkt 2.'''
 
 
 
Indeksy parzyste. Indukcja matematyczna. Mamy <math>U_0 = 0</math> i <math>U_2 = P</math>, zatem <math>p \, | \, U_0</math> i <math>p \, | \, U_2</math>. Zakładając, że <math>p \, | \, U_{2 n}</math>, z definicji ciągu <math>(U_k)</math>, otrzymujemy dla <math>U_{2 n + 2}</math>
 
  
::<math>U_{2 n + 2} = P U_{2 n - 1} - Q U_{2 n}</math>
+
::<math>A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A'</math>
  
Z założenia indukcyjnego wynika, że <math>p \, | \, U_{2 n + 2}</math>, zatem na mocy zasady indukcji matematycznej twierdzenie jest prawdziwe dla wszystkich <math>n \geqslant 0</math>.
+
Ponieważ wszystkie liczby <math>b_k \in B</math>, gdzie <math>k = 1, \ldots, p - 1</math> są różne modulo <math>p</math> i&nbsp;nie są podzielne przez <math>p</math>, to reszty <math>R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
Indeksy nieparzyste. Indukcja matematyczna. Mamy <math>U_1 = 1</math> i <math>U_3 = P^2 - Q</math>, zatem <math>p \nmid U_1</math> i <math>p \nmid U_3</math>. Zakładając, że <math>p \nmid U_{2 n - 1}</math>, z definicji ciągu <math>(U_k)</math>, otrzymujemy dla <math>U_{2 n + 1}</math>
+
::<math>A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B'</math>
  
::<math>U_{2 n + 1} = P U_{2 n} - Q U_{2 n - 1}</math>
+
Na mocy twierdzenia H20 zbiory <math>A</math> i <math>B</math> są równe modulo <math>p</math>.
  
Z założenia indukcyjnego wynika, że <math>p \nmid U_{2 n + 1}</math>, zatem na mocy zasady indukcji matematycznej twierdzenie jest prawdziwe dla wszystkich <math>n \geqslant 1</math>.
+
Z twierdzenia H16 wiemy, że wszystkie liczby <math>b^{- 1}_k \in C</math> są różne modulo <math>p</math>. Zauważmy, że każda z&nbsp;tych liczb jest względnie pierwsza z <math>p</math>, zatem nie może być podzielna przez <math>p</math>. Wynika stąd, że reszty <math>R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
'''Punkt 3.'''
+
::<math>A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C'</math>
  
Indukcja matematyczna. Mamy <math>U_1 = 1</math> i <math>U_2 = P</math>, zatem <math>p \nmid U_1</math> i <math>p \nmid U_2</math>. Zakładając, że <math>p \nmid U_n</math> zachodzi dla wszystkich liczb całkowitych dodatnich nie większych od <math>n</math>, z&nbsp;definicji ciągu <math>(U_n)</math>
+
Na mocy twierdzenia H20 zbiory <math>A</math> i <math>C</math> są równe modulo <math>p</math>. Ponieważ <math>A' = B'</math> i <math>A' = C'</math>, to <math>B' = C'</math> i&nbsp;ponownie na mocy twierdzenia H20 zbiory <math>B</math> i <math>C</math> są równe modulo <math>p</math>. Co należało pokazać.<br/>
otrzymujemy dla <math>n + 1</math>
 
 
 
::<math>U_{n + 1} = P U_n - Q U_{n - 1}</math>
 
 
 
Z założenia indukcyjnego wynika, że <math>p \nmid U_{n + 1}</math>, zatem na mocy zasady indukcji matematycznej twierdzenie jest prawdziwe dla wszystkich liczb <math>n \geqslant 1</math>.
 
 
 
'''Punkt 4.'''
 
 
 
Wynika z&nbsp;punktów pierwszego i&nbsp;trzeciego.
 
 
 
'''Punkt 5.'''
 
 
 
Z twierdzenia L7 wiemy, że
 
 
 
::<math>2^{n - 1} U_n = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
 
 
 
::::<math>\;\; = n P^{n - 1} + \binom{n}{3} P^{n - 3} D + \binom{n}{5} P^{n - 5} D^2 + \ldots +
 
\begin{cases}
 
n P D^{(n - 2) / 2} & \text{gdy }n\text{ jest parzyste} \\
 
D^{(n - 1) / 2} & \text{gdy }n\text{ jest nieparzyste}
 
\end{cases}</math>
 
 
 
Z założenia <math>p \, | \, D</math>, zatem modulo <math>p</math> dostajemy
 
 
 
::<math>2^{n - 1} U_n \equiv n P^{n - 1} \pmod{p}</math>
 
 
 
Ponieważ <math>p \nmid P</math>, zatem <math>p \, | \, U_n</math> wtedy i&nbsp;tylko wtedy, gdy <math>p \, | \, n</math>.
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 747: Linia 568:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L18</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie H22</span><br/>
Jeżeli <math>d</math> jest nieparzystym dzielnikiem <math>Q</math>, to dla <math>n \geqslant 2</math> jest
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Pokazać, że suma <math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}}</math> jest podzielna przez <math>p</math>.
  
::<math>U_n \equiv P^{n - 1} \pmod{d}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy najpierw, że modulo <math>p</math> następujące sumy są równe
  
W szczególności, gdy liczba pierwsza nieparzysta <math>p</math> jest dzielnikiem <math>Q</math> i <math>p \nmid P</math>, to
+
::<math>\sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p}</math>
  
::<math>U_p \equiv 1 \pmod{p}</math>
+
Istotnie, jeśli przyjmiemy w&nbsp;twierdzeniu H21, że zbiór <math>B = \{ 1, 2, \ldots, p - 1 \}</math>, to zbiór <math>C</math> będzie zbiorem liczb, które są odwrotnościami liczb <math>1, 2, \ldots, p - 1</math> modulo <math>p</math> i&nbsp;możemy napisać
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p}</math>
Oznaczmy <math>\delta = \sqrt{D}</math>, zatem <math>2 \alpha = P + \delta</math> i <math>2 \beta = P - \delta</math>. Ze wzoru dwumianowego, mamy
 
 
 
::<math>2^n \alpha^n = (P + \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} \delta^j</math>
 
 
 
::<math>2^n \beta^n = (P - \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (- \delta)^j</math>
 
  
 +
bo
  
Obliczając różnicę wyjściowych wzorów, mamy
+
:* gdy <math>x</math> przebiega kolejne wartości <math>b_k</math>, to <math>x</math> przyjmuje kolejno wartości <math>1, 2, \ldots, p - 1</math>
  
::<math>2^n (\alpha^n - \beta^n) = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (\delta^j - (- \delta)^j) =</math>
+
:* gdy <math>y</math> przebiega kolejne wartości <math>b_k^{- 1}</math>, to <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości ze zbioru <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, czyli liczba <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości <math>1, 2, \ldots, p - 1</math>, ale w&nbsp;innej kolejności
  
:::::<math>\quad \: = \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j} P^{n - j} \cdot 2 \delta^j</math>
+
Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo <math>p</math>.
  
:::::<math>\quad \: = 2 \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j} P^{n - j} \cdot \delta \cdot D^{(j - 1) / 2}</math>
+
Zatem modulo <math>p</math> otrzymujemy
  
Rozpatrując powyższą równość modulo <math>Q</math> dostajemy (zobacz L43)
+
::<math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1}</math>
  
::<math>2^{n - 1} \cdot {\small\frac{\alpha^n - \beta^n}{\delta}} = 2^{n - 1} U_n \equiv \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j} P^{n - j} \cdot P^{j - 1}</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1}</math>
  
:::::::::<math>\;\:\: \equiv P^{n - 1} \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j}</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k</math>
  
:::::::::<math>\;\:\: \equiv 2^{n - 1} P^{n - 1}</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}}</math>
  
Czyli
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p</math>
  
::<math>2^{n - 1} (U_n - P^{n - 1}) \equiv 0 \pmod{Q}</math>
+
:::::<math>\;\;\: \equiv 0 \!\! \pmod{p}</math>
  
Ponieważ <math>Q</math> dzieli <math>2^{n - 1} (U_n - P^{n - 1})</math>, to tym bardziej <math>d</math> dzieli <math>2^{n - 1} (U_n - P^{n - 1})</math>. Z założenia <math>\gcd (d, 2^{n - 1}) = 1</math>, zatem <math>d</math> dzieli <math>U_n - P^{n - 1}</math> (zobacz C72).
+
Należy zauważyć, że dla liczby pierwszej nieparzystej <math>p</math> liczba <math>{\small\frac{p - 1}{2}}</math> jest liczbą całkowitą.<br/>
 
 
W przypadku szczególnym, gdy <math>d = p</math>, gdzie <math>p</math> jest nieparzystą liczbą pierwszą i <math>p \nmid P</math>, z&nbsp;twierdzenia Fermata otrzymujemy natychmiast
 
 
 
::<math>U_p \equiv P^{p - 1} \equiv 1 \pmod{p}</math>
 
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 796: Linia 608:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L19</span><br/>
 
Niech <math>D = P^2 - 4 Q</math>, a <math>(D \, | \, p)</math> oznacza symbol Legendre'a, gdzie <math>p</math> jest liczbą pierwszą nieparzystą i <math>p \nmid Q</math>. Mamy
 
  
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; <math>U_p \equiv (D \, | \, p) \pmod{p}</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>(D \, | \, p) = - 1 , \;</math> to <math>\; p \, | \, U_{p + 1}</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>(D \, | \, p) = 1 , \;</math> to <math>\; p \, | \, U_{p - 1}</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
== Funkcje multiplikatywne ==
'''Punkt 1.'''
 
  
Zauważmy, że przypadek gdy <math>p \, | \, Q</math>, omówiliśmy w&nbsp;twierdzeniu poprzednim. Z&nbsp;założenia <math>p</math> jest liczbą pierwszą nieparzystą. Z&nbsp;twierdzenia L7, w&nbsp;przypadku nieparzystego <math>n = p</math>, otrzymujemy
+
<span style="font-size: 110%; font-weight: bold;">Definicja H23</span><br/>
 +
Powiemy, że funkcja <math>f(n)</math> określona w&nbsp;zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli <math>f(1) = 1</math> i&nbsp;dla względnie pierwszych liczb <math>a, b</math> spełniony jest warunek <math>f(a b) = f (a) f (b)</math>.
  
::<math>2^{p - 1} U_p = p P^{p - 1} + \binom{p}{3} P^{p - 3} D + \binom{p}{5} P^{p - 5} D^2 + \ldots + \binom{p}{p-2} P^2 D^{(p - 3) / 2} + D^{(p - 1) / 2}</math>
 
  
Ponieważ dla każdego <math>k \in [1, p - 1]</math> (zobacz L43)
 
  
::<math>\binom{p}{k} \equiv 0 \pmod{p}</math>
+
<span style="font-size: 110%; font-weight: bold;">Uwaga H24</span><br/>
 +
Założenie <math>f(1) = 1</math> możemy równoważnie zastąpić założeniem, że funkcja <math>f(n)</math> nie jest tożsamościowo równa zero.
 +
Gdyby <math>f(n)</math> spełniała jedynie warunek <math>f(a b) = f (a) f (b)</math> dla względnie pierwszych liczb <math>a, b</math>, to mielibyśmy
  
to modulo <math>p</math> dostajemy (zobacz J28)
+
::a)&nbsp;&nbsp;&nbsp;<math>f(n)</math> jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 0</math>
  
::<math>2^{p - 1} U_p \equiv U_p \equiv D^{(p - 1) / 2} \equiv (D \, | \, p) \pmod{p}</math>
+
::b)&nbsp;&nbsp;&nbsp;<math>f(n)</math> nie jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 1</math>
  
'''Punkt 2.'''
+
Ponieważ <math>f(1) = f (1 \cdot 1) = f (1) f (1)</math>, zatem <math>f(1) = 0</math> lub <math>f (1) = 1</math>.
  
Zauważmy, że warunek <math>(D \, | \, p) = - 1</math> nie może być spełniony, gdy <math>p \, | \, Q</math>. Istotnie, gdy <math>p \, | \, Q</math>, to <math>D = P^2 - 4 Q \equiv P^2 \pmod{p}</math>, czyli
+
Jeżeli <math>f(1) = 0</math>, to dla dowolnego <math>n</math> mamy
  
::<math>(D \, | \, p) = (P^2 \, | \, p) = (P \, | \, p)^2 = 0 , \;</math> gdy <math>p \, | \, P</math>
+
::<math>f(n) = f (n \cdot 1) = f (n) f (1) = 0</math>
  
lub
+
Czyli <math>f(n)</math> jest funkcją tożsamościowo równą zero.
  
::<math>(D \, | \, p) = (P^2 \, | \, p) = (P \, | \, p)^2 = 1 , \;</math> gdy <math>p \nmid P</math>
+
Jeżeli <math>f(n)</math> nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba <math>a \in \mathbb{Z}_+</math>, że <math>f(a) \neq 0</math>. Zatem
  
i nie może być <math>(D \, | \, p) = - 1</math>.
+
::<math>f(a) = f (a \cdot 1) = f (a) f (1)</math>
  
Dla parzystego <math>n = p + 1</math> otrzymujemy z&nbsp;twierdzenia L7
+
I dzieląc obie strony przez <math>f(a) \neq 0</math>, dostajemy <math>f(1) = 1</math>.
  
::<math>2^p U_{p + 1} = (p + 1) P^p + \binom{p + 1}{3} P^{p - 2} D + \binom{p + 1}{5} P^{p - 4} D^2 + \ldots + \binom{p + 1}{p - 2} P^3 D^{(p - 3) / 2} + (p + 1) P D^{(p - 1) / 2}</math>
 
  
Ponieważ dla <math>k \in [2, p - 1]</math> (zobacz L44)
 
  
::<math>\binom{p + 1}{k} \equiv 0 \pmod{p}</math>
+
<span style="font-size: 110%; font-weight: bold;">Przykład H25</span><br/>
 +
Ponieważ <math>\gcd (1, c) = 1</math>, to <math>\gcd (n, c)</math> rozpatrywana jako funkcja <math>n</math>, gdzie <math>c</math> jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz H8).
  
to modulo <math>p</math> dostajemy
 
  
::<math>2 U_{p + 1} \equiv P + P D^{(p - 1) / 2} \pmod{p}</math>
 
  
 +
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H26</span><br/>
 +
Jeżeli funkcja <math>f(n)</math> jest funkcją multiplikatywną, to funkcja
  
Z założenia <math>D</math> jest liczbą niekwadratową modulo <math>p</math>, zatem <math>D^{(p - 1) / 2} \equiv - 1 \pmod{p}</math> (zobacz J25). Skąd wynika natychmiast, że
+
::<math>F(n) = \sum_{d \mid n} f (d)</math>
  
::<math>2 U_{p + 1} \equiv 0 \pmod{p}</math>
+
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>, jest również funkcją multiplikatywną.
  
Czyli <math>p \, | \, U_{p + 1}</math>.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
+
Ponieważ
'''Punkt 3.'''
 
  
Dla parzystego <math>n = p - 1</math> otrzymujemy z&nbsp;twierdzenia L7
+
::<math>F(1) = \sum_{d \mid 1} f (d) = f (1) = 1</math>
  
::<math>2^{p - 2} U_{p - 1} = (p - 1) P^{p - 2} + \binom{p - 1}{3} P^{p - 4} D + \binom{p - 1}{5} P^{p - 6} D^2 + \ldots + \binom{p - 1}{p - 4} P^3 D^{(p - 5) / 2} + (p - 1) P D^{(p - 3) / 2}</math>
+
to funkcja <math>F(n)</math> spełnia pierwszy warunek definicji H23.
  
Ponieważ dla <math>k \in [0, p - 1]</math> (zobacz L45)
+
Niech <math>a, b</math> będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu <math>a b</math> można zapisać w postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a</math>, <math>\; d_2 \mid b \,</math> oraz <math>\, \gcd (d_1, d_2) = 1</math> (zobacz H9). Niech zbiory
  
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
+
::<math>S_a = \{ d \in \mathbb{Z}_+ : d \mid a \}</math>
  
to modulo <math>p</math> mamy
+
::<math>S_b = \{ d \in \mathbb{Z}_+ : d \mid b \}</math>
  
::<math>2^{p - 2} U_{p - 1} \equiv - (P^{p - 2} + P^{p - 4} D + P^{p - 6} D^2 + \ldots + P D^{(p - 3) / 2}) \pmod{p}</math>
+
::<math>S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \}</math>
  
::::<math>\quad \,\, \equiv - P (P^{p - 3} + P^{p - 5} D + P^{p - 7} D^2 + \ldots + D^{(p - 3) / 2}) \pmod{p}</math>
+
będą zbiorami dzielników dodatnich liczb <math>a, b</math> i <math>a b</math>. Dla przykładu
  
 +
::<math>S_5 = \{ 1, 5 \}</math>
  
Z założenia <math>D</math> jest liczbą kwadratową modulo <math>p</math> (zobacz J23), zatem istnieje taka liczba <math>R</math>, że
+
::<math>S_7 = \{ 1, 7 \}</math>
  
::<math>D \equiv R^2 \pmod{p}</math>
+
::<math>S_{35} = \{ 1, 5, 7, 35 \}</math>
  
Ponieważ
+
Dla dowolnego <math>d_1 \in S_a \,</math> i <math>\, d_2 \in S_b</math> musi być <math>\gcd (d_1, d_2) = 1</math>, bo gdyby było <math>\gcd (d_1, d_2) = g > 1</math>, to
  
:* <math>(D \, | \, p) = 1</math>, to <math>p \nmid D</math>, zatem <math>p \nmid R</math>
+
::<math>g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a</math>
:* z&nbsp;założenia <math>p \nmid Q</math>, to <math>P^2 - R^2 \equiv P^2 - D \equiv 4 Q \not\equiv 0 \pmod{p}</math>
 
  
 +
::<math>g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b</math>
  
Czyli
+
Zatem <math>g \mid \gcd (a, b)</math> i mielibyśmy <math>\gcd (a, b) \geqslant g > 1</math>, wbrew założeniu.
  
::<math>2^{p - 2} U_{p - 1} \equiv - P (P^{p - 3} + P^{p - 5} R^2 + P^{p - 7} R^4 + \ldots + R^{p - 3}) \pmod{p}</math>
+
Przekształcając, otrzymujemy
  
 +
::<math>F(a b) = \sum_{d \mid a b} f (d)</math>
  
Uwzględniając, że <math>P^2 - R^2 \not\equiv 0 \pmod{p}</math>, możemy napisać
+
:::<math>\;\;\;\;\: = \sum_{d \in S_{a b}} f (d)</math>
  
::<math>2^{p - 2} (P^2 - R^2) U_{p - 1} \equiv - P (P^2 - R^2) (P^{p - 3} + P^{p - 5} R^2 + P^{p - 7} R^4 + \ldots + R^{p - 3}) \pmod{p}</math>
+
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2)</math>
  
::::::::<math>\equiv - P (P^{p - 1} - R^{p - 1}) \pmod{p}</math>
+
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2)</math>
  
::::::::<math>\equiv 0 \pmod{p}</math>
+
:::<math>\;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2)</math>
  
Zauważmy, że wynik nie zależy od tego, czy <math>p \, | \, P</math>, czy <math>p \nmid P</math>. Skąd wynika
+
:::<math>\;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2)</math>
  
::<math>U_{p - 1} \equiv 0 \pmod{p}</math>
+
:::<math>\;\;\;\;\: = F (a) F (b)</math>
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 903: Linia 705:
  
  
 
Aby zapisać punkty 2. i 3. twierdzenia L19 (i tylko te punkty) w&nbsp;zwartej formie, musimy założyć, że <math>\gcd (p, D) = 1</math>. Otrzymujemy<br/>
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L20</span><br/>
 
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>\gcd (p, Q D) = 1</math>, to
 
 
::<math>U_{p - (D \, | \, p)} \equiv 0 \pmod{p}</math>
 
 
 
 
 
 
== Liczby pseudopierwsze Lucasa ==
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L21</span><br/>
 
Z twierdzenia L20 wiemy, że liczby pierwsze nieparzyste <math>p</math> takie, że <math>p \nmid Q D</math> są dzielnikami wyrazów ciągu Lucasa <math>U_{p - (D \, | \, p)}</math>, gdzie <math>(D \, | \, p)</math> oznacza symbol Legendre'a. Jeśli zastąpimy symbol Legendre'a symbolem Jacobiego, to będziemy mogli badać prawdziwość tego twierdzenia dla liczb złożonych i&nbsp;łatwo przekonamy się, że dla pewnych liczb złożonych <math>m</math> kongruencja
 
 
::<math>U_{m - (D \, | \, m)} \equiv 0 \pmod{m}</math>
 
 
również jest prawdziwa. Prowadzi to definicji liczb pseudopierwszych Lucasa.
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja L22</span><br/>
+
== Funkcja Eulera <math>\varphi (n)</math> ==
Powiemy, że liczba złożona nieparzysta <math>m</math> jest liczbą pseudopierwszą Lucasa dla parametrów <math>P</math> i <math>Q</math> (symbolicznie: LPSP( <math>P, Q</math> )), jeżeli <math>\gcd (m, Q D) = 1</math> i
 
  
::<math>U_{m - (D \, | \, m)} \equiv 0 \pmod{m}</math>
+
<span style="font-size: 110%; font-weight: bold;">Definicja H27</span><br/>
 +
Funkcja Eulera <math>\varphi (n)</math><ref name="Euler1"/> jest równa ilości liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math>.
  
gdzie <math>(D \, | \, m)</math> oznacza symbol Jacobiego.
 
