Różnica pomiędzy stronami "Liczby kwadratowe i niekwadratowe modulo. Wybrane zagadnienia" i "Największy wspólny dzielnik, element odwrotny modulo, funkcja Eulera"

Z Henryk Dąbrowski
(Różnica między stronami)
Przejdź do nawigacji Przejdź do wyszukiwania
 
 
Linia 1: Linia 1:
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.04.2023</div>
+
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.12.2023</div>
  
 
__FORCETOC__
 
__FORCETOC__
Linia 5: Linia 5:
  
  
== Przykłady sum symboli Legendre'a ==
+
== Największy wspólny dzielnik ==
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K1</span><br/>
+
<span id="H1" style="font-size: 110%; font-weight: bold;">Definicja H1</span><br/>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, <math>a, d \in \mathbb{Z}</math> i <math>p \nmid d</math>. Pokazać, że
+
Niech będą dane dwie liczby całkowite <math>a</math> i <math>b</math> niebędące jednocześnie zerami. Największym wspólnym dzielnikiem<ref name="GCD1"/> liczb <math>a</math> i <math>b</math> będziemy nazywali liczbę całkowitą <math>D</math> taką, że
  
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = 0</math>
+
:#&nbsp;&nbsp;<math> D \mid a \quad \text{i} \quad D \mid b</math>
 +
:#&nbsp;&nbsp;<math>\,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D</math>
  
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1</math>
+
gdzie <math>d</math> jest dowolną liczbą całkowitą.
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}} = 0</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
  
'''Punkt 1.'''
+
<span id="H2" style="font-size: 110%; font-weight: bold;">Uwaga H2</span><br/>
 +
Tak zdefiniowaną liczbę <math>D</math> będziemy oznaczali przez <math>\gcd (a, b)</math>. Ponieważ <math>1 \mid a \;</math> i <math>\; 1 \mid b</math>, to z&nbsp;definicji wynika natychmiast, że <math>\gcd (a, b) \geqslant 1</math>.
  
Wystarczy zauważyć, że wśród liczb <math>1, 2, \ldots, p - 1</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych modulo <math>p</math>. Zatem
 
  
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) = 0</math>
 
  
'''Punkt 2.'''
+
<span id="H3" style="font-size: 110%; font-weight: bold;">Zadanie H3</span><br/>
 +
Pokazać, że
  
Wystarczy zauważyć, że
+
::<math>d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b</math>
  
::<math>\left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
oraz że wśród liczb <math>1, 2, \ldots, p - 1</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych modulo <math>p</math>. Zatem
+
<math>\Large{\Longrightarrow}</math>
  
::<math>\sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = {\small\frac{p - 1}{2}} \cdot 1^2 + {\small\frac{p - 1}{2}} \cdot (- 1)^2 = p - 1</math>
+
Z założenia <math>d \mid \gcd (a, b)</math>. Z&nbsp;definicji największego wspólnego dzielnika <math>\gcd (a, b) \mid a</math>, zatem <math>d \mid a</math>. Analogicznie pokazujemy, że <math>d \mid b</math>.
  
'''Punkt 3.'''
+
<math>\Large{\Longleftarrow}</math>
  
Z założenia liczby <math>p</math> i <math>d</math> są względnie pierwsze. Z&nbsp;twierdzenia C57 wiemy, że reszty <math>r_1, r_2, \ldots, r_p</math> z&nbsp;dzielenia <math>p</math> kolejnych liczb postaci
+
Z założenia <math>a = r d</math>, <math>b = s d</math>. Z&nbsp;lematu Bézouta (zobacz C73) istnieją takie liczby całkowite <math>x, y</math>, że
  
::<math>x_k = a + k d</math>
+
::<math>\gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y)</math>
  
przez liczbę <math>p</math> są wszystkie różne i&nbsp;tworzą zbiór <math>S = \{ 0, 1, \ldots, p - 1 \}</math>. Czyli wśród reszt <math>r_1, r_2, \ldots, r_p</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math>, tyle samo liczb niekwadratowych modulo <math>p</math>, a&nbsp;jedna z&nbsp;tych reszt jest podzielna przez <math>p</math>. Z&nbsp;własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p. 2). Zatem możemy napisać
+
Zatem <math>d \mid \gcd (a, b)</math>.<br/>
 
 
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{a + k d}{p}} \right)_{\small{\!\! L}}
 
= \sum_{j = 0}^{p - 1} \left( {\small\frac{r_j}{p}} \right)_{\small{\!\! L}}
 
= {\small\frac{p - 1}{2}} \cdot 1 + {\small\frac{p - 1}{2}} \cdot (- 1) + 0
 
= 0</math>
 
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 53: Linia 45:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K2* (George Pólya, Iwan Winogradow, 1918)</span><br/>
+
<span id="H4" style="font-size: 110%; font-weight: bold;">Twierdzenie H4</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>m, n \in \mathbb{N}_0</math>, to prawdziwe jest oszacowanie
+
Jeżeli liczby całkowite <math>a, b</math> nie są jednocześnie równe zero i <math>\gcd (a, b) = a x + b y</math>, to <math>\gcd (x, y) = 1</math>.
 
 
::<math>\left| \sum_{t = m}^{m + n} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}} \right| < \sqrt{p} \log p</math>
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K3</span><br/>
 
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>a, b \in \mathbb{Z}</math>, to
 
 
 
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 
= \begin{cases}
 
\;\;\:\,      - 1 & \text{gdy } \, p \nmid (a - b) \\
 
    p - 1 & \text{gdy } \, p \mid (a - b) \\
 
\end{cases}</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite <math>x, y</math> zawsze istnieją. Niech <math>\gcd (a, b) = d > 0</math>, zatem <math>a = d k</math> i <math>b = d m</math>, czyli
  
'''1. Przypadek, gdy <math>\boldsymbol{p \mid (a - b)}</math>'''
+
::<math>(d k) x + (d m) y = d</math>
  
Z założenia <math>b \equiv a \!\! \pmod{p}</math>
+
Co oznacza, że <math>k x + m y = 1</math>, ale <math>\gcd (x, y)</math> jest dzielnikiem <math>k x + m y</math> (bo jest dzielnikiem <math>x</math> i <math>y</math>), zatem <math>\gcd (x, y) \mid 1</math>, czyli <math>\gcd (x, y) = 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 
= \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}
 
= \sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2}</math>
 
  
Z&nbsp;twierdzenia C57 wiemy, że reszty <math>r_1, r_2, \ldots, r_p</math> z&nbsp;dzielenia <math>p</math> kolejnych liczb postaci
 
  
::<math>x_k = a + k</math>
+
<span id="H5" style="font-size: 110%; font-weight: bold;">Twierdzenie H5</span><br/>
 +
Niech <math>a, b, k \in \mathbb{Z}</math>. Prawdziwy jest wzór
  
przez liczbę <math>p</math> są wszystkie różne i&nbsp;tworzą zbiór <math>S = \{ 0, 1, \ldots, p - 1 \}</math>. Czyli wśród reszt <math>r_1, r_2, \ldots, r_p</math> jest <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math>, tyle samo liczb niekwadratowych modulo <math>p</math>, a&nbsp;jedna z&nbsp;tych reszt jest podzielna przez <math>p</math>. Z&nbsp;własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p. 2). Zatem możemy napisać
+
::<math>\gcd (a + k b, b) = \gcd (a, b)</math>
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}}^{\! 2}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
= \sum_{k = 0}^{p - 1} \left( {\small\frac{r_k}{p}} \right)_{\small{\!\! L}}^{\! 2}
+
Niech <math>d_1 = \gcd (a + k b, b) \;</math> i <math>\; d_2 = \gcd (a, b)</math>.
= p - 1</math>
 
  
Co należało pokazać.
+
Z definicji <math>d_1 \mid (a + k b) \;</math> i <math>\; d_1 \mid b</math>, zatem <math>a + k b = x d_1 \;</math> i <math>\; b = y d_1</math>, czyli <math>a + k x d_1 = x d_1</math>, skąd natychmiast wynika, że <math>d_1 \mid a</math>. Ponieważ <math>d_1 \mid b</math>, to <math>d_1 \mid d_2</math> (zobacz&nbsp;[[#H2|H2]]).
  
'''2. Przypadek, gdy <math>\boldsymbol{p \nmid (a - b)}</math>'''
+
Z definicji <math>d_2 \mid a \;</math> i <math>\; d_2 \mid b</math>, zatem <math>d_2 \mid (a + k b) \;</math> i <math>\; d_2 \mid b</math>, czyli <math>d_2 \mid d_1</math>.
  
Kładąc <math>j = k + a</math> i&nbsp;sumując od <math>a</math> do <math>p - 1 + a</math>, otrzymujemy
+
Ponieważ <math>d_1 \mid d_2 \;</math> i <math>\; d_2 \mid d_1</math>, to <math>| d_1 | = | d_2 |</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
 
= \sum_{j = a}^{p - 1 + a} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}}</math>
 
  
Wśród <math>p</math> kolejnych liczb <math>a, a + 1, \ldots, p - 1 + a</math> istnieje dokładnie jedna liczba podzielna przez <math>p</math>. Możemy ją pominąć, bo nie wnosi ona wkładu do wyliczanej sumy.
 
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
+
<span id="H6" style="font-size: 110%; font-weight: bold;">Twierdzenie H6</span><br/>
= \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + b - a}{p}} \right)_{\small{\!\! L}}</math>
+
Niech <math>a, b, m \in \mathbb{Z}</math>. Prawdziwa jest następująca równoważność
  
::::::::<math>\;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j + (b - a) j j^{- 1}}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>\gcd (a, m) = 1 \quad  \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1</math>
  
::::::::<math>\;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{j^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
::::::::<math>\;\;\, = \underset{p \nmid j}{\sum_{j = a}^{p - 1 + a}} \left( {\small\frac{1 + (b - a) j^{- 1}}{p}} \right)_{\small{\!\! L}}</math>
+
<math>\Large{\Longrightarrow}</math>
  
Z własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik. Liczby <math>j = k + a</math>, gdzie <math>k = 0, 1, \ldots, p - 1</math>, są wszystkie różne modulo <math>p</math> (zobacz H20). Niech zbiór <math>S</math> będzie zbiorem wszystkich liczb <math>j = k + a</math>, które nie są podzielne przez <math>p</math>. Na mocy twierdzenia H25 zbiory <math>R = \{ 1, \ldots, p - 1 \}</math>, <math>S</math> oraz <math>T = \{ s^{- 1}_1, \ldots, s^{- 1}_{p - 1} \}</math>, gdzie <math>s_k \in S</math>, są równe modulo <math>p</math>. Zatem od sumowania po <math>j</math> możemy przejść do sumowania po <math>r \in R</math>.
+
Niech <math>\gcd (a b, m) = d</math>. Z&nbsp;definicji <math>d \mid a b</math> i <math>d \mid m</math>. Gdyby było <math>d > 1</math>, to istniałaby liczba pierwsza <math>p</math> taka, że <math>p \mid d</math> i&nbsp;mielibyśmy <math>p \mid a b</math> i <math>p \mid m</math>. Jeżeli <math>p \mid a b</math>, to <math>p \mid a</math> lub <math>p \mid b</math> (zobacz C74). W&nbsp;przypadku, gdy <math>p \mid a</math> dostajemy <math>\gcd (a, m) \geqslant p > 1</math>, wbrew założeniu, że <math>\gcd (a, m) = 1</math>. Analogicznie pokazujemy sprzeczność, gdy <math>p \mid b</math>.
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k + a}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + b}{p}} \right)_{\small{\!\! L}}
+
<math>\Large{\Longleftarrow}</math>
= \sum_{r = 1}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}}</math>
 
  
::::::::<math>\;\;\, = - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum_{r = 0}^{p - 1} \left( {\small\frac{1 + (b - a) r}{p}} \right)_{\small{\!\! L}}</math>
+
Niech <math>\gcd (a, m) = d</math>. Z&nbsp;definicji <math>d \mid a</math> i <math>d \mid m</math>, zatem również <math>d \mid a b</math> i <math>d \mid m</math>. Mamy stąd
  
::::::::<math>\;\;\, = - 1</math>
+
::<math>1 = \gcd (a b, m) \geqslant d \geqslant 1</math>
  
Ostatnia z&nbsp;wypisanych sum jest równa zero, co wynika z&nbsp;trzeciego wzoru twierdzenia K1 i&nbsp;faktu, że <math>p \nmid (b - a)</math>. Co należało pokazać.<br/>
+
Czyli musi być <math>d = 1</math>. Analogicznie pokazujemy, że <math>\gcd (b, m) = 1</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 124: Linia 100:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K4</span><br/>
+
<span id="H7" style="font-size: 110%; font-weight: bold;">Twierdzenie H7</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>n \in \mathbb{Z}</math>, to
+
Dla <math>a, b, m \in \mathbb{Z}</math> jest
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} =
+
::<math>\gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m)</math>
\begin{cases}
 
\;\;\:\,     - 1 & \text{gdy } \, p \nmid n \\
 
    p - 1 & \text{gdy } \, p \mid n \\
 
\end{cases}</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Wprowadźmy oznaczenia
  
'''Przypadek, gdy <math>\boldsymbol{p \mid n}</math>
+
::<math>r = \gcd (a b, m)</math>
  
Z drugiego wzoru twierdzenia K1 otrzymujemy
+
::<math>s = \gcd (a, m)</math>
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} = p - 1</math>
+
::<math>t = \gcd (b, m)</math>
  
'''Przypadek, gdy <math>\boldsymbol{p \nmid n}</math>
+
Z lematu Bézouta (zobacz C73) istnieją takie liczby <math>x, y, X, Y</math>, że
  
Jeżeli liczby <math>a, b</math> są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo <math>p</math>, to istnieje taka liczba <math>r</math>, że
+
::<math>s = a x + m y</math>
  
::<math>a \equiv b r^2 \!\! \pmod{p}</math>
+
::<math>t = b X + m Y</math>
  
(zobacz J34). Zatem  
+
Zatem
  
::<math>S(a) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + a}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y</math>
  
:::<math>\;\;\; = \sum^{p - 1}_{k = 0} \left( {\small\frac{k^2 + b r^2}{p}} \right)_{\small{\!\! L}}</math>
+
ale <math>r \mid a b</math> i <math>r \mid m</math>, skąd otrzymujemy, że <math>r \mid s t</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
:::<math>\;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^2 \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
 
  
:::<math>\;\;\; = \left( {\small\frac{r^2}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}}</math>
 
  
:::<math>\;\;\; = \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1})^2 + b}{p}} \right)_{\small{\!\! L}}</math>
+
<span id="H8" style="font-size: 110%; font-weight: bold;">Twierdzenie H8</span><br/>
 +
Jeżeli liczby <math>a, b</math> są względnie pierwsze, to
  
Z twierdzenia C57 wiemy, że gdy <math>k</math> przebiega zbiór <math>T = \{ 0, 1, \ldots, p - 1 \}</math>, to <math>k r^{- 1}</math> przebiega zbiór <math>T'</math> identyczny ze zbiorem <math>T</math> modulo <math>p</math>. Zatem
+
::<math>\gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m)</math>
  
::<math>S(a) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + b}{p}} \right)_{\small{\!\! L}} = S (b)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Wprowadźmy oznaczenia
  
 +
::<math>r = \gcd (a b, m)</math>
  
Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo <math>p</math> wyrażenie <math>S(n)</math> ma taką samą wartość i&nbsp;jeśli wybierzemy liczby <math>a, b</math> tak, aby jedna była liczbą kwadratową, a&nbsp;druga liczbą niekwadratową modulo <math>p</math>, to możemy napisać
+
::<math>s = \gcd (a, m)</math>
 
 
::<math>\sum_{n = 1}^{p - 1} S (n) = {\small\frac{p - 1}{2}} (S (a) + S (b))</math>
 
 
 
 
 
Z drugiej strony
 
 
 
::<math>\sum_{n = 1}^{p - 1} S (n) = \sum_{n = 1}^{p - 1} \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
::::<math>\;\;\;\: = \sum_{k = 0}^{p - 1} \sum_{n = 1}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
::::<math>\;\;\;\: = \sum_{k = 0}^{p - 1} \left[ - \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{n = 0}^{p - 1} \left( {\small\frac{k^2 + n}{p}} \right)_{\small{\!\! L}} \right]</math>
 
 
 
::::<math>\;\;\;\: = - \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}^{\! 2}</math>
 
 
 
::::<math>\;\;\;\: = - (p - 1)</math>
 
 
 
bo z&nbsp;twierdzenia K1 wiemy, że
 
 
 
::<math>\sum_{n = 0}^{p - 1} \left( {\small\frac{n + k^2}{p}} \right)_{\small{\!\! L}} = 0</math>
 
 
 
 
 
Łącząc uzyskane rezultaty, dostajemy
 
 
 
::<math>- (p - 1) = {\small\frac{p - 1}{2}} (S (a) + S (b))</math>
 
 
 
Zatem
 
  
::<math>S(a) + S (b) = - 2</math>
+
::<math>t = \gcd (b, m)</math>
  
 +
Z założenia <math>\gcd (a, b) = 1</math>. Ponieważ <math>s \mid a</math> oraz <math>t \mid b</math>, to <math>\gcd (s, t) = 1</math>, zatem (zobacz C75)
  
Z twierdzenia K3 mamy
+
::<math>s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b</math>
  
::<math>S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 - 1}{p}} \right)_{\small{\!\! L}}
+
::<math>s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m</math>
= \sum^{p - 1}_{k = 0} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
= - 1</math>
 
  
bo <math>p \nmid 2</math>. Dla ustalenia uwagi przyjmijmy, że <math>a</math> jest liczbą kwadratową, a <math>b</math> jest liczbą niekwadratową modulo <math>p</math>. Jeżeli <math>- 1</math> jest liczbą kwadratową modulo <math>p</math>, to <math>S(a) = - 1</math> i&nbsp;natychmiast otrzymujemy, że <math>S(b) = - 1</math>. Jeżeli <math>- 1</math> jest liczbą niekwadratową modulo <math>p</math>, to <math>S(b) = - 1</math> i&nbsp;natychmiast otrzymujemy, że <math>S(a) = - 1</math>. Zatem bez względu na to, czy <math>n</math> jest liczbą kwadratową, czy liczbą niekwadratową modulo <math>p</math>, musi być <math>S(n) = - 1</math>. Co należało pokazać.<br/>
+
Wynika stąd, że <math>s t \mid \gcd (a b, m)</math>, czyli <math>s t \mid r</math>. Z&nbsp;poprzedniego twierdzenia wiemy, że <math>r \mid s t</math>, zatem <math>|r| = |s t|</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 207: Linia 156:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K5</span><br/>
+
<span id="H9" style="font-size: 110%; font-weight: bold;">Twierdzenie H9</span><br/>
Pokazać, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>r , s \in \mathbb{Z}</math>, to
+
Jeżeli liczby <math>b, m</math> są względnie pierwsze, to
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} =
+
::<math>\gcd (a b, m) = \gcd (a, m)</math>
\begin{cases}
 
\;\;\:\,      - 1 & \text{gdy } \, p \nmid (r^2 - 4 s) \\
 
    p - 1 & \text{gdy } \, p \mid (r^2 - 4 s) \\
 
\end{cases}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Wprowadźmy oznaczenia
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{k = 0}^{p - 1} \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>r = \gcd (a b, m)</math>
  
:::::::<math>\;\;\;\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{4 k^2 + 4 r k + 4 s}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>s = \gcd (a, m)</math>
  
:::::::<math>\;\;\;\, = \sum^{p - 1}_{k = 0} \left( {\small\frac{(2 k + r)^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}}</math>
+
Z lematu Bézouta istnieją takie liczby <math>x, y</math>, że
  
Z twierdzenia C57 wiemy, że gdy <math>k</math> przebiega zbiór <math>T = \{ 0, 1, \ldots, p - 1 \}</math>, to <math>2 k + r</math> przebiega zbiór <math>T'</math> identyczny ze zbiorem <math>T</math> modulo <math>p</math>. Zatem
+
::<math>r = a b x + m y</math>
  
::<math>\sum_{k = 0}^{p - 1} \left( {\small\frac{k^2 + r k + s}{p}} \right)_{\small{\!\! L}} = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^2 + 4 s - r^2}{p}} \right)_{\small{\!\! L}}</math>
+
Ale <math>s \mid a \;</math> i <math>\; s \mid m</math>, zatem <math>s \mid r</math>.
  
Z twierdzenia K4 wynika natychmiast teza dowodzonego twierdzenia.<br/>
+
Z założenia <math>\gcd (b, m) = 1</math>, zatem z twierdzenia [[#H7|H7]] wynika natychmiast, że <math>r \mid s</math>. Ponieważ <math>s \mid r \;</math> i <math>\; r \mid s</math>, to <math>| r | = | s |</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 234: Linia 180:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K6</span><br/>
+
<span id="H10" style="font-size: 110%; font-weight: bold;">Twierdzenie H10</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>n \in \mathbb{Z}</math>, to dla sumy
+
Jeżeli liczby <math>a, b</math> nie są jednocześnie równe zero i <math>m \neq 0</math>, to
 
 
::<math>S(n) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
prawdziwe są następujące wzory
 
  
::(a) <math>\;\; S(n) = 0 \qquad \qquad \text{gdy } \; p = 4 k + 3</math>
+
::<math>\gcd (a m, b m) = | m | \cdot \gcd (a, b)</math>
 
 
::(b) <math>\;\; | S (n) | < 2 \sqrt{p} \qquad \text{gdy } \; p = 4 k + 1</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Oznaczmy <math>d = \gcd (a, b) \;</math> i <math>\; D = \gcd (a m, b m)</math>. Pokażemy, że <math>d m \mid D</math>.
  
'''Punkt (a)'''
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d \mid a \quad \text{i} \quad d \mid b & \text{(zobacz H3)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid a m \quad \text{i} \quad d m \mid b m & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid \gcd (a m, b m) & \text{(zobacz H3)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid D & \\
 +
\end{array}
 +
</math>
 +
</div>
  
Zauważmy, że zbiory <math>R = \{ 0, 1, 2, \ldots, p - 1 \}</math> oraz <math>T = \{ - p + 1, - p + 2, \ldots, - p + (p - 1), 0 \}</math> są identyczne modulo <math>p</math>. Z&nbsp;własności symbolu Legendre'a wiemy, że licznik wpływa na wartość symbolu jedynie modulo mianownik (zobacz J33 p.2). Zatem możemy sumowanie po <math>k \in R</math> zastąpić sumowaniem po <math>j \in T .</math> Otrzymujemy
+
Pokażemy, że <math>D \mid d m</math>.
  
::<math>S(n) = \sum_{j = - p + 1}^{0} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d = a x + b y & \text{(lemat Bézouta C73)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m = a m x + b m y & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & D \mid d m & \\
 +
\end{array}
 +
</math>
 +
</div>
  
Kładąc <math>j = - r</math> i&nbsp;sumując po <math>r</math> od <math>0</math> do <math>p - 1</math>, dostajemy
+
Ostatnia implikacja korzysta z tego, że <math>D \mid a m \;</math> i <math>\; D \mid b m</math> (zobacz [[#H3|H3]]). Ponieważ <math>d m \mid D \;</math> i <math>\; D \mid d m</math>, to <math>| D | = | d m |</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>S(n) = \sum_{r = 0}^{p - 1} \left( {\small\frac{- r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{(- r)^2 + n}{p}} \right)_{\small{\!\! L}}
 
= \sum_{r = 0}^{p - 1} \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{r^2 + n}{p}} \right)_{\small{\!\! L}} 
 
= \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} S (n)</math>
 
  
Jeżeli <math>p = 4 k + 3</math>, to <math>S (n) = - S (n)</math>, czyli <math>S(n) = 0</math>.
 
  
'''Punkt (b)'''
+
<span id="H11" style="font-size: 110%; font-weight: bold;">Zadanie H11</span><br/>
 +
Pokazać, że <math>a \mid b</math> wtedy i tylko wtedy, gdy <math>a \mid \gcd (a, b)</math>.
  
Pomysł dowodu zaczerpnęliśmy z materiałów szkoleniowych Międzynarodowej Olimpiady Matematycznej<ref name="Dukic1"/>.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
Jeżeli liczby <math>a, b</math> są obie liczbami kwadratowymi lub obie liczbami niekwadratowymi modulo <math>p</math>, to istnieje taka liczba <math>r</math>, że
+
<math>\Large{\Longrightarrow}</math>
  
::<math>a \equiv b r^2 \!\! \pmod{p}</math>
+
Zakładając, że <math>a \mid b</math>, dostajemy
  
(zobacz J34). Zatem
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  a \mid b & \qquad \Longrightarrow \qquad & b = k a & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & \gcd (a, b) = \gcd (a, k a) = | a | \cdot \gcd (1, k) = | a | & \qquad \text{(zobacz H10)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & a \mid \gcd (a, b) & \\
 +
\end{array}
 +
</math>
 +
</div>
  
::<math>S(a) = S (b r^2) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 + b r^2)}{p}} \right)_{\small{\!\! L}}</math>
+
<math>\Large{\Longleftarrow}</math>
  
::::::<math>\;\:\, = \sum_{k = 0}^{p - 1} \left( {\small\frac{r^3 (k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
+
Jeżeli <math>a \mid \gcd (a, b)</math>, to <math>a \mid b</math> (zobacz [[#H3|H3]]). Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::::<math>\;\:\, = \left( {\small\frac{r^3}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
 
  
::::::<math>\;\:\, = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{k = 0}^{p - 1} \left( {\small\frac{(k r^{- 1}) \left[ (k r^{- 1})^2 + b \right] }{p}} \right)_{\small{\!\! L}}</math>
 
  
Z twierdzenia C57 wiemy, że gdy <math>k</math> przebiega zbiór <math>T = \{ 0, 1, \ldots, p - 1 \}</math>, to <math>k r^{- 1}</math> przebiega zbiór <math>T'</math> identyczny ze zbiorem <math>T</math> modulo <math>p</math>. Zatem
+
<span id="H12" style="font-size: 110%; font-weight: bold;">Zadanie H12</span><br/>
 +
Niech <math>\gcd (a, d) = 1</math>. Pokazać, że <math>d \nmid a b</math> wtedy i tylko wtedy, gdy <math>d \nmid b</math>.
  
::<math>S(a) = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} \sum_{x = 0}^{p - 1} \left( {\small\frac{x (x^2 + b)}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{r}{p}} \right)_{\small{\!\! L}} S (b)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Korzystając z rezultatu pokazanego w zadaniu [[#H11|H11]], dostajemy
  
Czyli <math>S (a)^2 = S (b)^2</math>. Wynika stąd, że dla wszystkich liczb kwadratowych (odpowiednio niekwadratowych) modulo <math>p</math> wyrażenie <math>S (n)^2</math> ma taką samą wartość i&nbsp;jeśli wybierzemy liczby <math>a, b</math> tak, aby jedna była liczbą kwadratową, a&nbsp;druga liczbą niekwadratową modulo <math>p</math>, to prawdziwa jest równość
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 
+
::<math>
::<math>\sum_{n = 1}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2)</math>
+
\begin{array}{llll}
 
+
  d \nmid a b & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, a b) & \\
Jak łatwo zauważyć <math>S(0) = 0</math>, zatem możemy napisać
+
  &  & & \\
 
+
  & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, b) & \text{(zobacz H9)} \\
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2)</math>
+
   & &  & \\
 
+
   & \qquad \Longleftrightarrow \qquad & d \nmid b & \\
Z drugiej strony
+
\end{array}
 
+
</math>
::<math>S (n)^2 = \sum_{k = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
:::<math>\quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k (k^2 + n)}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{j (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
:::<math>\quad \,\, = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
Zatem
 
 
 
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = \sum_{n = 0}^{p - 1} \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j (k^2 + n) (j^2 + n)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
:::::<math>\;\! = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
 
 
Z twierdzenia K3 wiemy, że
 
 
 
::<math>\sum_{n = 0}^{p - 1} \left( {\small\frac{(n + k^2) (n + j^2)}{p}} \right)_{\small{\!\! L}} =
 
\begin{cases}
 
  \;\;\:\,      - 1 & \text{gdy } \, p \nmid (k^2 - j^2) \\
 
    p - 1 & \text{gdy } \, p \mid (k^2 - j^2) \\
 
\end{cases}</math>
 
 
 
 
 
Zbadajmy, kiedy <math>p \mid (k^2 - j^2)</math>, czyli kiedy <math>p \mid [(k - j) (k + j)]</math>. Mamy
 
 
 
::* <math>\; 0 \leqslant | k - j | \leqslant p - 2</math>
 
 
 
::* <math>\; 2 \leqslant k + j \leqslant 2 p - 2</math>
 
 
 
Zatem <math>p \mid [(k - j) (k + j)]</math> gdy
 
 
 
::* <math>\; j = k</math>
 
 
 
::* <math>\; j = p - k</math>
 
 
 
 
 
Pozwala to zapisać rozpatrywaną sumę w&nbsp;postaci
 
 
 
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} \cdot
 
\left\{ \begin{array}{rll}
 
   - 1  & \text{gdy } \; j \neq k \;\;\;\; \text{ i } \;\;\;\; j \neq p - k \\
 
   p - 1 & \text{gdy } \; j = k \;\; \text{ lub } \;\; j = p - k \\
 
\end{array} \right\}</math>
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
:::::<math>\:\! = (p - 1) \underset{j = k \; \text{ lub } \; j = p - k}{\sum^{p - 1}_{k = 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} - \underset{j \neq k \; \text{ i } \; j \neq p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}}</math>
 
 
</div>
 
</div>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Co należało pokazać.<br/>
:::::<math>\:\! = (p - 1) \left[ \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}} + \underset{j = k \; \text{ lub } \; j = p - k}{\sum_{k = 1}^{p - 1} \sum_{j = 1}^{p - 1}} \left( {\small\frac{k j}{p}} \right)_{\small{\!\! L}}</math>
+
&#9633;
</div>
+
{{\Spoiler}}
  
<div style="margin-top: 1em; margin-bottom: 1em;">
 
:::::<math>\:\! = (p - 1) \left[ (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}} \right] - \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \sum^{p - 1}_{j = 1} \left( {\small\frac{j}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k (p - k)}{p}} \right)_{\small{\!\! L}}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
 
:::::<math>\:\! = (p - 1) \left[ (p - 1) + \left( {\small\frac{-1}{p}} \right)_{\small{\!\! L}} \sum_{k = 1}^{p - 1} \left( {\small\frac{k^2}{p}} \right)_{\small{\!\! L}} \right] + (p - 1) + \sum_{k = 1}^{p - 1} \left( {\small\frac{- k^2}{p}} \right)_{\small{\!\! L}}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
<span id="H13" style="font-size: 110%; font-weight: bold;">Twierdzenie H13</span><br/>
:::::<math>\:\! = (p - 1) \cdot 2 (p - 1) + (p - 1) + (p - 1)</math>
+
Jeżeli dodatnie liczby <math>a, b</math> są względnie pierwsze, to każdy dzielnik <math>d</math> iloczynu <math>a b</math> można przedstawić jednoznacznie w&nbsp;postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a ,</math> <math>\; d_2 \mid b \;</math> <math>\text{i} \; \gcd (d_1, d_2) = 1</math>.
</div>
 
  
:::::<math>\:\! = 2 p (p - 1)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
+
Niech <math>d_1 = \gcd (d, a) \;</math> i <math>\; d_2 = \gcd (d, b)</math>. Z&nbsp;twierdzenia [[#H8|H8]] mamy
Zauważmy, że <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} = 1</math>, bo <math>p = 4 k + 1</math>.
 
 
 
 
 
Ponieważ wcześniej pokazaliśmy, że
 
 
 
::<math>\sum_{n = 0}^{p - 1} S (n)^2 = {\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2)</math>
 
 
 
to otrzymujemy
 
  
::<math>{\small\frac{p - 1}{2}} (S (a)^2 + S (b)^2) = 2 p (p - 1)</math>
+
::<math>d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d</math>
  
Czyli
+
Bo z&nbsp;założenia <math>d \mid a b</math>. Z&nbsp;definicji największego wspólnego dzielnika i&nbsp;zadania [[#H3|H3]] dostajemy
  
::<math>S (a)^2 + S (b)^2 = 4 p</math>
+
::<math>\gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2</math>
  
Wynika stąd, że bez względu na to, czy <math>n</math> jest liczbą kwadratową, czy liczbą niekwadratową modulo <math>p</math>, prawdziwe jest oszacowanie
+
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b)</math>
  
::<math>| S (n) | \leqslant 2 \sqrt{p}</math>
+
::::::::<math>\, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b</math>
  
Równość <math>S (n)^2 = 4 p</math> nie jest możliwa, bo dzielnik pierwszy <math>p</math> występuje po prawej stronie w&nbsp;potędze nieparzystej. Zatem mamy nieco silniejsze oszacowanie
+
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (a, b)</math>
  
::<math>| S (n) | < 2 \sqrt{p}</math>
+
::::::::<math>\, \Longrightarrow \qquad \gcd (a, b) \geqslant e</math>
  
Co kończy dowód.<br/>
+
Gdyby było <math>\gcd (d_1, d_2) = e > 1</math>, to mielibyśmy <math>\gcd (a, b) \geqslant e > 1</math>. Wbrew założeniu, że <math>\gcd (a, b) = 1</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 387: Linia 301:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K7</span><br/>
+
<span id="H14" style="font-size: 110%; font-weight: bold;">Twierdzenie H14</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>a, b \in \mathbb{Z}</math>, to dla sumy
+
Jeżeli <math>a, m, n \in \mathbb{Z}_+</math>, to
 
 
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
prawdziwe są następujące wzory
 
  
:: (a) <math>\;\; S(a, b) = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}} \qquad \qquad \, \text{gdy } \; p \mid (4 a^3 + 27 b^2)</math>
+
::<math>\gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1</math>
 
 
:: (b) <math>\;\; | S (a, b) | < 2 \sqrt{p} \qquad \qquad \;\;\;\; \text{gdy } \; p \nmid (4 a^3 + 27 b^2)</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>p \geqslant 5</math>. W&nbsp;ogólnym przypadku interesująca nas suma ma postać
+
Pokażemy najpierw, że jeżeli <math>d</math> jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i&nbsp;odwrotnie.
  
::<math>\sum_{t = 0}^{p - 1} \left( {\small\frac{a t^3 + b t^2 + c t + d}{p}} \right)_{\small{\!\! L}}</math>
+
<math>\Large{\Longrightarrow}</math>
  
gdzie <math>p \nmid a</math>. Mnożąc licznik przez <math>a^2</math> nie zmieniamy wartości sumy
+
Z założenia <math>d</math> jest dzielnikiem <math>\gcd (a^m - 1, a^n - 1)</math>, czyli <math>d \mid (a^m - 1) \;</math> i <math>\; d \mid (a^n - 1)</math>, co możemy zapisać w&nbsp;postaci
  
::<math>\sum_{t = 0}^{p - 1} \left( {\small\frac{a^3 t^3 + a^2 b t^2 + a^2 c t + a^2 d}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
  
Podstawiając <math>x \equiv a t + r \!\! \pmod{p}</math>, dostajemy
+
Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby <math>x, y</math>, że <math>\gcd (m, n) = m x + n y</math>. Łatwo znajdujemy, że
  
::<math>\sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x^2 (b - 3 r) + x [a c - r (2 b - 3 r)] + [a^2 d - a c r + r^2 (b - r)]}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d}</math>
  
bo, gdy <math>t</math> przebiega zbiór <math>\{ 0, 1, \ldots, p - 1 \}</math>, to (modulo <math>p</math>) liczby <math>a t + r</math> przebiegają taki sam zbiór (zobacz C57). Ponieważ <math>p \geqslant 5</math>, to liczbę <math>r</math> możemy wybrać tak, aby było
+
Czyli <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>.
  
