Różnica pomiędzy stronami "Twierdzenie Czebyszewa o funkcji π(n)" i "Największy wspólny dzielnik, element odwrotny modulo, funkcja Eulera"

Z Henryk Dąbrowski
(Różnica między stronami)
Przejdź do nawigacji Przejdź do wyszukiwania
 
 
Linia 1: Linia 1:
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">07.11.2021</div>
+
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.12.2023</div>
  
 
__FORCETOC__
 
__FORCETOC__
Linia 5: Linia 5:
  
  
== Oznaczenia ==
+
== Największy wspólny dzielnik ==
  
Będziemy stosowali następujące oznaczenia:
+
<span id="H1" style="font-size: 110%; font-weight: bold;">Definicja H1</span><br/>
 +
Niech będą dane dwie liczby całkowite <math>a</math> i <math>b</math> niebędące jednocześnie zerami. Największym wspólnym dzielnikiem<ref name="GCD1"/> liczb <math>a</math> i <math>b</math> będziemy nazywali liczbę całkowitą <math>D</math> taką, że
  
::<math>\mathbb{Z}</math> — zbiór liczb całkowitych<br/>
+
:#&nbsp;&nbsp;<math> D \mid a \quad \text{i} \quad D \mid b</math>
::<math>\mathbb{Z}_+</math> — zbiór liczb całkowitych dodatnich<br/>
+
:#&nbsp;&nbsp;<math>\,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D</math>
::<math>\mathbb{N}</math> — zbiór liczb naturalnych <math>\mathbb{N} = \mathbb{Z}_{+}\cup \left \{ 0 \right \}</math><br/>
 
::<math>\mathbb{R}</math> — zbiór liczb rzeczywistych<br/>
 
::<math>d \mid n</math> — czytaj: d dzieli n (<math>d</math> jest dzielnikiem liczby <math>n</math>)<br/>
 
::<math>d \nmid n</math> — czytaj: d nie dzieli n (<math>d</math> nie jest dzielnikiem liczby <math>n</math>)<br/>
 
::<math>p_n</math> — <math>n</math>-ta liczba pierwsza<br/>
 
::<math>\pi (n)</math> — ilość liczb pierwszych nie większych od <math>n</math><br/>
 
::<math>P(n)</math> — iloczyn liczb pierwszych nie większych od <math>n</math><br/>
 
::<math>\lfloor x \rfloor</math> — największa liczba całkowita nie większa od <math>x</math><br/>
 
::<math>\binom{n}{m}</math> — współczynnik dwumianowy (symbol Newtona), <math>\binom{n}{m} = \frac{n!}{m! \cdot (n - m) !}</math><br/>
 
::<math>\log (x)</math> — logarytm naturalny liczby <math>x > 0</math>
 
::<math>W_p (n)</math> — wykładnik z jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>n</math>
 
::<math>n</math> — oznacza zawsze liczbę naturalną
 
::<math>p</math> — oznacza zawsze liczbę pierwszą
 
  
 +
gdzie <math>d</math> jest dowolną liczbą całkowitą.
  
  
Przykładowe wartości niektórych wypisanych wyżej funkcji:
 
  
::<math>p_2 = 3</math>,&nbsp;&nbsp; <math>p_{10} = 29</math>,&nbsp;&nbsp; <math>p_{100} = 541</math><br/>
+
<span id="H2" style="font-size: 110%; font-weight: bold;">Uwaga H2</span><br/>
::<math>\pi (10) = 4</math>,&nbsp;&nbsp; <math>\pi (100) = 25</math>,&nbsp;&nbsp; <math>\pi (541) = 100</math><br/>
+
Tak zdefiniowaną liczbę <math>D</math> będziemy oznaczali przez <math>\gcd (a, b)</math>. Ponieważ <math>1 \mid a \;</math> i <math>\; 1 \mid b</math>, to z&nbsp;definicji wynika natychmiast, że <math>\gcd (a, b) \geqslant 1</math>.
::<math>P(5) = 30</math>,&nbsp;&nbsp; <math>P(10) = 210</math>,&nbsp;&nbsp; <math>P(50) = 614889782588491410</math><br/>
 
::<math>\lfloor 1.2 \rfloor = 1</math>,&nbsp;&nbsp; <math>\lfloor 2.8 \rfloor = 2</math>,&nbsp;&nbsp; <math>\lfloor - 1.5 \rfloor = - 2</math><br/>
 
::<math>\binom{5}{2} = 10</math>,&nbsp;&nbsp; <math>\binom{10}{5} = 252</math>,&nbsp;&nbsp; <math>\binom{9}{3} = 84</math><br/>
 
::<math>W_2 (8) = 3</math>,&nbsp;&nbsp; <math>W_3 (18) = 2</math>,&nbsp;&nbsp; <math>W_7 (28) = 1</math>
 
  
  
  
Funkcje te są zaimplementowane w PARI/GP<ref name="PARIGP"/>
+
<span id="H3" style="font-size: 110%; font-weight: bold;">Zadanie H3</span><br/>
 +
Pokazać, że
  
::<math>p_n</math> = prime(n)<br/>
+
::<math>d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b</math>
::<math>\pi (n)</math> = primepi(n)<br/>
 
::<math>P(n)</math> = prodeuler(p=2, n, p)<br/>
 
::<math>\lfloor x \rfloor</math> = floor(x)<br/>
 
::<math>\binom{n}{m}</math> = binomial(n, m)<br/>
 
::<math>W_p (n)</math> = valuation(n, p)
 
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
 +
<math>\Large{\Longrightarrow}</math>
  
 +
Z założenia <math>d \mid \gcd (a, b)</math>. Z&nbsp;definicji największego wspólnego dzielnika <math>\gcd (a, b) \mid a</math>, zatem <math>d \mid a</math>. Analogicznie pokazujemy, że <math>d \mid b</math>.
  
 +
<math>\Large{\Longleftarrow}</math>
  
== Twierdzenie Czebyszewa ==
+
Z założenia <math>a = r d</math>, <math>b = s d</math>. Z&nbsp;lematu Bézouta (zobacz C73) istnieją takie liczby całkowite <math>x, y</math>, że
  
W 1852 roku rosyjski matematyk Czebyszew<ref name="Czebyszew1"/><ref name="Czebyszew2"/> udowodnił, że dla funkcji <math>\pi (n)</math> prawdziwe jest następujące oszacowanie
+
::<math>\gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y)</math>
  
::<math>a \cdot \frac{n}{\log n} \: \underset{n \geqslant 11}{<} \: \pi (n) \: \underset{n \geqslant 96098}{<} \: b \cdot \frac{n}{\log n}</math>
+
Zatem <math>d \mid \gcd (a, b)</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
gdzie
 
  
::<math>a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022 \qquad \quad b = \tfrac{6}{5} a = 1.105550428</math>
 
  
 +
<span id="H4" style="font-size: 110%; font-weight: bold;">Twierdzenie H4</span><br/>
 +
Jeżeli liczby całkowite <math>a, b</math> nie są jednocześnie równe zero i <math>\gcd (a, b) = a x + b y</math>, to <math>\gcd (x, y) = 1</math>.
  
Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z&nbsp;nierównościami udowodnionymi przez Czebyszewa w&nbsp;teorii prawdopodobieństwa), a&nbsp;twierdzeniem Czebyszewa nazywany jest łatwy wniosek z&nbsp;tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o&nbsp;funkcji <math>\pi (n)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite <math>x, y</math> zawsze istnieją. Niech <math>\gcd (a, b) = d > 0</math>, zatem <math>a = d k</math> i <math>b = d m</math>, czyli
  
Twierdzenie Czebyszewa o&nbsp;funkcji <math>\pi (n)</math> nabrało nowego życia, gdy w&nbsp;1936 Erdos<ref name="Erdos"/> zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z&nbsp;tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.
+
::<math>(d k) x + (d m) y = d</math>
  
 +
Co oznacza, że <math>k x + m y = 1</math>, ale <math>\gcd (x, y)</math> jest dzielnikiem <math>k x + m y</math> (bo jest dzielnikiem <math>x</math> i <math>y</math>), zatem <math>\gcd (x, y) \mid 1</math>, czyli <math>\gcd (x, y) = 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami<ref name="Dusart99"/><ref name="Dusart06"/><ref name="Dusart10"/><ref name="Dusart18"/> funkcji <math>\pi (n)</math> oraz <math>p_n</math>
 
  
  
::<math>\frac{n}{\log n} \left( 1 + \frac{1}{\log n} \right) \underset{n \geqslant 599}{<} \pi (n) \underset{n \geqslant 2}{<} \frac{n}{\log n} \left( 1 + \frac{1.28}{\log n} \right)</math>
+
<span id="H5" style="font-size: 110%; font-weight: bold;">Twierdzenie H5</span><br/>
 +
Niech <math>a, b, k \in \mathbb{Z}</math>. Prawdziwy jest wzór
  
 +
::<math>\gcd (a + k b, b) = \gcd (a, b)</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>d_1 = \gcd (a + k b, b) \;</math> i <math>\; d_2 = \gcd (a, b)</math>.
  
::<math>n (\log n + \log \log n - 1) \underset{n \geqslant 2}{<} p_n \underset{n \geqslant 6}{<} n (\log n + \log \log n)</math>
+
Z definicji <math>d_1 \mid (a + k b) \;</math> i <math>\; d_1 \mid b</math>, zatem <math>a + k b = x d_1 \;</math> i <math>\; b = y d_1</math>, czyli <math>a + k x d_1 = x d_1</math>, skąd natychmiast wynika, że <math>d_1 \mid a</math>. Ponieważ <math>d_1 \mid b</math>, to <math>d_1 \mid d_2</math> (zobacz&nbsp;[[#H3|H3]]).
  
 +
Z definicji <math>d_2 \mid a \;</math> i <math>\; d_2 \mid b</math>, zatem <math>d_2 \mid (a + k b) \;</math> i <math>\; d_2 \mid b</math>, czyli <math>d_2 \mid d_1</math>.
  
 +
Ponieważ <math>d_1 \mid d_2 \;</math> i <math>\; d_2 \mid d_1</math>, to <math>| d_1 | = | d_2 |</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o&nbsp;funkcji <math>\pi (n)</math> oraz analogiczne oszacowanie dla funkcji <math>p_n</math>.
 
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A1</span><br/>
+
<span id="H6" style="font-size: 110%; font-weight: bold;">Twierdzenie H6</span><br/>
Prawdziwe są następujące oszacowania:
+
Niech <math>a, b, m \in \mathbb{Z}</math>. Prawdziwa jest następująca równoważność
  
 +
::<math>\gcd (a, m) = 1 \quad  \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1</math>
  
::<math>0.72 \cdot n \log n \underset{n \geqslant 1}{<} p_n \underset{n \geqslant 3}{<} 2n \log n</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
 +
<math>\Large{\Longrightarrow}</math>
  
::<math>\frac{2}{3} \cdot \frac{n}{\log n} \underset{n \geqslant 3}{<} \pi (n) \underset{n \geqslant 2}{<} \frac{2 n}{\log n}</math>
+
Niech <math>\gcd (a b, m) = d</math>. Z&nbsp;definicji <math>d \mid a b</math> i <math>d \mid m</math>. Gdyby było <math>d > 1</math>, to istniałaby liczba pierwsza <math>p</math> taka, że <math>p \mid d</math> i&nbsp;mielibyśmy <math>p \mid a b</math> i <math>p \mid m</math>. Jeżeli <math>p \mid a b</math>, to <math>p \mid a</math> lub <math>p \mid b</math> (zobacz C74). W&nbsp;przypadku, gdy <math>p \mid a</math> dostajemy <math>\gcd (a, m) \geqslant p > 1</math>, wbrew założeniu, że <math>\gcd (a, m) = 1</math>. Analogicznie pokazujemy sprzeczność, gdy <math>p \mid b</math>.
  
 +
<math>\Large{\Longleftarrow}</math>
  
Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.
+
Niech <math>\gcd (a, m) = d</math>. Z&nbsp;definicji <math>d \mid a</math> i <math>d \mid m</math>, zatem również <math>d \mid a b</math> i <math>d \mid m</math>. Mamy stąd
  
 +
::<math>1 = \gcd (a b, m) \geqslant d \geqslant 1</math>
  
 +
Czyli musi być <math>d = 1</math>. Analogicznie pokazujemy, że <math>\gcd (b, m) = 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
== Oszacowanie <math>p_n</math> od dołu i <math>\pi (n)</math> od góry ==
+
<span id="H7" style="font-size: 110%; font-weight: bold;">Twierdzenie H7</span><br/>
 +
Dla <math>a, b, m \in \mathbb{Z}</math> jest
  
Rozpoczniemy od oszacowania liczby <math>\binom{2n}{n}</math>. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.
+
::<math>\gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m)</math>
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A2</span><br/>
 
Niech <math>n, k \in \mathbb{N}</math>. Współczynnik dwumianowy <math>\binom{n}{k}</math> jest zawsze liczbą całkowitą dodatnią.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Indukcja matematyczna. Ponieważ
+
Wprowadźmy oznaczenia
 
 
::<math>\binom{0}{0} = \binom{1}{0} = \binom{1}{1} = 1</math>
 
 
 
to twierdzenie jest prawdziwe dla <math>n = 1</math>. Zakładając prawdziwość twierdzenia dla wszystkich liczb całkowitych należących do przedziału <math>[1, n]</math> mamy dla <math>n + 1</math>
 
  
::<math>\binom{n + 1}{0} = \binom{n + 1}{n + 1} = 1</math>
+
::<math>r = \gcd (a b, m)</math>
  
Dla <math>k</math> spełniającego warunek <math>1 \leqslant k \leqslant n</math>, jest
+
::<math>s = \gcd (a, m)</math>
  
::<math>\binom{n + 1}{k} = \binom{n}{k} + \binom{n}{k - 1}</math>
+
::<math>t = \gcd (b, m)</math>
  
Na podstawie założenia indukcyjnego liczby po prawej stronie są liczbami całkowitymi dodatnimi, zatem <math>\binom{n + 1}{k}</math> dla wszystkich wartości <math>k</math> jest liczbą całkowitą dodatnią. Co należało pokazać.<br/>
+
Z lematu Bézouta (zobacz C73) istnieją takie liczby <math>x, y, X, Y</math>, że
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>s = a x + m y</math>
  
 +
::<math>t = b X + m Y</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A3</span><br/>
+
Zatem
Niech <math>n \in \mathbb{Z}_+</math>. Współczynnik dwumianowy <math>\binom{2 n}{n}</math> jest liczbą parzystą.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y</math>
Łatwo zauważamy, że
 
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1)!}{n \cdot (n - 1) ! \cdot n!} = 2 \cdot \binom{2 n - 1}{n - 1}</math><br/>
+
ale <math>r \mid a b</math> i <math>r \mid m</math>, skąd otrzymujemy, że <math>r \mid s t</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 135: Linia 130:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A4</span><br/>
+
<span id="H8" style="font-size: 110%; font-weight: bold;">Twierdzenie H8</span><br/>
Prawdziwe są następujące oszacowania współczynnika dwumianowego <math>\binom{2 n}{n}</math>
+
Jeżeli liczby <math>a, b</math> są względnie pierwsze, to
  
::<math>3.8^{n + 1} \underset{n \geqslant 80}{<} \binom{2 n}{n} \underset{n \geqslant 5}{<} 4^{n - 1}</math>
+
::<math>\gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m)</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Indukcja matematyczna. W&nbsp;przypadku lewej nierówności łatwo sprawdzamy, że <math>3.8^{81} < \binom{160}{80}</math>. Zakładając prawdziwość nierówności dla <math>n \geqslant 80</math>, otrzymujemy dla <math>n + 1</math>
+
Wprowadźmy oznaczenia
  
::<math>\binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot \frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)} > 3.8^{n + 1} \cdot 2 \cdot \left( 2 - \frac{1}{n + 1} \right) \geqslant 3.8^{n + 1} \cdot 2 \cdot \left( 2 - \frac{1}{80 + 1} \right) > 3.8^{n + 1} \cdot 3.9753 > 3.8^{n + 2}</math>
+
::<math>r = \gcd (a b, m)</math>
  
 +
::<math>s = \gcd (a, m)</math>
  
Prawa nierówność jest prawdziwa dla <math>n = 5</math>. Zakładając prawdziwość nierówności dla <math>n</math>, otrzymujemy dla <math>n + 1</math>:
+
::<math>t = \gcd (b, m)</math>
  
::<math>\binom{2 (n + 1)}{n + 1} = \binom{2 n}{n} \cdot \frac{(2 n + 2) (2 n + 1)}{(n + 1) (n + 1)} < 4^{n -1} \cdot 2 \cdot \left( 2 - \frac{1}{n + 1} \right) < 4^n</math>
+
Z założenia <math>\gcd (a, b) = 1</math>. Ponieważ <math>s \mid a</math> oraz <math>t \mid b</math>, to <math>\gcd (s, t) = 1</math>, zatem (zobacz C75)
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b</math>
  
 +
::<math>s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A5</span><br/>
+
Wynika stąd, że <math>s t \mid \gcd (a b, m)</math>, czyli <math>s t \mid r</math>. Z&nbsp;poprzedniego twierdzenia wiemy, że <math>r \mid s t</math>, zatem <math>|r| = |s t|</math>. Co kończy dowód.<br/>
Dla <math>n \geqslant 12</math> prawdziwe jest oszacowanie <math>p_n > 3 n</math>.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Indukcja matematyczna. Dowód oprzemy na spostrzeżeniu, że wśród kolejnych sześciu liczb naturalnych <math>6 k, 6 k + 1, 6 k + 2, 6 k + 3, 6 k + 4, 6 k + 5</math>
 
jedynie dwie: <math>6 k + 1</math> i <math>6 k + 5</math> mogą być pierwsze. Wynika stąd, że <math>p_{n + 2} \geqslant p_n + 6</math> dla <math>n \geqslant 4</math>. Dowód indukcyjny przeprowadzimy, stosując krok równy <math>2</math>. Twierdzenie jest oczywiście prawdziwe dla <math>n = 12</math>, bowiem <math>p_{12} = 37 > 3 \cdot 12 = 36</math>, podobnie <math>p_{13} = 41 > 3 \cdot 13 = 39</math>. Zakładając prawdziwość twierdzenia dla wszystkich liczb naturalnych <math>k \in [12, n]</math>, otrzymujemy dla <math>n + 2</math>:
 
 
 
::<math>p_{n + 2} \geqslant p_n + 6 > 3 n + 6 = 3 \cdot (n + 2)</math>
 
 
 
Uwaga: inaczej mówiąc, dowodzimy twierdzenie osobno dla <math>n</math> parzystych <math>(n \geqslant 12)</math> i&nbsp;osobno dla <math>n</math> nieparzystych <math>(n \geqslant 13)</math>.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 169: Linia 156:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A6</span><br/>
+
<span id="H9" style="font-size: 110%; font-weight: bold;">Twierdzenie H9</span><br/>
Ciąg <math>a_n = \left( 1 + \frac{1}{n} \right)^n</math> jest rosnący i&nbsp;ograniczony. Dla wyrazów ciągu <math>(a_n)</math> prawdziwe jest oszacowanie <math>2 \leqslant a_n < 3</math>.
+
Jeżeli liczby <math>b, m</math> są względnie pierwsze, to
 +
 
 +
::<math>\gcd (a b, m) = \gcd (a, m)</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W&nbsp;artykule, w&nbsp;którym pojęcie współczynnika dwumianowego odgrywa główną rolę, nie mogło zabraknąć dowodu odwołującego się do wzoru dwumianowego
+
Wprowadźmy oznaczenia
  
::<math>\left ( x + y \right )^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k}y^{k} = \binom{n}{0} x^{n} + \binom{n}{1}x^{n-1}y + \binom{n}{2}x^{n-2}y^{2} + \ldots + \binom{n}{n}y^{n}</math>
+
::<math>r = \gcd (a b, m)</math>
  
gdzie <math>\binom{n}{k} = \frac{n!}{k! \cdot (n - k)!}</math>.
+
::<math>s = \gcd (a, m)</math>
  
 +
Z lematu Bézouta istnieją takie liczby <math>x, y</math>, że
  
 +
::<math>r = a b x + m y</math>
  
Dowód opiera się na spostrzeżeniu, że <math>e = \sum_{k=0}^{\infty} \frac{1}{k!} = 2.718281828 \ldots</math>, a&nbsp;wykorzystanie wzoru dwumianowego pozwala przekształcić wyrażenie <math>\left( 1 + \frac{1}{n} \right)^n</math> do postaci sumy z wyraźnie wydzielonym czynnikiem <math>\frac{1}{k!}</math>. Stosując wzór dwumianowy, możemy zapisać <math>n</math>-ty wyraz ciągu <math>(a_n)</math> w&nbsp;postaci
+
Ale <math>s \mid a \;</math> i <math>\; s \mid m</math>, zatem <math>s \mid r</math>.
  
::<math>a_n = \left( 1 + \frac{1}{n} \right)^n =</math>
+
Z założenia <math>\gcd (b, m) = 1</math>, zatem z&nbsp;twierdzenia [[#H7|H7]] wynika natychmiast, że <math>r \mid s</math>. Ponieważ <math>s \mid r \;</math> i <math>\; r \mid s</math>, to <math>| r | = | s |</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\quad \; = \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} =</math>
 
  
::<math>\quad \; = 2 + \sum_{k=2}^{n} \frac{n!}{k! \cdot (n - k)!} \cdot \frac{1}{n^k} =</math>
 
  
::<math>\quad \; = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \frac{n \cdot (n - 1) \cdot \ldots \cdot (n - (k - 1))}{n^k} =</math>
+
<span id="H10" style="font-size: 110%; font-weight: bold;">Twierdzenie H10</span><br/>
 +
Jeżeli liczby <math>a, b</math> nie są jednocześnie równe zero i <math>m \neq 0</math>, to
  
::<math>\quad \; = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) </math>
+
::<math>\gcd (a m, b m) = | m | \cdot \gcd (a, b)</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Oznaczmy <math>d = \gcd (a, b) \;</math> i <math>\; D = \gcd (a m, b m)</math>. Pokażemy, że <math>d m \mid D</math>.
  
Odpowiednio dla wyrazu <math>a_{n + 1}</math> mamy
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d \mid a \quad \text{i} \quad d \mid b & \text{(zobacz H3)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid a m \quad \text{i} \quad d m \mid b m & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid \gcd (a m, b m) & \text{(zobacz H3)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid D & \\
 +
\end{array}
 +
</math>
 +
</div>
  
::<math>a_{n + 1} = \left( 1 + \frac{1}{n + 1} \right)^{n + 1} =</math>
+
Pokażemy, że <math>D \mid d m</math>.
  
::<math>\qquad \: = 2 + \sum_{k=2}^{n + 1} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n + 1} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n + 1} \right) ></math>
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d = a x + b y & \text{(lemat Bézouta C73)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m = a m x + b m y & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & D \mid d m & \\
 +
\end{array}
 +
</math>
 +
</div>
  
::<math>\qquad \: > 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n + 1} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n + 1} \right) ></math>
+
Ostatnia implikacja korzysta z&nbsp;tego, że <math>D \mid a m \;</math> i <math>\; D \mid b m</math> (zobacz [[#H3|H3]]). Ponieważ <math>d m \mid D \;</math> i <math>\; D \mid d m</math>, to <math>| D | = | d m |</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\qquad \: > 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) =</math>
 
  
::<math>\qquad \: = a_n</math>
 
  
Ostatnia nierówność jest prawdziwa, bo dla dowolnej liczby <math>x \in \mathbb{R}_+</math> jest <math>1 - \frac{x}{n + 1} > 1 - \frac{x}{n}</math>
+
<span id="H11" style="font-size: 110%; font-weight: bold;">Zadanie H11</span><br/>
 +
Pokazać, że <math>a \mid b</math> wtedy i&nbsp;tylko wtedy, gdy <math>a \mid \gcd (a, b)</math>.
  
Zatem ciąg <math>(a_n)</math> jest rosnący. Musimy jeszcze wykazać, że jest ograniczony od góry. Pokazaliśmy wyżej, że wyraz <math>a_n</math> może być zapisany w postaci
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
::<math>a_n = 2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left( 1 - \frac{1}{n} \right) \cdot \ldots \cdot \left( 1 - \frac{k - 1}{n} \right) </math>
+
<math>\Large{\Longrightarrow}</math>
  
 +
Zakładając, że <math>a \mid b</math>, dostajemy
  
Ponieważ czynniki w&nbsp;nawiasach są dodatnie i&nbsp;mniejsze od jedności, to
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  a \mid b & \qquad \Longrightarrow \qquad & b = k a & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & \gcd (a, b) = \gcd (a, k a) = | a | \cdot \gcd (1, k) = | a | & \qquad \text{(zobacz H10)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & a \mid \gcd (a, b) & \\
 +
\end{array}
 +
</math>
 +
</div>
  
::<math>a_n \leqslant 2 + \sum_{k=2}^{n} \frac{1}{k!} =</math>
+
<math>\Large{\Longleftarrow}</math>
  
::<math>\quad \; \leqslant 1 + 1 + \sum_{k=2}^{n} \frac{1}{2^{k-1}} =</math>
+
Jeżeli <math>a \mid \gcd (a, b)</math>, to <math>a \mid b</math> (zobacz [[#H3|H3]]). Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\quad \; = 1 + \left ( 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}}\right ) =</math>
 
  
::<math>\quad \; = 1 + \frac{1 - \left ( \frac{1}{2} \right )^{n}}{1 - \frac{1}{2}} =</math>
 
  
::<math>\quad \; = 1 + 2 - \frac{1}{2^{n-1}} < </math>
+
<span id="H12" style="font-size: 110%; font-weight: bold;">Zadanie H12</span><br/>
 +
Niech <math>\gcd (a, d) = 1</math>. Pokazać, że <math>d \nmid a b</math> wtedy i&nbsp;tylko wtedy, gdy <math>d \nmid b</math>.
  
::<math>\quad \; < 3</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Korzystając z&nbsp;rezultatu pokazanego w&nbsp;zadaniu [[#H11|H11]], dostajemy
  
 +
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d \nmid a b & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, a b) & \\
 +
  &  &  & \\
 +
  & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, b) & \text{(zobacz H9)} \\
 +
  &  &  & \\
 +
  & \qquad \Longleftrightarrow \qquad & d \nmid b & \\
 +
\end{array}
 +
</math>
 +
</div>
  
Druga nierówność (nieostra) jest prawdziwa, bo dla <math>k \geqslant 2</math> zachodzi oczywista nierówność <math>k! \geqslant 2^{k - 1}</math>. Do sumy ujętej w nawiasy zastosowaliśmy wzór na sumę częściową szeregu geometrycznego.
+
Co należało pokazać.<br/>
 
 
Ponieważ <math>a_1 = 2</math>, to prawdziwe jest oszacowanie <math>2 \leqslant a_n < 3</math>. Zauważmy jeszcze (już bez dowodu), że ciąg <math>(a_n)</math>, jako rosnący i&nbsp;ograniczony od góry<ref name="p1"/>, jest zbieżny. Granicą ciągu <math>(a_n)</math> jest liczba niewymierna <math>e = 2.718281828 \ldots</math>, która jest podstawą logarytmu naturalnego.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 236: Linia 275:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A7</span><br/>
+
<span id="H13" style="font-size: 110%; font-weight: bold;">Twierdzenie H13</span><br/>
Prawdziwe następujące oszacowania:
+
Jeżeli dodatnie liczby <math>a, b</math> względnie pierwsze, to każdy dzielnik <math>d</math> iloczynu <math>a b</math> można przedstawić jednoznacznie w&nbsp;postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a ,</math> <math>\; d_2 \mid b \;</math> <math>\text{i} \; \gcd (d_1, d_2) = 1</math>.
 