  
  
 
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H28</span><br/>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L23</span><br/>
+
Funkcja Eulera <math>\varphi (n)</math> jest multiplikatywna, czyli dla względnie pierwszych liczb <math>m, n</math> jest <math>\varphi (m n) = \varphi (m) \varphi (n)</math>.
Jeżeli liczba złożona nieparzysta <math>m</math> jest liczbą pseudopierwszą Lucasa dla parametrów <math>P = a + 1</math> i <math>Q = a</math>, gdzie <math>a \geqslant 2</math>, to jest liczbą pseudopierwszą Fermata przy podstawie <math>a</math>.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Połóżmy we wzorze definiującym ciąg Lucasa
+
Niech <math>m, n</math> będą dodatnimi liczbami całkowitymi takimi, że <math>\gcd (m, n) = 1</math>. Twierdzenie jest prawdziwe dla <math>n = 1</math>, zatem nie zmniejszając ogólności, możemy założyć, że <math>n > 1</math>. Wypiszmy w&nbsp;tabeli wszystkie liczby od <math>1</math> do <math>m n</math>.
  
::<math>U_m = {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}}</math>
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
 
 
<math>\alpha = a</math> i <math>\beta = 1</math>. Odpowiada to parametrom <math>P = \alpha + \beta = a + 1</math>, <math>Q = \alpha \beta = a</math>, <math>D = (\alpha - \beta)^2 = (a - 1)^2</math>.
 
 
 
Ponieważ musi być <math>\gcd (m, Q D) = 1</math>, to mamy <math>\gcd (m, (a - 1) a) = 1</math> i&nbsp;wynika stąd, że <math>(D \, | \, m) = 1</math>. Z&nbsp;założenia <math>m</math> jest liczbą pseudopierwszą Lucasa dla parametrów <math>P = a + 1</math> i <math>Q = a</math>, zatem
 
 
 
::<math>U_{m - 1} (a + 1, a) \equiv 0 \pmod{m}</math>
 
 
 
Czyli
 
 
 
::<math>{\small\frac{a^{m - 1} - 1}{a - 1}} \equiv 0 \pmod{m}</math>
 
 
 
Jeżeli <math>m \biggr\rvert {\small\frac{a^{m - 1} - 1}{a - 1}}</math>, to tym bardziej <math>m \big\rvert (a^{m - 1} - 1)</math> i&nbsp;możemy napisać
 
 
 
::<math>a^{m - 1} - 1 \equiv 0 \pmod{m}</math>
 
 
 
Zatem <math>m</math> jest liczbą pseudopierwszą Fermata przy podstawie <math>a</math>. Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L24</span><br/>
 
Wykorzystując funkcje <code>jacobi(a, n)</code> i <code>modLucas(n, P, Q, m)</code> (zobacz J41, L15) możemy napisać prosty program, który sprawdza, czy dla liczby nieparzystej <math>m</math> prawdziwe jest twierdzenie L20.
 
 
 
<span style="font-size: 90%; color:black;">isPrimeOr<span style="background-color: #fee481;">LPSP</span>(m, P, Q) =
 
{
 
'''local'''(D, js);
 
D = P^2 - 4*Q;
 
'''if'''( gcd(m, 2*Q*D) > 1, '''return'''(0) );
 
js = jacobi(D, m);
 
'''if'''( modLucas(m - js, P, Q, m)[1] == 0, '''return'''(1), '''return'''(0) );
 
}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Przykład L25</span><br/>
 
Poniższa tabela zawiera najmniejsze liczby pseudopierwsze Lucasa dla różnych parametrów <math>P</math> i <math>Q</math>
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
 
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>253</math> || <math>121</math> || <math>57</math> || <math>217</math> || style="background-color: yellow" | <math>323</math> || <math>69</math> || <math>121</math> || <math>253</math> || <math>9</math> || style="background-color: yellow" | <math>143</math>
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>9</math> || style="background-color: yellow" | <math>323</math> || <math>91</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>15</math> || style="background-color: yellow" | <math>119</math> || <math>57</math> || <math>9</math> || <math>9</math> || <math>9</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| <math>217</math> || <math>91</math> || style="background-color: yellow" | <math>527</math> || <math>25</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>65</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>323</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>341</math> || style="background-color: yellow" | <math>209</math> || style="background-color: yellow" | <math>39</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>15</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || <math>9</math> || <math>85</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>119</math> || <math>9</math> || <math>9</math> || style="background-color: yellow" | <math>143</math> || <math>25</math> || <math>33</math> || <math>9</math> || style="background-color: yellow" | <math>15</math>
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>25</math> || style="background-color: red" | <math></math> || <math>21</math> || style="background-color: yellow" | <math>65</math> || style="background-color: yellow" | <math>115</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>209</math> || <math>9</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| <math>1541</math> || <math>9</math> || <math>341</math> || style="background-color: yellow" | <math>35</math> || <math>21</math> || <math>85</math> || <math>9</math> || style="background-color: yellow" | <math>15</math> || <math>9</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| style="background-color: yellow" | <math>629</math> || style="background-color: yellow" | <math>559</math> || <math>25</math> || <math>91</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>35</math> || <math>55</math> || <math>25</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| style="background-color: yellow" | <math>119</math> || <math>25</math> || style="background-color: yellow" | <math>209</math> || style="background-color: red" | <math></math> || <math>85</math> || <math>21</math> || style="background-color: yellow" | <math>119</math> || style="background-color: yellow" | <math>65</math> || <math>9</math> || style="background-color: yellow" | <math>115</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>9</math> || style="background-color: yellow" | <math>143</math> || <math>49</math> || style="background-color: yellow" | <math>143</math> || style="background-color: yellow" | <math>323</math> || <math>217</math> || style="background-color: yellow" | <math>39</math> || <math>9</math> || <math>9</math> || <math>9</math>
 
|}
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">FirstLPSP(Stop) =
 
\\ najmniejsze LPSP(P,Q) < Stop;  dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0,
 
                  '''print'''("Q= ", Q, "  P= ", P, "  ------------------");
 
                  '''next'''();
 
                );
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">LPSP</span>(m, P, Q)  &&  !'''isprime'''(m),
 
                          '''print'''("Q= ", Q, "  P= ", P, "  m= ", m, "  (D|m)= ", jacobi(D, m));
 
                          '''break'''();
 
                        );
 
                      m = m + 2;
 
                    );
 
            );
 
      );
 
}</span>
 
<br/>
 
{{\Spoiler}}
 
 
 
Żółtym tłem oznaczyliśmy te najmniejsze liczby pseudopierwsze Lucasa, dla których <math>(D \, | \, m) = - 1</math>.
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Przykład L26</span><br/>
 
Ilość liczb LPSP(<math>P, Q</math>) mniejszych od <math>10^9</math>
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
 
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>4266</math> || <math>4935</math> || <math>4278</math> || <math>4981</math> || <math>6363</math> || <math>6028</math> || <math>5202</math> || <math>4426</math> || <math>5832</math> || <math>6027</math>
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>4599</math> || <math>4152</math> || <math>9272</math> || <math>5886</math> || <math>6958</math> || <math>4563</math> || <math>5600</math> || <math>9509</math> || <math>7007</math> || <math>4142</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| <math>4265</math> || <math>5767</math> || <math>4241</math> || <math>5114</math> || <math>5859</math> || <math>7669</math> || <math>6083</math> || <math>6120</math> || <math>4420</math> || <math>5096</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>5361</math> || <math>4389</math> || <math>5063</math> || <math>5632</math> || <math>5364</math> || <math>5228</math> || <math>5859</math> || <math>10487</math> || <math>5370</math> || <math>9798</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| <math>4152</math> || <math>5886</math> || <math>4563</math> || <math>9509</math> || <math>4142</math> || <math>6273</math> || <math>5773</math> || <math>4497</math> || <math>5166</math> || <math>5305</math>
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>282485800</math> || style="background-color: red" | <math></math> || <math>6567</math> || <math>7669</math> || <math>7131</math> || <math>10882</math> || <math>8626</math> || <math>8974</math> || <math>8509</math> || <math>8752</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| <math>7803</math> || <math>449152466</math> || <math>5597</math> || <math>5886</math> || <math>6509</math> || <math>5761</math> || <math>8115</math> || <math>6945</math> || <math>8380</math> || <math>7095</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| <math>5974</math> || <math>8768</math> || <math>282485800</math> || <math>5767</math> || <math>5651</math> || <math>5632</math> || <math>6640</math> || <math>5725</math> || <math>6058</math> || <math>7050</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| <math>10749</math> || <math>282485800</math> || <math>14425</math> || style="background-color: red" | <math></math> || <math>9735</math> || <math>6567</math> || <math>8164</math> || <math>7669</math> || <math>7608</math> || <math>7131</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>5047</math> || <math>15127</math> || <math>6155</math> || <math>15127</math> || <math>4152</math> || <math>5146</math> || <math>4423</math> || <math>5526</math> || <math>6289</math> || <math>9509</math>
 
|}
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">NumOfLPSP(Stop) =
 
\\ ilość liczb pseudopierwszych Lucasa LPSP(P,Q) < Stop;  dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0, '''print'''("Q= ", Q, "  P= ", P, "  ------------------"); '''next'''() );
 
              s = 0;
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">LPSP</span>(m, P, Q)  &&  !'''isprime'''(m), s++ );
 
                      m = m + 2;
 
                    );
 
              '''print'''("Q= ", Q, "  P= ", P, "  s= ", s);
 
            );
 
      );
 
}</span>
 
<br/>
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L27</span><br/>
 
Dla <math>(P, Q) = (1, 1)</math> ciąg Lucasa <math>(U_n)</math> ma postać
 
 
 
::<math>(U_n) = (0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, \ldots)</math>
 
 
 
Stosując indukcję matematyczną, udowodnimy, że <math>U_{3 k} = 0</math>. Łatwo sprawdzamy, że dla <math>k = 0</math> i <math>k = 1</math> wzór jest prawdziwy. Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych nie większych od <math>k</math>, otrzymujemy dla <math>k + 1</math> (zobacz L13 p.3)
 
 
 
::<math>U_{3 (k + 1)} = U_{3 k + 3} = U_{3 k} V_3 - U_{3 (k - 1)} = 0</math>
 
 
 
Co kończy dowód. Zbadajmy liczby pseudopierwsze Lucasa dla <math>(P, Q) = (1, 1)</math>.
 
 
 
Mamy <math>D = P^2 - 4 Q = - 3</math>. Wynika stąd, że nie może być <math>3 \, | \, m</math>, bo mielibyśmy <math>\gcd (m, Q D) = 3 > 1</math>.
 
 
 
Z zadania J39 wiemy, że
 
 
 
::<math>(- 3 \, | \, m) =
 
\begin{cases}
 
\;\;\: 1 & \text{gdy } m = 6 k + 1 \\
 
\;\;\: 0 & \text{gdy } m = 6 k + 3 \\
 
      - 1 & \text{gdy } m = 6 k + 5
 
\end{cases}</math>
 
 
 
Ponieważ <math>3 \nmid m</math>, to wystarczy zbadać przypadki <math>m = 6 k + 1</math> i <math>m = 6 k + 5</math>. W&nbsp;pierwszym przypadku jest
 
 
 
::<math>U_{m - (- 3 \, | \, m)} = U_{6 k + 1 - 1} = U_{6 k} = 0</math>
 
 
 
W drugim przypadku, gdy <math>m = 6 k + 5</math>, dostajemy
 
 
 
::<math>U_{m - (- 3 \, | \, m)} = U_{6 k + 5 + 1} = U_{6 (k + 1)} = 0</math>
 
 
 
Zatem dla dowolnej liczby nieparzystej <math>m</math> niepodzielnej przez <math>3</math> jest
 
 
 
::<math>U_{m - (- 3 \, | \, m)} \equiv 0 \pmod{m}</math>
 
 
 
Czyli liczbami pseudopierwszymi Lucasa dla parametrów <math>(P, Q) = (1, 1)</math> będą liczby nieparzyste <math>m</math>, które nie są podzielne przez <math>3</math> i&nbsp;nie są liczbami pierwszymi. Ilość takich liczb nie większych od <math>10^k</math> możemy łatwo znaleźć poleceniem
 
 
 
'''for'''(k = 1, 9, s = 0; '''forstep'''(m = 3, 10^k, 2, '''if'''( m%6 <> 3, s = s + !'''isprime'''(m) )); '''print'''(s))
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Zadanie L28</span><br/>
 
Pokazać, że ilość liczb pseudopierwszych Lucasa dla parametrów <math>(P, Q) = (2, 2)</math> nie większych od <math>10^k</math> możemy znaleźć poleceniem
 
 
 
'''for'''(k = 1, 9, s = 0; '''forstep'''(m = 3, 10^k, 2, s = s + !'''isprime'''(m)); '''print'''(s))
 
 
 
 
 
 
 
 
 
 
 
== Metoda Selfridge'a wyboru parametrów <math>P</math> i <math>Q</math> ==
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L29</span><br/>
 
Twierdzenie L20 możemy wykorzystać do testowania pierwszości liczb. Ponieważ musi być spełniony warunek <math>\gcd (m, Q D) = 1</math>, to nie każda para liczb <math>P, Q</math> (np. wybrana losowo) nadaje się do przeprowadzenia testu. Zawsze będziemy zmuszeni określić zasadę postępowania, która doprowadzi do wyboru właściwej pary <math>P, Q</math>.
 
 
 
Robert Baillie i&nbsp;Samuel Wagstaff przedstawili<ref name="BaillieWagstaff1"/> dwie metody wyboru parametrów dla testu Lucasa. Ograniczymy się do omówienia tylko pierwszej z&nbsp;nich (metodę zaproponował John Selfridge).
 
 
 
Rozważmy ciąg <math>a_k = (- 1)^k (2 k + 1)</math>, gdzie <math>k \geqslant 2</math>, czyli <math>a_k = (5, - 7, 9, - 11, 13, - 15, \ldots)</math>. Niech <math>D</math> będzie pierwszym wyrazem ciągu <math>(a_k)</math>, dla którego jest <math>(a_k \, | \, m) = - 1</math>. Dla tak ustalonego <math>D</math> przyjmujemy <math>P = 1</math> i <math>Q = (1 - D) / 4</math>.
 
 
 
Tabela przedstawia początkowe wartości <math>Q</math>, jakie otrzymamy, stosując tę metodę.
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
 
! <math>\boldsymbol{k}</math>
 
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math>
 
 
|-
 
|-
!  <math>\boldsymbol{a_k}</math>
+
| <math>1</math> || <math>2</math> || <math></math> || <math>k</math> || <math></math> || <math>m</math>
| <math>5</math> || <math>-7</math> || <math>9</math> || <math>-11</math> || <math>13</math> || <math>-15</math> || <math>17</math> || <math>-19</math> || <math>21</math> || <math>-23</math> || <math>25</math> || <math>-27</math> || <math>29</math> || <math>-31</math> || <math>33</math> || <math>-35</math> || <math>37</math> || <math>-39</math> || <math>41</math>
 
 
|-
 
|-
!  <math>\boldsymbol{Q}</math>
+
| <math>m + 1</math> || <math>m + 2</math> || <math></math> || <math>m + k</math> || <math></math> || <math>2 m</math>
| <math>-1</math> || <math>2</math> || style="background-color: red" | <math>-2</math> || <math>3</math> || <math>-3</math> || <math>4</math> || <math>-4</math> || <math>5</math> || <math>-5</math> || <math>6</math> || style="background-color: red" | <math>-6</math> || <math>7</math> || <math>-7</math> || <math>8</math> || <math>-8</math> || <math>9</math> || <math>-9</math> || <math>10</math> || <math>-10</math>
 
|}
 
 
 
 
 
Zauważmy, że
 
:* jeżeli liczba nieparzysta <math>m</math> jest liczbą kwadratową, to wybór <math>D</math> nie będzie możliwy
 
:* w&nbsp;przypadku zastosowania tej metody znajdziemy tylko liczby pierwsze lub pseudopierwsze Lucasa, które spełniają kongruencję <math>U_{m + 1} \equiv 0 \pmod{m}</math>, czyli tylko część liczb pseudopierwszych Lucasa określonych w&nbsp;definicji L22
 
 
 
 
 
Ponieważ Baillie i&nbsp;Wagstaff określili metodę zaproponowaną przez Selfridge'a jako metodę A, to pozostaniemy przy tej nazwie. Korzystając ze wzoru rekurencyjnego
 
 
 
::<math> a_{k+1} =
 
  \begin{cases}
 
  \qquad \qquad 5 & \text{gdy } k = 1\\
 
      - a_k - 2 * \mathop{\textnormal{sign}}( a_k ) & \text{gdy } k \geqslant 2
 
  \end{cases}</math>
 
 
 
możemy łatwo napisać odpowiednią funkcję znajdującą liczby <math>P, Q</math> według tej metody.
 
 
 
<span style="font-size: 90%; color:black;">MethodA(m) =
 
{
 
'''local'''(a, js);
 
a = 5;
 
'''while'''( 1,
 
        js = jacobi(a, m);
 
        '''if'''( js == 0  &&  a % m <> 0, '''return'''([0, 0]) );
 
        '''if'''( js == -1, '''return'''([1, (1 - a)/4]) );
 
        a = -a - 2*'''sign'''(a);
 
      );
 
}</span>
 
 
 
Wyjaśnienia wymaga druga linia kodu w&nbsp;pętli <code>while</code>. Wiemy, że (zobacz J35)
 
 
 
::<math>(a \, | \, m) = 0 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a, m) > 1</math>
 
 
 
Jednak z&nbsp;faktu, że <math>\gcd (a, m) > 1</math> nie wynika natychmiast, że liczba <math>m</math> jest liczbą złożoną. Rozważmy dwa przypadki: gdy <math>m \, | \, a</math> i <math>m \nmid a</math>.
 
 
 
Gdy <math>\gcd (a, m) > 1</math> i <math>m \, | \, a</math>, to <math>\gcd (a, m) = \gcd (k \cdot m, m) = m > 1</math> i&nbsp;nie jesteśmy w&nbsp;stanie rozstrzygnąć, czy liczba <math>m</math> jest liczbą pierwszą, czy złożoną. Widać to dobrze na prostych przykładach
 
 
 
::<math>\gcd (7, 7) = \gcd (14, 7) = 7 > 1</math>
 
 
 
::<math>\gcd (15, 15) = \gcd (30, 15) = 15 > 1</math>
 
 
 
Gdy <math>\gcd (a, m) > 1</math> i <math>m \nmid a</math>, to <math>m</math> jest liczbą złożoną. Ponieważ <math>m \nmid a</math>, to <math>a = k \cdot m + r</math>, gdzie <math>r \in [1, m - 1]</math>. Mamy
 
 
 
::<math>\gcd (a, m) = \gcd (k \cdot m + r, m) = \gcd (r, m) = d</math>
 
 
 
Musi być <math>d > 1</math>, bo założyliśmy, że <math>\gcd (a, m) > 1</math> i&nbsp;musi być <math>d < m</math>, bo <math>d \leqslant r \leqslant m - 1</math>. Zatem <math>d</math> jest dzielnikiem nietrywialnym liczby <math>m</math> i <math>m</math> jest liczbą złożoną.
 