::<math>3 r \equiv b \!\! \pmod{p}</math>
+
<math>\Large{\Longleftarrow}</math>
  
Ostatecznie otrzymujemy
+
Z założenia <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>, czyli
  
::<math>\sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + x (a c - 3 r^2) + (a^2 d - a c r + 2 r^3)}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d}</math>
  
 +
Zatem
  
Widzimy, że bez zmniejszania ogólności, możemy ograniczyć się do badania sumy postaci
+
::<math>a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d}</math>
  
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math>
+
Podobnie otrzymujemy
  
Liczbę <math>- \left( 4 a^3 + 27 b^2 \right)</math> nazywamy wyróżnikiem wielomianu <math>x^3 + a x + b</math>.
+
::<math>a^n \equiv 1 \!\! \pmod{d}</math>
  
Pokażemy, że w&nbsp;przypadku, gdy <math>4 a^3 + 27 b^2 \equiv 0 \!\! \pmod{p}</math> i <math>p \geqslant 3</math> prawdziwy jest wzór
+
Zatem <math>d</math> dzieli <math>a^m - 1 \;</math> i <math>\; a^n - 1</math>, czyli
  
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>d \mid \gcd (a^m - 1, a^n - 1)</math>
  
  
W przypadku, gdy <math>p = 3</math> z&nbsp;warunku <math>4 a^3 + 27 b^2 \equiv 0 \pmod{3}</math> wynika, że <math>3 \mid a</math>. Zakładając, że reszta z&nbsp;dzielenia liczby <math>b</math> przez <math>3</math> wynosi <math>r</math>, otrzymujemy
+
W szczególności wynika stąd, że
  
::<math>S(a, b) = \sum_{x = 0}^{2} \left( {\small\frac{x^3 + b}{3}} \right)_{\small{\!\! L}}
+
:*&nbsp;&nbsp;&nbsp;<math>\gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>
= \left( {\small\frac{b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1 + b}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{8 + b}{3}} \right)_{\small{\!\! L}}
 
= \left( {\small\frac{r}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{r + 2}{3}} \right)_{\small{\!\! L}}
 
= \left( {\small\frac{0}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{1}{3}} \right)_{\small{\!\! L}} + \left( {\small\frac{2}{3}} \right)_{\small{\!\! L}}
 
= 0</math>
 
  
 +
:*&nbsp;&nbsp;&nbsp;<math>\left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1)</math>
  
Jeżeli <math>p \geqslant 5</math> i <math>p \mid a</math>, to <math>p \mid b</math> i&nbsp;łatwo znajdujemy, że
+
Czyli <math>\left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right|</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}
 
= \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3}{p}} \right)_{\small{\!\! L}}
 
= 0</math>
 
  
  
Jeżeli <math>p \geqslant 5</math> i <math>p \nmid a</math>, to
+
<span id="H15" style="font-size: 110%; font-weight: bold;">Uwaga H15</span><br/>
 +
W dowodzie twierdzenia [[#H14|H14]] pominęliśmy milczeniem fakt, że jedna z&nbsp;liczb <math>x, y</math> może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis
  
::<math>x^3 + a x + b \equiv (x - x_1) (x - x_2)^2 \!\! \pmod{p}</math>
+
::<math>a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d}</math>
  
gdzie
+
Omówimy ten problem w&nbsp;następnej sekcji. Zauważmy, wyprzedzając materiał, że z&nbsp;kongruencji
  
::<math>x_1 \equiv 3 b a^{- 1} \!\! \pmod{p}</math>
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
  
::<math>x_2 \equiv - 3 b 2^{- 1} a^{- 1} \!\! \pmod{p}</math>
+
wynika, że <math>\gcd (a, d) = 1</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>d</math>.
  
Co Czytelnik może łatwo sprawdzić, pamiętając o&nbsp;tym, że <math>27 b^2 \cdot 2^{- 2} a^{- 3} \equiv - 1 \!\! \pmod{p}</math>. Mamy
 
  
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x - x_2}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{x - x_1}{p}} \right)_{\small{\!\! L}}</math>
 
  
Niech <math>t = x - x_2</math>. Jeżeli <math>x</math> przebiega zbiór <math>\{ 0, 1, \ldots, p - 1 \}</math>, to (modulo <math>p</math>) <math>t</math> przebiega taki sam zbiór (zobacz C57). Zatem
 
  
::<math>S(a, b) = \sum_{t = 0}^{p - 1} \left( {\small\frac{t}{p}} \right)_{\small{\!\! L}}^{\! 2} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}}
 
= \sum_{t = 1}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}} + \sum_{t = 0}^{p - 1} \left( {\small\frac{t + x_2 - x_1}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}}</math>
 
  
Uwzględniając, że
+
== Element odwrotny modulo <math>m</math> ==
  
::<math>x_2 - x_1 \equiv - 3 b 2^{- 1} a^{- 1} - 3 b a^{- 1} \equiv - 3 b 2^{- 1} a^{- 1} - 6 b 2^{- 1} a^{- 1} \equiv - 9 b 2^{- 1} a^{- 1} \!\! \pmod{p}</math>
+
<span id="H16" style="font-size: 110%; font-weight: bold;">Twierdzenie H16</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Dla liczby <math>a \in \mathbb{Z}</math> istnieje taka liczba <math>x</math>, że
  
otrzymujemy
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
::<math>S(a, b) = - \left( {\small\frac{x_2 - x_1}{p}} \right)_{\small{\!\! L}}
+
wtedy i&nbsp;tylko wtedy, gdy <math>\gcd (a, m) = 1</math>.
= - \left( {\small\frac{- 9 b 2^{- 1} a^{- 1}}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{- 2 a b}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{- 8 a^3 b}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{- 2 b \cdot (- 27 b^2)}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{6 b}{p}} \right)_{\small{\!\! L}}</math>
 
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
W przypadku, gdy <math>4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p}</math>, pokażemy, że wartość sumy
+
<math>\Large{\Longrightarrow}</math>
  
::<math>S(a, b) = \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math>
+
Z założenia istnieje taka liczba <math>x</math>, że
  
jest ściśle związana z&nbsp;ilością rozwiązań kongruencji
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
::<math>y^2 \equiv x^3 + a x + b \!\! \pmod{p}</math>
+
Zatem dla pewnego <math>k \in \mathbb{Z}</math> jest
  
 +
::<math>a x = 1 + k m</math>
  
Niech <math>N_p</math> oznacza ilość rozwiązań powyższej kongruencji i&nbsp;niech <math>N_+, N_0, N_-</math> oznaczają ilości liczb <math>k \in \{ 0, 1, \ldots, p - 1 \}</math>, dla których symbol Legendre'a <math>\left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}}</math> jest równy odpowiednio <math>+ 1, 0, - 1</math>. Oczywiście
+
Czyli <math>a x - k m = 1</math>. Wynika stąd, że <math>\gcd (a, m)</math> dzieli <math>1</math>, co oznacza, że <math>\gcd (a, m) = 1</math>.
  
::<math>N_+ + N_0 + N_- = p</math>
+
<math>\Large{\Longleftarrow}</math>
  
::<math>S(a, b) = N_+ - N_-</math>
+
Z założenia <math>\gcd (a, m) = 1</math>. Z&nbsp;lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite <math>x, y</math>, że
  
Zauważmy, że jeżeli dla pewnego <math>x</math> jest <math>p \mid (x^3 + a x + b)</math>, to <math>\left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = 0</math> i&nbsp;mamy dokładnie jedno rozwiązanie rozważanej kongruencji
+
::<math>a x + m y = 1</math>
  
::<math>0^2 \equiv x^3 + a x + b \!\! \pmod{p}</math>
+
Zatem modulo <math>m</math> dostajemy
  
Jeżeli dla pewnego <math>x</math> jest <math>\left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} = + 1</math>, to <math>p \nmid (x^3 + a x + b)</math>, a&nbsp;liczba <math>x^3 + a x + b</math> jest liczbą kwadratową modulo <math>p</math>, czyli istnieje taka liczba <math>y \in \mathbb{Z}</math>, że
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
::<math>y^2 \equiv x^3 + a x + b \!\! \pmod{p}</math>
+
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
i mamy dwa rozwiązania rozpatrywanej kongruencji: jedno stanowi para <math>(x, y)</math>, a&nbsp;drugie para <math>(x, - y)</math>. Zatem
 
  
::<math>N_p = 2 N_+ + N_0</math>
 
  
Łatwo zauważamy, że
+
<span id="H17" style="font-size: 110%; font-weight: bold;">Definicja H17</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Liczbę <math>x</math> taką, że
  
::<math>N_p - p = (2 N_+ + N_0) - (N_+ + N_0 + N_-) = N_+ - N_- = S (a, b)</math>
+
::<math>a \cdot x \equiv 1 \!\! \pmod{m}</math>
  
 +
będziemy nazywali elementem odwrotnym liczby <math>a</math> modulo <math>m</math> i&nbsp;oznaczali jako <math>a^{- 1}</math>.
  
W 1936 roku Helmut Hasse<ref name="Hasse1"/><ref name="Hasse2"/> udowodnił, że
 
  
::<math>| N_p - p | < 2 \sqrt{p}</math>
 
  
Elementarny dowód tego twierdzenia podał Jurij Manin<ref name="Manin1"/>.
+
<span id="H18" style="font-size: 110%; font-weight: bold;">Uwaga H18</span><br/>
 +
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli <math>b \mid a</math> oraz <math>b</math> ma element odwrotny modulo <math>m</math>, to prawdziwa jest kongruencja
  
 +
::<math>{\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m}</math>
  
Wynika stąd, że w&nbsp;przypadku, gdy <math>4 a^3 + 27 b^2 \not\equiv 0 \!\! \pmod{p}</math> prawdziwe jest oszacowanie
+
Istotnie
  
::<math>| S (a, b) | = \left| \sum_{x = 0}^{p - 1} \left( {\small\frac{x^3 + a x + b}{p}} \right)_{\small{\!\! L}} \right| < 2 \sqrt{p}</math>
+
::<math>{\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m}</math>
  
Co należało pokazać.<br/>
+
W PARI/GP odwrotność liczby <math>a</math> modulo <math>m</math> znajdujemy, wpisując <code>Mod(a, m)^(-1)</code>.
&#9633;
 
{{\Spoiler}}
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K8</span><br/>
+
<span id="H19" style="font-size: 110%; font-weight: bold;">Twierdzenie H19</span><br/>
Pokazać, że jeżeli <math>p \geqslant 7</math> jest liczbą pierwszą, to wśród liczb <math>1, 2, \ldots, p - 1</math> istnieją:
+
Niech <math>a, k \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math>. Poniższa tabelka przedstawia elementy odwrotne do elementu <math>a</math> w&nbsp;przypadku niektórych modułów <math>m</math>. W&nbsp;szczególności, jeżeli moduł <math>m</math> jest liczbą nieparzystą, to <math>2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m}</math>.
 
 
:* dwie kolejne liczby będące liczbami kwadratowymi modulo <math>p</math>
 
:* dwie kolejne liczby będące liczbami niekwadratowymi modulo <math>p</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Dla <math>p = 7</math> łatwo sprawdzamy, że twierdzenie jest prawdziwe.
 
 
 
'''Punkt 1.'''
 
 
 
Zauważmy, że przynajmniej jedna z&nbsp;liczb <math>2, 5, 10</math> jest liczbą kwadratową. Zakładając, że tak nie jest, otrzymujemy natychmiast sprzeczność
 
 
 
::<math> -1 = \left( {\small\frac{10}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{5}{p}} \right)_{\small{\!\! L}} = (- 1) \cdot (- 1) = 1</math>
 
 
 
W zależności od tego, która z&nbsp;liczb <math>2, 5, 10</math> jest liczbą kwadratową, mamy następujące pary kolejnych liczb kwadratowych
 
  
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
|-
| <math>2</math> || <math>1, 2 \; \text{ oraz } \; 8, 9</math>
+
|| postać <br/> modułu <math>\boldsymbol{m}</math> || odwrotność <br/> elementu <math>\boldsymbol{a}</math> || uwagi
 
|-
 
|-
| <math>5</math> || <math>4, 5</math>
+
| <math>1.</math> || <math>m = 2</math> || <math>1</math> || rowspan = 3 | liczba <math>a</math> <br/> jest liczbą <br/> nieparzystą
 
|-
 
|-
| <math>10</math> || <math>9, 10</math>
+
| <math>2.</math> || <math>m = 4</math> || <math>R_4(a)</math>
|}
 
 
 
'''Punkt 2.'''
 
 
 
Rozważmy wszystkie możliwe wartości <math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}</math> dla <math>k = 1, 2, 3, 4</math> i <math>p \geqslant 11</math>. Zauważmy, że <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! L}}</math>.
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
 
|-
 
|-
! <math>\boldsymbol{k}</math> || <math>\,\, \boldsymbol{1} \,\,</math> || <math>\boldsymbol{2}</math> || <math>\boldsymbol{3}</math> || <math>\,\, \boldsymbol{4} \,\,</math> || <math>\,\, \boldsymbol{5} \,\,</math> || <math>\boldsymbol{6}</math> || <math>\boldsymbol{()}</math> || <math>\boldsymbol{p-1}</math>
+
| <math>3.</math> || <math>m = 8</math> || <math>R_8(a)</math>
 
|-
 
|-
! <math>\boldsymbol{A.}</math>
+
| <math>4.</math> || <math>m = a k - 1</math> || <math>{\small\frac{m + 1}{a}}</math> || <math></math>
| <math>1</math> || <math>1</math> || <math>1</math> || <math>1</math> || <math></math> || <math>1</math> || <math></math> || <math></math>
 
 
|-
 
|-
! <math>\boldsymbol{B.}</math>
+
| <math>5.</math> || <math>m = a k + 1</math> || <math>- {\small\frac{m - 1}{a}}</math> || <math></math>
| <math>1</math> || <math>1</math> || <math>-1</math> || <math>1</math> || <math></math> || <math>-1</math> || <math></math> || <math></math>
 
 
|-
 
|-
! <math>\boldsymbol{C.}</math>
+
| <math>6.</math> || <math>m = a k - 2</math> || <math>{\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}}</math> || rowspan = 2 | liczby <math>a , m</math> <br/> są liczbami <br/> nieparzystymi
| <math>1</math> || <math>-1</math> || <math>1</math> || <math>1</math> || <math></math> || <math>-1</math> || <math></math> || <math></math>
 
 
|-
 
|-
! <math>\boldsymbol{D.}</math>  
+
| <math>7.</math> || <math>m = a k + 2</math> || <math>{\small\frac{m - 1}{2}} \cdot {\small\frac{m - 2}{2}}</math>  
| <math>1</math> || <math>-1</math> || <math>-1</math> || <math>1</math> || <math></math> || <math>1</math> || <math></math> || <math></math>
 
 
|}
 
|}
 
'''A.''' W&nbsp;tym przypadku liczby <math>2, 3</math> są liczbami kwadratowymi modulo <math>p</math>. Gdyby w&nbsp;pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo <math>p</math>, to musielibyśmy <math>{\small\frac{p - 1}{2}}</math> liczb niekwadratowych umieścić wśród pozostałych <math>p - 5</math> komórek tak, aby między nimi zawsze była liczba kwadratowa modulo <math>p</math>. Wartość <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}}</math> wymusza, aby liczby niekwadratowe modulo <math>p</math> umieszczać w&nbsp;komórkach „nieparzystych”. Po wypełnieniu tych komórek pozostaną nam dwie liczby, które będziemy zmuszeni umieścić w&nbsp;komórkach „parzystych”. Co oznacza, że muszą pojawić się dwie pary kolejnych liczb niekwadratowych modulo <math>p .</math>
 
 
'''B. i&nbsp;C.''' W&nbsp;tym przypadku dokładnie jedna z&nbsp;liczb <math>2, 3</math> jest liczbą kwadratową modulo <math>p</math>. Gdyby w&nbsp;pozostałych komórkach miało nie być ani jednej pary kolejnych liczb niekwadratowych modulo <math>p</math>, to musielibyśmy <math>{\small\frac{p - 3}{2}}</math> liczb niekwadratowych umieścić wśród pozostałych <math>p - 5</math> komórek tak, aby między nimi zawsze była liczba kwadratowa modulo <math>p</math>. Wartość <math>\left( {\small\frac{6}{p}} \right)_{\small{\!\! L}}</math> wymusza, aby liczby niekwadratowe modulo <math>p</math> umieszczać w&nbsp;komórkach „parzystych”. Po wypełnieniu tych komórek pozostanie nam jedna liczba, którą będziemy zmuszeni umieścić w&nbsp;komórce „nieparzystej”. Co oznacza, że musi pojawić się jedna para kolejnych liczb niekwadratowych modulo <math>p .</math>
 
 
'''D.''' W&nbsp;tym przypadku nie musimy niczego dowodzić, bo liczby <math>2, 3</math> są kolejnymi liczbami niekwadratowymi modulo <math>p .</math><br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga K9</span><br/>
 
Wzmocnimy wynik uzyskany w&nbsp;poprzednim zadaniu. Zauważmy, jak użycie symbolu Legendre'a pozwala sformalizować problem.
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K10</span><br/>
 
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to
 
 
:* istnieje <math>\left\lfloor {\small\frac{p - 3}{4}} \right\rfloor</math> różnych par kolejnych liczb kwadratowych modulo <math>p</math>
 
:* istnieje <math>\left\lfloor {\small\frac{p - 1}{4}} \right\rfloor</math> różnych par kolejnych liczb niekwadratowych modulo <math>p</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
'''Punkt 1.'''
+
'''Punkty 1. - 3.'''
  
Chcemy znaleźć ilość takich liczb <math>k \in \{ 1, 2, \ldots, p - 2 \}</math>, dla których
+
Ponieważ dla liczb nieparzystych jest
  
::<math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = 1</math>
+
::<math>a^2 \equiv 1 \!\! \pmod{2}</math>
  
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
+
::<math>a^2 \equiv 1 \!\! \pmod{4}</math>
  
::<math>N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
+
::<math>a^2 \equiv 1 \!\! \pmod{8}</math>
  
Tylko w&nbsp;przypadku, gdy obie liczby <math>k</math> i <math>k + 1</math> są liczbami kwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>4</math> (stąd czynnik <math>{\small\frac{1}{4}}</math> przed sumą).
+
to liczba nieparzysta <math>a</math> jest swoją odwrotnością modulo <math>2</math>, <math>4</math> i <math>8</math>. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać
  
::<math>4 N = \sum_{k = 1}^{p - 2} \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
+
::<math>a^{- 1} \equiv R_2 (a) \!\! \pmod{2}</math>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::<math>a^{- 1} \equiv R_4 (a) \!\! \pmod{4}</math>
:::<math>\: = p - 2 + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}</math>
 
</div>
 
  
Po kolei wyliczamy sumy po prawej stronie
+
::<math>a^{- 1} \equiv R_8 (a) \!\! \pmod{8}</math>
  
<div style="margin-top: 0em; margin-bottom: 1em;">
+
W pierwszym przypadku wynik jest oczywisty, bo <math>R_2 (a) = 1</math>.
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{p - 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
'''Punkt 4.'''
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
= - \left( {\small\frac{1}{p}} \right)_{\small{\!\! L}} + \sum^{p - 1}_{k = 0} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
= - 1</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Zauważmy, że
::<math>\sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
= \sum_{k = 0}^{p - 1} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
= - 1</math>
 
</div>
 
  
(zobacz K1 i&nbsp;K3). Zatem
+
::<math>\gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1</math>
  
::<math>N = {\small\frac{1}{4}} \left[ p - 4 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right]</math>
+
oraz <math>a \mid (m + 1)</math>. Zatem
  
Czyli
+
::<math>a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m}</math>
  
::<math>N =
+
'''Punkt 5.'''
\begin{cases}
 
  {\large\frac{p - 5}{4}} & \text{ gdy } \; p = 4 k + 1 \\
 
  {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\
 
\end{cases}</math>
 
  
Powyższy wynik można zapisać w&nbsp;postaci
+
Zauważmy, że
  
::<math>N = \left\lfloor {\small\frac{p - 3}{4}} \right\rfloor</math>
+
::<math>\gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1</math>
  
'''Punkt 2.'''
+
oraz <math>a \mid (m - 1)</math>. Zatem
  
Chcemy znaleźć ilość takich liczb <math>k \in \{ 1, 2, \ldots, p - 2 \}</math>, dla których
+
::<math>a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m}</math>
  
::<math>\left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1</math>
+
'''Punkt 6.'''
  
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
+
Ponieważ zakładamy, że <math>2 \mid (m + 1)</math>, to <math>m</math> musi być liczbą nieparzystą, czyli <math>a</math> też musi być liczbą nieparzystą. Zauważmy, że
  
::<math>N = {\small\frac{1}{4}} \sum_{k = 1}^{p - 2} \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
+
::<math>\gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1</math>
  
Tylko w&nbsp;przypadku, gdy obie liczby <math>k</math> i <math>k + 1</math> są liczbami niekwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>4</math> (stąd czynnik <math>{\small\frac{1}{4}}</math> przed sumą).
+
oraz <math>a \mid (m + 2)</math>. Zatem
  
::<math>4 N = \sum_{k = 1}^{p - 2} \left[ 1 - \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
+
::<math>a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m}</math>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Podobnie pokazujemy punkt 7. Co kończy dowód.<br/>
:::<math>\: = p - 2 - \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} - \sum_{k = 1}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} + \sum_{k = 1}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}</math>
 
</div>
 
 
 
Wartości sum wyliczyliśmy już w&nbsp;punkcie 1. Zatem
 
 
 
::<math>N = {\small\frac{1}{4}} \left[ p - 2 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} \right]</math>
 
 
 
Czyli
 
 
 
::<math>N =
 
\begin{cases}
 
  {\large\frac{p - 1}{4}} & \text{ gdy } \; p = 4 k + 1 \\
 
  {\large\frac{p - 3}{4}} & \text{ gdy } \; p = 4 k + 3 \\
 
\end{cases}</math>
 
 
 
Powyższy wynik można zapisać w&nbsp;postaci
 
 
 
::<math>N = \left\lfloor {\small\frac{p - 1}{4}} \right\rfloor</math>
 
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 695: Linia 508:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K11</span><br/>
+
<span id="H20" style="font-size: 110%; font-weight: bold;">Twierdzenie H20</span><br/>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Słowo „trójka” oznacza tutaj trzy kolejne liczby kwadratowe (niekwadratowe) modulo <math>p</math>.
+
Niech <math>a, b \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>m</math>. Jeżeli liczby <math>u_1, u_2, \ldots, u_r</math> są liczbami różnymi modulo <math>m</math>, to liczby
  
Jeżeli <math>p = 4 k + 3</math>, to liczba różnych trójek liczb kwadratowych (niekwadratowych) jest równa
+
::1.&nbsp;&nbsp;&nbsp;<math>a u_1, a u_2, \ldots, a u_r</math>
  
::<math>N = \left\lfloor {\small\frac{p - 3}{8}} \right\rfloor</math>
+
::2.&nbsp;&nbsp;&nbsp;<math>a u_1 + b, a u_2 + b, \ldots, a u_r + b</math>
  
Jeżeli <math>p = 4 k + 1</math>, to liczba różnych trójek liczb niekwadratowych jest równa
+
są liczbami różnymi modulo <math>m</math>. Jeżeli ponadto liczby <math>u_1, u_2, \ldots, u_r</math> są względnie pierwsze z <math>m</math>, to również liczby
  
::<math>N = {\small\frac{p - 3 - S (- 1)}{8}} > {\small\frac{p - 3 - 2 \sqrt{p}}{8}}</math>
+
::3.&nbsp;&nbsp;&nbsp;<math>u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r</math>
  
Jeżeli <math>p = 4 k + 1</math>, to liczba różnych trójek liczb kwadratowych jest równa
+
są liczbami różnymi modulo <math>m</math>.
 
 
::<math>N = {\small\frac{p - 15 + S (- 1)}{8}} > {\small\frac{p - 15 - 2 \sqrt{p}}{8}} \qquad \quad \text{ gdy } \; p = 8 k + 1</math>
 
 
 
::<math>N = {\small\frac{p - 7 + S (- 1)}{8}} > {\small\frac{p - 7 - 2 \sqrt{p}}{8}} \qquad \quad \;\;\; \text{ gdy } \; p = 8 k + 5</math>
 
 
 
Gdzie przez <math>S(- 1)</math> oznaczyliśmy sumę
 
 
 
::<math>S(- 1) = \sum_{k = 0}^{p - 1} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}}</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
'''Przypadek pierwszy: trójki liczb kwadratowych modulo''' <math>\boldsymbol{p}</math>
+
'''Punkt 1.'''
  
Chcemy znaleźć ilość takich liczb <math>k \in \{ 2, 3, \ldots, p - 2 \}</math>, dla których
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
::<math>\left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = + 1</math>
+
::<math>a u_i \equiv a u_j \!\! \pmod{m}</math>
  
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
+
Z założenia liczba <math>a</math> ma element odwrotny modulo <math>m</math>, zatem mnożąc obie strony kongruencji przez <math>a^{- 1}</math>, otrzymujemy
  
::<math>N = {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
+
::<math>u_i \equiv u_j \!\! \pmod{m}</math>
  
Tylko w&nbsp;przypadku, gdy wszystkie trzy liczby <math>k - 1, k, k + 1</math> są liczbami kwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>8</math> (stąd czynnik <math>{\small\frac{1}{8}}</math> przed sumą).
+
dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Dowód punktu 2. jest analogiczny.
  
::<math>8 N = \sum_{k = 2}^{p - 2} \left[ 1
+
'''Punkt 3.'''
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
\right]</math>
 
 
 
:::<math>\: = p - 3 + \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
 
 
Po kolei wyliczamy sumy po prawej stronie
 
 
 
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
 
 
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1 - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
 
 
::<math>\sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = \sum^{p - 1}_{k = 0} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}} = S (- 1)</math>
 
 
 
 
 
(zobacz K1, K3 i K6). Oznaczenie <math>S(- 1)</math> nawiązuje do oznaczenia wprowadzonego w&nbsp;twierdzeniu K6. Wykorzystamy też znalezione w&nbsp;tym twierdzeniu oszacowanie <math>| S (- 1) |</math>.
 
 
 
Zatem
 
 
 
::<math>8 N = p - 8 - 3 \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - 3 \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} + S (- 1)</math>
 
 
 
Jeżeli <math>p = 8 k + 1</math>
 
 
 
::<math>N = {\small\frac{p - 15 + S (- 1)}{8}} > {\small\frac{p - 15 - 2 \sqrt{p}}{8}}</math>
 
 
 
Jeżeli <math>p = 8 k + 3</math>
 
  
::<math>N = {\small\frac{p - 3}{8}}</math>
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
Jeżeli <math>p = 8 k + 5</math>
+
::<math>u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m}</math>
  
::<math>N = {\small\frac{p - 7 + S (- 1)}{8}} > {\small\frac{p - 7 - 2 \sqrt{p}}{8}}</math>
+
::<math>u_j u^{- 1}_i \equiv 1 \!\! \pmod{m}</math>
  
Jeżeli <math>p = 8 k + 7</math>
+
::<math>u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m}</math>
  
::<math>N = {\small\frac{p - 7}{8}}</math>
+
::<math>u_j \equiv u_i \!\! \pmod{m}</math>
  
 
+
Ponownie otrzymujemy <math>u_i \equiv u_j \!\! \pmod{m}</math> dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Co należało pokazać.<br/>
'''Przypadek drugi: trójki liczb niekwadratowych modulo''' <math>\boldsymbol{p}</math>
 
 
 
Chcemy znaleźć ilość takich liczb <math>k \in \{ 2, 3, \ldots, p - 2 \}</math>, dla których
 
 
 
::<math>\left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} = - 1</math>
 
 
 
Ilość liczb <math>k</math> spełniających powyższy warunek łatwo zapisać korzystając z&nbsp;symbolu Legendre'a
 
 
 
::<math>N = - {\small\frac{1}{8}} \sum_{k = 2}^{p - 2} \left[ - 1 + \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \right] \left[ - 1 + \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}} \right]</math>
 
 
 
Tylko w&nbsp;przypadku, gdy wszystkie trzy liczby <math>k - 1, k, k + 1</math> są liczbami niekwadratowymi modulo <math>p</math>, iloczyn wyrażeń w&nbsp;nawiasach kwadratowych jest różny od zera i&nbsp;równy <math>- 8</math> (stąd czynnik <math>- {\small\frac{1}{8}}</math> przed sumą).
 
 
 
::<math>8 N = \sum_{k = 2}^{p - 2} \left[ 1
 
- \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
 
- \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
- \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
- \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
\right]</math>
 
 
 
:::<math>\: = p - 3 - \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}}
 
- \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
- \sum_{k = 2}^{p - 2} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k - 1}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
+ \sum_{k = 2}^{p - 2} \left( {\small\frac{k}{p}} \right)_{\small{\!\! L}} \left( {\small\frac{k + 1}{p}} \right)_{\small{\!\! L}}
 
- \sum_{k = 2}^{p - 2} \left( {\small\frac{k (k^2 - 1)}{p}} \right)_{\small{\!\! L}}</math>
 
 
 
 
 
Wartości sum już policzyliśmy, rozpatrując przypadek liczb kwadratowych modulo <math>p</math>. Zatem
 
 
 
::<math>8 N = p - 4 + \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! L}} - \left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} + \left( {\small\frac{- 2}{p}} \right)_{\small{\!\! L}} - S (- 1)</math>
 
 
 
 
 
Jeżeli <math>p = 8 k + 1</math>
 
 
 
::<math>N = {\small\frac{p - 3 - S (- 1)}{8}} > {\small\frac{p - 3 - 2 \sqrt{p}}{8}}</math>
 
 
 
Jeżeli <math>p = 8 k + 3</math>
 
 
 
::<math>N = {\small\frac{p - 3}{8}}</math>
 
 
 
Jeżeli <math>p = 8 k + 5</math>
 
 
 
::<math>N = {\small\frac{p - 3 - S (- 1)}{8}} > {\small\frac{p - 3 - 2 \sqrt{p}}{8}}</math>
 
 
 
Jeżeli <math>p = 8 k + 7</math>
 
 
 
::<math>N = {\small\frac{p - 7}{8}}</math>
 
 
 
Co kończy dowód.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 849: Linia 553:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K12</span><br/>
+
<span id="H21" style="font-size: 110%; font-weight: bold;">Zadanie H21</span><br/>
Korzystając z&nbsp;twierdzenia K11, łatwo można pokazać, że każda liczba pierwsza <math>p \geqslant 19</math> ma co najmniej dwie różne trójki kolejnych liczb kwadratowych modulo <math>p</math> i&nbsp;co najmniej dwie różne trójki kolejnych liczb niekwadratowych modulo <math>p</math>.
+
Niech <math>p</math> będzie liczbą pierwszą. Pokazać, że dla <math>k \in [0, p - 1]</math> prawdziwa jest kongruencja
  
 +
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że modulo <math>p</math> mamy
  
 +
::<math>\binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}}</math>
  
 +
::::<math>\;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}}</math>
  
== Najmniejsze liczby niekwadratowe modulo ==
+
::::<math>\;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1}</math>
  
&nbsp;<br/>
+
::::<math>\;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1}</math>
  
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
+
::::<math>\;\;\;\; \equiv (- 1)^k \pmod{p}</math>
| &nbsp;'''A.''' Najmniejsze dodatnie liczby niekwadratowe modulo <math>p</math>&nbsp;
 
|}
 
  
<span style="font-size: 110%; font-weight: bold;">Przykład K13</span><br/>
+
Co należało pokazać.<br/>
W tabeli przedstawiliśmy najmniejsze dodatnie liczby niekwadratowe modulo <math>p</math>
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
! <math>\boldsymbol{m}</math>
 
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 
|-
 
!  <math>\boldsymbol{\mathbb{n}( p )}</math>
 
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 
|}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga K14</span><br/>
 
Do wyszukiwania liczb <math>\mathbb{n} = \mathbb{n} (p)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 
 
 
<span style="font-size: 90%; color:black;">A(p) =
 
{
 
'''if'''( p == 2, '''return'''(0) );
 
'''if'''( !'''isprime'''(p), '''return'''(0) );
 
'''forprime'''(q = 2, p, '''if'''( jacobi(q, p) == -1, '''return'''(q) ));
 
}</span>
 
 
 
Zauważmy, że choć wyliczamy symbol Jacobiego, to jest to w&nbsp;rzeczywistości symbol Legendre'a, '''bo wiemy''', że liczba <math>p</math> jest liczbą pierwszą (w przypadku, gdy <math>p</math> jest liczbą złożoną, funkcja zwraca zero).
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K15</span><br/>
 
Niech <math>\mathbb{n} \in \mathbb{Z}_+</math> i&nbsp;niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, to jest liczbą pierwszą.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Przypuśćmy, że <math>\mathbb{n} = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < \mathbb{n}</math>. Z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>, zatem liczby <math>a, b</math> są liczbami kwadratowymi modulo <math>p</math>. Z&nbsp;definicji liczb kwadratowych muszą istnieć takie liczby <math>r, s</math>, że
 
 
 
::<math>r^2 \equiv a \pmod{p}</math>
 
 
 
::<math>s^2 \equiv b \pmod{p}</math>
 
 
 
Skąd wynika, że
 
 
 
::<math>\mathbb{n} = a b \equiv (r s)^2 \pmod{p}</math>
 
 
 
Wbrew założeniu, że <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>p</math>.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 911: Linia 577:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K16</span><br/>
+
<span id="H22" style="font-size: 110%; font-weight: bold;">Zadanie H22</span><br/>
Pokazać, że najmniejszą liczbą niekwadratową modulo <math>p</math> jest
+
Niech <math>A</math> i <math>B</math> będą zbiorami skończonymi. Pokazać, że jeżeli <math>A \subseteq B \;\; \text{i} \;\; | A | = | B |</math>, to <math>\; A = B</math>.
 
 
:* &nbsp;liczba <math>2</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 8 k \pm 3</math>
 
:* &nbsp;liczba <math>3</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 24 k \pm 7</math>
 
:* &nbsp;liczba <math>\geqslant 5</math> wtedy i&nbsp;tylko wtedy, gdy <math>p = 24 k \pm 1</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z właściwości symbolu Legendre'a (zobacz J33 p.7) wiemy, że
+
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/><br/>
 +
Z definicji zbiory <math>A</math> i <math>B</math> są równe wtedy i&nbsp;tylko wtedy, gdy jednocześnie spełnione są warunki
  
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} \,\, =
+
:#&nbsp;&nbsp;<math>x \in A \qquad \Longrightarrow \qquad x \in B</math>
\,\,
+
:#&nbsp;&nbsp;<math>x \in B \qquad \Longrightarrow \qquad x \in A</math>
  \begin{cases}
 
\;\;\: 1 & \text{gdy } p \equiv 1, 7 \pmod{8} \\
 
      - 1 & \text{gdy } p \equiv 3, 5 \pmod{8}
 
  \end{cases}</math>
 
  
Wynika stąd natychmiast, dla liczb pierwszych <math>p</math> postaci <math>8 k \pm 3</math> (i tylko dla takich liczb) liczba <math>2</math> jest liczbą niekwadratową, czyli również najmniejszą liczbą niekwadratową modulo <math>p</math>.
+
Z założenia <math>A \subseteq B</math>, zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element <math>x</math>, że <math>x \in B</math>, ale <math>x \notin A</math>. Jeśli tak, to
  
Z zadania J46 wynika, że liczba <math>3</math> jest liczbą niekwadratową jedynie dla liczb pierwszych postaci <math>12 k \pm 5</math>. Zatem dla liczb pierwszych, które są jednocześnie postaci <math>p = 8 k \pm 1</math> i <math>p = 12 j \pm 5</math>, liczba <math>3</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Z&nbsp;czterech warunków
+
::<math>| B | = | A | + 1</math>
  
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 5</math>
+
Co jest sprzeczne z&nbsp;założeniem, że <math>| A | = | B |</math>.
  
::<math>p = 8 k + 1 \quad \text{i} \quad p = 12 j + 7</math>
+
'''Uwaga'''<br/>
 +
Łatwo zauważyć, że wybierając z&nbsp;trzech warunków <math>A \subseteq B</math>, <math>B \subseteq A</math> i <math>| A | = | B |</math> dowolne dwa, zawsze otrzymamy z&nbsp;nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych<ref name="cardinality1"/>, ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.
  
::<math>p = 8 k + 7 \quad \text{i} \quad p = 12 j + 5</math>
 
  
::<math>p = 8 k + 7 \quad \text{i} \quad p = 12 j + 7</math>
+
<span style="border-bottom-style: double;">Drugi sposób</span><br/><br/>
 +
Ponieważ zbiór <math>A</math> jest z&nbsp;założenia podzbiorem zbioru <math>B</math>, to zbiór <math>B</math> można przedstawić w&nbsp;postaci sumy zbioru <math>A</math> i&nbsp;pewnego zbioru <math>C</math> takiego, że żaden element zbioru <math>C</math> nie jest elementem zbioru <math>A</math>. Zatem
  
Drugi i&nbsp;trzeci nie są możliwe, bo modulo <math>4</math> otrzymujemy
+
::<math>B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing</math>
  
::<math>p \equiv 1 \pmod{4} \quad \text{i} \quad p \equiv 3 \pmod{4}</math>
+
Ponieważ zbiory <math>A</math> i <math>C</math> są rozłączne, to wiemy, że
  
::<math>p \equiv 3 \pmod{4} \quad \text{i} \quad p \equiv 1 \pmod{4}</math>
+
::<math>| A \cup C | = | A | + | C |</math>
  
a z&nbsp;pierwszego i&nbsp;czwartego mamy
+
Czyli
  
::<math>3 p = 24 k + 3 \quad \text{i} \quad 2 p = 24 j + 10 \qquad \;\: \Longrightarrow \qquad p = 24 (k - j) - 7 \qquad \Longrightarrow \qquad p \equiv - 7 \pmod{24}</math>
+
::<math>| B | = | A \cup C | = | A | + | C |</math>
  
::<math>3 p = 24 k + 21 \quad \text{i} \quad 2 p = 24 j + 14 \qquad \Longrightarrow \qquad p = 24 (k - j) + 7 \qquad \Longrightarrow \qquad p \equiv 7 \pmod{24}</math>
+
Skąd wynika, że <math>| C | = 0</math>, zatem zbiór <math>C</math> jest zbiorem pustym i&nbsp;otrzymujemy natychmiast <math>B = A</math>. Co należało pokazać.
  
