Różnica pomiędzy stronami "Testy pierwszości. Liczby pseudopierwsze Lucasa i liczby silnie pseudopierwsze Lucasa. Test BPSW" i "Największy wspólny dzielnik, element odwrotny modulo, funkcja Eulera"

Z Henryk Dąbrowski
(Różnica między stronami)
Przejdź do nawigacji Przejdź do wyszukiwania
 
 
Linia 1: Linia 1:
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">11.01.2023</div>
+
<div style="text-align:right; font-size: 130%; font-style: italic; font-weight: bold;">22.12.2023</div>
  
 
__FORCETOC__
 
__FORCETOC__
Linia 5: Linia 5:
  
  
== Ciągi Lucasa ==
+
== Największy wspólny dzielnik ==
  
<span style="font-size: 110%; font-weight: bold;">Definicja N1</span><br/>
+
<span id="H1" style="font-size: 110%; font-weight: bold;">Definicja H1</span><br/>
Niech <math>P, Q \in \mathbb{Z} \setminus \{0\}</math> oraz <math>D = P^2 - 4 Q \neq 0</math>. Ciągi Lucasa <math>U_n = U_n (P, Q)</math> i <math>V_n = V_n (P, Q)</math> definiujemy następująco
+
Niech będą dane dwie liczby całkowite <math>a</math> i <math>b</math> niebędące jednocześnie zerami. Największym wspólnym dzielnikiem<ref name="GCD1"/> liczb <math>a</math> i <math>b</math> będziemy nazywali liczbę całkowitą <math>D</math> taką, że
  
::<math>U_n = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} = {\small\frac{\alpha^n - \beta^n}{\sqrt{D}}}</math>
+
:#&nbsp;&nbsp;<math> D \mid a \quad \text{i} \quad D \mid b</math>
 +
:#&nbsp;&nbsp;<math>\,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D</math>
  
::<math>V_n = \alpha^n + \beta^n</math>
+
gdzie <math>d</math> jest dowolną liczbą całkowitą.
  
gdzie liczby
 
  
::<math>\alpha = {\small\frac{P + \sqrt{D}}{2}}</math>
 
  
::<math>\beta = {\small\frac{P - \sqrt{D}}{2}}</math>
+
<span id="H2" style="font-size: 110%; font-weight: bold;">Uwaga H2</span><br/>
 +
Tak zdefiniowaną liczbę <math>D</math> będziemy oznaczali przez <math>\gcd (a, b)</math>. Ponieważ <math>1 \mid a \;</math> i <math>\; 1 \mid b</math>, to z&nbsp;definicji wynika natychmiast, że <math>\gcd (a, b) \geqslant 1</math>.
  
są pierwiastkami równania <math>x^2 - P x + Q = 0</math>.
 
  
  
 +
<span id="H3" style="font-size: 110%; font-weight: bold;">Zadanie H3</span><br/>
 +
Pokazać, że
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N2</span><br/>
+
::<math>d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b</math>
Zauważmy, że:
 
  
::<math>P = \alpha + \beta</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
::<math>Q = \alpha \beta</math>
+
<math>\Large{\Longrightarrow}</math>
  
::<math>\sqrt{D} = \alpha - \beta</math>
+
Z założenia <math>d \mid \gcd (a, b)</math>. Z&nbsp;definicji największego wspólnego dzielnika <math>\gcd (a, b) \mid a</math>, zatem <math>d \mid a</math>. Analogicznie pokazujemy, że <math>d \mid b</math>.
  
::<math>U_0 = 0</math>, <math>U_1 = 1</math>, <math>V_0 = 2</math> i <math>V_1 = P</math>
+
<math>\Large{\Longleftarrow}</math>
  
 +
Z założenia <math>a = r d</math>, <math>b = s d</math>. Z&nbsp;lematu Bézouta (zobacz C73) istnieją takie liczby całkowite <math>x, y</math>, że
  
Warunek <math>P^2 - 4 Q \neq 0</math> wyklucza następujące pary <math>(P, Q)</math>
+
::<math>\gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y)</math>
  
::<math>(0, 0), (\pm 2, 1), (\pm 4, 4), (\pm 6, 9), (\pm 8, 16), (\pm 10, 25), (\pm 12, 36), ..., (\pm 2 n, n^2), ...</math>
+
Zatem <math>d \mid \gcd (a, b)</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N3</span><br/>
+
<span id="H4" style="font-size: 110%; font-weight: bold;">Twierdzenie H4</span><br/>
Oczywiście liczby <math>\alpha</math> i <math>\beta</math> są również pierwiastkami równania
+
Jeżeli liczby całkowite <math>a, b</math> nie są jednocześnie równe zero i <math>\gcd (a, b) = a x + b y</math>, to <math>\gcd (x, y) = 1</math>.
  
::<math>x^{n + 2} - P x^{n + 1} + Q x^n = 0</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite <math>x, y</math> zawsze istnieją. Niech <math>\gcd (a, b) = d > 0</math>, zatem <math>a = d k</math> i <math>b = d m</math>, czyli
  
Wynika stąd, że ciągi <math>(\alpha^n)</math> i <math>(\beta^n)</math> spełniają równania rekurencyjne
+
::<math>(d k) x + (d m) y = d</math>
  
::<math>\alpha^{n + 2} = P \alpha^{n + 1} - Q \alpha^n</math>
+
Co oznacza, że <math>k x + m y = 1</math>, ale <math>\gcd (x, y)</math> jest dzielnikiem <math>k x + m y</math> (bo jest dzielnikiem <math>x</math> i <math>y</math>), zatem <math>\gcd (x, y) \mid 1</math>, czyli <math>\gcd (x, y) = 1</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\beta^{n + 2} = P \beta^{n + 1} - Q \beta^n</math>
 
  
Ciągi Lucasa <math>(U_n)</math> i <math>(V_n)</math> spełniają identyczne równania rekurencyjne jak ciągi <math>(\alpha^n)</math> i <math>(\beta^n)</math>. Istotnie, odejmując i&nbsp;dodając stronami wypisane powyżej równania, otrzymujemy
 
  
::<math>U_{n + 2} = P U_{n + 1} - Q U_n</math>
+
<span id="H5" style="font-size: 110%; font-weight: bold;">Twierdzenie H5</span><br/>
 +
Niech <math>a, b, k \in \mathbb{Z}</math>. Prawdziwy jest wzór
  
::<math>V_{n + 2} = P V_{n + 1} - Q V_n</math>
+
::<math>\gcd (a + k b, b) = \gcd (a, b)</math>
  
Dlatego możemy zdefiniować ciągi Lucasa <math>(U_n)</math> i <math>(V_n)</math> w&nbsp;sposób równoważny
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>d_1 = \gcd (a + k b, b) \;</math> i <math>\; d_2 = \gcd (a, b)</math>.
  
 +
Z definicji <math>d_1 \mid (a + k b) \;</math> i <math>\; d_1 \mid b</math>, zatem <math>a + k b = x d_1 \;</math> i <math>\; b = y d_1</math>, czyli <math>a + k x d_1 = x d_1</math>, skąd natychmiast wynika, że <math>d_1 \mid a</math>. Ponieważ <math>d_1 \mid b</math>, to <math>d_1 \mid d_2</math> (zobacz&nbsp;[[#H3|H3]]).
  
 +
Z definicji <math>d_2 \mid a \;</math> i <math>\; d_2 \mid b</math>, zatem <math>d_2 \mid (a + k b) \;</math> i <math>\; d_2 \mid b</math>, czyli <math>d_2 \mid d_1</math>.
  