 
 
Omawiana linia kodu zapewnia wysłanie informacji o&nbsp;tym, że liczba <math>m</math> jest liczbą złożoną (zwrot wektora [0, 0]). W&nbsp;przypadku, gdy nie mamy takiej pewności, kontynuujemy szukanie liczby <math>a</math>, takiej że <math>(a \, | \, m) = - 1</math>, pozostawiając zbadanie pierwszości liczby <math>m</math> na kolejnym etapie testowania.
 
 
 
 
 
Uważny Czytelnik dostrzeże, że nie zbadaliśmy, czy spełniony jest warunek <math>\gcd (m, Q) = 1</math>. Nie musimy tego robić, bo zwracana przez funkcję <code>MethodA()</code> liczba <math>Q</math> jest względnie pierwsza z <math>m</math>. Omówimy ten problem dokładnie w&nbsp;zadaniu L30. Poniżej pokażemy, że nawet gdyby było <math>\gcd (m, Q) > 1</math>, to złożona liczba <math>m</math> nie zostanie uznana za liczbę pseudopierwszą Lucasa.
 
 
 
Zauważmy, że jeżeli <math>m</math> jest liczbą złożoną i&nbsp;ma dzielnik pierwszy <math>p < m</math>, który dzieli <math>Q</math>, to <math>p \, | \, Q</math> i <math>p \nmid P</math> (bo <math>P = 1</math>), zatem <math>p \nmid U_k</math> dla <math>k \geqslant 1</math> (zobacz L17), czyli nie może być
 
 
 
::<math>U_{m + 1} (1, Q) \equiv 0 \pmod{m}</math>
 
 
 
bo mielibyśmy
 
 
 
::<math>U_{m + 1} (1, Q) \equiv 0 \pmod{p}</math>
 
 
 
a to jest niemożliwe. Zatem program wykorzystujący twierdzenie L20 wykryje złożoność liczby <math>m</math>.
 
 
 
Łatwo pokażemy, że nie jest możliwe, aby liczba <math>m</math> była liczbą pierwszą i&nbsp;była dzielnikiem <math>Q</math>. Jeżeli <math>m</math> jest liczbą pierwszą, to istnieje dokładnie <math>\tfrac{m - 1}{2}</math> liczb kwadratowych modulo <math>p</math> i <math>\tfrac{m - 1}{2}</math> liczb niekwadratowych modulo <math>p</math>, zatem rozpoczynając od wyrazu <math>a_2</math> możemy dojść co najwyżej do wyrazu o&nbsp;indeksie <math>k = \tfrac{m - 1}{2} + 2</math>, czyli
 
 
 
::<math>| a_k | \leqslant m + 4</math>
 
 
 
Skąd wynika, że
 
 
 
::<math>| Q | = \left| {\small\frac{1 - a_k}{4}} \right| \leqslant {\small\frac{m + 5}{4}} < m</math>
 
 
 
Ostatnia nierówność jest prawdziwa dla <math>m > {\small\frac{5}{3}}</math>, czyli dla wszystkich liczb pierwszych. Ponieważ <math>| Q | < m</math>, w&nbsp;przypadku gdy <math>m</math> jest liczbą pierwszą, to <math>m</math> nie może być dzielnikiem liczby <math>Q</math>.
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Zadanie L30</span><br/>
 
Pokazać, że w&nbsp;przypadku, gdy dla kolejnych liczb <math>a_k = (- 1)^k (2 k + 1)</math> sprawdzamy, czy konsekwencją <math>(a_k \, | \, m) = 0</math> jest złożoność liczby <math>m</math>, to dla każdej liczby <math>Q</math> wyznaczonej metodą Selfridge'a jest <math>\gcd (Q, m) = 1</math>.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Niech <math>m = 21</math>. Rozpoczniemy od przykładu liczb <math>a_k = (- 1)^k (2 k + 1)</math> dla <math>k = 0, 1, \ldots, m - 1</math>.
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
! <math>\boldsymbol{k}</math> !! <math>\boldsymbol{0}</math> !!  !!  !!  !!  !!  !!  !!  !!  !!  !! <math>\boldsymbol{(m-1)/2}</math> !!  !!  !!  !!  !!  !!  !!  !!  !!  !! <math>\boldsymbol{m-1}</math>
 
 
|-
 
|-
! <math>\boldsymbol{k}</math>
+
| <math>2 m + 1</math> || <math>2 m + 2</math> || <math></math> || <math>2 m + k</math> || <math></math> || <math>3 m</math>
| <math>0</math> || <math>1</math> || <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math>
 
 
|-
 
|-
! <math>\boldsymbol{a_k}</math>
+
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math>
| <math>1</math> || <math>-3</math> || <math>5</math> || <math>-7</math> || <math>9</math> || <math>-11</math> || <math>13</math> || <math>-15</math> || <math>17</math> || <math>-19</math> || <math>21</math> || <math>-23</math> || <math>25</math> || <math>-27</math> || <math>29</math> || <math>-31</math> || <math>33</math> || <math>-35</math> || <math>37</math> || <math>-39</math> || <math>41</math>
 
 
|-
 
|-
! <math>\boldsymbol{R_m(a_k)}</math>
+
| <math>(n - 1) m + 1</math> || <math>(n - 1) m + 2</math> || <math></math> || <math>(n - 1) m + k</math> || <math></math> || <math>n m</math>
| <math>1</math> || <math>18</math> || <math>5</math> || <math>14</math> || <math>9</math> || <math>10</math> || <math>13</math> || <math>6</math> || <math>17</math> || <math>2</math> || <math>0</math> || <math>19</math> || <math>4</math> || <math>15</math> || <math>8</math> || <math>11</math> || <math>12</math> || <math>7</math> || <math>16</math> || <math>3</math> || <math>20</math>
 
 
|}
 
|}
  
Zauważmy, że modulo <math>21</math> ciąg <math>(a_k) = (1, - 3, 5, - 7, \ldots, 37, - 39, 41)</math> jest identyczny z&nbsp;ciągiem <math>(0, 1, 2, \ldots, 19, 20)</math>, a&nbsp;ciąg <math>(| a_k |)</math> to kolejne liczby nieparzyste od <math>1</math> do <math>2 m - 1</math>.
+
'''1.''' Natychmiast widzimy, że w&nbsp;pierwszym wierszu mamy <math>\varphi (m)</math> liczb względnie pierwszych z <math>m</math>. Tak samo jest w&nbsp;każdym kolejnym wierszu, bo (zobacz H5)
  
 +
::<math>\gcd (r m + k, m) = \gcd (k, m)</math>
  
Poniżej pokażemy, dlaczego musi być <math>\gcd (Q, m) = 1</math>, gdzie <math>Q</math> jest liczbą wyznaczoną metodą Selfridge'a (o ile sprawdzana jest złożoność liczby <math>m</math> przy testowaniu kolejnych liczb <math>a_k</math>). Pogrubioną czcionką zaznaczone są symbole Jacobiego, które wykryły złożoność liczby <math>m</math>. Gdyby nie była badana złożoność, to wyliczona zostałaby wartość <math>Q</math> na podstawie innego wyrazu ciągu <math>a_k</math> (ten symbol Jacobiego został zapisany zwykłą czcionką).
+
Zatem mamy dokładnie <math>\varphi (m)</math> kolumn liczb względnie pierwszych z <math>m</math>.
  
::<math>m = 3 , \;\; (5 \, | \, 3) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
 
  
::<math>m = 5 , \;\; (5 \, | \, 5) = 0 , \;\; (- 7 \, | \, 5) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1 \;\;</math> (zauważmy, że <math>(5 \, | \, 5) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
+
'''2.''' Załóżmy, że liczba <math>k</math> jest jedną z&nbsp;liczb względnie pierwszych z <math>m</math>, czyli <math>\gcd (k, m) = 1</math>. Przy tym założeniu <math>k</math>-ta kolumna (pokazana w&nbsp;tabeli) jest kolumną liczb względnie pierwszych z <math>m</math>.
  
::<math>m = 7 , \;\; (5 \, | \, 7) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
 
  
::<math>m = 9 , \;\; </math> (liczba kwadratowa)
+
'''3.''' Zauważmy, że reszty z&nbsp;dzielenia liczb wypisanych w <math>k</math>-tej kolumnie przez <math>n</math> są wszystkie różne. Gdyby tak nie było, to dla pewnych <math>i, j</math>, gdzie <math>0 \leqslant i, j \leqslant n - 1</math>, różnica liczb <math>i m + k</math> oraz <math>j m + k</math> byłaby podzielna przez <math>n</math>. Mielibyśmy
  
::<math>m = 11 , \;\; (- 11 \, | \, 11) = 0 , \;\; (13 \, | \, 11) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 1 \;\;</math> (zauważmy, że <math>(- 11 \, | \, 11) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
+
::<math>n \mid ((i m + k) - (j m + k))</math>
  
::<math>m = 13 , \;\; (5 \, | \, 13) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
+
Skąd wynika natychmiast
  
::<math>m = 15 , \;\; \boldsymbol{(5 \, | \, 15) = 0} , \;\; (13 \, | \, 15) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
::<math>n \mid (i - j) m</math>
  
::<math>m = 17 , \;\; (5 \, | \, 17) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
+
Ponieważ założyliśmy, że <math>\gcd (n, m) = 1</math>, to musi być <math>n \mid (i - j)</math> (zobacz C74), ale
  
::<math>m = 19 , \;\; (- 7 \, | \, 19) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
::<math>0 \leqslant | i - j | \leqslant n - 1</math>
  
::<math>m = 21 , \;\; \boldsymbol{(- 7 \, | \, 21) = 0} , \;\; (- 11 \, | \, 21) = - 1 , \;\; Q = 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
Czyli <math>n</math> może dzielić <math>i - j</math> tylko w&nbsp;przypadku, gdy <math>i = j</math>. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez <math>n</math>.
  
  
Niech <math>m \geqslant 23</math>. Wiemy, że w&nbsp;ciągu <math>(5, - 7, 9, \ldots, \pm m, \mp (m + 2), \ldots, - (2 m - 3), 2 m - 1)</math> wystąpią liczby <math>a_k</math> takie, że <math>(a_k \, | \, m) = - 1</math>. Warunek <math>(a_k \, | \, m) = 0</math> oznacza, że <math>(2 k + 1 \, | \, m) = 0</math>, bo
+
'''4.''' Ponieważ w <math>k</math>-tej kolumnie znajduje się dokładnie <math>n</math> liczb i reszty z dzielenia tych liczb przez <math>n</math> są wszystkie różne, to reszty te tworzą zbiór <math>S = \{ 0, 1, \ldots, n - 1 \}</math>. Wynika stąd, że liczby wypisane w <math>k</math>-tej kolumnie mogą być zapisane w postaci
 
 
::<math>(a_k \, | \, m) = ((- 1)^k (2 k + 1) \, | \, m) = ((- 1)^k \, | \, m) \cdot (2 k + 1 \, | \, m) = (- 1 \, | \, m)^k \cdot (2 k + 1 \, | \, m) = \pm (2 k + 1 \, | \, m)</math>
 
 
 
Jeżeli będą spełnione warunki <math>(a_k \, | \, m) = 0</math> i <math>R_m (a_k) \neq 0</math>, to liczba <math>m</math> będzie liczbą złożoną.
 
 
 
Wypiszmy kolejne próby dla <math>m \geqslant 23</math>. Liczba <math>r</math> jest numerem próby.
 
 
 
::<math>r = 1 , \;\; a_{r + 1} = 5</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(5 \, | \, m) = 1</math> || <math>5 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(5 \, | \, m) = 0</math> || <math>5 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(5 \, | \, m) = - 1 \quad</math> || <math>5 \nmid m</math> || <math>D = 5 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
 
 
::<math>r = 2 , \;\; a_{r + 1} = - 7</math>
 
  
::{| border="0"
+
::<math>a_r = b_r \cdot n + r</math>
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \, | \, m) = 1</math> || <math>7 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \, | \, m) = 0</math> || <math>7 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \, | \, m) = - 1 \quad</math> || <math>7 \nmid m</math> || <math>D = -7 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
  
::<math>r = 3</math>, <math>a_{r + 1} = 9</math>
+
gdzie <math>r = 0, 1, \ldots, n - 1</math> i <math>b_r \in \mathbb{Z}</math>.
  
::{| border="0"
+
Zauważmy, że następujące ilości liczb są sobie równe
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \, | \, m) = 1</math> || <math>3 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \, | \, m) = 0</math> || <math>3 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \, | \, m) \neq - 1 \quad</math> || - - - - || bo <math>9</math> jest liczbą kwadratową
 
|}
 
  
 +
:*&nbsp;&nbsp;&nbsp;ilość liczb w <math>k</math>-tej kolumnie względnie pierwszych z <math>n</math>
  
Po wykonaniu trzech prób niezakończonych sukcesem (tzn. wykryciem złożoności <math>m</math> lub ustaleniem wartości liczb <math>D</math> i <math>Q</math>) wiemy, że <math>m</math> nie jest podzielna przez żadną z&nbsp;liczb pierwszych <math>p = 3, 5, 7</math>.
+
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 0, \ldots, n - 1</math>, bo <math>\gcd (b_r \cdot n + r, n) = \gcd (r, n)</math>
  
::<math>r</math>-ta próba, gdzie <math>r \geqslant 4 , \;\;</math> wyraz <math>a_{r + 1}</math>
+
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 1, \ldots, n</math>, bo <math>\gcd (n, n) = \gcd (0, n) = | n | > 1</math>
  
::{| border="0"
+
Ostatnia ilość liczb jest równa <math>\varphi (n)</math>, co wynika wprost z definicji funkcji <math>\varphi (n)</math>.
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 1} \, | \, m) = 1</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 1} | = 2 r + 3</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 1} \, | \, m) = 0</math> || A. jeżeli <math>m \, | \, a_{r + 1}</math><sup>( * )</sup><br/>B. jeżeli <math>m \nmid a_{r + 1}</math> || A. przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math> <br/> B. <math>a_{r + 1} \, | \, m</math><sup>( ** )</sup>, '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 1} \, | \, m) = - 1 \quad</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 1} | = 2 r + 3</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || <math>D = a_{r + 1}</math>, <math>Q = {\small\frac{1 - a_{r + 1}}{4}}</math>, '''koniec'''
 
|}
 
  
<sup>( * )</sup> jest to możliwe tylko dla <math>a_{r + 1} = a_{(m - 1) / 2} = m</math>
 
  
<sup>( ** )</sup> zauważmy, że jeżeli <math>m \nmid a_{r + 1}</math>, to <math>\gcd (a_{r + 1}, m) = | a_{r + 1} |</math>, bo gdyby liczba <math>| a_{r + 1} |</math> była liczbą złożoną, to żaden z&nbsp;jej dzielników pierwszych nie dzieliłby liczby <math>m</math>
+
'''5.''' Zbierając: mamy w&nbsp;wypisanej tabeli dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jednocześnie jest
  
 +
::<math>\gcd (u, m) = 1 \quad  \text{i} \quad \gcd (u, n) = 1</math>
  
Jeżeli nie została wykryta złożoność liczby <math>m</math>, to żadna z&nbsp;liczb pierwszych <math>p \leqslant | a_{r + 1} | = 2 r + 3</math> nie dzieli liczby <math>m</math>. Zatem <math>\gcd (Q, m) > 1</math> może być tylko w&nbsp;przypadku, gdy pewna liczba pierwsza <math>q \geqslant 2 r + 5</math> będzie wspólnym dzielnikiem liczb <math>Q</math> i <math>m</math>, ale jest to niemożliwe, bo
+
Z twierdzenia H6 wynika, że w&nbsp;tabeli jest dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jest
  
::<math>| Q | = \left| {\small\frac{1 - a_{r + 1}}{4}} \right| \leqslant {\small\frac{| a_{r + 1} | + 1}{4}} = {\small\frac{2 r + 4}{4}} < 2 r + 5 \leqslant q</math>
+
::<math>\gcd (u, m n) = 1</math>
  
Przedostatnia (ostra) nierówność jest prawdziwa dla wszystkich <math>r</math> naturalnych.<br/>
+
Zatem <math>\varphi (m n) = \varphi (m) \varphi (n)</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1371: Linia 790:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie L31</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H29</span><br/>
Zmodyfikujmy metodę Selfridge'a w&nbsp;taki sposób, że będziemy rozpoczynali próby nie od wyrazu <math>a_2 = 5</math>, ale od wyrazu <math>a_3 = - 7</math>. Pokazać, że w&nbsp;przypadku, gdy dla kolejnych liczb <math>a_k = (- 1)^k (2 k + 1)</math> sprawdzamy, czy konsekwencją <math>(a_k \, | \, m) = 0</math> jest złożoność liczby <math>m</math>, to dla każdej liczby <math>Q</math> wyznaczonej tak zmodyfikowaną metodą Selfridge'a jest <math>\gcd (Q, m) = 1</math>.
+
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Poniżej pokażemy, dlaczego musi być <math>\gcd (Q, m) = 1</math>, gdzie <math>Q</math> jest liczbą wyznaczoną zmodyfikowaną metodą Selfridge'a (o ile sprawdzana jest złożoność liczby <math>m</math> przy testowaniu kolejnych liczb <math>a_k</math>). Pogrubioną czcionką zaznaczone są symbole Jacobiego, które wykryły złożoność liczby <math>m</math>. Gdyby nie była badana złożoność, to wyliczona zostałaby wartość <math>Q</math> na podstawie innego wyrazu ciągu <math>a_k</math> (ten symbol Jacobiego został zapisany zwykłą czcionką).
 
  
::<math>m = 3 , \;\; (- 7 \, | \, 3) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
::<math>m = 5 , \;\; (- 7 \, | \, 5) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
gdzie iloczyn obliczamy po wszystkich liczbach pierwszych <math>p</math>, będących dzielnikami liczby <math>n</math>.
  
::<math>m = 7 , \;\; (- 7 \, | \, 7) = 0 , \;\; (- 11 \, | \, 7) = - 1 , \;\; Q = 3 , \;\; \gcd (m, Q) = 1</math> (zauważmy, że <math>(- 7 \, | \, 7) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej <math>p</math> są jednocześnie pierwsze względem <math>p</math>, to <math>\varphi (p) = p - 1</math>.
  