Zauważmy, że problem mogliśmy zapisać w&nbsp;postaci układu kongruencji
+
'''Uwaga (przypadek zbiorów skończonych)'''<br/>
 +
Najczęściej prawdziwe jest jedynie oszacowanie <math>| A \cup C | \leqslant | A | + | C |</math>, bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów <math>| A |</math> i <math>| C |</math>, zatem od sumy <math>| A | + | C |</math> musimy odjąć liczbę elementów iloczynu zbiorów <math>| A |</math> i <math>| C |</math>. Co daje ogólny wzór<ref name="sumazbiorow"/>
  
::<math>p \equiv \pm 1 \pmod{8}</math>
+
::<math>| A \cup C | = | A | + | C | - | A \cap C |</math><br/>
 
 
::<math>p \equiv \pm 5 \pmod{12}</math>
 
 
 
Gdyby moduły tych kongruencji były względnie pierwsze, to każdemu wyborowi znaków odpowiadałaby pewna kongruencja równoważna (zobacz J3). Widzimy, że w&nbsp;przypadku, gdy moduły nie są względnie pierwsze, kongruencja równoważna może istnieć, ale nie musi. Rozwiązując taki problem, wygodnie jest skorzystać z&nbsp;programu PARI/GP. Wystarczy wpisać
 
 
 
chinese(Mod(1, 8), Mod(5, 12)) = Mod(17, 24)
 
chinese(Mod(1, 8), Mod(-5, 12)) - błąd
 
chinese(Mod(-1, 8), Mod(5, 12)) - błąd
 
chinese(Mod(-1, 8), Mod(-5, 12)) = Mod(7, 24)
 
 
 
Ostatni punkt zadania rozwiążemy tą metodą. Liczba większa lub równa <math>5</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> wtedy i&nbsp;tylko wtedy, gdy liczby <math>2</math> i <math>3</math> są liczbami kwadratowymi modulo <math>p</math>, co oznacza, że liczba pierwsza <math>p</math> spełnia kongruencje
 
 
 
::<math>p \equiv \pm 1 \pmod{8}</math>
 
 
 
::<math>p \equiv \pm 1 \pmod{12}</math>
 
 
 
Postępując jak wyżej, otrzymujemy
 
 
 
chinese(Mod(1, 8), Mod(1, 12)) = Mod(1, 24)
 
chinese(Mod(1, 8), Mod(-1, 12)) - błąd
 
chinese(Mod(-1, 8), Mod(1, 12)) - błąd
 
chinese(Mod(-1, 8), Mod(-1, 12)) = Mod(23, 24)
 
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 984: Linia 621:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K17</span><br/>
+
<span id="H23" style="font-size: 110%; font-weight: bold;">Definicja H23</span><br/>
Dla każdej liczby pierwszej <math>p_n</math> istnieje nieskończenie wiele takich liczb pierwszych <math>q</math>, że <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>.
+
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Powiemy, że zbiory <math>A, B</math> są równe modulo <math>m</math>, jeżeli dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja <math>a_k \equiv b_j \!\! \pmod{m}</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Niech <math>2, p_2, \ldots, p_{n - 1}, p_n</math> będą kolejnymi liczbami pierwszymi. Wybierzmy liczbę <math>u</math> tak, aby spełniała układ kongruencji
 
  
::<math>\begin{align}
 
u & \equiv 1 \pmod{8 p_2 \cdot \ldots \cdot p_{n - 1}} \\
 
u & \equiv a \pmod{p_n}
 
\end{align}</math>
 
  
gdzie <math>a</math> oznacza dowolną liczbą niekwadratową modulo <math>p_n</math>. Na podstawie chińskiego twierdzenia o&nbsp;resztach (zobacz J3) powyższy układ kongruencji może być zapisany w&nbsp;postaci kongruencji równoważnej
+
<span id="H24" style="font-size: 110%; font-weight: bold;">Twierdzenie H24</span><br/>
 +
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Zbiory <math>A, B</math> są równe modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy zbiory <math>A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \}</math> i <math>B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \}</math> są równe.
  
::<math>u \equiv c \pmod{8 p_2 \cdot \ldots \cdot p_n}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
 +
<math>\Large{\Longrightarrow}</math>
  
Zauważmy, że żadna z&nbsp;liczb pierwszych <math>p_k</math>, gdzie <math>1 \leqslant k \leqslant n</math> nie dzieli liczby <math>c</math>, bo mielibyśmy
+
Ponieważ elementy każdego ze zbiorów <math>A, B</math> są różne modulo <math>m</math>, to elementy zbiorów <math>A'</math> i <math>B'</math> są wszystkie różne. Czyli <math>| A' | = | B' | = r</math>. Ponieważ warunek
  
::<math>u \equiv 0 \pmod{p_k}</math>
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
wbrew wypisanemu wyżej układowi kongruencji. Zatem <math>\gcd (c, 8 p_2 \cdot \ldots \cdot p_n) = 1</math> i&nbsp;z&nbsp;twierdzenia Dirichleta (zobacz C27) wiemy, że wśród liczb <math>u</math> spełniających kongruencję <math>u \equiv c \!\! \pmod{8 p_2 \cdot \ldots \cdot p_n}</math> występuje nieskończenie wiele liczb pierwszych (bo wśród tych liczb są liczby postaci <math>8 p_2 \cdot \ldots \cdot p_n \cdot k + c</math>, gdzie <math>k \in \mathbb{Z}_+</math>). Oznaczmy przez <math>q</math> dowolną z&nbsp;tych liczb pierwszych.
+
oznacza, że reszty z&nbsp;dzielenia liczb <math>a_k</math> i <math>b_j</math> przez <math>m</math> są równe, to z&nbsp;założenia dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że
  
 +
::<math>R_m (a_k) = R_m (b_j)</math>
  
Ponieważ <math>q \equiv 1 \!\! \pmod{8}</math>, to <math>\left( {\small\frac{2}{q}} \right)_{\small{\!\! L}} = 1</math> (zobacz J33), a&nbsp;dla wszystkich liczb pierwszych nieparzystych <math>p_k < p_n</math> mamy
+
A to oznacza, że każdy element zbioru <math>A'</math> należy do zbioru <math>B'</math>, czyli <math>A' \subseteq B'</math>. Wynika stąd, że <math>A' = B'</math> (zobacz [[#H22|H22]]). Co należało pokazać.
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
<math>\Large{\Longleftarrow}</math>
::<math>\left( {\small\frac{p_k}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_k - 1}{2}} = \left( {\small\frac{q}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_k}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{p_k}} \right)_{\small{\!\! L}} = 1</math>
 
</div>
 
 
 
bo <math>8 \mid (q - 1)</math>. Dla liczby pierwszej <math>p_n</math> jest
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
::<math>\left( {\small\frac{p_n}{q}} \right)_{\small{\!\! L}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} \cdot (- 1)^{\tfrac{q - 1}{2} \cdot \tfrac{p_n - 1}{2}} = \left( {\small\frac{q}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{c}{p_n}} \right)_{\small{\!\! L}} = \left( {\small\frac{a}{p_n}} \right)_{\small{\!\! L}} = - 1</math>
 
</div>
 
 
 
Zatem wszystkie liczby pierwsze mniejsze od <math>p_n</math> są liczbami kwadratowymi modulo <math>q</math>, a&nbsp;liczba pierwsza <math>p_n</math> jest najmniejszą liczbą niekwadratową modulo <math>q</math>. Zauważmy, że <math>q</math> była dowolnie wybraną liczbą pierwszą z&nbsp;nieskończenie wielu liczb pierwszych występujących w&nbsp;ciągu arytmetycznym <math>8 p_2 \cdot \ldots \cdot p_n \cdot k + c</math>, gdzie <math>k \in \mathbb{Z}_+</math>. Co kończy dowód.<br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K18 (Sarvadaman Chowla)</span><br/>
 
Istnieje niekończenie wiele liczb pierwszych <math>p</math> takich, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math>, gdzie <math>L</math> jest stałą Linnika.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Niech <math>a = 4 P (m)</math>, gdzie <math>P(m)</math> jest iloczynem wszystkich liczb pierwszych nie większych od <math>m</math>. Z&nbsp;twierdzenia Dirichleta (zobacz C27) wiemy, że w&nbsp;ciągu arytmetycznym <math>u_k = a k + 1</math> występuje nieskończenie wiele liczb pierwszych. Niech <math>p</math> oznacza dowolną z&nbsp;nich.
 
 
 
Ponieważ <math>p \equiv 1 \!\! \pmod{8}</math>, to
 
 
 
::<math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! L}} = 1</math>
 
 
 
(zobacz J33 p.7). Oczywiście <math>p \equiv 1 \!\! \pmod{4}</math>, zatem dla dowolnej liczby pierwszej nieparzystej <math>q_i \leqslant m</math> z&nbsp;twierdzenia J33 p.9 otrzymujemy
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
::<math>\left( {\small\frac{q_i}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{p}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{a k + 1}{q_i}} \right)_{\small{\!\! L}} = \left( {\small\frac{1}{q_i}} \right)_{\small{\!\! L}} = 1</math>
 
</div>
 
  
Wynika stąd, że najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>m</math>. Wiemy też, że (zobacz A9)
+
Ponieważ zbiory <math>A', B'</math> są równe, to zbiór <math>A'</math> jest podzbiorem zbioru <math>B'</math>, czyli dla każdego elementu <math>R_m (a_k) \in A'</math> istnieje taki element <math>R_m (b_j) \in B'</math>, że
  
::<math>a = 4 P (m) < 4 \cdot 4^m = 4^{m + 1}</math>
+
::<math>R_m (a_k) = R_m (b_j)</math>
  
Załóżmy teraz, że <math>p</math> jest najmniejszą liczbą pierwszą w&nbsp;ciągu arytmetycznym <math>u_k = a k + 1</math>, a&nbsp;liczba <math>m</math> została wybrana tak, że liczba <math>a = 4 P (m)</math> jest dostatecznie duża i&nbsp;możliwe jest skorzystanie z&nbsp;twierdzenia Linnika (zobacz C30). Dostajemy natychmiast oszacowanie
+
Ponieważ równość reszt oznacza równość modulo, zatem
  
::<math>p = p_{\min} (a, 1) < a^L</math>
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
gdzie <math>L</math> jest stałą Linnika (możemy przyjąć <math>L = 5</math>). Łącząc powyższe oszacowania, łatwo otrzymujemy oszacowanie najmniejszej liczby niekwadratowej modulo <math>p</math>
+
Wynika stąd, że dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja
  
::<math>\mathbb{n}(p) \geqslant m + 1 > \log_4 a = {\small\frac{\log a}{\log 4}} = {\small\frac{\log a^L}{2 L \log 2}} > {\small\frac{\log p}{2 L \log 2}}</math>
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
Każdemu wyborowi innej liczby <math>m' > m</math> takiej, że <math>P(m') > P (m)</math> odpowiada inna liczba pierwsza <math>p'</math> taka, że <math>\mathbb{n}(p') > {\small\frac{\log p'}{2 L \log 2}}</math>, zatem liczb pierwszych <math>p</math> dla których najmniejsza liczba niekwadratowa modulo <math>p</math> jest większa od <math>{\small\frac{\log p}{2 L \log 2}}</math> jest nieskończenie wiele.<br/>
+
czyli zbiory <math>A, B</math> są równe modulo <math>m</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1059: Linia 663:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K19</span><br/>
+
<span id="H25" style="font-size: 110%; font-weight: bold;">Twierdzenie H25</span><br/>
W twierdzeniu K17 pokazaliśmy, że dla każdej liczby pierwszej <math>\mathbb{n}</math> istnieją takie liczby pierwsze <math>p</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math>. Zatem zbiór <math>S_\mathbb{n}</math> liczb pierwszych takich, że dla każdej liczby <math>p \in S_\mathbb{n}</math> liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p</math> jest zbiorem niepustym. Wynika stąd, że zbiór <math>S_\mathbb{n}</math> ma element najmniejszy i&nbsp;możemy te najmniejsze liczby pierwsze łatwo znaleźć – wystarczy w&nbsp;PARI/GP napisać proste polecenie
+
Niech będą dane zbiory <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, <math>B = \{ b_1, b_2, \ldots, b_{p - 1} \}</math>, gdzie <math>p</math> jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru <math>B</math> są różne modulo <math>p</math> i&nbsp;żadna z&nbsp;liczb <math>b_k \in B</math> nie jest podzielna przez <math>p</math>, to zbiory <math>A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \}</math> są równe modulo <math>p</math>.
 
 
<span style="font-size: 90%; color:black;">'''forprime'''(n = 2, 50, '''forprime'''(p = 2, 10^10, '''if'''( A(p) == n, '''print'''(n, "  ", p); '''break'''() )))</span>
 
 
 
W tabeli przedstawiamy uzyskane rezultaty (zobacz też [https://oeis.org/A000229 A000229]).
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{\mathbb{n}}</math>  
 
| <math>2</math> || <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math>
 
|-
 
! <math>\boldsymbol{p}</math>  
 
| <math>3</math> || <math>7</math> || <math>23</math> || <math>71</math> || <math>311</math> || <math>479</math> || <math>1559</math> || <math>5711</math> || <math>10559</math> || <math>18191</math> || <math>31391</math> || <math>422231</math> || <math>701399</math> || <math>366791</math> || <math>3818929</math>
 
|}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga K20</span><br/>
 
Z nierówności Pólyi-Winogradowa (zobacz K2) wynika natychmiast oszacowanie najmniejszej liczby niekwadratowej modulo <math>p</math>. Ponieważ najdłuższy ciąg kolejnych liczb kwadratowych modulo <math>p</math> nie może być dłuższy od <math>\left\lfloor \sqrt{p} \log p \right\rfloor</math>, to
 
 
 
::<math>\mathbb{n} (p) \leqslant \left\lfloor \sqrt{p} \log p \right\rfloor + 1 < \sqrt{p} \log p + 1</math>
 
 
 
Pokażemy, że powyższe oszacowanie można łatwo wzmocnić.
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K21</span><br/>
 
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Prawdziwe jest oszacowanie
 
 
 
::<math>\mathbb{n} (p) < \sqrt{p} + {\small\frac{1}{2}}</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ <math>\mathbb{n} \nmid p</math>, to z&nbsp;oszacowania <math>x - 1 < \lfloor x \rfloor \leqslant x</math> wynika, że
+
Z definicji zbioru <math>A</math> wszystkie elementy tego zbioru są różne modulo <math>p</math>. Łatwo zauważamy, że
  
::<math>{\small\frac{p}{\mathbb{n}}} - 1 < \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor < {\small\frac{p}{\mathbb{n}}}</math>
+
::<math>A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A'</math>
  
::<math>p < \mathbb{n} \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + \mathbb{n} < p + \mathbb{n}</math>
+
Ponieważ wszystkie liczby <math>b_k \in B</math>, gdzie <math>k = 1, \ldots, p - 1</math> są różne modulo <math>p</math> i&nbsp;nie są podzielne przez <math>p</math>, to reszty <math>R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
Niech <math>u = \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1</math>, mamy
+
::<math>A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B'</math>
  
::<math>0 < \mathbb{n} u - p < \mathbb{n}</math>
+
Na mocy twierdzenia [[#H24|H24]] zbiory <math>A</math> i <math>B</math> są równe modulo <math>p</math>.
  
Liczba <math>\mathbb{n} u - p</math> musi być liczbą kwadratową modulo <math>p</math>, zatem
+
Z twierdzenia [[#H20|H20]] wiemy, że wszystkie liczby <math>b^{- 1}_k \in C</math> są różne modulo <math>p</math>. Zauważmy, że każda z&nbsp;tych liczb jest względnie pierwsza z <math>p</math>, zatem nie może być podzielna przez <math>p</math>. Wynika stąd, że reszty <math>R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
::<math>1 = \left( {\small\frac{\mathbb{n} u - p}{p}} \right)_{\small{\!\! L}} = \left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} \cdot \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}} = - \left( {\small\frac{u}{p}} \right)_{\small{\!\! L}}</math>
+
::<math>A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C'</math>
  
Ale z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą taką, że <math>\left( {\small\frac{\mathbb{n}}{p}} \right)_{\small{\!\! L}} = - 1</math>. Wynika stąd, że musi być <math>\mathbb{n} \leqslant u</math> i&nbsp;łatwo znajdujemy, że
+
Na mocy twierdzenia [[#H24|H24]] zbiory <math>A</math> i <math>C</math> są równe modulo <math>p</math>. Ponieważ <math>A' = B'</math> i <math>A' = C'</math>, to <math>B' = C'</math> i&nbsp;ponownie na mocy twierdzenia [[#H24|H24]] zbiory <math>B</math> i <math>C</math> są równe modulo <math>p</math>. Co należało pokazać.<br/>
 
 
::<math>\mathbb{n} \leqslant \left\lfloor {\small\frac{p}{\mathbb{n}}} \right\rfloor + 1 < {\small\frac{p}{\mathbb{n}}} + 1</math>
 
 
 
::<math>\mathbb{n}^2 < p + \mathbb{n}</math>
 
 
 
Ponieważ wypisane liczby są liczbami całkowitymi, to ostatnią nierówność możemy zapisać w&nbsp;postaci
 
 
 
::<math>\mathbb{n}^2 \leqslant p + \mathbb{n} - 1</math>
 
 
 
Skąd otrzymujemy
 
 
 
::<math>\left( \mathbb{n} - {\small\frac{1}{2}} \right)^2 \leqslant p - {\small\frac{3}{4}}</math>
 
 
 
::<math>\mathbb{n} \leqslant {\small\frac{1}{2}} + \sqrt{p - {\small\frac{3}{4}}} < {\small\frac{1}{2}} + \sqrt{p}</math>
 
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1128: Linia 687:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K22*</span><br/>
+
<span id="H26" style="font-size: 110%; font-weight: bold;">Zadanie H26</span><br/>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą, a <math>\mathbb{n}</math> będzie najmniejszą liczbą niekwadratową modulo <math>p</math>. Dla <math>p \geqslant 5</math> prawdziwe jest oszacowanie<ref name="Norton1"/><ref name="Trevino1"/><ref name="Trevino2"/>
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Pokazać, że suma <math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}}</math> jest podzielna przez <math>p</math>.
  
::<math>\mathbb{n} (p) \leqslant 1.1 \cdot p^{1 / 4} \log p</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy najpierw, że modulo <math>p</math> następujące sumy są równe
  
 +
::<math>\sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p}</math>
  
 +
Istotnie, jeśli przyjmiemy w&nbsp;twierdzeniu [[#H25|H25]], że zbiór <math>B = \{ 1, 2, \ldots, p - 1 \}</math>, to zbiór <math>C</math> będzie zbiorem liczb, które są odwrotnościami liczb <math>1, 2, \ldots, p - 1</math> modulo <math>p</math> i&nbsp;możemy napisać
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K23</span><br/>
+
::<math>\sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p}</math>
Liczby <math>\mathbb{n} = \mathbb{n} (p)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (p)</math>, gdzie <math>p</math> są nieparzystymi liczbami pierwszymi, jest równa<ref name="Erdos1"/>
 
  
::<math>\lim_{x \to \infty} {\small\frac{1}{\pi (x)}} \sum_{p \leqslant x} \mathbb{n} (p) = \sum_{k = 1}^{\infty} {\small\frac{p_k}{2^k}} = 3.674643966 \ldots</math>
+
bo
  
 +
:* gdy <math>x</math> przebiega kolejne wartości <math>b_k</math>, to <math>x</math> przyjmuje kolejno wartości <math>1, 2, \ldots, p - 1</math>
  
 +
:* gdy <math>y</math> przebiega kolejne wartości <math>b_k^{- 1}</math>, to <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości ze zbioru <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, czyli liczba <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości <math>1, 2, \ldots, p - 1</math>, ale w&nbsp;innej kolejności
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K24</span><br/>
+
Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo <math>p</math>.
Możemy też badać najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>. Pokażemy, że są one również liczbami pierwszymi. W tabeli przedstawiliśmy najmniejsze '''nieparzyste''' liczby niekwadratowe modulo <math>p</math>.
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
Zatem modulo <math>p</math> otrzymujemy
|-
 
! <math>\boldsymbol{m}</math>
 
| <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 
|-
 
! <math>\boldsymbol{\mathbb{n}_1( p )}</math>
 
| <math>3</math> || <math>3</math> || <math>-</math> || <math>7</math> || <math>5</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>3</math> || <math>3</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 
|}
 
  
 +
::<math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1}</math>
  
 +
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K25</span><br/>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k</math>
Dla każdej liczby pierwszej <math>p \geqslant 5</math> najmniejsza '''nieparzysta''' liczba niekwadratowa modulo <math>p</math> jest liczbą pierwszą mniejszą od <math>p</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}}</math>
Niech <math>S \subset \{ 1, 2, \ldots, p - 1 \}</math> będzie zbiorem wszystkich '''nieparzystych''' liczb niekwadratowych modulo <math>p</math>. Z&nbsp;twierdzenia J29 wiemy, że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to w&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> jest dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb kwadratowych modulo <math>p</math> i&nbsp;tyle samo liczb niekwadratowych modulo <math>p</math>. W&nbsp;zbiorze <math>\{ 1, 2, \ldots, p - 1 \}</math> mamy też dokładnie <math>{\small\frac{p - 1}{2}}</math> liczb parzystych i&nbsp;tyle samo liczb nieparzystych.
 
  
Wszystkie liczby parzyste nie mogą być liczbami niekwadratowymi modulo <math>p</math>, bo <math>4 = 2^2 < 5 \leqslant p</math> jest parzystą liczbą kwadratową modulo <math>p</math>, czyli wśród liczb nieparzystych musi istnieć przynajmniej jedna liczba niekwadratowa modulo <math>p</math>. Wynika stąd, że zbiór <math>S</math> nie jest zbiorem pustym, zatem ma element najmniejszy. Pokażemy, że najmniejszy element zbioru <math>S</math> jest liczbą pierwszą.
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p</math>
  
Niech <math>3 \leqslant \mathbb{n}_\boldsymbol{1} \leqslant p - 2</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Wynika stąd, że każda liczba <math>a < \mathbb{n}_\boldsymbol{1}</math> musi być liczbą parzystą lub liczbą kwadratową modulo <math>p</math>. Przypuśćmy, że <math>\mathbb{n}_\boldsymbol{1}</math> jest liczbą złożoną, czyli <math>\mathbb{n}_\boldsymbol{1} = a b</math>, gdzie <math>1 < a, b < \mathbb{n}_\boldsymbol{1}</math>. Zauważmy, że żadna z&nbsp;liczb <math>a, b</math> nie może być liczbą parzystą, bo wtedy liczba <math>\mathbb{n}_\boldsymbol{1}</math> również byłaby liczbą parzystą wbrew określeniu liczby <math>\mathbb{n}_\boldsymbol{1}</math>. Zatem obie liczby <math>a, b</math> muszą być nieparzystymi liczbami kwadratowymi, co jest niemożliwe, bo
+
:::::<math>\;\;\: \equiv 0 \!\! \pmod{p}</math>
  
::<math>- 1 = \left( {\small\frac{\mathbb{n}_\boldsymbol{1}}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{b}{p}} \right)_{\small{\!\! J}}</math>
+
Należy zauważyć, że dla liczby pierwszej nieparzystej <math>p</math> liczba <math>{\small\frac{p - 1}{2}}</math> jest liczbą całkowitą.<br/>
 
 
i jeden z&nbsp;czynników po prawej stronie musi być ujemny. Co oznacza, że jedna z&nbsp;liczb <math>a, b</math> jest nieparzystą liczbą niekwadratową modulo <math>p</math> mniejszą od <math>\mathbb{n}_\boldsymbol{1}</math> wbrew określeniu liczby <math>\mathbb{n}_\boldsymbol{1}</math>. Uzyskana sprzeczność pokazuje, że liczba <math>\mathbb{n}_\boldsymbol{1}</math> jest liczbą pierwszą. Co kończy dowód.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1176: Linia 729:
  
  
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
+
== Funkcje multiplikatywne ==
| &nbsp;'''B.''' Najmniejsze dodatnie liczby niekwadratowe modulo <math>m</math>
+
 
|}
+
<span id="H27" style="font-size: 110%; font-weight: bold;">Definicja H27</span><br/>
 +
Powiemy, że funkcja <math>f(n)</math> określona w&nbsp;zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli <math>f(1) = 1</math> i&nbsp;dla względnie pierwszych liczb <math>a, b</math> spełniony jest warunek <math>f(a b) = f (a) f (b)</math>.
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K26</span><br/>
 
Najmniejsze liczby niekwadratowe modulo <math>m</math> są naturalnym uogólnieniem najmniejszych liczb niekwadratowych modulo <math>p .</math> W&nbsp;jednym i&nbsp;drugim przypadku liczba <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową w&nbsp;zbiorze wszystkich liczb niekwadratowych dodatnich nie większych od <math>p</math> lub <math>m .</math> Dlatego będziemy je oznaczali również jako <math>\mathbb{n}(m) .</math>
 
  
  
 +
<span id="H28" style="font-size: 110%; font-weight: bold;">Uwaga H28</span><br/>
 +
Założenie <math>f(1) = 1</math> możemy równoważnie zastąpić założeniem, że funkcja <math>f(n)</math> nie jest tożsamościowo równa zero.
 +
Gdyby <math>f(n)</math> spełniała jedynie warunek <math>f(a b) = f (a) f (b)</math> dla względnie pierwszych liczb <math>a, b</math>, to mielibyśmy
  
<span style="font-size: 110%; font-weight: bold;">Definicja K27</span><br/>
+
::a)&nbsp;&nbsp;&nbsp;<math>f(n)</math> jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 0</math>
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Powiemy, że <math>\mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, gdy <math>\mathbb{n}</math> jest najmniejszą liczbą dodatnią względnie pierwszą z <math>m</math> taką, że kongruencja
 
  
::<math>x^2 \equiv \mathbb{n} \pmod{m}</math>
+
::b)&nbsp;&nbsp;&nbsp;<math>f(n)</math> nie jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 1</math>
  
nie ma rozwiązania.
+
Ponieważ <math>f(1) = f (1 \cdot 1) = f (1) f (1)</math>, zatem <math>f(1) = 0</math> lub <math>f (1) = 1</math>.
  
 +
Jeżeli <math>f(1) = 0</math>, to dla dowolnego <math>n</math> mamy
  
 +
::<math>f(n) = f (n \cdot 1) = f (n) f (1) = 0</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład K28</span><br/>
+
Czyli <math>f(n)</math> jest funkcją tożsamościowo równą zero.
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math> i&nbsp;najmniejsze liczby niekwadratowe modulo <math>m .</math>
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
Jeżeli <math>f(n)</math> nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba <math>a \in \mathbb{Z}_+</math>, że <math>f(a) \neq 0</math>. Zatem
! <math>\boldsymbol{m}</math>
 
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 
|-
 
! <math>\boldsymbol{\mathbb{n}( p )}</math>  
 
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 
|-
 
! <math>\boldsymbol{\mathbb{n}( m )}</math>
 
| <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>3</math> || <math>2</math>
 
|}
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
::<math>f(a) = f (a \cdot 1) = f (a) f (1)</math>
|-
 
! <math>\boldsymbol{m}</math>
 
| <math>4</math> || <math>6</math> || <math>8</math> || <math>10</math> || <math>12</math> || <math>14</math> || <math>16</math> || <math>18</math> || <math>20</math> || <math>22</math> || <math>24</math> || <math>26</math> || <math>28</math> || <math>30</math> || <math>32</math> || <math>34</math> || <math>36</math> || <math>38</math> || <math>40</math> || <math>42</math> || <math>44</math> || <math>46</math> || <math>48</math> || <math>50</math> || <math>52</math>
 
|-
 
! <math>\boldsymbol{\mathbb{n}( m )}</math>
 
| <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>7</math> || <math>5</math> || <math>5</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>3</math> || <math>5</math> || <math>3</math> || <math>5</math> || <math>5</math> || <math>3</math> || <math>3</math>
 
|}
 
  
 +
I dzieląc obie strony przez <math>f(a) \neq 0</math>, dostajemy <math>f(1) = 1</math>.
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K29</span><br/>
 
Do wyszukiwania liczb <math>\mathbb{n} (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 
  
<span style="font-size: 90%; color:black;">B(m) =
+
<span id="H29" style="font-size: 110%; font-weight: bold;">Przykład H29</span><br/>
{
+
Ponieważ <math>\gcd (1, c) = 1</math>, to <math>\gcd (n, c)</math> rozpatrywana jako funkcja <math>n</math>, gdzie <math>c</math> jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz [[#H8|H8]]).
'''local'''(p, res);
 
p = 1;
 
'''while'''( p < m,
 
        p = '''nextprime'''(p + 1);
 
        '''if'''( m%p == 0, '''next'''() );
 
        res = -1;
 
        '''for'''( k = 2, '''floor'''(m/2), '''if'''( k^2%m == p, res = 1; '''break'''() ) );
 
        '''if'''( res == -1, '''return'''(p) );
 
      );
 
}</span>
 
  
Obliczenia można wielokrotnie przyspieszyć, modyfikując kod funkcji tak, aby uwzględniał pokazane niżej właściwości oraz parzystość liczby <math>m .</math> Tutaj przedstawiamy tylko przykład, który wykorzystuje część tych możliwości.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">B(m) =
 
{
 
'''local'''(p, res, t);
 
t = m%8;
 
'''if'''( t == 3 || t == 5, '''return'''(2) );
 
t = m%12;
 
'''if'''( t == 4 || t == 8, '''return'''(3) );
 
t = m%24;
 
'''if'''( t == 9 || t == 15, '''return'''(2) );
 
'''if'''( t == 10 || t == 14, '''return'''(3) );
 
t = m%30;
 
'''if'''( t == 6 || t == 12 || t == 18 || t == 24, '''return'''(5) );
 
p = 1;
 
'''while'''( p < m,
 
        p = '''nextprime'''(p + 1);
 
        '''if'''( m%p == 0, '''next'''() );
 
        res = -1;
 
        '''for'''( k = 2, '''floor'''(m/2), '''if'''( k^2%m == p, res = 1; '''break'''() ) );
 
        '''if'''( res == -1, '''return'''(p) );
 
      );
 
}</span>
 
{{\Spoiler}}
 
  
 +
<span id="H30" style="font-size: 110%; font-weight: bold;">Twierdzenie H30</span><br/>
 +
Jeżeli funkcja <math>f(n)</math> jest funkcją multiplikatywną, to funkcja
  
 +
::<math>F(n) = \sum_{d \mid n} f (d)</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K30</span><br/>
+
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>, jest również funkcją multiplikatywną.
Niech <math>m \in \mathbb{Z} \,</math> i <math>\, m \geqslant 3 .</math> Jeżeli <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to <math>\mathbb{n}</math> jest liczbą pierwszą.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Przypuśćmy, że <math>\mathbb{n} = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < \mathbb{n} .</math> Z&nbsp;założenia <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, zatem liczby <math>a, b</math> są liczbami kwadratowymi modulo <math>m .</math> Z&nbsp;definicji liczb kwadratowych muszą istnieć takie liczby <math>r, s</math>, że
+
Ponieważ
  
::<math>r^2 \equiv a \pmod{m}</math>
+
::<math>F(1) = \sum_{d \mid 1} f (d) = f (1) = 1</math>
  
::<math>s^2 \equiv b \pmod{m}</math>
+
to funkcja <math>F(n)</math> spełnia pierwszy warunek definicji [[#H27|H27]].
  
Skąd wynika, że
+
Niech <math>a, b</math> będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu <math>a b</math> można zapisać w&nbsp;postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a</math>, <math>\; d_2 \mid b \,</math> oraz <math>\, \gcd (d_1, d_2) = 1</math> (zobacz [[#H13|H13]]). Niech zbiory
  
::<math>\mathbb{n} = a b \equiv (r s)^2 \pmod{m}</math>
+
::<math>S_a = \{ d \in \mathbb{Z}_+ : d \mid a \}</math>
  
Wbrew założeniu, że <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>m .</math><br/>
+
::<math>S_b = \{ d \in \mathbb{Z}_+ : d \mid b \}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \}</math>
  
 +
będą zbiorami dzielników dodatnich liczb <math>a, b</math> i <math>a b</math>. Dla przykładu
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K31</span><br/>
+
::<math>S_5 = \{ 1, 5 \}</math>
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli <math>m = 8 k \pm 3</math>, to <math>\mathbb{n} (m) = 2 .</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>S_7 = \{ 1, 7 \}</math>
Z twierdzenia J41 wiemy, że <math>\left( {\small\frac{2}{m}} \right)_{\small{\!\! J}} = - 1</math>, gdy <math>m = 8 k \pm 3 .</math> Wynika stąd, że <math>2</math> jest liczbą niekwadratową modulo <math>m</math>, a&nbsp;jeśli tak, to musi być najmniejszą liczbą niekwadratową modulo <math>m .</math> Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>S_{35} = \{ 1, 5, 7, 35 \}</math>
  
 +
Dla dowolnego <math>d_1 \in S_a \,</math> i <math>\, d_2 \in S_b</math> musi być <math>\gcd (d_1, d_2) = 1</math>, bo gdyby było <math>\gcd (d_1, d_2) = g > 1</math>, to
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K32</span><br/>
+
::<math>g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a</math>
Niech <math>m \in \mathbb{Z}_+ \,</math> i <math>\, \mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Pokazać, że jeżeli spełniony jest jeden z&nbsp;warunków
 
  
:*&nbsp;&nbsp;<math>4 \mid m \;</math> i <math>\; \gcd (3, m) = 1</math>
+
::<math>g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b</math>
:*&nbsp;&nbsp;<math>m = 12 k \pm 4</math>
 
  
to <math>\mathbb{n} (m) = 3 .</math>
+
Zatem <math>g \mid \gcd (a, b)</math> i&nbsp;mielibyśmy <math>\gcd (a, b) \geqslant g > 1</math>, wbrew założeniu.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Przekształcając, otrzymujemy
Zauważmy, że <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m</math>, bo <math>2 \mid m .</math> Rozważmy kongruencję
 
  
::<math>x^2 \equiv 3 \pmod{m}</math>
+
::<math>F(a b) = \sum_{d \mid a b} f (d)</math>
  
Z założenia <math>4 \mid m</math>, co nie wyklucza możliwości, że również <math>8 \mid m .</math> Ponieważ <math>4 \nmid (3 - 1)</math> i <math>8 \nmid (3 - 1)</math>, to z&nbsp;twierdzenia J55 wynika, że kongruencja <math>x^2 \equiv 3 \!\! \pmod{m}</math> nie ma rozwiązania. Jeśli tylko <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math> W&nbsp;pierwszym punkcie jest to założone wprost, w&nbsp;drugim łatwo widzimy, że <math>3 \nmid (12 k \pm 4) .</math>
+
:::<math>\;\;\;\;\: = \sum_{d \in S_{a b}} f (d)</math>
  
Można też zauważyć, że żądanie, aby <math>\gcd (3, m) = 1</math>, prowadzi do dwóch układów kongruencji
+
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2)</math>
  
::<math>\begin{align}
+
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2)</math>
m &\equiv 0 \pmod{4} \\
 
m &\equiv 1 \pmod{3}
 
\end{align}</math>
 
  
oraz
+
:::<math>\;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2)</math>
  
::<math>\begin{align}
+
:::<math>\;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2)</math>
m &\equiv 0 \pmod{4} \\
 
m &\equiv 2 \pmod{3}
 
\end{align}</math>
 
  
którym, na mocy chińskiego twierdzenia o&nbsp;resztach, odpowiadają dwie kongruencje równoważne
+
:::<math>\;\;\;\;\: = F (a) F (b)</math>
 
 
::<math>m \equiv \pm 4 \pmod{12}</math>
 
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 1332: Linia 825:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K33</span><br/>
 
Niech <math>m = 24 k \pm 10 .</math> Pokazać, że <math>\mathbb{n} (m) = 3 .</math>
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Zapiszmy <math>m</math> w&nbsp;postaci <math>m = 2 m'</math>, gdzie <math>m' = 12 k \pm 5 .</math> Gdyby kongruencja
 
 
::<math>x^2 \equiv 3 \pmod{2 m'}</math>
 
  
miała rozwiązanie, to również kongruencja
 
  
::<math>x^2 \equiv 3 \pmod{m'}</math>
+
== Funkcja Eulera <math>\varphi (n)</math> ==
  
miałaby rozwiązanie, ale jest to niemożliwe, bo <math>\left( {\small\frac{3}{m'}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J46), czyli <math>3</math> jest liczbą niekwadratową modulo <math>m' .</math> Ponieważ <math>2 \mid m</math>, to <math>2</math> nie może być najmniejszą liczbą niekwadratową modulo <math>m .</math> Wynika stąd, że <math>\mathbb{n} (m) = 3 .</math><br/>
+
<span id="H31" style="font-size: 110%; font-weight: bold;">Definicja H31</span><br/>
&#9633;
+
Funkcja Eulera <math>\varphi (n)</math><ref name="Euler1"/> jest równa ilości liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math>.
{{\Spoiler}}
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K34</span><br/>
+
<span id="H32" style="font-size: 110%; font-weight: bold;">Twierdzenie H32</span><br/>
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_2 = \{ 3, 5, 11, 13, 19, 29, 37, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą nieparzystą podzielną przez <math>p \in S_2</math>, to <math>\mathbb{n} (m) = 2 .</math>
+
Funkcja Eulera <math>\varphi (n)</math> jest multiplikatywna, czyli dla względnie pierwszych liczb <math>m, n</math> jest <math>\varphi (m n) = \varphi (m) \varphi (n)</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z założenia <math>p \mid m \;</math> i <math>\; \left( {\small\frac{2}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
+
Niech <math>m, n</math> będą dodatnimi liczbami całkowitymi takimi, że <math>\gcd (m, n) = 1</math>. Twierdzenie jest prawdziwe dla <math>n = 1</math>, zatem nie zmniejszając ogólności, możemy założyć, że <math>n > 1</math>. Wypiszmy w&nbsp;tabeli wszystkie liczby od <math>1</math> do <math>m n</math>.
 