<span style="font-size: 110%; font-weight: bold;">Definicja N4</span><br/>
+
Ponieważ <math>d_1 \mid d_2 \;</math> i <math>\; d_2 \mid d_1</math>, to <math>| d_1 | = | d_2 |</math>. Co kończy dowód.<br/>
Niech <math>P, Q \in \mathbb{Z} \setminus \{0\}</math> oraz <math>D = P^2 - 4 Q \neq 0</math>. Ciągi Lucasa <math>(U_n)</math> i <math>(V_n)</math> określone są następującymi wzorami rekurencyjnymi
+
&#9633;
 +
{{\Spoiler}}
  
::<math>U_0 = 0</math>, <math>U_1 = 1</math>, <math>U_n = P U_{n - 1} - Q U_{n - 2}</math>
 
  
::<math>V_0 = 2</math>, <math>V_1 = P</math>, <math>V_n = P V_{n - 1} - Q V_{n - 2}</math>
 
  
 +
<span id="H6" style="font-size: 110%; font-weight: bold;">Twierdzenie H6</span><br/>
 +
Niech <math>a, b, m \in \mathbb{Z}</math>. Prawdziwa jest następująca równoważność
  
 +
::<math>\gcd (a, m) = 1 \quad  \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład N5</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Początkowe wyrazy ciągów Lucasa
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
<math>\Large{\Longrightarrow}</math>
|-
 
! <math>\boldsymbol{n}</math> !! <math>\boldsymbol{U_n (P, Q)}</math> !! <math>\boldsymbol{V_n (P, Q)}</math>
 
|-
 
| &nbsp;&nbsp;<math>0</math>&nbsp;&nbsp; || <math>0</math> || <math>2</math>
 
|-
 
| &nbsp;&nbsp;<math>1</math>&nbsp;&nbsp; || <math>1</math> || <math>P</math>
 
|-
 
| &nbsp;&nbsp;<math>2</math>&nbsp;&nbsp; || <math>P</math> || <math>P^2 - 2 Q</math>
 
|-
 
| &nbsp;&nbsp;<math>3</math>&nbsp;&nbsp; || <math>P^2 - Q</math> || <math>P^3 - 3 P Q</math>
 
|-
 
| &nbsp;&nbsp;<math>4</math>&nbsp;&nbsp; || <math>P^3 - 2 P Q</math> || <math>P^4 - 4 P^2 Q + 2 Q^2</math>
 
|-
 
| &nbsp;&nbsp;<math>5</math>&nbsp;&nbsp; || <math>P^4 - 3 P^2 Q + Q^2</math> || <math>P^5 - 5 P^3 Q + 5 P Q^2</math>
 
|-
 
| &nbsp;&nbsp;<math>6</math>&nbsp;&nbsp; || <math>P^5 - 4 P^3 Q + 3 P Q^2</math> || <math>P^6 - 6 P^4 Q + 9 P^2 Q^2 - 2 Q^3</math>
 
|-
 
| &nbsp;&nbsp;<math>7</math>&nbsp;&nbsp; || <math>P^6 - 5 P^4 Q + 6 P^2 Q^2 - Q^3</math> || <math>P^7 - 7 P^5 Q + 14 P^3 Q^2 - 7 P Q^3</math>
 
|-
 
| &nbsp;&nbsp;<math>8</math>&nbsp;&nbsp; || <math>P^7 - 6 P^5 Q + 10 P^3 Q^2 - 4 P Q^3</math> || <math>P^8 - 8 P^6 Q + 20 P^4 Q^2 - 16 P^2 Q^3 + 2 Q^4</math>
 
|-
 
| &nbsp;&nbsp;<math>9</math>&nbsp;&nbsp; || <math>P^8 - 7 P^6 Q + 15 P^4 Q^2 - 10 P^2 Q^3 + Q^4</math> || <math>P^9 - 9 P^7 Q + 27 P^5 Q^2 - 30 P^3 Q^3 + 9 P Q^4</math>
 
|}
 
  
 +
Niech <math>\gcd (a b, m) = d</math>. Z&nbsp;definicji <math>d \mid a b</math> i <math>d \mid m</math>. Gdyby było <math>d > 1</math>, to istniałaby liczba pierwsza <math>p</math> taka, że <math>p \mid d</math> i&nbsp;mielibyśmy <math>p \mid a b</math> i <math>p \mid m</math>. Jeżeli <math>p \mid a b</math>, to <math>p \mid a</math> lub <math>p \mid b</math> (zobacz C74). W&nbsp;przypadku, gdy <math>p \mid a</math> dostajemy <math>\gcd (a, m) \geqslant p > 1</math>, wbrew założeniu, że <math>\gcd (a, m) = 1</math>. Analogicznie pokazujemy sprzeczność, gdy <math>p \mid b</math>.
  
 +
<math>\Large{\Longleftarrow}</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N6</span><br/>
+
Niech <math>\gcd (a, m) = d</math>. Z&nbsp;definicji <math>d \mid a</math> i <math>d \mid m</math>, zatem również <math>d \mid a b</math> i <math>d \mid m</math>. Mamy stąd
W PARI/GP możemy napisać prosty kod, który pozwoli obliczyć wartości wyrazów <math>U_n (P, Q)</math> i <math>V_n (P, Q)</math>
 
  
<span style="font-size: 90%; color:black;">LucasU(n, P, Q) = '''if'''( n == 0, 0, '''if'''( n == 1, 1, P*LucasU(n-1, P, Q) - Q*LucasU(n-2, P, Q) ) )</span>
+
::<math>1 = \gcd (a b, m) \geqslant d \geqslant 1</math>
 
 
<span style="font-size: 90%; color:black;">LucasV(n, P, Q) = '''if'''( n == 0, 2, '''if'''( n == 1, P, P*LucasV(n-1, P, Q) - Q*LucasV(n-2, P, Q) ) )</span>
 
  
 +
Czyli musi być <math>d = 1</math>. Analogicznie pokazujemy, że <math>\gcd (b, m) = 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N7</span><br/>
 
Niech <math>D = P^2 - 4 Q</math>. Wyrazy ciągów Lucasa można przedstawić w&nbsp;postaci sumy
 
  
::<math>2^{n - 1} U_n = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
+
<span id="H7" style="font-size: 110%; font-weight: bold;">Twierdzenie H7</span><br/>
 +
Dla <math>a, b, m \in \mathbb{Z}</math> jest
  
::<math>2^{n - 1} V_n = \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} D^k</math>
+
::<math>\gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m)</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Oznaczmy <math>\delta = \sqrt{D}</math>, zatem <math>2 \alpha = P + \delta</math> i <math>2 \beta = P - \delta</math>. Ze wzoru dwumianowego, mamy
+
Wprowadźmy oznaczenia
 
 
::<math>2^n \alpha^n = (P + \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} \delta^j</math>
 
 
 
::<math>2^n \beta^n = (P - \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (- \delta)^j</math>
 
 
 
Obliczając sumę powyższych wzorów, otrzymujemy
 
 
 
::<math>2^n (\alpha^n + \beta^n) = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (\delta^j + (- \delta)^j)</math>
 
 
 
:::::<math>\quad \: = \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} \cdot 2 \delta^{2 k}</math>
 
 
 
:::::<math>\quad \: = 2 \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} D^k</math>
 
 
 
gdzie <math>j = 2 k</math> i&nbsp;sumowanie przebiega od <math>k = 0</math> do <math>k = \lfloor n / 2 \rfloor</math>
 
 
 
Zatem
 
 
 
::<math>2^{n - 1} V_n = \sum_{k = 0}^{\lfloor n / 2 \rfloor} \binom{n}{2 k} P^{n - 2 k} D^k</math>
 
 
 
  
Obliczając różnicę tych wzorów, mamy
+
::<math>r = \gcd (a b, m)</math>
  
::<math>2^n (\alpha^n - \beta^n) = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (\delta^j - (- \delta)^j)</math>
+
::<math>s = \gcd (a, m)</math>
  
:::::<math>\quad \: = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} \cdot 2 \delta^{2 k + 1}</math>
+
::<math>t = \gcd (b, m)</math>
  
:::::<math>\quad \: = 2 \delta \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
+
Z lematu Bézouta (zobacz C73) istnieją takie liczby <math>x, y, X, Y</math>, że
  
gdzie <math>j = 2 k + 1</math> i&nbsp;sumowanie przebiega od <math>k = 0</math> do <math>k = \lfloor (n - 1) / 2 \rfloor</math>
+
::<math>s = a x + m y</math>
  
 +
::<math>t = b X + m Y</math>
  
 
Zatem
 
Zatem
  
::<math>2^{n - 1} \cdot {\small\frac{\alpha^n - \beta^n}{\sqrt{D}}} = 2^{n - 1} U_n = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
+
::<math>s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y</math>
  
Co należało pokazać.<br/>
+
ale <math>r \mid a b</math> i <math>r \mid m</math>, skąd otrzymujemy, że <math>r \mid s t</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 161: Linia 130:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N8</span><br/>
+
<span id="H8" style="font-size: 110%; font-weight: bold;">Twierdzenie H8</span><br/>
Korzystając z&nbsp;twierdzenia N7, możemy napisać proste funkcje do znajdowania postaci kolejnych wyrazów <math>U_n (P, Q)</math> i <math>V_n (P, Q)</math>
+
Jeżeli liczby <math>a, b</math> są względnie pierwsze, to
 
 
<span style="font-size: 90%; color:black;">U(n) = 2^(1 - n)*'''sum'''(k=0, '''floor'''((n-1)/2), '''binomial'''(n, 2*k+1) * P^(n-2*k-1) * (P^2-4*Q)^k)</span>
 
 
 
<span style="font-size: 90%; color:black;">V(n) = 2^(1 - n)*'''sum'''(k=0, '''floor'''(n/2), '''binomial'''(n, 2*k) * P^(n-2*k) * (P^2-4*Q)^k)</span>
 
 
 
 
 
 
 
Często możemy spotkać założenie <math>P \geqslant 1</math>. Poniższe twierdzenie wyjaśnia, dlaczego tak jest.
 