::<math>m = 9 , \;\; </math> (liczba kwadratowa)
+
Równie łatwo znajdujemy wartość funkcji <math>\varphi (n)</math> w&nbsp;przypadku gdy <math>n</math> jest potęgą liczby pierwszej <math>n = p^k</math>. Wystarczy zauważyć, że w&nbsp;ciągu kolejnych liczb
  
::<math>m = 11 , \;\; (- 11 \, | \, 11) = 0 , \;\; (13 \, | \, 11) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 1 \;\;</math> (zauważmy, że <math>(- 11 \, | \, 11) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
+
::<math>1, 2, 3, 4, \ldots, p^k - 1, p^k</math>
  
::<math>m = 13 , \;\; (- 7 \, | \, 13) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
jedynymi liczbami, które nie są pierwsze względem <math>p^k</math>, są te, które dzielą się przez <math>p</math> i&nbsp;jest ich <math>p^{k - 1}</math>, co widać natychmiast po ich bezpośrednim wypisaniu
  
::<math>m = 15 , \;\; \boldsymbol{(9 \, | \, 15) = 0} , \;\; (13 \, | \, 15) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
::<math>1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p</math>
  
::<math>m = 17 , \;\; (- 7 \, | \, 17) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
Zatem
  
::<math>m = 19 , \;\; (- 7 \, | \, 19) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
::<math>\varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right)</math>
  
::<math>m = 21 , \;\; \boldsymbol{(- 7 \, | \, 21) = 0} , \;\; (- 11 \, | \, 21) = - 1 , \;\; Q = 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to dla <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> otrzymujemy
  
 +
::<math>\varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k)</math>
  
Niech <math>m \geqslant 23</math>. Wiemy, że w&nbsp;ciągu <math>( - 7, 9, \ldots, \pm m, \mp (m + 2), \ldots, - (2 m - 3), 2 m - 1)</math> wystąpią liczby <math>a_k</math> takie, że <math>(a_k \, | \, m) = - 1</math>. Warunek <math>(a_k \, | \, m) = 0</math> oznacza, że <math>(2 k + 1 \, | \, m) = 0</math>, bo
+
:::<math>\;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
::<math>(a_k \, | \, m) = ((- 1)^k (2 k + 1) \, | \, m) = ((- 1)^k \, | \, m) \cdot (2 k + 1 \, | \, m) = (- 1 \, | \, m)^k \cdot (2 k + 1 \, | \, m) = \pm (2 k + 1 \, | \, m)</math>
+
:::<math>\;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right]</math>
  
Jeżeli będą spełnione warunki <math>(a_k \, | \, m) = 0</math> i <math>R_m (a_k) \neq 0</math>, to liczba <math>m</math> będzie liczbą złożoną.
+
:::<math>\;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
Wypiszmy kolejne próby dla <math>m \geqslant 23</math>. Liczba <math>r</math> jest numerem próby.
+
:::<math>\;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
::<math>r = 1 , \;\; a_{r + 2} = - 7</math>
+
Co należało pokazać.<br/>
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \, | \, m) = 1</math> || <math>7 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \, | \, m) = 0</math> || <math>7 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \, | \, m) = - 1 \quad</math> || <math>7 \nmid m</math> || <math>D = - 7 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
 
 
::<math>r = 2 , \;\; a_{r + 2} = 9</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \, | \, m) = 1</math> || <math>3 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \, | \, m) = 0</math> || <math>3 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \, | \, m) \neq - 1 \quad</math> || - - - - || bo <math>9</math> jest liczbą kwadratową
 
|}
 
 
 
::<math>r = 3 , \;\; a_{r + 2} = - 11</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 11 \, | \, m) = 1</math> || <math>11 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 11 \, | \, m) = 0</math> || <math>11 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 11 \, | \, m) = - 1 \quad</math> || <math>11 \nmid m</math> || <math>D = - 11 , \;\; Q = 3 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec''' (bo liczby złożone <math>m = 3 k</math> zostały usunięte w&nbsp;poprzedniej próbie, <math>r = 2</math>)
 
|}
 
 
 
::<math>r = 4 , \;\; a_{r + 2} = 13</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(13 \, | \, m) = 1</math> || <math>13 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(13 \, | \, m) = 0</math> || <math>13 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(13 \, | \, m) = - 1 \quad</math> || <math>13 \nmid m</math> || <math>D = 13 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec''' (bo liczby złożone <math>m = 3 k</math> zostały usunięte w&nbsp;próbie o&nbsp;numerze <math>r = 2</math>)
 
|}
 
 
 
::<math>r = 5 , \;\; a_{r + 2} = - 15</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 15 \, | \, m) = 1</math> || <math>5 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 15 \, | \, m) = 0</math> || <math>5 \, | \, m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 15 \, | \, m) = - 1 \quad</math> || <math>5 \nmid m</math> || <math>D = - 15 , \;\; Q = 4 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
 
 
 
 
Po wykonaniu pięciu prób niezakończonych sukcesem (tzn. wykryciem złożoności <math>m</math> lub ustaleniem wartości liczb <math>D</math> i <math>Q</math>) wiemy, że <math>m</math> nie jest podzielna przez żadną z&nbsp;liczb pierwszych <math>p = 3, 5, 7, 11, 13</math>.
 
 
 
::<math>r</math>-ta próba, gdzie <math>r \geqslant 6 , \;\;</math> wyraz <math>a_{r + 2}</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 2} \, | \, m) = 1</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 2} | = 2 r + 5</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 2} \, | \, m) = 0</math> || A. jeżeli <math>m \, | \, a_{r + 2}</math><sup>( * )</sup><br/>B. jeżeli <math>m \nmid a_{r + 2}</math> || A. przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math> <br/> B. <math>a_{r + 1} \, | \, m</math><sup>( ** )</sup>, '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 2} \, | \, m) = - 1 \quad</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 2} | = 2 r + 5</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || <math>D = a_{r + 2}</math>, <math>Q = {\small\frac{1 - a_{r + 2}}{4}}</math>, '''koniec'''
 
|}
 
 
 
<sup>( * )</sup> jest to możliwe tylko dla <math>a_{r + 2} = a_{(m - 1) / 2} = m</math>
 
 
 
<sup>( ** )</sup> zauważmy, że jeżeli <math>m \nmid a_{r + 2}</math>, to <math>\gcd (a_{r + 2}, m) = | a_{r + 2} |</math>, bo gdyby liczba <math>| a_{r + 2} |</math> była liczbą złożoną, to żaden z&nbsp;jej dzielników pierwszych nie dzieliłby liczby <math>m</math>
 
 
 
 
 
Jeżeli nie została wykryta złożoność liczby <math>m</math>, to żadna z&nbsp;liczb pierwszych <math>p \leqslant | a_{r + 2} | = 2 r + 5</math> nie dzieli liczby <math>m</math>. Zatem <math>\gcd (Q, m) > 1</math> może być tylko w&nbsp;przypadku, gdy pewna liczba pierwsza <math>q \geqslant 2 r + 7</math> będzie wspólnym dzielnikiem liczb <math>Q</math> i <math>m</math>, ale jest to niemożliwe, bo
 
 
 
::<math>| Q | = \left| {\small\frac{1 - a_{r + 2}}{4}} \right| \leqslant {\small\frac{| a_{r + 2} | + 1}{4}} = {\small\frac{2 r + 6}{4}} < 2 r + 7 \leqslant q</math>
 
 
 
Przedostatnia (ostra) nierówność jest prawdziwa dla wszystkich <math>r</math> naturalnych.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1490: Linia 830:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L32</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H30</span><br/>
Przyjmując metodę Selfridge'a wyboru parametrów <math>P, Q</math> dla testu Lucasa, możemy łatwo napisać odpowiedni program w&nbsp;PARI/GP testujący pierwszość liczb
+
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli <math>q</math> jest liczbą pierwszą, to
 
 
<span style="font-size: 90%; color:black;">LucasTest(m) =
 
{
 
'''local'''(P, Q, X);
 
'''if'''( m % 2 == 0, '''return'''(m == 2) );
 
'''if'''( '''issquare'''(m), '''return'''(0) ); \\ sprawdzamy, czy m nie jest liczbą kwadratową
 
X = MethodA(m);
 
P = X[1];
 
Q = X[2];
 
'''if'''( P == 0, '''return'''(0) ); \\ jeżeli P = 0, to m jest liczbą złożoną
 
'''if'''( modLucas(m + 1, P, Q, m)[1] == 0, '''return'''(1), '''return'''(0) );
 
}</span>
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L33</span><br/>
 
Najmniejsze liczby pseudopierwsze Lucasa, które pojawiają się przy zastosowaniu metody Selfridge'a wyboru parametrów <math>P</math> i <math>Q</math>, to
 
 
 
::<math>323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877, 11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971, 19043, 22499, \ldots</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">'''forstep'''(k=1, 3*10^4, 2, '''if'''( LucasTest(k) && !'''isprime'''(k), '''print'''(k)) )</span>
 
<br/>
 
{{\Spoiler}}
 
 
 
  
 
+
::<math>\varphi (q n) = \left\{ \begin{array}{rl}
Tabela przedstawia ilość takich liczb nie większych od <math>10^n</math>
+
  (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n\\
 
+
  q \varphi (n) & \quad \text{gdy} \quad q \mid n
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
\end{array} \right.</math>
! <math>\boldsymbol{n}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math>
 
|-
 
| #LPSP <math>< 10^n</math> (metoda Selfridge'a) || <math>2</math> || <math>9</math> || <math>57</math> || <math>219</math> || <math>659</math> || <math>1911</math> || <math>5485</math>
 
|}
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">'''for'''(n=3, 9, s=0; '''forstep'''(k = 1, 10^n, 2, '''if'''( LucasTest(k) && !'''isprime'''(k), s++ ) ); '''print'''("n= ", n, "  ", s) )</span>
 
<br/>
 
{{\Spoiler}}
 
 
 
 
 
 
 
 
 
 
 
== Liczby silnie pseudopierwsze Lucasa ==
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L34</span><br/>
 
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą taką, że <math>\gcd (p, Q D) = 1</math> oraz <math>p - (D \, | \, p) = 2^r w</math>, gdzie <math>w</math> jest liczbą nieparzystą, to spełniony jest dokładnie jeden z&nbsp;warunków
 
 
 
::<math>U_w \equiv 0 \pmod{p}</math>
 
 
 
lub
 
 
 
::<math>V_{2^k w} \equiv 0 \pmod{p} \qquad</math> dla pewnego <math>k \in [0, r - 1]</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Wiemy (zobacz L20), że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą taką, że <math>\gcd (p, Q D) = 1</math>, to <math>p \, | \, U_{p - (D \, | \, p)}</math>. Z&nbsp;założenia jest <math>p - (D \, | \, p) = 2^r w</math>, zatem <math>p \, | \, U_{2^r w}</math>. Ponieważ założyliśmy, że <math>p \nmid Q</math> i <math>p \nmid D</math>, to ze wzoru <math>V^2_n - D U^2_n = 4 Q^n</math> (zobacz L13 p.14) wynika natychmiast, że <math>p</math> nie może dzielić jednocześnie liczb <math>U_n</math> i <math>V_n</math>.
+
Jeżeli <math>q \nmid m</math>, to <math>\gcd (q, m) = 1</math>, zatem <math>\varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m)</math>. Jeżeli <math>q \mid m</math>, to liczby <math>m</math> oraz <math>q m</math> mają taki sam zbiór dzielników pierwszych, zatem
 
 
Korzystając ze wzoru <math>U_{2 n} = U_n V_n</math> (zobacz L13 p.11), otrzymujemy
 
 
 
::{| border="0"
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \, | \, U_{2^r w} \;\; \Longleftrightarrow \;\; p \, | \, U_{2^{r - 1} w} \cdot V_{2^{r - 1} w} \quad</math> || Jeżeli <math>p \, | \, V_{2^{r - 1} w}</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_{2^{r - 1} w}</math>, to <math>p \, | \, U_{2^{r - 1} w}</math>.
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \, | \, U_{2^{r - 1} w} \;\; \Longleftrightarrow \;\; p \, | \, U_{2^{r - 2} w} \cdot V_{2^{r - 2} w} \quad</math> || Jeżeli <math>p \, | \, V_{2^{r - 2} w}</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_{2^{r - 2} w}</math>, to <math>p \, | \, U_{2^{r - 2} w}</math>.
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>.................</math> ||
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \, | \, U_{4 w} \;\; \Longleftrightarrow \;\; p \, | \, U_{2 w} \cdot V_{2 w}</math> || Jeżeli <math>p \, | \, V_{2 w}</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_{2 w}</math>, to <math>p \, | \, U_{2 w}</math>.
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \, | \, U_{2 w} \;\; \Longleftrightarrow \;\; p \, | \, U_w \cdot V_w</math> || Jeżeli <math>p \, | \, V_w</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_w</math>, to <math>p \, | \, U_w</math>.
 
|}
 
 
 
Z powyższego wynika, że musi być spełniony jeden z wypisanych w twierdzeniu warunków.
 
 
 
 
 
Zauważmy teraz, że jeżeli liczba pierwsza <math>p</math> dzieli <math>V_w</math>, to <math>p \nmid U_w</math>, bo <math>p</math> nie może jednocześnie być dzielnikiem liczb <math>U_w</math> i <math>V_w</math>.
 
 
 
Zauważmy też, że jeżeli dla pewnego <math>k \in [1, r - 1]</math> liczba pierwsza <math>p</math> dzieli <math>V_{2^k w}</math>, to <math>p</math> nie dzieli żadnej liczby <math>V_{2^j w}</math> dla <math>j \in [0, k - 1] \;\; \text{i} \;\; p \nmid U_w</math>. Istotnie:
 
 
 
::{| border="0"
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \, | \, V_{2^k w}</math>, to <math>p \nmid U_{2^k w} \;\; \text{i} \;\; U_{2^k w} = U_{2^{k - 1} w} V_{2^{k - 1} w}</math>, zatem <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_{2^{k - 1} w} \;\; \text{i} \;\; V_{2^{k - 1} w}</math>
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \nmid U_{2^{k - 1} w} \;\; \text{i} \;\; U_{2^{k - 1} w} = U_{2^{k - 2} w} V_{2^{k - 2} w}</math>, to <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_{2^{k - 2} w} \;\; \text{i} \;\; V_{2^{k - 2} w}</math>
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>.................</math> ||
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \nmid U_{4 w} \;\; \text{i} \;\; U_{4 w} = U_{2 w} V_{2 w}</math>, to <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_{2 w} \;\; \text{i} \;\; V_{2 w}</math>
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \nmid U_{2 w} \;\; \text{i} \;\; U_{2 w} = U_w V_w</math>, to <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_w \;\; \text{i} \;\; V_w</math>
 
|}
 
  
 
+
::<math>\varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m)</math>
Co dowodzi, że spełniony jest dokładnie jeden z <math>r + 1</math> warunków:
 
 
 
::<math>U_w \equiv 0 \pmod{p}</math>
 
 
 
::<math>V_{2^k w} \equiv 0 \pmod{p} \qquad</math> gdzie <math>k \in [0, r - 1]</math>
 
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 1598: Linia 849:
  
  
Konsekwentnie definiujemy liczby pseudopierwsze<br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H31</span><br/>
<span style="font-size: 110%; font-weight: bold;">Definicja L35</span><br/>
+
Niech <math>m, n \in \mathbb{Z}_+</math>. Jeżeli <math>m \mid n</math>, to <math>\varphi (m) \mid \varphi (n)</math>.
Powiemy, że liczba złożona nieparzysta <math>m</math> jest liczbą silnie pseudopierwszą Lucasa (SLPSP) dla parametrów <math>P</math> i <math>Q</math>, jeżeli <math>\gcd (m, Q D) = 1</math> oraz <math>m - (D \, | \, m) = 2^r w</math>, gdzie <math>w</math> jest liczbą nieparzystą i&nbsp;spełniony jest jeden z&nbsp;warunków
 
  
::<math>U_w \equiv 0 \pmod{m}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>. Ponieważ założyliśmy, że <math>m \mid n</math>, to <math>m</math> musi być postaci <math>m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s</math>, gdzie <math>0 \leqslant \beta_i \leqslant \alpha_i</math>, dla <math>i = 1, \ldots, s</math>. Łatwo zauważamy, że
  
lub
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>\beta_i = 0</math>, to <math>\varphi (p^{\beta_i}_i) = 1</math> i&nbsp;dzieli <math>\varphi (p^{\alpha_i}_i)</math>
  
::<math>V_{2^k w} \equiv 0 \pmod{m} \;</math> dla pewnego <math>k \in [0, r - 1]</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>1 \leqslant \beta_i \leqslant \alpha_i</math>, to <math>(p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1}</math>, zatem <math>\varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i)</math>
  
 +
Skąd natychmiast wynika, że <math>\varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s)</math> dzieli <math>\varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s)</math>, czyli <math>\varphi (m) \mid \varphi (n)</math>.
  
 
+
Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo <math>\varphi (7) \mid \varphi (19)</math>, ale <math>7 \nmid 19</math>.<br/>
<span style="font-size: 110%; font-weight: bold;">Uwaga L36</span><br/>
+
&#9633;
Każda liczba SLPSP(<math>P, Q</math>) jest LPSP(<math>P, Q</math>). Korzystając ze zdefiniowanych wcześniej funkcji: <code>modPower(a, n, m)</code>, <code>jacobi(a, n)</code> i <code>modLucas(n, P, Q, m)</code> (zobacz K2, J41, L15), możemy napisać prosty program, który sprawdza, czy liczba <math>m</math> spełnia jeden z&nbsp;warunków podanych w&nbsp;twierdzeniu L34.
 
 
 
<span style="font-size: 90%; color: black;">isPrimeOr<span style="background-color: #fee481;">SLPSP</span>(m, P, Q) =
 
{
 
'''local'''(a, b, c, D, js, k, r, w, X);
 
D = P^2 - 4*Q;
 
'''if'''( gcd(m, 2*Q*D) > 1, '''return'''(0) );
 
js = jacobi(D, m);
 
r = '''valuation'''(m - js, 2); \\ znajdujemy wykładnik, z jakim liczba 2 występuje w m - js
 
w = (m - js) / 2^r;
 
X =  modLucas(w, P, Q, m);
 
a = X[1]; \\ U_w(P, Q) % m
 
b = X[2]; \\ V_w(P, Q) % m
 
'''if'''( a == 0 || b == 0, '''return'''(1) ); \\ b == 0 to przypadek k == 0
 
'''if'''( r == 1, '''return'''(0) ); \\ nie ma dalszych przypadków
 
c = modPower(Q, w, m); \\ Q^w % m
 
k = 0;
 
\\ sprawdzamy warunek V_(2^k * w) % m = 0; korzystamy ze wzoru V_(2*t) = (V_t)^2 - 2*Q^t
 
'''while'''( k++ < r,
 
        b = (b^2 - 2*c) % m;
 
        '''if'''( b == 0, '''return'''(1) );
 
        c = c^2 % m;
 
      );
 
'''return'''(0);
 
}</span>
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Przykład L37</span><br/>
 
Poniższa tabela zawiera najmniejsze liczby silnie pseudopierwsze Lucasa dla różnych parametrów <math>P</math> i <math>Q</math>
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
 
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>253</math> || <math>121</math> || style="background-color: yellow" | <math>143</math> || <math>781</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>299</math> || <math>121</math> || style="background-color: yellow" | <math>407</math> || <math>9</math> || style="background-color: yellow" | <math>143</math>
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>9</math> || <math>4181</math> || <math>341</math> || <math>169</math> || <math>33</math> || style="background-color: yellow" | <math>119</math> || <math>57</math> || <math>9</math> || <math>9</math> || <math>9</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| style="background-color: yellow" | <math>799</math> || <math>121</math> || style="background-color: yellow" | <math>527</math> || <math>25</math> || <math>85</math> || style="background-color: yellow" | <math>209</math> || style="background-color: yellow" | <math>55</math> || style="background-color: yellow" | <math>35</math> || <math>169</math> || <math>529</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>2047</math> || style="background-color: yellow" | <math>989</math> || <math>161</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || <math>9</math> || <math>265</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| <math>4181</math> || <math>169</math> || style="background-color: yellow" | <math>119</math> || <math>9</math> || <math>9</math> || style="background-color: yellow" | <math>629</math> || <math>25</math> || <math>33</math> || <math>9</math> || style="background-color: yellow" | <math>51</math>
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>25</math> || style="background-color: red" | <math></math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>209</math> || style="background-color: yellow" | <math>527</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>559</math> || <math>9</math> || <math>49</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| style="background-color: yellow" | <math>5459</math> || <math>9</math> || <math>2047</math> || <math>169</math> || <math>21</math> || <math>253</math> || <math>9</math> || style="background-color: yellow" | <math>15</math> || <math>9</math> || <math>49</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| style="background-color: yellow" | <math>899</math> || style="background-color: yellow" | <math>5983</math> || <math>25</math> || <math>121</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>35</math> || <math>55</math> || <math>25</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| style="background-color: yellow" | <math>899</math> || <math>25</math> || <math>1541</math> || style="background-color: red" | <math></math> || <math>341</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>377</math> || style="background-color: yellow" | <math>209</math> || <math>9</math> || style="background-color: yellow" | <math>527</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>9</math> || style="background-color: yellow" | <math>527</math> || <math>49</math> || style="background-color: yellow" | <math>527</math> || <math>4181</math> || <math>781</math> || style="background-color: yellow" | <math>39</math> || <math>9</math> || <math>9</math> || <math>9</math>
 
|}
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">FirstSLPSP(Stop) =
 
\\ najmniejsze SLPSP(P,Q) < Stop;  dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0,
 
                  '''print'''("Q= ", Q, "  P= ", P, "  ------------------");
 
                  '''next'''();
 
                );
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">SLPSP</span>(m, P, Q)  &&  !'''isprime'''(m),
 
                          '''print'''("Q= ", Q, "  P= ", P, "  m= ", m, "  (D|m)= ", jacobi(D, m));
 
                          '''break'''();
 
                        );
 
                      m = m + 2;
 
                    );
 
            );
 
      );
 
}</span>
 
<br/>
 
 
{{\Spoiler}}
 
{{\Spoiler}}
  
Żółtym tłem oznaczyliśmy te najmniejsze liczby pseudopierwsze Lucasa, dla których <math>(D \, | \, m) = - 1</math>.
 