 
::<math>x^2 \equiv 2 \pmod{m}</math>
 
 
 
nie ma rozwiązania (zobacz J55). Ponieważ <math>2 \nmid m</math>, to <math>\mathbb{n} (m) = 2 .</math>
 
  
Uwaga: zbiór <math>S_2</math> tworzą liczby pierwsze postaci <math>8 k \pm 3</math> (zobacz J41).<br/>
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K35</span><br/>
 
Niech <math>m \in \mathbb{Z}_+ \;</math> i <math>\; S_3 = \{ 5, 7, 17, 19, 29, 31, 41, 43, \ldots \}</math> będzie zbiorem liczb pierwszych <math>p</math> takich, że <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Jeżeli <math>m</math> jest liczbą parzystą niepodzielną przez <math>3</math> i&nbsp;podzielną przez <math>p \in S_3</math>, to <math>\mathbb{n} (m) = 3 .</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z założenia <math>p \mid m \;</math> i <math>\; \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
 
 
 
::<math>x^2 \equiv 3 \pmod{m}</math>
 
 
 
nie ma rozwiązania (zobacz J55). Ponieważ <math>2 \mid m</math> i <math>3 \nmid m</math>, to <math>\mathbb{n} (m) = 3 .</math>
 
 
 
Uwaga: zbiór <math>S_3</math> tworzą liczby pierwsze postaci <math>12 k \pm 5</math> (zobacz J46).<br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K36</span><br/>
 
Jeżeli <math>m</math> jest liczbą dodatnią podzielną przez <math>6</math> i&nbsp;niepodzielną przez <math>5</math>, to <math>\mathbb{n} (m) = 5 .</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z założenia <math>3 \mid m \;</math> i <math>\; \left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{2}{3}} \right)_{\small{\!\! J}} = - 1 .</math> Zatem kongruencja
 
 
 
::<math>x^2 \equiv 5 \pmod{m}</math>
 
 
 
nie ma rozwiązania (zobacz J55). Ponieważ <math>2 \mid m</math>, <math>3 \mid m</math> i <math>5 \nmid m</math>, to <math>\mathbb{n} (m) = 5 .</math><br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K37</span><br/>
 
Niech <math>m \in \mathbb{Z}_+</math> i <math>p \geqslant 5</math> będzie liczbą pierwszą. Jeżeli iloczyn wszystkich liczb pierwszych mniejszych od <math>p</math> dzieli <math>m</math> i <math>p \nmid m</math>, to <math>\mathbb{n} (m) = p</math>.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z twierdzenia K69 wiemy, że istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math> Z&nbsp;założenia <math>q \mid m</math>, zatem kongruencja
 
 
 
::<math>x^2 \equiv p \pmod{m}</math>
 
 
 
nie ma rozwiązania (zobacz J55). Ponieważ wszystkie liczby pierwsze mniejsze od <math>p</math> dzielą <math>m</math>, to <math>\mathbb{n} (m) = p</math>. Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Zadanie K38</span><br/>
 
Pokazać, że podanym w&nbsp;pierwszej kolumnie postaciom liczby <math>m</math> odpowiadają wymienione w&nbsp;drugiej kolumnie wartości <math>\mathbb{n} (m) .</math>
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: left; margin-right: auto;"
 
|-
 
! Postać liczby <math>\boldsymbol{m}</math> || <math>\boldsymbol{𝕟(m)}</math> || Uwagi
 
|-
 
| <math>m=24k \pm 9</math> || style="text-align:center;" | <math>2</math> || rowspan="3" style="text-align:center;" | K34
 
|-
 
| <math>m=120k \pm 25</math> || style="text-align:center;" | <math>2</math>
 
|-
 
| <math>m=120k \pm 55</math> || style="text-align:center;" | <math>2</math>
 
|-
 
| <math>m=120k \pm 50</math> || style="text-align:center;" | <math>3</math> || style="text-align:center;" | K35
 
 
|-
 
|-
| <math>m=30k \pm 6</math> || style="text-align:center;" | <math>5</math> || rowspan="2" style="text-align:center;" | K36, K37
+
| <math>1</math> || <math>2</math> || <math>…</math> || <math>k</math> || <math>…</math> || <math>m</math>
 
|-
 
|-
| <math>m=30k \pm 12</math> || style="text-align:center;" | <math>5</math>
+
| <math>m + 1</math> || <math>m + 2</math> || <math>…</math> || <math>m + k</math> || <math>…</math> || <math>2 m</math>
 
|-
 
|-
| <math>m=210k \pm 30</math> || style="text-align:center;" | <math>7</math> || rowspan="3" style="text-align:center;" | K37
+
| <math>2 m + 1</math> || <math>2 m + 2</math> || <math></math> || <math>2 m + k</math> || <math>…</math> || <math>3 m</math>
 
|-
 
|-
| <math>m=210k \pm 60</math> || style="text-align:center;" | <math>7</math>  
+
| <math></math> || <math>…</math> || <math>…</math> || <math>…</math> || <math></math> || <math></math>
 
|-
 
|-
| <math>m=210k \pm 90</math> || style="text-align:center;" | <math>7</math>  
+
| <math>(n - 1) m + 1</math> || <math>(n - 1) m + 2</math> || <math>…</math> || <math>(n - 1) m + k</math> || <math>…</math> || <math>n m</math>
 
|}
 
|}
  
 +
'''1.''' Natychmiast widzimy, że w&nbsp;pierwszym wierszu mamy <math>\varphi (m)</math> liczb względnie pierwszych z <math>m</math>. Tak samo jest w&nbsp;każdym kolejnym wierszu, bo (zobacz [[#H5|H5]])
  
 +
::<math>\gcd (r m + k, m) = \gcd (k, m)</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K39</span><br/>
+
Zatem mamy dokładnie <math>\varphi (m)</math> kolumn liczb względnie pierwszych z <math>m</math>.
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
 
  
::<math>\begin{array}{lll}
 
  \mathbb{n} (2 m) >\mathbb{n} (m) &  & \text{gdy} \;\; \mathbb{n} (m) = 2 \\
 
  \mathbb{n} (2 m) =\mathbb{n} (m) &  & \text{gdy} \;\; \mathbb{n} (m) > 2
 
\end{array}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
'''2.''' Załóżmy, że liczba <math>k</math> jest jedną z&nbsp;liczb względnie pierwszych z <math>m</math>, czyli <math>\gcd (k, m) = 1</math>. Przy tym założeniu <math>k</math>-ta kolumna (pokazana w&nbsp;tabeli) jest kolumną liczb względnie pierwszych z <math>m</math>.
  
'''Punkt 1.'''
 
  
W przypadku, gdy <math>\mathbb{n} (m) = 2</math>, mamy <math>\mathbb{n} (2 m) > 2 = \mathbb{n} (m)</math>, bo <math>\mathbb{n} (2 m)</math> musi być liczbą względnie pierwszą z <math>2 m .</math>
+
'''3.''' Zauważmy, że reszty z&nbsp;dzielenia liczb wypisanych w <math>k</math>-tej kolumnie przez <math>n</math> są wszystkie różne. Gdyby tak nie było, to dla pewnych <math>i, j</math>, gdzie <math>0 \leqslant i, j \leqslant n - 1</math>, różnica liczb <math>i m + k</math> oraz <math>j m + k</math> byłaby podzielna przez <math>n</math>. Mielibyśmy
  
'''Punkt 2.'''
+
::<math>n \mid ((i m + k) - (j m + k))</math>
  
Z definicji najmniejszej liczby niekwadratowej modulo <math>m</math> wiemy, że kongruencja
+
Skąd wynika natychmiast
  
::<math>x^2 \equiv \mathbb{n} (m) \pmod{m}</math>
+
::<math>n \mid (i - j) m</math>
  
nie ma rozwiązania. Oznacza to, że istnieje liczba pierwsza nieparzysta <math>p</math> taka, że <math>p \mid m \;</math> i <math>\; \left( {\small\frac{\mathbb{n} (m)}{p}} \right)_{\small{\!\! J}} = - 1 .</math> Ponieważ <math>p \mid 2 m</math>, to wynika stąd natychmiast, że kongruencja
+
Ponieważ założyliśmy, że <math>\gcd (n, m) = 1</math>, to musi być <math>n \mid (i - j)</math> (zobacz C74), ale
  
::<math>x^2 \equiv \mathbb{n} (m) \pmod{2 m}</math>
+
::<math>0 \leqslant | i - j | \leqslant n - 1</math>
  
również nie ma rozwiązania (zobacz J55).
+
Czyli <math>n</math> może dzielić <math>i - j</math> tylko w&nbsp;przypadku, gdy <math>i = j</math>. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez <math>n</math>.
  
Zatem <math>\mathbb{n} (2 m) \leqslant \mathbb{n} (m) .</math> Niech <math>q</math> będzie liczbą pierwszą taką, że <math>2 < q <\mathbb{n} (m) .</math> Kongruencję
 
  
::<math>x^2 \equiv q \pmod{2 m} \qquad \qquad (1)</math>
+
'''4.''' Ponieważ w <math>k</math>-tej kolumnie znajduje się dokładnie <math>n</math> liczb i&nbsp;reszty z&nbsp;dzielenia tych liczb przez <math>n</math> są wszystkie różne, to reszty te tworzą zbiór <math>S = \{ 0, 1, \ldots, n - 1 \}</math>. Wynika stąd, że liczby wypisane w <math>k</math>-tej kolumnie mogą być zapisane w&nbsp;postaci
  
możemy zapisać w&nbsp;postaci układu kongruencji równoważnych (zobacz J1)
+
::<math>a_r = b_r \cdot n + r</math>
  
::<math>\begin{align}
+
gdzie <math>r = 0, 1, \ldots, n - 1</math> i <math>b_r \in \mathbb{Z}</math>.
x^2 & \equiv q \pmod{m} \qquad \qquad \;\: (2) \\
 
x^2 & \equiv q \pmod{2} \qquad \qquad \;\;\,\, (3) \\
 
\end{align}</math>
 
  
Z definicji <math>q</math> jest liczbą kwadratową modulo <math>m</math>, zatem kongruencja <math>(2)</math> ma rozwiązanie – oznaczmy to rozwiązanie przez <math>x_0 .</math> Łatwo zauważamy, że liczba
+
Zauważmy, że następujące ilości liczb są sobie równe
  
::<math>x'_0 =
+
:*&nbsp;&nbsp;&nbsp;ilość liczb w <math>k</math>-tej kolumnie względnie pierwszych z <math>n</math>
  \begin{cases}
 
  \;\;\;\; x_0 & \text{gdy} \quad x_0 \equiv 1 \pmod{2} \\
 
  x_0 + m & \text{gdy} \quad x_0 \equiv 0 \pmod{2} \\
 
  \end{cases}</math>
 
  
jest rozwiązaniem układu kongruencji <math>(2)</math> i <math>(3)</math>, a&nbsp;tym samym kongruencja <math>(1)</math> ma rozwiązanie dla każdego <math>2 < q <\mathbb{n} (m) .</math> Wynika stąd, że <math>\mathbb{n} (2 m) =\mathbb{n} (m) .</math><br/>
+
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 0, \ldots, n - 1</math>, bo <math>\gcd (b_r \cdot n + r, n) = \gcd (r, n)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 1, \ldots, n</math>, bo <math>\gcd (n, n) = \gcd (0, n) = | n | > 1</math>
  
 +
Ostatnia ilość liczb jest równa <math>\varphi (n)</math>, co wynika wprost z&nbsp;definicji funkcji <math>\varphi (n)</math>.
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K40</span><br/>
 
Niech <math>m</math> będzie liczbą nieparzystą, a <math>\mathbb{n} (m)</math> będzie najmniejszą liczbą niekwadratową modulo <math>m .</math> Mamy
 
  
::<math>\begin{array}{lllll}
+
'''5.''' Zbierając: mamy w&nbsp;wypisanej tabeli dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jednocześnie jest
  \mathbb{n} (4 m) \geqslant 5 & & \mathbb{n} (m) = 2        & & \text{gdy } \;\; 3 \mid m \\
 
  \mathbb{n} (4 m) = 3        & & \mathbb{n} (m) \geqslant 2 & & \text{gdy } \;\; 3 \nmid m \\
 
\end{array}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\gcd (u, m) = 1 \quad  \text{i} \quad \gcd (u, n) = 1</math>
  
'''Punkt 1.'''
+
Z twierdzenia [[#H6|H6]] wynika, że w&nbsp;tabeli jest dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jest
  
Z twierdzenia K34 wynika, że w&nbsp;przypadku, gdy <math>3 \mid m</math>, to <math>\mathbb{n} (m) = 2 .</math> Ponieważ <math>2 \mid 4 m</math> i <math>3 \mid 4 m</math>, to <math>\mathbb{n} (4 m) \geqslant 5 .</math>
+
::<math>\gcd (u, m n) = 1</math>
  
'''Punkt 2.'''
+
Zatem <math>\varphi (m n) = \varphi (m) \varphi (n)</math>. Co należało pokazać.<br/>
 
 
Ponieważ <math>m</math> jest liczbą nieparzystą, to <math>8 \nmid 4 m</math>, ale <math>4 \mid 4 m \;</math> i <math>\; 4 \nmid (3 - 1)</math>, zatem z&nbsp;twierdzenia J55 wynika, że kongruencja
 
 
 
::<math>x^2 \equiv 3 \pmod{4 m}</math>
 
 
 
nie ma rozwiązania. Ponieważ <math>2 \mid 4 m \;</math> i <math>\; 3 \nmid 4 m</math>, to <math>\mathbb{n} (4 m) = 3 .</math><br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1515: Linia 909:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K41</span><br/>
+
<span id="H33" style="font-size: 110%; font-weight: bold;">Twierdzenie H33</span><br/>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Jeżeli <math>a</math> jest liczbą niekwadratową modulo <math>p \,</math> i <math>\, p \mid m</math>, to <math>a</math> jest liczbą niekwadratową modulo <math>m .</math>
+
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
Wiemy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy kongruencja
 
 
 
::<math>x^2 \equiv a \pmod{m}</math>
 
 
 
ma rozwiązanie. Przypuśćmy, że liczba <math>a</math> jest liczbą kwadratową modulo <math>m .</math> Zatem istnieje taka liczba <math>k \in \mathbb{Z}</math>, że
 
 
 
::<math>k^2 \equiv a \pmod{m}</math>
 
  
Ponieważ z&nbsp;założenia <math>p \mid m</math>, to prawdziwa jest też kongruencja
+
gdzie iloczyn obliczamy po wszystkich liczbach pierwszych <math>p</math>, będących dzielnikami liczby <math>n</math>.
 
 
::<math>k^2 \equiv a \pmod{p}</math>
 
 
 
co przeczy założeniu, że liczba <math>a</math> jest liczbą niekwadratową modulo <math>p .</math><br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K42</span><br/>
 
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m</math>, to istnieje taki dzielnik pierwszy <math>p</math> liczby <math>m</math>, że <math>\mathbb{n}</math> jest najmniejszą liczbą niekwadratową modulo <math>p .</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Przypuśćmy, że taki dzielnik pierwszy nie istnieje. Zatem mamy zbiór dzielników pierwszych liczby <math>m</math>: <math>\{ p_1, \ldots, p_s \}</math> i&nbsp;powiązany z&nbsp;dzielnikami pierwszymi <math>p_k</math> zbiór najmniejszych liczb niekwadratowych modulo <math>p_k</math>: <math>\{ \mathbb{n}_1, \ldots, \mathbb{n}_s \}</math>, z&nbsp;których każda jest liczbą niekwadratową modulo <math>m</math> (zobacz K41). Wynika stąd, że liczba <math>\mathbb{n} = \mathbb{n} (m)</math> musi być mniejsza od każdej z&nbsp;liczb <math>\mathbb{n}_k .</math>
+
Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej <math>p</math> są jednocześnie pierwsze względem <math>p</math>, to <math>\varphi (p) = p - 1</math>.
  
Z definicji liczba <math>\mathbb{n} = \mathbb{n} (m)</math> jest liczbą niekwadratową modulo <math>m</math>, co oznacza, że kongruencja
+
Równie łatwo znajdujemy wartość funkcji <math>\varphi (n)</math> w&nbsp;przypadku gdy <math>n</math> jest potęgą liczby pierwszej <math>n = p^k</math>. Wystarczy zauważyć, że w&nbsp;ciągu kolejnych liczb
  
::<math>x^2 \equiv \mathbb{n} \pmod{m}</math>
+
::<math>1, 2, 3, 4, \ldots, p^k - 1, p^k</math>
  
nie ma rozwiązania. Niech <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s .</math> Zatem przynajmniej jedna z&nbsp;kongruencji
+
jedynymi liczbami, które nie są pierwsze względem <math>p^k</math>, są te, które dzielą się przez <math>p</math> i&nbsp;jest ich <math>p^{k - 1}</math>, co widać natychmiast po ich bezpośrednim wypisaniu
  
::<math>x^2 \equiv \mathbb{n} \pmod{p^{\alpha_k}_k}</math>
+
::<math>1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p</math>
  
musi nie mieć rozwiązania (zobacz J11). Z&nbsp;twierdzenia J49 wiemy, że wtedy kongruencja
+
Zatem
  
::<math>x^2 \equiv \mathbb{n} \pmod{p_k}</math>
+
::<math>\varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right)</math>
  
również nie ma rozwiązania. Zatem <math>\mathbb{n}</math> jest liczbą niekwadratową modulo <math>p_k \,</math> i <math>\, \mathbb{n} < \mathbb{n}_k</math>, co przeczy definicji liczby <math>\mathbb{n}_k .</math><br/>
+
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to dla <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> otrzymujemy
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k)</math>
  
 +
:::<math>\;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K43</span><br/>
+
:::<math>\;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right]</math>
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą. Jeżeli <math>m = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
 
  
::<math>\mathbb{n}(m) = \min ( \mathbb{n} (p_1), \ldots, \mathbb{n} (p_s) )</math>
+
:::<math>\;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
gdzie <math>\mathbb{n}(m)</math> jest najmniejszą liczbą kwadratową modulo <math>m</math>, a <math>\mathbb{n}(p_k)</math> są najmniejszymi liczbami kwadratowymi modulo <math>p_k .</math>
+
:::<math>\;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Co należało pokazać.<br/>
Twierdzenie to jest prostym wnioskiem z&nbsp;twierdzenia K42, ale musimy jeszcze pokazać, że <math>\gcd (\mathbb{n} (m), m) = 1 .</math> Przypuśćmy, że <math>p_k |\mathbb{n} (m)</math> dla pewnego <math>1 \leqslant k \leqslant s .</math> Ponieważ <math>\mathbb{n} (m)</math> jest liczbą pierwszą, to musi być <math>\mathbb{n} (m) = p_k</math>, ale wtedy
 
 
 
::<math>\mathbb{n} (p_k) < p_k =\mathbb{n} (m) \leqslant \mathbb{n} (p_k)</math>
 
 
 
Otrzymana sprzeczność dowodzi, że <math>\mathbb{n} (m)</math> jest względnie pierwsza z&nbsp;każdą z&nbsp;liczb pierwszych <math>p_i</math>, gdzie <math>1 \leqslant i \leqslant s .</math> Co kończy dowód.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1579: Linia 949:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K44</span><br/>
+
<span id="H34" style="font-size: 110%; font-weight: bold;">Twierdzenie H34</span><br/>
Niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>\mathbb{n}(m)</math> jest najmniejszą liczbą niekwadratową modulo <math>m .</math> Prawdziwe są oszacowania
+
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli <math>q</math> jest liczbą pierwszą, to
  
::<math>\mathbb{n}(m) < \sqrt{m} + {\small\frac{1}{2}} \qquad \qquad \qquad \;\;\, \text{dla } m \geqslant 3</math>
+
::<math>\varphi (q n) = \left\{ \begin{array}{rl}
 
+
  (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n \\
::<math>\mathbb{n}(m) \leqslant 1.1 \cdot m^{1 / 4} \log m \qquad \qquad \text{dla } m \geqslant 5</math>
+
  q \varphi (n) & \quad \text{gdy} \quad q \mid n \\
 +
\end{array} \right.</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>p</math> będzie dzielnikiem pierwszym liczby <math>m</math> takim, że <math>\mathbb{n}(m) = \mathbb{n} (p)</math> (z twierdzenia K42 wiemy, że taki dzielnik istnieje). Jeżeli prawdziwe jest oszacowanie <math>\mathbb{n}(p) < F (p)</math>, gdzie <math>F(x)</math> jest funkcją rosnącą, to
+
Jeżeli <math>q \nmid m</math>, to <math>\gcd (q, m) = 1</math>, zatem <math>\varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m)</math>. Jeżeli <math>q \mid m</math>, to liczby <math>m</math> oraz <math>q m</math> mają taki sam zbiór dzielników pierwszych, zatem
  
::<math>\mathbb{n}(m) = \mathbb{n} (p) < F (p) \leqslant F (m)</math>
+
::<math>\varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m)</math>
  
Podane w&nbsp;twierdzeniu oszacowania wynikają natychmiast z&nbsp;twierdzeń K21 i&nbsp;K22.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1597: Linia 968:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K45</span><br/>
+
<span id="H35" style="font-size: 110%; font-weight: bold;">Zadanie H35</span><br/>
Liczby <math>\mathbb{n} (m)</math> są zaskakująco małe. Średnia wartość <math>\mathbb{n} = \mathbb{n} (m)</math> wynosi<ref name="Pollack1"/>
+
Niech <math>q \in \mathbb{P}</math> i <math>a, b, m, n \in \mathbb{Z}_+</math>. Pokazać, że
  
::<math>\lim_{x \to \infty} {\small\frac{1}{x}} \sum_{m \leqslant x} \mathbb{n} (m) = 2 + \sum_{k = 3}^{\infty} {\small\frac{p_k - 1}{p_1 \cdot \ldots \cdot p_{k - 1}}} = 2.920050977 \ldots</math>
+
:*&nbsp;&nbsp;&nbsp;<math>\varphi (q^{a + b}) = q^a \varphi (q^b)</math>
  
 +
:*&nbsp;&nbsp;&nbsp;<math>\varphi (n^m) = n^{m - 1} \varphi (n)</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''Punkt 1.'''
  
 +
::<math>\varphi (q^{a + b}) = (q - 1) q^{a + b - 1} = q^a \cdot (q - 1) q^{b - 1} = q^a \varphi (q^b)</math>
  
 +
'''Punkt 2.'''
  
{| style="border-spacing: 5px; border: 2px solid black; background: transparent;"
+
Niech <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>
| &nbsp;'''C.''' Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>&nbsp;
 
|}
 
  
<span style="font-size: 110%; font-weight: bold;">Przykład K46</span><br/>
+
::<math>\varphi (n^m) = \varphi (p^{m \alpha_1}_1 \cdot \ldots \cdot p^{m \alpha_s}_s)</math>
W tabeli przedstawiliśmy najmniejsze liczby niekwadratowe modulo <math>p</math>, najmniejsze liczby niekwadratowe modulo <math>m</math> i&nbsp;najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math>.
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
::::<math>\, = \varphi (p^{m \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{m \alpha_s}_s)</math>
! <math>\boldsymbol{m}</math>
 
| <math>3</math> || <math>5</math> || <math>7</math> || <math>9</math> || <math>11</math> || <math>13</math> || <math>15</math> || <math>17</math> || <math>19</math> || <math>21</math> || <math>23</math> || <math>25</math> || <math>27</math> || <math>29</math> || <math>31</math> || <math>33</math> || <math>35</math> || <math>37</math> || <math>39</math> || <math>41</math> || <math>43</math> || <math>45</math> || <math>47</math> || <math>49</math> || <math>51</math>
 
|-
 
!  <math>\boldsymbol{\mathbb{n}( p )}</math>
 
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>-</math> || <math>2</math> || <math>-</math> || <math>3</math> || <math>2</math> || <math>-</math> || <math>5</math> || <math>-</math> || <math>-</math>
 
|-
 
!  <math>\boldsymbol{\mathbb{n}( m )}</math>
 
| <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>3</math> || <math>2</math>
 
|-
 
!  <math>\boldsymbol{c( m )}</math>
 
| <math>2</math> || <math>2</math> || <math>3</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>7</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>-</math> || <math>2</math> || <math>2</math> || <math>3</math> || <math>5</math> || <math>2</math> || <math>2</math> || <math>7</math> || <math>3</math> || <math>2</math> || <math>2</math> || <math>5</math> || <math>-</math> || <math>2</math>
 
|}
 
  
 +
::::<math>\, = \varphi (p^{(m - 1) \alpha_1 + \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{(m - 1) \alpha_s + \alpha_s}_s)</math>
  
 +
::::<math>\, = p^{(m - 1) \alpha_1}_1 \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \varphi (p^{\alpha_s}_s)</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K47</span><br/>
+
::::<math>\, = p^{(m - 1) \alpha_1}_1 \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \cdot \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s)</math>
Do wyszukiwania liczb <math>c = c (m)</math> Czytelnik może wykorzystać prostą funkcję napisaną w&nbsp;PARI/GP
 
  
<span style="font-size: 90%; color:black;">C(m) =  
+
::::<math>\, = n^{m - 1} \varphi (n)</math>
{
 
'''if'''( m%2 == 0, '''return'''(0) );
 
'''if'''( '''issquare'''(m), '''return'''(0) );
 
'''forprime'''(p = 2, m, '''if'''( jacobi(p, m) == -1, '''return'''(p) ));
 
}</span>
 
  
 
+
Co należało pokazać.<br/>
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga K48</span><br/>
 
Najmniejsze dodatnie liczby niekwadratowe <math>a</math> takie, że <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}} = - 1</math> oznaczyliśmy jako <math>c(m)</math>. Zauważmy, że są to liczby inne od <math>\mathbb{n}(p)</math> i <math>\mathbb{n}(m)</math>. Wystarczy zwrócić uwagę na występujące w&nbsp;tabeli liczby <math>\mathbb{n}(p)</math>, <math>\mathbb{n}(m)</math> i <math>c(m)</math> dla <math>m = 15, 33, 39</math>. Różnice wynikają z&nbsp;innej definicji liczb <math>c(m)</math> – jeżeli liczba <math>a</math> jest liczbą niekwadratową modulo <math>m</math>, to symbol Jacobiego <math>\left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math> nie musi być równy <math>- 1</math>. I&nbsp;tak czasami bywa, co bardzo dobrze pokazuje powyższa tabela.
 
 
 
Ponieważ <math>c(m)</math> nie zawsze będzie najmniejszą liczbą kwadratową modulo <math>m</math>, to mamy natychmiast oszacowanie: <math>c(m) \geqslant \mathbb{n} (m)</math> (poza przypadkami, gdy <math>m = n^2</math>).
 
 
 
Dla <math>c(m)</math> nie są prawdziwe oszacowania podane w&nbsp;twierdzeniu K21. Łatwo zauważamy, że
 
 
 
::<math>c = c (15) = 7 > \sqrt{15} + {\small\frac{1}{2}} \approx 4.37</math>
 
 
 
::<math>c = c (39) = 7 > \sqrt{39} + {\small\frac{1}{2}} \approx 6.74</math>
 
 
 
::<math>c = c (105) = 11 > \sqrt{105} + {\small\frac{1}{2}} \approx 10.75</math>
 
 
 
::<math>c = c (231) = 17 > \sqrt{231} + {\small\frac{1}{2}} \approx 15.7</math>
 
 
 
Nie ma więcej takich przypadków dla <math>m < 10^9</math>.
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K49</span><br/>
 
Niech <math>c, m \in \mathbb{Z}_+</math> i&nbsp;niech <math>m \geqslant 3</math> będzie liczbą nieparzystą, a <math>c</math> będzie najmniejszą liczbą taką, że <math>\left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = - 1</math>. Liczba <math>c</math> musi być liczbą pierwszą.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Przypuśćmy, że <math>c = a b</math> jest liczbą złożoną, gdzie <math>1 < a, b < c</math>. Mamy
 
 
 
::<math>- 1 = \left( {\small\frac{c}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a b}{m}} \right)_{\small{\!\! J}} = \left( {\small\frac{a}{m}} \right)_{\small{\!\! J}}</math><math>\left( {\small\frac{b}{m}} \right)_{\small{\!\! J}}</math>
 
 
 
Zatem jeden z&nbsp;czynników po prawej stronie musi być równy <math>- 1</math> wbrew definicji liczby <math>c</math>.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1674: Linia 1002:
  
  
 
+
<span id="H36" style="font-size: 110%; font-weight: bold;">Twierdzenie H36</span><br/>
 
+
Niech <math>m, n \in \mathbb{Z}_+</math>. Jeżeli <math>m \mid n</math>, to <math>\varphi (m) \mid \varphi (n)</math>.
== Liczby pierwsze postaci <math>x^2 + n y^2</math> ==
 
 
 
<span style="font-size: 110%; font-weight: bold;">Przykład K50</span><br/>
 
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>85</math> na sumę postaci <math>x^2 + y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>. Rozkłady różniące się jedynie kolejnością liczb <math>x , y</math> nie zostały uwzględnione.
 
 
 
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{n}</math>
 
| <math>1</math> || style="background-color: #99cc66" | <math>2</math> || <math>4</math> || style="background-color: #99cc66" | <math>5</math> || <math>8</math> || <math>9</math> || <math>10</math> || style="background-color: #99cc66" | <math>13</math> || <math>16</math> || style="background-color: #99cc66" | <math>17</math> || <math>18</math> || <math>20</math> || <math>25</math> || <math>26</math> || style="background-color: #99cc66" | <math>29</math> || <math>32</math> || <math>34</math> || <math>36</math> || style="background-color: #99cc66" | <math>37</math> || <math>40</math> || style="background-color: #99cc66" | <math>41</math> || <math>45</math> || <math>49</math> || <math>50</math> || <math>52</math> || style="background-color: #99cc66" | <math>53</math> || <math>58</math> ||style="background-color: #99cc66" | <math>61</math> || <math>64</math> || <math>65</math> || <math>68</math> || <math>72</math> || style="background-color: #99cc66" | <math>73</math> || <math>74</math> || <math>80</math> || <math>81</math> || <math>82</math> || <math>85</math>
 
|-
 
! <math>\boldsymbol{x,y}</math>
 
| <math>1,0</math> || <math>1,1</math> || <math>2,0</math> || <math>2,1</math> || <math>2,2</math> || <math>3,0</math> || <math>3,1</math> || <math>3,2</math> || <math>4,0</math> || <math>4,1</math> || <math>3,3</math> || <math>4,2</math> || <math>5,0</math> || <math>5,1</math> || <math>5,2</math> || <math>4,4</math> || <math>5,3</math> || <math>6,0</math> || <math>6,1</math> || <math>6,2</math> || <math>5,4</math> || <math>6,3</math> || <math>7,0</math> || <math>7,1</math> || <math>6,4</math> || <math>7,2</math> || <math>7,3</math> || <math>6,5</math> || <math>8,0</math> || <math>8,1</math> || <math>8,2</math> || <math>6,6</math> || <math>8,3</math> || <math>7,5</math> || <math>8,4</math> || <math>9,0</math> || <math>9,1</math> || <math>9,2</math>
 
|-
 
! <math>\boldsymbol{x,y}</math>
 
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>4,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>5,5</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>7,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>7,6</math>
 
|}
 
 
 
Zauważmy, że liczba złożona <math>21</math> nie ma rozkładu na sumę kwadratów, a&nbsp;liczba złożona <math>65</math> ma dwa takie rozkłady. Obie liczby są postaci <math>4 k + 1</math>.
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Przykład K51</span><br/>
 
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>73</math> na sumę postaci <math>x^2 + 2 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>.
 
 
 
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{n}</math>
 
| <math>1</math> || style="background-color: #99cc66" | <math>2</math> || style="background-color: #99cc66" | <math>3</math> || <math>4</math> || <math>6</math> || <math>8</math> || <math>9</math> || style="background-color: #99cc66" | <math>11</math> || <math>12</math> || <math>16</math> || style="background-color: #99cc66" | <math>17</math> || <math>18</math> || style="background-color: #99cc66" | <math>19</math> || <math>22</math> || <math>24</math> || <math>25</math> || <math>27</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>36</math> || <math>38</math> || style="background-color: #99cc66" | <math>41</math> || style="background-color: #99cc66" | <math>43</math> || <math>44</math> || <math>48</math> || <math>49</math> || <math>50</math> || <math>51</math> || <math>54</math> || <math>57</math> || style="background-color: #99cc66" | <math>59</math> || <math>64</math> || <math>66</math> || style="background-color: #99cc66" | <math>67</math> || <math>68</math> || <math>72</math> || style="background-color: #99cc66" | <math>73</math>
 
|-
 
! <math>\boldsymbol{x,y}</math>
 
| <math>1,0</math> || <math>0,1</math> || <math>1,1</math> || <math>2,0</math> || <math>2,1</math> || <math>0,2</math> || <math>3,0</math> || <math>3,1</math> || <math>2,2</math> || <math>4,0</math> || <math>3,2</math> || <math>4,1</math> || <math>1,3</math> || <math>2,3</math> || <math>4,2</math> || <math>5,0</math> || <math>5,1</math> || <math>0,4</math> || <math>5,2</math> || <math>4,3</math> || <math>6,0</math> || <math>6,1</math> || <math>3,4</math> || <math>5,3</math> || <math>6,2</math> || <math>4,4</math> || <math>7,0</math> || <math>0,5</math> || <math>7,1</math> || <math>6,3</math> || <math>7,2</math> || <math>3,5</math> || <math>8,0</math> || <math>8,1</math> || <math>7,3</math> || <math>6,4</math> || <math>8,2</math> || <math>1,6</math>
 
|-
 
! <math>\boldsymbol{x,y}</math>
 
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,2</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>0,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>3,3</math> || <math></math> || <math>1,4</math> || <math></math> || <math>2,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,5</math> || <math>2,5</math> || <math>5,4</math> || <math></math> || <math></math> || <math>4,5</math> || <math></math> || <math></math> || <math>0,6</math> || <math></math>
 
|}
 
 
 
Zauważmy, że liczba złożona <math>65</math> nie ma rozkładu na sumę postaci <math>x^2 + 2 y^2</math>, a&nbsp;liczba złożona <math>33</math> ma dwa takie rozkłady. Obie liczby są postaci <math>8 k + 1</math>.
 
 
 
Zauważmy też, że liczba złożona <math>35</math> nie ma rozkładu na sumę postaci <math>x^2 + 2 y^2</math>, a&nbsp;liczba złożona <math>27</math> ma dwa takie rozkłady. Obie liczby są postaci <math>8 k + 3</math>.
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Przykład K52</span><br/>
 
Przedstawiamy wszystkie rozkłady liczb naturalnych nie większych od <math>103</math> na sumę postaci <math>x^2 + 3 y^2</math>, gdzie <math>x, y \in \mathbb{N}_0</math>.
 