 
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N9</span><br/>
 
Jeżeli <math>(U_n)</math> i <math>(V_n)</math> są ciągami Lucasa, to
 
  
::<math>U_n (- P, Q) = (- 1)^{n - 1} U_n (P, Q)</math>
+
::<math>\gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m)</math>
 
 
::<math>V_n (- P, Q) = (- 1)^n V_n (P, Q)</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech
+
Wprowadźmy oznaczenia
 
 
::<math>\alpha = \frac{P + \sqrt{D}}{2} \qquad \qquad \;\; \beta = \frac{P - \sqrt{D}}{2}</math>
 
 
 
::<math>a = \frac{- P + \sqrt{D}}{2} \qquad \qquad b = \frac{- P - \sqrt{D}}{2}</math>
 
 
 
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
 
 
 
::<math>x^2 - P x + Q = 0</math>
 
 
 
::<math>x^2 + P x + Q = 0</math>
 
 
 
Zatem definiują one ciągi Lucasa
 
 
 
::<math>U_n (P, Q) = \frac{\alpha^n - \beta^n}{\alpha - \beta} \qquad \qquad \;\; V_n (P, Q) = \alpha^n + \beta^n</math>
 
 
 
::<math>U_n (- P, Q) = \frac{a^n - b^n}{a - b} \qquad \qquad V_n (- P, Q) = a^n + b^n</math>
 
  
Zauważmy, że
+
::<math>r = \gcd (a b, m)</math>
  
::<math>\alpha - \beta = a - b = \sqrt{D}</math>
+
::<math>s = \gcd (a, m)</math>
  
::<math>\frac{a}{\beta} = \frac{b}{\alpha} = - 1</math>
+
::<math>t = \gcd (b, m)</math>
  
Łatwo znajdujemy
+
Z założenia <math>\gcd (a, b) = 1</math>. Ponieważ <math>s \mid a</math> oraz <math>t \mid b</math>, to <math>\gcd (s, t) = 1</math>, zatem (zobacz C75)
  
::<math>U_n (- P, Q) = \frac{a^n - b^n}{a - b} = \frac{(- \beta)^n - (- \alpha)^n}{\sqrt{D}} = (- 1)^n \cdot \frac{\beta^n - \alpha^n}{\alpha - \beta} = (- 1)^{n - 1} \cdot U_n (P, Q)</math>
+
::<math>s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b</math>
  
::<math>V_n (- P, Q) = a^n + b^n = (- \beta)^n + (- \alpha)^n = (- 1)^n \cdot (\alpha^n + \beta^n) = (- 1)^n \cdot V_n (P, Q)</math>
+
::<math>s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m</math>
  
Co należało pokazać.<br/>
+
Wynika stąd, że <math>s t \mid \gcd (a b, m)</math>, czyli <math>s t \mid r</math>. Z&nbsp;poprzedniego twierdzenia wiemy, że <math>r \mid s t</math>, zatem <math>|r| = |s t|</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 216: Linia 156:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie N10</span><br/>
+
<span id="H9" style="font-size: 110%; font-weight: bold;">Twierdzenie H9</span><br/>
Pokazać, że jeżeli <math>P, Q \in \mathbb{Z} \setminus \{ 0 \}</math> i <math>D = P^2 - 4 Q \neq 0</math>, to
+
Jeżeli liczby <math>b, m</math> są względnie pierwsze, to
  
::<math>U_n (2 P, 4 Q) = 2^{n - 1} U_n (P, Q)</math>
+
::<math>\gcd (a b, m) = \gcd (a, m)</math>
  
::<math>V_n (2 P, 4 Q) = 2^n V_n (P, Q)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Wprowadźmy oznaczenia
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>r = \gcd (a b, m)</math>
Niech
 
  
::<math>\alpha = {\small\frac{P + \sqrt{D}}{2}} \qquad \qquad \;\; \beta = {\small\frac{P - \sqrt{D}}{2}}</math>
+
::<math>s = \gcd (a, m)</math>
  
::<math>a = P + \sqrt{D} \qquad \qquad \;\; b = P - \sqrt{D}</math>
+
Z lematu Bézouta istnieją takie liczby <math>x, y</math>, że
  
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
+
::<math>r = a b x + m y</math>
  
::<math>x^2 - P x + Q = 0</math>
+
Ale <math>s \mid a \;</math> i <math>\; s \mid m</math>, zatem <math>s \mid r</math>.
  
::<math>x^2 - 2 P x + 4 Q = 0</math>
+
Z założenia <math>\gcd (b, m) = 1</math>, zatem z&nbsp;twierdzenia [[#H7|H7]] wynika natychmiast, że <math>r \mid s</math>. Ponieważ <math>s \mid r \;</math> i <math>\; r \mid s</math>, to <math>| r | = | s |</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Zatem definiują one ciągi Lucasa
 
  
::<math>U_n (P, Q) = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \qquad \qquad \;\;\; V_n (P, Q) = \alpha^n + \beta^n</math>
 
  
::<math>U_n (2 P, 4 Q) = {\small\frac{a^n - b^n}{a - b}} \qquad \qquad V_n (2 P, 4 Q) = a^n + b^n</math>
+
<span id="H10" style="font-size: 110%; font-weight: bold;">Twierdzenie H10</span><br/>
 +
Jeżeli liczby <math>a, b</math> nie są jednocześnie równe zero i <math>m \neq 0</math>, to
  
Zauważmy, że
+
::<math>\gcd (a m, b m) = | m | \cdot \gcd (a, b)</math>
  
::<math>\alpha - \beta = \sqrt{D}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
+
Oznaczmy <math>d = \gcd (a, b) \;</math> i <math>\; D = \gcd (a m, b m)</math>. Pokażemy, że <math>d m \mid D</math>.
::<math>a - b = 2 \sqrt{D}</math>
 
  
::<math>{\small\frac{a}{\alpha}} = {\small\frac{b}{\beta}} = 2</math>
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d \mid a \quad \text{i} \quad d \mid b & \text{(zobacz H3)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid a m \quad \text{i} \quad d m \mid b m & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid \gcd (a m, b m) & \text{(zobacz H3)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m \mid D & \\
 +
\end{array}
 +
</math>
 +
</div>
  
Łatwo znajdujemy
+
Pokażemy, że <math>D \mid d m</math>.
  