  
  
 +
<span style="font-size: 110%; font-weight: bold;">Zadanie H32</span><br/>
 +
Dla <math>n \geqslant 3</math> wartości <math>\varphi (n)</math> są liczbami parzystymi.
  
<span style="font-size: 110%; font-weight: bold;">Przykład L38</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Ilość liczb SLPSP(<math>P, Q</math>) mniejszych od <math>10^9</math>
+
Jeżeli liczba <math>n \geqslant 3</math> jest podzielna przez liczbę pierwszą nieparzystą <math>p</math>, zaś <math>k</math> jest wykładnikiem, z&nbsp;jakim <math>p</math> wchodzi do rozwinięcia <math>n</math> na czynniki pierwsze, to
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
 
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>1056</math> || <math>1231</math> || <math>1184</math> || <math>1264</math> || <math>2278</math> || <math>1284</math> || <math>1181</math> || <math>1174</math> || <math>1281</math> || <math>1429</math>
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>1043</math> || <math>1165</math> || <math>2139</math> || <math>1316</math> || <math>1151</math> || <math>1079</math> || <math>1112</math> || <math>2377</math> || <math>1197</math> || <math>989</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| <math>952</math> || <math>1514</math> || <math>1055</math> || <math>1153</math> || <math>1135</math> || <math>2057</math> || <math>998</math> || <math>1202</math> || <math>1077</math> || <math>1112</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>1282</math> || <math>1092</math> || <math>1212</math> || <math>1510</math> || <math>1155</math> || <math>1179</math> || <math>1173</math> || <math>2240</math> || <math>1089</math> || <math>2109</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| <math>1165</math> || <math>1316</math> || <math>1079</math> || <math>2377</math> || <math>989</math> || <math>1196</math> || <math>1129</math> || <math>1050</math> || <math>1055</math> || <math>1147</math>
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>282485800</math> || style="background-color: red" | <math></math> || <math>2278</math> || <math>2057</math> || <math>2113</math> || <math>2266</math> || <math>4053</math> || <math>2508</math> || <math>2285</math> || <math>3083</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| <math>1776</math> || <math>449152466</math> || <math>1282</math> || <math>1316</math> || <math>1645</math> || <math>1413</math> || <math>1564</math> || <math>1595</math> || <math>1683</math> || <math>1435</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| <math>1621</math> || <math>1553</math> || <math>282485800</math> || <math>1514</math> || <math>1530</math> || <math>1510</math> || <math>1588</math> || <math>1549</math> || <math>1468</math> || <math>1692</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| <math>2760</math> || <math>282485800</math> || <math>2978</math> || style="background-color: red" | <math></math> || <math>2137</math> || <math>2278</math> || <math>1995</math> || <math>2057</math> || <math>2260</math> || <math>2113</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>1314</math> || <math>2392</math> || <math>1497</math> || <math>2392</math> || <math>1165</math> || <math>1268</math> || <math>1227</math> || <math>1411</math> || <math>1253</math> || <math>2377</math>
 
|}
 
  
 +
::<math>\varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k  - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right)</math>
  
 +
zatem <math>\varphi (n)</math> jest liczbą parzystą, ponieważ <math>p - 1</math> jest liczbą parzystą.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
Jeżeli żadna liczba nieparzysta nie dzieli <math>n</math>, to liczba <math>n</math> jest postaci <math>n = 2^a</math> i <math>\varphi (n) = 2^{a - 1}</math>, ale z&nbsp;założenia <math>n \geqslant 3</math>, zatem <math>a \geqslant 2</math> i <math>\varphi (n)</math> jest liczbą parzystą.<br/>
<span style="font-size: 90%; color:black;">NumOfSLPSP(Stop) =
+
&#9633;
\\ ilość liczb silnie pseudopierwszych Lucasa SLPSP(P,Q) < Stop;  dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0, '''print'''("Q= ", Q, "  P= ", P, "  ------------------"); '''next'''() );
 
              s = 0;
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">SLPSP</span>(m, P, Q)  &&  !'''isprime'''(m), s++ );
 
                      m = m + 2;
 
                    );
 
              '''print'''("Q= ", Q, "  P= ", P, "  s= ", s);
 
            );
 
      );
 
}</span>
 
<br/>
 
 
{{\Spoiler}}
 
{{\Spoiler}}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L39</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H33</span><br/>
Można pokazać<ref name="Arnault1"/>, że dla liczby złożonej nieparzystej <math>m \neq 9</math> i&nbsp;ustalonego <math>D</math> ilość par <math>P, Q</math> takich, że
+
Jeżeli <math>n</math> jest liczbą złożoną, to <math>\varphi (n) \leqslant n - \sqrt{n}</math>.
  
:* <math>0 \leqslant P, Q < m</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
:* <math>\gcd (Q, m) = 1</math>
+
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
:* <math>P^2 - 4 Q \equiv D \pmod{m}</math>
+
Niech <math>n = a b</math>, gdzie <math>1 < a \leqslant b < n</math>. Liczby <math>1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a</math> są nie większe od <math>n</math> i&nbsp;nie są względnie pierwsze z <math>n</math>, zatem
:* <math>m</math> jest SLPSP(<math>P, Q</math>)
 
  
nie przekracza <math>\tfrac{4}{15} n</math>.
+
::<math>\varphi (n) \leqslant n - b</math>
  
Nie dotyczy to przypadku, gdy <math>m = p (p + 2)</math> jest iloczynem liczb pierwszych bliźniaczych takich, że <math>(D \, | \, p) = - (D \, | \, p + 2) = - 1</math>, wtedy mamy słabsze oszacowanie: <math>\# (P, Q) \leqslant \tfrac{1}{2} n</math>. Zauważmy, że taką sytuację łatwo wykryć, bo w&nbsp;tym przypadku <math>m + 1 = (p + 1)^2</math> jest liczbą kwadratową.
+
Ponieważ <math>b \geqslant a</math>, to <math>b^2 \geqslant a b = n</math> i <math>b \geqslant \sqrt{n}</math>. Wynika stąd, że
  
 +
::<math>\varphi (n) \leqslant n - b \leqslant n - \sqrt{n}</math>
  
 +
<br/><span style="border-bottom-style: double;">Drugi sposób</span><br/>
 +
Niech <math>q</math> oznacza najmniejszy dzielnik pierwszy liczby złożonej <math>n</math>, zatem <math>q^2 \leqslant n</math>, czyli <math>q \leqslant \sqrt{n}</math>, a&nbsp;stąd <math>{\small\frac{n}{q}} \geqslant \sqrt{n}</math> i
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L40</span><br/>
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n}</math>
Podobnie jak w&nbsp;przypadku liczb pseudopierwszych Lucasa LPSP(<math>P, Q</math>) tak i&nbsp;w&nbsp;przypadku liczb silnie pseudopierwszych Lucasa SLPSP(<math>P, Q</math>) możemy testować pierwszość liczby <math>m</math>, wybierając liczby <math>P, Q</math> losowo lub zastosować wybraną metodę postępowania. Przedstawiony poniżej program, to zmodyfikowany kod z uwagi L36. Teraz parametry <math>P, Q</math> są wybierane metodą Selfridge'a, a symbol Jacobiego <math>(D \, | \, m)</math> jest równy <math>- 1</math>.
 
  
<span style="font-size: 90%; color:black;">StrongLucasTest(m) =
+
Co należało pokazać.<br/>
{
+
&#9633;
'''local'''(a, b, c, k, P, Q, r, w, X);
 
'''if'''( '''issquare'''(m), '''return'''(0) ); \\ sprawdzamy, czy liczba m nie jest kwadratowa
 
X = MethodA(m);
 
P = X[1];
 
Q = X[2];
 
'''if'''( P == 0 || '''gcd'''(m, 2*Q) > 1, '''return'''(0) ); \\ jeżeli P = 0, to m jest liczbą złożoną
 
r = '''valuation'''(m + 1, 2); \\ znajdujemy wykładnik, z jakim liczba 2 występuje w m + 1
 
w = (m + 1) / 2^r;
 
X =  modLucas(w, P, Q, m);
 
a = X[1]; \\ U_w(P, Q) % m
 
b = X[2]; \\ V_w(P, Q) % m
 
'''if'''( a == 0 || b == 0, '''return'''(1) ); \\ b == 0 to przypadek k == 0
 
'''if'''( r == 1, '''return'''(0) ); \\ nie ma dalszych przypadków
 
c = modPower(Q, w, m); \\ Q^w % m
 
k = 0;
 
\\ sprawdzamy warunek V_(2^k * w) %m = 0; korzystamy ze wzoru V_(2*w) = (V_w)^2 - 2*Q^w
 
'''while'''( k++ < r,
 
        b = (b^2 - 2*c) % m;
 
        '''if'''( b == 0, '''return'''(1) );
 
        c = c^2 % m;
 
      );
 
'''return'''(0);
 
}</span>
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L41</span><br/>
 
Najmniejsze liczby silnie pseudopierwsze Lucasa, które otrzymujemy po zastosowaniu metody Selfridge'a wyboru parametrów <math>P</math> i <math>Q</math>, to
 
 
 
::<math>5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, 58519, 75077, 97439, \ldots</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">'''forstep'''(k=1, 10^5, 2, '''if'''( StrongLucasTest(k) && !'''isprime'''(k), '''print'''(k)) )</span>
 
<br/>
 
 
{{\Spoiler}}
 
{{\Spoiler}}
  
  
Tabela przedstawia ilość takich liczb nie większych od <math>10^n</math>
 
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H34</span><br/>
! <math>\boldsymbol{n}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math>
+
Niech <math>n \in \mathbb{Z}_+</math>. Liczba <math>n</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy <math>\varphi (n) = n - 1</math>.
|-
 
| #SLPSP <math>< 10^n</math> (metoda Selfridge'a) || <math>0</math> || <math>2</math> || <math>12</math> || <math>58</math> || <math>178</math> || <math>505</math> || <math>1415</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
<span style="font-size: 90%; color:black;">'''for'''(n=3, 9, s=0; '''forstep'''(k = 1, 10^n, 2, '''if'''( StrongLucasTest(k) && !'''isprime'''(k), s++ ) ); '''print'''("n=", n, "  ", s) )</span>
+
Dla liczb złożonych <math>n \geqslant 4</math> nigdy nie będzie <math>\varphi (n) = n - 1</math>, bo
<br/>
 
{{\Spoiler}}
 
  
 +
::<math>\varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2</math>
  
 
+
Dla <math>n = 1, 2, 3</math> sprawdzamy bezpośrednio: <math>\varphi (1) = 1 \neq 1 - 1</math>, <math>\varphi (2) = 1 = 2 - 1</math>, <math>\varphi (3) = 2 = 3 - 1</math>. Co kończy dowód.<br/>
 
+
&#9633;
 
 
== Test BPSW ==
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga L42</span><br/>
 
Jest <math>488</math> liczb SPSP(<math>2</math>) mniejszych od <math>10^8</math> i są 582 liczby SPSP(<math>3</math>) mniejsze od <math>10^8</math> (zobacz K20). Ale jest aż <math>21</math> liczb mniejszych od <math>10^8</math> silnie pseudopierwszych jednocześnie względem podstaw <math>2</math> i <math>3</math>:
 
 
 
<math>1373653, 1530787, 1987021, 2284453, 3116107, 5173601, 6787327, 11541307, 13694761, 15978007, 16070429,</math>
 
 
 
<math>16879501, 25326001, 27509653, 27664033, 28527049, 54029741, 61832377, 66096253, 74927161, 80375707</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">'''forstep'''(m=3, 10^8, 2, '''if'''( isPrimeOr<span style="background-color: #fee481;">SPSP</span>(m, 2)  &&  isPrimeOr<span style="background-color: #fee481;">SPSP</span>(m, 3)  &&  !'''isprime'''(m), '''print'''("m=", m) ) )</span>
 
<br/>
 
 
{{\Spoiler}}
 
{{\Spoiler}}
  
Widzimy, że prawdopodobieństwo błędnego rozpoznania pierwszości w&nbsp;przypadku liczb mniejszych od <math>10^8</math> dla podstaw <math>2</math> i <math>3</math> jest rzędu kilku milionowych. Gdyby prawdopodobieństwa błędnego rozpoznania pierwszości w&nbsp;przypadku podstaw <math>2</math> i <math>3</math> były niezależne, to spodziewalibyśmy się, że nie będzie wcale liczb mniejszych od <math>10^8</math> silnie pseudopierwszych jednocześnie względem podstaw <math>2</math> i <math>3</math>, bo prawdopodobieństwo takiego zdarzenia byłoby równe kilkudziesięciu bilonowym. Ale tak nie jest.
 
  
Jest to mocny argument za tym, że zastosowanie różnych (niezależnych) testów może być znacznie silniejszym narzędziem do testowania pierwszości liczb, niż wielokrotne stosowanie tego samego testu, gdzie poszczególne próby są tylko pozornie niezależne.
 
  
Połączenie znanych nam już testów prowadzi do prostego programu
+
<span style="font-size: 110%; font-weight: bold;">Twierdzenie H35</span><br/>
 +
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
  
<span style="font-size: 90%; color:black;">BPSWtest(m) =
+
::<math>n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right)</math>
{
 
'''forprime'''(p = 2, 1000, '''if'''( m % p > 0, '''next'''() ); '''if'''( m == p, '''return'''(1), '''return'''(0) ));
 
'''if'''( !isPrimeOr<span style="background-color: #fee481;">SPSP</span>(m, 2), '''return'''(0) );
 
'''if'''( !StrongLucasTest(m), '''return'''(0), '''return'''(1) );
 
}</span>
 
  
 +
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to funkcja
  
Funkcja <code>BPSWtest(m)</code> kolejno sprawdza:
+
::<math>F(n) = \sum_{d \mid n} \varphi (d)</math>
  
:* czy liczba <math>m</math> jest podzielna przez niewielkie liczby pierwsze (w naszym przypadku mniejsze od <math>1000</math>); jeśli tak, to sprawdza, czy <math>m</math> jest liczbą pierwszą, czy złożoną i&nbsp;zwraca odpowiednio <math>1</math> lub <math>0</math>
+
też jest funkcją multiplikatywną (zobacz H26). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>n = 1</math>. Niech <math>n > 1</math>. Jeżeli <math>n =
:* czy liczba <math>m</math> przechodzi test Millera-Rabina dla podstawy <math>2</math>; jeśli nie, to zwraca <math>0</math>
+
p^{\alpha}</math> jest potęgą liczby pierwszej, to otrzymujemy
:* czy liczba <math>m</math> przechodzi silny test Lucasa dla parametrów <math>P</math> i <math>Q</math>, które wybieramy metodą Selfridge'a; jeśli nie, to zwraca <math>0</math>, w&nbsp;przeciwnym wypadku zwraca <math>1</math>
 
  
 +
::<math>F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d)</math>
  
Test w&nbsp;dokładnie takiej postaci zaproponowali Robert Baillie i&nbsp;Samuel Wagstaff<ref name="BaillieWagstaff1"/>. Nazwa testu to akronim, utworzony od pierwszych liter nazwisk Roberta Bailliego, Carla Pomerance'a, Johna Selfridge'a i&nbsp;Samuela Wagstaffa.
+
::::<math>= \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) =</math>
  
Nie jest znany żaden przykład liczby złożonej <math>m</math>, którą test BPSW<ref name="BPSW1"/><ref name="BPSW2"/> identyfikowałby jako pierwszą i&nbsp;z&nbsp;pewnością nie ma takich liczb dla <math>m < 2^{64} \approx 1.844 \cdot 10^{19}</math>. Warto przypomnieć: potrzebowaliśmy siedmiu testów Millera-Rabina (dla podstaw <math>2, 3, 5, 7, 11, 13, 17</math>), aby mieć pewność, że dowolna liczba <math>m < 3.41 \cdot 10^{14}</math> jest pierwsza (zobacz K21).
+
::::<math>= 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) =</math>
  
 +
::::<math>= 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1})</math>
  
 +
::::<math>= p^{\alpha}</math>
  
 +
Jeżeli <math>n</math> jest postaci <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
  
 +
::<math>F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) =</math>
  
== Uzupełnienia ==
+
:::<math>\;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) =</math>
  
&nbsp;
+
:::<math>\;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>
  
=== <span style="border-bottom:1px solid #000;">Pewne własności współczynników dwumianowych</span> ===
+
:::<math>\;\;\;\, = n</math>
  
&nbsp;
+
Niech <math>1 < d_1 < d_2 < \ldots < n</math> będą dzielnikami liczby <math>n</math>. Zauważmy, że kiedy <math>d</math> przebiega zbiór dzielników <math>\{ 1, d_1, d_2, \ldots, n \}</math>, to <math>e = \frac{n}{d}</math> przebiega wszystkie te liczby tylko w odwrotnej kolejności. Zatem
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L43</span><br/>
+
::<math>\sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right)</math>
Jeżeli <math>p</math> jest liczbą pierwszą, to
 
  
::<math>\binom{p}{k} \equiv 0 \pmod{p}</math>
+
Co należało pokazać.<br/>
 
 
dla każdego <math>k \in [1, p - 1]</math>.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Łatwo zauważamy, że dla <math>k \in [1, p - 1]</math> liczba pierwsza <math>p</math> dzieli licznik, ale nie dzieli mianownika współczynnika dwumianowego
 
 
 
::<math>\binom{p}{k} = {\small\frac{p!}{k! \cdot (p - k)!}}</math>
 
 
 
zatem <math>p \biggr\rvert \binom{p}{k}</math>. Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1920: Linia 966:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L44</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie H36</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to
+
Niech <math>n \geqslant 2</math>. Pokazać, że suma liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math> jest równa <math>{\small\frac{1}{2}} n \varphi (n)</math>.
  