 
 
{| class="wikitable plainlinks"  style="font-size: 70%; text-align: center; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{n}</math>
 
| <math>1</math> || style="background-color: #99cc66" | <math>3</math> || <math>4</math> || style="background-color: #99cc66" | <math>7</math> || <math>9</math> || <math>12</math> || style="background-color: #99cc66" | <math>13</math> || <math>16</math> || style="background-color: #99cc66" | <math>19</math> || <math>21</math> || <math>25</math> || <math>27</math> || <math>28</math> || style="background-color: #99cc66" | <math>31</math> || <math>36</math> || style="background-color: #99cc66" | <math>37</math> || <math>39</math> || style="background-color: #99cc66" | <math>43</math> || <math>48</math> || <math>49</math> || <math>52</math> || <math>57</math> || style="background-color: #99cc66" | <math>61</math> || <math>63</math> || <math>64</math> || style="background-color: #99cc66" | <math>67</math> || style="background-color: #99cc66" | <math>73</math> || <math>75</math> || <math>76</math> || style="background-color: #99cc66" | <math>79</math> || <math>81</math> || <math>84</math> || <math>91</math> || <math>93</math> || style="background-color: #99cc66" | <math>97</math> || <math>100</math> || style="background-color: #99cc66" | <math>103</math>
 
|-
 
! <math>\boldsymbol{x,y}</math>
 
| <math>1,0</math> || <math>0,1</math> || <math>2,0</math> || <math>2,1</math> || <math>3,0</math> || <math>3,1</math> || <math>1,2</math> || <math>4,0</math> || <math>4,1</math> || <math>3,2</math> || <math>5,0</math> || <math>0,3</math> || <math>5,1</math> || <math>2,3</math> || <math>6,0</math> || <math>5,2</math> || <math>6,1</math> || <math>4,3</math> || <math>6,2</math> || <math>7,0</math> || <math>7,1</math> || <math>3,4</math> || <math>7,2</math> || <math>6,3</math> || <math>8,0</math> || <math>8,1</math> || <math>5,4</math> || <math>0,5</math> || <math>8,2</math> || <math>2,5</math> || <math>9,0</math> || <math>9,1</math> || <math>8,3</math> || <math>9,2</math> || <math>7,4</math> || <math>10,0</math> || <math>10,1</math>
 
|-
 
! <math>\boldsymbol{x,y}</math>
 
| <math></math> || <math></math> || <math>1,1</math> || <math></math> || <math></math> || <math>0,2</math> || <math></math> || <math>2,2</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>4,2</math> || <math></math> || <math>3,3</math> || <math></math> || <math></math> || <math></math> || <math>0,4</math> || <math>1,4</math> || <math>5,3</math> || <math></math> || <math></math> || <math></math> || <math>4,4</math> || <math></math> || <math></math> || <math></math> || <math>7,3</math> || <math></math> || <math></math> || <math>6,4</math> || <math>4,5</math> || <math></math> || <math></math> || <math>5,5</math> || <math></math>
 
|-
 
! <math>\boldsymbol{x,y}</math>
 
| <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,3</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>2,4</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>1,5</math> || <math></math> || <math></math> || <math>3,5</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math>
 
|}
 
 
 
Zauważmy, że liczba złożona <math>55</math> nie ma rozkładu na sumę postaci <math>x^2 + 3 y^2</math>, a&nbsp;liczba złożona <math>91</math> ma dwa takie rozkłady. Obie liczby są postaci <math>6 k + 1</math>.
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K53</span><br/>
 
Jeżeli liczba nieparzysta postaci <math>Q = x^2 + n y^2</math>, gdzie <math>n \in \{ 1, 2, 3 \}</math>, ma dwa różne takie przedstawienia w&nbsp;liczbach całkowitych dodatnich, to jest liczbą złożoną.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W dowodzie wyróżniliśmy miejsca, które wymagają oddzielnej analizy ze względu na wartość liczby <math>n</math>.
+
Niech <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>. Ponieważ założyliśmy, że <math>m \mid n</math>, to <math>m</math> musi być postaci <math>m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s</math>, gdzie <math>0 \leqslant \beta_i \leqslant \alpha_i</math>, dla <math>i = 1, \ldots, s</math>. Łatwo zauważamy, że
  
Niech
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>\beta_i = 0</math>, to <math>\varphi (p^{\beta_i}_i) = 1</math> i&nbsp;dzieli <math>\varphi (p^{\alpha_i}_i)</math>
  
::<math>Q = x^2 + n y^2 = a^2 + n b^2</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>1 \leqslant \beta_i \leqslant \alpha_i</math>, to <math>(p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1}</math>, zatem <math>\varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i)</math>
  
<div style="border: thin solid black; padding-top: 0em; margin-top: 0.5em; padding-bottom: 0em; margin-bottom: 0.5em;">
+
Skąd natychmiast wynika, że <math>\varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s)</math> dzieli <math>\varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s)</math>, czyli <math>\varphi (m) \mid \varphi (n)</math>.
<math>\boldsymbol{n = 1}</math>
 
  
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby występujące w&nbsp;rozkładach <math>x^2 + y^2 = a^2 + b^2</math> muszą mieć przeciwną parzystość. Nie zmniejszając ogólności, możemy założyć, że liczby <math>x, a</math> są nieparzyste, a&nbsp;liczby <math>y, b</math> parzyste.
+
Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo <math>\varphi (7) \mid \varphi (19)</math>, ale <math>7 \nmid 19</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<math>\boldsymbol{n = 2}</math>
 
  
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby <math>x, a</math> występująca w&nbsp;rozkładach <math>x^2 + 2 y^2 = a^2 + 2 b^2</math> muszą być nieparzyste. Pokażemy, że liczby <math>y, b</math> muszą mieć taką samą parzystość. Przypuśćmy, że <math>y</math> jest parzysta, a <math>b</math> nieparzysta, wtedy modulo <math>4</math> dostajemy
 
  
::<math>1 + 2 \cdot 0 \equiv 1 + 2 \cdot 1 \!\! \pmod{4}</math>
+
<span id="H37" style="font-size: 110%; font-weight: bold;">Zadanie H37</span><br/>
 +
Dla <math>n \geqslant 3</math> wartości <math>\varphi (n)</math> są liczbami parzystymi.
  
Co jest niemożliwe.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
+
Jeżeli liczba <math>n \geqslant 3</math> jest podzielna przez liczbę pierwszą nieparzystą <math>p</math>, zaś <math>k</math> jest wykładnikiem, z&nbsp;jakim <math>p</math> wchodzi do rozwinięcia <math>n</math> na czynniki pierwsze, to
<math>\boldsymbol{n = 3}</math>
 
 
 
Z założenia <math>Q</math> jest liczbą nieparzystą, zatem liczby występujące w&nbsp;rozkładach <math>x^2 + 3 y^2 = a^2 + 3 b^2</math> muszą mieć przeciwną parzystość. Pokażemy, że liczby <math>x, a</math> muszą mieć taką samą parzystość. Gdyby liczba <math>x</math> była nieparzysta, a&nbsp;liczba <math>a</math> parzysta, to modulo <math>4</math> mielibyśmy
 
 
 
::<math>1 + 3 \cdot 0 \equiv 0 + 3 \cdot 1 \!\! \pmod{4}</math>
 
 
 
Co jest niemożliwe.
 
</div>
 
Z powyższego zestawienia wynika, że liczby <math>x, a</math> i liczby <math>y, b</math> mają taką samą parzystość. Mamy
 
 
 
::<math>x^2 - a^2 = n (b^2 - y^2)</math>
 
 
 
::<math>(x - a) (x + a) = n (b - y) (b + y)</math>
 
 
 
Niech <math>f = \gcd (x - a, b - y)</math>, zatem <math>f</math> jest liczbą parzystą i
 
 
 
::<math>x - a = f r , \qquad \qquad b - y = f s , \qquad \qquad \gcd (r, s) = 1</math>
 
 
 
Czyli
 
 
 
::<math>r(x + a) = n s (y + b)</math>
 
 
 
ale liczby <math>r, s</math> są względnie pierwsze, zatem <math>s \mid (x + a)</math> i&nbsp;musi być
 
 
 
::<math>x + a = k s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = k r</math>
 
 
 
Gdyby <math>k</math> było liczbą nieparzystą, to liczby <math>r, s</math> musiałyby być parzyste, co jest niemożliwe, bo <math>\gcd (r, s) = 1</math>. Zatem <math>k</math> jest liczbą parzystą i <math>2 s \mid (x + a)</math>, czyli możemy pokazać więcej. Musi być
 
 
 
::<math>x + a = 2 l s \qquad \qquad \Longrightarrow \qquad \qquad n (y + b) = 2 l r</math>
 
 
 
W przypadku gdy <math>n = 2</math> lub <math>n = 3</math>, zauważmy, że <math>n \mid l</math> lub <math>n \mid r</math>.
 
 
 
Łatwo otrzymujemy
 
 
 
::<math>x = {\small\frac{1}{2}} (2 l s + f r)</math>
 
 
 
::<math>y = {\small\frac{1}{2 n}} (2 l r - n f s)</math>
 
 
 
Ostatecznie
 
 
 
::<math>Q = x^2 + n y^2</math>
 
 
 
::<math>\;\;\;\: = \left[ {\small\frac{1}{2}} (2 l s + f r) \right]^2 + n \left[ {\small\frac{1}{2 n}} (2 l r - n f s) \right]^2</math>
 
 
 
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s + f r)^2 + (2 l r - n f s)^2]</math>
 
 
 
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [n (2 l s)^2 + n (f r)^2 + (2 l r)^2 + (n f s)^2]</math>
 
 
 
::<math>\;\;\;\: = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2)</math>
 
 
 
<div style="border: thin solid black; padding-top: 0em; margin-top: 0.5em; padding-bottom: 0em; margin-bottom: 0.5em;">
 
<math>\boldsymbol{n = 1}</math>
 
 
 
::<math>Q = {\small\frac{1}{4}} [(2 l)^2 + f^2] (r^2 + s^2) = \left[ l^2 + \left( {\small\frac{f}{2}} \right)^2 \right] (r^2 + s^2)</math>
 
  
<math>\boldsymbol{n = 2 , 3}</math>
+
::<math>\varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k  - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right)</math>
  
W zależności od tego, która z&nbsp;liczb <math>l, r</math> jest podzielna przez <math>n</math>, możemy napisać
+
zatem <math>\varphi (n)</math> jest liczbą parzystą, ponieważ <math>p - 1</math> jest liczbą parzystą.
 
 
::<math>Q = {\small\frac{1}{4 n}} [(2 l)^2 + n f^2] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4 n}} \right] (r^2 + n s^2) = \left[ {\small\frac{(2 l)^2 + n f^2}{4}} \right] \left( {\small\frac{r^2 + n s^2}{n}} \right)</math>
 
</div>
 
  
Co kończy dowód.<br/>
+
Jeżeli żadna liczba nieparzysta nie dzieli <math>n</math>, to liczba <math>n</math> jest postaci <math>n = 2^a</math> i <math>\varphi (n) = 2^{a - 1}</math>, ale z&nbsp;założenia <math>n \geqslant 3</math>, zatem <math>a \geqslant 2</math> i <math>\varphi (n)</math> jest liczbą parzystą.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1831: Linia 1036:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K54</span><br/>
+
<span id="H38" style="font-size: 110%; font-weight: bold;">Twierdzenie H38</span><br/>
Zauważmy, że iloczyn liczb postaci <math>x^2 + n y^2</math> jest liczbą tej samej postaci.
+
Jeżeli <math>n</math> jest liczbą złożoną, to <math>\varphi (n) \leqslant n - \sqrt{n}</math>.
 
 
::<math>(a^2 + n b^2) (x^2 + n y^2) = (a x + n b y)^2 + n (a y - b x)^2</math>
 
 
 
::::::::<math>\;\;\;\:\, = (a x - n b y)^2 + n (a y + b x)^2</math>
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K55</span><br/>
 
Niech <math>x, y, a, b \in \mathbb{Z}</math> i <math>n \in \{ 1, 2, 3 \}</math>. Jeżeli liczba parzysta <math>Q = x^2 + n y^2</math>, to <math>Q = 2^{\alpha} R</math>, gdzie <math>R = a^2 + n b^2</math> jest liczbą nieparzystą.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W szczególnym przypadku, gdy <math>R = 1</math>, mamy <math>R = 1^2 + n \cdot 0^2</math>.
+
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
 
+
Niech <math>n = a b</math>, gdzie <math>1 < a \leqslant b < n</math>. Liczby <math>1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a</math> są nie większe od <math>n</math> i&nbsp;nie względnie pierwsze z <math>n</math>, zatem
Dowód sprowadza się do podania wzorów, które pozwalają obniżyć wykładnik, z&nbsp;jakim liczba <math>2</math> występuje w&nbsp;rozwinięciu na czynniki pierwsze liczby <math>Q</math>. Zauważmy, że wynik jest zawsze liczbą, której postać jest taka sama, jak postać liczby <math>Q</math>. Stosując te wzory odpowiednią ilość razy, otrzymujmy rozkład <math>Q = 2^{\alpha} R</math>, gdzie <math>R</math> jest liczbą nieparzystą postaci <math>a^2 + n b^2</math>.
 
 
 
'''1.''' <math>\boldsymbol{Q = x^2 + y^2}</math>
 
 
 
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + \left( {\small\frac{y}{2}} \right)^2</math>
 
 
 
b) jeżeli liczby <math>x, y</math> są nieparzyste, to <math>{\small\frac{Q}{2}} = \left( {\small\frac{x + y}{2}} \right)^2 + \left( {\small\frac{x - y}{2}} \right)^2</math>
 
 
 
'''2.''' <math>\boldsymbol{Q = x^2 + 2 y^2}</math>
 
 
 
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 2 \left( {\small\frac{y}{2}} \right)^2</math>
 
  
b) jeżeli liczba <math>x</math> jest parzysta, a <math>y</math> nieparzysta, to <math>{\small\frac{Q}{2}} = y^2 + 2 \left( {\small\frac{x}{2}} \right)^2</math>
+
::<math>\varphi (n) \leqslant n - b</math>
  
'''3.''' <math>\boldsymbol{Q = x^2 + 3 y^2}</math>
+
Ponieważ <math>b \geqslant a</math>, to <math>b^2 \geqslant a b = n</math> i <math>b \geqslant \sqrt{n}</math>. Wynika stąd, że
  
a) jeżeli liczby <math>x, y</math> są parzyste, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x}{2}} \right)^2 + 3 \left( {\small\frac{y}{2}} \right)^2</math>
+
::<math>\varphi (n) \leqslant n - b \leqslant n - \sqrt{n}</math>
  
b) jeżeli liczby <math>x, y</math> są nieparzyste i <math>4 \mid (x + y)</math>, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x - 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x + y}{4}} \right)^2</math>
+
<br/><span style="border-bottom-style: double;">Drugi sposób</span><br/>
 +
Niech <math>q</math> oznacza najmniejszy dzielnik pierwszy liczby złożonej <math>n</math>, zatem <math>q^2 \leqslant n</math>, czyli <math>q \leqslant \sqrt{n}</math>, a&nbsp;stąd <math>{\small\frac{n}{q}} \geqslant \sqrt{n}</math> i
  
c) jeżeli liczby <math>x, y</math> są nieparzyste i <math>4 \mid (x - y)</math>, to <math>{\small\frac{Q}{4}} = \left( {\small\frac{x + 3 y}{4}} \right)^2 + 3 \left( {\small\frac{x - y}{4}} \right)^2</math>
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n}</math>
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 1874: Linia 1060:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K56</span><br/>
+
<span id="H39" style="font-size: 110%; font-weight: bold;">Twierdzenie H39</span><br/>
Liczba pierwsza <math>p \geqslant 3</math> jest postaci
+
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\varphi (n) > {\small\frac{\sqrt{n}}{2}}</math>.
 
 
:(a)&nbsp;&nbsp;<math>4 k + 1</math>
 
 
 
:(b)&nbsp;&nbsp;<math>8 k + 1 \,</math> lub <math>\: 8 k + 3</math>
 
 
 
:(c)&nbsp;&nbsp;<math>6 k + 1</math>
 
 
 
wtedy i&nbsp;tylko wtedy, gdy istnieje dokładnie jedna para liczb całkowitych dodatnich <math>x, y</math>, że
 
 
 
:(a)&nbsp;&nbsp;<math>p = x^2 + y^2</math>
 
 
 
:(b)&nbsp;&nbsp;<math>p = x^2 + 2 y^2</math>
 
 
 
:(c)&nbsp;&nbsp;<math>p = x^2 + 3 y^2</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Dla <math>k \geqslant 3</math> jest
  
<math>\Large{\Longleftarrow}</math>
+
::<math>\left( 1 - {\small\frac{1}{k}} \right)^2 > {\small\frac{1}{k}}</math>
  
Niech <math>n = 1, 2, 3</math>. Z&nbsp;założenia liczba pierwsza <math>p \geqslant 3</math> może być przedstawiona w&nbsp;postaci <math>p = x_0^2 + n y_0^2</math>, gdzie <math>x_0, y_0</math> są liczbami takimi, że <math>1 \leqslant x_0, y_0 < p</math>. Zatem <math>p \nmid x_0</math> i <math>p \nmid y_0</math>, a&nbsp;rozpatrując równanie <math>p = x_0^2 + n y_0^2</math> modulo <math>p</math> dostajemy
+
Wynika stąd, że jeżeli <math>m \geqslant 3</math> jest liczbą nieparzystą, to
  
::<math>x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p}</math>
+
::<math>\varphi (m)^2 = m^2 \prod_{p|m} \left( 1 - {\small\frac{1}{p}} \right)^2 > m^2 \prod_{p|m} {\small\frac{1}{p}} \geqslant m</math>
  
Zauważmy, że liczba <math>x_0</math> jest rozwiązaniem kongruencji
+
bo
  
::<math>x^2 \equiv - n y_0^2 \!\! \pmod{p}</math>
+
::<math>\prod_{p|m} p \leqslant m</math>
  
Wynika stąd, że liczba <math>- n y_0^2</math> jest liczbą kwadratową modulo <math>p</math>. Zatem
+
Czyli dla nieparzystych liczb <math>m \geqslant 3</math> mamy
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::<math>\varphi (m) > \sqrt{m} > {\small\frac{\sqrt{m}}{2}}</math>
::<math>\left( {\small\frac{- n y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y_0^2}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1</math>
 
</div>
 
  
Z twierdzenia J41 i&nbsp;zadania J45 otrzymujemy natychmiast
 
  
:(a) jeżeli <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>4 k + 1</math>
+
Jeżeli <math>d = 2^a</math>, gdzie <math>a \geqslant 1</math>, to
  
:(b) jeżeli <math>\left( {\small\frac{- 2}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>8 k + 1</math> lub <math>8 k + 3</math>
+
::<math>\varphi (d) = \varphi (2^a) = 2^{a - 1} > {\small\frac{\sqrt{2^a}}{2}} = {\small\frac{\sqrt{d}}{2}}</math>
  
:(c) jeżeli <math>\left( {\small\frac{- 3}{p}} \right)_{\small{\!\! J}} = 1</math>, to liczba pierwsza <math>p</math> musi być postaci <math>6 k + 1</math>
 
  
Co należało pokazać.
+
W przypadku ogólnym, gdy <math>n</math> jest iloczynem liczby nieparzystej <math>m \geqslant 3</math> i&nbsp;potęgi liczby <math>2</math>, dostajemy
  
 +
::<math>\varphi (n) = \varphi (2^a m) = \varphi (2^a) \varphi (m) > {\small\frac{\sqrt{2^a}}{2}} \cdot \sqrt{m} = {\small\frac{\sqrt{2^a m}}{2}} = {\small\frac{\sqrt{n}}{2}}</math>
  
<math>\Large{\Longrightarrow}</math>
+
Oczywiście nierówność <math>\varphi (n) > {\small\frac{\sqrt{n}}{2}}</math> jest również prawdziwa dla <math>n = 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
'''A. Istnienie rozwiązania kongruencji''' <math>\boldsymbol{x^2 + n y^2 \equiv 0 \!\! \pmod{p}}</math>
 
  
Z założenia liczba pierwsza <math>p \geqslant 3</math> jest postaci
 
  
:(a)&nbsp;&nbsp;<math>4 k + 1</math>
+
<span id="H40" style="font-size: 110%; font-weight: bold;">Zadanie H40</span><br/>
 +
Pokazać, że dla <math>n \geqslant 7</math> prawdziwe jest oszacowanie <math>\varphi (n) > \sqrt{n}</math>.
  
:(b)&nbsp;&nbsp;<math>8 k + 1 \,</math> lub <math>\: 8 k + 3</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że
  
:(c)&nbsp;&nbsp;<math>6 k + 1</math>
+
::<math>n - 1 > \sqrt{n} \qquad \qquad \;\, \text{dla} \; n \geqslant 3</math>
  
Wynika stąd, że dla (a) <math>n = 1</math>, (b) <math>n = 2</math>, (c) <math>n = 3</math> mamy
+
::<math>n - 1 > \sqrt{2 n} \qquad \qquad \text{dla} \; n \geqslant 4</math>
  
::<math>\left( {\small\frac{- n}{p}} \right)_{\small{\!\! J}} = 1</math>
 
  
(zobacz J41 i&nbsp;J45) i&nbsp;liczba <math>- n</math> jest liczbą kwadratową modulo <math>p</math>. Zatem kongruencja
+
Zatem dla liczby pierwszej <math>p</math> i <math>k \geqslant 1</math> jest
  
::<math>x^2 \equiv - n \!\! \pmod{p}</math>
+
::<math>\varphi (p^k) = (p - 1) p^{k - 1} > \sqrt{p} \cdot p^{k - 1} = p^{k - \tfrac{1}{2}} \geqslant p^{\tfrac{k}{2}} = \sqrt{p^k} \qquad \qquad \qquad \qquad \quad \; \text{dla} \;\: p \geqslant 3</math>
  
ma rozwiązanie, czyli istnieje taka liczba <math>k</math>, że
+
::<math>\varphi (p^k) = (p - 1) p^{k - 1} > \sqrt{2 p} \cdot p^{k - 1} = \sqrt{2} \cdot p^{k - \tfrac{1}{2}} \geqslant \sqrt{2} \cdot p^{\tfrac{k}{2}} = \sqrt{2 p^k} \qquad \qquad \text{dla} \;\, p \geqslant 5</math>
  
::<math>k^2 + n \equiv 0 \!\! \pmod{p}</math>
 
  
Zauważmy, że liczby <math>x_0 = k</math> i <math>y_0 = 1</math> są szczególnymi przypadkami rozwiązania kongruencji
+
'''1. Przypadek, gdy <math>\boldsymbol{n \geqslant 3}</math> jest liczbą nieparzystą'''
  
::<math>x^2 + n y^2 \equiv 0 \!\! \pmod{p}</math>
+
Liczba <math>n</math> jest iloczynem czynników pierwszych nieparzystych, zatem
  
W przypadku (a), korzystając z&nbsp;twierdzenia Wilsona (zobacz J18), liczbę <math>x_0</math> możemy jawnie wypisać: <math>x_0 = \left( {\small\frac{p - 1}{2}} \right) !</math>
+
::<math>\varphi (n) = \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) > \sqrt{p^{\alpha_1}_1} \cdot \ldots \cdot \sqrt{p^{\alpha_s}_s} = \sqrt{n}</math>
  
  
'''B. Zmniejszenie rozwiązania początkowego'''
+
'''2. Przypadek, gdy <math>\boldsymbol{n = 2^a m} \;</math> i <math>\; \boldsymbol{q \mid m ,} \;</math> gdzie <math>\; \boldsymbol{q \geqslant 5}</math>'''
  
Niech liczby <math>x_0, y_0</math> takie, że <math>p \nmid x_0 \,</math> i <math>\, p \nmid y_0</math> spełniają kongruencję
+
Z założenia <math>n = 2^a m = 2^a q^b r</math>, gdzie <math>r \geqslant 1</math> jest liczbą nieparzystą. Zauważmy, że <math>\varphi (r) \geqslant \sqrt{r}</math>, bo może być <math>r = 1</math>.
  
::<math>x_0^2 + n y_0^2 \equiv 0 \!\! \pmod{p}</math>
+
::<math>\varphi (n) = \varphi (2^a q^b r)</math>
  
Wybierzmy liczby <math>r, s</math> tak, aby były najbliższymi liczbami całkowitymi odpowiednio dla liczb <math>{\small\frac{x_0}{p}} \,</math> i <math>\, {\small\frac{y_0}{p}}</math>. Z&nbsp;definicji mamy
+
:::<math>\;\;\,\, = \varphi (2^a) \varphi (q^b) \varphi (r)</math>
  
::<math>\left| {\small\frac{x_0}{p}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y_0}{p}} - s \right| \leqslant {\small\frac{1}{2}}</math>
+
:::<math>\;\;\,\, > 2^{a - 1} \sqrt{2 q^b} \sqrt{r}</math>
  
Zatem
+
:::<math>\;\;\,\, = 2^{a - \tfrac{1}{2}} \sqrt{q^b} \sqrt{r}</math>
  
::<math>| x_0 - r p | \leqslant {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | \leqslant {\small\frac{p}{2}}</math>
+
:::<math>\;\;\,\, \geqslant 2^{\tfrac{a}{2}} \sqrt{q^b r}</math>
  
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie <math>{\small\frac{p}{2}}</math>, gdzie <math>p</math> jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
+
:::<math>\;\;\,\, = \sqrt{2^a q^b r}</math>
  
::<math>| x_0 - r p | < {\small\frac{p}{2}} \qquad \qquad \text{i} \qquad \qquad | y_0 - s p | < {\small\frac{p}{2}}</math>
+
:::<math>\;\;\,\, = \sqrt{n}</math>
  
Wynika stąd, że dla dowolnego rozwiązania początkowego <math>x_0, y_0</math> możemy wybrać liczby
 
  
::<math>x = x_0 - r p \qquad \qquad \text{i} \qquad \qquad y = y_0 - s p</math>
+
'''3. Przypadek, gdy <math>\boldsymbol{n = 2^a m} \;</math> i <math>\; \boldsymbol{q \nmid m ,} \;</math> gdzie <math>\; \boldsymbol{q \geqslant 5}</math>'''
  
takie, że <math>p \nmid x</math> oraz <math>p \nmid y</math> i&nbsp;dla których
+
Jeżeli żadna liczba pierwsza <math>q \geqslant 5</math> nie dzieli <math>m</math>, to możliwe są tylko dwie sytuacje: <math>n = 2^a \,</math> i <math>\, n = 2^a 3^b</math>.
  
::<math>0 < x^2 + n y^2 < \left( {\small\frac{p}{2}} \right)^2 + n \left( {\small\frac{p}{2}} \right)^2 = {\small\frac{(n + 1) p}{4}} \cdot p</math>
+
'''3a. Przypadek, gdy <math>\boldsymbol{n = 2^a}</math>'''
  
Ponieważ modulo <math>p</math> jest <math>x \equiv x_0 \,</math> i <math>\, y \equiv y_0</math>, to liczby <math>x, y</math> spełniają kongruencję
+
::<math>\varphi (n) = \varphi (2^a) = 2^{a - 1} > \sqrt{2^a} = \sqrt{n} \qquad \qquad \;\, \text{dla} \; a \geqslant 3</math>
  
::<math>x^2 + n y^2 \equiv 0 \!\! \pmod{p}</math>
+
Twierdzenie nie jest prawdziwe dla <math>n = 2 \,</math> i <math>\, n = 4 \,\,</math> (gdy <math>a = 1 \,</math> lub <math>\, a = 2</math>).
  
Zatem wynikające z&nbsp;powyższej kongruencji równanie
+
'''3b. Przypadek, gdy <math>\boldsymbol{n = 2^a 3^b}</math>'''
  
::<math>x^2 + n y^2 = m p</math>
+
::<math>\varphi (n) = \varphi (2^a 3^b) = \varphi (2^a) \varphi (3^b) = 2^{a - 1} \cdot 2 \cdot 3^{b - 1} = 2^a 3^{b - 1} = \sqrt{2^a 3^b} \cdot {\small\frac{\sqrt{2^a 3^b}}{3}} > \sqrt{2^a 3^b}</math>
  
ma rozwiązanie dla liczb
+
Ostatnia nierówność jest prawdziwa, o&nbsp;ile <math>\sqrt{2^a 3^b} > 3</math>, czyli gdy <math>2^a 3^b > 9</math>, co ma miejsce, gdy <math>a \geqslant 2</math> lub <math>b \geqslant 2</math>.
  
::<math>| x | < {\small\frac{p}{2}} , \qquad \qquad | y | < {\small\frac{p}{2}}, \qquad \qquad 1 \leqslant m < {\small\frac{(n + 1) p}{4}}</math>
+
Twierdzenie nie jest prawdziwe dla <math>n = 6 \;</math> (gdy <math>a = 1 \,</math> i <math>\, b = 1</math>).
  
Pomysł ze zmniejszaniem liczb stanowiących rozwiązanie za chwilę wykorzystamy ponownie i&nbsp;będzie to istotny element dowodu.
 
  
 +
Zbierając uzyskane wyniki, otrzymujemy: oszacowanie <math>\varphi (n) > \sqrt{n}</math> nie jest prawdziwe dla <math>n = 1, 2, 4, 6</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
'''C. Metoda nieskończonego schodzenia Fermata'''<ref name="InfiniteDescent1"/><ref name="Bussey1"/>
 
  
Pomysł dowodu został zaczerpnięty z&nbsp;książki Hardy'ego i&nbsp;Wrighta<ref name="HardyWright1"/>.
 
  
Jeżeli w&nbsp;rozwiązaniu <math>m = 1</math>, to <math>p = x^2 + n y^2</math> i&nbsp;twierdzenie jest udowodnione. W&nbsp;przypadku gdy <math>m > 1</math> wskażemy sposób postępowania, który pozwoli nam z&nbsp;istniejącego rozwiązania równania
+
<span id="H41" style="font-size: 110%; font-weight: bold;">Zadanie H41</span><br/>
 +
Pokazać, że dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\varphi (n) > {\small\frac{n}{3 \log n}}</math>. Korzystając z&nbsp;tego wyniku, pokazać, że <math>\varphi (n) > n^{2 / 3}</math> dla <math>n \geqslant 43</math> oraz że <math>\varphi (n) > n^{3 / 4}</math> dla <math>n \geqslant 211</math>.
  
::<math>x^2 + n y^2 = m p</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Niech <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, a <math>n' = q_1 \cdot \ldots \cdot q_s</math> oznacza liczbę, będącą iloczynem dokładnie '''tych samych''' czynników pierwszych, jakie występują w&nbsp;liczbie <math>n</math>, natomiast <math>n^{\!\ast} = p_1 \cdot \ldots \cdot p_s</math> oznacza liczbę, będącą iloczynem dokładnie '''tej samej ilości''' czynników pierwszych, przy czym <math>p_i</math> oznacza teraz <math>i</math>-tą liczbę pierwszą.
  
otrzymać nowe rozwiązanie tej samej postaci
+
Ponieważ
  
::<math>x_1^2 + n y_1^2 = m_1 p</math>
+
::<math>{\small\frac{\varphi (n)}{n}} = \prod_{p \mid n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
takie, że <math>1 \leqslant m_1 < m</math>. Powtarzając tę procedurę odpowiednią ilość razy, otrzymamy rozwiązanie <math>x_k, y_k, m_k</math>, gdzie <math>m_k = 1</math>. Istnienie takiej procedury stanowi dowód prawdziwości twierdzenia.
+
to
  
Zauważmy, że podział na parzyste i&nbsp;nieparzyste liczby <math>m</math> jest konieczny tylko w&nbsp;przypadku gdy <math>n = 3</math>. W&nbsp;pozostałych przypadkach nie musimy wzmacniać nierówności, aby prawdziwe było oszacowanie <math>1 \leqslant m_1 < m</math>.
+
::<math>{\small\frac{\varphi (n)}{n}} = {\small\frac{\varphi (n')}{n'}} \geqslant {\small\frac{\varphi (n^{\!\ast})}{n^{\!\ast}}} = \prod^s_{i = 1} \left( 1 - {\small\frac{1}{p_i}} \right) \geqslant \prod^{p_s}_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{p_s}}</math>
  
'''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą parzystą'''
+
Ostatnia równość wynika z&nbsp;prostego wzoru
  
Jeżeli <math>m > 1</math> jest liczbą parzystą, to z&nbsp;twierdzenia K55 wiemy, że liczba <math>x^2 + n y^2</math> może być zapisana w&nbsp;postaci
+
::<math>\prod^m_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{2}} \cdot {\small\frac{2}{3}} \cdot {\small\frac{3}{4}} \cdot \ldots \cdot {\small\frac{m - 2}{m - 1}} \cdot {\small\frac{m - 1}{m}} = {\small\frac{1}{m}}</math>
  
::<math>x^2 + n y^2 = 2^{\alpha} (x^2_1 + n y^2_1)</math>
 
  
gdzie <math>x^2_1 + n y^2_1</math> jest liczbą nieparzystą. Wystarczy położyć <math>m_1 = {\small\frac{m}{2^{\alpha}}}</math>, aby z&nbsp;istniejącego rozwiązania otrzymać nowe rozwiązanie tej samej postaci
+
Musimy oszacować wartość liczby <math>p_s</math>. Z&nbsp;twierdzenia B31 wynika, że dla <math>m \geqslant 2</math> jest <math>P(m) \geqslant 2^{m / 2}</math>, gdzie funkcja <math>P(m)</math> jest równa iloczynowi wszystkich liczb pierwszych nie większych od <math>m</math>. Zatem dla <math>p_s \geqslant 2</math> jest
  
::<math>x_1^2 + n y_1^2 = m_1 p</math>
+
::<math>n^{\!\ast} = p_1 \cdot \ldots \cdot p_s = P (p_s) \geqslant 2^{p_s / 2}</math>
  
gdzie <math>m_1</math> jest liczbą nieparzystą i <math>1 \leqslant m_1 < m</math>.
+
Logarytmując, otrzymujemy
  
'''Przypadek, gdy''' <math>\boldsymbol{m > 1}</math> '''jest liczbą nieparzystą'''
+
::<math>p_s \leqslant {\small\frac{2 \log n^{\!\ast}}{\log 2}}</math>
  
Niech liczby <math>r, s</math> będą liczbami całkowitymi najbliższymi liczbom <math>{\small\frac{x}{m}} \,</math> i <math>\, {\small\frac{y}{m}}</math>. Z&nbsp;definicji mamy
+
Ponieważ <math>n \geqslant n' \geqslant n^{\!\ast}</math>, to
  
::<math>\left| {\small\frac{x}{m}} - r \right| \leqslant {\small\frac{1}{2}} \qquad \qquad \text{i} \qquad \qquad \left| {\small\frac{y}{m}} - s \right| \leqslant {\small\frac{1}{2}}</math>
+
::<math>{\small\frac{\varphi (n)}{n}} \geqslant {\small\frac{1}{p_s}} \geqslant {\small\frac{\log 2}{2 \log n^{\!\ast}}} \geqslant {\small\frac{\log 2}{2 \log n}} > {\small\frac{1}{3 \log n}}</math>
  
Zatem
+
Ostatecznie otrzymujemy
  
::<math>| x - r m | \leqslant {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | \leqslant {\small\frac{m}{2}}</math>
+
::<math>\varphi (n) > {\small\frac{n}{3 \log n}}</math>
  
Ponieważ liczby po lewej stronie nierówności są liczbami całkowitymi, to nigdy nie będą równe liczbie <math>{\small\frac{m}{2}}</math>, gdzie <math>m</math> jest liczbą nieparzystą. Pozwala to wzmocnić wypisane nierówności.
+
Co należało pokazać.
  
::<math>| x - r m | < {\small\frac{m}{2}} \qquad \qquad \text{i} \qquad \qquad | y - s m | < {\small\frac{m}{2}}</math>
 
  
Połóżmy
+
Rozwiązując drugą część zadania, wystarczy znaleźć, dla jakich <math>n</math> prawdziwa jest nierówność
  
::<math>a = x - r m \qquad \qquad \text{i} \qquad \qquad b = y - s m</math>
+
::<math>{\small\frac{n}{3 \log n}} > n^{2 / 3}</math>
  
Zauważmy, że liczba <math>m</math> nie może jednocześnie dzielić liczb <math>x</math> i <math>y</math>, bo mielibyśmy <math>m^2 \mid (x^2 + n y^2)</math>, czyli <math>m \mid p</math>, co jest niemożliwe. Zatem przynajmniej jedna z&nbsp;liczb <math>a, b</math> musi być różna od <math>0</math>.
+
Przebieg funkcji <math>{\small\frac{n}{3 \log n}} \,</math> i <math>\, n^{2 / 3}</math> przedstawiliśmy na wykresie
  
Rozpatrując równanie <math>x^2 + n y^2 = m p</math> modulo <math>m</math> i&nbsp;uwzględniając, że
+
::[[File: Euler1.png|1100px|none]]
  
::<math>x \equiv a \!\! \pmod{m}</math>
+
Punkt przecięcia tych funkcji znajdujemy, wpisując w&nbsp;PARI/GP polecenie
  
::<math>y \equiv b \!\! \pmod{m}</math>
+
<span style="font-size: 90%; color:black;">'''solve'''(n = 10, 10^5, n/(3*'''log'''(n)) - n^(2/3))</span>
  
otrzymujemy
+
Otrzymujemy
  
::<math>a^2 + n b^2 \equiv 0 \pmod{m}</math>
+
::<math>n = 29409.965</math>
  
Mamy też oszacowanie
+
Zatem <math>{\small\frac{n}{3 \log n}} > n^{2 / 3}</math> dla <math>n > 2.95 \cdot 10^4</math>.
  
::<math>0 < a^2 + n b^2 < \left( {\small\frac{m}{2}} \right)^2 + n \cdot \left( {\small\frac{m}{2}} \right)^2 = {\small\frac{(n + 1) m^2}{4}} = {\small\frac{(n + 1) m}{4}} \cdot m</math>
+
Poleceniem
  
Wynika stąd, że istnieje taka liczba <math>m_1</math> spełniająca warunek <math>1 \leqslant m_1 < {\small\frac{(n + 1) m}{4}}</math>, że
+
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 3*10^4, '''if'''( '''eulerphi'''(n) <= n^(2/3), '''print'''(n) ))</span>
  
::<math>a^2 + n b^2 = m_1 m</math>
+
sprawdzamy, że oszacowanie <math>\varphi (n) > n^{2 / 3}</math> jest prawdziwe dla <math>n \geqslant 43</math>.
  
Mnożąc stronami powyższe równanie i&nbsp;równanie <math>x^2 + n y^2 = m p</math>, otrzymujemy
 
  
::<math>m_1 m^2 p = (a^2 + n b^2) (x^2 + n y^2)</math>
+
Postępując analogicznie jak wyżej, znajdujemy, dla jakich <math>n</math> prawdziwa jest nierówność
  
::::<math>\;\; = (a x + n b y)^2 + n (a y - b x)^2</math>
+
::<math>{\small\frac{n}{3 \log n}} > n^{3 / 4}</math>
  
(zobacz K54). Zauważmy teraz, że
+
Wpisując w&nbsp;PARI/GP polecenie
  
::<math>a x + n b y = (x - r m) x + n (y - s m) y</math>
+
<span style="font-size: 90%; color:black;">'''solve'''(n = 10, 10^7, n/(3*'''log'''(n)) - n^(3/4))</span>
  
::::<math>\quad \; = x^2 - r m x + n y^2 - n s m y</math>
+
otrzymujemy
  
::::<math>\quad \; = m (p - r x - n s y)</math>
+
::<math>n = 4447862.680</math>
  
::::<math>\quad \; = m x_1</math>
+
Zatem <math>{\small\frac{n}{3 \log n}} > n^{3 / 4}</math> dla <math>n > 4.45 \cdot 10^6</math>
  
 +
Poleceniem
  
::<math>a y - b x = (x - r m) y - (y - s m) x</math>
+
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 5*10^6, '''if'''( '''eulerphi'''(n) <= n^(3/4), '''print'''(n) ))</span>
  
::::<math>\;\;\, = x y - r m y - y x + s m x</math>
+
sprawdzamy, że oszacowanie <math>\varphi (n) > n^{3 / 4}</math> jest prawdziwe dla <math>n \geqslant 211</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::<math>\;\;\, = m (s x - r y)</math>
 
  
::::<math>\;\;\, = m y_1</math>
 
  
Gdzie oznaczyliśmy
+
<span id="H42" style="font-size: 110%; font-weight: bold;">Twierdzenie H42</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math>. Liczba <math>n</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy <math>\varphi (n) = n - 1</math>.
  