::<math>U_n (2 P, 4 Q) = {\small\frac{a^n - b^n}{a - b}} = {\small\frac{(2 \alpha)^n - (2 \beta)^n}{2 \sqrt{D}}} = 2^{n - 1} \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} = 2^{n - 1} U_n (P, Q)</math>
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d = a x + b y & \text{(lemat Bézouta C73)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & d m = a m x + b m y & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & D \mid d m & \\
 +
\end{array}
 +
</math>
 +
</div>
  
::<math>V_n (2 P, 4 Q) = a^n + b^n = (2 \alpha)^n + (2 \beta)^n = 2^n (\alpha^n + \beta^n) = 2^n V_n (P, Q)</math>
+
Ostatnia implikacja korzysta z&nbsp;tego, że <math>D \mid a m \;</math> i <math>\; D \mid b m</math> (zobacz [[#H3|H3]]). Ponieważ <math>d m \mid D \;</math> i <math>\; D \mid d m</math>, to <math>| D | = | d m |</math>. Co należało pokazać.<br/>
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 262: Linia 222:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie N11</span><br/>
+
<span style="font-size: 110%; font-weight: bold;">Zadanie H11</span><br/>
Pokazać, że jeżeli <math>Q \in \mathbb{Z} \setminus \{ 0 \}</math> oraz <math>P = 4 Q - 1</math>, to
+
Pokazać, że jeżeli liczby <math>a, b</math> nie są jednocześnie równe zero, to
 
 
::<math>U_{2 k} (P, P Q) = - (- P)^k U_{2 k} (1, Q)</math>
 
 
 
::<math>U_{2 k + 1} (P, P Q) = (- P)^k V_{2 k + 1} (1, Q)</math>
 
 
 
::<math>V_{2 k} (P, P Q) = (- P)^k V_{2 k} (1, Q)</math>
 
  
::<math>V_{2 k + 1} (P, P Q) = - (- P)^{k + 1} U_{2 k + 1} (1, Q)</math>
+
::<math>\gcd \left( {\small\frac{a}{\gcd (a, b)}}, {\small\frac{b}{\gcd (a, b)}} \right) = 1</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Niech
+
Z twierdzenia H10 otrzymujemy
  
::<math>\alpha = {\small\frac{1 + \sqrt{- P}}{2}} \qquad \qquad \beta = {\small\frac{1 - \sqrt{- P}}{2}}</math>
+
::<math>\gcd (a, b) = \gcd \left( \gcd (a, b) \cdot {\small\frac{a}{\gcd (a, b)}}, \gcd (a, b) \cdot {\small\frac{b}{\gcd (a, b)}} \right)</math>
  
::<math>a = {\small\frac{P + \sqrt{- P}}{2}} \qquad \qquad b = {\small\frac{P - \sqrt{- P}}{2}}</math>
+
::::<math>\;\;\;\; = \gcd (a, b) \cdot \gcd \left( {\small\frac{a}{\gcd (a, b)}}, {\small\frac{b}{\gcd (a, b)}} \right)</math>
 
 
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
 
 
 
::<math>x^2 - x + {\small\frac{P + 1}{4}} = 0</math>
 
 
 
::<math>x^2 - P x + {\small\frac{P (P + 1)}{4}} = 0</math>
 
 
 
Z założenia <math>P = 4 Q - 1</math>, zatem
 
 
 
::<math>x^2 - x + Q = 0</math>
 
 
 
::<math>x^2 - P x + P Q = 0</math>
 
 
 
Czyli definiują one ciągi Lucasa
 
 
 
::<math>U_n (1, Q) = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \qquad \qquad \:\:\: V_n (1, Q) = \alpha^n + \beta^n</math>
 
 
 
::<math>U_n (P, P Q) = {\small\frac{a^n - b^n}{a - b}} \qquad \qquad V_n (P, P Q) = a^n + b^n</math>
 
 
 
Zauważmy, że
 
 
 
::<math>\alpha - \beta = a - b = \sqrt{- P}</math>
 
 
 
::<math>{\small\frac{a}{\beta}} = {\small\frac{P + \sqrt{- P}}{1 - \sqrt{- P}}} = \sqrt{- P}</math>
 
 
 
::<math>{\small\frac{b}{\alpha}} = {\small\frac{P - \sqrt{- P}}{1 + \sqrt{- P}}} = - \sqrt{- P}</math>
 
 
 
 
 
Łatwo znajdujemy
 
 
 
::<math>U_{2 k} (P, P Q) = \frac{a^{2 k} - b^{2 k}}{a - b} = \frac{\left( \beta \sqrt{- P} \right)^{2 k} - \left( - \alpha \sqrt{- P} \right)^{2 k}}{\sqrt{- P}} = \frac{(- P)^k (\beta^{2 k} - \alpha^{2 k})}{\alpha - \beta} = - (- P)^k U_{2 k} (1, Q)</math>
 
 
 
 
 
::<math>U_{2 k + 1} (P, P Q) = \frac{a^{2 k + 1} - b^{2 k + 1}}{a - b} = \frac{\left( \beta \sqrt{- P} \right)^{2 k + 1} - \left( - \alpha \sqrt{- P} \right)^{2 k + 1}}{\sqrt{- P}} = (- P)^k (\beta^{2 k + 1} + \alpha^{2 k + 1}) = (- P)^k V_{2 k + 1} (1, Q)</math>
 
 
 
 
 
::<math>V_{2 k} (P, P Q) = a^{2 k} + b^{2 k} = \left( \beta \sqrt{- P} \right)^{2 k} + \left( - \alpha \sqrt{- P} \right)^{2 k} = (- P)^k (\alpha^{2 k} + \beta^{2 k}) = (- P)^k V_{2 k} (1, Q)</math>
 
  
 +
Zatem
  
::<math>V_{2 k + 1} (P, P Q) = a^{2 k + 1} + b^{2 k + 1} = \left( \beta \sqrt{- P} \right)^{2 k + 1} + \left( - \alpha \sqrt{- P} \right)^{2 k + 1} = (- P)^{k + 1} \cdot \frac{\beta^{2 k + 1} - \alpha^{2 k + 1}}{\sqrt{- P}} = - (- P)^{k + 1} U_{2 k + 1} (1, Q)</math>
+
::<math>\gcd \left( {\small\frac{a}{\gcd (a, b)}}, {\small\frac{b}{\gcd (a, b)}} \right) = 1</math>
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 326: Linia 244:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie N12</span><br/>
+
<span id="H12" style="font-size: 110%; font-weight: bold;">Zadanie H12</span><br/>
Pokazać, że jeżeli <math>Q \in \mathbb{Z} \setminus \{ 0 \}</math> oraz <math>P = 4 Q + 1</math>, to
+
Pokazać, że <math>a \mid b</math> wtedy i&nbsp;tylko wtedy, gdy <math>a \mid \gcd (a, b)</math>.
 
 
::<math>U_{2 k} (P, P Q) = P^k U_{2 k} (1, - Q)</math>
 
 
 
::<math>U_{2 k + 1} (P, P Q) = P^k V_{2 k + 1} (1, - Q)</math>
 
 
 
::<math>V_{2 k} (P, P Q) = P^k V_{2 k} (1, - Q)</math>
 
 
 
::<math>V_{2 k + 1} (P, P Q) = P^{k + 1} U_{2 k + 1} (1, - Q)</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Niech
 
  
::<math>\alpha = {\small\frac{1 + \sqrt{P}}{2}} \qquad \qquad \beta = {\small\frac{1 - \sqrt{P}}{2}}</math>
+
<math>\Large{\Longrightarrow}</math>
  
::<math>a = {\small\frac{P + \sqrt{P}}{2}} \qquad \qquad b = {\small\frac{P - \sqrt{P}}{2}}</math>
+
Zakładając, że <math>a \mid b</math>, dostajemy
  
Liczby <math>\alpha, \beta</math> oraz <math>a, b</math> są odpowiednio pierwiastkami równań
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  a \mid b & \qquad \Longrightarrow \qquad & b = k a & \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & \gcd (a, b) = \gcd (a, k a) = | a | \cdot \gcd (1, k) = | a | & \qquad \text{(zobacz H10)} \\
 +
  &  &  & \\
 +
  & \qquad \Longrightarrow \qquad & a \mid \gcd (a, b) & \\
 +
\end{array}
 +
</math>
 +
</div>
  
::<math>x^2 - x - {\small\frac{P - 1}{4}} = 0</math>
+
<math>\Large{\Longleftarrow}</math>
  
::<math>x^2 - P x + {\small\frac{P (P - 1)}{4}} = 0</math>
+
Jeżeli <math>a \mid \gcd (a, b)</math>, to <math>a \mid b</math> (zobacz [[#H3|H3]]). Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Z założenia <math>P = 4 Q + 1</math>, zatem
 
  
::<math>x^2 - x - Q = 0</math>
 
  
::<math>x^2 - P x + P Q = 0</math>
+
<span id="H13" style="font-size: 110%; font-weight: bold;">Zadanie H13</span><br/>
 +
Niech <math>\gcd (a, d) = 1</math>. Pokazać, że <math>d \nmid a b</math> wtedy i&nbsp;tylko wtedy, gdy <math>d \nmid b</math>.
  