::<math>\binom{p + 1}{k} \equiv 0 \pmod{p}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Łatwo sprawdzamy, że wzór jest prawdziwy dla <math>n = 2</math> i&nbsp;odtąd będziemy przyjmowali, że <math>n \geqslant 3</math>. Zatem wartości <math>\varphi (n)</math> są liczbami parzystymi i&nbsp;niech <math>c = {\small\frac{1}{2}} \varphi (n)</math>. Zauważmy, że jeżeli liczba <math>a</math> jest względnie pierwsza z <math>n</math>, to liczba <math>n - a</math> jest również względnie pierwsza z <math>n</math>, bo <math>\gcd (a, n) = \gcd (n - a, n)</math>. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od <math>n</math> i&nbsp;względnie pierwsze z <math>n</math> w&nbsp;kolejności rosnącej, a&nbsp;pod spodem w&nbsp;kolejności malejącej
  
dla każdego <math>k \in [2, p - 1]</math>.
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
+
|-
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
| <math>1</math> || <math>a_2</math> || <math>…</math> || <math>a_c</math> || <math>n - a_c</math> || <math>…</math> || <math>n - a_2</math> || <math>n - 1</math>
Jeżeli <math>k \in [2, p - 1]</math>, to modulo <math>p</math> dostajemy
+
|-
 
+
| <math>n - 1</math> || <math>n - a_2</math> || <math>…</math> || <math>n - a_c</math> || <math>a_c</math> || <math>…</math> || <math>a_2</math> || <math>1</math>
::<math>\binom{p + 1}{k} = \binom{p}{k} + \binom{p}{k - 1} \equiv 0 \pmod{p}</math>
+
|}
  
Bo liczba pierwsza <math>p</math> dzieli licznik, ale nie dzieli mianownika współczynników dwumianowych po prawej stronie. Co należało pokazać.<br/>
+
Suma liczb w&nbsp;każdej kolumnie jest równa <math>n</math>. Ponieważ ilość liczb względnie pierwszych z <math>n</math> jest równa <math>\varphi (n)</math>, to podwojona suma liczb całkowitych nie większych od <math>n</math> i&nbsp;pierwszych względem <math>n</math> wynosi <math>n \varphi (n)</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1938: Linia 985:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L45</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie H37</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą, to
+
Dla liczb naturalnych nieparzystych <math>n \geqslant 5</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
  
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''1.''' Jeżeli <math>n \geqslant 5</math> jest liczbą pierwszą, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze mniejsze od <math>n</math> oraz liczby <math>1, 4</math>. Zatem
  
dla każdego <math>k \in [0, p - 1]</math>.
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 2 > \pi (n)</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
'''2.''' Jeżeli <math>n = p^a</math>, gdzie <math>a \geqslant 2</math>, jest potęgą liczby pierwszej nieparzystej, to <math>n \geqslant 9</math> i&nbsp;liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>p</math>) oraz liczby <math>1, 4, 8</math>. Zatem
Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla liczby pierwszej parzystej <math>p = 2</math>. Załóżmy, że <math>p</math> jest liczbą pierwszą nieparzystą. Równie łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>k = 0</math> i <math>k = 1</math>. Zauważmy, że dla <math>k \in [1, p - 1]</math> jest
 
  
::<math>\binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! (p - 1 - k) !}} = {\small\frac{p - k}{k}} \cdot {\small\frac{(p - 1) !}{(k - 1) ! (p - k) !}} = {\small\frac{p - k}{k}} \cdot \binom{p - 1}{k - 1} = {\small\frac{p}{k}} \cdot \binom{p - 1}{k - 1} - \binom{p - 1}{k - 1}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>.
  
Ponieważ współczynniki dwumianowe są liczbami całkowitymi, a&nbsp;liczba <math>k \in [2, p - 1]</math> nie dzieli liczby pierwszej nieparzystej <math>p</math>, to <math>k</math> musi dzielić liczbę <math>\binom{p - 1}{k - 1}</math>. Zatem dla <math>k \in [2, p - 1]</math> modulo <math>p</math> mamy
+
'''3.''' Jeżeli <math>n</math> ma więcej niż jeden dzielnik pierwszy nieparzysty, to <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>s \geqslant 2</math>. Zauważmy, że
  
::<math>\binom{p - 1}{k} \equiv - \binom{p - 1}{k - 1}\pmod{p}</math>
+
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} > 2^{2 s - 1}</math>
  
Skąd otrzymujemy
+
Liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb <math>q_1, \ldots, q_s</math>) oraz liczby <math>1, 2^2, 2^3, \ldots, 2^{2 s - 1}</math>. Zatem
  
::<math>\binom{p - 1}{k} \equiv (- 1)^1 \binom{p - 1}{k - 1} \equiv (- 1)^2 \binom{p - 1}{k - 2} \equiv \ldots \equiv (- 1)^{k - 2} \binom{p - 1}{2} \equiv (- 1)^{k - 1} \binom{p - 1}{1} \equiv (- 1)^k \pmod{p}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 > \pi (n)</math>
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 1964: Linia 1011:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie L46</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie H38</span><br/>
Dla współczynników dwumianowych prawdziwe są następujące wzory
+
Dla liczb naturalnych <math>n \geqslant 91</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
  
::<math>\underset{k \; \text{parzyste}}{\sum_{k = 0}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Ponieważ <math>p_{2 s} > 1</math> i <math>p_{2 s} \geqslant p_{s + 1}</math>, to z&nbsp;zadania A40 natychmiast wynika nierówność
  
::<math>\underset{k \; \text{nieparzyste}}{\sum_{k = 1}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
::<math>p_1 p_2 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
która jest prawdziwa dla <math>n \geqslant 4</math>.
Ze wzoru dwumianowego
 
  
::<math>(a + b)^n = \sum_{k = 0}^{n} \binom{n}{k} a^{n - k} b^k</math>
+
Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność <math>\varphi (n) > \pi (n)</math> jest zawsze prawdziwa.
  
z łatwością otrzymujemy
+
Przez <math>p_1, p_2, \ldots, p_k, \ldots</math> oznaczymy kolejne liczby pierwsze. Niech <math>n \geqslant 2</math> będzie liczbą naturalną i <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>q_i</math> oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.
  
::<math>(1 + 1)^n = \sum_{k = 0}^{n} \binom{n}{k} = 2^n</math>
+
Wśród kolejnych <math>2 s</math> liczb pierwszych znajduje się przynajmniej <math>s</math> liczb pierwszych '''różnych''' od każdej z&nbsp;liczb <math>q_1, \ldots, q_s</math>. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez <math>r_1, \ldots, r_s</math>, to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania
  
::<math>(1 - 1)^n = \sum_{k = 0}^{n} (- 1)^k \binom{n}{k} = 0</math>
+
:*&nbsp;&nbsp;&nbsp;dla najmniejszej liczby <math>r_1 \leqslant p_{s + 1}</math>
  
Obliczając sumę i&nbsp;różnicę powyższych wzorów mamy
+
:*&nbsp;&nbsp;&nbsp;dla wszystkich liczb <math>r_j \leqslant p_{2 s}</math> dla <math>j = 1, \ldots, s</math>.
  
::<math>\sum_{k = 0}^{n} \binom{n}{k} (1 + (- 1)^k) = 2 \underset{k \; \text{parzyste}}{\sum^n_{k = 0}} \binom{n}{k} = 2^n</math>
+
Korzystając z&nbsp;wypisanej na początku dowodu nierówności, dla <math>s \geqslant 4</math> mamy
  
::<math>\sum_{k = 0}^{n} \binom{n}{k} (1 - (- 1)^k) = 2 \underset{k \; \text{nieparzyste}}{\sum_{k = 1}^{n}} \binom{n}{k} = 2^n</math>
+
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j</math>
  
Skąd natychmiast wynika
+
gdzie <math>j = 1, \ldots, s</math>.
  
::<math>\underset{k \; \text{parzyste}}{\sum_{k = 0}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
Wynika stąd, że jeśli <math>s \geqslant 4</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>q_1, \ldots, q_s</math>) oraz liczby <math>1</math> i <math>r_1 r_j</math>, gdzie <math>j = 1, \ldots, s</math>. Zatem
  
::<math>\underset{k \; \text{nieparzyste}}{\sum_{k = 1}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - s + s + 1> \pi (n)</math>
  
Co należało pokazać.<br/>
+
Co mieliśmy pokazać.
&#9633;
 
{{\Spoiler}}
 
  
  
 +
Uwzględniając rezultat pokazany w&nbsp;zadaniu H37, pozostaje sprawdzić przypadki gdy <math>n = 2^a</math>, <math>n = 2^a p^b</math>, <math>n = 2^a p^b q^c</math>, gdzie <math>a, b, c \in \mathbb{Z}_+</math>.
  
 +
'''1.''' Niech <math>n = 2^a</math>. Jeśli <math>n \geqslant 16</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>2</math>) oraz liczby <math>1, 9, 15</math>. Zatem
  
 +
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>
  
=== <span style="border-bottom:1px solid #000;">Funkcje <span style="font-size: 95%; background-color: #f8f9fa"><tt>digits(m, b)</tt></span> oraz <span style="font-size: 95%; background-color: #f8f9fa"><tt>issquare(m)</tt></span></span> ===
+
'''2.''' Niech <math>n = 2^a p^b</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math>. Oczywiście <math>r \in \{ 3, 5 \}</math> i&nbsp;jeśli tylko <math>n > 5^3 = 125</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math> i <math>p</math>) oraz liczby <math>1, r^2, r^3</math>. Zatem
  
&nbsp;
+
::<math>\varphi (n) \geqslant \pi (n) - 2 + 3 > \pi (n)</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga L47</span><br/>
+
'''3.''' Niech <math>n = 2^a p^b q^c</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math> oraz różną od <math>q</math>. Oczywiście <math>r \in \{ 3, 5, 7 \}</math> i&nbsp;jeśli <math>n > 7^4 = 2401</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math>, <math>p</math> i <math>q</math>) oraz liczby <math>1, r^2, r^3, r^4</math>. Zatem
W funkcji <code>modLucas()</code> wykorzystaliśmy zaimplementowaną w&nbsp;PARI/GP funkcję
 
  
<code>digits(m, b)</code> – zwraca wektor cyfr liczby <math>| m |</math> w&nbsp;systemie liczbowym o&nbsp;podstawie <math>b</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 3 + 4 > \pi (n)</math>
  
W naszym przypadku potrzebowaliśmy uzyskać wektor cyfr liczby <math>m</math> w&nbsp;układzie dwójkowym, czyli funkcję <code>digits(m, 2)</code> . Wprowadzenie tej funkcji pozwoliło zwiększyć czytelność kodu, ale bez trudu możemy ją sami napisać. Zauważmy, że do zapisania liczby <math>m \geqslant 1</math> potrzebujemy <math>\log_2 m + 1</math> cyfr. Zastępując funkcję <math>\log_2 m</math> funkcją <math>\left \lfloor \tfrac{\log m}{\log 2} \right \rfloor</math> musimy liczyć się z&nbsp;możliwym błędem zaokrąglenia – dlatego w&nbsp;programie deklarujemy wektor <code>V</code> o&nbsp;długości <code>floor( log(m)/log(2) ) + 2</code>. Zwracany wektor <code>W</code> ma już prawidłową długość.
+
Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy <math>n</math> jest liczbą parzystą i <math>n \leqslant 2401</math>. W&nbsp;GP/PARI wystarczy napisać polecenie
  
  <span style="font-size: 90%; color:black;">Dec2Bin(m) =  
+
  <span style="font-size: 90%; color:black;">for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))</span>
\\ zwraca wektor cyfr liczby m w układzie dwójkowym
 
{
 
'''local'''(i, k, V, W);
 
'''if'''( m == 0, '''return'''([0]) );
 
V = '''vector'''( '''floor'''( '''log'''(m)/'''log'''(2) ) + 2 ); \\ potrzeba floor( log(m)/log(2) ) + 1, ale błąd zaokrąglenia może zepsuć wynik
 
k = 0;
 
'''while'''( m > 0,
 
        V[k++] = m % 2;
 
        m = '''floor'''(m / 2);
 
      );
 
W = '''vector'''(k);
 
'''for'''(i = 1, k, W[i] = V[k + 1 - i]);
 
'''return'''(W);
 
}
 
  
 
+
Nierówność <math>\varphi (n) > \pi (n)</math> nie jest prawdziwa dla <math>n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \}</math>. Co kończy dowód.<br/>
 
+
&#9633;
<span style="font-size: 110%; font-weight: bold;">Uwaga L48</span><br/>
+
{{\Spoiler}}
W funkcjach <code>LucasTest()</code> i <code>StrongLucasTest()</code> wykorzystaliśmy zaimplementowaną w&nbsp;PARI/GP funkcję
 
 
 
<code>issquare(m)</code> – sprawdza, czy liczba <math>m</math> jest liczbą kwadratową
 
 
 
Wprowadzenie tej funkcji pozwoliło zwiększyć czytelność kodu, ale bez trudu możemy ją sami napisać. Potrzebna nam będzie funkcja, która znajduje całość z&nbsp;pierwiastka z&nbsp;liczby <math>m</math>, czyli <math>\left\lfloor \sqrt{m} \right\rfloor</math>. Wykorzystamy tutaj ciąg
 
 
 
::<math>a_{k + 1} =
 
  \begin{cases}
 
  \qquad \;\; 1 & \text{gdy } k = 0 \\
 
      \tfrac{1}{2} \left( a_k + \tfrac{x}{a_k} \right) & \text{gdy } k > 0
 
  \end{cases}</math>
 
 
 
którego granicą jest <math>\sqrt{x}</math> <ref name="pierwiastek1"/>.
 
 
 
Modyfikując powyższą definicję tak, aby operacje były zawsze wykonywane na liczbach całkowitych<ref name="IntegerSquareRoot1"/>
 
 
 
::<math>a_{k + 1} =
 
  \begin{cases}
 
  \qquad \quad \; 1 & \text{gdy } k = 0 \\
 
      \left\lfloor \tfrac{1}{2} \left( a_k + \left\lfloor \tfrac{m}{a_k} \right\rfloor \right) \right\rfloor & \text{gdy } k > 0
 
  \end{cases}</math>
 
 
 
otrzymujemy ciąg, którego wszystkie wyrazy, począwszy od pewnego skończonego <math>n_0</math>, są równe <math>\left\lfloor \sqrt{m} \right\rfloor</math>. Nie dotyczy to przypadku, gdy <math>m + 1</math> jest liczbą kwadratową, wtedy, począwszy od pewnego skończonego <math>n_0</math>, wyrazy ciągu przyjmują na zmianę wartości <math>\left\lfloor \sqrt{m} \right\rfloor</math> oraz <math>\left\lfloor \sqrt{m} \right\rfloor + 1</math>.
 
 
 
Na tej podstawie możemy w&nbsp;PARI/GP napisać funkcję
 
 
 
<span style="font-size: 90%; color:black;">intSqrt(m) =
 
{
 
'''local'''(a, b);
 
'''if'''( m == 0, '''return'''(0) );
 
a = 2^( '''floor'''( '''log'''(m)/'''log'''(2)/2 ) + 2 ); \\ musi być a > sqrt(m)
 
b = '''floor'''(( a + '''floor'''( m/a ) )/2);
 
'''while'''( b < a,
 
        a = b;
 
        b = '''floor'''( ( a + '''floor'''(m/a) )/2 );
 
      );
 
'''return'''(a);
 
}</span>
 
 
 
Oczywiście liczba <math>m</math> jest liczbą kwadratową, wtedy i&nbsp;tylko wtedy, gdy <math>m = \left\lfloor \sqrt{m} \right\rfloor^2</math>, zatem wystarczy sprawdzić, czy <code>m == intSqrt(m)^2</code>.
 
  
  
Linia 2090: Linia 1083:
 
<references>
 
<references>
  
<ref name="BaillieWagstaff1">Robert Baillie and Samuel S. Wagstaff Jr., ''Lucas Pseudoprimes'', Mathematics of Computation Vol. 35, No. 152 (1980), ([http://mpqs.free.fr/LucasPseudoprimes.pdf LINK])</ref>
+
<ref name="GCD1">Wikipedia, ''Największy wspólny dzielnik'', ([https://pl.wikipedia.org/wiki/Najwi%C4%99kszy_wsp%C3%B3lny_dzielnik Wiki-pl]), ([https://en.wikipedia.org/wiki/Greatest_common_divisor Wiki-en])</ref>
  
<ref name="Arnault1">François Arnault, ''The Rabin-Monier Theorem for Lucas Pseudoprimes'', Mathematics of Computation Vol. 66, No. 218 (1997)</ref>
+
<ref name="cardinality1">Wikipedia, ''Moc zbioru'', ([https://pl.wikipedia.org/wiki/Moc_zbioru Wiki-pl]), ([https://en.wikipedia.org/wiki/Cardinality Wiki-en])</ref>
  
<ref name="pierwiastek1">Wikipedia, ''Pierwiastek kwadratowy'', ([https://pl.wikipedia.org/wiki/Metody_obliczania_pierwiastka_kwadratowego#Metoda_babilo%C5%84ska Wiki-pl]), ([https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method Wiki-en])</ref>
+
<ref name="sumazbiorow">Wikipedia, ''Zasada włączeń i&nbsp;wyłączeń'', ([https://pl.wikipedia.org/wiki/Zasada_w%C5%82%C4%85cze%C5%84_i_wy%C5%82%C4%85cze%C5%84 Wiki-pl]), ([https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle Wiki-en])</ref>
  
<ref name="IntegerSquareRoot1">Wikipedia, ''Integer square root'', ([https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division Wiki-en])</ref>
+
<ref name="Euler1">Wikipedia, ''Funkcja φ'', ([https://pl.wikipedia.org/wiki/Funkcja_%CF%86 Wiki-pl]), ([https://en.wikipedia.org/wiki/Euler%27s_totient_function Wiki-en])</ref>
  
<ref name="BPSW1">Wikipedia, ''Baillie–PSW primality test'', ([https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test Wiki-en])</ref>
+
</references>
  
<ref name="BPSW2">MathWorld, ''Baillie-PSW Primality Test'', ([https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html LINK])</ref>
 
  
</references>
 
  
  

Wersja z 16:04, 13 sty 2024

22.12.2023



Największy wspólny dzielnik

Definicja H1
Niech będą dane dwie liczby całkowite [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] niebędące jednocześnie zerami. Największym wspólnym dzielnikiem[1] liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] będziemy nazywali liczbę całkowitą [math]\displaystyle{ D }[/math] taką, że

  1.   [math]\displaystyle{ D \mid a \quad \text{i} \quad D \mid b }[/math]
  2.   [math]\displaystyle{ \,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D }[/math]

gdzie [math]\displaystyle{ d }[/math] jest dowolną liczbą całkowitą.


Uwaga H2
Tak zdefiniowaną liczbę [math]\displaystyle{ D }[/math] będziemy oznaczali przez [math]\displaystyle{ \gcd (a, b) }[/math]. Ponieważ [math]\displaystyle{ 1 \mid a \; }[/math] i [math]\displaystyle{ \; 1 \mid b }[/math], to z definicji wynika natychmiast, że [math]\displaystyle{ \gcd (a, b) \geqslant 1 }[/math].


Zadanie H3
Pokazać, że

[math]\displaystyle{ d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b }[/math]
Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d \mid \gcd (a, b) }[/math]. Z definicji największego wspólnego dzielnika [math]\displaystyle{ \gcd (a, b) \mid a }[/math], zatem [math]\displaystyle{ d \mid a }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ d \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ a = r d }[/math], [math]\displaystyle{ b = s d }[/math]. Z lematu Bézouta (zobacz C73) istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ \gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y) }[/math]

Zatem [math]\displaystyle{ d \mid \gcd (a, b) }[/math].


Twierdzenie H4
Jeżeli liczby całkowite [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero i [math]\displaystyle{ \gcd (a, b) = a x + b y }[/math], to [math]\displaystyle{ \gcd (x, y) = 1 }[/math].

Dowód

Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite [math]\displaystyle{ x, y }[/math] zawsze istnieją. Niech [math]\displaystyle{ \gcd (a, b) = d \gt 0 }[/math], zatem [math]\displaystyle{ a = d k }[/math] i [math]\displaystyle{ b = d m }[/math], czyli

[math]\displaystyle{ (d k) x + (d m) y = d }[/math]

Co oznacza, że [math]\displaystyle{ k x + m y = 1 }[/math], ale [math]\displaystyle{ \gcd (x, y) }[/math] jest dzielnikiem [math]\displaystyle{ k x + m y }[/math] (bo jest dzielnikiem [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math]), zatem [math]\displaystyle{ \gcd (x, y) \mid 1 }[/math], czyli [math]\displaystyle{ \gcd (x, y) = 1 }[/math]. Co należało pokazać.


Twierdzenie H5
Niech [math]\displaystyle{ a, b, k \in \mathbb{Z} }[/math]. Prawdziwy jest wzór

[math]\displaystyle{ \gcd (a + k b, b) = \gcd (a, b) }[/math]
Dowód

Niech [math]\displaystyle{ d_1 = \gcd (a + k b, b) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (a, b) }[/math].