::<math>x_1 = p - r x - n s y</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Dla liczb złożonych <math>n \geqslant 4</math> nigdy nie będzie <math>\varphi (n) = n - 1</math>, bo
  
::<math>y_1 = s x - r y</math>
+
::<math>\varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2</math>
  
Wynika stąd, że
+
Dla <math>n = 1, 2, 3</math> sprawdzamy bezpośrednio: <math>\varphi (1) = 1 \neq 1 - 1</math>, <math>\varphi (2) = 1 = 2 - 1</math>, <math>\varphi (3) = 2 = 3 - 1</math>. Co kończy dowód.<br/>
 
 
::<math>m_1 m^2 p = (m x_1)^2 + n (m y_1)^2</math>
 
 
 
Zatem
 
 
 
::<math>x^2_1 + n y^2_1 = m_1 p</math>
 
 
 
gdzie
 
 
 
::<math>1 \leqslant m_1 < {\small\frac{(n + 1) m}{4}}</math>
 
 
 
Czyli powtarzając odpowiednią ilość razy opisaną powyżej procedurę, otrzymamy <math>m_k = 1</math>.
 
 
 
 
 
'''D. Jednoznaczność rozkładu'''
 
 
 
Z założenia <math>p</math> jest liczbą pierwszą, zatem jednoznaczność rozkładu wynika z&nbsp;twierdzenia K53. Co kończy dowód.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2112: Linia 1266:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K57</span><br/>
+
<span id="H43" style="font-size: 110%; font-weight: bold;">Twierdzenie H43</span><br/>
Udowodnione wyżej twierdzenie można wykorzystać do znalezienia rozkładu liczby pierwszej <math>p</math> postaci <math>4 k + 1</math> na sumę dwóch kwadratów. Dla dużych liczb pierwszych funkcja działa wolno, bo dużo czasu zajmuje obliczanie silni.
+
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
::<math>n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right)</math>
<span style="font-size: 90%; color:black;">SumOfTwoSquares(p) =  
 
{
 
'''local'''(m, r, s, x, y, x1, y1);
 
'''if'''( p%4 <> 1 || !'''isprime'''(p), '''return'''("Error") );
 
x = 1;
 
'''for'''(k = 2, (p-1)/2, x = (x*k)%p); \\ x = { [(p-1)/2]! } % p
 
x = x - '''round'''(x/p)*p;
 
y = 1;
 
m = (x^2 + y^2)/p;
 
'''while'''( m > 1,
 
        r = '''round'''(x/m);
 
        s = '''round'''(y/m);
 
        x1 = p - r*x - s*y;
 
        y1 = r*y - s*x;
 
        x = x1;
 
        y = y1;
 
        m = (x^2 + y^2)/p;
 
      );
 
'''return'''([ '''abs'''(x), '''abs'''(y), p ]);
 
}</span>
 
{{\Spoiler}}
 
  
 +
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to funkcja
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K58</span><br/>
+
::<math>F(n) = \sum_{d \mid n} \varphi (d)</math>
Niech liczby pierwsze <math>p, q</math> będą postaci <math>4 k + 1</math>, a&nbsp;liczba pierwsza <math>r</math>
 
będzie postaci <math>4 k + 3</math>. Pokazać, że
 
:*&nbsp;&nbsp;liczby <math>r, p r \,</math> i <math>\, r^2</math> nie rozkładają się na sumę dwóch kwadratów liczb całkowitych dodatnich
 
:*&nbsp;&nbsp;liczby <math>p</math>, <math>2 p</math>, <math>p^2 \,</math> i <math>\, p r^2</math> mają jeden rozkład na sumę dwóch kwadratów liczb całkowitych dodatnich
 
:*&nbsp;&nbsp;liczba <math>p q</math>, <math>p \neq q</math> ma dwa rozkłady na sumę dwóch kwadratów liczb całkowitych dodatnich
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
 
 
'''Punkt 1.'''
 
 
 
Ponieważ liczby <math>r \,</math> i <math>\, p r</math> są postaci <math>4 k + 3</math>, to modulo <math>4</math> mamy
 
  
::<math>r, p r \equiv 3 \!\! \pmod{4}</math>
+
też jest funkcją multiplikatywną (zobacz [[#H30|H30]]). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>n = 1</math>. Niech <math>n > 1</math>. Jeżeli <math>n =
 +
p^{\alpha}</math> jest potęgą liczby pierwszej, to otrzymujemy
  
Suma <math>x^2 + y^2</math> musi być liczbą nieparzystą, zatem liczby <math>x, y</math> muszą mieć przeciwną parzystość i&nbsp;modulo <math>4</math> mamy
+
::<math>F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d)</math>
  
::<math>x^2 + y^2 \equiv 1 \!\! \pmod{4}</math>
+
::::<math>= \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) =</math>
  
Przypuśćmy, że
+
::::<math>= 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) =</math>
  
::<math>r^2 = x^2 + y^2</math>
+
::::<math>= 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1})</math>
  
gdzie <math>x, y \in \mathbb{Z}_+</math>. Liczby <math>x, y</math> muszą mieć przeciwną parzystość, zatem <math>x \neq y</math>. Z&nbsp;twierdzenia J24 wynika, że liczba <math>x^2 + y^2</math> musi mieć dzielnik pierwszy postaci <math>4 k + 1</math>, co w&nbsp;sposób oczywisty jest niemożliwe.
+
::::<math>= p^{\alpha}</math>
  
'''Punkt 2.'''
+
Jeżeli <math>n</math> jest postaci <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
  
W przypadku liczby pierwszej <math>p</math> odpowiedzi udziela twierdzenie K56. Niech <math>p = x^2 + y^2</math>, mamy
+
::<math>F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) =</math>
  
::<math>2 p = (x + y)^2 + (x - y)^2</math>
+
:::<math>\;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) =</math>
  
::<math>p^2 = (x^2 - y^2)^2 + (2 x y)^2</math>
+
:::<math>\;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>
  
::<math>p r^2 = (r x)^2 + (r y)^2</math>
+
:::<math>\;\;\;\, = n</math>
  
'''Punkt 3.'''
+
Niech <math>1 < d_1 < d_2 < \ldots < n</math> będą dzielnikami liczby <math>n</math>. Zauważmy, że kiedy <math>d</math> przebiega zbiór dzielników <math>\{ 1, d_1, d_2, \ldots, n \}</math>, to <math>e = \frac{n}{d}</math> przebiega wszystkie te liczby tylko w&nbsp;odwrotnej kolejności. Zatem
  
Niech <math>p = x^2 + y^2</math> i <math>q = a^2 + b^2</math>. Ze wzorów podanych w&nbsp;uwadze K54 mamy
+
::<math>\sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right)</math>
 
 
::<math>p q = (a^2 + b^2) (x^2 + y^2) = (a x + b y)^2 + (a y - b x)^2</math>
 
 
 
:::::::::<math>\:\, = (a x - b y)^2 + (a y + b x)^2</math>
 
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 2189: Linia 1311:
  
  
 
+
<span id="H44" style="font-size: 110%; font-weight: bold;">Zadanie H44</span><br/>
 
+
Niech <math>n \geqslant 2</math>. Pokazać, że suma liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math> jest równa <math>{\small\frac{1}{2}} n \varphi (n)</math>.
== Twierdzenia o&nbsp;istnieniu liczb pierwszych kwadratowych i&nbsp;niekwadratowych modulo ==
 
 
 
<span style="font-size: 110%; font-weight: bold;">Zadanie K59</span><br/>
 
Niech <math>s = \pm 1</math>. Zbadać podzielność liczby <math>p - s a^2</math>
 
 
 
:* przez <math>4</math>, gdy <math>p = 4 k + r</math>, gdzie <math>r = 1, 3</math>
 
:* przez <math>8</math>, gdy <math>p = 8 k + r</math>, gdzie <math>r = 1, 3, 5, 7</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Problem sprowadza się do uzyskania odpowiedzi, kiedy kongruencja
+
Łatwo sprawdzamy, że wzór jest prawdziwy dla <math>n = 2</math> i&nbsp;odtąd będziemy przyjmowali, że <math>n \geqslant 3</math>. Zatem wartości <math>\varphi (n)</math> są liczbami parzystymi i&nbsp;niech <math>c = {\small\frac{1}{2}} \varphi (n)</math>. Zauważmy, że jeżeli liczba <math>a</math> jest względnie pierwsza z <math>n</math>, to liczba <math>n - a</math> jest również względnie pierwsza z <math>n</math>, bo <math>\gcd (a, n) = \gcd (n - a, n)</math>. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od <math>n</math> i&nbsp;względnie pierwsze z <math>n</math> w&nbsp;kolejności rosnącej, a&nbsp;pod spodem w&nbsp;kolejności malejącej
 
 
::<math>p - s a^2 \equiv 0 \pmod{2^n}</math>
 
 
 
gdzie <math>n = 2, 3</math>, ma rozwiązanie. Podstawiając, dostajemy
 
 
 
::<math>2^n k + r \equiv s a^2 \pmod{2^n}</math>
 
 
 
::<math>s a^2 \equiv r \pmod{2^n}</math>
 
 
 
::<math>a^2 \equiv s r \pmod{2^n}</math>
 
 
 
Z twierdzenia J54 wiemy, że aby powyższa kongruencja miała rozwiązanie, musi być <math>2^n \mid (s r - 1)</math>, co jest możliwe tylko, gdy
 
 
 
::<math>s =
 
\begin{cases}
 
\;\;\: 1 & \text{gdy } r = 1 \\
 
      - 1 & \text{gdy } r = 3 \\
 
\end{cases}</math>
 
 
 
dla <math>2^n = 4</math> i&nbsp;gdy
 
 
 
::<math>s =  
 
\begin{cases}
 
\;\;\: 1 & \text{gdy } r = 1 \\
 
      - 1 & \text{gdy } r = 7 \\
 
\end{cases}</math>
 
 
 
dla <math>2^n = 8</math>. Dla <math>2^n = 8</math> i <math>r = 3, 5</math> rozpatrywana kongruencja nie ma rozwiązania.<br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span style="font-size: 110%; font-weight: bold;">Uwaga K60</span><br/>
 
Poniżej udowodnimy trzy twierdzenia dotyczące istnienia liczb pierwszych, które są liczbami kwadratowymi modulo <math>p</math>. Pomysł ujęcia problemu zaczerpnęliśmy z&nbsp;pracy Alexandru Gicy<ref name="Gica1"/>. Zadanie K59 należy traktować jako uzupełnienie do dowodu twierdzenia K61. Z&nbsp;zadania łatwo widzimy, że powiązanie liczby <math>s</math> z&nbsp;postacią liczby pierwszej <math>p</math> nie jest przypadkowe.
 
 
 
Zauważmy, że twierdzenia ograniczają się do liczb pierwszych <math>p</math>, ponieważ dla liczb złożonych nieparzystych <math>m > 0</math> wynik <math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} = 1</math> nie oznacza, że liczba pierwsza <math>q</math> jest liczbą kwadratową modulo <math>m</math>.
 
 
 
W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> kwadratowe modulo <math>p</math>.
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{p}</math>
 
| <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math> || <math>53</math> || <math>59</math> || <math>61</math> || <math>67</math> || <math>71</math> || <math>73</math> || <math>79</math> || <math>83</math> || <math>89</math> || <math>97</math>
 
|-
 
! <math>\boldsymbol{q}</math>
 
| style="background-color: red" | <math>13</math> || style="background-color: red" | <math>29</math> || style="background-color: red" | <math>29</math> || <math>5</math> || style="background-color: red" | <math>17</math> || <math>13</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>41</math> || <math>5</math> || <math>13</math> || <math>17</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>17</math> || <math>5</math> || <math>37</math> || <math>5</math> || <math>17</math> || <math>5</math> || <math>53</math>
 
|}
 
 
 
 
 
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 3</math> kwadratowe modulo <math>p</math>.
 
  
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
|-
! <math>\boldsymbol{p}</math>
+
| <math>1</math> || <math>a_2</math> || <math></math> || <math>a_c</math> || <math>n - a_c</math> || <math></math> || <math>n - a_2</math> || <math>n - 1</math>
| <math>3</math> || <math>5</math> || <math>7</math> || <math>11</math> || <math>13</math> || <math>17</math> || <math>19</math> || <math>23</math> || <math>29</math> || <math>31</math> || <math>37</math> || <math>41</math> || <math>43</math> || <math>47</math> || <math>53</math> || <math>59</math> || <math>61</math> || <math>67</math> || <math>71</math> || <math>73</math> || <math>79</math> || <math>83</math> || <math>89</math> || <math>97</math>
 
 
|-
 
|-
! <math>\boldsymbol{q}</math>
+
| <math>n - 1</math> || <math>n - a_2</math> || <math></math> || <math>n - a_c</math> || <math>a_c</math> || <math></math> || <math>a_2</math> || <math>1</math>
| style="background-color: red" | <math>7</math> || style="background-color: red" | <math>11</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>19</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>23</math> || <math>11</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>19</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>3</math> || <math>11</math> || <math>3</math>
 
 
|}
 
|}
  
 
+
Suma liczb w&nbsp;każdej kolumnie jest równa <math>n</math>. Ponieważ ilość liczb względnie pierwszych z <math>n</math> jest równa <math>\varphi (n)</math>, to podwojona suma liczb całkowitych nie większych od <math>n</math> i&nbsp;pierwszych względem <math>n</math> wynosi <math>n \varphi (n)</math>. Co należało pokazać.<br/>
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K61</span><br/>
 
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 17</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> kwadratowa modulo <math>p</math>.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Niech
 
::<math>s =
 
\begin{cases}
 
\;\;\: 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 1 \\
 
      - 1 & \text{gdy } \, p \, \text{ jest postaci } \, 4 k + 3 \\
 
\end{cases}</math>
 
 
 
Dla ustalonych liczb <math>n</math> i <math>s</math> rozważmy liczbę <math>u(a) = {\small\frac{p - s a^2}{2^n}}</math> taką, że <math>3 \leqslant u (a) < p</math>. Jeżeli liczba ta jest postaci <math>4 k + 3</math>, to ma dzielnik pierwszy <math>q < p</math> postaci <math>4 k + 3</math> (zobacz C21). Zatem możemy napisać <math>u (a) = t q</math>, co oznacza, że
 
 
 
::<math>p - s a^2 = 2^n u (a) = 2^n t q</math>
 
 
 
Czyli
 
 
 
::<math>p \equiv s a^2 \pmod{q}</math>
 
 
 
i otrzymujemy
 
 
 
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s a^2}{q}} \right)_{\small{\!\! J}} = s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{a^2}{q}} \right)_{\small{\!\! J}} =s \cdot \left( {\small\frac{s}{q}} \right)_{\small{\!\! J}} = 1</math>
 
 
 
Zatem liczba <math>q < p</math> jest liczbą kwadratową modulo <math>p</math>.
 
 
 
Pomysł dowodu polega na wskazaniu kilku liczb <math>u(a_1), \ldots, u(a_r)</math> takich, że
 
 
 
::<math>3 \leqslant u(a_1) < \ldots < u(a_r) < p</math>
 
 
 
z których jedna musi być postaci <math>4 k + 3</math>.
 
 
 
'''Przypadek pierwszy:''' <math>\boldsymbol{p \equiv 3 \!\! \pmod{8}}</math>
 
 
 
Mamy <math>s = - 1</math> i&nbsp;przyjmujemy <math>n = 2</math>. Rozważmy liczby
 
 
 
::<math>3 \leqslant {\small\frac{p + 1}{4}} < {\small\frac{p + 9}{4}} < p</math>
 
 
 
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 11</math>. Z&nbsp;założenia <math>p = 8 k + 3</math>, zatem rozpatrywane liczby to <math>\{ 2 k + 1, 2 k + 3 \}</math>. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z&nbsp;nich jest postaci <math>4 k + 3</math>.
 
 
 
'''Przypadek drugi:''' <math>\boldsymbol{p \equiv 5 \!\! \pmod{8}}</math>
 
 
 
Mamy <math>s = + 1</math> i&nbsp;przyjmujemy <math>n = 2</math>. Rozważmy liczby
 
 
 
::<math>3 \leqslant {\small\frac{p - 9}{4}} < {\small\frac{p - 1}{4}} < p</math>
 
 
 
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 21</math>. Z&nbsp;założenia <math>p = 8 k + 5</math>, zatem rozpatrywane liczby to <math>\{ 2 k - 1, 2 k + 1 \}</math>. Ponieważ są to dwie kolejne liczby nieparzyste, to jedna z&nbsp;nich jest postaci <math>4 k + 3</math>.
 
 
 
'''Przypadek trzeci:''' <math>\boldsymbol{p \equiv 7 \!\! \pmod{8}}</math>
 
 
 
Mamy <math>s = - 1</math> i&nbsp;przyjmujemy <math>n = 3</math>. Rozważmy liczby
 
 
 
::<math>3 \leqslant {\small\frac{p + 1}{8}} < {\small\frac{p + 9}{8}} < {\small\frac{p + 25}{8}} < {\small\frac{p + 49}{8}} < p</math>
 
 
 
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 23</math>. Z&nbsp;założenia <math>p = 8 k + 7</math>, zatem rozpatrywane liczby to <math>\{ k + 1, k + 2, k + 4, k + 7 \}</math>. Jeżeli <math>k \equiv r \!\! \pmod{4}</math>, to modulo <math>4</math> mamy zbiór <math>\{ r + 1, r + 2, r, r + 3 \}</math>. Zatem jedna z&nbsp;liczb w&nbsp;tym zbiorze jest postaci <math>4 k + 3</math>.
 
 
 
'''Przypadek czwarty:''' <math>\boldsymbol{p \equiv 1 \!\! \pmod{8}}</math>
 
 
 
Mamy <math>s = + 1</math> i&nbsp;przyjmujemy <math>n = 3</math>. Rozważmy liczby
 
 
 
::<math>3 \leqslant {\small\frac{p - 49}{8}} < {\small\frac{p - 25}{8}} < {\small\frac{p - 9}{8}} < {\small\frac{p - 1}{8}} < p</math>
 
 
 
Oszacowania są jednocześnie spełnione dla <math>p \geqslant 73</math>. Z&nbsp;założenia <math>p = 8 k + 1</math>, zatem rozpatrywane liczby to <math>\{ k - 6, k - 3, k - 1, k \}</math>. Jeżeli <math>k \equiv r \!\! \pmod{4}</math>, to modulo <math>4</math> mamy zbiór <math>\{ r + 2, r + 1, r + 3, r \}</math>. Zatem jedna z&nbsp;liczb w&nbsp;tym zbiorze jest postaci <math>4 k + 3</math>.
 
 
 
Pozostaje sprawdzić twierdzenie dla liczb pierwszych <math>p < 73</math>. Co kończy dowód.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2333: Linia 1330:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K62</span><br/>
+
<span id="H45" style="font-size: 110%; font-weight: bold;">Zadanie H45</span><br/>
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
+
Pokazać, że dla liczb naturalnych nieparzystych <math>n \geqslant 5</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W przypadku, gdy liczba pierwsza <math>p</math> jest postaci <math>8 k + 1</math> lub <math>8 k + 3</math>, to istnieją takie liczby całkowite dodatnie <math>x, y</math>, że <math>p = x^2 + 2 y^2</math> (zobacz K56). Ponieważ z&nbsp;założenia <math>p \geqslant 11</math>, to musi być <math>x \neq y</math>. Z&nbsp;twierdzenia J24 wynika, że liczba <math>x^2 + y^2</math> ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 1</math>. Łatwo widzimy, że <math>q \leqslant x^2 + y^2 < x^2 + 2 y^2 = p</math>.
+
'''1.''' Jeżeli <math>n \geqslant 5</math> jest liczbą pierwszą, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze mniejsze od <math>n</math> oraz liczby <math>1, 4</math>. Zatem
 
 
Modulo <math>q</math> możemy napisać
 
  
::<math>x^2 + y^2 \equiv 0 \!\! \pmod{q}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 2 > \pi (n)</math>.
  
Liczba pierwsza <math>q < p</math> nie może dzielić <math>y</math>, bo mielibyśmy <math>q \mid x</math>, czyli <math>q \mid p</math>, co jest niemożliwe. Rozpatrując równość <math>p = x^2 + 2 y^2</math> modulo <math>q</math>, dostajemy
+
'''2.''' Jeżeli <math>n = p^a</math>, gdzie <math>a \geqslant 2</math>, jest potęgą liczby pierwszej nieparzystej, to <math>n \geqslant 9</math> i&nbsp;liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>p</math>) oraz liczby <math>1, 4, 8</math>. Zatem
  
::<math>p \equiv y^2 \!\! \pmod{q}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>.
  
Wynika stąd natychmiast (zobacz J41 p.9)
+
'''3.''' Jeżeli <math>n</math> ma więcej niż jeden dzielnik pierwszy nieparzysty, to <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>s \geqslant 2</math>. Zauważmy, że
  
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}} = 1</math>
+
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} > 2^{2 s - 1}</math>
  
Co kończy dowód.<br/>
+
Liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb <math>q_1, \ldots, q_s</math>) oraz liczby <math>1, 2^2, 2^3, \ldots, 2^{2 s - 1}</math>. Zatem
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 > \pi (n)</math>
  
 
+
Co należało pokazać.<br/>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K63</span><br/>
 
Jeżeli <math>p \geqslant 19</math> jest liczbą pierwszą postaci <math>12 k + 7</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z założenia <math>p \equiv 1 \!\! \pmod{6}</math>, zatem istnieją takie liczby <math>x, y \in \mathbb{Z}_+</math>, że <math>p = x^2 + 3 y^2</math> (zobacz K56).
 
Liczby <math>x, y</math> muszą mieć przeciwną parzystość i&nbsp;być względnie pierwsze. Gdyby liczba <math>x</math> była nieparzysta, to modulo <math>4</math> mielibyśmy
 
 
 
::<math>1 + 3 \cdot 0 \equiv 3 \!\! \pmod{4}</math>
 
 
 
Co jest niemożliwe. Zatem <math>x = 2 k</math>, a&nbsp;liczba <math>y</math> musi być nieparzysta. Otrzymujemy
 
 
 
::<math>p = 4 k^2 + 3 y^2 = 4 (k^2 + y^2) - y^2</math>
 
 
 
Ponieważ <math>p</math> jest liczbą pierwszą, to jedynie w&nbsp;przypadku gdy <math>k = y = 1</math> możliwa jest sytuacja, że <math>k = y</math>. Mielibyśmy wtedy <math>p = 7</math>, ale z&nbsp;założenia musi być <math>p \geqslant 19</math>. Wynika stąd, że <math>k \neq y</math>, zatem liczba <math>k^2 + y^2</math> ma dzielnik pierwszy <math>q</math> postaci <math>4 k + 1</math> (zobacz J24). Oczywiście <math>q \leqslant k^2 + y^2 < 4 k^2 + 3 y^2 = p</math>.
 
 
 
Modulo <math>q</math> możemy napisać
 
 
 
::<math>k^2 + y^2 \equiv 0 \!\! \pmod{q}</math>
 
 
 
Liczba pierwsza <math>q</math> nie może dzielić <math>y</math>, bo mielibyśmy <math>q \mid k</math>, czyli <math>q \mid p</math>, co jest niemożliwe. Rozpatrując równość <math>p = 4 (k^2 + y^2) - y^2</math> modulo <math>q</math>, dostajemy
 
 
 
::<math>p \equiv - y^2 \!\! \pmod{q}</math>
 
 
 
Wynika stąd natychmiast (zobacz J41 p.9 i&nbsp;p.6)
 
 
 
::<math>\left( {\small\frac{q}{p}} \right)_{\small{\!\! J}}
 
= \left( {\small\frac{p}{q}} \right)_{\small{\!\! J}}
 
= \left( {\small\frac{- y^2}{q}} \right)_{\small{\!\! J}}
 
= \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{y^2}{q}} \right)_{\small{\!\! J}}
 
= \left( {\small\frac{- 1}{q}} \right)_{\small{\!\! J}} = 1</math>
 
 
 
Co kończy dowód.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2394: Linia 1356:
  
  
Twierdzenia K62 i&nbsp;K63 można uogólnić na wszystkie liczby pierwsze.<ref name="Gica1"/><br/>
+
<span id="H46" style="font-size: 110%; font-weight: bold;">Zadanie H46</span><br/>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K64*</span><br/>
+
Pokazać, że dla liczb naturalnych <math>n \geqslant 91</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
Jeżeli <math>p \geqslant 11</math> jest liczbą pierwszą i <math>p \neq 13, 37</math>, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> kwadratowa modulo <math>p</math>.
 
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Ponieważ <math>p_{2 s} > 1</math> i <math>p_{2 s} \geqslant p_{s + 1}</math>, to z&nbsp;zadania A40 natychmiast wynika nierówność
  
 +
::<math>p_1 p_2 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s}</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga K65</span><br/>
+
która jest prawdziwa dla <math>n \geqslant 4</math>.
W tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>.
 
  
:{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
+
Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność <math>\varphi (n) > \pi (n)</math> jest zawsze prawdziwa.
|-
 
! <math>\boldsymbol{m}</math>
 
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math> || <math>21</math> || <math>22</math> || <math>23</math> || <math>24</math> || <math>25</math> || <math>26</math> || <math>27</math> || <math>28</math> || <math>29</math> || <math>30</math> || <math>31</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>35</math> || <math>36</math> || <math>37</math> || <math>38</math> || <math>39</math> || <math>40</math>
 
|-
 
! <math>\boldsymbol{q}</math>
 
| style="background-color: red" | <math>-</math> || style="background-color: red" | <math>5</math> || style="background-color: red" | <math>-</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>13</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>13</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>17</math> || <math>13</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>13</math>
 
|}
 
  
 +
Przez <math>p_1, p_2, \ldots, p_k, \ldots</math> oznaczymy kolejne liczby pierwsze. Niech <math>n \geqslant 2</math> będzie liczbą naturalną i <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>q_i</math> oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.
  
W kolejnej tabeli przedstawiamy najmniejsze liczby pierwsze <math>q</math> postaci <math>4 k + 3</math> niekwadratowe modulo <math>m</math>.
+
Wśród kolejnych <math>2 s</math> liczb pierwszych znajduje się przynajmniej <math>s</math> liczb pierwszych '''różnych''' od każdej z&nbsp;liczb <math>q_1, \ldots, q_s</math>. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez <math>r_1, \ldots, r_s</math>, to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania
  
:{| class="wikitable plainlinks"  style="font-size: 80%; text-align: center; margin-right: auto;"
+
:*&nbsp;&nbsp;&nbsp;dla najmniejszej liczby <math>r_1 \leqslant p_{s + 1}</math>
|-
 
! <math>\boldsymbol{m}</math>
 
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math> || <math>21</math> || <math>22</math> || <math>23</math> || <math>24</math> || <math>25</math> || <math>26</math> || <math>27</math> || <math>28</math> || <math>29</math> || <math>30</math> || <math>31</math> || <math>32</math> || <math>33</math> || <math>34</math> || <math>35</math> || <math>36</math> || <math>37</math> || <math>38</math> || <math>39</math> || <math>40</math>
 
|-
 
! <math>\boldsymbol{q}</math>  
 
| style="background-color: red" | <math>-</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>3</math> || <math>3</math> || <math>11</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math> || <math>11</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>3</math> || <math>3</math> || <math>7</math> || <math>19</math> || <math>3</math> || <math>7</math> || <math>3</math>
 
|}
 
  
 +
:*&nbsp;&nbsp;&nbsp;dla wszystkich liczb <math>r_j \leqslant p_{2 s}</math> dla <math>j = 1, \ldots, s</math>.
  
 +
Korzystając z&nbsp;wypisanej na początku dowodu nierówności, dla <math>s \geqslant 4</math> mamy
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K66</span><br/>
+
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j</math>
Jeżeli <math>m \geqslant 7</math> jest liczbą całkowitą postaci <math>4 k + 3</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
gdzie <math>j = 1, \ldots, s</math>.
Ponieważ liczba <math>m - 4 \geqslant 3</math> jest postaci <math>4 k + 3</math>, to ma dzielnik pierwszy <math>q < m</math> postaci <math>4 k + 3</math> (zobacz C21). Czyli <math>m - 4 = k q</math> i&nbsp;z&nbsp;twierdzenia J41 p.9 dostajemy
 
 
 
::<math>\left( {\small\frac{q}{m}} \right)_{\small{\!\! J}} =
 
- \left( {\small\frac{m}{q}} \right)_{\small{\!\! J}} =
 
- \left( {\small\frac{k q + 4}{q}} \right)_{\small{\!\! J}} =
 
- \left( {\small\frac{4}{q}} \right)_{\small{\!\! J}} = - 1</math>
 
 
 
Zatem <math>q</math> jest liczbą niekwadratową modulo <math>m</math>. Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
Wynika stąd, że jeśli <math>s \geqslant 4</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>q_1, \ldots, q_s</math>) oraz liczby <math>1</math> i <math>r_1 r_j</math>, gdzie <math>j = 1, \ldots, s</math>. Zatem
  
 +
::<math>\varphi (n) \geqslant \pi (n) - s + s + 1> \pi (n)</math>
  
Można też pokazać, że<ref name="Pollack2"/><br/>
+
Co mieliśmy pokazać.
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K67*</span><br/>
 
'''A.''' Jeżeli <math>p \geqslant 13</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>p</math>.
 
  
'''B.''' Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza <math>q < p</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>p</math>.
 
  
 +
Uwzględniając rezultat pokazany w&nbsp;zadaniu [[#H45|H45]], pozostaje sprawdzić przypadki gdy <math>n = 2^a</math>, <math>n = 2^a p^b</math>, <math>n = 2^a p^b q^c</math>, gdzie <math>a, b, c \in \mathbb{Z}_+</math>.
  
 +
'''1.''' Niech <math>n = 2^a</math>. Jeśli <math>n \geqslant 16</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>2</math>) oraz liczby <math>1, 9, 15</math>. Zatem
  
Zauważmy, że twierdzenie K67 można łatwo uogólnić na liczby całkowite dodatnie.<br/>
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K68</span><br/>
 
'''A.''' Jeżeli <math>m \geqslant 6</math> jest liczbą całkowitą i <math>m \neq 10 , 11</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 1</math> niekwadratowa modulo <math>m</math>.
 
  
'''B.''' Jeżeli <math>m \geqslant 4</math> jest liczbą całkowitą i <math>m \neq 6 , 9</math>, to istnieje liczba pierwsza <math>q < m</math> postaci <math>4 k + 3</math> niekwadratowa modulo <math>m</math>.
+
'''2.''' Niech <math>n = 2^a p^b</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math>. Oczywiście <math>r \in \{ 3, 5 \}</math> i&nbsp;jeśli tylko <math>n > 5^3 = 125</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math> i <math>p</math>) oraz liczby <math>1, r^2, r^3</math>. Zatem
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\varphi (n) \geqslant \pi (n) - 2 + 3 > \pi (n)</math>
  
'''Punkt B'''
+
'''3.''' Niech <math>n = 2^a p^b q^c</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math> oraz różną od <math>q</math>. Oczywiście <math>r \in \{ 3, 5, 7 \}</math> i&nbsp;jeśli <math>n > 7^4 = 2401</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math>, <math>p</math> i <math>q</math>) oraz liczby <math>1, r^2, r^3, r^4</math>. Zatem
  
Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b</math>.
+
::<math>\varphi (n) \geqslant \pi (n) - 3 + 4 > \pi (n)</math>
  
Jeżeli <math>3 \mid m</math>, to <math>11</math> jest liczbą niekwadratową modulo <math>m</math>, bo <math>\left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J55 i&nbsp;K41).
+
Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy <math>n</math> jest liczbą parzystą i <math>n \leqslant 2401</math>. W&nbsp;GP/PARI wystarczy napisać polecenie
  
Jeżeli <math>3 \nmid m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J55).
+
<span style="font-size: 90%; color:black;">for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))</span>
  
Jeżeli <math>3 \nmid m</math> i <math>8 \nmid m</math>, ale <math>4 \mid m</math>, to <math>4 \nmid (11 - 1)</math>, zatem liczba <math>11</math> jest liczbą niekwadratową modulo <math>m</math> (zobacz J55).
+
Nierówność <math>\varphi (n) > \pi (n)</math> nie jest prawdziwa dla <math>n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \}</math>. Co kończy dowód.<br/>
 
 
Jeżeli <math>m = 2</math>, to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo <math>2</math>.
 
 
 
 
 
Zbierając:
 
 
 
:* jeśli liczba <math>m \geqslant 12</math> nie ma dzielnika pierwszego <math>p \geqslant 5</math>, czyli jest postaci <math>m = 2^a 3^b</math>, to liczba pierwsza <math>q = 11</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math>.
 
:* jeśli liczba <math>m \geqslant 12</math> ma dzielnik pierwszy <math>p \geqslant 5</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math> (zobacz K67 i&nbsp;K41).
 
 
 
 
 
Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 11</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 3</math>.
 
 
 
<span style="font-size: 90%; color:black;">'''for'''(m = 3, 15, '''forprimestep'''(q = 3, 100, 4, '''if'''( isQR(q,m) == -1, '''print'''(m, "  ", q); '''break'''() )))</span>
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{m}</math>
 
| <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math>
 
|-
 
! <math>\boldsymbol{q}</math>
 
| style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>3</math> || style="background-color: red" | <math>11</math> || <math>3</math> || <math>7</math> || <math>7</math> || <math>7</math> || <math>3</math> || <math>7</math>
 
|}
 
 
 
Widzimy, że twierdzenie jest prawdziwe dla <math>m \geqslant 4</math>, o ile <math>m \neq 6 , 9</math>.
 
 
 
'''Punkt A'''
 
 
 
Rozważmy liczby <math>m</math> postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>.
 
 
 
Jeżeli jedna z&nbsp;liczb <math>3, 5, 7, 11</math> dzieli <math>m</math>, to <math>17</math> jest liczbą niekwadratową modulo <math>m</math>, bo
 
<math>\left( {\small\frac{17}{3}} \right)_{\small{\!\! J}}
 
= \left( {\small\frac{17}{5}} \right)_{\small{\!\! J}}
 
= \left( {\small\frac{17}{7}} \right)_{\small{\!\! J}}
 
= \left( {\small\frac{17}{11}} \right)_{\small{\!\! J}}
 
= - 1</math>.
 
 
 
Jeżeli żadna z&nbsp;liczb <math>3, 5, 7, 11</math> nie dzieli <math>m</math>, ale <math>8 \mid m</math>, to <math>8 \nmid (5 - 1)</math>, zatem liczba <math>5</math> jest liczbą niekwadratową modulo <math>m</math>.
 
 
 
Jeżeli żadna z&nbsp;liczb <math>3, 5, 7, 11</math> nie dzieli <math>m</math> i <math>8 \nmid m</math>, ale <math>4 \mid m</math>, to nie istnieją liczby pierwsze postaci <math>4 k + 1</math> niekwadratowe modulo <math>m</math>, bo <math>4 \mid [(4 k + 1) - 1]</math>
 
 
 
Jeżeli <math>m = 2</math>, to łatwo zauważamy, że nie istnieją liczby niekwadratowe modulo <math>2</math>.
 
 
 
Zbierając:
 
 
 
:* jeśli liczba <math>m \geqslant 18</math> nie ma dzielnika pierwszego <math>p \geqslant 13</math>, czyli jest postaci <math>m = 2^a 3^b 5^c 7^d 11^e</math>, to liczba pierwsza <math>q = 5</math> lub <math>q = 17</math> jest mniejsza od <math>m</math>, jest postaci <math>4 k + 1</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math>.
 
:* jeśli liczba <math>m \geqslant 18</math> ma dzielnik pierwszy <math>p \geqslant 13</math>, to istnieje liczba pierwsza <math>q < p \leqslant m</math> taka, że <math>q</math> jest postaci <math>4 k + 1</math> i&nbsp;jest liczbą niekwadratową modulo <math>m</math> (zobacz K67 i&nbsp;K41).
 
 
 
Pozostaje wypisać dla liczb <math>3 \leqslant m \leqslant 17</math> najmniejsze liczby niekwadratowe, które są liczbami pierwszymi postaci <math>4 k + 1</math>.
 
 
 
<span style="font-size: 90%; color:black;">'''for'''(m = 3, 20, '''forprimestep'''(q = 1, 100, 4, '''if'''( isQR(q,m) == -1, '''print'''(m, "  ", q); '''break'''() )))</span>
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
|-
 
! <math>\boldsymbol{m}</math>  
 
| <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math>
 
|-
 
! <math>\boldsymbol{q}</math>
 
| style="background-color: red" | <math>5</math> || style="background-color: red" | <math>-</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>5</math> || style="background-color: red" | <math>13</math> || style="background-color: red" | <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>5</math> || <math>5</math> || <math>5</math> || <math>13</math> || <math>13</math>
 
|}
 
 
 
Widzimy, że twierdzenie jest prawdziwe dla <math>m \geqslant 6</math>, o ile <math>m \neq 10 , 11</math>.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2534: Linia 1413:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie K69</span><br/>
+
<span id="H47" style="font-size: 110%; font-weight: bold;">Zadanie H47</span><br/>
Jeżeli <math>p \geqslant 5</math> jest liczbą pierwszą, to istnieje liczba pierwsza nieparzysta <math>q < p</math> taka, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1 .</math>
+
Pokazać, że <math>\varphi (n) = 2^a</math> wtedy i&nbsp;tylko wtedy, gdy <math>n = 2^b q_1 \cdot \ldots \cdot q_s</math>, gdzie <math>q_1, \ldots, q_s</math> są liczbami pierwszymi Fermata: <math>3, 5, 17, 257, 65537</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Łatwo sprawdzamy, że
+
W przypadku, gdy <math>2 \mid n</math>, łatwo zauważamy, że liczba <math>2</math> może występować w&nbsp;dowolnej potędze, bo <math>\varphi (2^b) = 2^{b - 1}</math>.
 