Czyli definiują one ciągi Lucasa
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Korzystając z&nbsp;rezultatu pokazanego w&nbsp;zadaniu [[#H12|H12]], dostajemy
  
::<math>U_n (1, - Q) = {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \qquad \qquad V_n (1, - Q) = \alpha^n + \beta^n</math>
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::<math>
 +
\begin{array}{llll}
 +
  d \nmid a b & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, a b) & \\
 +
  &  &  & \\
 +
  & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, b) & \text{(zobacz H9)} \\
 +
  &  &  & \\
 +
  & \qquad \Longleftrightarrow \qquad & d \nmid b & \\
 +
\end{array}
 +
</math>
 +
</div>
  
::<math>U_n (P, P Q) = {\small\frac{a^n - b^n}{a - b}} \qquad \qquad V_n (P, P Q) = a^n + b^n</math>
+
Co należało pokazać.<br/>
 
+
&#9633;
Zauważmy, że
+
{{\Spoiler}}
  
::<math>\alpha - \beta = a - b = \sqrt{P}</math>
 
  
::<math>{\small\frac{a}{\alpha}} = {\small\frac{P + \sqrt{P}}{1 + \sqrt{P}}} = \sqrt{P}</math>
 
  
::<math>{\small\frac{b}{\beta}} = {\small\frac{P - \sqrt{P}}{1 - \sqrt{P}}} = - \sqrt{P}</math>
+
<span id="H14" style="font-size: 110%; font-weight: bold;">Twierdzenie H14</span><br/>
 +
Jeżeli dodatnie liczby <math>a, b</math> są względnie pierwsze, to każdy dzielnik <math>d</math> iloczynu <math>a b</math> można przedstawić jednoznacznie w&nbsp;postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a ,</math> <math>\; d_2 \mid b \;</math> <math>\text{i} \; \gcd (d_1, d_2) = 1</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>d_1 = \gcd (d, a) \;</math> i <math>\; d_2 = \gcd (d, b)</math>. Z&nbsp;twierdzenia [[#H8|H8]] mamy
  
Łatwo znajdujemy
+
::<math>d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d</math>
 
 
::<math>U_{2 k} (P, P Q) = \frac{a^{2 k} - b^{2 k}}{a - b} = \frac{\left( \alpha \sqrt{P} \right)^{2 k} - \left( - \beta \sqrt{P} \right)^{2 k}}{\sqrt{P}} = \frac{P^k (\alpha^{2 k} - \beta^{2 k})}{\alpha - \beta} = P^k U_{2 k} (1, - Q)</math>
 
  
 +
Bo z&nbsp;założenia <math>d \mid a b</math>. Z&nbsp;definicji największego wspólnego dzielnika i&nbsp;zadania [[#H3|H3]] dostajemy
  
::<math>U_{2 k + 1} (P, P Q) = \frac{a^{2 k + 1} - b^{2 k + 1}}{a - b} = \frac{\left( \alpha \sqrt{P} \right)^{2 k + 1} - \left( - \beta \sqrt{P} \right)^{2 k + 1}}{\sqrt{P}} = P^k (\alpha^{2 k + 1} + \beta^{2 k + 1}) = P^k V_{2 k + 1} (1, - Q)</math>
+
::<math>\gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2</math>
  
 +
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b)</math>
  
::<math>V_{2 k} (P, P Q) = a^{2 k} + b^{2 k} = \left( \alpha \sqrt{P} \right)^{2 k} + \left( - \beta \sqrt{P} \right)^{2 k} = P^k (\alpha^{2 k} + \beta^{2 k}) = P^k V_{2 k} (1, - Q)</math>
+
::::::::<math>\, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b</math>
  
 +
::::::::<math>\, \Longrightarrow \qquad e \mid \gcd (a, b)</math>
  
::<math>V_{2 k + 1} (P, P Q) = a^{2 k + 1} + b^{2 k + 1} = \left( \alpha \sqrt{P} \right)^{2 k + 1} + \left( - \beta \sqrt{P} \right)^{2 k + 1} = P^{k + 1} \cdot \frac{\alpha^{2 k + 1} - \beta^{2 k + 1}}{\sqrt{P}} = P^{k + 1} U_{2 k + 1} (1, - Q)</math>
+
::::::::<math>\, \Longrightarrow \qquad \gcd (a, b) \geqslant e</math>
  
Co należało pokazać.<br/>
+
Gdyby było <math>\gcd (d_1, d_2) = e > 1</math>, to mielibyśmy <math>\gcd (a, b) \geqslant e > 1</math>. Wbrew założeniu, że <math>\gcd (a, b) = 1</math>. Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 390: Linia 323:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N13</span><br/>
+
<span id="H15" style="font-size: 110%; font-weight: bold;">Twierdzenie H15</span><br/>
Dla wyrazów ciągów Lucasa prawdziwe są wzory
+
Jeżeli <math>a, m, n \in \mathbb{Z}_+</math>, to
  
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 100%; text-align: left;"
+
::<math>\gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1</math>
|-
 
| <math>1.</math> || <math>U_{m + n} = U_m U_{n + 1} - Q U_{m - 1} U_n</math> ||
 
|-
 
| <math>2.</math> || <math>V_{m + n} = V_m V_n - Q^n V_{m - n}</math> || <math>m \geqslant n</math>
 
|-
 
| <math>3.</math> || <math>U_{m + n} = U_m V_n - Q^n U_{m - n}</math> || <math>m \geqslant n</math>
 
|-
 
| <math>4.</math> || <math>V_{m + n} = D U_m U_n + Q^n V_{m - n}</math> || <math>m \geqslant n</math>
 
|-
 
| <math>5.</math> || <math>U_m V_n - V_m U_n = 2 Q^n U_{m - n}</math> || <math>m \geqslant n</math>
 
|-
 
| <math>6.</math> || <math>U^2_n = U_{n - 1} U_{n + 1} + Q^{n - 1}</math> ||
 
|-
 
| <math>7.</math> || <math>V^2_n = V_{n - 1} V_{n + 1} - D Q^{n - 1}</math> ||
 
|}
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 100%; text-align: left;"
 
|-
 
| <math>\;\; 8.</math> || <math>2 U_{m + n} = U_m V_n + V_m U_n</math> ||
 
|-
 
| <math>\;\; 9.</math> || <math>2 V_{m + n} = V_m V_n + D U_m U_n</math> ||
 
|-
 
| <math>10.</math> || <math>V_m V_n - D U_m U_n = 2 Q^n V_{m - n}</math> || <math>m \geqslant n</math>
 
|-
 
| <math>11.</math> || <math>U_{2 n} = U_n V_n</math> ||
 
|-
 
| <math>12.</math> || <math>V_{2 n} = V^2_n - 2 Q^n</math> ||
 
|-
 
| <math>13.</math> || <math>V_{2 n} = D U^2_n + 2 Q^n</math> ||
 
|-
 
| <math>14.</math> || <math>V^2_n - D U^2_n = 4 Q^n</math> ||
 
|-
 
| <math>15.</math> || <math>D U_n = 2 V_{n + 1} - P V_n</math> ||
 
|-
 
| <math>16.</math> || <math>V_n = 2 U_{n + 1} - P U_n</math> ||
 
|-
 
| <math>17.</math> || <math>D U_n = V_{n + 1} - Q V_{n - 1}</math> || <math>n \geqslant 1</math>
 
|-
 
| <math>18.</math> || <math>V_n = U_{n + 1} - Q U_{n - 1}</math> || <math>n \geqslant 1</math>
 
|}
 
{| class="wikitable plainlinks"  style="display: inline-table; margin-left: 5px; margin-right: 50px; font-size: 100%; text-align: left;"
 
|-
 
| <math>19.</math> || <math>U_{2 n} = 2 U_n U_{n + 1} - P U^2_n</math>
 
|-
 
| <math>20.</math> || <math>U_{2 n + 1} = U^2_{n + 1} - Q U^2_n</math>
 
|-
 
| <math>21.</math> || <math>U_{2 n + 2} = P U^2_{n + 1} - 2 Q U_n U_{n + 1}</math>
 
|}
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Wzory 1. - 7. najłatwiej udowodnić korzystając z&nbsp;definicji N1.'''
+
Pokażemy najpierw, że jeżeli <math>d</math> jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i&nbsp;odwrotnie.
  