Z definicji [math]\displaystyle{ d_1 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_1 \mid b }[/math], zatem [math]\displaystyle{ a + k b = x d_1 \; }[/math] i [math]\displaystyle{ \; b = y d_1 }[/math], czyli [math]\displaystyle{ a + k x d_1 = x d_1 }[/math], skąd natychmiast wynika, że [math]\displaystyle{ d_1 \mid a }[/math]. Ponieważ [math]\displaystyle{ d_1 \mid b }[/math], to [math]\displaystyle{ d_1 \mid d_2 }[/math] (zobacz H2).

Z definicji [math]\displaystyle{ d_2 \mid a \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], zatem [math]\displaystyle{ d_2 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], czyli [math]\displaystyle{ d_2 \mid d_1 }[/math].

Ponieważ [math]\displaystyle{ d_1 \mid d_2 \; }[/math] i [math]\displaystyle{ \; d_2 \mid d_1 }[/math], to [math]\displaystyle{ | d_1 | = | d_2 | }[/math]. Co kończy dowód.


Twierdzenie H6
Niech [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math]. Prawdziwa jest następująca równoważność

[math]\displaystyle{ \gcd (a, m) = 1 \quad \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1 }[/math]
Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a b, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Gdyby było [math]\displaystyle{ d \gt 1 }[/math], to istniałaby liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \mid d }[/math] i mielibyśmy [math]\displaystyle{ p \mid a b }[/math] i [math]\displaystyle{ p \mid m }[/math]. Jeżeli [math]\displaystyle{ p \mid a b }[/math], to [math]\displaystyle{ p \mid a }[/math] lub [math]\displaystyle{ p \mid b }[/math] (zobacz C74). W przypadku, gdy [math]\displaystyle{ p \mid a }[/math] dostajemy [math]\displaystyle{ \gcd (a, m) \geqslant p \gt 1 }[/math], wbrew założeniu, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Analogicznie pokazujemy sprzeczność, gdy [math]\displaystyle{ p \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a }[/math] i [math]\displaystyle{ d \mid m }[/math], zatem również [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Mamy stąd

[math]\displaystyle{ 1 = \gcd (a b, m) \geqslant d \geqslant 1 }[/math]

Czyli musi być [math]\displaystyle{ d = 1 }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ \gcd (b, m) = 1 }[/math].


Twierdzenie H7
Dla [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ \gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z lematu Bézouta (zobacz C73) istnieją takie liczby [math]\displaystyle{ x, y, X, Y }[/math], że

[math]\displaystyle{ s = a x + m y }[/math]
[math]\displaystyle{ t = b X + m Y }[/math]

Zatem

[math]\displaystyle{ s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y }[/math]

ale [math]\displaystyle{ r \mid a b }[/math] i [math]\displaystyle{ r \mid m }[/math], skąd otrzymujemy, że [math]\displaystyle{ r \mid s t }[/math]. Co należało pokazać.


Twierdzenie H8
Jeżeli liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to

[math]\displaystyle{ \gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z założenia [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Ponieważ [math]\displaystyle{ s \mid a }[/math] oraz [math]\displaystyle{ t \mid b }[/math], to [math]\displaystyle{ \gcd (s, t) = 1 }[/math], zatem (zobacz C75)

[math]\displaystyle{ s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b }[/math]
[math]\displaystyle{ s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m }[/math]

Wynika stąd, że [math]\displaystyle{ s t \mid \gcd (a b, m) }[/math], czyli [math]\displaystyle{ s t \mid r }[/math]. Z poprzedniego twierdzenia wiemy, że [math]\displaystyle{ r \mid s t }[/math], zatem [math]\displaystyle{ |r| = |s t| }[/math]. Co kończy dowód.


Twierdzenie H9
Jeżeli dodatnie liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to każdy dzielnik [math]\displaystyle{ d }[/math] iloczynu [math]\displaystyle{ a b }[/math] można przedstawić jednoznacznie w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a , }[/math] [math]\displaystyle{ \; d_2 \mid b \; }[/math] [math]\displaystyle{ \text{i} \; \gcd (d_1, d_2) = 1 }[/math].

Dowód

Niech [math]\displaystyle{ d_1 = \gcd (d, a) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (d, b) }[/math]. Z twierdzenia H8 mamy

[math]\displaystyle{ d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d }[/math]

Bo z założenia [math]\displaystyle{ d \mid a b }[/math]. Z definicji największego wspólnego dzielnika i zadania H3 dostajemy

[math]\displaystyle{ \gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2 }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (a, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad \gcd (a, b) \geqslant e }[/math]

Gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = e \gt 1 }[/math], to mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant e \gt 1 }[/math]. Wbrew założeniu, że [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Co kończy dowód.


Twierdzenie H10
Jeżeli [math]\displaystyle{ a, m, n \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1 }[/math]
Dowód

Pokażemy najpierw, że jeżeli [math]\displaystyle{ d }[/math] jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i odwrotnie.

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d }[/math] jest dzielnikiem [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) }[/math], czyli [math]\displaystyle{ d \mid (a^m - 1) \; }[/math] i [math]\displaystyle{ \; d \mid (a^n - 1) }[/math], co możemy zapisać w postaci

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby [math]\displaystyle{ x, y }[/math], że [math]\displaystyle{ \gcd (m, n) = m x + n y }[/math]. Łatwo znajdujemy, że

[math]\displaystyle{ a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d} }[/math]

Czyli [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math], czyli

[math]\displaystyle{ a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d} }[/math]

Zatem

[math]\displaystyle{ a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d} }[/math]

Podobnie otrzymujemy

[math]\displaystyle{ a^n \equiv 1 \!\! \pmod{d} }[/math]

Zatem [math]\displaystyle{ d }[/math] dzieli [math]\displaystyle{ a^m - 1 \; }[/math] i [math]\displaystyle{ \; a^n - 1 }[/math], czyli

[math]\displaystyle{ d \mid \gcd (a^m - 1, a^n - 1) }[/math]


W szczególności wynika stąd, że

  •    [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math]
  •    [math]\displaystyle{ \left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1) }[/math]

Czyli [math]\displaystyle{ \left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right| }[/math]. Co kończy dowód.


Uwaga H11
W dowodzie twierdzenia H10 pominęliśmy milczeniem fakt, że jedna z liczb [math]\displaystyle{ x, y }[/math] może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis

[math]\displaystyle{ a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d} }[/math]

Omówimy ten problem w następnej sekcji. Zauważmy, wyprzedzając materiał, że z kongruencji

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

wynika, że [math]\displaystyle{ \gcd (a, d) = 1 }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ d }[/math].



Element odwrotny modulo [math]\displaystyle{ m }[/math]

Twierdzenie H12
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Dla liczby [math]\displaystyle{ a \in \mathbb{Z} }[/math] istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

wtedy i tylko wtedy, gdy [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Zatem dla pewnego [math]\displaystyle{ k \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ a x = 1 + k m }[/math]

Czyli [math]\displaystyle{ a x - k m = 1 }[/math]. Wynika stąd, że [math]\displaystyle{ \gcd (a, m) }[/math] dzieli [math]\displaystyle{ 1 }[/math], co oznacza, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Z lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ a x + m y = 1 }[/math]

Zatem modulo [math]\displaystyle{ m }[/math] dostajemy

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Co kończy dowód.


Definicja H13
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Liczbę [math]\displaystyle{ x }[/math] taką, że

[math]\displaystyle{ a \cdot x \equiv 1 \!\! \pmod{m} }[/math]

będziemy nazywali elementem odwrotnym liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] i oznaczali jako [math]\displaystyle{ a^{- 1} }[/math].


Uwaga H14
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli [math]\displaystyle{ b \mid a }[/math] oraz [math]\displaystyle{ b }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], to prawdziwa jest kongruencja

[math]\displaystyle{ {\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

Istotnie

[math]\displaystyle{ {\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

W PARI/GP odwrotność liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] znajdujemy, wpisując Mod(a, m)^(-1).


Twierdzenie H15
Niech [math]\displaystyle{ a, k \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Poniższa tabelka przedstawia elementy odwrotne do elementu [math]\displaystyle{ a }[/math] w przypadku niektórych modułów [math]\displaystyle{ m }[/math]. W szczególności, jeżeli moduł [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m} }[/math].

Dowód

Punkty 1. - 3.

Ponieważ dla liczb nieparzystych jest

[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{8} }[/math]

to liczba nieparzysta [math]\displaystyle{ a }[/math] jest swoją odwrotnością modulo [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ 4 }[/math] i [math]\displaystyle{ 8 }[/math]. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać

[math]\displaystyle{ a^{- 1} \equiv R_2 (a) \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_4 (a) \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_8 (a) \!\! \pmod{8} }[/math]

W pierwszym przypadku wynik jest oczywisty, bo [math]\displaystyle{ R_2 (a) = 1 }[/math].

Punkt 4.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 5.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m - 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 6.

Ponieważ zakładamy, że [math]\displaystyle{ 2 \mid (m + 1) }[/math], to [math]\displaystyle{ m }[/math] musi być liczbą nieparzystą, czyli [math]\displaystyle{ a }[/math] też musi być liczbą nieparzystą. Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 2) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Podobnie pokazujemy punkt 7. Co kończy dowód.


Twierdzenie H16
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math]. Jeżeli liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są liczbami różnymi modulo [math]\displaystyle{ m }[/math], to liczby

1.   [math]\displaystyle{ a u_1, a u_2, \ldots, a u_r }[/math]
2.   [math]\displaystyle{ a u_1 + b, a u_2 + b, \ldots, a u_r + b }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math]. Jeżeli ponadto liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są względnie pierwsze z [math]\displaystyle{ m }[/math], to również liczby

3.   [math]\displaystyle{ u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math].

Dowód

Punkt 1.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ a u_i \equiv a u_j \!\! \pmod{m} }[/math]

Z założenia liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], zatem mnożąc obie strony kongruencji przez [math]\displaystyle{ a^{- 1} }[/math], otrzymujemy

[math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math]

dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Dowód punktu 2. jest analogiczny.

Punkt 3.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i \equiv 1 \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j \equiv u_i \!\! \pmod{m} }[/math]

Ponownie otrzymujemy [math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math] dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Co należało pokazać.


Zadanie H17
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Pokazać, że dla [math]\displaystyle{ k \in [0, p - 1] }[/math] prawdziwa jest kongruencja

[math]\displaystyle{ \binom{p - 1}{k} \equiv (- 1)^k \pmod{p} }[/math]
Rozwiązanie

Zauważmy, że modulo [math]\displaystyle{ p }[/math] mamy

[math]\displaystyle{ \binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \pmod{p} }[/math]

Co należało pokazać.


Zadanie H18
Niech [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] będą zbiorami skończonymi. Pokazać, że jeżeli [math]\displaystyle{ A \subseteq B \;\; \text{i} \;\; | A | = | B | }[/math], to [math]\displaystyle{ \; A = B }[/math].

Rozwiązanie

Pierwszy sposób

Z definicji zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe wtedy i tylko wtedy, gdy jednocześnie spełnione są warunki

  1.   [math]\displaystyle{ x \in A \qquad \Longrightarrow \qquad x \in B }[/math]
  2.   [math]\displaystyle{ x \in B \qquad \Longrightarrow \qquad x \in A }[/math]

Z założenia [math]\displaystyle{ A \subseteq B }[/math], zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element [math]\displaystyle{ x }[/math], że [math]\displaystyle{ x \in B }[/math], ale [math]\displaystyle{ x \notin A }[/math]. Jeśli tak, to

[math]\displaystyle{ | B | = | A | + 1 }[/math]

Co jest sprzeczne z założeniem, że [math]\displaystyle{ | A | = | B | }[/math].

Uwaga
Łatwo zauważyć, że wybierając z trzech warunków [math]\displaystyle{ A \subseteq B }[/math], [math]\displaystyle{ B \subseteq A }[/math] i [math]\displaystyle{ | A | = | B | }[/math] dowolne dwa, zawsze otrzymamy z nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych[2], ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.


Drugi sposób

Ponieważ zbiór [math]\displaystyle{ A }[/math] jest z założenia podzbiorem zbioru [math]\displaystyle{ B }[/math], to zbiór [math]\displaystyle{ B }[/math] można przedstawić w postaci sumy zbioru [math]\displaystyle{ A }[/math] i pewnego zbioru [math]\displaystyle{ C }[/math] takiego, że żaden element zbioru [math]\displaystyle{ C }[/math] nie jest elementem zbioru [math]\displaystyle{ A }[/math]. Zatem

[math]\displaystyle{ B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing }[/math]

Ponieważ zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są rozłączne, to wiemy, że

[math]\displaystyle{ | A \cup C | = | A | + | C | }[/math]

Czyli

[math]\displaystyle{ | B | = | A \cup C | = | A | + | C | }[/math]

Skąd wynika, że [math]\displaystyle{ | C | = 0 }[/math], zatem zbiór [math]\displaystyle{ C }[/math] jest zbiorem pustym i otrzymujemy natychmiast [math]\displaystyle{ B = A }[/math]. Co należało pokazać.

Uwaga (przypadek zbiorów skończonych)
Najczęściej prawdziwe jest jedynie oszacowanie [math]\displaystyle{ | A \cup C | \leqslant | A | + | C | }[/math], bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math], zatem od sumy [math]\displaystyle{ | A | + | C | }[/math] musimy odjąć liczbę elementów iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math]. Co daje ogólny wzór[3]

[math]\displaystyle{ | A \cup C | = | A | + | C | - | A \cap C | }[/math]


Definicja H19
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Powiemy, że zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math], jeżeli dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja [math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math].


Twierdzenie H20
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy zbiory [math]\displaystyle{ A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \} }[/math] i [math]\displaystyle{ B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \} }[/math] są równe.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Ponieważ elementy każdego ze zbiorów [math]\displaystyle{ A, B }[/math] są różne modulo [math]\displaystyle{ m }[/math], to elementy zbiorów [math]\displaystyle{ A' }[/math] i [math]\displaystyle{ B' }[/math] są wszystkie różne. Czyli [math]\displaystyle{ | A' | = | B' | = r }[/math]. Ponieważ warunek

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

oznacza, że reszty z dzielenia liczb [math]\displaystyle{ a_k }[/math] i [math]\displaystyle{ b_j }[/math] przez [math]\displaystyle{ m }[/math] są równe, to z założenia dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

A to oznacza, że każdy element zbioru [math]\displaystyle{ A' }[/math] należy do zbioru [math]\displaystyle{ B' }[/math], czyli [math]\displaystyle{ A' \subseteq B' }[/math]. Wynika stąd, że [math]\displaystyle{ A' = B' }[/math] (zobacz H18). Co należało pokazać.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Ponieważ zbiory [math]\displaystyle{ A', B' }[/math] są równe, to zbiór [math]\displaystyle{ A' }[/math] jest podzbiorem zbioru [math]\displaystyle{ B' }[/math], czyli dla każdego elementu [math]\displaystyle{ R_m (a_k) \in A' }[/math] istnieje taki element [math]\displaystyle{ R_m (b_j) \in B' }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

Ponieważ równość reszt oznacza równość modulo, zatem

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

Wynika stąd, że dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

czyli zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math]. Co kończy dowód.


Twierdzenie H21
Niech będą dane zbiory [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_{p - 1} \} }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru [math]\displaystyle{ B }[/math] są różne modulo [math]\displaystyle{ p }[/math] i żadna z liczb [math]\displaystyle{ b_k \in B }[/math] nie jest podzielna przez [math]\displaystyle{ p }[/math], to zbiory [math]\displaystyle{ A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \} }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Dowód

Z definicji zbioru [math]\displaystyle{ A }[/math] wszystkie elementy tego zbioru są różne modulo [math]\displaystyle{ p }[/math]. Łatwo zauważamy, że

[math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A' }[/math]

Ponieważ wszystkie liczby [math]\displaystyle{ b_k \in B }[/math], gdzie [math]\displaystyle{ k = 1, \ldots, p - 1 }[/math] są różne modulo [math]\displaystyle{ p }[/math] i nie są podzielne przez [math]\displaystyle{ p }[/math], to reszty [math]\displaystyle{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B' }[/math]

Na mocy twierdzenia H20 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Z twierdzenia H16 wiemy, że wszystkie liczby [math]\displaystyle{ b^{- 1}_k \in C }[/math] są różne modulo [math]\displaystyle{ p }[/math]. Zauważmy, że każda z tych liczb jest względnie pierwsza z [math]\displaystyle{ p }[/math], zatem nie może być podzielna przez [math]\displaystyle{ p }[/math]. Wynika stąd, że reszty [math]\displaystyle{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C' }[/math]

Na mocy twierdzenia H20 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ A' = B' }[/math] i [math]\displaystyle{ A' = C' }[/math], to [math]\displaystyle{ B' = C' }[/math] i ponownie na mocy twierdzenia H20 zbiory [math]\displaystyle{ B }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Co należało pokazać.


Zadanie H22
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Pokazać, że suma [math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} }[/math] jest podzielna przez [math]\displaystyle{ p }[/math].

Rozwiązanie

Zauważmy najpierw, że modulo [math]\displaystyle{ p }[/math] następujące sumy są równe

[math]\displaystyle{ \sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p} }[/math]

Istotnie, jeśli przyjmiemy w twierdzeniu H21, że zbiór [math]\displaystyle{ B = \{ 1, 2, \ldots, p - 1 \} }[/math], to zbiór [math]\displaystyle{ C }[/math] będzie zbiorem liczb, które są odwrotnościami liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] modulo [math]\displaystyle{ p }[/math] i możemy napisać

[math]\displaystyle{ \sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p} }[/math]

bo

  • gdy [math]\displaystyle{ x }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k }[/math], to [math]\displaystyle{ x }[/math] przyjmuje kolejno wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math]
  • gdy [math]\displaystyle{ y }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k^{- 1} }[/math], to [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości ze zbioru [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], czyli liczba [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math], ale w innej kolejności

Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo [math]\displaystyle{ p }[/math].

Zatem modulo [math]\displaystyle{ p }[/math] otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p }[/math]
[math]\displaystyle{ \;\;\: \equiv 0 \!\! \pmod{p} }[/math]

Należy zauważyć, że dla liczby pierwszej nieparzystej [math]\displaystyle{ p }[/math] liczba [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] jest liczbą całkowitą.



Funkcje multiplikatywne

Definicja H23
Powiemy, że funkcja [math]\displaystyle{ f(n) }[/math] określona w zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli [math]\displaystyle{ f(1) = 1 }[/math] i dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math] spełniony jest warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math].


Uwaga H24
Założenie [math]\displaystyle{ f(1) = 1 }[/math] możemy równoważnie zastąpić założeniem, że funkcja [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zero. Gdyby [math]\displaystyle{ f(n) }[/math] spełniała jedynie warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math] dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math], to mielibyśmy

a)   [math]\displaystyle{ f(n) }[/math] jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 0 }[/math]
b)   [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 1 }[/math]

Ponieważ [math]\displaystyle{ f(1) = f (1 \cdot 1) = f (1) f (1) }[/math], zatem [math]\displaystyle{ f(1) = 0 }[/math] lub [math]\displaystyle{ f (1) = 1 }[/math].

Jeżeli [math]\displaystyle{ f(1) = 0 }[/math], to dla dowolnego [math]\displaystyle{ n }[/math] mamy

[math]\displaystyle{ f(n) = f (n \cdot 1) = f (n) f (1) = 0 }[/math]

Czyli [math]\displaystyle{ f(n) }[/math] jest funkcją tożsamościowo równą zero.

Jeżeli [math]\displaystyle{ f(n) }[/math] nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math], że [math]\displaystyle{ f(a) \neq 0 }[/math]. Zatem

[math]\displaystyle{ f(a) = f (a \cdot 1) = f (a) f (1) }[/math]

I dzieląc obie strony przez [math]\displaystyle{ f(a) \neq 0 }[/math], dostajemy [math]\displaystyle{ f(1) = 1 }[/math].


Przykład H25
Ponieważ [math]\displaystyle{ \gcd (1, c) = 1 }[/math], to [math]\displaystyle{ \gcd (n, c) }[/math] rozpatrywana jako funkcja [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ c }[/math] jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz H8).