 
::<math>n^n \underset{n \geqslant 13}{<} p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{<} (n \log n)^n</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Indukcja matematyczna. Udowodnimy tylko oszacowanie od dołu. Dowód oszacowania od góry przedstawimy po zakończeniu dowodu twierdzenia A1. Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>n = 13</math>. Zakładając prawdziwość twierdzenia dla liczb naturalnych <math>k \in [13, n]</math> mamy dla <math>n + 1</math>:
+
Niech <math>d_1 = \gcd (d, a) \;</math> i <math>\; d_2 = \gcd (d, b)</math>. Z&nbsp;twierdzenia [[#H8|H8]] mamy
 
 
::<math>p_1 p_2 \cdot \ldots \cdot p_n p_{n + 1} > n^n \cdot p_{n + 1} > n^n \cdot 3 (n + 1) > n^n \cdot \left( 1 + \frac{1}{n} \right)^n \cdot (n + 1) = (n + 1)^{n + 1}</math>
 
 
 
Gdzie skorzystaliśmy z faktu, że <math>p_n > 3 n</math> dla <math>n \geqslant 12</math> oraz z właściwości rosnącego ciągu <math>a_n = \left( 1 + \frac{1}{n} \right)^n < e = 2.718281828 \ldots < 3</math> (zobacz twierdzenie A6).<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d</math>
  
 +
Bo z&nbsp;założenia <math>d \mid a b</math>. Z&nbsp;definicji największego wspólnego dzielnika i&nbsp;zadania [[#H3|H3]] dostajemy
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A8</span><br/>
+
::<math>\gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2</math>
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\frac{P (2 n)}{P (n)} < 4^{n - 1}</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b)</math>
Rozważmy współczynnik dwumianowy
 
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}</math>
+
::::::::<math>\, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b</math>
  
Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> występuje w&nbsp;liczniku wypisanego wyżej ułamka i&nbsp;nie występuje w&nbsp;mianowniku. Wynika stąd oszacowanie
+
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (a, b)</math>
  
::<math>\binom{2 n}{n} = C \cdot \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} > \underset{n + 1 \leqslant p_k \leqslant 2 n}{\prod p_k} = \frac{P (2 n)}{P (n)}</math>
+
::::::::<math>\, \Longrightarrow \qquad \gcd (a, b) \geqslant e</math>
  
Zauważmy, że wypisany w&nbsp;powyższej nierówności iloczyn liczb pierwszych jest liczbą nieparzystą. Ponieważ współczynnik dwumianowy <math>\binom{2 n}{n}</math> jest dodatnią liczbą całkowitą parzystą, zatem również czynnik <math>C \geqslant 2</math> musi być dodatnią liczbą całkowitą parzystą. Łącząc uzyskaną nierówność z&nbsp;oszacowaniem z&nbsp;twierdzenia A4, otrzymujemy natychmiast:
+
Gdyby było <math>\gcd (d_1, d_2) = e > 1</math>, to mielibyśmy <math>\gcd (a, b) \geqslant e > 1</math>. Wbrew założeniu, że <math>\gcd (a, b) = 1</math>. Co kończy dowód.<br/>
 
 
::<math>\frac{P (2 n)}{P (n)} < \binom{2 n}{n} < 4^{n - 1}</math>
 
 
 
Dla <math>n = 2, 3, 4</math> sprawdzamy uzyskany rezultat bezpośrednio.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 274: Linia 301:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A9</span><br/>
+
<span id="H14" style="font-size: 110%; font-weight: bold;">Twierdzenie H14</span><br/>
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>P(n) < 4^n</math>
+
Jeżeli <math>a, m, n \in \mathbb{Z}_+</math>, to
 +
 
 +
::<math>\gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Indukcja matematyczna. Oszacowanie <math>P(n) < 4^n</math> jest prawdziwe dla <math>n = 1, 2</math>. Zakładając prawdziwość oszacowania dla wszystkich liczb całkowitych nie większych od <math>n</math>, dla <math>n + 1</math> rozpatrzymy dwa przypadki. Jeżeli <math>n + 1 = 2 k + 1</math> jest liczbą nieparzystą większą lub równą <math>3</math>, to mamy
+
Pokażemy najpierw, że jeżeli <math>d</math> jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i&nbsp;odwrotnie.
  
::<math>P(n + 1) = P (2 k + 1) = P (2 k + 2) = P (k + 1) \cdot \frac{P (2 k + 2)}{P (k + 1)} < 4^{k + 1} \cdot 4^k = 4^{2 k + 1} = 4^{n + 1}</math>
+
<math>\Large{\Longrightarrow}</math>
  
gdzie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia A8.
+
Z założenia <math>d</math> jest dzielnikiem <math>\gcd (a^m - 1, a^n - 1)</math>, czyli <math>d \mid (a^m - 1) \;</math> i <math>\; d \mid (a^n - 1)</math>, co możemy zapisać w&nbsp;postaci
  
Jeżeli <math>n + 1 = 2 k</math> jest liczbą parzystą większą lub równą <math>4</math>, to mamy
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
  
::<math>P(n + 1) = P (2 k) = P (k) \cdot \frac{P (2 k)}{P (k)} < 4^k \cdot 4^{k - 1} = 4^{2 k - 1} < 4^{2 k} = 4^{n + 1}</math>
+
Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby <math>x, y</math>, że <math>\gcd (m, n) = m x + n y</math>. Łatwo znajdujemy, że
  
gdzie ponownie skorzystaliśmy z&nbsp;założenia indukcyjnego i&nbsp;oszacowania z&nbsp;twierdzenia A8.<br/>
+
::<math>a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
Czyli <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>.
  
 +
<math>\Large{\Longleftarrow}</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A10</span><br/>
+
Z założenia <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>, czyli
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>p_n > \frac{1}{2 \log 2} \cdot n \log n</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d}</math>
Ponieważ z&nbsp;definicji <math>P(p_n) = p_1 p_2 \cdot \ldots \cdot p_n</math>, to korzystając z&nbsp;oszacowań uzyskanych w&nbsp;twierdzeniach A7 i&nbsp;A9 dostajemy dla <math>n \geqslant 13</math>
 
  
::<math>n^n < p_1 p_2 \cdot \ldots \cdot p_n = P (p_n) < 4^{p_n}</math>
+
Zatem
  
Logarytmując obie strony nierówności, mamy
+
::<math>a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d}</math>
  
::<math>n \log n < p_n \cdot \log 4</math>
+
Podobnie otrzymujemy
  
Skąd natychmiast wynika dowodzone oszacowanie
+
::<math>a^n \equiv 1 \!\! \pmod{d}</math>
  
::<math>p_n > \frac{1}{2 \log 2} \cdot n \log n > 0.72 \cdot n \log n</math>
+
Zatem <math>d</math> dzieli <math>a^m - 1 \;</math> i <math>\; a^n - 1</math>, czyli
  
Prawdziwość powyższej nierówności dla <math>n \leqslant 12</math> sprawdzamy bezpośrednio.<br/>
+
::<math>d \mid \gcd (a^m - 1, a^n - 1)</math>
&#9633;
 
{{\Spoiler}}
 
  
  
 +
W szczególności wynika stąd, że
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A11</span><br/>
+
:*&nbsp;&nbsp;&nbsp;<math>\gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot \frac{n}{\log n}</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:*&nbsp;&nbsp;&nbsp;<math>\left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1)</math>
Każda liczba pierwsza należąca do przedziału <math>[n + 1, 2 n]</math> jest dzielnikiem współczynnika dwumianowego
 
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{n! \cdot n!} = \frac{2 n \cdot (2 n - 1) \cdot \ldots \cdot (n + 1)}{n!}</math>
+
Czyli <math>\left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right|</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
bowiem dzieli licznik i&nbsp;nie dzieli mianownika. Ponieważ dla każdej z&nbsp;tych liczb jest <math>p > n</math>, to
 
  
::<math>n^{\pi (2 n) - \pi (n)} < \prod_{n < p_i \leqslant 2 n} p_i < \binom{2 n}{n} < 4^n</math>
 
  
Ostatnia nierówność wynika z&nbsp;twierdzenia A4. Logarytmując, dostajemy
+
<span id="H15" style="font-size: 110%; font-weight: bold;">Uwaga H15</span><br/>
 +
W dowodzie twierdzenia [[#H14|H14]] pominęliśmy milczeniem fakt, że jedna z&nbsp;liczb <math>x, y</math> może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis
  
::<math>[\pi (2 n) - \pi (n)] \cdot \log n < 2 n \cdot \log 2</math>
+
::<math>a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d}</math>
  
Czyli
+
Omówimy ten problem w&nbsp;następnej sekcji. Zauważmy, wyprzedzając materiał, że z&nbsp;kongruencji
  
::<math>\pi (2 n) - \pi (n) < 2 \log 2 \cdot \frac{n}{\log n}</math>
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
wynika, że <math>\gcd (a, d) = 1</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>d</math>.
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A12</span><br/>
 
Dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\pi (n) < 2 \cdot \frac{n}{\log n}</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Indukcja matematyczna. Oszacowanie <math>\pi (n) < 2 \cdot \frac{n}{\log n}</math> jest prawdziwe dla <math>2 \leqslant n \leqslant 62</math>, co łatwo sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wpisać polecenie:
 
  
::for(n=2, 62, if( primepi(n) >= 2 * n/log(n), print(n) ))
 
  
Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych należących do przedziału <math>[2, n]</math>, otrzymujemy dla <math>n + 1</math>
+
== Element odwrotny modulo <math>m</math> ==
  
a) jeżeli <math>n + 1</math> jest liczbą parzystą, to:
+
<span id="H16" style="font-size: 110%; font-weight: bold;">Twierdzenie H16</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Dla liczby <math>a \in \mathbb{Z}</math> istnieje taka liczba <math>x</math>, że
  
::<math>\pi (n + 1) = \pi (n) = 2 \cdot \frac{n}{\log n} < 2 \cdot \frac{n + 1}{\log (n + 1)}</math>
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
Ostatnia nierówność wynika ze spostrzeżenia, że funkcja <math>\frac{x}{\log x}</math> jest funkcją rosnącą dla <math>x > e \approx 2.71828</math>. Można też wykorzystać oszacowanie <math>\log(1 + x) < x</math> prawdziwe dla <math>x > 0</math>.
+
wtedy i&nbsp;tylko wtedy, gdy <math>\gcd (a, m) = 1</math>.
  
b) jeżeli <math>n + 1</math> jest liczbą nieparzystą, to możemy położyć <math>n + 1 = 2 k + 1</math> i&nbsp;otrzymujemy:
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
::<math>\pi (n + 1) = \pi (2 k + 1) =</math>
+
<math>\Large{\Longrightarrow}</math>
  
::::<math>\quad = \pi (2 k + 2) =</math>
+
Z założenia istnieje taka liczba <math>x</math>, że
  
::::<math>\quad = \pi (k + 1) + [\pi (2 k + 2) - \pi (k + 1)] <</math>
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
::::<math>\quad < 2 \cdot \frac{k + 1}{\log (k + 1)} + 2 \log 2 \cdot \frac{k + 1}{\log (k + 1)} =</math>
+
Zatem dla pewnego <math>k \in \mathbb{Z}</math> jest
  
::::<math>\quad = (1 + \log 2) \cdot \frac{2 k + 2}{\log (k + 1)} <</math>
+
::<math>a x = 1 + k m</math>
  
::::<math>\quad < \left[ 1.7 \cdot \frac{2 k + 2}{\log (k + 1)} \cdot \frac{\log (2 k + 1)}{2 k + 1} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} <</math>
+
Czyli <math>a x - k m = 1</math>. Wynika stąd, że <math>\gcd (a, m)</math> dzieli <math>1</math>, co oznacza, że <math>\gcd (a, m) = 1</math>.
  
::::<math>\quad < \left[ 1.7 \cdot \frac{2 k + 2}{2 k + 1} \cdot \frac{\log (2 k + 2)}{\log (k + 1)} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} <</math>
+
<math>\Large{\Longleftarrow}</math>
  
::::<math>\quad = \left[ 1.7 \cdot \left( 1 + \frac{1}{2 k + 1} \right) \cdot \frac{\log (k + 1) + \log 2}{\log (k + 1)} \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} =</math>
+
Z założenia <math>\gcd (a, m) = 1</math>. Z&nbsp;lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite <math>x, y</math>, że
  
::::<math>\quad = \left[ 1.7 \cdot \left( 1 + \frac{1}{2 k + 1} \right) \cdot \left( 1 + \frac{\log 2}{\log (k + 1)} \right) \right] \cdot \frac{2 k + 1}{\log (2 k + 1)} <</math>
+
::<math>a x + m y = 1</math>
  
::::<math>\quad < 2 \cdot \frac{2 k + 1}{\log (2 k + 1)} =</math>
+
Zatem modulo <math>m</math> dostajemy
  
::::<math>\quad = 2 \cdot \frac{n + 1}{\log (n + 1)}</math>
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
Ostatnia nierówność wynika z&nbsp;faktu, że czynnik w nawiasie kwadratowym maleje wraz ze wzrostem <math>k</math> i&nbsp;dla <math>k = 63</math> osiąga wartość <math>1.9989 \ldots</math><br/>
+
Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 386: Linia 406:
  
  
 +
<span id="H17" style="font-size: 110%; font-weight: bold;">Definicja H17</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Liczbę <math>x</math> taką, że
  
 +
::<math>a \cdot x \equiv 1 \!\! \pmod{m}</math>
  
== Wykładnik z jakim liczba pierwsza <math>p</math> występuje w <math>n!</math> ==
+
będziemy nazywali elementem odwrotnym liczby <math>a</math> modulo <math>m</math> i&nbsp;oznaczali jako <math>a^{- 1}</math>.
  
Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2}</math>.
 
  
  
<span style="font-size: 110%; font-weight: bold;">Definicja A13</span><br/>
+
<span id="H18" style="font-size: 110%; font-weight: bold;">Uwaga H18</span><br/>
Funkcję <math>\lfloor x \rfloor</math> (czytaj: całość z <math>x</math>) definiujemy jako największą liczbę całkowitą nie większą od <math>x</math>. Operacyjnie możemy ją zdefiniować następująco: niech liczby <math>x, \varepsilon \in \mathbb{R}</math>, liczba <math>k \in \mathbb{Z}</math> oraz <math>0 \leqslant \varepsilon < 1</math>, jeżeli <math>x = k + \varepsilon</math>, to <math>\lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k </math>.
+
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli <math>b \mid a</math> oraz <math>b</math> ma element odwrotny modulo <math>m</math>, to prawdziwa jest kongruencja
  
 +
::<math>{\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m}</math>
  
 +
Istotnie
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A14</span><br/>
+
::<math>{\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m}</math>
Dla <math>n \in \mathbb{Z}_+</math>, <math>x \in \mathbb{R}</math> jest <math>\left \lfloor \frac{x}{n} \right\rfloor = \left \lfloor \frac{\left \lfloor x \right \rfloor}{n} \right \rfloor</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
W PARI/GP odwrotność liczby <math>a</math> modulo <math>m</math> znajdujemy, wpisując <code>Mod(a, m)^(-1)</code>.
Korzystając z&nbsp;definicji A13, przedstawmy liczbę w&nbsp;postaci <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>.
 
  
Z&nbsp;twierdzenia&nbsp;o dzieleniu z&nbsp;resztą liczbę <math>k</math> możemy zapisać w&nbsp;postaci <math>k = q n + r</math>, gdzie <math>0 \leqslant r \leqslant n - 1</math>, mamy zatem <math>x = q n + r + \varepsilon</math>. Ponieważ <math>0 \leqslant r + \varepsilon < n</math>, to po podzieleniu przez <math>n</math> dostajemy
 
  
::<math>0 \leqslant \frac{r + \varepsilon}{n} < 1</math>
 
  
czyli
+
<span id="H19" style="font-size: 110%; font-weight: bold;">Twierdzenie H19</span><br/>
 
+
Niech <math>a, k \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math>. Poniższa tabelka przedstawia elementy odwrotne do elementu <math>a</math> w&nbsp;przypadku niektórych modułów <math>m</math>. W&nbsp;szczególności, jeżeli moduł <math>m</math> jest liczbą nieparzystą, to <math>2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m}</math>.
<div style="margin-top: 0em; margin-bottom: 1em;">
 
::<math>\left \lfloor \frac{x}{n} \right \rfloor = \left \lfloor \frac{qn + r + \varepsilon }{n} \right \rfloor = \left \lfloor q + \frac{r + \varepsilon }{n} \right \rfloor = q</math>
 
</div>
 
 
 
Podobnie, ponieważ <math>0 \leqslant r < n</math>, to <math>0 \leqslant \frac{r}{n} < 1</math> i&nbsp;otrzymujemy
 
 
 
<div style="margin-top: 1em; margin-bottom: 0em;">
 
::<math>\left\lfloor \frac{\left \lfloor x \right\rfloor}{n} \right\rfloor = \left \lfloor \frac{\left \lfloor qn + r + \varepsilon \right \rfloor}{n} \right \rfloor = \left \lfloor \frac{qn + r}{n} \right \rfloor = \left \lfloor q + \frac{r}{n} \right \rfloor = q</math>
 
</div>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
!  || postać <br/> modułu <math>\boldsymbol{m}</math> || odwrotność <br/> elementu <math>\boldsymbol{a}</math> || uwagi
 +
|-
 +
| <math>1.</math> || <math>m = 2</math> || <math>1</math> || rowspan = 3 | liczba <math>a</math> <br/> jest liczbą <br/> nieparzystą
 +
|-
 +
| <math>2.</math> || <math>m = 4</math> || <math>R_4(a)</math>
 +
|-
 +
| <math>3.</math> || <math>m = 8</math> || <math>R_8(a)</math>
 +
|-
 +
| <math>4.</math> || <math>m = a k - 1</math> || <math>{\small\frac{m + 1}{a}}</math> || <math></math>
 +
|-
 +
| <math>5.</math> || <math>m = a k + 1</math> || <math>- {\small\frac{m - 1}{a}}</math> || <math></math>
 +
|-
 +
| <math>6.</math> || <math>m = a k - 2</math> || <math>{\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}}</math> || rowspan = 2 | liczby <math>a , m</math> <br/> są liczbami <br/> nieparzystymi
 +
|-
 +
| <math>7.</math> || <math>m = a k + 2</math> || <math>{\small\frac{m - 1}{2}} \cdot {\small\frac{m - 2}{2}}</math>
 +
|}
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A15</span><br/>
+
'''Punkty 1. - 3.'''
Niech <math>x \in \mathbb{R}</math>. Liczba <math>\lfloor 2 x \rfloor - 2 \lfloor x \rfloor</math> przyjmuje wartości <math>0</math> lub <math>1</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ dla liczb nieparzystych jest
Niech <math>x = k + \varepsilon</math>, gdzie <math>0 \leqslant \varepsilon < 1</math>. Mamy
 
  
::<math> \lfloor 2 x \rfloor - 2 \lfloor x \rfloor = \lfloor 2 k + 2 \varepsilon \rfloor - 2 \lfloor k + \varepsilon \rfloor = 2 k + \lfloor 2 \varepsilon \rfloor - 2 k -2 \lfloor \varepsilon \rfloor = \lfloor 2 \varepsilon \rfloor</math>
+
::<math>a^2 \equiv 1 \!\! \pmod{2}</math>
  
Ponieważ <math>0 \leqslant 2 \varepsilon < 2</math>, zatem <math>\lfloor 2 \varepsilon \rfloor = 0</math> lub <math>\lfloor 2 \varepsilon \rfloor = 1</math>.<br/>
+
::<math>a^2 \equiv 1 \!\! \pmod{4}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>a^2 \equiv 1 \!\! \pmod{8}</math>
  
 +
to liczba nieparzysta <math>a</math> jest swoją odwrotnością modulo <math>2</math>, <math>4</math> i <math>8</math>. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać
  
Bardzo istotnym rezultatem (z&nbsp;punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!</math>
+
::<math>a^{- 1} \equiv R_2 (a) \!\! \pmod{2}</math>
  
 +
::<math>a^{- 1} \equiv R_4 (a) \!\! \pmod{4}</math>
  
<span style="font-size: 110%; font-weight: bold;">Definicja A16</span><br/>
+
::<math>a^{- 1} \equiv R_8 (a) \!\! \pmod{8}</math>
Niech <math>p</math> będzie liczbą pierwszą, zaś <math>a</math> dowolną liczbą naturalną. Jeżeli liczba pierwsza <math>p</math> wchodzi do rozwinięcia liczby naturalnej <math>n \geqslant 2</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>a</math>, to powiemy, że funkcja <math>W_p (n)</math> przyjmuje wartość <math>a</math>. Fakt ten możemy zapisać następująco
 
  
::<math>W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n</math>
+
W pierwszym przypadku wynik jest oczywisty, bo <math>R_2 (a) = 1</math>.
  
 +
'''Punkt 4.'''
  
 +
Zauważmy, że
  
<span style="font-size: 110%; font-weight: bold;">Przykład A17</span><br/>
+
::<math>\gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1</math>
<math>W_5 (100) = 2</math>,&nbsp;&nbsp; <math>W_7 (42) = 1</math>,&nbsp;&nbsp; ponieważ <math>11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11</math>, to <math>W_3 (11!) = 4</math>
 
  
 +
oraz <math>a \mid (m + 1)</math>. Zatem
  
 +
::<math>a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m}</math>
  
Wprost z&nbsp;definicji funkcji <math>W_p (n)</math> wynikają następujące właściwości:
+
'''Punkt 5.'''
  
 +
Zauważmy, że
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A18</span><br/>
+
::<math>\gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1</math>
  
Podstawowe własności funkcji <math>W_p (n)</math>
+
oraz <math>a \mid (m - 1)</math>. Zatem
  
::# <math>\;\; W_p (n \cdot m) = W_p (n) + W_p (m)</math>
+
::<math>a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m}</math>
::# <math>\;\; W_p (n \cdot p^a) = a + W_p (n)</math>
 
::# <math>\;\; W_{p}\left ( \frac{n}{m} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad \frac{n}{m}\in \mathbb{Z}_{+}</math>
 
::# <math>\;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0</math>
 
  
 +
'''Punkt 6.'''
  
 +
Ponieważ zakładamy, że <math>2 \mid (m + 1)</math>, to <math>m</math> musi być liczbą nieparzystą, czyli <math>a</math> też musi być liczbą nieparzystą. Zauważmy, że
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A19</span><br/>
+
::<math>\gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1</math>
Niech <math>p</math> będzie liczbą pierwszą. Ilość liczb podzielnych przez <math>p</math> i&nbsp;występujących w&nbsp;ciągu <math>1, 2, 3, \ldots, n</math> wynosi <math>r = \left\lfloor \frac{n}{p} \right\rfloor</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
oraz <math>a \mid (m + 2)</math>. Zatem
Wśród liczb naturalnych <math>1, 2, 3, \ldots, n</math> istnieje pewna ilość liczb podzielnych przez <math>p</math>. Liczby te możemy z&nbsp;łatwością wypisać, będą nimi
 
  
::<math>1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, r \cdot p</math>
+
::<math>a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m}</math>
  
Gdzie <math>r</math> jest największą liczbą całkowitą nie większą niż <math>\frac{n}{p}</math>, czyli <math>r = \left\lfloor \frac{n}{p} \right\rfloor</math>.<br/>
+
Podobnie pokazujemy punkt 7. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 481: Linia 508:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład A20</span><br/>
+
<span id="H20" style="font-size: 110%; font-weight: bold;">Twierdzenie H20</span><br/>
Ilość liczb całkowitych dodatnich podzielnych przez <math>5</math> i&nbsp;nie większych od <math>63</math> wynosi <math>\left\lfloor \frac{63}{5} \right\rfloor = 12</math>. Liczby te to <math>5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60</math>.
+
Niech <math>a, b \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>m</math>. Jeżeli liczby <math>u_1, u_2, \ldots, u_r</math> są liczbami różnymi modulo <math>m</math>, to liczby
 +
 
 +
::1.&nbsp;&nbsp;&nbsp;<math>a u_1, a u_2, \ldots, a u_r</math>
  
 +
::2.&nbsp;&nbsp;&nbsp;<math>a u_1 + b, a u_2 + b, \ldots, a u_r + b</math>
  
 +
są liczbami różnymi modulo <math>m</math>. Jeżeli ponadto liczby <math>u_1, u_2, \ldots, u_r</math> są względnie pierwsze z <math>m</math>, to również liczby
  
Twierdzenie A19 umożliwi nam określenie wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w <math>n!</math>
+
::3.&nbsp;&nbsp;&nbsp;<math>u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A21</span><br/>
+
są liczbami różnymi modulo <math>m</math>.
Liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Dowód sprowadza się do znalezienia wartości funkcji <math>W_p (n!)</math>.
 
  
::<math>W_p (n!) = W_p (1 \cdot 2 \cdot 3 \cdot \ldots \cdot n) = W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \cdot p \right)</math>
+
'''Punkt 1.'''
  
Pozostawiliśmy jedynie czynniki podzielne przez <math>p</math> (czynniki niepodzielne przez <math>p</math> nie dają wkładu do wykładnika, z&nbsp;jakim <math>p</math> występuje w <math>n!</math>), wyłączając czynnik <math>p</math> z&nbsp;każdej z&nbsp;liczb <math>p, 2 p, 3 p, \ldots, \left\lfloor \frac{n}{p} \right\rfloor \cdot p</math> mamy
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
::<math>W_p (n!) = W_p \left( p^{\lfloor n / p \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \right) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p} \right\rfloor \right)</math>
+
::<math>a u_i \equiv a u_j \!\! \pmod{m}</math>
  
Otrzymane wyrażenie przekształcamy analogicznie jak wyżej
+
Z założenia liczba <math>a</math> ma element odwrotny modulo <math>m</math>, zatem mnożąc obie strony kongruencji przez <math>a^{- 1}</math>, otrzymujemy
  
::<math>W_p (n!) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{\lfloor n / p \rfloor}{p} \right\rfloor \cdot p \right)</math>
+
::<math>u_i \equiv u_j \!\! \pmod{m}</math>
  
Z twierdzenia A14 wiemy, że dla <math>x \in \mathbb{R}</math> i <math>n \in \mathbb{Z}_{+}</math> jest:
+
dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Dowód punktu 2. jest analogiczny.
  
::<math>\left\lfloor \frac{\lfloor x \rfloor}{n} \right\rfloor = \left \lfloor \frac{x}{n} \right \rfloor</math>
+
'''Punkt 3.'''
  
zatem
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
::<math>W_p (n!) = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p \cdot 2 p \cdot 3 p \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \cdot p \right) =</math>
+
::<math>u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m}</math>
  
::::<math>\;\, = \left\lfloor \frac{n}{p} \right\rfloor + W_p \left( p^{\lfloor n / p^2 \rfloor} \cdot 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \right) =</math>
+
::<math>u_j u^{- 1}_i \equiv 1 \!\! \pmod{m}</math>
  
::::<math>\;\, = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + W_p \left( 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \left\lfloor \frac{n}{p^2} \right\rfloor \right)</math>
+
::<math>u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m}</math>
  
Oczywiście opisaną wyżej procedurę możemy powtarzać wielokrotnie. Zakończenie następuje wtedy, gdy wykładnik liczby pierwszej <math>p</math> osiągnie wartość tak dużą, że <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math>. Ponieważ nie wiemy, jaka to wartość (choć możemy ją oszacować), to stosujemy zapis
+
::<math>u_j \equiv u_i \!\! \pmod{m}</math>
  
::<math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor</math>
+
Ponownie otrzymujemy <math>u_i \equiv u_j \!\! \pmod{m}</math> dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Co należało pokazać.<br/>
 
 
zdając sobie sprawę z&nbsp;tego, że w&nbsp;rzeczywistości sumowanie obejmuje jedynie skończoną liczbę składników.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 526: Linia 553:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga A22</span><br/>
+
<span id="H21" style="font-size: 110%; font-weight: bold;">Zadanie H21</span><br/>
Należy zauważyć, że liczba sumowań jest skończona, bowiem bardziej precyzyjnie możemy powyższy wzór zapisać w postaci
+
Niech <math>p</math> będzie liczbą pierwszą. Pokazać, że dla <math>k \in [0, p - 1]</math> prawdziwa jest kongruencja
  
::<math>W_p (n!) = \sum_{k = 1}^B \left\lfloor \frac{n}{p^k} \right\rfloor</math>
+
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
  
gdzie <math>B = \lfloor \log_2 (n) \rfloor</math>. Jest tak dlatego, że jeżeli <math>k</math> przekroczy <math>\lfloor \log_2 (n) \rfloor</math>, to dla liczby pierwszej <math>p = 2</math>, jak również dla wszystkich innych liczb pierwszych mamy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że modulo <math>p</math> mamy
  
::<math>\frac{n}{p^k} < 1</math>
+
::<math>\binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}}</math>
  
czyli dla <math>k > B</math> sumujemy same zera.
+
::::<math>\;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}}</math>
  
 +
::::<math>\;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1}</math>
  
 +
::::<math>\;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1}</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład A23</span><br/>
+
::::<math>\;\;\;\; \equiv (- 1)^k \pmod{p}</math>
Niech <math>n = 30</math>, <math>p = 3</math>
 
  
::<math>W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) =</math>
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::<math>\quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) =</math>
 
  
::::<math>\quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) =</math>
 
  
::::<math>\quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) =</math>
+
<span id="H22" style="font-size: 110%; font-weight: bold;">Zadanie H22</span><br/>
 +
Niech <math>A</math> i <math>B</math> będą zbiorami skończonymi. Pokazać, że jeżeli <math>A \subseteq B \;\; \text{i} \;\; | A | = | B |</math>, to <math>\; A = B</math>.
  
::::<math>\quad = 10 + W_3 (3 \cdot 6 \cdot 9) =</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/><br/>
 +
Z definicji zbiory <math>A</math> i <math>B</math> są równe wtedy i&nbsp;tylko wtedy, gdy jednocześnie spełnione są warunki
  
::::<math>\quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) =</math>
+
:#&nbsp;&nbsp;<math>x \in A \qquad \Longrightarrow \qquad x \in B</math>
 +
:#&nbsp;&nbsp;<math>x \in B \qquad \Longrightarrow \qquad x \in A</math>
  
::::<math>\quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) =</math>
+
Z założenia <math>A \subseteq B</math>, zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element <math>x</math>, że <math>x \in B</math>, ale <math>x \notin A</math>. Jeśli tak, to
  
::::<math>\quad = 10 + 3 + W_3 (3) =</math>
+
::<math>| B | = | A | + 1</math>
  
::::<math>\quad = 10 + 3 + 1 =</math>
+
Co jest sprzeczne z&nbsp;założeniem, że <math>| A | = | B |</math>.
  