Wzór 1.
+
<math>\Large{\Longrightarrow}</math>
  
::<math>U_{m + n} = {\small\frac{\alpha^{m + n} - \beta^{m + n}}{\alpha - \beta}}</math>
+
Z założenia <math>d</math> jest dzielnikiem <math>\gcd (a^m - 1, a^n - 1)</math>, czyli <math>d \mid (a^m - 1) \;</math> i <math>\; d \mid (a^n - 1)</math>, co możemy zapisać w&nbsp;postaci
  
:::<math>\quad \: = {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}} \cdot {\small\frac{\alpha^{n + 1} - \beta^{n + 1}}{\alpha - \beta}} - \alpha \beta \cdot {\small\frac{\alpha^{m - 1} - \beta^{m - 1}}{\alpha - \beta}} \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}}</math>
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
  
:::<math>\quad \: = U_m U_{n + 1} - Q U_{m - 1} U_n</math>
+
Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby <math>x, y</math>, że <math>\gcd (m, n) = m x + n y</math>. Łatwo znajdujemy, że
  
 +
::<math>a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d}</math>
  
Wzór 2.
+
Czyli <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>.
  
::<math>V_{m + n} = \alpha^{m + n} + \beta^{m + n}</math>
+
<math>\Large{\Longleftarrow}</math>
  
:::<math>\quad \;\! = (\alpha^m + \beta^m) (\alpha^n + \beta^n) - \alpha^n \beta^n \cdot (\alpha^{m - n} + \beta^{m - n})</math>
+
Z założenia <math>d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>, czyli
  
:::<math>\quad \;\! = V_m V_n - Q^n V_{m - n}</math>
+
::<math>a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d}</math>
  
 +
Zatem
  
Wzór 3.
+
::<math>a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d}</math>
  
::<math>U_{m + n} = {\small\frac{\alpha^{m + n} - \beta^{m + n}}{\alpha - \beta}}</math>
+
Podobnie otrzymujemy
  
:::<math>\quad \: = {\small\frac{(\alpha^m - \beta^m) (\alpha^n + \beta^n)}{\alpha - \beta}} - {\small\frac{\alpha^n \beta^n \cdot (\alpha^{m - n} - \beta^{m - n})}{\alpha - \beta}}</math>
+
::<math>a^n \equiv 1 \!\! \pmod{d}</math>
  
:::<math>\quad \: = U_m V_n - Q^n U_{m - n}</math>
+
Zatem <math>d</math> dzieli <math>a^m - 1 \;</math> i <math>\; a^n - 1</math>, czyli
  
 +
::<math>d \mid \gcd (a^m - 1, a^n - 1)</math>
  
Wzór 4.
 
  
::<math>V_{m + n} = \alpha^{m + n} + \beta^{m + n}</math>
+
W szczególności wynika stąd, że
  
:::<math>\quad \;\! = (\alpha - \beta)^2 \cdot {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}} \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} + \alpha^n \beta^n \cdot (\alpha^{m - n} + \beta^{m - n})</math>
+
:*&nbsp;&nbsp;&nbsp;<math>\gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right)</math>
  
:::<math>\quad \;\! = D U_m U_n + Q^n V_{m - n}</math>
+
:*&nbsp;&nbsp;&nbsp;<math>\left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1)</math>
  
 +
Czyli <math>\left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right|</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Wzór 5.
 
  
::<math>U_m V_n - V_m U_n = {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}} \cdot (\alpha^n + \beta^n) - (\alpha^m + \beta^m) \cdot {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}}</math>
 
  
::::::<math>\;\;\: = 2 \cdot \alpha^n \beta^n \cdot {\small\frac{\alpha^{m - n} - \beta^{m - n}}{\alpha - \beta}}</math>
+
<span id="H16" style="font-size: 110%; font-weight: bold;">Uwaga H16</span><br/>
 +
W dowodzie twierdzenia [[#H15|H15]] pominęliśmy milczeniem fakt, że jedna z&nbsp;liczb <math>x, y</math> może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis
  
::::::<math>\;\;\: = 2 Q^n U_{m - n}</math>
+
::<math>a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d}</math>
  
 +
Omówimy ten problem w&nbsp;następnej sekcji. Zauważmy, wyprzedzając materiał, że z&nbsp;kongruencji
  
Wzór 6.
+
::<math>a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d}</math>
  
::<math>U^2_n = \left( {\small\frac{\alpha^n - \beta^n}{\alpha - \beta}} \right)^2</math>
+
wynika, że <math>\gcd (a, d) = 1</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>d</math>.
  
:::<math>\;\! = {\small\frac{\alpha^{n - 1} - \beta^{n - 1}}{\alpha - \beta}} \cdot {\small\frac{\alpha^{n + 1} - \beta^{n + 1}}{\alpha - \beta}} + \alpha^{n - 1} \beta^{n - 1}</math>
 
  
:::<math>\;\! = U_{n - 1} U_{n + 1} + Q^{n - 1}</math>
 
  
  
Wzór 7.
 
  
::<math>V^2_n = (\alpha^n + \beta^n)^2</math>
+
== Element odwrotny modulo <math>m</math> ==
  
:::<math>\;\! = (\alpha^{n - 1} + \beta^{n - 1}) (\alpha^{n + 1} + \beta^{n + 1}) - (\alpha - \beta)^2 \cdot \alpha^{n - 1} \beta^{n - 1}</math>
+
<span id="H17" style="font-size: 110%; font-weight: bold;">Twierdzenie H17</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Dla liczby <math>a \in \mathbb{Z}</math> istnieje taka liczba <math>x</math>, że
  
:::<math>\;\! = V_{n - 1} V_{n + 1} - D Q^{n - 1}</math>
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
 +
wtedy i&nbsp;tylko wtedy, gdy <math>\gcd (a, m) = 1</math>.
  
'''Wzory 8. - 18. można łatwo udowodnić, korzystając ze wzorów 1. - 7.'''
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
 
Wzór 8. Policzyć sumę wzoru 3. pomnożonego przez <math>2</math> i&nbsp;wzoru 5.
 
 
 
Wzór 9. Policzyć sumę wzorów 2. i 4.
 
 
 
Wzór 10. Połączyć wzory 2. i 4.
 
 
 
Wzór 11. We wzorze 3. położyć <math>m = n</math>.
 
 
 
Wzór 12. We wzorze 2. położyć <math>m = n</math>.
 
 
 
Wzór 13. We wzorze 4. położyć <math>m = n</math>.
 
 
 
Wzór 14. We wzorze 10. położyć <math>m = n</math> lub połączyć wzory 12. i 13.
 
 
 
Wzór 15. We wzorze 9. położyć <math>m = 1</math>.
 
 
 
Wzór 16. We wzorze 8. położyć <math>m = 1</math>.
 
 
 
Wzór 17. We wzorze 15. położyć <math>V_{n + 1} = P V_n - Q V_{n - 1}</math>.
 
 
 
Wzór 18. We wzorze 16. położyć <math>U_{n + 1} = P U_n - Q U_{n - 1}</math>.
 
  
 +
<math>\Large{\Longrightarrow}</math>
  
'''Wzory 19. - 21. to wzory, które wykorzystamy w&nbsp;przyszłości do szybkiego obliczania wartości wyrazów <math>U_n</math> i <math>V_n</math> modulo.'''
+
Z założenia istnieje taka liczba <math>x</math>, że
  
Wzór 19. Wystarczy połączyć wzory 11. oraz 16.
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
Wzór 20. Wystarczy we wzorze 1. położyć <math>m = n + 1</math>.
+
Zatem dla pewnego <math>k \in \mathbb{Z}</math> jest
  
Wzór 21. Kładąc we wzorze 19. <math>n \rightarrow n + 1</math>, otrzymujemy
+
::<math>a x = 1 + k m</math>
  
::<math>U_{2 n + 2} = 2 U_{n + 1} U_{n + 2} - P U^2_{n + 1} \qquad (*)</math>
+
Czyli <math>a x - k m = 1</math>. Wynika stąd, że <math>\gcd (a, m)</math> dzieli <math>1</math>, co oznacza, że <math>\gcd (a, m) = 1</math>.
  