 
::<math>\left( {\small\frac{5}{3}} \right)_{\small{\!\! J}} = \left( {\small\frac{7}{5}} \right)_{\small{\!\! J}} = \left( {\small\frac{11}{3}} \right)_{\small{\!\! J}} = - 1</math>
 
 
 
(zobacz J41&nbsp;p.7). Zatem dowód wystarczy przeprowadzić dla <math>p \geqslant 13</math>.
 
 
 
'''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 1}</math>
 
 
 
Niech liczba <math>q</math> będzie najmniejszą '''nieparzystą''' liczbą niekwadratową modulo <math>p</math>. Z&nbsp;twierdzenia K25 wiemy, że dla <math>p \geqslant 5</math> liczba <math>q</math> jest liczbą pierwszą i&nbsp;jest mniejsza od <math>p</math>. Ponieważ <math>p \equiv 1 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J41&nbsp;p.9 otrzymujemy natychmiast
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
::<math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1</math>
 
</div>
 
 
 
'''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{4 k + 3}</math>
 
 
 
Z twierdzenia K61 wynika, że dla każdej liczby pierwszej <math>p \geqslant 11</math> postaci <math>4 k + 3</math> istnieje liczba pierwsza <math>q < p</math> taka, że <math>q</math> jest postaci <math>4 k + 3</math> i&nbsp;jest liczbą kwadratową modulo <math>p</math>. Ponieważ <math>p \equiv q \equiv 3 \!\! \pmod{4}</math>, to z&nbsp;twierdzenia J41 p.9 otrzymujemy natychmiast
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
::<math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - \left( {\small\frac{q}{p}} \right)_{\small{\!\! J}} = - 1</math>
 
</div>
 
  
Co kończy dowód.<br/>
+
W przypadku, gdy <math>p \mid n</math>, gdzie <math>p</math> jest liczbą pierwszą nieparzystą, mamy <math>\varphi (p^k) = (p - 1) p^{k - 1}</math> i&nbsp;równie łatwo zauważmy, że musi być <math>k = 1</math>, a&nbsp;liczba <math>p - 1</math> musi być potęgą liczby <math>2</math>. Zatem liczba pierwsza <math>p</math> musi być postaci <math>p = 2^t + 1</math>, co jest możliwe tylko wtedy, gdy <math>t</math> jest potęgą liczby <math>2</math> (zobacz [[#H48|H48]]), czyli <math>p</math> musi być liczbą pierwszą Fermata. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2566: Linia 1425:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie K70</span><br/>
 
Udowodnić twierdzenie K69 w&nbsp;przypadku, gdy liczba pierwsza <math>p \geqslant 19</math> jest postaci <math>4 k + 3</math>, nie korzystając z&nbsp;twierdzenia K61.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Z założenia <math>p = 4 k + 3</math>. Liczba <math>k</math> może być postaci <math>k = 3 j</math>, <math>k = 3 j + 1</math> i <math>k = 3 j + 2</math>. Odpowiada to liczbom pierwszym postaci <math>p = 12 j + 3</math>, <math>p = 12 j + 7</math> i <math>p = 12 j + 11</math>.
 
  
Ponieważ nie ma liczb pierwszych <math>p \geqslant 19</math> i&nbsp;będących postaci <math>p = 12 j + 3</math>, to pozostaje rozważyć przypadki <math>p = 12 j + 7</math> i <math>p = 12 j + 11</math>.
+
== Uzupełnienie ==
  
'''A. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{12 j + 11}</math>
+
<span id="H48" style="font-size: 110%; font-weight: bold;">Twierdzenie H48</span><br/>
 +
Niech <math>a, n \in \mathbb{Z}_+</math> i <math>a \geqslant 2</math>. Jeżeli liczba <math>a^n + 1</math> jest liczbą pierwszą, to <math>a</math> jest liczbą parzystą i <math>n = 2^m</math>.
  
Wiemy, że w&nbsp;tym przypadku <math>\left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = + 1</math> (zobacz J46). Mamy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Gdyby liczba <math>a</math> była nieparzysta, to liczba <math>a^n + 1 \geqslant 4</math> byłaby parzysta i&nbsp;nie mogłaby być liczbą pierwszą.
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Niech wykładnik <math>n = x y</math> będzie liczbą złożoną, a <math>x</math> będzie liczbą nieparzystą. Wtedy
::<math>\left( {\small\frac{p}{3}} \right)_{\small{\!\! J}} = - \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math>
 
</div>
 
  
Czyli wystarczy przyjąć <math>q = 3</math>.
+
::<math>a^n + 1 = (a^y)^x + 1</math>
  
'''B. Liczba pierwsza''' <math>\, \boldsymbol{p} \,</math> '''jest postaci''' <math>\, \boldsymbol{12 j + 7}</math>
+
Oznaczając <math>b = a^y</math> oraz <math>x = 2 k + 1</math>, otrzymujemy
  
Wiemy, że w&nbsp;tym przypadku <math>\left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = - 1</math> (zobacz J41&nbsp;p.6 oraz J46). Otrzymujemy
+
::<math>a^n + 1 = (a^y)^x + 1 = b^x + 1 = b^{2 k + 1} + 1 = (b + 1) \cdot (1 - b + b^2 - b^3 + \ldots + b^{2 k - 2} - b^{2 k - 1} + b^{2 k})</math>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Zatem w&nbsp;takim przypadku <math>a^n + 1</math> jest liczbą złożoną. Wynika stąd, że wykładnik <math>n</math> nie może zawierać czynników nieparzystych, czyli musi być <math>n = 2^m</math>. Co należało pokazać.<br/>
::<math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = - \left( {\small\frac{p - 12}{p}} \right)_{\small{\!\! J}} = - \left( {\small\frac{- 12}{p}} \right)_{\small{\!\! J}} = \left[ - \left( {\small\frac{- 1}{p}} \right)_{\small{\!\! J}} \right] \cdot \left( {\small\frac{2^2}{p}} \right)_{\small{\!\! J}} \cdot \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = \left( {\small\frac{3}{p}} \right)_{\small{\!\! J}} = -1</math>
 
</div>
 
 
 
Ponieważ liczba <math>p - 12 \geqslant 7</math> jest nieparzysta, to musi istnieć nieparzysty dzielnik pierwszy <math>q < p</math> liczby <math>p - 12</math> taki, że <math>\left( {\small\frac{p}{q}} \right)_{\small{\!\! J}} = - 1</math>. W&nbsp;przeciwnym razie z&nbsp;twierdzenia J41&nbsp;p.4 mielibyśmy <math>\left( {\small\frac{p}{p - 12}} \right)_{\small{\!\! J}} = 1</math>. Co kończy dowód.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2613: Linia 1464:
 
<references>
 
<references>
  
<ref name="Dukic1">Dušan Đukić, ''Quadratic Congruences'', International Mathematical Olympiad training materials, ([https://imomath.com/index.cgi?page=quadraticCongruencesSumsLegendreSymbols IMOmath.com])</ref>
+
<ref name="GCD1">Wikipedia, ''Największy wspólny dzielnik'', ([https://pl.wikipedia.org/wiki/Najwi%C4%99kszy_wsp%C3%B3lny_dzielnik Wiki-pl]), ([https://en.wikipedia.org/wiki/Greatest_common_divisor Wiki-en])</ref>
  
<ref name="Hasse1">Helmut Hasse, ''Zur Theorie der abstrakten elliptischen Funktionenkörper. I. Die Struktur der Gruppe der Divisisorenklassen endlicher Ordnung. II. Automorphismen und Meromorphismen. Das Additionstheorem. III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung'', Journal für die reine und angewandte Mathematik 175 (1936) 55–62, 69–88, 193–207.</ref>
+
<ref name="cardinality1">Wikipedia, ''Moc zbioru'', ([https://pl.wikipedia.org/wiki/Moc_zbioru Wiki-pl]), ([https://en.wikipedia.org/wiki/Cardinality Wiki-en])</ref>
  
<ref name="Hasse2">Wikipedia, ''Hasse's theorem on elliptic curves'', ([https://en.wikipedia.org/wiki/Hasse%27s_theorem_on_elliptic_curves Wiki-en]), ([https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A5%D0%B0%D1%81%D1%81%D0%B5 Wiki-ru])</ref>
+
<ref name="sumazbiorow">Wikipedia, ''Zasada włączeń i&nbsp;wyłączeń'', ([https://pl.wikipedia.org/wiki/Zasada_w%C5%82%C4%85cze%C5%84_i_wy%C5%82%C4%85cze%C5%84 Wiki-pl]), ([https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle Wiki-en])</ref>
  
<ref name="Manin1">Yu. I. Manin, ''On cubic congruences to a prime modulus'', Izv. Akad. Nauk SSSR Ser. Mat., 1956, Volume 20, Issue 5, 673–678</ref>
+
<ref name="Euler1">Wikipedia, ''Funkcja φ'', ([https://pl.wikipedia.org/wiki/Funkcja_%CF%86 Wiki-pl]), ([https://en.wikipedia.org/wiki/Euler%27s_totient_function Wiki-en])</ref>
  
<ref name="Norton1">Karl K. Norton, ''Numbers with Small Prime Factors, and the Least ''k''th Power Non-Residue'', Memoirs of the American Mathematical Society, No. 106 (1971)</ref>
+
</references>
  
<ref name="Trevino1">Enrique Treviño, ''The least k-th power non-residue'', Journal of Number Theory, Volume 149 (2015)</ref>
 
 
<ref name="Trevino2">Kevin J. McGown and Enrique Treviño, ''The least quadratic non-residue'', Mexican Mathematicians in the World (2021)</ref>
 
 
<ref name="Erdos1">Paul Erdős, ''Számelméleti megjegyzések I'', Afar. Lapok, v. 12 (1961)</ref>
 
 
<ref name="Pollack1">Paul Pollack, ''The average least quadratic nonresidue modulo <math>m</math> and other variations on a&nbsp;theme of Erdős'', Journal of Number Theory, Vol. 132 (2012), No. 6, pp. 1185-1202.</ref>
 
 
<ref name="InfiniteDescent1">Wikipedia, ''Proof by infinite descent'', ([https://en.wikipedia.org/wiki/Proof_by_infinite_descent Wiki-en])</ref>
 
 
<ref name="Bussey1">W. H. Bussey, ''Fermat's Method of Infinite Descent'', The American Mathematical Monthly, Vol. 25, No. 8 (1918)</ref>
 
 
<ref name="HardyWright1">G. H. Hardy and Edward M. Wright, ''An Introduction to the Theory of Numbers'', New York: Oxford University Press, 5th Edition, zobacz dowód Twierdzenia 366 w&nbsp;sekcji 20.4 na stronie 301.</ref>
 
 
<ref name="Gica1">Alexandru Gica, ''Quadratic Residues of Certain Types'', Rocky Mountain J. Math. 36 (2006), no. 6, 1867-1871.</ref>
 
 
<ref name="Pollack2">Paul Pollack, ''The least prime quadratic nonresidue in a&nbsp;prescribed residue class mod 4'', Journal of Number Theory 187 (2018), 403-414</ref>
 
 
</references>
 
  
  

Wersja z 14:48, 16 lut 2024

22.12.2023



Największy wspólny dzielnik

Definicja H1
Niech będą dane dwie liczby całkowite [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] niebędące jednocześnie zerami. Największym wspólnym dzielnikiem[1] liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] będziemy nazywali liczbę całkowitą [math]\displaystyle{ D }[/math] taką, że

  1.   [math]\displaystyle{ D \mid a \quad \text{i} \quad D \mid b }[/math]
  2.   [math]\displaystyle{ \,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D }[/math]

gdzie [math]\displaystyle{ d }[/math] jest dowolną liczbą całkowitą.


Uwaga H2
Tak zdefiniowaną liczbę [math]\displaystyle{ D }[/math] będziemy oznaczali przez [math]\displaystyle{ \gcd (a, b) }[/math]. Ponieważ [math]\displaystyle{ 1 \mid a \; }[/math] i [math]\displaystyle{ \; 1 \mid b }[/math], to z definicji wynika natychmiast, że [math]\displaystyle{ \gcd (a, b) \geqslant 1 }[/math].


Zadanie H3
Pokazać, że

[math]\displaystyle{ d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b }[/math]
Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d \mid \gcd (a, b) }[/math]. Z definicji największego wspólnego dzielnika [math]\displaystyle{ \gcd (a, b) \mid a }[/math], zatem [math]\displaystyle{ d \mid a }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ d \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ a = r d }[/math], [math]\displaystyle{ b = s d }[/math]. Z lematu Bézouta (zobacz C73) istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ \gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y) }[/math]

Zatem [math]\displaystyle{ d \mid \gcd (a, b) }[/math].


Twierdzenie H4
Jeżeli liczby całkowite [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero i [math]\displaystyle{ \gcd (a, b) = a x + b y }[/math], to [math]\displaystyle{ \gcd (x, y) = 1 }[/math].

Dowód

Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite [math]\displaystyle{ x, y }[/math] zawsze istnieją. Niech [math]\displaystyle{ \gcd (a, b) = d \gt 0 }[/math], zatem [math]\displaystyle{ a = d k }[/math] i [math]\displaystyle{ b = d m }[/math], czyli

[math]\displaystyle{ (d k) x + (d m) y = d }[/math]

Co oznacza, że [math]\displaystyle{ k x + m y = 1 }[/math], ale [math]\displaystyle{ \gcd (x, y) }[/math] jest dzielnikiem [math]\displaystyle{ k x + m y }[/math] (bo jest dzielnikiem [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math]), zatem [math]\displaystyle{ \gcd (x, y) \mid 1 }[/math], czyli [math]\displaystyle{ \gcd (x, y) = 1 }[/math]. Co należało pokazać.


Twierdzenie H5
Niech [math]\displaystyle{ a, b, k \in \mathbb{Z} }[/math]. Prawdziwy jest wzór

[math]\displaystyle{ \gcd (a + k b, b) = \gcd (a, b) }[/math]
Dowód

Niech [math]\displaystyle{ d_1 = \gcd (a + k b, b) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (a, b) }[/math].

Z definicji [math]\displaystyle{ d_1 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_1 \mid b }[/math], zatem [math]\displaystyle{ a + k b = x d_1 \; }[/math] i [math]\displaystyle{ \; b = y d_1 }[/math], czyli [math]\displaystyle{ a + k x d_1 = x d_1 }[/math], skąd natychmiast wynika, że [math]\displaystyle{ d_1 \mid a }[/math]. Ponieważ [math]\displaystyle{ d_1 \mid b }[/math], to [math]\displaystyle{ d_1 \mid d_2 }[/math] (zobacz H2).

Z definicji [math]\displaystyle{ d_2 \mid a \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], zatem [math]\displaystyle{ d_2 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], czyli [math]\displaystyle{ d_2 \mid d_1 }[/math].

Ponieważ [math]\displaystyle{ d_1 \mid d_2 \; }[/math] i [math]\displaystyle{ \; d_2 \mid d_1 }[/math], to [math]\displaystyle{ | d_1 | = | d_2 | }[/math]. Co kończy dowód.


Twierdzenie H6
Niech [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math]. Prawdziwa jest następująca równoważność

[math]\displaystyle{ \gcd (a, m) = 1 \quad \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1 }[/math]
Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a b, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Gdyby było [math]\displaystyle{ d \gt 1 }[/math], to istniałaby liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \mid d }[/math] i mielibyśmy [math]\displaystyle{ p \mid a b }[/math] i [math]\displaystyle{ p \mid m }[/math]. Jeżeli [math]\displaystyle{ p \mid a b }[/math], to [math]\displaystyle{ p \mid a }[/math] lub [math]\displaystyle{ p \mid b }[/math] (zobacz C74). W przypadku, gdy [math]\displaystyle{ p \mid a }[/math] dostajemy [math]\displaystyle{ \gcd (a, m) \geqslant p \gt 1 }[/math], wbrew założeniu, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Analogicznie pokazujemy sprzeczność, gdy [math]\displaystyle{ p \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a }[/math] i [math]\displaystyle{ d \mid m }[/math], zatem również [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Mamy stąd

[math]\displaystyle{ 1 = \gcd (a b, m) \geqslant d \geqslant 1 }[/math]

Czyli musi być [math]\displaystyle{ d = 1 }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ \gcd (b, m) = 1 }[/math].


Twierdzenie H7
Dla [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ \gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z lematu Bézouta (zobacz C73) istnieją takie liczby [math]\displaystyle{ x, y, X, Y }[/math], że

[math]\displaystyle{ s = a x + m y }[/math]
[math]\displaystyle{ t = b X + m Y }[/math]

Zatem

[math]\displaystyle{ s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y }[/math]

ale [math]\displaystyle{ r \mid a b }[/math] i [math]\displaystyle{ r \mid m }[/math], skąd otrzymujemy, że [math]\displaystyle{ r \mid s t }[/math]. Co należało pokazać.


Twierdzenie H8
Jeżeli liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to

[math]\displaystyle{ \gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z założenia [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Ponieważ [math]\displaystyle{ s \mid a }[/math] oraz [math]\displaystyle{ t \mid b }[/math], to [math]\displaystyle{ \gcd (s, t) = 1 }[/math], zatem (zobacz C75)

[math]\displaystyle{ s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b }[/math]
[math]\displaystyle{ s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m }[/math]

Wynika stąd, że [math]\displaystyle{ s t \mid \gcd (a b, m) }[/math], czyli [math]\displaystyle{ s t \mid r }[/math]. Z poprzedniego twierdzenia wiemy, że [math]\displaystyle{ r \mid s t }[/math], zatem [math]\displaystyle{ |r| = |s t| }[/math]. Co kończy dowód.


Twierdzenie H9
Jeżeli liczby [math]\displaystyle{ b, m }[/math] są względnie pierwsze, to

[math]\displaystyle{ \gcd (a b, m) = \gcd (a, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]

Z lematu Bézouta istnieją takie liczby [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ r = a b x + m y }[/math]

Ale [math]\displaystyle{ s \mid a \; }[/math] i [math]\displaystyle{ \; s \mid m }[/math], zatem [math]\displaystyle{ s \mid r }[/math].

Z założenia [math]\displaystyle{ \gcd (b, m) = 1 }[/math], zatem z twierdzenia H7 wynika natychmiast, że [math]\displaystyle{ r \mid s }[/math]. Ponieważ [math]\displaystyle{ s \mid r \; }[/math] i [math]\displaystyle{ \; r \mid s }[/math], to [math]\displaystyle{ | r | = | s | }[/math]. Co należało pokazać.


Twierdzenie H10
Jeżeli liczby [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero i [math]\displaystyle{ m \neq 0 }[/math], to

[math]\displaystyle{ \gcd (a m, b m) = | m | \cdot \gcd (a, b) }[/math]
Dowód

Oznaczmy [math]\displaystyle{ d = \gcd (a, b) \; }[/math] i [math]\displaystyle{ \; D = \gcd (a m, b m) }[/math]. Pokażemy, że [math]\displaystyle{ d m \mid D }[/math].

[math]\displaystyle{ \begin{array}{llll} d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d \mid a \quad \text{i} \quad d \mid b & \text{(zobacz H3)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid a m \quad \text{i} \quad d m \mid b m & \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid \gcd (a m, b m) & \text{(zobacz H3)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid D & \\ \end{array} }[/math]

Pokażemy, że [math]\displaystyle{ D \mid d m }[/math].

[math]\displaystyle{ \begin{array}{llll} d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d = a x + b y & \text{(lemat Bézouta C73)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m = a m x + b m y & \\ & & & \\ & \qquad \Longrightarrow \qquad & D \mid d m & \\ \end{array} }[/math]

Ostatnia implikacja korzysta z tego, że [math]\displaystyle{ D \mid a m \; }[/math] i [math]\displaystyle{ \; D \mid b m }[/math] (zobacz H3). Ponieważ [math]\displaystyle{ d m \mid D \; }[/math] i [math]\displaystyle{ \; D \mid d m }[/math], to [math]\displaystyle{ | D | = | d m | }[/math]. Co należało pokazać.


Zadanie H11
Pokazać, że [math]\displaystyle{ a \mid b }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a \mid \gcd (a, b) }[/math].

Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Zakładając, że [math]\displaystyle{ a \mid b }[/math], dostajemy

[math]\displaystyle{ \begin{array}{llll} a \mid b & \qquad \Longrightarrow \qquad & b = k a & \\ & & & \\ & \qquad \Longrightarrow \qquad & \gcd (a, b) = \gcd (a, k a) = | a | \cdot \gcd (1, k) = | a | & \qquad \text{(zobacz H10)} \\ & & & \\ & \qquad \Longrightarrow \qquad & a \mid \gcd (a, b) & \\ \end{array} }[/math]

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Jeżeli [math]\displaystyle{ a \mid \gcd (a, b) }[/math], to [math]\displaystyle{ a \mid b }[/math] (zobacz H3). Co należało pokazać.


Zadanie H12
Niech [math]\displaystyle{ \gcd (a, d) = 1 }[/math]. Pokazać, że [math]\displaystyle{ d \nmid a b }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ d \nmid b }[/math].

Rozwiązanie

Korzystając z rezultatu pokazanego w zadaniu H11, dostajemy

[math]\displaystyle{ \begin{array}{llll} d \nmid a b & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, a b) & \\ & & & \\ & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, b) & \text{(zobacz H9)} \\ & & & \\ & \qquad \Longleftrightarrow \qquad & d \nmid b & \\ \end{array} }[/math]

Co należało pokazać.


Twierdzenie H13
Jeżeli dodatnie liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to każdy dzielnik [math]\displaystyle{ d }[/math] iloczynu [math]\displaystyle{ a b }[/math] można przedstawić jednoznacznie w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a , }[/math] [math]\displaystyle{ \; d_2 \mid b \; }[/math] [math]\displaystyle{ \text{i} \; \gcd (d_1, d_2) = 1 }[/math].

Dowód

Niech [math]\displaystyle{ d_1 = \gcd (d, a) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (d, b) }[/math]. Z twierdzenia H8 mamy

[math]\displaystyle{ d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d }[/math]

Bo z założenia [math]\displaystyle{ d \mid a b }[/math]. Z definicji największego wspólnego dzielnika i zadania H3 dostajemy

[math]\displaystyle{ \gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2 }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (a, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad \gcd (a, b) \geqslant e }[/math]

Gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = e \gt 1 }[/math], to mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant e \gt 1 }[/math]. Wbrew założeniu, że [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Co kończy dowód.


Twierdzenie H14
Jeżeli [math]\displaystyle{ a, m, n \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1 }[/math]
Dowód

Pokażemy najpierw, że jeżeli [math]\displaystyle{ d }[/math] jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i odwrotnie.

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d }[/math] jest dzielnikiem [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) }[/math], czyli [math]\displaystyle{ d \mid (a^m - 1) \; }[/math] i [math]\displaystyle{ \; d \mid (a^n - 1) }[/math], co możemy zapisać w postaci

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby [math]\displaystyle{ x, y }[/math], że [math]\displaystyle{ \gcd (m, n) = m x + n y }[/math]. Łatwo znajdujemy, że

[math]\displaystyle{ a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d} }[/math]

Czyli [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math], czyli

[math]\displaystyle{ a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d} }[/math]

Zatem

[math]\displaystyle{ a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d} }[/math]

Podobnie otrzymujemy

[math]\displaystyle{ a^n \equiv 1 \!\! \pmod{d} }[/math]

Zatem [math]\displaystyle{ d }[/math] dzieli [math]\displaystyle{ a^m - 1 \; }[/math] i [math]\displaystyle{ \; a^n - 1 }[/math], czyli

[math]\displaystyle{ d \mid \gcd (a^m - 1, a^n - 1) }[/math]


W szczególności wynika stąd, że

  •    [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math]
  •    [math]\displaystyle{ \left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1) }[/math]

Czyli [math]\displaystyle{ \left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right| }[/math]. Co kończy dowód.


Uwaga H15
W dowodzie twierdzenia H14 pominęliśmy milczeniem fakt, że jedna z liczb [math]\displaystyle{ x, y }[/math] może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis

[math]\displaystyle{ a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d} }[/math]

Omówimy ten problem w następnej sekcji. Zauważmy, wyprzedzając materiał, że z kongruencji

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

wynika, że [math]\displaystyle{ \gcd (a, d) = 1 }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ d }[/math].



Element odwrotny modulo [math]\displaystyle{ m }[/math]

Twierdzenie H16
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Dla liczby [math]\displaystyle{ a \in \mathbb{Z} }[/math] istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

wtedy i tylko wtedy, gdy [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Zatem dla pewnego [math]\displaystyle{ k \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ a x = 1 + k m }[/math]

Czyli [math]\displaystyle{ a x - k m = 1 }[/math]. Wynika stąd, że [math]\displaystyle{ \gcd (a, m) }[/math] dzieli [math]\displaystyle{ 1 }[/math], co oznacza, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Z lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ a x + m y = 1 }[/math]

Zatem modulo [math]\displaystyle{ m }[/math] dostajemy

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Co kończy dowód.


Definicja H17
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Liczbę [math]\displaystyle{ x }[/math] taką, że

[math]\displaystyle{ a \cdot x \equiv 1 \!\! \pmod{m} }[/math]

będziemy nazywali elementem odwrotnym liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] i oznaczali jako [math]\displaystyle{ a^{- 1} }[/math].


Uwaga H18
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli [math]\displaystyle{ b \mid a }[/math] oraz [math]\displaystyle{ b }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], to prawdziwa jest kongruencja

[math]\displaystyle{ {\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

Istotnie

[math]\displaystyle{ {\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

W PARI/GP odwrotność liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] znajdujemy, wpisując Mod(a, m)^(-1).


Twierdzenie H19
Niech [math]\displaystyle{ a, k \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Poniższa tabelka przedstawia elementy odwrotne do elementu [math]\displaystyle{ a }[/math] w przypadku niektórych modułów [math]\displaystyle{ m }[/math]. W szczególności, jeżeli moduł [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m} }[/math].

Dowód

Punkty 1. - 3.

Ponieważ dla liczb nieparzystych jest

[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{8} }[/math]

to liczba nieparzysta [math]\displaystyle{ a }[/math] jest swoją odwrotnością modulo [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ 4 }[/math] i [math]\displaystyle{ 8 }[/math]. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać

[math]\displaystyle{ a^{- 1} \equiv R_2 (a) \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_4 (a) \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_8 (a) \!\! \pmod{8} }[/math]

W pierwszym przypadku wynik jest oczywisty, bo [math]\displaystyle{ R_2 (a) = 1 }[/math].

Punkt 4.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 5.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m - 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 6.

Ponieważ zakładamy, że [math]\displaystyle{ 2 \mid (m + 1) }[/math], to [math]\displaystyle{ m }[/math] musi być liczbą nieparzystą, czyli [math]\displaystyle{ a }[/math] też musi być liczbą nieparzystą. Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 2) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Podobnie pokazujemy punkt 7. Co kończy dowód.


Twierdzenie H20
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math]. Jeżeli liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są liczbami różnymi modulo [math]\displaystyle{ m }[/math], to liczby

1.   [math]\displaystyle{ a u_1, a u_2, \ldots, a u_r }[/math]
2.   [math]\displaystyle{ a u_1 + b, a u_2 + b, \ldots, a u_r + b }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math]. Jeżeli ponadto liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są względnie pierwsze z [math]\displaystyle{ m }[/math], to również liczby

3.   [math]\displaystyle{ u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math].

Dowód

Punkt 1.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ a u_i \equiv a u_j \!\! \pmod{m} }[/math]

Z założenia liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], zatem mnożąc obie strony kongruencji przez [math]\displaystyle{ a^{- 1} }[/math], otrzymujemy

[math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math]

dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Dowód punktu 2. jest analogiczny.

Punkt 3.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i \equiv 1 \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j \equiv u_i \!\! \pmod{m} }[/math]

Ponownie otrzymujemy [math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math] dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Co należało pokazać.


Zadanie H21
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Pokazać, że dla [math]\displaystyle{ k \in [0, p - 1] }[/math] prawdziwa jest kongruencja

[math]\displaystyle{ \binom{p - 1}{k} \equiv (- 1)^k \pmod{p} }[/math]
Rozwiązanie

Zauważmy, że modulo [math]\displaystyle{ p }[/math] mamy

[math]\displaystyle{ \binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \pmod{p} }[/math]

Co należało pokazać.


Zadanie H22
Niech [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] będą zbiorami skończonymi. Pokazać, że jeżeli [math]\displaystyle{ A \subseteq B \;\; \text{i} \;\; | A | = | B | }[/math], to [math]\displaystyle{ \; A = B }[/math].

Rozwiązanie

Pierwszy sposób

Z definicji zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe wtedy i tylko wtedy, gdy jednocześnie spełnione są warunki

  1.   [math]\displaystyle{ x \in A \qquad \Longrightarrow \qquad x \in B }[/math]
  2.   [math]\displaystyle{ x \in B \qquad \Longrightarrow \qquad x \in A }[/math]

Z założenia [math]\displaystyle{ A \subseteq B }[/math], zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element [math]\displaystyle{ x }[/math], że [math]\displaystyle{ x \in B }[/math], ale [math]\displaystyle{ x \notin A }[/math]. Jeśli tak, to

[math]\displaystyle{ | B | = | A | + 1 }[/math]

Co jest sprzeczne z założeniem, że [math]\displaystyle{ | A | = | B | }[/math].

Uwaga
Łatwo zauważyć, że wybierając z trzech warunków [math]\displaystyle{ A \subseteq B }[/math], [math]\displaystyle{ B \subseteq A }[/math] i [math]\displaystyle{ | A | = | B | }[/math] dowolne dwa, zawsze otrzymamy z nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych[2], ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.


Drugi sposób

Ponieważ zbiór [math]\displaystyle{ A }[/math] jest z założenia podzbiorem zbioru [math]\displaystyle{ B }[/math], to zbiór [math]\displaystyle{ B }[/math] można przedstawić w postaci sumy zbioru [math]\displaystyle{ A }[/math] i pewnego zbioru [math]\displaystyle{ C }[/math] takiego, że żaden element zbioru [math]\displaystyle{ C }[/math] nie jest elementem zbioru [math]\displaystyle{ A }[/math]. Zatem

[math]\displaystyle{ B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing }[/math]

Ponieważ zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są rozłączne, to wiemy, że

[math]\displaystyle{ | A \cup C | = | A | + | C | }[/math]

Czyli

[math]\displaystyle{ | B | = | A \cup C | = | A | + | C | }[/math]

Skąd wynika, że [math]\displaystyle{ | C | = 0 }[/math], zatem zbiór [math]\displaystyle{ C }[/math] jest zbiorem pustym i otrzymujemy natychmiast [math]\displaystyle{ B = A }[/math]. Co należało pokazać.

Uwaga (przypadek zbiorów skończonych)
Najczęściej prawdziwe jest jedynie oszacowanie [math]\displaystyle{ | A \cup C | \leqslant | A | + | C | }[/math], bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math], zatem od sumy [math]\displaystyle{ | A | + | C | }[/math] musimy odjąć liczbę elementów iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math]. Co daje ogólny wzór[3]

[math]\displaystyle{ | A \cup C | = | A | + | C | - | A \cap C | }[/math]


Definicja H23
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Powiemy, że zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math], jeżeli dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja [math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math].


Twierdzenie H24
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy zbiory [math]\displaystyle{ A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \} }[/math] i [math]\displaystyle{ B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \} }[/math] są równe.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Ponieważ elementy każdego ze zbiorów [math]\displaystyle{ A, B }[/math] są różne modulo [math]\displaystyle{ m }[/math], to elementy zbiorów [math]\displaystyle{ A' }[/math] i [math]\displaystyle{ B' }[/math] są wszystkie różne. Czyli [math]\displaystyle{ | A' | = | B' | = r }[/math]. Ponieważ warunek

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

oznacza, że reszty z dzielenia liczb [math]\displaystyle{ a_k }[/math] i [math]\displaystyle{ b_j }[/math] przez [math]\displaystyle{ m }[/math] są równe, to z założenia dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

A to oznacza, że każdy element zbioru [math]\displaystyle{ A' }[/math] należy do zbioru [math]\displaystyle{ B' }[/math], czyli [math]\displaystyle{ A' \subseteq B' }[/math]. Wynika stąd, że [math]\displaystyle{ A' = B' }[/math] (zobacz H22). Co należało pokazać.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Ponieważ zbiory [math]\displaystyle{ A', B' }[/math] są równe, to zbiór [math]\displaystyle{ A' }[/math] jest podzbiorem zbioru [math]\displaystyle{ B' }[/math], czyli dla każdego elementu [math]\displaystyle{ R_m (a_k) \in A' }[/math] istnieje taki element [math]\displaystyle{ R_m (b_j) \in B' }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

Ponieważ równość reszt oznacza równość modulo, zatem

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

Wynika stąd, że dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

czyli zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math]. Co kończy dowód.


Twierdzenie H25
Niech będą dane zbiory [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_{p - 1} \} }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru [math]\displaystyle{ B }[/math] są różne modulo [math]\displaystyle{ p }[/math] i żadna z liczb [math]\displaystyle{ b_k \in B }[/math] nie jest podzielna przez [math]\displaystyle{ p }[/math], to zbiory [math]\displaystyle{ A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \} }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Dowód

Z definicji zbioru [math]\displaystyle{ A }[/math] wszystkie elementy tego zbioru są różne modulo [math]\displaystyle{ p }[/math]. Łatwo zauważamy, że

[math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A' }[/math]

Ponieważ wszystkie liczby [math]\displaystyle{ b_k \in B }[/math], gdzie [math]\displaystyle{ k = 1, \ldots, p - 1 }[/math] są różne modulo [math]\displaystyle{ p }[/math] i nie są podzielne przez [math]\displaystyle{ p }[/math], to reszty [math]\displaystyle{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B' }[/math]

Na mocy twierdzenia H24 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Z twierdzenia H20 wiemy, że wszystkie liczby [math]\displaystyle{ b^{- 1}_k \in C }[/math] są różne modulo [math]\displaystyle{ p }[/math]. Zauważmy, że każda z tych liczb jest względnie pierwsza z [math]\displaystyle{ p }[/math], zatem nie może być podzielna przez [math]\displaystyle{ p }[/math]. Wynika stąd, że reszty [math]\displaystyle{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C' }[/math]

Na mocy twierdzenia H24 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ A' = B' }[/math] i [math]\displaystyle{ A' = C' }[/math], to [math]\displaystyle{ B' = C' }[/math] i ponownie na mocy twierdzenia H24 zbiory [math]\displaystyle{ B }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Co należało pokazać.


Zadanie H26
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Pokazać, że suma [math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} }[/math] jest podzielna przez [math]\displaystyle{ p }[/math].

Rozwiązanie

Zauważmy najpierw, że modulo [math]\displaystyle{ p }[/math] następujące sumy są równe

[math]\displaystyle{ \sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p} }[/math]

Istotnie, jeśli przyjmiemy w twierdzeniu H25, że zbiór [math]\displaystyle{ B = \{ 1, 2, \ldots, p - 1 \} }[/math], to zbiór [math]\displaystyle{ C }[/math] będzie zbiorem liczb, które są odwrotnościami liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] modulo [math]\displaystyle{ p }[/math] i możemy napisać

[math]\displaystyle{ \sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p} }[/math]

bo

  • gdy [math]\displaystyle{ x }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k }[/math], to [math]\displaystyle{ x }[/math] przyjmuje kolejno wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math]
  • gdy [math]\displaystyle{ y }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k^{- 1} }[/math], to [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości ze zbioru [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], czyli liczba [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math], ale w innej kolejności

Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo [math]\displaystyle{ p }[/math].

Zatem modulo [math]\displaystyle{ p }[/math] otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p }[/math]
[math]\displaystyle{ \;\;\: \equiv 0 \!\! \pmod{p} }[/math]

Należy zauważyć, że dla liczby pierwszej nieparzystej [math]\displaystyle{ p }[/math] liczba [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] jest liczbą całkowitą.



Funkcje multiplikatywne

Definicja H27
Powiemy, że funkcja [math]\displaystyle{ f(n) }[/math] określona w zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli [math]\displaystyle{ f(1) = 1 }[/math] i dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math] spełniony jest warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math].


Uwaga H28
Założenie [math]\displaystyle{ f(1) = 1 }[/math] możemy równoważnie zastąpić założeniem, że funkcja [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zero. Gdyby [math]\displaystyle{ f(n) }[/math] spełniała jedynie warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math] dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math], to mielibyśmy

a)   [math]\displaystyle{ f(n) }[/math] jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 0 }[/math]
b)   [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 1 }[/math]

Ponieważ [math]\displaystyle{ f(1) = f (1 \cdot 1) = f (1) f (1) }[/math], zatem [math]\displaystyle{ f(1) = 0 }[/math] lub [math]\displaystyle{ f (1) = 1 }[/math].

Jeżeli [math]\displaystyle{ f(1) = 0 }[/math], to dla dowolnego [math]\displaystyle{ n }[/math] mamy

[math]\displaystyle{ f(n) = f (n \cdot 1) = f (n) f (1) = 0 }[/math]

Czyli [math]\displaystyle{ f(n) }[/math] jest funkcją tożsamościowo równą zero.