::::<math>\quad = 14</math>
+
'''Uwaga'''<br/>
 +
Łatwo zauważyć, że wybierając z&nbsp;trzech warunków <math>A \subseteq B</math>, <math>B \subseteq A</math> i <math>| A | = | B |</math> dowolne dwa, zawsze otrzymamy z&nbsp;nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych<ref name="cardinality1"/>, ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.
  
Co jest zgodne ze wzorem:
 
  
::<math>W_3 (30!) = \left\lfloor \frac{30}{3} \right\rfloor + \left\lfloor \frac{30}{3^2} \right\rfloor + \left\lfloor \frac{30}{3^3} \right\rfloor = 10 + 3 + 1 = 14</math>
+
<span style="border-bottom-style: double;">Drugi sposób</span><br/><br/>
 +
Ponieważ zbiór <math>A</math> jest z&nbsp;założenia podzbiorem zbioru <math>B</math>, to zbiór <math>B</math> można przedstawić w&nbsp;postaci sumy zbioru <math>A</math> i&nbsp;pewnego zbioru <math>C</math> takiego, że żaden element zbioru <math>C</math> nie jest elementem zbioru <math>A</math>. Zatem
  
 +
::<math>B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing</math>
  
 +
Ponieważ zbiory <math>A</math> i <math>C</math> są rozłączne, to wiemy, że
  
 +
::<math>| A \cup C | = | A | + | C |</math>
  
Podobnie jak w&nbsp;poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci <math>\binom{2 n}{n}</math>. Teraz już łatwo możemy policzyć wykładnik, z&nbsp;jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.
+
Czyli
  
 +
::<math>| B | = | A \cup C | = | A | + | C |</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A24</span><br/>
+
Skąd wynika, że <math>| C | = 0</math>, zatem zbiór <math>C</math> jest zbiorem pustym i&nbsp;otrzymujemy natychmiast <math>B = A</math>. Co należało pokazać.
Liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>\binom{2 n}{n}</math> z&nbsp;wykładnikiem
 
  
::<math>u = \sum^{\infty}_{k = 1} \left( \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right)</math>
+
'''Uwaga (przypadek zbiorów skończonych)'''<br/>
 +
Najczęściej prawdziwe jest jedynie oszacowanie <math>| A \cup C | \leqslant | A | + | C |</math>, bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów <math>| A |</math> i <math>| C |</math>, zatem od sumy <math>| A | + | C |</math> musimy odjąć liczbę elementów iloczynu zbiorów <math>| A |</math> i <math>| C |</math>. Co daje ogólny wzór<ref name="sumazbiorow"/>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>| A \cup C | = | A | + | C | - | A \cap C |</math><br/>
Ponieważ <math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2}</math>, to liczba pierwsza <math>p</math> wchodzi do rozwinięcia na czynniki pierwsze liczby <math>\binom{2 n}{n}</math> z&nbsp;wykładnikiem:
 
 
 
::<math>W_p \left( \binom{2 n}{n} \right) = W_p ((2 n) !) - 2 W_p (n!) = \sum^{\infty}_{k = 1} \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \sum^{\infty}_{k = 1} \left \lfloor \frac{n}{p^{k}} \right \rfloor = \sum^{\infty}_{k = 1} \left( \left \lfloor \frac{2n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right)</math>
 
<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 587: Linia 621:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A25</span><br/>
+
<span id="H23" style="font-size: 110%; font-weight: bold;">Definicja H23</span><br/>
Liczby pierwsze spełniające warunek <math>p > \sqrt{2 n}</math> występują w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem <math>u = 1</math> lub <math>u = 0</math>.
+
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Powiemy, że zbiory <math>A, B</math> są równe modulo <math>m</math>, jeżeli dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja <math>a_k \equiv b_j \!\! \pmod{m}</math>.
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Jeżeli <math>p > \sqrt{2 n}</math>, to dla <math>k \geqslant 2</math> mamy <math>p^k \geqslant p^2 > 2 n > n</math>. Zatem dla <math>k \geqslant 2</math> jest <math>\left\lfloor \frac{2 n}{p^k} \right\rfloor = \left\lfloor \frac{n}{p^k} \right\rfloor = 0</math> i&nbsp;otrzymujemy
 
 
 
::<math>u = \sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = \left \lfloor \frac{2 n}{p} \right \rfloor - 2 \left \lfloor \frac{n}{p} \right \rfloor</math>
 
 
 
Na mocy twierdzenia A15 (dla <math>x = \tfrac{n}{p}</math>), dostajemy natychmiast, że <math>u = 1</math> lub <math>u = 0</math>.
 
<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A26</span><br/>
+
<span id="H24" style="font-size: 110%; font-weight: bold;">Twierdzenie H24</span><br/>
Niech <math>p</math> będzie liczbą pierwszą. Jeżeli <math>p^a \big\rvert \binom{2 n}{n}</math>, to <math>p^a \leqslant 2 n</math>.
+
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Zbiory <math>A, B</math> są równe modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy zbiory <math>A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \}</math> i <math>B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \}</math> są równe.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>u</math> oznacza wykładnik, z&nbsp;jakim liczba pierwsza <math>p</math> wchodzi do rozwinięcia współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze. Mamy
 
  
::<math>u = \sum_{k = 1}^{\infty} \left( \left\lfloor \frac{2 n}{p^k} \right\rfloor - 2 \left\lfloor \frac{n}{p^k} \right\rfloor \right)</math>
+
<math>\Large{\Longrightarrow}</math>
  
gdzie sumowanie przebiega w&nbsp;rzeczywistości od <math>k = 1</math> do <math>k = s</math>, a&nbsp;wartość liczby <math>s</math> wynika z&nbsp;warunku <math>p^s \leqslant 2 n < p^{s + 1}</math>. Ponieważ sumowane wyrazy są równe <math>0</math> lub <math>1</math>, to otrzymujemy natychmiast oszacowanie <math>u \leqslant s</math>, skąd wynika następujący ciąg nierówności
+
Ponieważ elementy każdego ze zbiorów <math>A, B</math> są różne modulo <math>m</math>, to elementy zbiorów <math>A'</math> i <math>B'</math> są wszystkie różne. Czyli <math>| A' | = | B' | = r</math>. Ponieważ warunek
  
::<math>p^a \leqslant p^u \leqslant p^s \leqslant 2 n</math>
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
oznacza, że reszty z&nbsp;dzielenia liczb <math>a_k</math> i <math>b_j</math> przez <math>m</math> są równe, to z&nbsp;założenia dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że
  
 +
::<math>R_m (a_k) = R_m (b_j)</math>
  
 +
A to oznacza, że każdy element zbioru <math>A'</math> należy do zbioru <math>B'</math>, czyli <math>A' \subseteq B'</math>. Wynika stąd, że <math>A' = B'</math> (zobacz [[#H22|H22]]). Co należało pokazać.
  
 +
<math>\Large{\Longleftarrow}</math>
  
== Oszacowanie <math>p_n</math> od góry i <math>\pi (n)</math> od dołu ==
+
Ponieważ zbiory <math>A', B'</math> są równe, to zbiór <math>A'</math> jest podzbiorem zbioru <math>B'</math>, czyli dla każdego elementu <math>R_m (a_k) \in A'</math> istnieje taki element <math>R_m (b_j) \in B'</math>, że
  
Z twierdzenia A26 wynika natychmiast
+
::<math>R_m (a_k) = R_m (b_j)</math>
  
 +
Ponieważ równość reszt oznacza równość modulo, zatem
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A27</span><br/>
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
Niech <math>\binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math> będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej <math>q_i</math>, <math>i = 1, \ldots, s</math> prawdziwe jest oszacowanie <math>q^{\alpha_i}_i \leqslant 2 n</math>.
 
  
Uwaga: w&nbsp;powyższym twierdzeniu <math>q_i</math> nie oznacza <math>i</math>-tej liczby pierwszej, a&nbsp;pewną liczbą pierwszą o&nbsp;indeksie <math>i</math> ze zboru liczb pierwszych <math>q_1, \ldots q_s</math>, które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z&nbsp;wykładnikiem większym od zera.
+
Wynika stąd, że dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja
  
 +
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
 
+
czyli zbiory <math>A, B</math> są równe modulo <math>m</math>. Co kończy dowód.<br/>
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A28</span><br/>
 
Dla <math>n \geqslant 1</math> prawdziwe jest następujące oszacowanie współczynnika dwumianowego <math>\binom{2 n}{n}</math>
 
 
 
::<math>\binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Dowód wynika natychmiast z&nbsp;twierdzenia A27, bowiem
 
 
 
::<math>\binom{2 n}{n} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \leqslant (2 n)^s \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 646: Linia 663:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A29</span><br/>
+
<span id="H25" style="font-size: 110%; font-weight: bold;">Twierdzenie H25</span><br/>
Dla <math>n \geqslant 3</math> prawdziwe jest następujące oszacowanie
+
Niech będą dane zbiory <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, <math>B = \{ b_1, b_2, \ldots, b_{p - 1} \}</math>, gdzie <math>p</math> jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru <math>B</math> są różne modulo <math>p</math> i&nbsp;żadna z&nbsp;liczb <math>b_k \in B</math> nie jest podzielna przez <math>p</math>, to zbiory <math>A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \}</math> są równe modulo <math>p</math>.
 
 
::<math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W twierdzeniu A4 oszacowaliśmy współczynnik dwumianowy <math>\binom{2 n}{n}</math>. Przepiszemy, to twierdzenie w&nbsp;postaci bardziej czytelnej dla potrzeb tego dowodu
+
Z definicji zbioru <math>A</math> wszystkie elementy tego zbioru są różne modulo <math>p</math>. Łatwo zauważamy, że
  
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \left( \sqrt{3.8} \right)^{2 n + 2} = 3.8^{n + 1} < \binom{2 n}{n}</math>
+
::<math>A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A'</math>
  
Nierówności te prawdziwe dla <math>n \geqslant 80</math>. Z&nbsp;twierdzenia A28 mamy
+
Ponieważ wszystkie liczby <math>b_k \in B</math>, gdzie <math>k = 1, \ldots, p - 1</math> różne modulo <math>p</math> i&nbsp;nie są podzielne przez <math>p</math>, to reszty <math>R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
::<math>\left( \sqrt{3.8} \right)^{2 n} < \left( \sqrt{3.8} \right)^{2 n + 1} < \binom{2 n}{n} \leqslant (2 n)^{\pi (2 n)} < (2 n + 1)^{\pi (2 n + 1)}</math>
+
::<math>A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B'</math>
  
Łącząc odpowiednie oszacowania współczynnika dwumianowego <math>\binom{2 n}{n}</math> od góry z&nbsp;odpowiednimi oszacowaniami od dołu, dostajemy
+
Na mocy twierdzenia [[#H24|H24]] zbiory <math>A</math> i <math>B</math> są równe modulo <math>p</math>.
  
::<math>(2 n + 1)^{\pi (2 n + 1)} > \left( \sqrt{3.8} \right)^{2 n + 1}</math>
+
Z twierdzenia [[#H20|H20]] wiemy, że wszystkie liczby <math>b^{- 1}_k \in C</math> są różne modulo <math>p</math>. Zauważmy, że każda z&nbsp;tych liczb jest względnie pierwsza z <math>p</math>, zatem nie może być podzielna przez <math>p</math>. Wynika stąd, że reszty <math>R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
::<math>(2 n)^{\pi (2 n)} > \left( \sqrt{3.8} \right)^{2 n}</math>
+
::<math>A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C'</math>
  
Zatem zarówno dla parzystych, jak i&nbsp;nieparzystych liczb <math>m \geqslant 160</math> jest
+
Na mocy twierdzenia [[#H24|H24]] zbiory <math>A</math> i <math>C</math> są równe modulo <math>p</math>. Ponieważ <math>A' = B'</math> i <math>A' = C'</math>, to <math>B' = C'</math> i&nbsp;ponownie na mocy twierdzenia [[#H24|H24]] zbiory <math>B</math> i <math>C</math> są równe modulo <math>p</math>. Co należało pokazać.<br/>
 
 
::<math>m^{\pi (m)} > \left( \sqrt{3.8} \right)^m</math>
 
 
 
::<math>\pi (m) \cdot \log m > m \cdot \log \left( \sqrt{3.8} \right)</math>
 
 
 
Czyli
 
 
 
::<math>\pi (m) > \frac{1}{2} \cdot \log \left ( 3.8 \right ) \cdot \frac{m}{\log m} > 0.6675 \cdot \frac{m}{\log m} > \frac{2}{3} \cdot \frac{m}{\log m}</math>
 
 
 
Dla <math>m = 3, 4, \ldots, 159</math> prawdziwość nierówności sprawdzamy przez bezpośrednie wyliczenie. W&nbsp;programie GP/PARI wystarczy wykonać polecenie
 
 
 
<span style="font-size: 90%; color:black;">'''for'''(n = 2, 200, '''if'''( '''primepi'''(n) <= 2/3 * n/'''log'''(n), '''print'''(n) ))</span>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 684: Linia 687:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A30</span><br/>
+
<span id="H26" style="font-size: 110%; font-weight: bold;">Zadanie H26</span><br/>
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie <math>p_n < 2 n \log n</math>
+
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Pokazać, że suma <math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}}</math> jest podzielna przez <math>p</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia A29 wiemy, że dla <math>n \geqslant 3</math> zachodzi <math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>. Kładąc <math>n = p_s</math> otrzymujemy dla <math>s \geqslant 2</math>
+
Zauważmy najpierw, że modulo <math>p</math> następujące sumy są równe
 
 
::<math>s = \pi (p_s) > \frac{2}{3} \cdot \frac{p_s}{\log p_s}</math>
 
  
Rozważmy funkcję
+
::<math>\sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p}</math>
  
::<math>\frac{2}{3} \cdot \frac{x}{\log x} - x^{3 / 4} = \frac{2}{3} \cdot \frac{x^{3 / 4}}{\log x} \left( x^{1 / 4} - \frac{3}{2} \cdot \log x \right)</math>
+
Istotnie, jeśli przyjmiemy w&nbsp;twierdzeniu [[#H25|H25]], że zbiór <math>B = \{ 1, 2, \ldots, p - 1 \}</math>, to zbiór <math>C</math> będzie zbiorem liczb, które są odwrotnościami liczb <math>1, 2, \ldots, p - 1</math> modulo <math>p</math> i&nbsp;możemy napisać
  
Zamieszczony niżej obrazek przedstawia wykres funkcji <math>x^{1 / 4} - \tfrac{3}{2} \cdot \log x</math>
+
::<math>\sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p}</math>
  
[[File: A_Czebyszew-wykres-1.png|center]]
+
bo
  
Wpisując w PARI/GP polecenie
+
:* gdy <math>x</math> przebiega kolejne wartości <math>b_k</math>, to <math>x</math> przyjmuje kolejno wartości <math>1, 2, \ldots, p - 1</math>
  
<span style="font-size: 90%; color:black;">'''solve'''(x = 10^4, 10^5, x^(1/4) - 3/2 * '''log'''(x))</span>
+
:* gdy <math>y</math> przebiega kolejne wartości <math>b_k^{- 1}</math>, to <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości ze zbioru <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, czyli liczba <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości <math>1, 2, \ldots, p - 1</math>, ale w&nbsp;innej kolejności
  
łatwo sprawdzamy, że funkcja <math>x^{1 / 4} - \tfrac{3}{2} \cdot \log x</math> przecina oś <math>OX</math> w&nbsp;punkcie <math>x = 83499.136 \ldots</math> Wynika stąd, że dla <math>x > 83499.14</math> prawdziwe jest oszacowanie
+
Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo <math>p</math>.
  
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{3 / 4}</math>
+
Zatem modulo <math>p</math> otrzymujemy
  
Zatem możemy napisać
+
::<math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1}</math>
  
::<math>s = \pi (p_s) > \frac{2}{3} \cdot \frac{p_s}{\log p_s} > (p_s)^{3 / 4}</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1}</math>
  
Co oznacza, że dla <math>s \geqslant 8153</math> (bo <math>p_{8153} = 83537 > 83499.14</math>) mamy <math>p_s < s^{4 / 3}</math> i&nbsp;wpisując w PARI/GP polecenie
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k</math>
  
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 10^4, '''if'''( '''prime'''(n) >= n^(4/3), '''print'''(n) ))</span>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}}</math>
  
sprawdzamy, że otrzymane oszacowanie <math>p_s < s^{4 / 3}</math> jest prawdziwe dla <math>s \geqslant 255</math>. Wykorzystując ten rezultat i&nbsp;szacując po raz drugi dostajemy dla <math>s \geqslant 255</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p</math>
  
::<math>p_s < \frac{3}{2} \cdot s \cdot \log p_s < \frac{3}{2} \cdot s \cdot \log s^{4 / 3} = 2 s \cdot \log s</math>
+
:::::<math>\;\;\: \equiv 0 \!\! \pmod{p}</math>
  
Ponownie w&nbsp;GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>s \geqslant 3</math>
+
Należy zauważyć, że dla liczby pierwszej nieparzystej <math>p</math> liczba <math>{\small\frac{p - 1}{2}}</math> jest liczbą całkowitą.<br/>
 
 
<span style="font-size: 90%; color:black;">'''for'''(s = 1, 300, '''if'''( '''prime'''(s) >= 2 * s*'''log'''(s), '''print'''(s) ))</span>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 730: Linia 729:
  
  
 +
== Funkcje multiplikatywne ==
  
 +
<span id="H27" style="font-size: 110%; font-weight: bold;">Definicja H27</span><br/>
 +
Powiemy, że funkcja <math>f(n)</math> określona w&nbsp;zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli <math>f(1) = 1</math> i&nbsp;dla względnie pierwszych liczb <math>a, b</math> spełniony jest warunek <math>f(a b) = f (a) f (b)</math>.
  
  
  
 +
<span id="H28" style="font-size: 110%; font-weight: bold;">Uwaga H28</span><br/>
 +
Założenie <math>f(1) = 1</math> możemy równoważnie zastąpić założeniem, że funkcja <math>f(n)</math> nie jest tożsamościowo równa zero.
 +
Gdyby <math>f(n)</math> spełniała jedynie warunek <math>f(a b) = f (a) f (b)</math> dla względnie pierwszych liczb <math>a, b</math>, to mielibyśmy
  
 +
::a)&nbsp;&nbsp;&nbsp;<math>f(n)</math> jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 0</math>
  
Dowód twierdzenia A30 kończy dowód całego twierdzenia&nbsp;A1. Możemy teraz dokończyć dowód twierdzenia&nbsp;A7 i&nbsp;pokazać, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie:
+
::b)&nbsp;&nbsp;&nbsp;<math>f(n)</math> nie jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 1</math>
  
::<math>p_1 \cdot \ldots \cdot p_n < (n \log n)^n</math>
+
Ponieważ <math>f(1) = f (1 \cdot 1) = f (1) f (1)</math>, zatem <math>f(1) = 0</math> lub <math>f (1) = 1</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Jeżeli <math>f(1) = 0</math>, to dla dowolnego <math>n</math> mamy
Indukcja matematyczna. Twierdzenie jest prawdziwe dla <math>n = 3</math>. Zakładając prawdziwość twierdzenia dla <math>n</math>, otrzymujemy dla <math>n + 1</math>:
 
  
::<math>p_1 \cdot \ldots \cdot p_n p_{n + 1} < (n \log n)^n \cdot p_{n + 1} < </math>
+
::<math>f(n) = f (n \cdot 1) = f (n) f (1) = 0</math>
  
::::::<math>\quad < n^n \cdot (\log n)^n \cdot 2 (n + 1) \log (n + 1) \leqslant</math>
+
Czyli <math>f(n)</math> jest funkcją tożsamościowo równą zero.
  
::::::<math>\quad \leqslant n^n \cdot \left( 1 + \frac{1}{n} \right)^n \cdot (n + 1) \cdot (\log n)^n \cdot \log (n + 1) <</math>
+
Jeżeli <math>f(n)</math> nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba <math>a \in \mathbb{Z}_+</math>, że <math>f(a) \neq 0</math>. Zatem
  
::::::<math>\quad < (n + 1)^{n + 1} \cdot [\log (n + 1)]^n \cdot \log (n + 1) =</math>
+
::<math>f(a) = f (a \cdot 1) = f (a) f (1)</math>
  
::::::<math>\quad = [(n + 1) \cdot \log (n + 1)]^{n + 1}</math>
+
I dzieląc obie strony przez <math>f(a) \neq 0</math>, dostajemy <math>f(1) = 1</math>.
  
Gdzie skorzystaliśmy z&nbsp;twierdzenia A30 oraz z&nbsp;faktu, że ciąg <math>a_n = \left( 1 + \frac{1}{n} \right)^n</math> jest ciągiem ograniczonym <math>2 \leqslant a_n < 3</math> (zobacz twierdzenie A6).<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
  
 +
<span id="H29" style="font-size: 110%; font-weight: bold;">Przykład H29</span><br/>
 +
Ponieważ <math>\gcd (1, c) = 1</math>, to <math>\gcd (n, c)</math> rozpatrywana jako funkcja <math>n</math>, gdzie <math>c</math> jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz [[#H8|H8]]).
  
  
  
== Uwagi do dowodu ==
+
<span id="H30" style="font-size: 110%; font-weight: bold;">Twierdzenie H30</span><br/>
Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i&nbsp;udowodnić
+
Jeżeli funkcja <math>f(n)</math> jest funkcją multiplikatywną, to funkcja
  
 +
::<math>F(n) = \sum_{d \mid n} f (d)</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A31</span><br/>
+
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>, jest również funkcją multiplikatywną.
Niech <math>n \geqslant 3</math>. Dla <math>n</math>-tej liczby pierwszej <math>p_n</math> prawdziwe jest oszacowanie
 
 
 
::<math>p_n < 1.875 \cdot n \log n</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia A1 wiemy, że dla <math>n \geqslant 3</math> zachodzi <math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>. Kładąc <math>n = p_s</math>, otrzymujemy dla <math>s \geqslant 2</math>
+
Ponieważ
  
::<math>s = \pi (p_s) > \frac{2}{3} \cdot \frac{p_s}{\log p_s} > (p_s)^{4 / 5}</math>
+
::<math>F(1) = \sum_{d \mid 1} f (d) = f (1) = 1</math>
  
Ostatnia nierówność wynika z&nbsp;faktu, że dla <math>x > 7572437.223 \ldots</math> prawdziwe jest oszacowanie
+
to funkcja <math>F(n)</math> spełnia pierwszy warunek definicji [[#H27|H27]].
  
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{4 / 5}</math>
+
Niech <math>a, b</math> będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu <math>a b</math> można zapisać w&nbsp;postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a</math>, <math>\; d_2 \mid b \,</math> oraz <math>\, \gcd (d_1, d_2) = 1</math> (zobacz [[#H13|H13]]). Niech zbiory
  
Zatem dla <math>s \geqslant 512830</math> (bo <math>p_{512830} = 7572449 > 7572437.223 \ldots</math>) mamy <math>p_s < s^{5 / 4}</math> i&nbsp;wpisując w PARI/GP polecenie
+
::<math>S_a = \{ d \in \mathbb{Z}_+ : d \mid a \}</math>
  
<span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span>
+
::<math>S_b = \{ d \in \mathbb{Z}_+ : d \mid b \}</math>
  
sprawdzamy, że otrzymane oszacowanie <math>p_s < s^{5 / 4}</math> jest prawdziwe dla <math>s \geqslant 13760</math>. Wykorzystując ten rezultat i&nbsp;szacując po raz drugi, dostajemy dla <math>s \geqslant 13760</math>
+
::<math>S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \}</math>
  
::<math>p_s < \frac{3}{2} \cdot s \cdot \log p_s < \frac{3}{2} \cdot s \cdot \log s^{5 / 4} = 1.875 \cdot s \cdot \log s</math>
+
będą zbiorami dzielników dodatnich liczb <math>a, b</math> i <math>a b</math>. Dla przykładu
  
Ponownie w&nbsp;PARI/GP sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>s \geqslant 3</math>
+
::<math>S_5 = \{ 1, 5 \}</math>
  
<span style="font-size: 90%; color:black;">'''for'''(s = 1, 15000, '''if'''( '''prime'''(s) >= 1.875 * s*'''log'''(s), '''print'''(s) ))</span>
+
::<math>S_7 = \{ 1, 7 \}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>S_{35} = \{ 1, 5, 7, 35 \}</math>
  
 +
Dla dowolnego <math>d_1 \in S_a \,</math> i <math>\, d_2 \in S_b</math> musi być <math>\gcd (d_1, d_2) = 1</math>, bo gdyby było <math>\gcd (d_1, d_2) = g > 1</math>, to
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A32</span><br/>
+
::<math>g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a</math>
Niech <math>n \geqslant 2</math>. Dla funkcji <math>\pi (n)</math> prawdziwe jest oszacowanie
 
  
::<math>\pi (n) < 1.733 \cdot \frac{n}{\log n}</math>
+
::<math>g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Zatem <math>g \mid \gcd (a, b)</math> i&nbsp;mielibyśmy <math>\gcd (a, b) \geqslant g > 1</math>, wbrew założeniu.
Z twierdzenia A1 wiemy, że dla <math>n \geqslant 3</math> jest
 
  
::<math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n} > n^{4 / 5}</math>
+
Przekształcając, otrzymujemy
  
Ostatnia nierówność wynika z&nbsp;faktu, że dla <math>x > 7572437.223 \ldots</math> prawdziwe jest oszacowanie
+
::<math>F(a b) = \sum_{d \mid a b} f (d)</math>
  
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{4 / 5}</math>
+
:::<math>\;\;\;\;\: = \sum_{d \in S_{a b}} f (d)</math>
  
Korzystając z&nbsp;twierdzenia A9 możemy napisać ciąg nierówności
+
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2)</math>
  
::<math>4^n > P (n) = p_1 p_2 \cdot \ldots \cdot p_{\pi (n)} > \pi (n)^{\pi (n)} > (n^{4 / 5})^{\pi (n)} = n^{4 \pi (n) / 5}</math>
+
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2)</math>
  
skąd otrzymujemy, że dla <math>n \geqslant 7572438</math> prawdziwe jest oszacowanie
+
:::<math>\;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2)</math>
  
::<math>\pi (n) < 1.733 \cdot \frac{n}{\log n}</math>
+
:::<math>\;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2)</math>
  
W GP/PARI sprawdzamy, że otrzymana nierówność jest prawdziwa dla <math>n \geqslant 2</math>
+
:::<math>\;\;\;\;\: = F (a) F (b)</math>
  
<span style="font-size: 90%; color:black;">'''for'''(n = 2, 8*10^6, '''if'''( '''primepi'''(n) >= 1.733 * n/'''log'''(n), '''print'''(n) ))</span>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 825: Linia 825:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga A33</span><br/>
 
Dowód twierdzenia A31 wymagał wykorzystania polecenia PARI/GP, w&nbsp;którym wielokrotnie była wywoływana funkcja <code>prime(n)</code>. Analogiczna sytuacja miała miejsce w&nbsp;przypadku twierdzenia&nbsp;A32 – tam musieliśmy wielokrotnie wywoływać funkcję <code>primepi(n)</code>. Znacznie lepiej w&nbsp;takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w&nbsp;sposób ciągły w&nbsp;całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy <code>Test1(n)</code> i <code>Test2(n)</code> wywołane z&nbsp;parametrami <code>n = 520000</code> i&nbsp;odpowiednio <code>n = 8*10^6</code> odpowiadają poleceniom
 
  
<span style="font-size: 90%; color:black;">'''for'''(s = 1, 520000, '''if'''( '''prime'''(s) >= s^(5/4), '''print'''(s) ))</span>
 
  
<span style="font-size: 90%; color:black;">'''for'''(n = 2, 8 * 10^6, '''if'''( '''primepi'''(n) >= 1.733 * n / '''log'''(n), '''print'''(n) ))</span>
+
== Funkcja Eulera <math>\varphi (n)</math> ==
  
ale wykonywane są znacznie szybciej.
+
<span id="H31" style="font-size: 110%; font-weight: bold;">Definicja H31</span><br/>
 +
Funkcja Eulera <math>\varphi (n)</math><ref name="Euler1"/> jest równa ilości liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math>.
  
<span style="font-size: 90%; color:black;">Test1(n) =
 
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
 
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
 
{
 
'''local'''(p, k);
 
k = 1;
 
p = 2;
 
'''while'''( k <= n,
 
        '''if'''( p >= k^(5/4), '''print'''(k) );
 
        k = k + 1;
 
        p = '''nextprime'''(p + 1);  \\ liczba p ma wartość prime(k)
 
      );
 
}</span>
 
  
<span style="font-size: 90%; color:black;">Test2(n) =
 
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n
 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
 
{
 
'''local'''(s, k);
 
s = 1;
 
k = 2;
 
'''while'''( k <= n,
 
        '''if'''( s >= 1.733 * k / '''log'''(k), '''print'''(k) );
 
        k = k + 1;
 
        s = s + '''isprime'''(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
 
      );
 
}</span>
 
  
 +
<span id="H32" style="font-size: 110%; font-weight: bold;">Twierdzenie H32</span><br/>
 +
Funkcja Eulera <math>\varphi (n)</math> jest multiplikatywna, czyli dla względnie pierwszych liczb <math>m, n</math> jest <math>\varphi (m n) = \varphi (m) \varphi (n)</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>m, n</math> będą dodatnimi liczbami całkowitymi takimi, że <math>\gcd (m, n) = 1</math>. Twierdzenie jest prawdziwe dla <math>n = 1</math>, zatem nie zmniejszając ogólności, możemy założyć, że <math>n > 1</math>. Wypiszmy w&nbsp;tabeli wszystkie liczby od <math>1</math> do <math>m n</math>.
  