Kładąc we wzorze 1. <math>m = n + 2</math>, mamy
+
<math>\Large{\Longleftarrow}</math>
  
::<math>U_{2 n + 2} = U_{n + 2} U_{n + 1} - Q U_{n + 1} U_n</math>
+
Z założenia <math>\gcd (a, m) = 1</math>. Z&nbsp;lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite <math>x, y</math>, że
  
Czyli
+
::<math>a x + m y = 1</math>
  
::<math>2 U_{2 n + 2} = 2 U_{n + 1} U_{n + 2} - 2 Q U_n U_{n + 1}</math>
+
Zatem modulo <math>m</math> dostajemy
  
Odejmując od powyższego wzoru wzór <math>(*)</math>, dostajemy wzór 21.
+
::<math>a x \equiv 1 \!\! \pmod{m}</math>
  
::<math>U_{2 n + 2} = P U^2_{n + 1} - 2 Q U_n U_{n + 1}</math>
+
Co kończy dowód.<br/>
 
 
Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 561: Linia 428:
  
  
 +
<span id="H18" style="font-size: 110%; font-weight: bold;">Definicja H18</span><br/>
 +
Niech <math>m \in \mathbb{Z}_+</math>. Liczbę <math>x</math> taką, że
  
 +
::<math>a \cdot x \equiv 1 \!\! \pmod{m}</math>
  
== Obliczanie wyrazów ciągu Lucasa modulo <math>m</math> ==
+
będziemy nazywali elementem odwrotnym liczby <math>a</math> modulo <math>m</math> i&nbsp;oznaczali jako <math>a^{- 1}</math>.
  
<span style="font-size: 110%; font-weight: bold;">Przykład N14</span><br/>
 
Pokażemy, jak wykorzystać podane w&nbsp;twierdzeniu N13 wzory 19, 20, 21 i 16
 
  
::<math>U_{2 n} = 2 U_n U_{n + 1} - P U^2_n</math>
 
  
::<math>U_{2 n + 1} = U^2_{n + 1} - Q U^2_n</math>
+
<span id="H19" style="font-size: 110%; font-weight: bold;">Uwaga H19</span><br/>
 +
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli <math>b \mid a</math> oraz <math>b</math> ma element odwrotny modulo <math>m</math>, to prawdziwa jest kongruencja
  
::<math>U_{2 n + 2} = P U^2_{n + 1} - 2 Q U_n U_{n + 1}</math>
+
::<math>{\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m}</math>
  
::<math>V_n = 2 U_{n + 1} - P U_n</math>
+
Istotnie
  
do szybkiego obliczania wyrazów ciągu Lucasa modulo <math>m</math>.
+
::<math>{\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m}</math>
  
 +
W PARI/GP odwrotność liczby <math>a</math> modulo <math>m</math> znajdujemy, wpisując <code>Mod(a, m)^(-1)</code>.
  
Niech <math>P = 3</math>, <math>Q = 1</math>, <math>D = P^2 - 4 Q = 5</math>, <math>n = 22 = (10110)_2 = \sum_{j = 0}^{4} a_j \cdot 2^j</math>.
 
  
W tabeli przedstawione są kolejne kroki, jakie musimy wykonać, aby policzyć <math>U_n = U_{22}</math> modulo <math>m = 23</math>.
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
<span id="H20" style="font-size: 110%; font-weight: bold;">Twierdzenie H20</span><br/>
 +
Niech <math>a, k \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math>. Poniższa tabelka przedstawia elementy odwrotne do elementu <math>a</math> w&nbsp;przypadku niektórych modułów <math>m</math>. W&nbsp;szczególności, jeżeli moduł <math>m</math> jest liczbą nieparzystą, to <math>2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m}</math>.
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
!  || postać <br/> modułu <math>\boldsymbol{m}</math> || odwrotność <br/> elementu <math>\boldsymbol{a}</math> || uwagi
 
|-
 
|-
! <math>\boldsymbol{j}</math> !! <math>\boldsymbol{a_j}</math> !! <math>\boldsymbol{k_j}</math> !! <math>\boldsymbol{U_{k_j}}</math> !! <math>\boldsymbol{U_{k_j + 1}}</math>
+
| <math>1.</math> || <math>m = 2</math> || <math>1</math> || rowspan = 3 | liczba <math>a</math> <br/> jest liczbą <br/> nieparzystą
 
|-
 
|-
| <math>4</math> || <math>1</math> || <math>(1)_2 = 1</math> || <math>U_1 = 1</math> || <math>U_2 = P = 3</math>
+
| <math>2.</math> || <math>m = 4</math> || <math>R_4(a)</math>
 
|-
 
|-
| <math>3</math> || <math>0</math> || <math>(10)_2 = 2</math> || <math>U_2 = 2 U_1 U_2 - 3 U^2_1 = 6 - 3 = 3</math> || <math>U_3 = U^2_2 - 1 = 8</math>
+
| <math>3.</math> || <math>m = 8</math> || <math>R_8(a)</math>
 
|-
 
|-
| <math>2</math> || <math>1</math> || <math>(101)_2 = 5</math> || <math>U_5 = U^2_3 - U^2_2 = 64 - 9 = 55 \equiv 9</math> || <math>U_6 = 3 U_3^2 - 2 U_2 U_3 = 192 - 48 = 144 \equiv 6</math>
+
| <math>4.</math> || <math>m = a k - 1</math> || <math>{\small\frac{m + 1}{a}}</math> || <math></math>
 
|-
 
|-
| <math>1</math> || <math>1</math> || <math>(1011)_2 = 11</math> || <math>U_{11} = U^2_6 - U^2_5 \equiv 36 - 81 \equiv - 45 \equiv 1</math> || <math>U_{12} = 3 U_6^2 - 2 U_5 U_6 \equiv 108 - 108 \equiv 0</math>
+
| <math>5.</math> || <math>m = a k + 1</math> || <math>- {\small\frac{m - 1}{a}}</math> || <math></math>
 
|-
 
|-
| <math>0</math> || <math>0</math> || <math>(10110)_2 = 22</math> || <math>U_{22} = 2 U_{11} U_{12} - 3 U^2_{11} \equiv 0 - 3 \equiv 20</math> || <math>U_{23} = U^2_{12} - U^2_{11} \equiv 0 - 1 \equiv 22</math>
+
| <math>6.</math> || <math>m = a k - 2</math> || <math>{\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}}</math> || rowspan = 2 | liczby <math>a , m</math> <br/> są liczbami <br/> nieparzystymi
 +
|-
 +
| <math>7.</math> || <math>m = a k + 2</math> || <math>{\small\frac{m - 1}{2}} \cdot {\small\frac{m - 2}{2}}</math>  
 
|}
 
|}
  
W kolumnie <math>a_j</math> wypisujemy kolejne cyfry liczby <math>n = 22 = (10110)_2</math> zapisanej w&nbsp;układzie dwójkowym. Liczby w&nbsp;kolumnie <math>k_j</math> tworzymy, biorąc kolejne (od prawej do lewej) cyfry liczby <math>n</math> w&nbsp;zapisie dwójkowym. Postępując w&nbsp;ten sposób, w&nbsp;ostatnim wierszu mamy <math>k_j = n</math> i&nbsp;wyliczamy liczby <math>U_n</math> i <math>U_{n + 1}</math> modulo <math>m</math>.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 
 +
'''Punkty 1. - 3.'''
  