Jeżeli [math]\displaystyle{ f(n) }[/math] nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math], że [math]\displaystyle{ f(a) \neq 0 }[/math]. Zatem

[math]\displaystyle{ f(a) = f (a \cdot 1) = f (a) f (1) }[/math]

I dzieląc obie strony przez [math]\displaystyle{ f(a) \neq 0 }[/math], dostajemy [math]\displaystyle{ f(1) = 1 }[/math].


Przykład H29
Ponieważ [math]\displaystyle{ \gcd (1, c) = 1 }[/math], to [math]\displaystyle{ \gcd (n, c) }[/math] rozpatrywana jako funkcja [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ c }[/math] jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz H8).


Twierdzenie H30
Jeżeli funkcja [math]\displaystyle{ f(n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} f (d) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math], jest również funkcją multiplikatywną.

Dowód

Ponieważ

[math]\displaystyle{ F(1) = \sum_{d \mid 1} f (d) = f (1) = 1 }[/math]

to funkcja [math]\displaystyle{ F(n) }[/math] spełnia pierwszy warunek definicji H27.

Niech [math]\displaystyle{ a, b }[/math] będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu [math]\displaystyle{ a b }[/math] można zapisać w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a }[/math], [math]\displaystyle{ \; d_2 \mid b \, }[/math] oraz [math]\displaystyle{ \, \gcd (d_1, d_2) = 1 }[/math] (zobacz H13). Niech zbiory

[math]\displaystyle{ S_a = \{ d \in \mathbb{Z}_+ : d \mid a \} }[/math]
[math]\displaystyle{ S_b = \{ d \in \mathbb{Z}_+ : d \mid b \} }[/math]
[math]\displaystyle{ S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \} }[/math]

będą zbiorami dzielników dodatnich liczb [math]\displaystyle{ a, b }[/math] i [math]\displaystyle{ a b }[/math]. Dla przykładu

[math]\displaystyle{ S_5 = \{ 1, 5 \} }[/math]
[math]\displaystyle{ S_7 = \{ 1, 7 \} }[/math]
[math]\displaystyle{ S_{35} = \{ 1, 5, 7, 35 \} }[/math]

Dla dowolnego [math]\displaystyle{ d_1 \in S_a \, }[/math] i [math]\displaystyle{ \, d_2 \in S_b }[/math] musi być [math]\displaystyle{ \gcd (d_1, d_2) = 1 }[/math], bo gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = g \gt 1 }[/math], to

[math]\displaystyle{ g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a }[/math]
[math]\displaystyle{ g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b }[/math]

Zatem [math]\displaystyle{ g \mid \gcd (a, b) }[/math] i mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant g \gt 1 }[/math], wbrew założeniu.

Przekształcając, otrzymujemy

[math]\displaystyle{ F(a b) = \sum_{d \mid a b} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d \in S_{a b}} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = F (a) F (b) }[/math]

Co należało pokazać.



Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math]

Definicja H31
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math][4] jest równa ilości liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math].


Twierdzenie H32
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math] jest multiplikatywna, czyli dla względnie pierwszych liczb [math]\displaystyle{ m, n }[/math] jest [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ m, n }[/math] będą dodatnimi liczbami całkowitymi takimi, że [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math], zatem nie zmniejszając ogólności, możemy założyć, że [math]\displaystyle{ n \gt 1 }[/math]. Wypiszmy w tabeli wszystkie liczby od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ m n }[/math].

1. Natychmiast widzimy, że w pierwszym wierszu mamy [math]\displaystyle{ \varphi (m) }[/math] liczb względnie pierwszych z [math]\displaystyle{ m }[/math]. Tak samo jest w każdym kolejnym wierszu, bo (zobacz H5)

[math]\displaystyle{ \gcd (r m + k, m) = \gcd (k, m) }[/math]

Zatem mamy dokładnie [math]\displaystyle{ \varphi (m) }[/math] kolumn liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


2. Załóżmy, że liczba [math]\displaystyle{ k }[/math] jest jedną z liczb względnie pierwszych z [math]\displaystyle{ m }[/math], czyli [math]\displaystyle{ \gcd (k, m) = 1 }[/math]. Przy tym założeniu [math]\displaystyle{ k }[/math]-ta kolumna (pokazana w tabeli) jest kolumną liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


3. Zauważmy, że reszty z dzielenia liczb wypisanych w [math]\displaystyle{ k }[/math]-tej kolumnie przez [math]\displaystyle{ n }[/math] są wszystkie różne. Gdyby tak nie było, to dla pewnych [math]\displaystyle{ i, j }[/math], gdzie [math]\displaystyle{ 0 \leqslant i, j \leqslant n - 1 }[/math], różnica liczb [math]\displaystyle{ i m + k }[/math] oraz [math]\displaystyle{ j m + k }[/math] byłaby podzielna przez [math]\displaystyle{ n }[/math]. Mielibyśmy

[math]\displaystyle{ n \mid ((i m + k) - (j m + k)) }[/math]

Skąd wynika natychmiast

[math]\displaystyle{ n \mid (i - j) m }[/math]

Ponieważ założyliśmy, że [math]\displaystyle{ \gcd (n, m) = 1 }[/math], to musi być [math]\displaystyle{ n \mid (i - j) }[/math] (zobacz C74), ale

[math]\displaystyle{ 0 \leqslant | i - j | \leqslant n - 1 }[/math]

Czyli [math]\displaystyle{ n }[/math] może dzielić [math]\displaystyle{ i - j }[/math] tylko w przypadku, gdy [math]\displaystyle{ i = j }[/math]. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez [math]\displaystyle{ n }[/math].


4. Ponieważ w [math]\displaystyle{ k }[/math]-tej kolumnie znajduje się dokładnie [math]\displaystyle{ n }[/math] liczb i reszty z dzielenia tych liczb przez [math]\displaystyle{ n }[/math] są wszystkie różne, to reszty te tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, n - 1 \} }[/math]. Wynika stąd, że liczby wypisane w [math]\displaystyle{ k }[/math]-tej kolumnie mogą być zapisane w postaci

[math]\displaystyle{ a_r = b_r \cdot n + r }[/math]

gdzie [math]\displaystyle{ r = 0, 1, \ldots, n - 1 }[/math] i [math]\displaystyle{ b_r \in \mathbb{Z} }[/math].

Zauważmy, że następujące ilości liczb są sobie równe

  •    ilość liczb w [math]\displaystyle{ k }[/math]-tej kolumnie względnie pierwszych z [math]\displaystyle{ n }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 0, \ldots, n - 1 }[/math], bo [math]\displaystyle{ \gcd (b_r \cdot n + r, n) = \gcd (r, n) }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 1, \ldots, n }[/math], bo [math]\displaystyle{ \gcd (n, n) = \gcd (0, n) = | n | \gt 1 }[/math]

Ostatnia ilość liczb jest równa [math]\displaystyle{ \varphi (n) }[/math], co wynika wprost z definicji funkcji [math]\displaystyle{ \varphi (n) }[/math].


5. Zbierając: mamy w wypisanej tabeli dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jednocześnie jest

[math]\displaystyle{ \gcd (u, m) = 1 \quad \text{i} \quad \gcd (u, n) = 1 }[/math]

Z twierdzenia H6 wynika, że w tabeli jest dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jest

[math]\displaystyle{ \gcd (u, m n) = 1 }[/math]

Zatem [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math]. Co należało pokazać.


Twierdzenie H33
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

gdzie iloczyn obliczamy po wszystkich liczbach pierwszych [math]\displaystyle{ p }[/math], będących dzielnikami liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej [math]\displaystyle{ p }[/math] są jednocześnie pierwsze względem [math]\displaystyle{ p }[/math], to [math]\displaystyle{ \varphi (p) = p - 1 }[/math].

Równie łatwo znajdujemy wartość funkcji [math]\displaystyle{ \varphi (n) }[/math] w przypadku gdy [math]\displaystyle{ n }[/math] jest potęgą liczby pierwszej [math]\displaystyle{ n = p^k }[/math]. Wystarczy zauważyć, że w ciągu kolejnych liczb

[math]\displaystyle{ 1, 2, 3, 4, \ldots, p^k - 1, p^k }[/math]

jedynymi liczbami, które nie są pierwsze względem [math]\displaystyle{ p^k }[/math], są te, które dzielą się przez [math]\displaystyle{ p }[/math] i jest ich [math]\displaystyle{ p^{k - 1} }[/math], co widać natychmiast po ich bezpośrednim wypisaniu

[math]\displaystyle{ 1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p }[/math]

Zatem

[math]\displaystyle{ \varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to dla [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math] otrzymujemy

[math]\displaystyle{ \varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k) }[/math]
[math]\displaystyle{ \;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right] }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Co należało pokazać.


Twierdzenie H34
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ q }[/math] jest liczbą pierwszą, to

[math]\displaystyle{ \varphi (q n) = \left\{ \begin{array}{rl} (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n \\ q \varphi (n) & \quad \text{gdy} \quad q \mid n \\ \end{array} \right. }[/math]
Dowód

Jeżeli [math]\displaystyle{ q \nmid m }[/math], to [math]\displaystyle{ \gcd (q, m) = 1 }[/math], zatem [math]\displaystyle{ \varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m) }[/math]. Jeżeli [math]\displaystyle{ q \mid m }[/math], to liczby [math]\displaystyle{ m }[/math] oraz [math]\displaystyle{ q m }[/math] mają taki sam zbiór dzielników pierwszych, zatem

[math]\displaystyle{ \varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m) }[/math]

Co należało pokazać.


Zadanie H35
Niech [math]\displaystyle{ q \in \mathbb{P} }[/math] i [math]\displaystyle{ a, b, m, n \in \mathbb{Z}_+ }[/math]. Pokazać, że

  •    [math]\displaystyle{ \varphi (q^{a + b}) = q^a \varphi (q^b) }[/math]
  •    [math]\displaystyle{ \varphi (n^m) = n^{m - 1} \varphi (n) }[/math]
Rozwiązanie

Punkt 1.

[math]\displaystyle{ \varphi (q^{a + b}) = (q - 1) q^{a + b - 1} = q^a \cdot (q - 1) q^{b - 1} = q^a \varphi (q^b) }[/math]

Punkt 2.

Niech [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]

[math]\displaystyle{ \varphi (n^m) = \varphi (p^{m \alpha_1}_1 \cdot \ldots \cdot p^{m \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = \varphi (p^{m \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{m \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = \varphi (p^{(m - 1) \alpha_1 + \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{(m - 1) \alpha_s + \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = p^{(m - 1) \alpha_1}_1 \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \varphi (p^{\alpha_s}_s) }[/math]
[math]\displaystyle{ \, = p^{(m - 1) \alpha_1}_1 \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \cdot \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) }[/math]
[math]\displaystyle{ \, = n^{m - 1} \varphi (n) }[/math]

Co należało pokazać.


Twierdzenie H36
Niech [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]. Ponieważ założyliśmy, że [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ m }[/math] musi być postaci [math]\displaystyle{ m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s }[/math], gdzie [math]\displaystyle{ 0 \leqslant \beta_i \leqslant \alpha_i }[/math], dla [math]\displaystyle{ i = 1, \ldots, s }[/math]. Łatwo zauważamy, że

  •    jeżeli [math]\displaystyle{ \beta_i = 0 }[/math], to [math]\displaystyle{ \varphi (p^{\beta_i}_i) = 1 }[/math] i dzieli [math]\displaystyle{ \varphi (p^{\alpha_i}_i) }[/math]
  •    jeżeli [math]\displaystyle{ 1 \leqslant \beta_i \leqslant \alpha_i }[/math], to [math]\displaystyle{ (p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1} }[/math], zatem [math]\displaystyle{ \varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i) }[/math]

Skąd natychmiast wynika, że [math]\displaystyle{ \varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s) }[/math] dzieli [math]\displaystyle{ \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) }[/math], czyli [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo [math]\displaystyle{ \varphi (7) \mid \varphi (19) }[/math], ale [math]\displaystyle{ 7 \nmid 19 }[/math].


Zadanie H37
Dla [math]\displaystyle{ n \geqslant 3 }[/math] wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi.

Rozwiązanie

Jeżeli liczba [math]\displaystyle{ n \geqslant 3 }[/math] jest podzielna przez liczbę pierwszą nieparzystą [math]\displaystyle{ p }[/math], zaś [math]\displaystyle{ k }[/math] jest wykładnikiem, z jakim [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia [math]\displaystyle{ n }[/math] na czynniki pierwsze, to

[math]\displaystyle{ \varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right) }[/math]

zatem [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą, ponieważ [math]\displaystyle{ p - 1 }[/math] jest liczbą parzystą.

Jeżeli żadna liczba nieparzysta nie dzieli [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = 2^a }[/math] i [math]\displaystyle{ \varphi (n) = 2^{a - 1} }[/math], ale z założenia [math]\displaystyle{ n \geqslant 3 }[/math], zatem [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą.


Twierdzenie H38
Jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną, to [math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} }[/math].

Dowód

Pierwszy sposób
Niech [math]\displaystyle{ n = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a \leqslant b \lt n }[/math]. Liczby [math]\displaystyle{ 1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a }[/math] są nie większe od [math]\displaystyle{ n }[/math] i nie są względnie pierwsze z [math]\displaystyle{ n }[/math], zatem

[math]\displaystyle{ \varphi (n) \leqslant n - b }[/math]

Ponieważ [math]\displaystyle{ b \geqslant a }[/math], to [math]\displaystyle{ b^2 \geqslant a b = n }[/math] i [math]\displaystyle{ b \geqslant \sqrt{n} }[/math]. Wynika stąd, że

[math]\displaystyle{ \varphi (n) \leqslant n - b \leqslant n - \sqrt{n} }[/math]


Drugi sposób
Niech [math]\displaystyle{ q }[/math] oznacza najmniejszy dzielnik pierwszy liczby złożonej [math]\displaystyle{ n }[/math], zatem [math]\displaystyle{ q^2 \leqslant n }[/math], czyli [math]\displaystyle{ q \leqslant \sqrt{n} }[/math], a stąd [math]\displaystyle{ {\small\frac{n}{q}} \geqslant \sqrt{n} }[/math] i

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n} }[/math]

Co należało pokazać.


Twierdzenie H39
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt {\small\frac{\sqrt{n}}{2}} }[/math].

Dowód

Dla [math]\displaystyle{ k \geqslant 3 }[/math] jest

[math]\displaystyle{ \left( 1 - {\small\frac{1}{k}} \right)^2 \gt {\small\frac{1}{k}} }[/math]

Wynika stąd, że jeżeli [math]\displaystyle{ m \geqslant 3 }[/math] jest liczbą nieparzystą, to

[math]\displaystyle{ \varphi (m)^2 = m^2 \prod_{p|m} \left( 1 - {\small\frac{1}{p}} \right)^2 \gt m^2 \prod_{p|m} {\small\frac{1}{p}} \geqslant m }[/math]

bo

[math]\displaystyle{ \prod_{p|m} p \leqslant m }[/math]

Czyli dla nieparzystych liczb [math]\displaystyle{ m \geqslant 3 }[/math] mamy

[math]\displaystyle{ \varphi (m) \gt \sqrt{m} \gt {\small\frac{\sqrt{m}}{2}} }[/math]


Jeżeli [math]\displaystyle{ d = 2^a }[/math], gdzie [math]\displaystyle{ a \geqslant 1 }[/math], to

[math]\displaystyle{ \varphi (d) = \varphi (2^a) = 2^{a - 1} \gt {\small\frac{\sqrt{2^a}}{2}} = {\small\frac{\sqrt{d}}{2}} }[/math]


W przypadku ogólnym, gdy [math]\displaystyle{ n }[/math] jest iloczynem liczby nieparzystej [math]\displaystyle{ m \geqslant 3 }[/math] i potęgi liczby [math]\displaystyle{ 2 }[/math], dostajemy

[math]\displaystyle{ \varphi (n) = \varphi (2^a m) = \varphi (2^a) \varphi (m) \gt {\small\frac{\sqrt{2^a}}{2}} \cdot \sqrt{m} = {\small\frac{\sqrt{2^a m}}{2}} = {\small\frac{\sqrt{n}}{2}} }[/math]

Oczywiście nierówność [math]\displaystyle{ \varphi (n) \gt {\small\frac{\sqrt{n}}{2}} }[/math] jest również prawdziwa dla [math]\displaystyle{ n = 1 }[/math]. Co należało pokazać.


Zadanie H40
Pokazać, że dla [math]\displaystyle{ n \geqslant 7 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \sqrt{n} }[/math].

Rozwiązanie

Zauważmy, że

[math]\displaystyle{ n - 1 \gt \sqrt{n} \qquad \qquad \;\, \text{dla} \; n \geqslant 3 }[/math]
[math]\displaystyle{ n - 1 \gt \sqrt{2 n} \qquad \qquad \text{dla} \; n \geqslant 4 }[/math]


Zatem dla liczby pierwszej [math]\displaystyle{ p }[/math] i [math]\displaystyle{ k \geqslant 1 }[/math] jest

[math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} \gt \sqrt{p} \cdot p^{k - 1} = p^{k - \tfrac{1}{2}} \geqslant p^{\tfrac{k}{2}} = \sqrt{p^k} \qquad \qquad \qquad \qquad \quad \; \text{dla} \;\: p \geqslant 3 }[/math]
[math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} \gt \sqrt{2 p} \cdot p^{k - 1} = \sqrt{2} \cdot p^{k - \tfrac{1}{2}} \geqslant \sqrt{2} \cdot p^{\tfrac{k}{2}} = \sqrt{2 p^k} \qquad \qquad \text{dla} \;\, p \geqslant 5 }[/math]


1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n \geqslant 3} }[/math] jest liczbą nieparzystą

Liczba [math]\displaystyle{ n }[/math] jest iloczynem czynników pierwszych nieparzystych, zatem

[math]\displaystyle{ \varphi (n) = \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) \gt \sqrt{p^{\alpha_1}_1} \cdot \ldots \cdot \sqrt{p^{\alpha_s}_s} = \sqrt{n} }[/math]


2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a m} \; }[/math] i [math]\displaystyle{ \; \boldsymbol{q \mid m ,} \; }[/math] gdzie [math]\displaystyle{ \; \boldsymbol{q \geqslant 5} }[/math]

Z założenia [math]\displaystyle{ n = 2^a m = 2^a q^b r }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math] jest liczbą nieparzystą. Zauważmy, że [math]\displaystyle{ \varphi (r) \geqslant \sqrt{r} }[/math], bo może być [math]\displaystyle{ r = 1 }[/math].

[math]\displaystyle{ \varphi (n) = \varphi (2^a q^b r) }[/math]
[math]\displaystyle{ \;\;\,\, = \varphi (2^a) \varphi (q^b) \varphi (r) }[/math]
[math]\displaystyle{ \;\;\,\, \gt 2^{a - 1} \sqrt{2 q^b} \sqrt{r} }[/math]
[math]\displaystyle{ \;\;\,\, = 2^{a - \tfrac{1}{2}} \sqrt{q^b} \sqrt{r} }[/math]
[math]\displaystyle{ \;\;\,\, \geqslant 2^{\tfrac{a}{2}} \sqrt{q^b r} }[/math]
[math]\displaystyle{ \;\;\,\, = \sqrt{2^a q^b r} }[/math]
[math]\displaystyle{ \;\;\,\, = \sqrt{n} }[/math]


3. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a m} \; }[/math] i [math]\displaystyle{ \; \boldsymbol{q \nmid m ,} \; }[/math] gdzie [math]\displaystyle{ \; \boldsymbol{q \geqslant 5} }[/math]

Jeżeli żadna liczba pierwsza [math]\displaystyle{ q \geqslant 5 }[/math] nie dzieli [math]\displaystyle{ m }[/math], to możliwe są tylko dwie sytuacje: [math]\displaystyle{ n = 2^a \, }[/math] i [math]\displaystyle{ \, n = 2^a 3^b }[/math].

3a. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a} }[/math]

[math]\displaystyle{ \varphi (n) = \varphi (2^a) = 2^{a - 1} \gt \sqrt{2^a} = \sqrt{n} \qquad \qquad \;\, \text{dla} \; a \geqslant 3 }[/math]

Twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 2 \, }[/math] i [math]\displaystyle{ \, n = 4 \,\, }[/math] (gdy [math]\displaystyle{ a = 1 \, }[/math] lub [math]\displaystyle{ \, a = 2 }[/math]).

3b. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a 3^b} }[/math]

[math]\displaystyle{ \varphi (n) = \varphi (2^a 3^b) = \varphi (2^a) \varphi (3^b) = 2^{a - 1} \cdot 2 \cdot 3^{b - 1} = 2^a 3^{b - 1} = \sqrt{2^a 3^b} \cdot {\small\frac{\sqrt{2^a 3^b}}{3}} \gt \sqrt{2^a 3^b} }[/math]

Ostatnia nierówność jest prawdziwa, o ile [math]\displaystyle{ \sqrt{2^a 3^b} \gt 3 }[/math], czyli gdy [math]\displaystyle{ 2^a 3^b \gt 9 }[/math], co ma miejsce, gdy [math]\displaystyle{ a \geqslant 2 }[/math] lub [math]\displaystyle{ b \geqslant 2 }[/math].

Twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 6 \; }[/math] (gdy [math]\displaystyle{ a = 1 \, }[/math] i [math]\displaystyle{ \, b = 1 }[/math]).


Zbierając uzyskane wyniki, otrzymujemy: oszacowanie [math]\displaystyle{ \varphi (n) \gt \sqrt{n} }[/math] nie jest prawdziwe dla [math]\displaystyle{ n = 1, 2, 4, 6 }[/math]. Co należało pokazać.


Zadanie H41
Pokazać, że dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt {\small\frac{n}{3 \log n}} }[/math]. Korzystając z tego wyniku, pokazać, że [math]\displaystyle{ \varphi (n) \gt n^{2 / 3} }[/math] dla [math]\displaystyle{ n \geqslant 43 }[/math] oraz że [math]\displaystyle{ \varphi (n) \gt n^{3 / 4} }[/math] dla [math]\displaystyle{ n \geqslant 211 }[/math].

Rozwiązanie

Niech [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], a [math]\displaystyle{ n' = q_1 \cdot \ldots \cdot q_s }[/math] oznacza liczbę, będącą iloczynem dokładnie tych samych czynników pierwszych, jakie występują w liczbie [math]\displaystyle{ n }[/math], natomiast [math]\displaystyle{ n^{\!\ast} = p_1 \cdot \ldots \cdot p_s }[/math] oznacza liczbę, będącą iloczynem dokładnie tej samej ilości czynników pierwszych, przy czym [math]\displaystyle{ p_i }[/math] oznacza teraz [math]\displaystyle{ i }[/math]-tą liczbę pierwszą.

Ponieważ

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} = \prod_{p \mid n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

to

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} = {\small\frac{\varphi (n')}{n'}} \geqslant {\small\frac{\varphi (n^{\!\ast})}{n^{\!\ast}}} = \prod^s_{i = 1} \left( 1 - {\small\frac{1}{p_i}} \right) \geqslant \prod^{p_s}_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{p_s}} }[/math]

Ostatnia równość wynika z prostego wzoru

[math]\displaystyle{ \prod^m_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{2}} \cdot {\small\frac{2}{3}} \cdot {\small\frac{3}{4}} \cdot \ldots \cdot {\small\frac{m - 2}{m - 1}} \cdot {\small\frac{m - 1}{m}} = {\small\frac{1}{m}} }[/math]


Musimy oszacować wartość liczby [math]\displaystyle{ p_s }[/math]. Z twierdzenia B31 wynika, że dla [math]\displaystyle{ m \geqslant 2 }[/math] jest [math]\displaystyle{ P(m) \geqslant 2^{m / 2} }[/math], gdzie funkcja [math]\displaystyle{ P(m) }[/math] jest równa iloczynowi wszystkich liczb pierwszych nie większych od [math]\displaystyle{ m }[/math]. Zatem dla [math]\displaystyle{ p_s \geqslant 2 }[/math] jest

[math]\displaystyle{ n^{\!\ast} = p_1 \cdot \ldots \cdot p_s = P (p_s) \geqslant 2^{p_s / 2} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ p_s \leqslant {\small\frac{2 \log n^{\!\ast}}{\log 2}} }[/math]

Ponieważ [math]\displaystyle{ n \geqslant n' \geqslant n^{\!\ast} }[/math], to

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} \geqslant {\small\frac{1}{p_s}} \geqslant {\small\frac{\log 2}{2 \log n^{\!\ast}}} \geqslant {\small\frac{\log 2}{2 \log n}} \gt {\small\frac{1}{3 \log n}} }[/math]

Ostatecznie otrzymujemy

[math]\displaystyle{ \varphi (n) \gt {\small\frac{n}{3 \log n}} }[/math]

Co należało pokazać.


Rozwiązując drugą część zadania, wystarczy znaleźć, dla jakich [math]\displaystyle{ n }[/math] prawdziwa jest nierówność

[math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{2 / 3} }[/math]

Przebieg funkcji [math]\displaystyle{ {\small\frac{n}{3 \log n}} \, }[/math] i [math]\displaystyle{ \, n^{2 / 3} }[/math] przedstawiliśmy na wykresie

Euler1.png

Punkt przecięcia tych funkcji znajdujemy, wpisując w PARI/GP polecenie

solve(n = 10, 10^5, n/(3*log(n)) - n^(2/3))

Otrzymujemy

[math]\displaystyle{ n = 29409.965 }[/math]

Zatem [math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{2 / 3} }[/math] dla [math]\displaystyle{ n \gt 2.95 \cdot 10^4 }[/math].

Poleceniem

for(n = 1, 3*10^4, if( eulerphi(n) <= n^(2/3), print(n) ))

sprawdzamy, że oszacowanie [math]\displaystyle{ \varphi (n) \gt n^{2 / 3} }[/math] jest prawdziwe dla [math]\displaystyle{ n \geqslant 43 }[/math].


Postępując analogicznie jak wyżej, znajdujemy, dla jakich [math]\displaystyle{ n }[/math] prawdziwa jest nierówność

[math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{3 / 4} }[/math]

Wpisując w PARI/GP polecenie

solve(n = 10, 10^7, n/(3*log(n)) - n^(3/4))

otrzymujemy

[math]\displaystyle{ n = 4447862.680 }[/math]

Zatem [math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{3 / 4} }[/math] dla [math]\displaystyle{ n \gt 4.45 \cdot 10^6 }[/math]

Poleceniem

for(n = 1, 5*10^6, if( eulerphi(n) <= n^(3/4), print(n) ))

sprawdzamy, że oszacowanie [math]\displaystyle{ \varphi (n) \gt n^{3 / 4} }[/math] jest prawdziwe dla [math]\displaystyle{ n \geqslant 211 }[/math]. Co należało pokazać.


Twierdzenie H42
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Liczba [math]\displaystyle{ n }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy [math]\displaystyle{ \varphi (n) = n - 1 }[/math].

Dowód

Dla liczb złożonych [math]\displaystyle{ n \geqslant 4 }[/math] nigdy nie będzie [math]\displaystyle{ \varphi (n) = n - 1 }[/math], bo

[math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2 }[/math]

Dla [math]\displaystyle{ n = 1, 2, 3 }[/math] sprawdzamy bezpośrednio: [math]\displaystyle{ \varphi (1) = 1 \neq 1 - 1 }[/math], [math]\displaystyle{ \varphi (2) = 1 = 2 - 1 }[/math], [math]\displaystyle{ \varphi (3) = 2 = 3 - 1 }[/math]. Co kończy dowód.


Twierdzenie H43
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} \varphi (d) }[/math]

też jest funkcją multiplikatywną (zobacz H30). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Niech [math]\displaystyle{ n \gt 1 }[/math]. Jeżeli [math]\displaystyle{ n = p^{\alpha} }[/math] jest potęgą liczby pierwszej, to otrzymujemy

[math]\displaystyle{ F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d) }[/math]
[math]\displaystyle{ = \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1}) }[/math]
[math]\displaystyle{ = p^{\alpha} }[/math]

Jeżeli [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to

[math]\displaystyle{ F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]
[math]\displaystyle{ \;\;\;\, = n }[/math]

Niech [math]\displaystyle{ 1 \lt d_1 \lt d_2 \lt \ldots \lt n }[/math] będą dzielnikami liczby [math]\displaystyle{ n }[/math]. Zauważmy, że kiedy [math]\displaystyle{ d }[/math] przebiega zbiór dzielników [math]\displaystyle{ \{ 1, d_1, d_2, \ldots, n \} }[/math], to [math]\displaystyle{ e = \frac{n}{d} }[/math] przebiega wszystkie te liczby tylko w odwrotnej kolejności. Zatem

[math]\displaystyle{ \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( \frac{n}{d} \right) }[/math]

Co należało pokazać.


Zadanie H44
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Pokazać, że suma liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ {\small\frac{1}{2}} n \varphi (n) }[/math].

Rozwiązanie

Łatwo sprawdzamy, że wzór jest prawdziwy dla [math]\displaystyle{ n = 2 }[/math] i odtąd będziemy przyjmowali, że [math]\displaystyle{ n \geqslant 3 }[/math]. Zatem wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi i niech [math]\displaystyle{ c = {\small\frac{1}{2}} \varphi (n) }[/math]. Zauważmy, że jeżeli liczba [math]\displaystyle{ a }[/math] jest względnie pierwsza z [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n - a }[/math] jest również względnie pierwsza z [math]\displaystyle{ n }[/math], bo [math]\displaystyle{ \gcd (a, n) = \gcd (n - a, n) }[/math]. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od [math]\displaystyle{ n }[/math] i względnie pierwsze z [math]\displaystyle{ n }[/math] w kolejności rosnącej, a pod spodem w kolejności malejącej

Suma liczb w każdej kolumnie jest równa [math]\displaystyle{ n }[/math]. Ponieważ ilość liczb względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ \varphi (n) }[/math], to podwojona suma liczb całkowitych nie większych od [math]\displaystyle{ n }[/math] i pierwszych względem [math]\displaystyle{ n }[/math] wynosi [math]\displaystyle{ n \varphi (n) }[/math]. Co należało pokazać.


Zadanie H45
Pokazać, że dla liczb naturalnych nieparzystych [math]\displaystyle{ n \geqslant 5 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

1. Jeżeli [math]\displaystyle{ n \geqslant 5 }[/math] jest liczbą pierwszą, to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ n }[/math] oraz liczby [math]\displaystyle{ 1, 4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 2 \gt \pi (n) }[/math].

2. Jeżeli [math]\displaystyle{ n = p^a }[/math], gdzie [math]\displaystyle{ a \geqslant 2 }[/math], jest potęgą liczby pierwszej nieparzystej, to [math]\displaystyle{ n \geqslant 9 }[/math] i liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, 4, 8 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math].

3. Jeżeli [math]\displaystyle{ n }[/math] ma więcej niż jeden dzielnik pierwszy nieparzysty, to [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ s \geqslant 2 }[/math]. Zauważmy, że

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} \gt 2^{2 s - 1} }[/math]

Liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1, 2^2, 2^3, \ldots, 2^{2 s - 1} }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 \gt \pi (n) }[/math]

Co należało pokazać.


Zadanie H46
Pokazać, że dla liczb naturalnych [math]\displaystyle{ n \geqslant 91 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

Ponieważ [math]\displaystyle{ p_{2 s} \gt 1 }[/math] i [math]\displaystyle{ p_{2 s} \geqslant p_{s + 1} }[/math], to z zadania A40 natychmiast wynika nierówność

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} }[/math]

która jest prawdziwa dla [math]\displaystyle{ n \geqslant 4 }[/math].

Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] jest zawsze prawdziwa.

Przez [math]\displaystyle{ p_1, p_2, \ldots, p_k, \ldots }[/math] oznaczymy kolejne liczby pierwsze. Niech [math]\displaystyle{ n \geqslant 2 }[/math] będzie liczbą naturalną i [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ q_i }[/math] oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.

Wśród kolejnych [math]\displaystyle{ 2 s }[/math] liczb pierwszych znajduje się przynajmniej [math]\displaystyle{ s }[/math] liczb pierwszych różnych od każdej z liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez [math]\displaystyle{ r_1, \ldots, r_s }[/math], to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania

  •    dla najmniejszej liczby [math]\displaystyle{ r_1 \leqslant p_{s + 1} }[/math]
  •    dla wszystkich liczb [math]\displaystyle{ r_j \leqslant p_{2 s} }[/math] dla [math]\displaystyle{ j = 1, \ldots, s }[/math].

Korzystając z wypisanej na początku dowodu nierówności, dla [math]\displaystyle{ s \geqslant 4 }[/math] mamy

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j }[/math]

gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math].

Wynika stąd, że jeśli [math]\displaystyle{ s \geqslant 4 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1 }[/math] i [math]\displaystyle{ r_1 r_j }[/math], gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + s + 1\gt \pi (n) }[/math]

Co mieliśmy pokazać.


Uwzględniając rezultat pokazany w zadaniu H45, pozostaje sprawdzić przypadki gdy [math]\displaystyle{ n = 2^a }[/math], [math]\displaystyle{ n = 2^a p^b }[/math], [math]\displaystyle{ n = 2^a p^b q^c }[/math], gdzie [math]\displaystyle{ a, b, c \in \mathbb{Z}_+ }[/math].

1. Niech [math]\displaystyle{ n = 2^a }[/math]. Jeśli [math]\displaystyle{ n \geqslant 16 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ 2 }[/math]) oraz liczby [math]\displaystyle{ 1, 9, 15 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math]

2. Niech [math]\displaystyle{ n = 2^a p^b }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5 \} }[/math] i jeśli tylko [math]\displaystyle{ n \gt 5^3 = 125 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 2 + 3 \gt \pi (n) }[/math]

3. Niech [math]\displaystyle{ n = 2^a p^b q^c }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math] oraz różną od [math]\displaystyle{ q }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5, 7 \} }[/math] i jeśli [math]\displaystyle{ n \gt 7^4 = 2401 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3, r^4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 3 + 4 \gt \pi (n) }[/math]

Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy [math]\displaystyle{ n }[/math] jest liczbą parzystą i [math]\displaystyle{ n \leqslant 2401 }[/math]. W GP/PARI wystarczy napisać polecenie

for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))

Nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] nie jest prawdziwa dla [math]\displaystyle{ n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \} }[/math]. Co kończy dowód.


Zadanie H47
Pokazać, że [math]\displaystyle{ \varphi (n) = 2^a }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ n = 2^b q_1 \cdot \ldots \cdot q_s }[/math], gdzie [math]\displaystyle{ q_1, \ldots, q_s }[/math] są liczbami pierwszymi Fermata: [math]\displaystyle{ 3, 5, 17, 257, 65537 }[/math].

Rozwiązanie

W przypadku, gdy [math]\displaystyle{ 2 \mid n }[/math], łatwo zauważamy, że liczba [math]\displaystyle{ 2 }[/math] może występować w dowolnej potędze, bo [math]\displaystyle{ \varphi (2^b) = 2^{b - 1} }[/math].

W przypadku, gdy [math]\displaystyle{ p \mid n }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, mamy [math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} }[/math] i równie łatwo zauważmy, że musi być [math]\displaystyle{ k = 1 }[/math], a liczba [math]\displaystyle{ p - 1 }[/math] musi być potęgą liczby [math]\displaystyle{ 2 }[/math]. Zatem liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ p = 2^t + 1 }[/math], co jest możliwe tylko wtedy, gdy [math]\displaystyle{ t }[/math] jest potęgą liczby [math]\displaystyle{ 2 }[/math] (zobacz H48), czyli [math]\displaystyle{ p }[/math] musi być liczbą pierwszą Fermata. Co należało pokazać.



Uzupełnienie

Twierdzenie H48
Niech [math]\displaystyle{ a, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ a \geqslant 2 }[/math]. Jeżeli liczba [math]\displaystyle{ a^n + 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a }[/math] jest liczbą parzystą i [math]\displaystyle{ n = 2^m }[/math].

Dowód

Gdyby liczba [math]\displaystyle{ a }[/math] była nieparzysta, to liczba [math]\displaystyle{ a^n + 1 \geqslant 4 }[/math] byłaby parzysta i nie mogłaby być liczbą pierwszą.

Niech wykładnik [math]\displaystyle{ n = x y }[/math] będzie liczbą złożoną, a [math]\displaystyle{ x }[/math] będzie liczbą nieparzystą. Wtedy

[math]\displaystyle{ a^n + 1 = (a^y)^x + 1 }[/math]

Oznaczając [math]\displaystyle{ b = a^y }[/math] oraz [math]\displaystyle{ x = 2 k + 1 }[/math], otrzymujemy

[math]\displaystyle{ a^n + 1 = (a^y)^x + 1 = b^x + 1 = b^{2 k + 1} + 1 = (b + 1) \cdot (1 - b + b^2 - b^3 + \ldots + b^{2 k - 2} - b^{2 k - 1} + b^{2 k}) }[/math]

Zatem w takim przypadku [math]\displaystyle{ a^n + 1 }[/math] jest liczbą złożoną. Wynika stąd, że wykładnik [math]\displaystyle{ n }[/math] nie może zawierać czynników nieparzystych, czyli musi być [math]\displaystyle{ n = 2^m }[/math]. Co należało pokazać.








Przypisy

  1. Wikipedia, Największy wspólny dzielnik, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Moc zbioru, (Wiki-pl), (Wiki-en)
  3. Wikipedia, Zasada włączeń i wyłączeń, (Wiki-pl), (Wiki-en)
  4. Wikipedia, Funkcja φ, (Wiki-pl), (Wiki-en)