<span style="font-size: 110%; font-weight: bold;">Uwaga A34</span><br/>
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji <math>\pi (n)</math> lub <math>p_n</math>. Już osiągnięcie tą drogą oszacowania <math>p_n < 1.6 \cdot n \log n</math> przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność
+
|-
 +
| <math>1</math> || <math>2</math> || <math>…</math> || <math>k</math> || <math>…</math> || <math>m</math>
 +
|-
 +
| <math>m + 1</math> || <math>m + 2</math> || <math>…</math> || <math>m + k</math> || <math>…</math> || <math>2 m</math>
 +
|-
 +
| <math>2 m + 1</math> || <math>2 m + 2</math> || <math>…</math> || <math>2 m + k</math> || <math></math> || <math>3 m</math>
 +
|-
 +
| <math>…</math> || <math>…</math> || <math>…</math> || <math>…</math> || <math></math> || <math></math>
 +
|-
 +
| <math>(n - 1) m + 1</math> || <math>(n - 1) m + 2</math> || <math></math> || <math>(n - 1) m + k</math> || <math>…</math> || <math>n m</math>
 +
|}
  
::<math>\frac{2}{3} \cdot \frac{x}{\log x} > x^{15 / 16}</math>
+
'''1.''' Natychmiast widzimy, że w&nbsp;pierwszym wierszu mamy <math>\varphi (m)</math> liczb względnie pierwszych z <math>m</math>. Tak samo jest w&nbsp;każdym kolejnym wierszu, bo (zobacz [[#H5|H5]])
  
jest prawdziwa dla <math>x > 7.671 \cdot 10^{32}</math>.
+
::<math>\gcd (r m + k, m) = \gcd (k, m)</math>
  
 +
Zatem mamy dokładnie <math>\varphi (m)</math> kolumn liczb względnie pierwszych z <math>m</math>.
  
  
 +
'''2.''' Załóżmy, że liczba <math>k</math> jest jedną z&nbsp;liczb względnie pierwszych z <math>m</math>, czyli <math>\gcd (k, m) = 1</math>. Przy tym założeniu <math>k</math>-ta kolumna (pokazana w&nbsp;tabeli) jest kolumną liczb względnie pierwszych z <math>m</math>.
  
  
== Zastosowania ==
+
'''3.''' Zauważmy, że reszty z&nbsp;dzielenia liczb wypisanych w <math>k</math>-tej kolumnie przez <math>n</math> są wszystkie różne. Gdyby tak nie było, to dla pewnych <math>i, j</math>, gdzie <math>0 \leqslant i, j \leqslant n - 1</math>, różnica liczb <math>i m + k</math> oraz <math>j m + k</math> byłaby podzielna przez <math>n</math>. Mielibyśmy
  
Ciekawy rezultat wynika z twierdzenia&nbsp;A7, ale wcześniej musimy udowodnić twierdzenie o&nbsp;średniej arytmetycznej i&nbsp;geometrycznej.
+
::<math>n \mid ((i m + k) - (j m + k))</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A35</span><br/>
+
Skąd wynika natychmiast
Dla dowolnych liczb dodatnich <math>a_1, a_2, \ldots, a_n</math> średnia arytmetyczna jest nie mniejsza od średniej geometrycznej
 
  
::<math>\frac{a_1 + a_2 + \ldots + a_n}{n} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n}</math>
+
::<math>n \mid (i - j) m</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ założyliśmy, że <math>\gcd (n, m) = 1</math>, to musi być <math>n \mid (i - j)</math> (zobacz C74), ale
Twierdzenie jest w sposób oczywisty prawdziwe dla <math>n = 1</math>. Równie łatwo stwierdzamy prawdziwość nierówności dla <math>n = 2</math>
 
  
::<math>(a_1 - a_2)^2 \geqslant 0</math>
+
::<math>0 \leqslant | i - j | \leqslant n - 1</math>
  
::<math>a^2_1 - 2 a_1 a_2 + a^2_2 \geqslant 0</math>
+
Czyli <math>n</math> może dzielić <math>i - j</math> tylko w&nbsp;przypadku, gdy <math>i = j</math>. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez <math>n</math>.
  
::<math>a^2_1 + 2 a_1 a_2 + a^2_2 \geqslant 4 a_1 a_2</math>
 
  
::<math>(a_1 + a_2)^2 \geqslant 4 a_1 a_2</math>
+
'''4.''' Ponieważ w <math>k</math>-tej kolumnie znajduje się dokładnie <math>n</math> liczb i&nbsp;reszty z&nbsp;dzielenia tych liczb przez <math>n</math> są wszystkie różne, to reszty te tworzą zbiór <math>S = \{ 0, 1, \ldots, n - 1 \}</math>. Wynika stąd, że liczby wypisane w <math>k</math>-tej kolumnie mogą być zapisane w&nbsp;postaci
  
::<math>\frac{a_1 + a_2}{2} \geqslant \sqrt{a_1 a_2}</math>
+
::<math>a_r = b_r \cdot n + r</math>
  
Dla potrzeb dowodu zapiszemy dowodzoną nierówność w postaci
+
gdzie <math>r = 0, 1, \ldots, n - 1</math> i <math>b_r \in \mathbb{Z}</math>.
  
::<math>\left( \frac{a_1 + a_2 + \ldots + a_n}{n} \right)^n \geqslant a_1 a_2 \cdot \ldots \cdot a_n</math>
+
Zauważmy, że następujące ilości liczb są sobie równe
  
Zakładając, że twierdzenie jest prawdziwe dla wszystkich liczb całkowitych dodatnich nie większych od <math>n</math> dla <math>n + 1</math> mamy
+
:*&nbsp;&nbsp;&nbsp;ilość liczb w <math>k</math>-tej kolumnie względnie pierwszych z <math>n</math>
  
a) w przypadku gdy <math>n + 1 = 2 k</math> jest liczbą parzystą
+
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 0, \ldots, n - 1</math>, bo <math>\gcd (b_r \cdot n + r, n) = \gcd (r, n)</math>
  
::<math>\left( \frac{a_1 + a_2 + \ldots + a_{n + 1}}{n + 1} \right)^{n + 1} = \left( \frac{a_1 + a_2 + \ldots + a_{2 k}}{2 k} \right)^{2 k} =</math>
+
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 1, \ldots, n</math>, bo <math>\gcd (n, n) = \gcd (0, n) = | n | > 1</math>
  
::::::::::<math>\quad = \left[ \left( \frac{\frac{a_1 + a_2}{2} + \frac{a_3 + a_4}{2} + \ldots + \frac{a_{2 k - 1} + a_{2 k}}{2}}{k} \right)^k \right]^2 \geqslant</math>
+
Ostatnia ilość liczb jest równa <math>\varphi (n)</math>, co wynika wprost z&nbsp;definicji funkcji <math>\varphi (n)</math>.
  
::::::::::<math>\quad \geqslant \left( \frac{a_1 + a_2}{2} \cdot \frac{a_3 + a_4}{2} \cdot \ldots \cdot \frac{a_{2 k - 1} + a_{2 k}}{2} \right)^2 \geqslant</math>
 
  
::::::::::<math>\quad \geqslant \left( \sqrt{a_1 a_2} \cdot \sqrt{a_3 a_4} \cdot \ldots \cdot \sqrt{a_{2 k - 1} a_{2 k}} \right)^2 =</math>
+
'''5.''' Zbierając: mamy w&nbsp;wypisanej tabeli dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jednocześnie jest
  
::::::::::<math>\quad = a_1 a_2 \cdot \ldots \cdot a_{2 k} =</math>
+
::<math>\gcd (u, m) = 1 \quad  \text{i} \quad \gcd (u, n) = 1</math>
  
::::::::::<math>\quad = a_1 a_2 \cdot \ldots \cdot a_{n + 1}</math>
+
Z twierdzenia [[#H6|H6]] wynika, że w&nbsp;tabeli jest dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jest
  
Gdzie skorzystaliśmy z założenia indukcyjnego i&nbsp;prawdziwości dowodzonego twierdzenia dla <math>n = 2</math>.
+
::<math>\gcd (u, m n) = 1</math>
  
b) w przypadku gdy <math>n + 1 = 2 k - 1</math> jest liczbą nieparzystą, możemy skorzystać z&nbsp;udowodnionego wyżej punktu a) dla '''parzystej''' ilości liczb
+
Zatem <math>\varphi (m n) = \varphi (m) \varphi (n)</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>a_1, a_2, \ldots, a_{2 k - 1}, S</math>
 
  
gdzie przez <math>S</math> oznaczyliśmy średnią arytmetyczną liczb <math>a_1, a_2, \ldots, a_{2 k - 1}</math>
 
  
::<math>S = \frac{a_1 + a_2 + \ldots + a_{2 k - 1}}{2 k - 1}</math>
+
<span id="H33" style="font-size: 110%; font-weight: bold;">Twierdzenie H33</span><br/>
 +
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
  
Na mocy punktu a) prawdziwa jest nierówność
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
::<math>\left( \frac{a_1 + a_2 + \ldots + a_{2 k - 1} + S}{2 k} \right)^{2 k} = \left( \frac{(2 k - 1) S + S}{2 k} \right)^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>
+
gdzie iloczyn obliczamy po wszystkich liczbach pierwszych <math>p</math>, będących dzielnikami liczby <math>n</math>.
  
Skąd otrzymujemy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej <math>p</math> są jednocześnie pierwsze względem <math>p</math>, to <math>\varphi (p) = p - 1</math>.
  
::<math>S^{2 k} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1} \cdot S</math>
+
Równie łatwo znajdujemy wartość funkcji <math>\varphi (n)</math> w&nbsp;przypadku gdy <math>n</math> jest potęgą liczby pierwszej <math>n = p^k</math>. Wystarczy zauważyć, że w&nbsp;ciągu kolejnych liczb
  
::<math>S^{2 k - 1} \geqslant a_1 a_2 \cdot \ldots \cdot a_{2 k - 1}</math>
+
::<math>1, 2, 3, 4, \ldots, p^k - 1, p^k</math>
  
Co należało pokazać.<br/>
+
jedynymi liczbami, które nie są pierwsze względem <math>p^k</math>, są te, które dzielą się przez <math>p</math> i&nbsp;jest ich <math>p^{k - 1}</math>, co widać natychmiast po ich bezpośrednim wypisaniu
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p</math>
  
 +
Zatem
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A36</span><br/>
+
::<math>\varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right)</math>
Dla <math>n \geqslant 1</math> prawdziwa jest nierówność <math>p_1 + p_2 + \ldots + p_n > n^2</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to dla <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> otrzymujemy
Korzystając z&nbsp;twierdzeń A7 i A35 możemy napisać następujący ciąg nierówności dla <math>n</math> kolejnych liczb pierwszych
 
  
::<math>\frac{p_1 + p_2 + \ldots + p_n}{n} \geqslant \sqrt[n]{p_1 \cdot p_2 \cdot \ldots \cdot p_n} > \sqrt[n]{n^n} = n</math>
+
::<math>\varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k)</math>
  
Stąd otrzymujemy natychmiast tezę twierdzenia, którą sprawdzamy dla <math>n < 13</math>. Do sprawdzenia można wykorzystać proste polecenie w PARI/GP
+
:::<math>\;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
::for(n=1, 20, s=0; for(k=1, n, s=s+prime(k)); if( s <= n^2, print(n) ))<br/>
+
:::<math>\;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right]</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
:::<math>\;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
 +
:::<math>\;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji <math>\pi (n)</math> i <math>p_n</math>, które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego <math>\varepsilon > 0</math> istnieje takie <math>n_0</math>, że dla każdego <math>n > n_0</math> prawdziwa jest nierówność <math>\log x < x^{\varepsilon}</math>. Inaczej mówiąc, funkcja <math>\log x</math> rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.
+
Co należało pokazać.<br/>
 
+
&#9633;
 +
{{\Spoiler}}
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A37</span><br/>
 
Prawdziwe są następujące nierówności:
 
  
::1.&nbsp;&nbsp;&nbsp; <math>e^x > x \qquad \qquad \qquad \quad \:\,</math> dla każdego <math>x \in \mathbb{R}</math>
 
  
::2.&nbsp;&nbsp;&nbsp; <math>\log x < n \cdot x^{1 / n} \qquad \quad \;\;\:</math> dla każdego <math>x \in \mathbb{R}_+</math> i dowolnego <math>n \in \mathbb{Z}_+</math>
+
<span id="H34" style="font-size: 110%; font-weight: bold;">Twierdzenie H34</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli <math>q</math> jest liczbą pierwszą, to
  
::3.&nbsp;&nbsp;&nbsp; <math>\log x \leqslant n (x^{1 / n} - 1) \qquad</math> dla każdego <math>x \in \mathbb{R}_+</math> i dowolnego <math>n \in \mathbb{Z}_+</math>
+
::<math>\varphi (q n) = \left\{ \begin{array}{rl}
 +
  (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n \\
 +
  q \varphi (n) & \quad \text{gdy} \quad q \mid n \\
 +
\end{array} \right.</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Jeżeli <math>q \nmid m</math>, to <math>\gcd (q, m) = 1</math>, zatem <math>\varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m)</math>. Jeżeli <math>q \mid m</math>, to liczby <math>m</math> oraz <math>q m</math> mają taki sam zbiór dzielników pierwszych, zatem
  
'''Punkt 1.'''
+
::<math>\varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m)</math>
  
Można powiedzieć, że dowód pierwszej nierówności jest oczywisty, bo każdy z&nbsp;nas ma przed oczami wykres funkcji <math>e^x</math> i <math>x</math>:
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
[[File: A_Czebyszew-wykres-2.png|center]]
 
  
Komu taki dowód obrazkowy nie wystarcza, może posłużyć się rozwinięciem funkcji <math>e^x</math> w szereg nieskończony
 
  
::<math>e^x = \underset{k = 0}{\overset{\infty}{\sum}} \frac{x^k}{k!} = 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \ldots</math>
+
<span id="H35" style="font-size: 110%; font-weight: bold;">Zadanie H35</span><br/>
 +
Niech <math>q \in \mathbb{P}</math> i <math>a, b, m, n \in \mathbb{Z}_+</math>. Pokazać, że
  
zbieżny dla dowolnego <math>x \in \mathbb{R}</math>. Teraz wystarczy zauważyć, że:
+
:*&nbsp;&nbsp;&nbsp;<math>\varphi (q^{a + b}) = q^a \varphi (q^b)</math>
  
::* dla <math>x > 0</math> prawdziwe jest oszacowanie: <math>e^x > 1 + x > x</math>
+
:*&nbsp;&nbsp;&nbsp;<math>\varphi (n^m) = n^{m - 1} \varphi (n)</math>
::* w punkcie <math>x = 0</math> mamy <math>e^x = 1</math> i <math>x = 0</math>
 
::* dla <math>x < 0</math> funkcja <math>e^x</math> jest dodatnia, a funkcja <math>x</math> ujemna
 
  
'''Punkt 2.'''
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''Punkt 1.'''
  
W drugiej nierówności połóżmy zmienną pomocniczą <math>x = e^y</math>, gdzie <math>y \in \mathbb{R}</math>. Otrzymujemy
+
::<math>\varphi (q^{a + b}) = (q - 1) q^{a + b - 1} = q^a \cdot (q - 1) q^{b - 1} = q^a \varphi (q^b)</math>
  
::<math>y < n \cdot (e^y)^{1 / n}</math>
+
'''Punkt 2.'''
  
czyli
+
Niech <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>
  
::<math>\frac{y}{n} < e^{y / n}</math>
+
::<math>\varphi (n^m) = \varphi (p^{m \alpha_1}_1 \cdot \ldots \cdot p^{m \alpha_s}_s)</math>
  
Kładąc <math>z = \frac{y}{n}</math>, gdzie <math>z \in \mathbb{R}</math>, mamy <math>z < e^z</math>. Otrzymana nierówność jest prawdziwa dla każdego <math>z \in \mathbb{R}</math> na mocy punktu&nbsp;1 tego twierdzenia.
+
::::<math>\, = \varphi (p^{m \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{m \alpha_s}_s)</math>
  
'''Punkt 3.'''
+
::::<math>\, = \varphi (p^{(m - 1) \alpha_1 + \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{(m - 1) \alpha_s + \alpha_s}_s)</math>
  
Rozważmy funkcję
+
::::<math>\, = p^{(m - 1) \alpha_1}_1 \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \varphi (p^{\alpha_s}_s)</math>
  
::<math>f(x) = n \cdot x^{1 / n} - \log x</math>
+
::::<math>\, = p^{(m - 1) \alpha_1}_1 \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \cdot \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s)</math>
  
Pochodna tej funkcji jest równa
+
::::<math>\, = n^{m - 1} \varphi (n)</math>
  
::<math>f' (x) = \frac{x^{1 / n} - 1}{x}</math>
+
Co należało pokazać.<br/>
 
 
Pochodna jest równa zero dla <math>x = 1</math>. Dla <math>0 < x < 1</math> pochodna jest ujemna, a dla <math>x > 1</math> jest dodatnia, zatem w punkcie <math>x = 1</math> funkcja <math>f(x)</math> ma minimum i <math>f(1) = n</math>. Wynika stąd oszacowanie
 
 
 
::<math>f(x) = n \cdot x^{1 / n} - \log x \geqslant n</math>
 
 
 
Skąd otrzymujemy
 
 
 
::<math>\log x \leqslant n (x^{1 / n} - 1)</math><br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1023: Linia 1002:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A38</span><br/>
+
<span id="H36" style="font-size: 110%; font-weight: bold;">Twierdzenie H36</span><br/>
Dla funkcji <math>p_n</math> i <math>\pi (n)</math> prawdziwe są następujące oszacowania:
+
Niech <math>m, n \in \mathbb{Z}_+</math>. Jeżeli <math>m \mid n</math>, to <math>\varphi (m) \mid \varphi (n)</math>.
  
::<math>10 n \underset{n \geqslant 6473}{<} p_n \underset{n \geqslant 2}{<} n^2</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>. Ponieważ założyliśmy, że <math>m \mid n</math>, to <math>m</math> musi być postaci <math>m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s</math>, gdzie <math>0 \leqslant \beta_i \leqslant \alpha_i</math>, dla <math>i = 1, \ldots, s</math>. Łatwo zauważamy, że
  
::<math>\sqrt{n} \underset{n \geqslant 5}{<} \pi (n) \underset{n \geqslant 64721}{<} \frac{n}{10}</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>\beta_i = 0</math>, to <math>\varphi (p^{\beta_i}_i) = 1</math> i&nbsp;dzieli <math>\varphi (p^{\alpha_i}_i)</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>1 \leqslant \beta_i \leqslant \alpha_i</math>, to <math>(p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1}</math>, zatem <math>\varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i)</math>
<span style="border-bottom-style: double;">Lewa górna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 1</math> jest <math>p_n > 0.72 \cdot n \log n</math>. Wystarczy rozwiązać nierówność:
 
  
::<math>0.72 \cdot \log n > 10</math>
+
Skąd natychmiast wynika, że <math>\varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s)</math> dzieli <math>\varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s)</math>, czyli <math>\varphi (m) \mid \varphi (n)</math>.
  
czyli <math>n > \exp \left( \frac{10}{0.72} \right) = 1076137.5</math>
+
Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo <math>\varphi (7) \mid \varphi (19)</math>, ale <math>7 \nmid 19</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
W PARI/GP wpisujemy polecenie:
 
  
::for(n=1, 11*10^5, if( prime(n) <= 10*n, print(n) ))
 
  
 +
<span id="H37" style="font-size: 110%; font-weight: bold;">Zadanie H37</span><br/>
 +
Dla <math>n \geqslant 3</math> wartości <math>\varphi (n)</math> są liczbami parzystymi.
  
<span style="border-bottom-style: double;">Prawa górna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 3</math> jest <math>p_n < 2 n \log n</math>. Zatem wystarczy pokazać, że <math>2 n \log n < n^2</math>. Korzystając z&nbsp;twierdzenia&nbsp;A37, łatwo zauważmy, że dla <math>n > 16</math> jest:
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Jeżeli liczba <math>n \geqslant 3</math> jest podzielna przez liczbę pierwszą nieparzystą <math>p</math>, zaś <math>k</math> jest wykładnikiem, z&nbsp;jakim <math>p</math> wchodzi do rozwinięcia <math>n</math> na czynniki pierwsze, to
  
::<math>n - 2 \log n > n - 2 \cdot 2 \cdot n^{1 / 2} = \sqrt{n} \left( \sqrt{n} - 4 \right) > 0</math>
+
::<math>\varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k  - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right)</math>
  
Przypadki <math>n \leqslant 16</math> sprawdzamy bezpośrednio.
+
zatem <math>\varphi (n)</math> jest liczbą parzystą, ponieważ <math>p - 1</math> jest liczbą parzystą.
  
 +
Jeżeli żadna liczba nieparzysta nie dzieli <math>n</math>, to liczba <math>n</math> jest postaci <math>n = 2^a</math> i <math>\varphi (n) = 2^{a - 1}</math>, ale z&nbsp;założenia <math>n \geqslant 3</math>, zatem <math>a \geqslant 2</math> i <math>\varphi (n)</math> jest liczbą parzystą.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span style="border-bottom-style: double;">Lewa dolna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 3</math> jest <math>\pi (n) > \frac{2}{3} \cdot \frac{n}{\log n}</math>. Zatem wystarczy pokazać, że <math>\frac{2}{3} \cdot \frac{n}{\log n} > \sqrt{n}</math>. Korzystając z twierdzenia&nbsp;A37, łatwo zauważmy, że dla <math>n > 6^4 = 1296</math> jest:
 
  
::<math>\frac{2}{3} \cdot \frac{n}{\log n} - \sqrt{n} > \frac{2}{3} \cdot \frac{n}{4 \cdot n^{1 / 4}} - \sqrt{n} = \frac{1}{6} \cdot n^{3 / 4} - \sqrt{n} = \frac{1}{6} \sqrt{n} (n^{1 / 4} - 6) > 0</math>
 
  
Sprawdzenie przypadków <math>n \leqslant 1296</math> sprowadza się do wpisania w PARI/GP polecenia:
+
<span id="H38" style="font-size: 110%; font-weight: bold;">Twierdzenie H38</span><br/>
 +
Jeżeli <math>n</math> jest liczbą złożoną, to <math>\varphi (n) \leqslant n - \sqrt{n}</math>.
  
::for(n=1, 2000, if( primepi(n) <= sqrt(n), print(n) ))
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
 +
Niech <math>n = a b</math>, gdzie <math>1 < a \leqslant b < n</math>. Liczby <math>1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a</math> są nie większe od <math>n</math> i&nbsp;nie są względnie pierwsze z <math>n</math>, zatem
  
 +
::<math>\varphi (n) \leqslant n - b</math>
  
<span style="border-bottom-style: double;">Prawa dolna nierówność.</span> Z twierdzenia&nbsp;A1 wiemy, że dla <math>n \geqslant 2</math> jest <math>\pi (n) < \frac{2 n}{\log n}</math>. Zatem wystarczy pokazać, że <math>\frac{2 n}{\log n} < \frac{n}{10}</math>. Nierówność ta jest prawdziwa dla <math>\log n > 20</math>, czyli dla
+
Ponieważ <math>b \geqslant a</math>, to <math>b^2 \geqslant a b = n</math> i <math>b \geqslant \sqrt{n}</math>. Wynika stąd, że
  
::<math>n > e^{20} > 485165195.4</math>
+
::<math>\varphi (n) \leqslant n - b \leqslant n - \sqrt{n}</math>
  
Sprawdzenie przypadków dla <math>n \leqslant 490 \cdot 10^6</math> będzie wymagało napisania w PARI/GP krótkiego programu i&nbsp;wywołania go z&nbsp;parametrem n&nbsp;=&nbsp;490*10^6
+
<br/><span style="border-bottom-style: double;">Drugi sposób</span><br/>
 +
Niech <math>q</math> oznacza najmniejszy dzielnik pierwszy liczby złożonej <math>n</math>, zatem <math>q^2 \leqslant n</math>, czyli <math>q \leqslant \sqrt{n}</math>, a&nbsp;stąd <math>{\small\frac{n}{q}} \geqslant \sqrt{n}</math> i
  
Test3(n)=
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n}</math>
\\test oszacowania: primepi(k) < k/10 dla 2 <= k <= n  
+
 
\\bez bezpośredniego odwoływania się do funkcji primepi(k)
+
Co należało pokazać.<br/>
{local(s, k);
 
s=1;
 
k=2;
 
while(k <= n,
 
      if( s >= k/10, print(k) );
 
      k = k + 1;
 
      s = s + isprime(k); \\ dla kolejnych k liczba s ma wartość primepi(k)
 
      )
 
}<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1081: Linia 1060:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A39</span><br/>
+
<span id="H39" style="font-size: 110%; font-weight: bold;">Twierdzenie H39</span><br/>
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie
+
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\varphi (n) > {\small\frac{\sqrt{n}}{2}}</math>.
 
 
::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3}</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając kolejno z twierdzeń A30, A37 i A7, łatwo otrzymujemy
+
Dla <math>k \geqslant 3</math> jest
  
::<math>(p_{n^2})^{n / 3} < (2 \cdot n^2 \cdot \log n^2)^{n / 3}</math>
+
::<math>\left( 1 - {\small\frac{1}{k}} \right)^2 > {\small\frac{1}{k}}</math>
  
::::<math>\;\; = (4 \cdot n^2 \cdot \log n)^{n / 3}</math>
+
Wynika stąd, że jeżeli <math>m \geqslant 3</math> jest liczbą nieparzystą, to
  
::::<math>\;\; < (8 \cdot n^{5 / 2})^{n / 3}</math>
+
::<math>\varphi (m)^2 = m^2 \prod_{p|m} \left( 1 - {\small\frac{1}{p}} \right)^2 > m^2 \prod_{p|m} {\small\frac{1}{p}} \geqslant m</math>
  
::::<math>\;\; = (2 \cdot n^{5 / 6})^n</math>
+
bo
  
::::<math>\;\; < n^n</math>
+
::<math>\prod_{p|m} p \leqslant m</math>
  
::::<math>\;\; < p_1 p_2 \cdot \ldots \cdot p_n</math>
+
Czyli dla nieparzystych liczb <math>m \geqslant 3</math> mamy
  
Zauważmy, że nierówność <math>2 \cdot n^{5 / 6} < n</math> jest prawdziwa dla <math>n > 2^6</math>. Sprawdzając bezpośrednio dla <math>n \leqslant 64</math> stwierdzamy, że dowodzona nierówność jest prawdziwa dla <math>n \geqslant 1</math>.<br/>
+
::<math>\varphi (m) > \sqrt{m} > {\small\frac{\sqrt{m}}{2}}</math>
&#9633;
 
{{\Spoiler}}
 
  
  
 +
Jeżeli <math>d = 2^a</math>, gdzie <math>a \geqslant 1</math>, to
  
<span style="font-size: 110%; font-weight: bold;">Zadanie A40</span><br/>
+
::<math>\varphi (d) = \varphi (2^a) = 2^{a - 1} > {\small\frac{\sqrt{2^a}}{2}} = {\small\frac{\sqrt{d}}{2}}</math>
Korzystając z twierdzenia A39 pokazać, że
 
  
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4</math>
 
:*&nbsp;&nbsp;&nbsp;<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{2 n})^3  \qquad \qquad \;\; \text{dla } \; n \geqslant 7</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
W przypadku ogólnym, gdy <math>n</math> jest iloczynem liczby nieparzystej <math>m \geqslant 3</math> i&nbsp;potęgi liczby <math>2</math>, dostajemy
  
'''Punkt 1.'''
+
::<math>\varphi (n) = \varphi (2^a m) = \varphi (2^a) \varphi (m) > {\small\frac{\sqrt{2^a}}{2}} \cdot \sqrt{m} = {\small\frac{\sqrt{2^a m}}{2}} = {\small\frac{\sqrt{n}}{2}}</math>
  
Ponieważ <math>n^2 > n + 1</math> dla <math>n \geqslant 2</math> oraz <math>{\small\frac{n}{3}} > 2</math> dla <math>n > 6</math>, to dla <math>n > 6</math> jest
+
Oczywiście nierówność <math>\varphi (n) > {\small\frac{\sqrt{n}}{2}}</math> jest również prawdziwa dla <math>n = 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{n + 1})^2</math>
 
  
Sprawdzając bezpośrednio dla <math>n \leqslant 6</math>, łatwo stwierdzamy prawdziwość oszacowania dla <math>n \geqslant 4</math>.
 
  
'''Punkt 2.'''
+
<span id="H40" style="font-size: 110%; font-weight: bold;">Zadanie H40</span><br/>
 +
Pokazać, że dla <math>n \geqslant 7</math> prawdziwe jest oszacowanie <math>\varphi (n) > \sqrt{n}</math>.
  