Twierdzenie H26
Jeżeli funkcja [math]\displaystyle{ f(n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} f (d) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math], jest również funkcją multiplikatywną.

Dowód

Ponieważ

[math]\displaystyle{ F(1) = \sum_{d \mid 1} f (d) = f (1) = 1 }[/math]

to funkcja [math]\displaystyle{ F(n) }[/math] spełnia pierwszy warunek definicji H23.

Niech [math]\displaystyle{ a, b }[/math] będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu [math]\displaystyle{ a b }[/math] można zapisać w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a }[/math], [math]\displaystyle{ \; d_2 \mid b \, }[/math] oraz [math]\displaystyle{ \, \gcd (d_1, d_2) = 1 }[/math] (zobacz H9). Niech zbiory

[math]\displaystyle{ S_a = \{ d \in \mathbb{Z}_+ : d \mid a \} }[/math]
[math]\displaystyle{ S_b = \{ d \in \mathbb{Z}_+ : d \mid b \} }[/math]
[math]\displaystyle{ S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \} }[/math]

będą zbiorami dzielników dodatnich liczb [math]\displaystyle{ a, b }[/math] i [math]\displaystyle{ a b }[/math]. Dla przykładu

[math]\displaystyle{ S_5 = \{ 1, 5 \} }[/math]
[math]\displaystyle{ S_7 = \{ 1, 7 \} }[/math]
[math]\displaystyle{ S_{35} = \{ 1, 5, 7, 35 \} }[/math]

Dla dowolnego [math]\displaystyle{ d_1 \in S_a \, }[/math] i [math]\displaystyle{ \, d_2 \in S_b }[/math] musi być [math]\displaystyle{ \gcd (d_1, d_2) = 1 }[/math], bo gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = g \gt 1 }[/math], to

[math]\displaystyle{ g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a }[/math]
[math]\displaystyle{ g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b }[/math]

Zatem [math]\displaystyle{ g \mid \gcd (a, b) }[/math] i mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant g \gt 1 }[/math], wbrew założeniu.

Przekształcając, otrzymujemy

[math]\displaystyle{ F(a b) = \sum_{d \mid a b} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d \in S_{a b}} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = F (a) F (b) }[/math]

Co należało pokazać.



Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math]

Definicja H27
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math][4] jest równa ilości liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math].


Twierdzenie H28
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math] jest multiplikatywna, czyli dla względnie pierwszych liczb [math]\displaystyle{ m, n }[/math] jest [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ m, n }[/math] będą dodatnimi liczbami całkowitymi takimi, że [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math], zatem nie zmniejszając ogólności, możemy założyć, że [math]\displaystyle{ n \gt 1 }[/math]. Wypiszmy w tabeli wszystkie liczby od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ m n }[/math].

1. Natychmiast widzimy, że w pierwszym wierszu mamy [math]\displaystyle{ \varphi (m) }[/math] liczb względnie pierwszych z [math]\displaystyle{ m }[/math]. Tak samo jest w każdym kolejnym wierszu, bo (zobacz H5)

[math]\displaystyle{ \gcd (r m + k, m) = \gcd (k, m) }[/math]

Zatem mamy dokładnie [math]\displaystyle{ \varphi (m) }[/math] kolumn liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


2. Załóżmy, że liczba [math]\displaystyle{ k }[/math] jest jedną z liczb względnie pierwszych z [math]\displaystyle{ m }[/math], czyli [math]\displaystyle{ \gcd (k, m) = 1 }[/math]. Przy tym założeniu [math]\displaystyle{ k }[/math]-ta kolumna (pokazana w tabeli) jest kolumną liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


3. Zauważmy, że reszty z dzielenia liczb wypisanych w [math]\displaystyle{ k }[/math]-tej kolumnie przez [math]\displaystyle{ n }[/math] są wszystkie różne. Gdyby tak nie było, to dla pewnych [math]\displaystyle{ i, j }[/math], gdzie [math]\displaystyle{ 0 \leqslant i, j \leqslant n - 1 }[/math], różnica liczb [math]\displaystyle{ i m + k }[/math] oraz [math]\displaystyle{ j m + k }[/math] byłaby podzielna przez [math]\displaystyle{ n }[/math]. Mielibyśmy

[math]\displaystyle{ n \mid ((i m + k) - (j m + k)) }[/math]

Skąd wynika natychmiast

[math]\displaystyle{ n \mid (i - j) m }[/math]

Ponieważ założyliśmy, że [math]\displaystyle{ \gcd (n, m) = 1 }[/math], to musi być [math]\displaystyle{ n \mid (i - j) }[/math] (zobacz C74), ale

[math]\displaystyle{ 0 \leqslant | i - j | \leqslant n - 1 }[/math]

Czyli [math]\displaystyle{ n }[/math] może dzielić [math]\displaystyle{ i - j }[/math] tylko w przypadku, gdy [math]\displaystyle{ i = j }[/math]. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez [math]\displaystyle{ n }[/math].


4. Ponieważ w [math]\displaystyle{ k }[/math]-tej kolumnie znajduje się dokładnie [math]\displaystyle{ n }[/math] liczb i reszty z dzielenia tych liczb przez [math]\displaystyle{ n }[/math] są wszystkie różne, to reszty te tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, n - 1 \} }[/math]. Wynika stąd, że liczby wypisane w [math]\displaystyle{ k }[/math]-tej kolumnie mogą być zapisane w postaci

[math]\displaystyle{ a_r = b_r \cdot n + r }[/math]

gdzie [math]\displaystyle{ r = 0, 1, \ldots, n - 1 }[/math] i [math]\displaystyle{ b_r \in \mathbb{Z} }[/math].

Zauważmy, że następujące ilości liczb są sobie równe

  •    ilość liczb w [math]\displaystyle{ k }[/math]-tej kolumnie względnie pierwszych z [math]\displaystyle{ n }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 0, \ldots, n - 1 }[/math], bo [math]\displaystyle{ \gcd (b_r \cdot n + r, n) = \gcd (r, n) }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 1, \ldots, n }[/math], bo [math]\displaystyle{ \gcd (n, n) = \gcd (0, n) = | n | \gt 1 }[/math]

Ostatnia ilość liczb jest równa [math]\displaystyle{ \varphi (n) }[/math], co wynika wprost z definicji funkcji [math]\displaystyle{ \varphi (n) }[/math].


5. Zbierając: mamy w wypisanej tabeli dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jednocześnie jest

[math]\displaystyle{ \gcd (u, m) = 1 \quad \text{i} \quad \gcd (u, n) = 1 }[/math]

Z twierdzenia H6 wynika, że w tabeli jest dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jest

[math]\displaystyle{ \gcd (u, m n) = 1 }[/math]

Zatem [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math]. Co należało pokazać.


Twierdzenie H29
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

gdzie iloczyn obliczamy po wszystkich liczbach pierwszych [math]\displaystyle{ p }[/math], będących dzielnikami liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej [math]\displaystyle{ p }[/math] są jednocześnie pierwsze względem [math]\displaystyle{ p }[/math], to [math]\displaystyle{ \varphi (p) = p - 1 }[/math].

Równie łatwo znajdujemy wartość funkcji [math]\displaystyle{ \varphi (n) }[/math] w przypadku gdy [math]\displaystyle{ n }[/math] jest potęgą liczby pierwszej [math]\displaystyle{ n = p^k }[/math]. Wystarczy zauważyć, że w ciągu kolejnych liczb

[math]\displaystyle{ 1, 2, 3, 4, \ldots, p^k - 1, p^k }[/math]

jedynymi liczbami, które nie są pierwsze względem [math]\displaystyle{ p^k }[/math], są te, które dzielą się przez [math]\displaystyle{ p }[/math] i jest ich [math]\displaystyle{ p^{k - 1} }[/math], co widać natychmiast po ich bezpośrednim wypisaniu

[math]\displaystyle{ 1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p }[/math]

Zatem

[math]\displaystyle{ \varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to dla [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math] otrzymujemy

[math]\displaystyle{ \varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k) }[/math]
[math]\displaystyle{ \;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right] }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Co należało pokazać.


Twierdzenie H30
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ q }[/math] jest liczbą pierwszą, to

[math]\displaystyle{ \varphi (q n) = \left\{ \begin{array}{rl} (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n\\ q \varphi (n) & \quad \text{gdy} \quad q \mid n \end{array} \right. }[/math]
Dowód

Jeżeli [math]\displaystyle{ q \nmid m }[/math], to [math]\displaystyle{ \gcd (q, m) = 1 }[/math], zatem [math]\displaystyle{ \varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m) }[/math]. Jeżeli [math]\displaystyle{ q \mid m }[/math], to liczby [math]\displaystyle{ m }[/math] oraz [math]\displaystyle{ q m }[/math] mają taki sam zbiór dzielników pierwszych, zatem

[math]\displaystyle{ \varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m) }[/math]

Co należało pokazać.


Twierdzenie H31
Niech [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]. Ponieważ założyliśmy, że [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ m }[/math] musi być postaci [math]\displaystyle{ m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s }[/math], gdzie [math]\displaystyle{ 0 \leqslant \beta_i \leqslant \alpha_i }[/math], dla [math]\displaystyle{ i = 1, \ldots, s }[/math]. Łatwo zauważamy, że

  •    jeżeli [math]\displaystyle{ \beta_i = 0 }[/math], to [math]\displaystyle{ \varphi (p^{\beta_i}_i) = 1 }[/math] i dzieli [math]\displaystyle{ \varphi (p^{\alpha_i}_i) }[/math]
  •    jeżeli [math]\displaystyle{ 1 \leqslant \beta_i \leqslant \alpha_i }[/math], to [math]\displaystyle{ (p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1} }[/math], zatem [math]\displaystyle{ \varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i) }[/math]

Skąd natychmiast wynika, że [math]\displaystyle{ \varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s) }[/math] dzieli [math]\displaystyle{ \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) }[/math], czyli [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo [math]\displaystyle{ \varphi (7) \mid \varphi (19) }[/math], ale [math]\displaystyle{ 7 \nmid 19 }[/math].


Zadanie H32
Dla [math]\displaystyle{ n \geqslant 3 }[/math] wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi.

Rozwiązanie

Jeżeli liczba [math]\displaystyle{ n \geqslant 3 }[/math] jest podzielna przez liczbę pierwszą nieparzystą [math]\displaystyle{ p }[/math], zaś [math]\displaystyle{ k }[/math] jest wykładnikiem, z jakim [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia [math]\displaystyle{ n }[/math] na czynniki pierwsze, to

[math]\displaystyle{ \varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right) }[/math]

zatem [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą, ponieważ [math]\displaystyle{ p - 1 }[/math] jest liczbą parzystą.

Jeżeli żadna liczba nieparzysta nie dzieli [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = 2^a }[/math] i [math]\displaystyle{ \varphi (n) = 2^{a - 1} }[/math], ale z założenia [math]\displaystyle{ n \geqslant 3 }[/math], zatem [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą.


Twierdzenie H33
Jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną, to [math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} }[/math].

Dowód

Pierwszy sposób
Niech [math]\displaystyle{ n = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a \leqslant b \lt n }[/math]. Liczby [math]\displaystyle{ 1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a }[/math] są nie większe od [math]\displaystyle{ n }[/math] i nie są względnie pierwsze z [math]\displaystyle{ n }[/math], zatem

[math]\displaystyle{ \varphi (n) \leqslant n - b }[/math]

Ponieważ [math]\displaystyle{ b \geqslant a }[/math], to [math]\displaystyle{ b^2 \geqslant a b = n }[/math] i [math]\displaystyle{ b \geqslant \sqrt{n} }[/math]. Wynika stąd, że

[math]\displaystyle{ \varphi (n) \leqslant n - b \leqslant n - \sqrt{n} }[/math]


Drugi sposób
Niech [math]\displaystyle{ q }[/math] oznacza najmniejszy dzielnik pierwszy liczby złożonej [math]\displaystyle{ n }[/math], zatem [math]\displaystyle{ q^2 \leqslant n }[/math], czyli [math]\displaystyle{ q \leqslant \sqrt{n} }[/math], a stąd [math]\displaystyle{ {\small\frac{n}{q}} \geqslant \sqrt{n} }[/math] i

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n} }[/math]

Co należało pokazać.


Twierdzenie H34
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Liczba [math]\displaystyle{ n }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy [math]\displaystyle{ \varphi (n) = n - 1 }[/math].

Dowód

Dla liczb złożonych [math]\displaystyle{ n \geqslant 4 }[/math] nigdy nie będzie [math]\displaystyle{ \varphi (n) = n - 1 }[/math], bo

[math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2 }[/math]

Dla [math]\displaystyle{ n = 1, 2, 3 }[/math] sprawdzamy bezpośrednio: [math]\displaystyle{ \varphi (1) = 1 \neq 1 - 1 }[/math], [math]\displaystyle{ \varphi (2) = 1 = 2 - 1 }[/math], [math]\displaystyle{ \varphi (3) = 2 = 3 - 1 }[/math]. Co kończy dowód.


Twierdzenie H35
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} \varphi (d) }[/math]

też jest funkcją multiplikatywną (zobacz H26). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Niech [math]\displaystyle{ n \gt 1 }[/math]. Jeżeli [math]\displaystyle{ n = p^{\alpha} }[/math] jest potęgą liczby pierwszej, to otrzymujemy

[math]\displaystyle{ F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d) }[/math]
[math]\displaystyle{ = \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1}) }[/math]
[math]\displaystyle{ = p^{\alpha} }[/math]

Jeżeli [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to

[math]\displaystyle{ F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]
[math]\displaystyle{ \;\;\;\, = n }[/math]

Niech [math]\displaystyle{ 1 \lt d_1 \lt d_2 \lt \ldots \lt n }[/math] będą dzielnikami liczby [math]\displaystyle{ n }[/math]. Zauważmy, że kiedy [math]\displaystyle{ d }[/math] przebiega zbiór dzielników [math]\displaystyle{ \{ 1, d_1, d_2, \ldots, n \} }[/math], to [math]\displaystyle{ e = \frac{n}{d} }[/math] przebiega wszystkie te liczby tylko w odwrotnej kolejności. Zatem

[math]\displaystyle{ \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right) }[/math]

Co należało pokazać.


Zadanie H36
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Pokazać, że suma liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ {\small\frac{1}{2}} n \varphi (n) }[/math].

Rozwiązanie

Łatwo sprawdzamy, że wzór jest prawdziwy dla [math]\displaystyle{ n = 2 }[/math] i odtąd będziemy przyjmowali, że [math]\displaystyle{ n \geqslant 3 }[/math]. Zatem wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi i niech [math]\displaystyle{ c = {\small\frac{1}{2}} \varphi (n) }[/math]. Zauważmy, że jeżeli liczba [math]\displaystyle{ a }[/math] jest względnie pierwsza z [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n - a }[/math] jest również względnie pierwsza z [math]\displaystyle{ n }[/math], bo [math]\displaystyle{ \gcd (a, n) = \gcd (n - a, n) }[/math]. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od [math]\displaystyle{ n }[/math] i względnie pierwsze z [math]\displaystyle{ n }[/math] w kolejności rosnącej, a pod spodem w kolejności malejącej

Suma liczb w każdej kolumnie jest równa [math]\displaystyle{ n }[/math]. Ponieważ ilość liczb względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ \varphi (n) }[/math], to podwojona suma liczb całkowitych nie większych od [math]\displaystyle{ n }[/math] i pierwszych względem [math]\displaystyle{ n }[/math] wynosi [math]\displaystyle{ n \varphi (n) }[/math]. Co należało pokazać.


Zadanie H37
Dla liczb naturalnych nieparzystych [math]\displaystyle{ n \geqslant 5 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

1. Jeżeli [math]\displaystyle{ n \geqslant 5 }[/math] jest liczbą pierwszą, to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ n }[/math] oraz liczby [math]\displaystyle{ 1, 4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 2 \gt \pi (n) }[/math].

2. Jeżeli [math]\displaystyle{ n = p^a }[/math], gdzie [math]\displaystyle{ a \geqslant 2 }[/math], jest potęgą liczby pierwszej nieparzystej, to [math]\displaystyle{ n \geqslant 9 }[/math] i liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, 4, 8 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math].

3. Jeżeli [math]\displaystyle{ n }[/math] ma więcej niż jeden dzielnik pierwszy nieparzysty, to [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ s \geqslant 2 }[/math]. Zauważmy, że

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} \gt 2^{2 s - 1} }[/math]

Liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1, 2^2, 2^3, \ldots, 2^{2 s - 1} }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 \gt \pi (n) }[/math]

Co należało pokazać.


Zadanie H38
Dla liczb naturalnych [math]\displaystyle{ n \geqslant 91 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

Ponieważ [math]\displaystyle{ p_{2 s} \gt 1 }[/math] i [math]\displaystyle{ p_{2 s} \geqslant p_{s + 1} }[/math], to z zadania A40 natychmiast wynika nierówność

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} }[/math]

która jest prawdziwa dla [math]\displaystyle{ n \geqslant 4 }[/math].

Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] jest zawsze prawdziwa.

Przez [math]\displaystyle{ p_1, p_2, \ldots, p_k, \ldots }[/math] oznaczymy kolejne liczby pierwsze. Niech [math]\displaystyle{ n \geqslant 2 }[/math] będzie liczbą naturalną i [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ q_i }[/math] oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.

Wśród kolejnych [math]\displaystyle{ 2 s }[/math] liczb pierwszych znajduje się przynajmniej [math]\displaystyle{ s }[/math] liczb pierwszych różnych od każdej z liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez [math]\displaystyle{ r_1, \ldots, r_s }[/math], to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania

  •    dla najmniejszej liczby [math]\displaystyle{ r_1 \leqslant p_{s + 1} }[/math]
  •    dla wszystkich liczb [math]\displaystyle{ r_j \leqslant p_{2 s} }[/math] dla [math]\displaystyle{ j = 1, \ldots, s }[/math].

Korzystając z wypisanej na początku dowodu nierówności, dla [math]\displaystyle{ s \geqslant 4 }[/math] mamy

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j }[/math]

gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math].

Wynika stąd, że jeśli [math]\displaystyle{ s \geqslant 4 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1 }[/math] i [math]\displaystyle{ r_1 r_j }[/math], gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + s + 1\gt \pi (n) }[/math]

Co mieliśmy pokazać.


Uwzględniając rezultat pokazany w zadaniu H37, pozostaje sprawdzić przypadki gdy [math]\displaystyle{ n = 2^a }[/math], [math]\displaystyle{ n = 2^a p^b }[/math], [math]\displaystyle{ n = 2^a p^b q^c }[/math], gdzie [math]\displaystyle{ a, b, c \in \mathbb{Z}_+ }[/math].

1. Niech [math]\displaystyle{ n = 2^a }[/math]. Jeśli [math]\displaystyle{ n \geqslant 16 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ 2 }[/math]) oraz liczby [math]\displaystyle{ 1, 9, 15 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math]

2. Niech [math]\displaystyle{ n = 2^a p^b }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5 \} }[/math] i jeśli tylko [math]\displaystyle{ n \gt 5^3 = 125 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 2 + 3 \gt \pi (n) }[/math]

3. Niech [math]\displaystyle{ n = 2^a p^b q^c }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math] oraz różną od [math]\displaystyle{ q }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5, 7 \} }[/math] i jeśli [math]\displaystyle{ n \gt 7^4 = 2401 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3, r^4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 3 + 4 \gt \pi (n) }[/math]

Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy [math]\displaystyle{ n }[/math] jest liczbą parzystą i [math]\displaystyle{ n \leqslant 2401 }[/math]. W GP/PARI wystarczy napisać polecenie

for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))

Nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] nie jest prawdziwa dla [math]\displaystyle{ n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \} }[/math]. Co kończy dowód.








Przypisy

  1. Wikipedia, Największy wspólny dzielnik, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Moc zbioru, (Wiki-pl), (Wiki-en)
  3. Wikipedia, Zasada włączeń i wyłączeń, (Wiki-pl), (Wiki-en)
  4. Wikipedia, Funkcja φ, (Wiki-pl), (Wiki-en)