Ponieważ <math>n^2 > 2 n</math> dla <math>n > 2</math> oraz <math>{\small\frac{n}{3}} > 3</math> dla <math>n > 9</math>, to dla <math>n > 9</math> jest
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że
  
::<math>p_1 p_2 \cdot \ldots \cdot p_n > (p_{n^2})^{n / 3} > (p_{2 n})^3</math>
+
::<math>n - 1 > \sqrt{n} \qquad \qquad \;\, \text{dla} \; n \geqslant 3</math>
  
Sprawdzając bezpośrednio dla <math>n \leqslant 9</math>, łatwo stwierdzamy prawdziwość oszacowania dla <math>n \geqslant 7</math>.<br/>
+
::<math>n - 1 > \sqrt{2 n} \qquad \qquad \text{dla} \; n \geqslant 4</math>
&#9633;
 
{{\Spoiler}}
 
  
  
 +
Zatem dla liczby pierwszej <math>p</math> i <math>k \geqslant 1</math> jest
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A41</span><br/>
+
::<math>\varphi (p^k) = (p - 1) p^{k - 1} > \sqrt{p} \cdot p^{k - 1} = p^{k - \tfrac{1}{2}} \geqslant p^{\tfrac{k}{2}} = \sqrt{p^k} \qquad \qquad \qquad \qquad \quad \; \text{dla} \;\: p \geqslant 3</math>
Każda liczba pierwsza <math>p</math>, taka że <math>p \in \left( \frac{n}{2}, n \right]</math> występuje w&nbsp;rozwinięciu <math>n!</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\varphi (p^k) = (p - 1) p^{k - 1} > \sqrt{2 p} \cdot p^{k - 1} = \sqrt{2} \cdot p^{k - \tfrac{1}{2}} \geqslant \sqrt{2} \cdot p^{\tfrac{k}{2}} = \sqrt{2 p^k} \qquad \qquad \text{dla} \;\, p \geqslant 5</math>
Z twierdzenia A21 wiemy, że każda liczba pierwsza <math>p</math> występuje w&nbsp;iloczynie <math>n!</math> z&nbsp;wykładnikiem <math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor</math>
 
  
Z założenia <math>p \leqslant n</math> i <math>2 p > n</math>, zatem:
 
  
::1.&nbsp;&nbsp;&nbsp; <math>\frac{n}{p} \geqslant 1</math> &nbsp;&nbsp;oraz&nbsp;&nbsp; <math>\frac{n}{p} < 2</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor \frac{n}{p} \right\rfloor = 1</math>
+
'''1. Przypadek, gdy <math>\boldsymbol{n \geqslant 3}</math> jest liczbą nieparzystą'''
  
::2.&nbsp;&nbsp;&nbsp; <math>\frac{n}{p^2} < \frac{2}{p} \leqslant 1</math>, &nbsp;&nbsp;czyli&nbsp;&nbsp; <math>\left\lfloor \frac{n}{p^2} \right\rfloor = 0</math> &nbsp;&nbsp;i tym bardziej&nbsp;&nbsp; <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math> &nbsp;&nbsp;dla&nbsp;&nbsp; <math>k \geqslant 3</math><br/>
+
Liczba <math>n</math> jest iloczynem czynników pierwszych nieparzystych, zatem
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\varphi (n) = \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) > \sqrt{p^{\alpha_1}_1} \cdot \ldots \cdot \sqrt{p^{\alpha_s}_s} = \sqrt{n}</math>
  
  
Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza <math>p</math>, aby występowała w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden lub równym zero? Twierdzenia A42 i A44 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A43 i A45 to tylko twierdzenia A42 i A44 dla wybranych wartości liczby <math>k</math>. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A42 i A44, to może je pominąć.
+
'''2. Przypadek, gdy <math>\boldsymbol{n = 2^a m} \;</math> i <math>\; \boldsymbol{q \mid m ,} \;</math> gdzie <math>\; \boldsymbol{q \geqslant 5}</math>'''
  
 +
Z założenia <math>n = 2^a m = 2^a q^b r</math>, gdzie <math>r \geqslant 1</math> jest liczbą nieparzystą. Zauważmy, że <math>\varphi (r) \geqslant \sqrt{r}</math>, bo może być <math>r = 1</math>.
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A42</span><br/>
+
::<math>\varphi (n) = \varphi (2^a q^b r)</math>
Niech <math>k</math> będzie dowolną ustaloną liczbą naturalną. Jeżeli <math>n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right)</math> i&nbsp;liczba pierwsza <math>p \in \left(
 
\frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:::<math>\;\;\,\, = \varphi (2^a) \varphi (q^b) \varphi (r)</math>
'''Najpierw udowodnimy przypadek <math>k = 0</math>.'''
 
  
Zauważmy, że każda liczba pierwsza <math>p \in (n, 2 n]</math> występuje dokładnie jeden raz w&nbsp;liczniku ułamka
+
:::<math>\;\;\,\, > 2^{a - 1} \sqrt{2 q^b} \sqrt{r}</math>
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
:::<math>\;\;\,\, = 2^{a - \tfrac{1}{2}} \sqrt{q^b} \sqrt{r}</math>
  
i nie występuje w&nbsp;mianowniku. Zatem w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze wystąpi z&nbsp;wykładnikiem równym <math>1</math>.
+
:::<math>\;\;\,\, \geqslant 2^{\tfrac{a}{2}} \sqrt{q^b r}</math>
  
Co kończy dowód twierdzenia w przypadku, gdy <math>k = 0</math>.
+
:::<math>\;\;\,\, = \sqrt{2^a q^b r}</math>
  
'''Możemy teraz przejść do dowodu dla wszystkich <math>k \geqslant 1</math>.'''
+
:::<math>\;\;\,\, = \sqrt{n}</math>
  
  
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
+
'''3. Przypadek, gdy <math>\boldsymbol{n = 2^a m} \;</math> i <math>\; \boldsymbol{q \nmid m ,} \;</math> gdzie <math>\; \boldsymbol{q \geqslant 5}</math>'''
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka
 
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
Jeżeli żadna liczba pierwsza <math>q \geqslant 5</math> nie dzieli <math>m</math>, to możliwe są tylko dwie sytuacje: <math>n = 2^a \,</math> i <math>\, n = 2^a 3^b</math>.
  
Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
+
'''3a. Przypadek, gdy <math>\boldsymbol{n = 2^a}</math>'''
  
* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku
+
::<math>\varphi (n) = \varphi (2^a) = 2^{a - 1} > \sqrt{2^a} = \sqrt{n} \qquad \qquad \;\, \text{dla} \; a \geqslant 3</math>
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
 
* <math>(2 k + 1) p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k + 1</math> razy w&nbsp;liczniku
 
* <math>(2 k + 2) p > 2 n</math> — warunek ten (łącznie z warunkiem <math>(2 k + 1) p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k + 1</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, (2 k + 1) p</math>)
 
  
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left(\frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k + 1</math> razy w&nbsp;liczniku ułamka
+
Twierdzenie nie jest prawdziwe dla <math>n = 2 \,</math> i <math>\, n = 4 \,\,</math> (gdy <math>a = 1 \,</math> lub <math>\, a = 2</math>).
  
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
'''3b. Przypadek, gdy <math>\boldsymbol{n = 2^a 3^b}</math>'''
  
Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.
+
::<math>\varphi (n) = \varphi (2^a 3^b) = \varphi (2^a) \varphi (3^b) = 2^{a - 1} \cdot 2 \cdot 3^{b - 1} = 2^a 3^{b - 1} = \sqrt{2^a 3^b} \cdot {\small\frac{\sqrt{2^a 3^b}}{3}} > \sqrt{2^a 3^b}</math>
  
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k + 1</math>. Rozpatrywane przez nas wielokrotności liczby zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek
+
Ostatnia nierówność jest prawdziwa, o&nbsp;ile <math>\sqrt{2^a 3^b} > 3</math>, czyli gdy <math>2^a 3^b > 9</math>, co ma miejsce, gdy <math>a \geqslant 2</math> lub <math>b \geqslant 2</math>.
  
::<math>r_i \notin \left( \frac{n}{k + 1}, \frac{n}{k + \frac{1}{2}} \right]</math>
+
Twierdzenie nie jest prawdziwe dla <math>n = 6 \;</math> (gdy <math>a = 1 \,</math> i <math>\, b = 1</math>).
  
Warunek ten będzie z&nbsp;pewnością spełniony, gdy
 
  
::<math>q \leqslant 2 k + 1 \leqslant \frac{n}{k + 1}</math>
+
Zbierając uzyskane wyniki, otrzymujemy: oszacowanie <math>\varphi (n) > \sqrt{n}</math> nie jest prawdziwe dla <math>n = 1, 2, 4, 6</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
czyli dla <math>n</math> spełniających nierówność <math>n \geqslant (k + 1) (2 k + 1)</math>.
 
  
Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 (k + 1) (k + \tfrac{1}{2})</math>.
 
  
 +
<span id="H41" style="font-size: 110%; font-weight: bold;">Zadanie H41</span><br/>
 +
Pokazać, że dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\varphi (n) > {\small\frac{n}{3 \log n}}</math>. Korzystając z&nbsp;tego wyniku, pokazać, że <math>\varphi (n) > n^{2 / 3}</math> dla <math>n \geqslant 43</math> oraz że <math>\varphi (n) > n^{3 / 4}</math> dla <math>n \geqslant 211</math>.
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Rozważmy najpierw pierwszy składnik sumy
+
Niech <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, a <math>n' = q_1 \cdot \ldots \cdot q_s</math> oznacza liczbę, będącą iloczynem dokładnie '''tych samych''' czynników pierwszych, jakie występują w&nbsp;liczbie <math>n</math>, natomiast <math>n^{\!\ast} = p_1 \cdot \ldots \cdot p_s</math> oznacza liczbę, będącą iloczynem dokładnie '''tej samej ilości''' czynników pierwszych, przy czym <math>p_i</math> oznacza teraz <math>i</math>-tą liczbę pierwszą.
  
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right )</math>
+
Ponieważ
  
Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy
+
::<math>{\small\frac{\varphi (n)}{n}} = \prod_{p \mid n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
1)&nbsp;&nbsp;&nbsp; <math>p > \frac{n}{k + 1} \quad\ \implies \quad \frac{n}{p} < k + 1 \quad\ \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \leqslant k</math>
+
to
  
2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{n}{k + \tfrac{1}{2}} \quad\ \implies \quad \frac{2 n}{p} \geqslant 2 k + 1 \quad\ \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \geqslant 2 k + 1</math>
+
::<math>{\small\frac{\varphi (n)}{n}} = {\small\frac{\varphi (n')}{n'}} \geqslant {\small\frac{\varphi (n^{\!\ast})}{n^{\!\ast}}} = \prod^s_{i = 1} \left( 1 - {\small\frac{1}{p_i}} \right) \geqslant \prod^{p_s}_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{p_s}}</math>
  
Zatem
+
Ostatnia równość wynika z&nbsp;prostego wzoru
  
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \geqslant 2 k + 1 - 2 k = 1</math>
+
::<math>\prod^m_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{2}} \cdot {\small\frac{2}{3}} \cdot {\small\frac{3}{4}} \cdot \ldots \cdot {\small\frac{m - 2}{m - 1}} \cdot {\small\frac{m - 1}{m}} = {\small\frac{1}{m}}</math>
  
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 
  
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 1</math>
+
Musimy oszacować wartość liczby <math>p_s</math>. Z&nbsp;twierdzenia B31 wynika, że dla <math>m \geqslant 2</math> jest <math>P(m) \geqslant 2^{m / 2}</math>, gdzie funkcja <math>P(m)</math> jest równa iloczynowi wszystkich liczb pierwszych nie większych od <math>m</math>. Zatem dla <math>p_s \geqslant 2</math> jest
  
 +
::<math>n^{\!\ast} = p_1 \cdot \ldots \cdot p_s = P (p_s) \geqslant 2^{p_s / 2}</math>
  
Założenie, że <math>n \geqslant 2 (k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
+
Logarytmując, otrzymujemy
  
::<math>p > \frac{n}{k + 1} \quad \implies \quad \frac{2 n}{p} < 2 k + 2 \quad \implies</math>
+
::<math>p_s \leqslant {\small\frac{2 \log n^{\!\ast}}{\log 2}}</math>
  
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{(2 n)^s}{p^s} < (2 k + 2)^s \quad \implies</math>
+
Ponieważ <math>n \geqslant n' \geqslant n^{\!\ast}</math>, to
  
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 2)^2}{2 n} \cdot \left( \frac{2 k + 2}{2 n} \right)^{s - 2} \quad \implies</math>
+
::<math>{\small\frac{\varphi (n)}{n}} \geqslant {\small\frac{1}{p_s}} \geqslant {\small\frac{\log 2}{2 \log n^{\!\ast}}} \geqslant {\small\frac{\log 2}{2 \log n}} > {\small\frac{1}{3 \log n}}</math>
  
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 2)^2}{2 n} \quad \implies</math>
+
Ostatecznie otrzymujemy
  
::<math>\qquad \qquad \qquad \! \! \implies \quad \frac{2 n}{p^s} < 1 \quad \implies</math>
+
::<math>\varphi (n) > {\small\frac{n}{3 \log n}}</math>
  
::<math>\qquad \qquad \qquad \! \! \implies \quad \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>
+
Co należało pokazać.
  
Jeżeli <math>\left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^s} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 2 (k + 1)^2</math> jest
 
  
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) = 1</math>
+
Rozwiązując drugą część zadania, wystarczy znaleźć, dla jakich <math>n</math> prawdziwa jest nierówność
  
Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < 2 (k + 1)^2</math> twierdzenie pozostaje prawdziwe.
+
::<math>{\small\frac{n}{3 \log n}} > n^{2 / 3}</math>
  
Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 (k + 1) (k + \tfrac{1}{2})</math>
+
Przebieg funkcji <math>{\small\frac{n}{3 \log n}} \,</math> i <math>\, n^{2 / 3}</math> przedstawiliśmy na wykresie
<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::[[File: Euler1.png|1100px|none]]
  
 +
Punkt przecięcia tych funkcji znajdujemy, wpisując w&nbsp;PARI/GP polecenie
  
<span style="font-size: 110%; font-weight: bold;">Przykład A43</span><br/>
+
<span style="font-size: 90%; color:black;">'''solve'''(n = 10, 10^5, n/(3*'''log'''(n)) - n^(2/3))</span>
Jeżeli <math>n \geqslant 6</math> i liczba pierwsza <math>p \in \left( \frac{n}{2}, \frac{2 n}{3} \right]</math>, to <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Otrzymujemy
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
 
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w&nbsp;postaci ułamka
 
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
::<math>n = 29409.965</math>
  
Rozważmy dowolną liczbę pierwszą występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
+
Zatem <math>{\small\frac{n}{3 \log n}} > n^{2 / 3}</math> dla <math>n > 2.95 \cdot 10^4</math>.
  
* <math>p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej jeden raz w&nbsp;mianowniku
+
Poleceniem
* <math>2 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie jeden raz w&nbsp;mianowniku (jako <math>p</math>)
 
* <math>3 p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>2 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku
 
* <math>4 p > 2 n</math> — warunek ten (łącznie z warunkiem <math>3 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>2 p</math> i <math>3 p</math>)
 
  
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math> pojawia się dokładnie jeden raz w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka
+
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 3*10^4, '''if'''( '''eulerphi'''(n) <= n^(2/3), '''print'''(n) ))</span>
  
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
sprawdzamy, że oszacowanie <math>\varphi (n) > n^{2 / 3}</math> jest prawdziwe dla <math>n \geqslant 43</math>.
  
Zatem występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem jeden.
 
  
Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>p = 2, 3</math>. Dlatego zakładamy, że <math>n \geqslant 6</math>, bo dla <math>n \geqslant 6</math> liczby pierwsze <math>p = 2, 3</math> nie spełniają warunku <math>p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math>.
+
Postępując analogicznie jak wyżej, znajdujemy, dla jakich <math>n</math> prawdziwa jest nierówność
  
Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 5</math> i&nbsp;liczba <math>3^2</math> dzieli liczbę <math>\binom{10}{5} = 252 = 9 \cdot 28</math>
+
::<math>{\small\frac{n}{3 \log n}} > n^{3 / 4}</math>
  
 +
Wpisując w&nbsp;PARI/GP polecenie
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
+
<span style="font-size: 90%; color:black;">'''solve'''(n = 10, 10^7, n/(3*'''log'''(n)) - n^(3/4))</span>
Rozważmy najpierw pierwszy składnik sumy
 
  
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right )</math>
+
otrzymujemy
  
Ponieważ przypuszczamy, że składnik ten będzie równy <math>1</math>, to będziemy szukali oszacowania od dołu. Z&nbsp;założenia mamy
+
::<math>n = 4447862.680</math>
  
::1)&nbsp;&nbsp;&nbsp; <math>p > \frac{n}{2} \quad \implies \quad \frac{n}{p} < 2 \quad \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \leqslant 1</math>
+
Zatem <math>{\small\frac{n}{3 \log n}} > n^{3 / 4}</math> dla <math>n > 4.45 \cdot 10^6</math>
  
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{2 n}{3} \quad \implies \quad \frac{2 n}{p} \geqslant 3 \quad \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \geqslant 3</math>
+
Poleceniem
  
Zatem
+
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 5*10^6, '''if'''( '''eulerphi'''(n) <= n^(3/4), '''print'''(n) ))</span>
  
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \geqslant 3 - 2 = 1</math>
+
sprawdzamy, że oszacowanie <math>\varphi (n) > n^{3 / 4}</math> jest prawdziwe dla <math>n \geqslant 211</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
 
  
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 1</math>
 
  
 +
<span id="H42" style="font-size: 110%; font-weight: bold;">Twierdzenie H42</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math>. Liczba <math>n</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy <math>\varphi (n) = n - 1</math>.
  
Założenie, że <math>n \geqslant 9</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Dla liczb złożonych <math>n \geqslant 4</math> nigdy nie będzie <math>\varphi (n) = n - 1</math>, bo
  
::<math>p > \frac{n}{2} \quad \implies \quad \frac{(2 n)^k}{p^k} < 4^k \quad \implies \quad \frac{2 n}{p^k} < \frac{16}{2 n} \cdot \left( \frac{4}{2 n} \right)^{k - 2} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{16}{2 n} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{16}{18} \quad \implies \quad \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>
+
::<math>\varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2</math>
  
Jeżeli <math>\left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 9</math> jest
+
Dla <math>n = 1, 2, 3</math> sprawdzamy bezpośrednio: <math>\varphi (1) = 1 \neq 1 - 1</math>, <math>\varphi (2) = 1 = 2 - 1</math>, <math>\varphi (3) = 2 = 3 - 1</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = 1</math>
 
  
Dla <math>n = 6, 7</math> żadna liczba pierwsza nie należy do <math>\left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math>. Dla <math>n = 8</math> łatwo sprawdzamy, że liczba <math>5</math> wchodzi do rozkładu liczby <math>\binom{16}{8} = 12870</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.
 
  
Zatem dla <math>n \geqslant 6</math> liczba pierwsza <math>p \in \left( \tfrac{n}{2}, \tfrac{2 n}{3} \right]</math> wchodzi do rozkładu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze z&nbsp;wykładnikiem równym jeden.<br/>
+
<span id="H43" style="font-size: 110%; font-weight: bold;">Twierdzenie H43</span><br/>
&#9633;
+
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
{{\Spoiler}}
 
  
 +
::<math>n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right)</math>
  
 +
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>.
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie A44</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>k</math> będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza <math>p \in \left( \frac{n}{k + \tfrac{1}{2}}, \frac{n}{k} \right]</math>, to dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math> liczba <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
+
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to funkcja
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>F(n) = \sum_{d \mid n} \varphi (d)</math>
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
 
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka
 
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
też jest funkcją multiplikatywną (zobacz [[#H30|H30]]). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>n = 1</math>. Niech <math>n > 1</math>. Jeżeli <math>n =
 +
p^{\alpha}</math> jest potęgą liczby pierwszej, to otrzymujemy
  
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
+
::<math>F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d)</math>
  
* <math>k p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;mianowniku
+
::::<math>= \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) =</math>
* <math>(k + 1) p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;mianowniku (jako <math>p, 2 p, \ldots, k p</math>)
 
* <math>2 k p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>(k + 1) p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej <math>k</math> razy w&nbsp;liczniku
 
* <math>(2 k + 1) p > 2 n</math> — warunek ten (łącznie z warunkiem <math>2 k p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie <math>k</math> razy w&nbsp;liczniku (jako <math>(k + 1) p, (k + 2) p, \ldots, 2 k p</math>)
 
  
 +
::::<math>= 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) =</math>
  
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( \frac{n}{k + \frac{1}{2}}, \frac{n}{k} \right]</math> pojawia się dokładnie <math>k</math> razy w&nbsp;mianowniku i&nbsp;dokładnie <math>k</math> razy w&nbsp;liczniku ułamka
+
::::<math>= 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1})</math>
  
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
::::<math>= p^{\alpha}</math>
  
Co oznacza, że <math>p</math> nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze.
+
Jeżeli <math>n</math> jest postaci <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
  
Niech <math>q</math> będzie największą liczbą pierwszą nie większą od ustalonej liczby <math>2 k</math>. Rozpatrywane przez nas wielokrotności liczby <math>p</math> zwiększają wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>r_i \in \{ 2, 3, \ldots, q \}</math>. Dlatego twierdzenie nie może dotyczyć tych liczb i&nbsp;musimy nałożyć warunek
+
::<math>F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) =</math>
  
::<math>r_i \notin \left( \frac{n}{k + \frac{1}{2}}, \frac{n}{k} \right]</math>
+
:::<math>\;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) =</math>
  
Warunek ten będzie z&nbsp;pewnością spełniony, gdy
+
:::<math>\;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>
  
::<math>q \leqslant 2 k \leqslant \frac{n}{k + \frac{1}{2}}</math>
+
:::<math>\;\;\;\, = n</math>
  
czyli dla <math>n</math> spełniających nierówność <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>. Oczywiście nie wyklucza to możliwości, że istnieją liczby <math>n < 2 k (k + \tfrac{1}{2})</math>, dla których twierdzenie jest prawdziwe. Pozostaje (przy ustalonej wartości liczby <math>k</math>) bezpośrednio sprawdzić prawdziwość twierdzenia dla <math>n < 2 k (k + \tfrac{1}{2})</math>.
+
Niech <math>1 < d_1 < d_2 < \ldots < n</math> będą dzielnikami liczby <math>n</math>. Zauważmy, że kiedy <math>d</math> przebiega zbiór dzielników <math>\{ 1, d_1, d_2, \ldots, n \}</math>, to <math>e = {\small\frac{n}{d}}</math> przebiega wszystkie te liczby tylko w&nbsp;odwrotnej kolejności. Zatem
  
 +
::<math>\sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right)</math>
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
+
Co należało pokazać.<br/>
Rozważmy najpierw pierwszy składnik sumy
+
&#9633;
 +
{{\Spoiler}}
  
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right )</math>
 
  
Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy
 
  
1)&nbsp;&nbsp;&nbsp; <math>p > \frac{n}{k + \frac{1}{2}} \quad\ \implies \quad \frac{2 n}{p} < 2 k + 1 \quad\ \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \leqslant 2 k</math>
+
<span id="H44" style="font-size: 110%; font-weight: bold;">Zadanie H44</span><br/>
 +
Niech <math>n \geqslant 2</math>. Pokazać, że suma liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math> jest równa <math>{\small\frac{1}{2}} n \varphi (n)</math>.
  
2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{n}{k} \quad\ \implies \quad \frac{n}{p} \geqslant k \quad\ \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \geqslant k</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Łatwo sprawdzamy, że wzór jest prawdziwy dla <math>n = 2</math> i&nbsp;odtąd będziemy przyjmowali, że <math>n \geqslant 3</math>. Zatem wartości <math>\varphi (n)</math> są liczbami parzystymi i&nbsp;niech <math>c = {\small\frac{1}{2}} \varphi (n)</math>. Zauważmy, że jeżeli liczba <math>a</math> jest względnie pierwsza z <math>n</math>, to liczba <math>n - a</math> jest również względnie pierwsza z <math>n</math>, bo <math>\gcd (a, n) = \gcd (n - a, n)</math>. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od <math>n</math> i&nbsp;względnie pierwsze z <math>n</math> w&nbsp;kolejności rosnącej, a&nbsp;pod spodem w&nbsp;kolejności malejącej
  
Zatem
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \leqslant 2 k - 2 k = 0</math>
+
|-
 +
| <math>1</math> || <math>a_2</math> || <math>…</math> || <math>a_c</math> || <math>n - a_c</math> || <math>…</math> || <math>n - a_2</math> || <math>n - 1</math>
 +
|-
 +
| <math>n - 1</math> || <math>n - a_2</math> || <math>…</math> || <math>n - a_c</math> || <math>a_c</math> || <math>…</math> || <math>a_2</math> || <math>1</math>
 +
|}
  
Ponieważ każdy ze składników sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
+
Suma liczb w&nbsp;każdej kolumnie jest równa <math>n</math>. Ponieważ ilość liczb względnie pierwszych z <math>n</math> jest równa <math>\varphi (n)</math>, to podwojona suma liczb całkowitych nie większych od <math>n</math> i&nbsp;pierwszych względem <math>n</math> wynosi <math>n \varphi (n)</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 0</math>
 
  
  
Założenie, że <math>2 n \geqslant (2 k + 1)^2</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
+
<span id="H45" style="font-size: 110%; font-weight: bold;">Zadanie H45</span><br/>
 +
Pokazać, że dla liczb naturalnych nieparzystych <math>n \geqslant 5</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
  
::<math>p > \frac{2 n}{2 k + 1} \quad \implies \quad \frac{(2 n)^s}{p^s} < (2 k + 1)^s \quad \implies</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''1.''' Jeżeli <math>n \geqslant 5</math> jest liczbą pierwszą, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze mniejsze od <math>n</math> oraz liczby <math>1, 4</math>. Zatem
  
::<math>\qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 1)^2}{2 n} \cdot \left( \frac{2 k + 1}{2 n} \right)^{s - 2} \quad \implies</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 2 > \pi (n)</math>.
  
::<math>\qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} < \frac{(2 k + 1)^2}{2 n} \quad \implies</math>
+
'''2.''' Jeżeli <math>n = p^a</math>, gdzie <math>a \geqslant 2</math>, jest potęgą liczby pierwszej nieparzystej, to <math>n \geqslant 9</math> i&nbsp;liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>p</math>) oraz liczby <math>1, 4, 8</math>. Zatem
  
::<math>\qquad \qquad \qquad \; \implies \quad \frac{2 n}{p^s} < 1 \quad \implies</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>.
  
::<math>\qquad \qquad \qquad \; \implies \quad \left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>
+
'''3.''' Jeżeli <math>n</math> ma więcej niż jeden dzielnik pierwszy nieparzysty, to <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>s \geqslant 2</math>. Zauważmy, że
  
Jeżeli <math>\left\lfloor \frac{2 n}{p^s} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^s} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>2 n \geqslant (2 k + 1)^2</math> jest
+
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} > 2^{2 s - 1}</math>
  
::<math>\sum^{\infty}_{s = 1} \left ( \left \lfloor \frac{2 n}{p^{s}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{s}} \right \rfloor \right ) = 0</math>
+
Liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb <math>q_1, \ldots, q_s</math>) oraz liczby <math>1, 2^2, 2^3, \ldots, 2^{2 s - 1}</math>. Zatem
  
Pozostaje bezpośrednio sprawdzić, dla jakich wartości <math>n < \frac{1}{2} (2 k + 1)^2</math> twierdzenie pozostaje prawdziwe.
+
::<math>\varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 > \pi (n)</math>
  
Ponieważ analiza krotności pojawiania się liczby pierwszej <math>p</math> jest bardziej precyzyjna, to podajemy, że twierdzenie jest z&nbsp;pewnością prawdziwe dla <math>n \geqslant 2 k (k + \tfrac{1}{2})</math>.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1390: Linia 1356:
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład A45</span><br/>
+
<span id="H46" style="font-size: 110%; font-weight: bold;">Zadanie H46</span><br/>
Jeżeli <math>n \geqslant 8</math> i&nbsp;liczba pierwsza <math>p \in \left( \frac{2 n}{5}, \frac{n}{2} \right]</math>, to <math>p</math> nie występuje w&nbsp;rozwinięciu liczby <math>\binom{2 n}{n}</math> na czynniki pierwsze.
+
Pokazać, że dla liczb naturalnych <math>n \geqslant 91</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
<span style="border-bottom-style: double;">Dowód na podstawie analizy krotności pojawiania się liczby <math>p</math></span><br/><br/>
+
Ponieważ <math>p_{2 s} > 1</math> i <math>p_{2 s} \geqslant p_{s + 1}</math>, to z&nbsp;zadania A40 natychmiast wynika nierówność
Zapiszmy współczynnik dwumianowy <math>\binom{2 n}{n}</math> w postaci ułamka
 
  
::<math>\binom{2 n}{n} = \frac{(2 n) !}{(n!)^2} = \frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
::<math>p_1 p_2 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s}</math>
  
Rozważmy dowolną liczbę pierwszą <math>p</math> występującą w&nbsp;mianowniku wypisanego wyżej ułamka. Potrzebujemy, aby <math>p</math> spełniała następujące warunki:
+
która jest prawdziwa dla <math>n \geqslant 4</math>.
  
* <math>2 p \leqslant n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;mianowniku
+
Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność <math>\varphi (n) > \pi (n)</math> jest zawsze prawdziwa.
* <math>3 p > n</math> — warunek ten zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;mianowniku (jako <math>p</math> i <math>2 p</math>)
 
* <math>4 p \leqslant 2 n</math> — warunek ten (łącznie z warunkiem <math>3 p > n</math>) zapewnia nam, że liczba <math>p</math> pojawi się co najmniej dwa razy w&nbsp;liczniku
 
* <math>5 p > 2 n</math> — warunek ten (łącznie z warunkiem <math>4 p \leqslant 2 n</math>) zapewnia nam, że liczba <math>p</math> pojawi się dokładnie dwa razy w&nbsp;liczniku (jako <math>3 p</math> i <math>4 p</math>)
 
  
Łącząc otrzymane warunki, otrzymujemy, że liczba pierwsza <math>p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math> pojawia się dokładnie dwa razy w&nbsp;mianowniku i&nbsp;dokładnie dwa razy w&nbsp;liczniku ułamka
+
Przez <math>p_1, p_2, \ldots, p_k, \ldots</math> oznaczymy kolejne liczby pierwsze. Niech <math>n \geqslant 2</math> będzie liczbą naturalną i <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>q_i</math> oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.
  
::<math>\frac{(n + 1) \cdot (n + 2) \cdot \ldots \cdot (2 n - 1) \cdot 2 n}{1 \cdot 2 \cdot \ldots \cdot (n - 1) \cdot n}</math>
+
Wśród kolejnych <math>2 s</math> liczb pierwszych znajduje się przynajmniej <math>s</math> liczb pierwszych '''różnych''' od każdej z&nbsp;liczb <math>q_1, \ldots, q_s</math>. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez <math>r_1, \ldots, r_s</math>, to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania
  
Zatem nie występuje w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 n}{n}</math> na czynniki pierwsze.
+
:*&nbsp;&nbsp;&nbsp;dla najmniejszej liczby <math>r_1 \leqslant p_{s + 1}</math>
  
Wielokrotności liczby <math>p</math> podnoszą wykładniki, z&nbsp;jakimi występują liczby pierwsze <math>2</math> i <math>3</math>. Dlatego zakładamy, że <math>n \geqslant 8</math>, bo dla <math>n \geqslant 8</math> liczby pierwsze <math>2, 3</math> nie spełniają warunku <math>p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math>.
+
:*&nbsp;&nbsp;&nbsp;dla wszystkich liczb <math>r_j \leqslant p_{2 s}</math> dla <math>j = 1, \ldots, s</math>.
  
Bezpośrednio sprawdzamy, że twierdzenie nie jest prawdziwe dla <math>n = 7</math> i&nbsp;liczba <math>3</math> dzieli liczbę <math>\binom{14}{7} = 3432</math>
+
Korzystając z&nbsp;wypisanej na początku dowodu nierówności, dla <math>s \geqslant 4</math> mamy
  
 +
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j</math>
  
<span style="border-bottom-style: double;">Dowód na podstawie twierdzenia A24</span><br/><br/>
+
gdzie <math>j = 1, \ldots, s</math>.
Rozważmy najpierw pierwszy składnik sumy
 
  
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right )</math>
+
Wynika stąd, że jeśli <math>s \geqslant 4</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>q_1, \ldots, q_s</math>) oraz liczby <math>1</math> i <math>r_1 r_j</math>, gdzie <math>j = 1, \ldots, s</math>. Zatem
  
Ponieważ przypuszczamy, że składnik ten będzie równy <math>0</math>, to będziemy szukali oszacowania od góry. Z&nbsp;założenia mamy
+
::<math>\varphi (n) \geqslant \pi (n) - s + s + 1> \pi (n)</math>
  
::1)&nbsp;&nbsp;&nbsp; <math>p > \frac{2 n}{5} \quad \implies \quad \frac{2 n}{p} < 5 \quad \implies \quad \left\lfloor \frac{2 n}{p} \right\rfloor \leqslant 4</math>
+
Co mieliśmy pokazać.
  
::2)&nbsp;&nbsp;&nbsp; <math>p \leqslant \frac{n}{2} \quad \implies \quad \frac{n}{p} \geqslant 2 \quad \implies \quad \left\lfloor \frac{n}{p} \right\rfloor \geqslant 2</math>
 
  
Zatem
+
Uwzględniając rezultat pokazany w&nbsp;zadaniu [[#H45|H45]], pozostaje sprawdzić przypadki gdy <math>n = 2^a</math>, <math>n = 2^a p^b</math>, <math>n = 2^a p^b q^c</math>, gdzie <math>a, b, c \in \mathbb{Z}_+</math>.
  
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor \leqslant 4 - 4 = 0</math>
+
'''1.''' Niech <math>n = 2^a</math>. Jeśli <math>n \geqslant 16</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>2</math>) oraz liczby <math>1, 9, 15</math>. Zatem
  
Ponieważ każdy ze składników szukanej sumy może być równy tylko <math>0</math> lub <math>1</math>, to otrzymujemy
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>
  
::<math>\left\lfloor \frac{2 n}{p} \right\rfloor - 2 \left\lfloor \frac{n}{p} \right\rfloor = 0</math>
+
'''2.''' Niech <math>n = 2^a p^b</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math>. Oczywiście <math>r \in \{ 3, 5 \}</math> i&nbsp;jeśli tylko <math>n > 5^3 = 125</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math> i <math>p</math>) oraz liczby <math>1, r^2, r^3</math>. Zatem
  
 +
::<math>\varphi (n) \geqslant \pi (n) - 2 + 3 > \pi (n)</math>
  
Założenie, że <math>n \geqslant 13</math> pozwoli uprościć obliczenia dla drugiego i&nbsp;następnych składników sumy
+
'''3.''' Niech <math>n = 2^a p^b q^c</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math> oraz różną od <math>q</math>. Oczywiście <math>r \in \{ 3, 5, 7 \}</math> i&nbsp;jeśli <math>n > 7^4 = 2401</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math>, <math>p</math> i <math>q</math>) oraz liczby <math>1, r^2, r^3, r^4</math>. Zatem
  
::<math>p > \frac{2 n}{5} \quad \implies \quad \frac{(2 n)^k}{p^k} < 5^k \quad \implies \quad \frac{2 n}{p^k} < \frac{25}{2 n} \cdot \left( \frac{5}{2 n} \right)^{k - 2} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{25}{2 n} \quad \implies \quad \frac{2 n}{p^k} \leqslant \frac{25}{26} \quad \implies \quad \left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 3 + 4 > \pi (n)</math>
  
Jeżeli <math>\left\lfloor \frac{2 n}{p^k} \right\rfloor = 0</math>, to również musi być <math>\left\lfloor \frac{n}{p^k} \right\rfloor = 0</math>. Pokazaliśmy, że dla <math>n \geqslant 13</math> jest
+
Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy <math>n</math> jest liczbą parzystą i <math>n \leqslant 2401</math>. W&nbsp;GP/PARI wystarczy napisać polecenie
  
::<math>\sum^{\infty}_{k = 1} \left ( \left \lfloor \frac{2 n}{p^{k}} \right \rfloor - 2 \left \lfloor \frac{n}{p^{k}} \right \rfloor \right ) = 0</math>
+
<span style="font-size: 90%; color:black;">for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))</span>
  
Dla <math>n = 8, 9</math> żadna liczba pierwsza nie należy do <math>\left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math>.
+
Nierówność <math>\varphi (n) > \pi (n)</math> nie jest prawdziwa dla <math>n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \}</math>. Co kończy dowód.<br/>
 
 
Dla <math>n = 10, 11, 12</math> łatwo sprawdzamy, że liczba <math>5</math> nie dzieli liczb <math>\binom{20}{10} = 184756</math>, <math>\binom{22}{11} = 705432</math> oraz <math>\binom{24}{12} = 2704156</math>.
 
 
 
Zatem dla <math>n \geqslant 8</math> liczba pierwsza <math>p \in \left( \tfrac{2 n}{5}, \tfrac{n}{2} \right]</math> nie dzieli liczby <math>\binom{2 n}{n}</math>.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1455: Linia 1413:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga A46</span><br/>
+
<span id="H47" style="font-size: 110%; font-weight: bold;">Zadanie H47</span><br/>
Z przykładu A43 nie wynika, że w&nbsp;przedziale <math>\left( \frac{n}{2}, \frac{2 n}{3} \right]</math> znajduje się choćby jedna liczba pierwsza <math>p</math>. Analogiczna uwaga jest prawdziwa w&nbsp;przypadku przykładu&nbsp;A45 oraz twierdzeń&nbsp;A42 i&nbsp;A44. Istnienie liczby pierwszej w&nbsp;określonym przedziale będzie tematem kolejnego artykułu.
+
Pokazać, że <math>\varphi (n) = 2^a</math> wtedy i&nbsp;tylko wtedy, gdy <math>n = 2^b q_1 \cdot \ldots \cdot q_s</math>, gdzie <math>q_1, \ldots, q_s</math> są liczbami pierwszymi Fermata: <math>3, 5, 17, 257, 65537</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
W przypadku, gdy <math>2 \mid n</math>, łatwo zauważamy, że liczba <math>2</math> może występować w&nbsp;dowolnej potędze, bo <math>\varphi (2^b) = 2^{b - 1}</math>.
 +
 +
W przypadku, gdy <math>p \mid n</math>, gdzie <math>p</math> jest liczbą pierwszą nieparzystą, mamy <math>\varphi (p^k) = (p - 1) p^{k - 1}</math> i&nbsp;równie łatwo zauważmy, że musi być <math>k = 1</math>, a&nbsp;liczba <math>p - 1</math> musi być potęgą liczby <math>2</math>. Zatem liczba pierwsza <math>p</math> musi być postaci <math>p = 2^t + 1</math>, co jest możliwe tylko wtedy, gdy <math>t</math> jest potęgą liczby <math>2</math> (zobacz [[#H48|H48]]), czyli <math>p</math> musi być liczbą pierwszą Fermata. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Przykład A47</span><br/>
 
Pokazujemy i&nbsp;omawiamy wynik zastosowania twierdzeń A42 i A44 do współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math>. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek <math>p > \sqrt{2 n}</math>, co w&nbsp;naszym przypadku daje <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż przykład|Hide=Ukryj przykład}}
 
Wybraliśmy współczynnik dwumianowy <math>\binom{2 \cdot 3284}{3284}</math> dlatego, że w&nbsp;rozkładzie tego współczynnika na czynniki pierwsze występują wszystkie liczby pierwsze <math>p \leqslant 107</math>, co ułatwia analizowanie występowania liczb pierwszych. Tylko sześć liczb pierwszych: 2, 3, 59, 61, 73, 79 występuje z&nbsp;wykładnikiem większym niż jeden. Ponieważ <math>\sqrt{2 \cdot 3284} \approx 81.043</math>, zatem liczba 79 jest ostatnią liczbą pierwszą, która mogłaby wystąpić z&nbsp;wykładnikiem większym niż jeden i&nbsp;tak właśnie jest.<br/>
 
  
Poniżej wypisaliśmy wszystkie liczby pierwsze <math>p \leqslant 3284</math>, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze. Pogrubienie oznacza, że dana liczba rozpoczyna nowy wiersz w&nbsp;tabeli. Ostatnią pogrubioną i&nbsp;dodatkowo podkreśloną liczbą jest liczba 107, bo wszystkie liczby pierwsze mniejsze od 107 powinny pojawić się w&nbsp;tabeli – oczywiście tak się nie stanie, bo twierdzeń&nbsp;A42 i A44 nie można stosować bez ograniczeń dla coraz większych liczb <math>k</math>.
 
  
 +
== Uzupełnienie ==
  
2<sup>6</sup>, 3<sup>8</sup>, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59<sup>2</sup>, 61<sup>2</sup>, 67, 71, 73<sup>2</sup>, 79<sup>2</sup>, 83, 89, 97, 101, 103, <span style="border-bottom-style: double;">'''107'''</span>, '''127''', '''137''', 139, '''151''', '''157''', '''167''', '''173''', '''197''', 199, '''211''', '''223''', '''239''', 241, '''257''', '''277''', 281, 283, '''307''', 311, '''331''', 337, '''367''', 373, 379, 383, '''419''', 421, 431, 433, '''479''', 487, 491, 499, 503, '''557''', 563, 569, 571, 577, 587, 593, '''659''', 661, 673, 677, 683, 691, 701, 709, 719, 727, '''823''', 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, '''1097''', 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, '''1657''', 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179
+
<span id="H48" style="font-size: 110%; font-weight: bold;">Twierdzenie H48</span><br/>
 +
Niech <math>a, n \in \mathbb{Z}_+</math> i <math>a \geqslant 2</math>. Jeżeli liczba <math>a^n + 1</math> jest liczbą pierwszą, to <math>a</math> jest liczbą parzystą i <math>n = 2^m</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Gdyby liczba <math>a</math> była nieparzysta, to liczba <math>a^n + 1 \geqslant 4</math> byłaby parzysta i&nbsp;nie mogłaby być liczbą pierwszą.
  
 +
Niech wykładnik <math>n = x y</math> będzie liczbą złożoną, a <math>x</math> będzie liczbą nieparzystą. Wtedy
  
Liczba 821 została pogrubiona (w&nbsp;tabeli), bo jest liczbą pierwszą i&nbsp;wyznacza początek przedziału otwartego, konsekwentnie liczba 821 nie występuje w&nbsp;rozkładzie współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>
+
::<math>a^n + 1 = (a^y)^x + 1</math>
  
Czytelnik łatwo sprawdzi, że największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A42, jest <math>k = 39</math>. Podobnie największą wartością liczby <math>k</math>, dla jakiej można jeszcze stosować twierdzenie&nbsp;A44, jest <math>k = 40</math>. Wartości te i&nbsp;odpowiadające im przedziały zostały pogrubione, aby uwidocznić granicę stosowania tych twierdzeń. Łatwo odczytujemy, że twierdzenia&nbsp;A42 i A44 można stosować dla liczb pierwszych <math>p</math> spełniających warunek <math>p > 81.09</math>. Co bardzo dokładnie pokrywa się z&nbsp;warunkiem <math>p > \sqrt{2 \cdot 3284} \approx 81.04</math><br/>
+
Oznaczając <math>b = a^y</math> oraz <math>x = 2 k + 1</math>, otrzymujemy
  
Liczba 73 jest ostatnią poprawnie pokazaną liczbą pierwszą. Po niej nie pojawiają się liczby pierwsze 71 i&nbsp;67, które występują w&nbsp;rozwinięciu współczynnika dwumianowego <math>\binom{2 \cdot 3284}{3284}</math> na czynniki pierwsze.<br/>
+
::<math>a^n + 1 = (a^y)^x + 1 = b^x + 1 = b^{2 k + 1} + 1 = (b + 1) \cdot (1 - b + b^2 - b^3 + \ldots + b^{2 k - 2} - b^{2 k - 1} + b^{2 k})</math>
  
{| class="wikitable"  style="font-size: 90%; text-align: center; margin: 1em auto 1em auto;"
+
Zatem w&nbsp;takim przypadku <math>a^n + 1</math> jest liczbą złożoną. Wynika stąd, że wykładnik <math>n</math> nie może zawierać czynników nieparzystych, czyli musi być <math>n = 2^m</math>. Co należało pokazać.<br/>
! <math>k</math>||<math>\frac{3284}{k+1}</math>||<math>p \in \left ( \frac{3284}{k + 1}, \frac{3284}{k + \tfrac{1}{2}} \right ]</math>||<math>\frac{3284}{k+\tfrac{1}{2}}</math>||<math>\frac{3284}{k}</math>
 
|-
 
| 0||3284||{3299, 3301, ..., 6553, 6563}||6568||
 
|-
 
| 1||1642||{1657, 1663, ..., 2161, 2179}||2189,33||3284
 
|-
 
| 2||1094,67||{1097, 1103, ..., 1303, 1307}||1313,60||1642
 
|-
 
| 3||'''821'''||{823, 827, ..., 929, 937}||938,29||1094,67
 
|-
 
| 4||656,80||{659, 661, 673, 677, 683, 691, 701, 709, 719, 727}||729,78||821
 
|-
 
| 5||547,33||{557, 563, 569, 571, 577, 587, 593}||597,09||656,80
 
|-
 
| 6||469,14||{479, 487, 491, 499, 503}||505,23||547,33
 
|-
 
| 7||410,50||{419, 421, 431, 433}||437,87||469,14
 
|-
 
| 8||364,89||{367, 373, 379, 383}||386,35||410,50
 
|-
 
| 9||328,40||{331, 337}||345,68||364,89
 
|-
 
| 10||298,55||{307, 311}||312,76||328,40
 
|-
 
| 11||273,67||{277, 281, 283}||285,57||298,55
 
|-
 
| 12||252,62||{257}||262,72||273,67
 
|-
 
| 13||234,57||{239, 241}||243,26||252,62
 
|-
 
| 14||218,93||{223}||226,48||234,57
 
|-
 
| 15||205,25||{211}||211,87||218,93
 
|-
 
| 16||193,18||{197, 199}||199,03||205,25
 
|-
 
| 17||182,44||{}||187,66||193,18
 
|-
 
| 18||172,84||{173}||177,51||182,44
 
|-
 
| 19||164,20||{167}||168,41||172,84
 
|-
 
| 20||156,38||{157}||160,20||164,20
 
|-
 
| 21||149,27||{151}||152,74||156,38
 
|-
 
| 22||142,78||{}||145,96||149,27
 
|-
 
| 23||136,83||{137, 139}||139,74||142,78
 
|-
 
| 24||131,36||{}||134,04||136,83
 
|-
 
| 25||126,31||{127}||128,78||131,36
 
|-
 
| 26||121,63||{}||123,92||126,31
 
|-
 
| 27||117,29||{}||119,42||121,63
 
|-
 
| 28||113,24||{}||115,23||117,29
 
|-
 
| 29||109,47||{}||111,32||113,24
 
|-
 
| 30||105,94||{<span style="border-bottom-style: double;">'''107'''</span>}||107,67||109,47
 
|-
 
| 31||102,63||{103}||104,25||105,94
 
|-
 
| 32||99,52||{101}||101,05||102,63
 
|-
 
| 33||96,59||{97}||98,03||99,52
 
|-
 
| 34||93,83||{}||95,19||96,59
 
|-
 
| 35||91,22||{}||92,51||93,83
 
|-
 
| 36||88,76||{89}||89,97||91,22
 
|-
 
| 37||86,42||{}||87,57||88,76
 
|-
 
| 38||84,21||{}||85,30||86,42
 
|-
 
| '''39'''||'''82,10'''||{83}||'''83,14'''||84,21
 
|-
 
| '''40'''||80,10||{}||'''81,09'''||'''82,10'''
 
|-
 
| 41||78,19||{79}||79,13||80,10
 
|-
 
| 42||76,37||{}||77,27||78,19
 
|-
 
| 43||74,64||{}||75,49||76,37
 
|-
 
| 44||72,98||{'''73'''}||73,80||74,64
 
|-
 
| 45||71,39||{}||72,18||72,98
 
|-
 
| 46||69,87||{}||70,62||71,39
 
|-
 
| 47||68,42||{}||69,14||69,87
 
|-
 
| 48||67,02||{}||67,71||68,42
 
|-
 
| 49||65,68||{}||66,34||67,02
 
|-
 
| 50||64,39||{}||65,03||65,68
 
|-
 
| 51||63,15||{}||63,77||64,39
 
|-
 
| 52||61,96||{}||62,55||63,15
 
|-
 
| 53||60,81||{61}||61,38||61,96
 
|-
 
| 54||59,71||{}||60,26||60,81
 
|-
 
| 55||58,64||{59}||59,17||59,71
 
|-
 
| 56||57,61||{}||58,12||58,64
 
|-
 
| 57||56,62||{}||57,11||57,61
 
|-
 
| 58||55,66||{}||56,14||56,62
 
|-
 
| 59||54,73||{}||55,19||55,66
 
|-
 
| 60||53,84||{}||54,28||54,73
 
|-
 
| 61||52,97||{53}||53,40||53,84
 
|-
 
| 62||52,13||{}||52,54||52,97
 
|-
 
| 63||51,31||{}||51,72||52,13
 
|-
 
| 64||50,52||{}||50,91||51,31
 
|-
 
| 65||49,76||{}||50,14||50,52
 
|-
 
| 66||49,01||{}||49,38||49,76
 
|-
 
| 67||48,29||{}||48,65||49,01
 
|-
 
| 68||47,59||{}||47,94||48,29
 
|-
 
| 69||46,91||{47}||47,25||47,59
 
|-
 
| 70||46,25||{}||46,58||46,91
 
|}
 
<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1645: Linia 1464:
 
<references>
 
<references>
  
<ref name="PARIGP">Wikipedia, ''PARI/GP'', ([https://en.wikipedia.org/wiki/PARI/GP Wiki-en])</ref>
+
<ref name="GCD1">Wikipedia, ''Największy wspólny dzielnik'', ([https://pl.wikipedia.org/wiki/Najwi%C4%99kszy_wsp%C3%B3lny_dzielnik Wiki-pl]), ([https://en.wikipedia.org/wiki/Greatest_common_divisor Wiki-en])</ref>
  
<ref name="Czebyszew1">Wikipedia, ''Pafnuty Czebyszew (1821 - 1893)'', ([https://pl.wikipedia.org/wiki/Pafnutij_Czebyszow Wiki-pl]), ([https://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B1%D1%8B%D1%88%D1%91%D0%B2,_%D0%9F%D0%B0%D1%84%D0%BD%D1%83%D1%82%D0%B8%D0%B9_%D0%9B%D1%8C%D0%B2%D0%BE%D0%B2%D0%B8%D1%87 Wiki-ru])</ref>
+
<ref name="cardinality1">Wikipedia, ''Moc zbioru'', ([https://pl.wikipedia.org/wiki/Moc_zbioru Wiki-pl]), ([https://en.wikipedia.org/wiki/Cardinality Wiki-en])</ref>
  
<ref name="Czebyszew2">P. L. Chebyshev, ''Mémoire sur les nombres premiers'', J. de Math. Pures Appl. (1) 17 (1852), 366-390, ([http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf LINK])</ref>
+
<ref name="sumazbiorow">Wikipedia, ''Zasada włączeń i&nbsp;wyłączeń'', ([https://pl.wikipedia.org/wiki/Zasada_w%C5%82%C4%85cze%C5%84_i_wy%C5%82%C4%85cze%C5%84 Wiki-pl]), ([https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle Wiki-en])</ref>
  
<ref name="Erdos">P. Erdos, ''Beweis eines Satzes von Tschebyschef'', Acta Litt. Sci. Szeged 5 (1932), 194-198, ([https://old.renyi.hu/~p_erdos/1932-01.pdf LINK1]), ([http://acta.bibl.u-szeged.hu/13396/1/math_005_194-198.pdf LINK2])</ref>
+
<ref name="Euler1">Wikipedia, ''Funkcja φ'', ([https://pl.wikipedia.org/wiki/Funkcja_%CF%86 Wiki-pl]), ([https://en.wikipedia.org/wiki/Euler%27s_totient_function Wiki-en])</ref>
  
<ref name="Dusart99">P. Dusart, ''The <math>k^{th}</math> prime is greater than <math>k (\ln k + \ln \ln k - 1)</math> for <math>k \geqslant 2</math>'', Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.</ref>
+
</references>
  
<ref name="Dusart06">P. Dusart, ''Sharper bounds for <math>\psi</math>, <math>\theta</math>, <math>\pi</math>, <math>p_k</math>'', Rapport de recherche no. 1998-06, Université de Limoges</ref>
 
  
<ref name="Dusart10">P. Dusart, ''Estimates of some functions over primes without R.H.'', (2010), ([https://arxiv.org/abs/1002.0442 LINK])</ref>
 
 
<ref name="Dusart18">P. Dusart, ''Explicit estimates of some functions over primes'', Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.</ref>
 
 
<ref name="p1">Wikipedia, ''Twierdzenie o zbieżności ciągu monotonicznego'', ([https://pl.wikipedia.org/wiki/Twierdzenie_o_zbie%C5%BCno%C5%9Bci_ci%C4%85gu_monotonicznego LINK])</ref>
 
 
</references>
 
  
  

Wersja z 13:06, 19 lut 2024

22.12.2023



Największy wspólny dzielnik

Definicja H1
Niech będą dane dwie liczby całkowite [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] niebędące jednocześnie zerami. Największym wspólnym dzielnikiem[1] liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] będziemy nazywali liczbę całkowitą [math]\displaystyle{ D }[/math] taką, że

  1.   [math]\displaystyle{ D \mid a \quad \text{i} \quad D \mid b }[/math]
  2.   [math]\displaystyle{ \,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D }[/math]

gdzie [math]\displaystyle{ d }[/math] jest dowolną liczbą całkowitą.


Uwaga H2
Tak zdefiniowaną liczbę [math]\displaystyle{ D }[/math] będziemy oznaczali przez [math]\displaystyle{ \gcd (a, b) }[/math]. Ponieważ [math]\displaystyle{ 1 \mid a \; }[/math] i [math]\displaystyle{ \; 1 \mid b }[/math], to z definicji wynika natychmiast, że [math]\displaystyle{ \gcd (a, b) \geqslant 1 }[/math].


Zadanie H3
Pokazać, że

[math]\displaystyle{ d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b }[/math]
Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d \mid \gcd (a, b) }[/math]. Z definicji największego wspólnego dzielnika [math]\displaystyle{ \gcd (a, b) \mid a }[/math], zatem [math]\displaystyle{ d \mid a }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ d \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ a = r d }[/math], [math]\displaystyle{ b = s d }[/math]. Z lematu Bézouta (zobacz C73) istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ \gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y) }[/math]

Zatem [math]\displaystyle{ d \mid \gcd (a, b) }[/math].


Twierdzenie H4
Jeżeli liczby całkowite [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero i [math]\displaystyle{ \gcd (a, b) = a x + b y }[/math], to [math]\displaystyle{ \gcd (x, y) = 1 }[/math].

Dowód

Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite [math]\displaystyle{ x, y }[/math] zawsze istnieją. Niech [math]\displaystyle{ \gcd (a, b) = d \gt 0 }[/math], zatem [math]\displaystyle{ a = d k }[/math] i [math]\displaystyle{ b = d m }[/math], czyli

[math]\displaystyle{ (d k) x + (d m) y = d }[/math]

Co oznacza, że [math]\displaystyle{ k x + m y = 1 }[/math], ale [math]\displaystyle{ \gcd (x, y) }[/math] jest dzielnikiem [math]\displaystyle{ k x + m y }[/math] (bo jest dzielnikiem [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math]), zatem [math]\displaystyle{ \gcd (x, y) \mid 1 }[/math], czyli [math]\displaystyle{ \gcd (x, y) = 1 }[/math]. Co należało pokazać.


Twierdzenie H5
Niech [math]\displaystyle{ a, b, k \in \mathbb{Z} }[/math]. Prawdziwy jest wzór

[math]\displaystyle{ \gcd (a + k b, b) = \gcd (a, b) }[/math]
Dowód

Niech [math]\displaystyle{ d_1 = \gcd (a + k b, b) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (a, b) }[/math].

Z definicji [math]\displaystyle{ d_1 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_1 \mid b }[/math], zatem [math]\displaystyle{ a + k b = x d_1 \; }[/math] i [math]\displaystyle{ \; b = y d_1 }[/math], czyli [math]\displaystyle{ a + k x d_1 = x d_1 }[/math], skąd natychmiast wynika, że [math]\displaystyle{ d_1 \mid a }[/math]. Ponieważ [math]\displaystyle{ d_1 \mid b }[/math], to [math]\displaystyle{ d_1 \mid d_2 }[/math] (zobacz H3).

Z definicji [math]\displaystyle{ d_2 \mid a \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], zatem [math]\displaystyle{ d_2 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], czyli [math]\displaystyle{ d_2 \mid d_1 }[/math].

Ponieważ [math]\displaystyle{ d_1 \mid d_2 \; }[/math] i [math]\displaystyle{ \; d_2 \mid d_1 }[/math], to [math]\displaystyle{ | d_1 | = | d_2 | }[/math]. Co kończy dowód.


Twierdzenie H6
Niech [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math]. Prawdziwa jest następująca równoważność

[math]\displaystyle{ \gcd (a, m) = 1 \quad \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1 }[/math]
Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a b, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Gdyby było [math]\displaystyle{ d \gt 1 }[/math], to istniałaby liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \mid d }[/math] i mielibyśmy [math]\displaystyle{ p \mid a b }[/math] i [math]\displaystyle{ p \mid m }[/math]. Jeżeli [math]\displaystyle{ p \mid a b }[/math], to [math]\displaystyle{ p \mid a }[/math] lub [math]\displaystyle{ p \mid b }[/math] (zobacz C74). W przypadku, gdy [math]\displaystyle{ p \mid a }[/math] dostajemy [math]\displaystyle{ \gcd (a, m) \geqslant p \gt 1 }[/math], wbrew założeniu, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Analogicznie pokazujemy sprzeczność, gdy [math]\displaystyle{ p \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a }[/math] i [math]\displaystyle{ d \mid m }[/math], zatem również [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Mamy stąd

[math]\displaystyle{ 1 = \gcd (a b, m) \geqslant d \geqslant 1 }[/math]

Czyli musi być [math]\displaystyle{ d = 1 }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ \gcd (b, m) = 1 }[/math].


Twierdzenie H7
Dla [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ \gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z lematu Bézouta (zobacz C73) istnieją takie liczby [math]\displaystyle{ x, y, X, Y }[/math], że

[math]\displaystyle{ s = a x + m y }[/math]
[math]\displaystyle{ t = b X + m Y }[/math]

Zatem

[math]\displaystyle{ s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y }[/math]

ale [math]\displaystyle{ r \mid a b }[/math] i [math]\displaystyle{ r \mid m }[/math], skąd otrzymujemy, że [math]\displaystyle{ r \mid s t }[/math]. Co należało pokazać.


Twierdzenie H8
Jeżeli liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to

[math]\displaystyle{ \gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z założenia [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Ponieważ [math]\displaystyle{ s \mid a }[/math] oraz [math]\displaystyle{ t \mid b }[/math], to [math]\displaystyle{ \gcd (s, t) = 1 }[/math], zatem (zobacz C75)

[math]\displaystyle{ s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b }[/math]
[math]\displaystyle{ s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m }[/math]

Wynika stąd, że [math]\displaystyle{ s t \mid \gcd (a b, m) }[/math], czyli [math]\displaystyle{ s t \mid r }[/math]. Z poprzedniego twierdzenia wiemy, że [math]\displaystyle{ r \mid s t }[/math], zatem [math]\displaystyle{ |r| = |s t| }[/math]. Co kończy dowód.


Twierdzenie H9
Jeżeli liczby [math]\displaystyle{ b, m }[/math] są względnie pierwsze, to

[math]\displaystyle{ \gcd (a b, m) = \gcd (a, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]

Z lematu Bézouta istnieją takie liczby [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ r = a b x + m y }[/math]

Ale [math]\displaystyle{ s \mid a \; }[/math] i [math]\displaystyle{ \; s \mid m }[/math], zatem [math]\displaystyle{ s \mid r }[/math].

Z założenia [math]\displaystyle{ \gcd (b, m) = 1 }[/math], zatem z twierdzenia H7 wynika natychmiast, że [math]\displaystyle{ r \mid s }[/math]. Ponieważ [math]\displaystyle{ s \mid r \; }[/math] i [math]\displaystyle{ \; r \mid s }[/math], to [math]\displaystyle{ | r | = | s | }[/math]. Co należało pokazać.


Twierdzenie H10
Jeżeli liczby [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero i [math]\displaystyle{ m \neq 0 }[/math], to

[math]\displaystyle{ \gcd (a m, b m) = | m | \cdot \gcd (a, b) }[/math]
Dowód

Oznaczmy [math]\displaystyle{ d = \gcd (a, b) \; }[/math] i [math]\displaystyle{ \; D = \gcd (a m, b m) }[/math]. Pokażemy, że [math]\displaystyle{ d m \mid D }[/math].

[math]\displaystyle{ \begin{array}{llll} d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d \mid a \quad \text{i} \quad d \mid b & \text{(zobacz H3)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid a m \quad \text{i} \quad d m \mid b m & \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid \gcd (a m, b m) & \text{(zobacz H3)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid D & \\ \end{array} }[/math]

Pokażemy, że [math]\displaystyle{ D \mid d m }[/math].

[math]\displaystyle{ \begin{array}{llll} d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d = a x + b y & \text{(lemat Bézouta C73)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m = a m x + b m y & \\ & & & \\ & \qquad \Longrightarrow \qquad & D \mid d m & \\ \end{array} }[/math]

Ostatnia implikacja korzysta z tego, że [math]\displaystyle{ D \mid a m \; }[/math] i [math]\displaystyle{ \; D \mid b m }[/math] (zobacz H3). Ponieważ [math]\displaystyle{ d m \mid D \; }[/math] i [math]\displaystyle{ \; D \mid d m }[/math], to [math]\displaystyle{ | D | = | d m | }[/math]. Co należało pokazać.


Zadanie H11
Pokazać, że [math]\displaystyle{ a \mid b }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a \mid \gcd (a, b) }[/math].

Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Zakładając, że [math]\displaystyle{ a \mid b }[/math], dostajemy

[math]\displaystyle{ \begin{array}{llll} a \mid b & \qquad \Longrightarrow \qquad & b = k a & \\ & & & \\ & \qquad \Longrightarrow \qquad & \gcd (a, b) = \gcd (a, k a) = | a | \cdot \gcd (1, k) = | a | & \qquad \text{(zobacz H10)} \\ & & & \\ & \qquad \Longrightarrow \qquad & a \mid \gcd (a, b) & \\ \end{array} }[/math]

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Jeżeli [math]\displaystyle{ a \mid \gcd (a, b) }[/math], to [math]\displaystyle{ a \mid b }[/math] (zobacz H3). Co należało pokazać.


Zadanie H12
Niech [math]\displaystyle{ \gcd (a, d) = 1 }[/math]. Pokazać, że [math]\displaystyle{ d \nmid a b }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ d \nmid b }[/math].

Rozwiązanie

Korzystając z rezultatu pokazanego w zadaniu H11, dostajemy

[math]\displaystyle{ \begin{array}{llll} d \nmid a b & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, a b) & \\ & & & \\ & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, b) & \text{(zobacz H9)} \\ & & & \\ & \qquad \Longleftrightarrow \qquad & d \nmid b & \\ \end{array} }[/math]

Co należało pokazać.


Twierdzenie H13
Jeżeli dodatnie liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to każdy dzielnik [math]\displaystyle{ d }[/math] iloczynu [math]\displaystyle{ a b }[/math] można przedstawić jednoznacznie w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a , }[/math] [math]\displaystyle{ \; d_2 \mid b \; }[/math] [math]\displaystyle{ \text{i} \; \gcd (d_1, d_2) = 1 }[/math].

Dowód

Niech [math]\displaystyle{ d_1 = \gcd (d, a) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (d, b) }[/math]. Z twierdzenia H8 mamy

[math]\displaystyle{ d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d }[/math]

Bo z założenia [math]\displaystyle{ d \mid a b }[/math]. Z definicji największego wspólnego dzielnika i zadania H3 dostajemy

[math]\displaystyle{ \gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2 }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (a, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad \gcd (a, b) \geqslant e }[/math]

Gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = e \gt 1 }[/math], to mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant e \gt 1 }[/math]. Wbrew założeniu, że [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Co kończy dowód.


Twierdzenie H14
Jeżeli [math]\displaystyle{ a, m, n \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1 }[/math]
Dowód

Pokażemy najpierw, że jeżeli [math]\displaystyle{ d }[/math] jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i odwrotnie.

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d }[/math] jest dzielnikiem [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) }[/math], czyli [math]\displaystyle{ d \mid (a^m - 1) \; }[/math] i [math]\displaystyle{ \; d \mid (a^n - 1) }[/math], co możemy zapisać w postaci

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby [math]\displaystyle{ x, y }[/math], że [math]\displaystyle{ \gcd (m, n) = m x + n y }[/math]. Łatwo znajdujemy, że

[math]\displaystyle{ a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d} }[/math]

Czyli [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math], czyli

[math]\displaystyle{ a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d} }[/math]

Zatem

[math]\displaystyle{ a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d} }[/math]

Podobnie otrzymujemy

[math]\displaystyle{ a^n \equiv 1 \!\! \pmod{d} }[/math]

Zatem [math]\displaystyle{ d }[/math] dzieli [math]\displaystyle{ a^m - 1 \; }[/math] i [math]\displaystyle{ \; a^n - 1 }[/math], czyli

[math]\displaystyle{ d \mid \gcd (a^m - 1, a^n - 1) }[/math]


W szczególności wynika stąd, że

  •    [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math]
  •    [math]\displaystyle{ \left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1) }[/math]

Czyli [math]\displaystyle{ \left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right| }[/math]. Co kończy dowód.


Uwaga H15
W dowodzie twierdzenia H14 pominęliśmy milczeniem fakt, że jedna z liczb [math]\displaystyle{ x, y }[/math] może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis

[math]\displaystyle{ a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d} }[/math]

Omówimy ten problem w następnej sekcji. Zauważmy, wyprzedzając materiał, że z kongruencji

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

wynika, że [math]\displaystyle{ \gcd (a, d) = 1 }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ d }[/math].



Element odwrotny modulo [math]\displaystyle{ m }[/math]

Twierdzenie H16
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Dla liczby [math]\displaystyle{ a \in \mathbb{Z} }[/math] istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

wtedy i tylko wtedy, gdy [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Zatem dla pewnego [math]\displaystyle{ k \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ a x = 1 + k m }[/math]

Czyli [math]\displaystyle{ a x - k m = 1 }[/math]. Wynika stąd, że [math]\displaystyle{ \gcd (a, m) }[/math] dzieli [math]\displaystyle{ 1 }[/math], co oznacza, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Z lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ a x + m y = 1 }[/math]

Zatem modulo [math]\displaystyle{ m }[/math] dostajemy

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Co kończy dowód.


Definicja H17
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Liczbę [math]\displaystyle{ x }[/math] taką, że

[math]\displaystyle{ a \cdot x \equiv 1 \!\! \pmod{m} }[/math]

będziemy nazywali elementem odwrotnym liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] i oznaczali jako [math]\displaystyle{ a^{- 1} }[/math].


Uwaga H18
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli [math]\displaystyle{ b \mid a }[/math] oraz [math]\displaystyle{ b }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], to prawdziwa jest kongruencja

[math]\displaystyle{ {\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

Istotnie

[math]\displaystyle{ {\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

W PARI/GP odwrotność liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] znajdujemy, wpisując Mod(a, m)^(-1).


Twierdzenie H19
Niech [math]\displaystyle{ a, k \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Poniższa tabelka przedstawia elementy odwrotne do elementu [math]\displaystyle{ a }[/math] w przypadku niektórych modułów [math]\displaystyle{ m }[/math]. W szczególności, jeżeli moduł [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m} }[/math].

Dowód

Punkty 1. - 3.

Ponieważ dla liczb nieparzystych jest

[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{8} }[/math]

to liczba nieparzysta [math]\displaystyle{ a }[/math] jest swoją odwrotnością modulo [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ 4 }[/math] i [math]\displaystyle{ 8 }[/math]. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać

[math]\displaystyle{ a^{- 1} \equiv R_2 (a) \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_4 (a) \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_8 (a) \!\! \pmod{8} }[/math]

W pierwszym przypadku wynik jest oczywisty, bo [math]\displaystyle{ R_2 (a) = 1 }[/math].

Punkt 4.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 5.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m - 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 6.

Ponieważ zakładamy, że [math]\displaystyle{ 2 \mid (m + 1) }[/math], to [math]\displaystyle{ m }[/math] musi być liczbą nieparzystą, czyli [math]\displaystyle{ a }[/math] też musi być liczbą nieparzystą. Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 2) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Podobnie pokazujemy punkt 7. Co kończy dowód.


Twierdzenie H20
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math]. Jeżeli liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są liczbami różnymi modulo [math]\displaystyle{ m }[/math], to liczby

1.   [math]\displaystyle{ a u_1, a u_2, \ldots, a u_r }[/math]
2.   [math]\displaystyle{ a u_1 + b, a u_2 + b, \ldots, a u_r + b }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math]. Jeżeli ponadto liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są względnie pierwsze z [math]\displaystyle{ m }[/math], to również liczby

3.   [math]\displaystyle{ u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math].

Dowód

Punkt 1.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ a u_i \equiv a u_j \!\! \pmod{m} }[/math]

Z założenia liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], zatem mnożąc obie strony kongruencji przez [math]\displaystyle{ a^{- 1} }[/math], otrzymujemy

[math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math]

dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Dowód punktu 2. jest analogiczny.

Punkt 3.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i \equiv 1 \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j \equiv u_i \!\! \pmod{m} }[/math]

Ponownie otrzymujemy [math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math] dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Co należało pokazać.


Zadanie H21
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Pokazać, że dla [math]\displaystyle{ k \in [0, p - 1] }[/math] prawdziwa jest kongruencja

[math]\displaystyle{ \binom{p - 1}{k} \equiv (- 1)^k \pmod{p} }[/math]
Rozwiązanie

Zauważmy, że modulo [math]\displaystyle{ p }[/math] mamy

[math]\displaystyle{ \binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \pmod{p} }[/math]

Co należało pokazać.


Zadanie H22
Niech [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] będą zbiorami skończonymi. Pokazać, że jeżeli [math]\displaystyle{ A \subseteq B \;\; \text{i} \;\; | A | = | B | }[/math], to [math]\displaystyle{ \; A = B }[/math].

Rozwiązanie

Pierwszy sposób

Z definicji zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe wtedy i tylko wtedy, gdy jednocześnie spełnione są warunki

  1.   [math]\displaystyle{ x \in A \qquad \Longrightarrow \qquad x \in B }[/math]
  2.   [math]\displaystyle{ x \in B \qquad \Longrightarrow \qquad x \in A }[/math]

Z założenia [math]\displaystyle{ A \subseteq B }[/math], zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element [math]\displaystyle{ x }[/math], że [math]\displaystyle{ x \in B }[/math], ale [math]\displaystyle{ x \notin A }[/math]. Jeśli tak, to

[math]\displaystyle{ | B | = | A | + 1 }[/math]

Co jest sprzeczne z założeniem, że [math]\displaystyle{ | A | = | B | }[/math].

Uwaga
Łatwo zauważyć, że wybierając z trzech warunków [math]\displaystyle{ A \subseteq B }[/math], [math]\displaystyle{ B \subseteq A }[/math] i [math]\displaystyle{ | A | = | B | }[/math] dowolne dwa, zawsze otrzymamy z nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych[2], ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.


Drugi sposób

Ponieważ zbiór [math]\displaystyle{ A }[/math] jest z założenia podzbiorem zbioru [math]\displaystyle{ B }[/math], to zbiór [math]\displaystyle{ B }[/math] można przedstawić w postaci sumy zbioru [math]\displaystyle{ A }[/math] i pewnego zbioru [math]\displaystyle{ C }[/math] takiego, że żaden element zbioru [math]\displaystyle{ C }[/math] nie jest elementem zbioru [math]\displaystyle{ A }[/math]. Zatem

[math]\displaystyle{ B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing }[/math]

Ponieważ zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są rozłączne, to wiemy, że

[math]\displaystyle{ | A \cup C | = | A | + | C | }[/math]

Czyli

[math]\displaystyle{ | B | = | A \cup C | = | A | + | C | }[/math]

Skąd wynika, że [math]\displaystyle{ | C | = 0 }[/math], zatem zbiór [math]\displaystyle{ C }[/math] jest zbiorem pustym i otrzymujemy natychmiast [math]\displaystyle{ B = A }[/math]. Co należało pokazać.

Uwaga (przypadek zbiorów skończonych)
Najczęściej prawdziwe jest jedynie oszacowanie [math]\displaystyle{ | A \cup C | \leqslant | A | + | C | }[/math], bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math], zatem od sumy [math]\displaystyle{ | A | + | C | }[/math] musimy odjąć liczbę elementów iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math]. Co daje ogólny wzór[3]

[math]\displaystyle{ | A \cup C | = | A | + | C | - | A \cap C | }[/math]


Definicja H23
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Powiemy, że zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math], jeżeli dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja [math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math].


Twierdzenie H24
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy zbiory [math]\displaystyle{ A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \} }[/math] i [math]\displaystyle{ B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \} }[/math] są równe.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Ponieważ elementy każdego ze zbiorów [math]\displaystyle{ A, B }[/math] są różne modulo [math]\displaystyle{ m }[/math], to elementy zbiorów [math]\displaystyle{ A' }[/math] i [math]\displaystyle{ B' }[/math] są wszystkie różne. Czyli [math]\displaystyle{ | A' | = | B' | = r }[/math]. Ponieważ warunek

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

oznacza, że reszty z dzielenia liczb [math]\displaystyle{ a_k }[/math] i [math]\displaystyle{ b_j }[/math] przez [math]\displaystyle{ m }[/math] są równe, to z założenia dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

A to oznacza, że każdy element zbioru [math]\displaystyle{ A' }[/math] należy do zbioru [math]\displaystyle{ B' }[/math], czyli [math]\displaystyle{ A' \subseteq B' }[/math]. Wynika stąd, że [math]\displaystyle{ A' = B' }[/math] (zobacz H22). Co należało pokazać.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Ponieważ zbiory [math]\displaystyle{ A', B' }[/math] są równe, to zbiór [math]\displaystyle{ A' }[/math] jest podzbiorem zbioru [math]\displaystyle{ B' }[/math], czyli dla każdego elementu [math]\displaystyle{ R_m (a_k) \in A' }[/math] istnieje taki element [math]\displaystyle{ R_m (b_j) \in B' }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

Ponieważ równość reszt oznacza równość modulo, zatem

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

Wynika stąd, że dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

czyli zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math]. Co kończy dowód.


Twierdzenie H25
Niech będą dane zbiory [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_{p - 1} \} }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru [math]\displaystyle{ B }[/math] są różne modulo [math]\displaystyle{ p }[/math] i żadna z liczb [math]\displaystyle{ b_k \in B }[/math] nie jest podzielna przez [math]\displaystyle{ p }[/math], to zbiory [math]\displaystyle{ A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \} }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Dowód

Z definicji zbioru [math]\displaystyle{ A }[/math] wszystkie elementy tego zbioru są różne modulo [math]\displaystyle{ p }[/math]. Łatwo zauważamy, że

[math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A' }[/math]

Ponieważ wszystkie liczby [math]\displaystyle{ b_k \in B }[/math], gdzie [math]\displaystyle{ k = 1, \ldots, p - 1 }[/math] są różne modulo [math]\displaystyle{ p }[/math] i nie są podzielne przez [math]\displaystyle{ p }[/math], to reszty [math]\displaystyle{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B' }[/math]

Na mocy twierdzenia H24 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Z twierdzenia H20 wiemy, że wszystkie liczby [math]\displaystyle{ b^{- 1}_k \in C }[/math] są różne modulo [math]\displaystyle{ p }[/math]. Zauważmy, że każda z tych liczb jest względnie pierwsza z [math]\displaystyle{ p }[/math], zatem nie może być podzielna przez [math]\displaystyle{ p }[/math]. Wynika stąd, że reszty [math]\displaystyle{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C' }[/math]

Na mocy twierdzenia H24 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ A' = B' }[/math] i [math]\displaystyle{ A' = C' }[/math], to [math]\displaystyle{ B' = C' }[/math] i ponownie na mocy twierdzenia H24 zbiory [math]\displaystyle{ B }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Co należało pokazać.


Zadanie H26
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Pokazać, że suma [math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} }[/math] jest podzielna przez [math]\displaystyle{ p }[/math].

Rozwiązanie

Zauważmy najpierw, że modulo [math]\displaystyle{ p }[/math] następujące sumy są równe

[math]\displaystyle{ \sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p} }[/math]

Istotnie, jeśli przyjmiemy w twierdzeniu H25, że zbiór [math]\displaystyle{ B = \{ 1, 2, \ldots, p - 1 \} }[/math], to zbiór [math]\displaystyle{ C }[/math] będzie zbiorem liczb, które są odwrotnościami liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] modulo [math]\displaystyle{ p }[/math] i możemy napisać

[math]\displaystyle{ \sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p} }[/math]

bo

  • gdy [math]\displaystyle{ x }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k }[/math], to [math]\displaystyle{ x }[/math] przyjmuje kolejno wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math]
  • gdy [math]\displaystyle{ y }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k^{- 1} }[/math], to [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości ze zbioru [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], czyli liczba [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math], ale w innej kolejności

Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo [math]\displaystyle{ p }[/math].

Zatem modulo [math]\displaystyle{ p }[/math] otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p }[/math]
[math]\displaystyle{ \;\;\: \equiv 0 \!\! \pmod{p} }[/math]

Należy zauważyć, że dla liczby pierwszej nieparzystej [math]\displaystyle{ p }[/math] liczba [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] jest liczbą całkowitą.



Funkcje multiplikatywne

Definicja H27
Powiemy, że funkcja [math]\displaystyle{ f(n) }[/math] określona w zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli [math]\displaystyle{ f(1) = 1 }[/math] i dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math] spełniony jest warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math].


Uwaga H28
Założenie [math]\displaystyle{ f(1) = 1 }[/math] możemy równoważnie zastąpić założeniem, że funkcja [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zero. Gdyby [math]\displaystyle{ f(n) }[/math] spełniała jedynie warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math] dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math], to mielibyśmy

a)   [math]\displaystyle{ f(n) }[/math] jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 0 }[/math]
b)   [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 1 }[/math]

Ponieważ [math]\displaystyle{ f(1) = f (1 \cdot 1) = f (1) f (1) }[/math], zatem [math]\displaystyle{ f(1) = 0 }[/math] lub [math]\displaystyle{ f (1) = 1 }[/math].

Jeżeli [math]\displaystyle{ f(1) = 0 }[/math], to dla dowolnego [math]\displaystyle{ n }[/math] mamy

[math]\displaystyle{ f(n) = f (n \cdot 1) = f (n) f (1) = 0 }[/math]

Czyli [math]\displaystyle{ f(n) }[/math] jest funkcją tożsamościowo równą zero.

Jeżeli [math]\displaystyle{ f(n) }[/math] nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math], że [math]\displaystyle{ f(a) \neq 0 }[/math]. Zatem

[math]\displaystyle{ f(a) = f (a \cdot 1) = f (a) f (1) }[/math]

I dzieląc obie strony przez [math]\displaystyle{ f(a) \neq 0 }[/math], dostajemy [math]\displaystyle{ f(1) = 1 }[/math].


Przykład H29
Ponieważ [math]\displaystyle{ \gcd (1, c) = 1 }[/math], to [math]\displaystyle{ \gcd (n, c) }[/math] rozpatrywana jako funkcja [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ c }[/math] jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz H8).


Twierdzenie H30
Jeżeli funkcja [math]\displaystyle{ f(n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} f (d) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math], jest również funkcją multiplikatywną.

Dowód

Ponieważ

[math]\displaystyle{ F(1) = \sum_{d \mid 1} f (d) = f (1) = 1 }[/math]

to funkcja [math]\displaystyle{ F(n) }[/math] spełnia pierwszy warunek definicji H27.

Niech [math]\displaystyle{ a, b }[/math] będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu [math]\displaystyle{ a b }[/math] można zapisać w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a }[/math], [math]\displaystyle{ \; d_2 \mid b \, }[/math] oraz [math]\displaystyle{ \, \gcd (d_1, d_2) = 1 }[/math] (zobacz H13). Niech zbiory

[math]\displaystyle{ S_a = \{ d \in \mathbb{Z}_+ : d \mid a \} }[/math]
[math]\displaystyle{ S_b = \{ d \in \mathbb{Z}_+ : d \mid b \} }[/math]
[math]\displaystyle{ S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \} }[/math]

będą zbiorami dzielników dodatnich liczb [math]\displaystyle{ a, b }[/math] i [math]\displaystyle{ a b }[/math]. Dla przykładu

[math]\displaystyle{ S_5 = \{ 1, 5 \} }[/math]
[math]\displaystyle{ S_7 = \{ 1, 7 \} }[/math]
[math]\displaystyle{ S_{35} = \{ 1, 5, 7, 35 \} }[/math]

Dla dowolnego [math]\displaystyle{ d_1 \in S_a \, }[/math] i [math]\displaystyle{ \, d_2 \in S_b }[/math] musi być [math]\displaystyle{ \gcd (d_1, d_2) = 1 }[/math], bo gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = g \gt 1 }[/math], to

[math]\displaystyle{ g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a }[/math]
[math]\displaystyle{ g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b }[/math]

Zatem [math]\displaystyle{ g \mid \gcd (a, b) }[/math] i mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant g \gt 1 }[/math], wbrew założeniu.

Przekształcając, otrzymujemy

[math]\displaystyle{ F(a b) = \sum_{d \mid a b} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d \in S_{a b}} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = F (a) F (b) }[/math]

Co należało pokazać.



Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math]

Definicja H31
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math][4] jest równa ilości liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math].


Twierdzenie H32
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math] jest multiplikatywna, czyli dla względnie pierwszych liczb [math]\displaystyle{ m, n }[/math] jest [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ m, n }[/math] będą dodatnimi liczbami całkowitymi takimi, że [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math], zatem nie zmniejszając ogólności, możemy założyć, że [math]\displaystyle{ n \gt 1 }[/math]. Wypiszmy w tabeli wszystkie liczby od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ m n }[/math].

1. Natychmiast widzimy, że w pierwszym wierszu mamy [math]\displaystyle{ \varphi (m) }[/math] liczb względnie pierwszych z [math]\displaystyle{ m }[/math]. Tak samo jest w każdym kolejnym wierszu, bo (zobacz H5)

[math]\displaystyle{ \gcd (r m + k, m) = \gcd (k, m) }[/math]

Zatem mamy dokładnie [math]\displaystyle{ \varphi (m) }[/math] kolumn liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


2. Załóżmy, że liczba [math]\displaystyle{ k }[/math] jest jedną z liczb względnie pierwszych z [math]\displaystyle{ m }[/math], czyli [math]\displaystyle{ \gcd (k, m) = 1 }[/math]. Przy tym założeniu [math]\displaystyle{ k }[/math]-ta kolumna (pokazana w tabeli) jest kolumną liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


3. Zauważmy, że reszty z dzielenia liczb wypisanych w [math]\displaystyle{ k }[/math]-tej kolumnie przez [math]\displaystyle{ n }[/math] są wszystkie różne. Gdyby tak nie było, to dla pewnych [math]\displaystyle{ i, j }[/math], gdzie [math]\displaystyle{ 0 \leqslant i, j \leqslant n - 1 }[/math], różnica liczb [math]\displaystyle{ i m + k }[/math] oraz [math]\displaystyle{ j m + k }[/math] byłaby podzielna przez [math]\displaystyle{ n }[/math]. Mielibyśmy

[math]\displaystyle{ n \mid ((i m + k) - (j m + k)) }[/math]

Skąd wynika natychmiast

[math]\displaystyle{ n \mid (i - j) m }[/math]

Ponieważ założyliśmy, że [math]\displaystyle{ \gcd (n, m) = 1 }[/math], to musi być [math]\displaystyle{ n \mid (i - j) }[/math] (zobacz C74), ale

[math]\displaystyle{ 0 \leqslant | i - j | \leqslant n - 1 }[/math]

Czyli [math]\displaystyle{ n }[/math] może dzielić [math]\displaystyle{ i - j }[/math] tylko w przypadku, gdy [math]\displaystyle{ i = j }[/math]. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez [math]\displaystyle{ n }[/math].


4. Ponieważ w [math]\displaystyle{ k }[/math]-tej kolumnie znajduje się dokładnie [math]\displaystyle{ n }[/math] liczb i reszty z dzielenia tych liczb przez [math]\displaystyle{ n }[/math] są wszystkie różne, to reszty te tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, n - 1 \} }[/math]. Wynika stąd, że liczby wypisane w [math]\displaystyle{ k }[/math]-tej kolumnie mogą być zapisane w postaci

[math]\displaystyle{ a_r = b_r \cdot n + r }[/math]

gdzie [math]\displaystyle{ r = 0, 1, \ldots, n - 1 }[/math] i [math]\displaystyle{ b_r \in \mathbb{Z} }[/math].

Zauważmy, że następujące ilości liczb są sobie równe

  •    ilość liczb w [math]\displaystyle{ k }[/math]-tej kolumnie względnie pierwszych z [math]\displaystyle{ n }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 0, \ldots, n - 1 }[/math], bo [math]\displaystyle{ \gcd (b_r \cdot n + r, n) = \gcd (r, n) }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 1, \ldots, n }[/math], bo [math]\displaystyle{ \gcd (n, n) = \gcd (0, n) = | n | \gt 1 }[/math]

Ostatnia ilość liczb jest równa [math]\displaystyle{ \varphi (n) }[/math], co wynika wprost z definicji funkcji [math]\displaystyle{ \varphi (n) }[/math].


5. Zbierając: mamy w wypisanej tabeli dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jednocześnie jest

[math]\displaystyle{ \gcd (u, m) = 1 \quad \text{i} \quad \gcd (u, n) = 1 }[/math]

Z twierdzenia H6 wynika, że w tabeli jest dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jest

[math]\displaystyle{ \gcd (u, m n) = 1 }[/math]

Zatem [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math]. Co należało pokazać.


Twierdzenie H33
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

gdzie iloczyn obliczamy po wszystkich liczbach pierwszych [math]\displaystyle{ p }[/math], będących dzielnikami liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej [math]\displaystyle{ p }[/math] są jednocześnie pierwsze względem [math]\displaystyle{ p }[/math], to [math]\displaystyle{ \varphi (p) = p - 1 }[/math].

Równie łatwo znajdujemy wartość funkcji [math]\displaystyle{ \varphi (n) }[/math] w przypadku gdy [math]\displaystyle{ n }[/math] jest potęgą liczby pierwszej [math]\displaystyle{ n = p^k }[/math]. Wystarczy zauważyć, że w ciągu kolejnych liczb

[math]\displaystyle{ 1, 2, 3, 4, \ldots, p^k - 1, p^k }[/math]

jedynymi liczbami, które nie są pierwsze względem [math]\displaystyle{ p^k }[/math], są te, które dzielą się przez [math]\displaystyle{ p }[/math] i jest ich [math]\displaystyle{ p^{k - 1} }[/math], co widać natychmiast po ich bezpośrednim wypisaniu

[math]\displaystyle{ 1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p }[/math]

Zatem

[math]\displaystyle{ \varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to dla [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math] otrzymujemy

[math]\displaystyle{ \varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k) }[/math]
[math]\displaystyle{ \;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right] }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Co należało pokazać.


Twierdzenie H34
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ q }[/math] jest liczbą pierwszą, to

[math]\displaystyle{ \varphi (q n) = \left\{ \begin{array}{rl} (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n \\ q \varphi (n) & \quad \text{gdy} \quad q \mid n \\ \end{array} \right. }[/math]
Dowód

Jeżeli [math]\displaystyle{ q \nmid m }[/math], to [math]\displaystyle{ \gcd (q, m) = 1 }[/math], zatem [math]\displaystyle{ \varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m) }[/math]. Jeżeli [math]\displaystyle{ q \mid m }[/math], to liczby [math]\displaystyle{ m }[/math] oraz [math]\displaystyle{ q m }[/math] mają taki sam zbiór dzielników pierwszych, zatem

[math]\displaystyle{ \varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m) }[/math]

Co należało pokazać.


Zadanie H35
Niech [math]\displaystyle{ q \in \mathbb{P} }[/math] i [math]\displaystyle{ a, b, m, n \in \mathbb{Z}_+ }[/math]. Pokazać, że

  •    [math]\displaystyle{ \varphi (q^{a + b}) = q^a \varphi (q^b) }[/math]
  •    [math]\displaystyle{ \varphi (n^m) = n^{m - 1} \varphi (n) }[/math]
Rozwiązanie

Punkt 1.

[math]\displaystyle{ \varphi (q^{a + b}) = (q - 1) q^{a + b - 1} = q^a \cdot (q - 1) q^{b - 1} = q^a \varphi (q^b) }[/math]

Punkt 2.

Niech [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]

[math]\displaystyle{ \varphi (n^m) = \varphi (p^{m \alpha_1}_1 \cdot \ldots \cdot p^{m \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = \varphi (p^{m \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{m \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = \varphi (p^{(m - 1) \alpha_1 + \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{(m - 1) \alpha_s + \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = p^{(m - 1) \alpha_1}_1 \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \varphi (p^{\alpha_s}_s) }[/math]
[math]\displaystyle{ \, = p^{(m - 1) \alpha_1}_1 \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \cdot \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) }[/math]
[math]\displaystyle{ \, = n^{m - 1} \varphi (n) }[/math]

Co należało pokazać.


Twierdzenie H36
Niech [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]. Ponieważ założyliśmy, że [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ m }[/math] musi być postaci [math]\displaystyle{ m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s }[/math], gdzie [math]\displaystyle{ 0 \leqslant \beta_i \leqslant \alpha_i }[/math], dla [math]\displaystyle{ i = 1, \ldots, s }[/math]. Łatwo zauważamy, że

  •    jeżeli [math]\displaystyle{ \beta_i = 0 }[/math], to [math]\displaystyle{ \varphi (p^{\beta_i}_i) = 1 }[/math] i dzieli [math]\displaystyle{ \varphi (p^{\alpha_i}_i) }[/math]
  •    jeżeli [math]\displaystyle{ 1 \leqslant \beta_i \leqslant \alpha_i }[/math], to [math]\displaystyle{ (p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1} }[/math], zatem [math]\displaystyle{ \varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i) }[/math]

Skąd natychmiast wynika, że [math]\displaystyle{ \varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s) }[/math] dzieli [math]\displaystyle{ \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) }[/math], czyli [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo [math]\displaystyle{ \varphi (7) \mid \varphi (19) }[/math], ale [math]\displaystyle{ 7 \nmid 19 }[/math].


Zadanie H37
Dla [math]\displaystyle{ n \geqslant 3 }[/math] wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi.

Rozwiązanie

Jeżeli liczba [math]\displaystyle{ n \geqslant 3 }[/math] jest podzielna przez liczbę pierwszą nieparzystą [math]\displaystyle{ p }[/math], zaś [math]\displaystyle{ k }[/math] jest wykładnikiem, z jakim [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia [math]\displaystyle{ n }[/math] na czynniki pierwsze, to

[math]\displaystyle{ \varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right) }[/math]

zatem [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą, ponieważ [math]\displaystyle{ p - 1 }[/math] jest liczbą parzystą.

Jeżeli żadna liczba nieparzysta nie dzieli [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = 2^a }[/math] i [math]\displaystyle{ \varphi (n) = 2^{a - 1} }[/math], ale z założenia [math]\displaystyle{ n \geqslant 3 }[/math], zatem [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą.


Twierdzenie H38
Jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną, to [math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} }[/math].

Dowód

Pierwszy sposób
Niech [math]\displaystyle{ n = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a \leqslant b \lt n }[/math]. Liczby [math]\displaystyle{ 1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a }[/math] są nie większe od [math]\displaystyle{ n }[/math] i nie są względnie pierwsze z [math]\displaystyle{ n }[/math], zatem

[math]\displaystyle{ \varphi (n) \leqslant n - b }[/math]

Ponieważ [math]\displaystyle{ b \geqslant a }[/math], to [math]\displaystyle{ b^2 \geqslant a b = n }[/math] i [math]\displaystyle{ b \geqslant \sqrt{n} }[/math]. Wynika stąd, że

[math]\displaystyle{ \varphi (n) \leqslant n - b \leqslant n - \sqrt{n} }[/math]


Drugi sposób
Niech [math]\displaystyle{ q }[/math] oznacza najmniejszy dzielnik pierwszy liczby złożonej [math]\displaystyle{ n }[/math], zatem [math]\displaystyle{ q^2 \leqslant n }[/math], czyli [math]\displaystyle{ q \leqslant \sqrt{n} }[/math], a stąd [math]\displaystyle{ {\small\frac{n}{q}} \geqslant \sqrt{n} }[/math] i

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n} }[/math]

Co należało pokazać.


Twierdzenie H39
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt {\small\frac{\sqrt{n}}{2}} }[/math].

Dowód

Dla [math]\displaystyle{ k \geqslant 3 }[/math] jest

[math]\displaystyle{ \left( 1 - {\small\frac{1}{k}} \right)^2 \gt {\small\frac{1}{k}} }[/math]

Wynika stąd, że jeżeli [math]\displaystyle{ m \geqslant 3 }[/math] jest liczbą nieparzystą, to

[math]\displaystyle{ \varphi (m)^2 = m^2 \prod_{p|m} \left( 1 - {\small\frac{1}{p}} \right)^2 \gt m^2 \prod_{p|m} {\small\frac{1}{p}} \geqslant m }[/math]

bo

[math]\displaystyle{ \prod_{p|m} p \leqslant m }[/math]

Czyli dla nieparzystych liczb [math]\displaystyle{ m \geqslant 3 }[/math] mamy

[math]\displaystyle{ \varphi (m) \gt \sqrt{m} \gt {\small\frac{\sqrt{m}}{2}} }[/math]


Jeżeli [math]\displaystyle{ d = 2^a }[/math], gdzie [math]\displaystyle{ a \geqslant 1 }[/math], to

[math]\displaystyle{ \varphi (d) = \varphi (2^a) = 2^{a - 1} \gt {\small\frac{\sqrt{2^a}}{2}} = {\small\frac{\sqrt{d}}{2}} }[/math]


W przypadku ogólnym, gdy [math]\displaystyle{ n }[/math] jest iloczynem liczby nieparzystej [math]\displaystyle{ m \geqslant 3 }[/math] i potęgi liczby [math]\displaystyle{ 2 }[/math], dostajemy

[math]\displaystyle{ \varphi (n) = \varphi (2^a m) = \varphi (2^a) \varphi (m) \gt {\small\frac{\sqrt{2^a}}{2}} \cdot \sqrt{m} = {\small\frac{\sqrt{2^a m}}{2}} = {\small\frac{\sqrt{n}}{2}} }[/math]

Oczywiście nierówność [math]\displaystyle{ \varphi (n) \gt {\small\frac{\sqrt{n}}{2}} }[/math] jest również prawdziwa dla [math]\displaystyle{ n = 1 }[/math]. Co należało pokazać.


Zadanie H40
Pokazać, że dla [math]\displaystyle{ n \geqslant 7 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \sqrt{n} }[/math].

Rozwiązanie

Zauważmy, że

[math]\displaystyle{ n - 1 \gt \sqrt{n} \qquad \qquad \;\, \text{dla} \; n \geqslant 3 }[/math]
[math]\displaystyle{ n - 1 \gt \sqrt{2 n} \qquad \qquad \text{dla} \; n \geqslant 4 }[/math]


Zatem dla liczby pierwszej [math]\displaystyle{ p }[/math] i [math]\displaystyle{ k \geqslant 1 }[/math] jest

[math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} \gt \sqrt{p} \cdot p^{k - 1} = p^{k - \tfrac{1}{2}} \geqslant p^{\tfrac{k}{2}} = \sqrt{p^k} \qquad \qquad \qquad \qquad \quad \; \text{dla} \;\: p \geqslant 3 }[/math]
[math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} \gt \sqrt{2 p} \cdot p^{k - 1} = \sqrt{2} \cdot p^{k - \tfrac{1}{2}} \geqslant \sqrt{2} \cdot p^{\tfrac{k}{2}} = \sqrt{2 p^k} \qquad \qquad \text{dla} \;\, p \geqslant 5 }[/math]


1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n \geqslant 3} }[/math] jest liczbą nieparzystą

Liczba [math]\displaystyle{ n }[/math] jest iloczynem czynników pierwszych nieparzystych, zatem

[math]\displaystyle{ \varphi (n) = \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) \gt \sqrt{p^{\alpha_1}_1} \cdot \ldots \cdot \sqrt{p^{\alpha_s}_s} = \sqrt{n} }[/math]


2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a m} \; }[/math] i [math]\displaystyle{ \; \boldsymbol{q \mid m ,} \; }[/math] gdzie [math]\displaystyle{ \; \boldsymbol{q \geqslant 5} }[/math]

Z założenia [math]\displaystyle{ n = 2^a m = 2^a q^b r }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math] jest liczbą nieparzystą. Zauważmy, że [math]\displaystyle{ \varphi (r) \geqslant \sqrt{r} }[/math], bo może być [math]\displaystyle{ r = 1 }[/math].

[math]\displaystyle{ \varphi (n) = \varphi (2^a q^b r) }[/math]
[math]\displaystyle{ \;\;\,\, = \varphi (2^a) \varphi (q^b) \varphi (r) }[/math]
[math]\displaystyle{ \;\;\,\, \gt 2^{a - 1} \sqrt{2 q^b} \sqrt{r} }[/math]
[math]\displaystyle{ \;\;\,\, = 2^{a - \tfrac{1}{2}} \sqrt{q^b} \sqrt{r} }[/math]
[math]\displaystyle{ \;\;\,\, \geqslant 2^{\tfrac{a}{2}} \sqrt{q^b r} }[/math]
[math]\displaystyle{ \;\;\,\, = \sqrt{2^a q^b r} }[/math]
[math]\displaystyle{ \;\;\,\, = \sqrt{n} }[/math]


3. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a m} \; }[/math] i [math]\displaystyle{ \; \boldsymbol{q \nmid m ,} \; }[/math] gdzie [math]\displaystyle{ \; \boldsymbol{q \geqslant 5} }[/math]

Jeżeli żadna liczba pierwsza [math]\displaystyle{ q \geqslant 5 }[/math] nie dzieli [math]\displaystyle{ m }[/math], to możliwe są tylko dwie sytuacje: [math]\displaystyle{ n = 2^a \, }[/math] i [math]\displaystyle{ \, n = 2^a 3^b }[/math].

3a. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a} }[/math]

[math]\displaystyle{ \varphi (n) = \varphi (2^a) = 2^{a - 1} \gt \sqrt{2^a} = \sqrt{n} \qquad \qquad \;\, \text{dla} \; a \geqslant 3 }[/math]

Twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 2 \, }[/math] i [math]\displaystyle{ \, n = 4 \,\, }[/math] (gdy [math]\displaystyle{ a = 1 \, }[/math] lub [math]\displaystyle{ \, a = 2 }[/math]).

3b. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a 3^b} }[/math]

[math]\displaystyle{ \varphi (n) = \varphi (2^a 3^b) = \varphi (2^a) \varphi (3^b) = 2^{a - 1} \cdot 2 \cdot 3^{b - 1} = 2^a 3^{b - 1} = \sqrt{2^a 3^b} \cdot {\small\frac{\sqrt{2^a 3^b}}{3}} \gt \sqrt{2^a 3^b} }[/math]

Ostatnia nierówność jest prawdziwa, o ile [math]\displaystyle{ \sqrt{2^a 3^b} \gt 3 }[/math], czyli gdy [math]\displaystyle{ 2^a 3^b \gt 9 }[/math], co ma miejsce, gdy [math]\displaystyle{ a \geqslant 2 }[/math] lub [math]\displaystyle{ b \geqslant 2 }[/math].

Twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 6 \; }[/math] (gdy [math]\displaystyle{ a = 1 \, }[/math] i [math]\displaystyle{ \, b = 1 }[/math]).


Zbierając uzyskane wyniki, otrzymujemy: oszacowanie [math]\displaystyle{ \varphi (n) \gt \sqrt{n} }[/math] nie jest prawdziwe dla [math]\displaystyle{ n = 1, 2, 4, 6 }[/math]. Co należało pokazać.


Zadanie H41
Pokazać, że dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt {\small\frac{n}{3 \log n}} }[/math]. Korzystając z tego wyniku, pokazać, że [math]\displaystyle{ \varphi (n) \gt n^{2 / 3} }[/math] dla [math]\displaystyle{ n \geqslant 43 }[/math] oraz że [math]\displaystyle{ \varphi (n) \gt n^{3 / 4} }[/math] dla [math]\displaystyle{ n \geqslant 211 }[/math].

Rozwiązanie

Niech [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], a [math]\displaystyle{ n' = q_1 \cdot \ldots \cdot q_s }[/math] oznacza liczbę, będącą iloczynem dokładnie tych samych czynników pierwszych, jakie występują w liczbie [math]\displaystyle{ n }[/math], natomiast [math]\displaystyle{ n^{\!\ast} = p_1 \cdot \ldots \cdot p_s }[/math] oznacza liczbę, będącą iloczynem dokładnie tej samej ilości czynników pierwszych, przy czym [math]\displaystyle{ p_i }[/math] oznacza teraz [math]\displaystyle{ i }[/math]-tą liczbę pierwszą.

Ponieważ

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} = \prod_{p \mid n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

to

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} = {\small\frac{\varphi (n')}{n'}} \geqslant {\small\frac{\varphi (n^{\!\ast})}{n^{\!\ast}}} = \prod^s_{i = 1} \left( 1 - {\small\frac{1}{p_i}} \right) \geqslant \prod^{p_s}_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{p_s}} }[/math]

Ostatnia równość wynika z prostego wzoru

[math]\displaystyle{ \prod^m_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{2}} \cdot {\small\frac{2}{3}} \cdot {\small\frac{3}{4}} \cdot \ldots \cdot {\small\frac{m - 2}{m - 1}} \cdot {\small\frac{m - 1}{m}} = {\small\frac{1}{m}} }[/math]


Musimy oszacować wartość liczby [math]\displaystyle{ p_s }[/math]. Z twierdzenia B31 wynika, że dla [math]\displaystyle{ m \geqslant 2 }[/math] jest [math]\displaystyle{ P(m) \geqslant 2^{m / 2} }[/math], gdzie funkcja [math]\displaystyle{ P(m) }[/math] jest równa iloczynowi wszystkich liczb pierwszych nie większych od [math]\displaystyle{ m }[/math]. Zatem dla [math]\displaystyle{ p_s \geqslant 2 }[/math] jest

[math]\displaystyle{ n^{\!\ast} = p_1 \cdot \ldots \cdot p_s = P (p_s) \geqslant 2^{p_s / 2} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ p_s \leqslant {\small\frac{2 \log n^{\!\ast}}{\log 2}} }[/math]

Ponieważ [math]\displaystyle{ n \geqslant n' \geqslant n^{\!\ast} }[/math], to

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} \geqslant {\small\frac{1}{p_s}} \geqslant {\small\frac{\log 2}{2 \log n^{\!\ast}}} \geqslant {\small\frac{\log 2}{2 \log n}} \gt {\small\frac{1}{3 \log n}} }[/math]

Ostatecznie otrzymujemy

[math]\displaystyle{ \varphi (n) \gt {\small\frac{n}{3 \log n}} }[/math]

Co należało pokazać.


Rozwiązując drugą część zadania, wystarczy znaleźć, dla jakich [math]\displaystyle{ n }[/math] prawdziwa jest nierówność

[math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{2 / 3} }[/math]

Przebieg funkcji [math]\displaystyle{ {\small\frac{n}{3 \log n}} \, }[/math] i [math]\displaystyle{ \, n^{2 / 3} }[/math] przedstawiliśmy na wykresie

Euler1.png

Punkt przecięcia tych funkcji znajdujemy, wpisując w PARI/GP polecenie

solve(n = 10, 10^5, n/(3*log(n)) - n^(2/3))

Otrzymujemy

[math]\displaystyle{ n = 29409.965 }[/math]

Zatem [math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{2 / 3} }[/math] dla [math]\displaystyle{ n \gt 2.95 \cdot 10^4 }[/math].

Poleceniem

for(n = 1, 3*10^4, if( eulerphi(n) <= n^(2/3), print(n) ))

sprawdzamy, że oszacowanie [math]\displaystyle{ \varphi (n) \gt n^{2 / 3} }[/math] jest prawdziwe dla [math]\displaystyle{ n \geqslant 43 }[/math].


Postępując analogicznie jak wyżej, znajdujemy, dla jakich [math]\displaystyle{ n }[/math] prawdziwa jest nierówność

[math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{3 / 4} }[/math]

Wpisując w PARI/GP polecenie

solve(n = 10, 10^7, n/(3*log(n)) - n^(3/4))

otrzymujemy

[math]\displaystyle{ n = 4447862.680 }[/math]

Zatem [math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{3 / 4} }[/math] dla [math]\displaystyle{ n \gt 4.45 \cdot 10^6 }[/math]

Poleceniem

for(n = 1, 5*10^6, if( eulerphi(n) <= n^(3/4), print(n) ))

sprawdzamy, że oszacowanie [math]\displaystyle{ \varphi (n) \gt n^{3 / 4} }[/math] jest prawdziwe dla [math]\displaystyle{ n \geqslant 211 }[/math]. Co należało pokazać.


Twierdzenie H42
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Liczba [math]\displaystyle{ n }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy [math]\displaystyle{ \varphi (n) = n - 1 }[/math].

Dowód

Dla liczb złożonych [math]\displaystyle{ n \geqslant 4 }[/math] nigdy nie będzie [math]\displaystyle{ \varphi (n) = n - 1 }[/math], bo

[math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2 }[/math]

Dla [math]\displaystyle{ n = 1, 2, 3 }[/math] sprawdzamy bezpośrednio: [math]\displaystyle{ \varphi (1) = 1 \neq 1 - 1 }[/math], [math]\displaystyle{ \varphi (2) = 1 = 2 - 1 }[/math], [math]\displaystyle{ \varphi (3) = 2 = 3 - 1 }[/math]. Co kończy dowód.


Twierdzenie H43
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} \varphi (d) }[/math]

też jest funkcją multiplikatywną (zobacz H30). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Niech [math]\displaystyle{ n \gt 1 }[/math]. Jeżeli [math]\displaystyle{ n = p^{\alpha} }[/math] jest potęgą liczby pierwszej, to otrzymujemy

[math]\displaystyle{ F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d) }[/math]
[math]\displaystyle{ = \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1}) }[/math]
[math]\displaystyle{ = p^{\alpha} }[/math]

Jeżeli [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to

[math]\displaystyle{ F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]
[math]\displaystyle{ \;\;\;\, = n }[/math]

Niech [math]\displaystyle{ 1 \lt d_1 \lt d_2 \lt \ldots \lt n }[/math] będą dzielnikami liczby [math]\displaystyle{ n }[/math]. Zauważmy, że kiedy [math]\displaystyle{ d }[/math] przebiega zbiór dzielników [math]\displaystyle{ \{ 1, d_1, d_2, \ldots, n \} }[/math], to [math]\displaystyle{ e = {\small\frac{n}{d}} }[/math] przebiega wszystkie te liczby tylko w odwrotnej kolejności. Zatem

[math]\displaystyle{ \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right) }[/math]

Co należało pokazać.


Zadanie H44
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Pokazać, że suma liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ {\small\frac{1}{2}} n \varphi (n) }[/math].

Rozwiązanie

Łatwo sprawdzamy, że wzór jest prawdziwy dla [math]\displaystyle{ n = 2 }[/math] i odtąd będziemy przyjmowali, że [math]\displaystyle{ n \geqslant 3 }[/math]. Zatem wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi i niech [math]\displaystyle{ c = {\small\frac{1}{2}} \varphi (n) }[/math]. Zauważmy, że jeżeli liczba [math]\displaystyle{ a }[/math] jest względnie pierwsza z [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n - a }[/math] jest również względnie pierwsza z [math]\displaystyle{ n }[/math], bo [math]\displaystyle{ \gcd (a, n) = \gcd (n - a, n) }[/math]. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od [math]\displaystyle{ n }[/math] i względnie pierwsze z [math]\displaystyle{ n }[/math] w kolejności rosnącej, a pod spodem w kolejności malejącej

Suma liczb w każdej kolumnie jest równa [math]\displaystyle{ n }[/math]. Ponieważ ilość liczb względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ \varphi (n) }[/math], to podwojona suma liczb całkowitych nie większych od [math]\displaystyle{ n }[/math] i pierwszych względem [math]\displaystyle{ n }[/math] wynosi [math]\displaystyle{ n \varphi (n) }[/math]. Co należało pokazać.


Zadanie H45
Pokazać, że dla liczb naturalnych nieparzystych [math]\displaystyle{ n \geqslant 5 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

1. Jeżeli [math]\displaystyle{ n \geqslant 5 }[/math] jest liczbą pierwszą, to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ n }[/math] oraz liczby [math]\displaystyle{ 1, 4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 2 \gt \pi (n) }[/math].

2. Jeżeli [math]\displaystyle{ n = p^a }[/math], gdzie [math]\displaystyle{ a \geqslant 2 }[/math], jest potęgą liczby pierwszej nieparzystej, to [math]\displaystyle{ n \geqslant 9 }[/math] i liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, 4, 8 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math].

3. Jeżeli [math]\displaystyle{ n }[/math] ma więcej niż jeden dzielnik pierwszy nieparzysty, to [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ s \geqslant 2 }[/math]. Zauważmy, że

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} \gt 2^{2 s - 1} }[/math]

Liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1, 2^2, 2^3, \ldots, 2^{2 s - 1} }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 \gt \pi (n) }[/math]

Co należało pokazać.


Zadanie H46
Pokazać, że dla liczb naturalnych [math]\displaystyle{ n \geqslant 91 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

Ponieważ [math]\displaystyle{ p_{2 s} \gt 1 }[/math] i [math]\displaystyle{ p_{2 s} \geqslant p_{s + 1} }[/math], to z zadania A40 natychmiast wynika nierówność

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} }[/math]

która jest prawdziwa dla [math]\displaystyle{ n \geqslant 4 }[/math].

Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] jest zawsze prawdziwa.

Przez [math]\displaystyle{ p_1, p_2, \ldots, p_k, \ldots }[/math] oznaczymy kolejne liczby pierwsze. Niech [math]\displaystyle{ n \geqslant 2 }[/math] będzie liczbą naturalną i [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ q_i }[/math] oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.

Wśród kolejnych [math]\displaystyle{ 2 s }[/math] liczb pierwszych znajduje się przynajmniej [math]\displaystyle{ s }[/math] liczb pierwszych różnych od każdej z liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez [math]\displaystyle{ r_1, \ldots, r_s }[/math], to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania

  •    dla najmniejszej liczby [math]\displaystyle{ r_1 \leqslant p_{s + 1} }[/math]
  •    dla wszystkich liczb [math]\displaystyle{ r_j \leqslant p_{2 s} }[/math] dla [math]\displaystyle{ j = 1, \ldots, s }[/math].

Korzystając z wypisanej na początku dowodu nierówności, dla [math]\displaystyle{ s \geqslant 4 }[/math] mamy

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j }[/math]

gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math].

Wynika stąd, że jeśli [math]\displaystyle{ s \geqslant 4 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1 }[/math] i [math]\displaystyle{ r_1 r_j }[/math], gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + s + 1\gt \pi (n) }[/math]

Co mieliśmy pokazać.


Uwzględniając rezultat pokazany w zadaniu H45, pozostaje sprawdzić przypadki gdy [math]\displaystyle{ n = 2^a }[/math], [math]\displaystyle{ n = 2^a p^b }[/math], [math]\displaystyle{ n = 2^a p^b q^c }[/math], gdzie [math]\displaystyle{ a, b, c \in \mathbb{Z}_+ }[/math].

1. Niech [math]\displaystyle{ n = 2^a }[/math]. Jeśli [math]\displaystyle{ n \geqslant 16 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ 2 }[/math]) oraz liczby [math]\displaystyle{ 1, 9, 15 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math]

2. Niech [math]\displaystyle{ n = 2^a p^b }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5 \} }[/math] i jeśli tylko [math]\displaystyle{ n \gt 5^3 = 125 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 2 + 3 \gt \pi (n) }[/math]

3. Niech [math]\displaystyle{ n = 2^a p^b q^c }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math] oraz różną od [math]\displaystyle{ q }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5, 7 \} }[/math] i jeśli [math]\displaystyle{ n \gt 7^4 = 2401 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3, r^4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 3 + 4 \gt \pi (n) }[/math]

Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy [math]\displaystyle{ n }[/math] jest liczbą parzystą i [math]\displaystyle{ n \leqslant 2401 }[/math]. W GP/PARI wystarczy napisać polecenie

for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))

Nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] nie jest prawdziwa dla [math]\displaystyle{ n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \} }[/math]. Co kończy dowód.


Zadanie H47
Pokazać, że [math]\displaystyle{ \varphi (n) = 2^a }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ n = 2^b q_1 \cdot \ldots \cdot q_s }[/math], gdzie [math]\displaystyle{ q_1, \ldots, q_s }[/math] są liczbami pierwszymi Fermata: [math]\displaystyle{ 3, 5, 17, 257, 65537 }[/math].

Rozwiązanie

W przypadku, gdy [math]\displaystyle{ 2 \mid n }[/math], łatwo zauważamy, że liczba [math]\displaystyle{ 2 }[/math] może występować w dowolnej potędze, bo [math]\displaystyle{ \varphi (2^b) = 2^{b - 1} }[/math].

W przypadku, gdy [math]\displaystyle{ p \mid n }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, mamy [math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} }[/math] i równie łatwo zauważmy, że musi być [math]\displaystyle{ k = 1 }[/math], a liczba [math]\displaystyle{ p - 1 }[/math] musi być potęgą liczby [math]\displaystyle{ 2 }[/math]. Zatem liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ p = 2^t + 1 }[/math], co jest możliwe tylko wtedy, gdy [math]\displaystyle{ t }[/math] jest potęgą liczby [math]\displaystyle{ 2 }[/math] (zobacz H48), czyli [math]\displaystyle{ p }[/math] musi być liczbą pierwszą Fermata. Co należało pokazać.



Uzupełnienie

Twierdzenie H48
Niech [math]\displaystyle{ a, n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ a \geqslant 2 }[/math]. Jeżeli liczba [math]\displaystyle{ a^n + 1 }[/math] jest liczbą pierwszą, to [math]\displaystyle{ a }[/math] jest liczbą parzystą i [math]\displaystyle{ n = 2^m }[/math].

Dowód

Gdyby liczba [math]\displaystyle{ a }[/math] była nieparzysta, to liczba [math]\displaystyle{ a^n + 1 \geqslant 4 }[/math] byłaby parzysta i nie mogłaby być liczbą pierwszą.

Niech wykładnik [math]\displaystyle{ n = x y }[/math] będzie liczbą złożoną, a [math]\displaystyle{ x }[/math] będzie liczbą nieparzystą. Wtedy

[math]\displaystyle{ a^n + 1 = (a^y)^x + 1 }[/math]

Oznaczając [math]\displaystyle{ b = a^y }[/math] oraz [math]\displaystyle{ x = 2 k + 1 }[/math], otrzymujemy

[math]\displaystyle{ a^n + 1 = (a^y)^x + 1 = b^x + 1 = b^{2 k + 1} + 1 = (b + 1) \cdot (1 - b + b^2 - b^3 + \ldots + b^{2 k - 2} - b^{2 k - 1} + b^{2 k}) }[/math]

Zatem w takim przypadku [math]\displaystyle{ a^n + 1 }[/math] jest liczbą złożoną. Wynika stąd, że wykładnik [math]\displaystyle{ n }[/math] nie może zawierać czynników nieparzystych, czyli musi być [math]\displaystyle{ n = 2^m }[/math]. Co należało pokazać.








Przypisy

  1. Wikipedia, Największy wspólny dzielnik, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Moc zbioru, (Wiki-pl), (Wiki-en)
  3. Wikipedia, Zasada włączeń i wyłączeń, (Wiki-pl), (Wiki-en)
  4. Wikipedia, Funkcja φ, (Wiki-pl), (Wiki-en)