Dla uproszczenia zapisu i&nbsp;ułatwienia zrozumienia liczbę <math>k_j</math> oznaczymy jako <math>r</math>, a <math>k_{j + 1}</math> jako <math>s</math>. Zauważmy, że
+
Ponieważ dla liczb nieparzystych jest
  
:* tabela jest zbudowana tak, że musimy znaleźć wyrazy ciągu Lucasa o&nbsp;indeksie <math>r = k_j</math> oraz o&nbsp;indeksie o&nbsp;jeden większym: <math>r + 1 = k_j + 1</math>
+
::<math>a^2 \equiv 1 \!\! \pmod{2}</math>
:* przejście do następnego wiersza (w dół) oznacza, że musimy znaleźć wyrazy o&nbsp;indeksie <math>s = k_{j + 1}</math> oraz o&nbsp;indeksie o&nbsp;jeden większym: <math>s + 1</math>
 
:* przechodząc do następnego wiersza, dotychczasowa liczba <math>r = k_j</math> powiększa się o&nbsp;kolejną cyfrę ( <math>0</math> lub <math>1</math> ), którą dopisujemy z&nbsp;prawej strony
 
:* dodanie na końcu liczby <math>r = k_j</math> zera podwaja liczbę <math>r</math>, czyli <math>s = k_{j + 1} = 2 r</math> oraz <math>s + 1 = 2 r + 1</math>
 
:* dodanie na końcu liczby <math>r = k_j</math> jedynki podwaja liczbę <math>r</math> i&nbsp;zwiększą ją o&nbsp;jeden, czyli <math>s = k_{j + 1} = 2 r + 1</math> oraz <math>s + 1 = 2 r + 2</math>
 
  
 +
::<math>a^2 \equiv 1 \!\! \pmod{4}</math>
  
Dlatego, jeżeli kolejną dodaną cyfrą jest zero, to korzystamy ze wzorów
+
::<math>a^2 \equiv 1 \!\! \pmod{8}</math>
  
::<math>U_s = U_{2 r} = 2 U_r U_{r + 1} - P U^2_r</math>
+
to liczba nieparzysta <math>a</math> jest swoją odwrotnością modulo <math>2</math>, <math>4</math> i <math>8</math>. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać
  
::<math>U_{s + 1} = U_{2 r + 1} = U^2_{r + 1} - Q U^2_r</math>
+
::<math>a^{- 1} \equiv R_2 (a) \!\! \pmod{2}</math>
  
Gdy kolejną dodaną cyfrą jest jeden, to stosujemy wzory
+
::<math>a^{- 1} \equiv R_4 (a) \!\! \pmod{4}</math>
  
::<math>U_s = U_{2 r + 1} = U^2_{r + 1} - Q U^2_r</math>
+
::<math>a^{- 1} \equiv R_8 (a) \!\! \pmod{8}</math>
  
::<math>U_{s + 1} = U_{2 r + 2} = P U^2_{r + 1} - 2 Q U_r U_{r + 1}</math>
+
W pierwszym przypadku wynik jest oczywisty, bo <math>R_2 (a) = 1</math>.
  
 +
'''Punkt 4.'''
  
Korzystając ze wzoru <math>V_n = 2 U_{n + 1} - P U_n</math>, mamy
+
Zauważmy, że
  
::<math>V_{22} = 2 U_{23} - 3 U_{22} \equiv 44 - 60 \equiv - 16 \equiv 7 \pmod{23}</math>
+
::<math>\gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1</math>
  
Ostatecznie otrzymujemy
+
oraz <math>a \mid (m + 1)</math>. Zatem
  
::<math>U_{22} \equiv 20 \pmod{23} \quad</math> oraz <math>\quad V_{22} \equiv 7 \pmod{23}</math>
+
::<math>a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m}</math>
  
 +
'''Punkt 5.'''
  
 +
Zauważmy, że
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N15</span><br/>
+
::<math>\gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1</math>
Uogólniając postępowanie przedstawione w&nbsp;przykładzie N14, możemy napisać program w&nbsp;PARI/GP do szybkiego obliczania wyrazów ciągu Lucasa <math>U_n (P, Q)</math> i <math>V_n (P, Q)</math> modulo <math>m</math>.
 
  
<span style="font-size: 90%; color:black;">modLucas(n, P, Q, m) =
+
oraz <math>a \mid (m - 1)</math>. Zatem
{
 
'''local'''(A, i, s, U,&#32;U2, V, W,&#32;W2);
 
'''if'''( m == 1, '''return'''([0, 0]) );
 
'''if'''( n == 0, '''return'''([0, 2 % m]) );
 
A = '''digits'''(n, 2); \\ otrzymujemy wektor cyfr liczby n w układzie dwójkowym
 
s = '''length'''(A); \\ długość wektora A
 
U = 1;
 
W = P;
 
i = 1;
 
'''while'''( i++ <= s,
 
        '''if'''( A[i] == 0,  U2 = 2*U*W - P*U^2;  W2 = W^2 - Q*U^2 );
 
        '''if'''( A[i] == 1,  U2 = W^2 - Q*U^2;  W2 = P*W^2 - 2*Q*U*W );
 
        U = U2 % m;
 
        W = W2 % m;
 
      );
 
V = (2*W - P*U) % m;
 
'''return'''([U, V]);
 
}</span>
 
  
 +
::<math>a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m}</math>
  
 +
'''Punkt 6.'''
  
 +
Ponieważ zakładamy, że <math>2 \mid (m + 1)</math>, to <math>m</math> musi być liczbą nieparzystą, czyli <math>a</math> też musi być liczbą nieparzystą. Zauważmy, że
  
 +
::<math>\gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1</math>
  
== Podzielność wyrazów <math>U_n (P, Q)</math> przez liczbę pierwszą nieparzystą ==
+
oraz <math>a \mid (m + 2)</math>. Zatem
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N16</span><br/>
+
::<math>a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m}</math>
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. W&nbsp;przypadku, gdy <math>p \nmid P Q</math> nie możemy nic powiedzieć o&nbsp;podzielności wyrazów <math>U_n</math> przez <math>p</math>. Przykładowo, jeżeli <math>P \equiv 1 \pmod{p} \;</math> <math>\text{i} \;\; Q \equiv 1 \pmod{p}</math>, to modulo <math>p</math>, mamy
 
  
::<math>(U_n) \equiv (0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, \ldots)</math>
+
Podobnie pokazujemy punkt 7. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
W przypadku, gdy <math>P \equiv 2 \pmod{p} \;</math> <math>\text{i} \;\; Q \equiv 1 \pmod{p}</math>, to modulo <math>p</math> mamy
 
  
::<math>(U_n) \equiv (0, 1, 2, \ldots, p - 1, 0, 1, 2, \ldots, p - 1, 0, 1, 2, \ldots, p - 1, \ldots)</math>
 
  
Sytuacja wygląda inaczej, gdy <math>p \mid P Q</math>.
+
<span id="H21" style="font-size: 110%; font-weight: bold;">Twierdzenie H21</span><br/>
 +
Niech <math>a, b \in \mathbb{Z}</math>, <math>m \in \mathbb{Z}_+</math> i&nbsp;liczba <math>a</math> ma element odwrotny modulo <math>m</math>. Jeżeli liczby <math>u_1, u_2, \ldots, u_r</math> są liczbami różnymi modulo <math>m</math>, to liczby
  
 +
::1.&nbsp;&nbsp;&nbsp;<math>a u_1, a u_2, \ldots, a u_r</math>
  
 +
::2.&nbsp;&nbsp;&nbsp;<math>a u_1 + b, a u_2 + b, \ldots, a u_r + b</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N17</span><br/>
+
są liczbami różnymi modulo <math>m</math>. Jeżeli ponadto liczby <math>u_1, u_2, \ldots, u_r</math> są względnie pierwsze z <math>m</math>, to również liczby
Niech <math>p</math> będzie liczbą pierwszą nieparzystą.
 
  
::{| border="0"
+
::3.&nbsp;&nbsp;&nbsp;<math>u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r</math>
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \mid P \;</math> <math>\text{i} \;\; p \mid Q , \;</math> to <math>\; p \mid U_n \;</math> dla <math>n \geqslant 2</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \mid P \;</math> <math>\text{i} \;\; p \nmid Q , \;</math> to <math>\; p \mid U_{2 n} \;</math> i <math>\; p \nmid U_{2 n + 1}</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \nmid P \;</math> <math>\text{i} \;\; p \mid Q , \;</math> to <math>\; p \nmid U_n \;</math> dla <math>n \geqslant 1</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \mid Q , \;</math> to <math>\; p \mid U_n</math>, gdzie <math>n \geqslant 2</math>, wtedy i&nbsp;tylko wtedy, gdy <math>\; p \mid P</math>
 
|-style=height:1.9em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>\; p \nmid P \;</math> <math>\text{i} \;\; p \mid D , \;</math> to <math>\; p \mid U_n \;</math> wtedy i&nbsp;tylko wtedy, gdy <math>p \mid n</math>
 
|}
 
  
Założenie, że <math>p \nmid P</math> w&nbsp;ostatnim punkcie jest istotne. Gdy <math>\; p \mid P \;</math> i <math>\; p \mid D , \;</math> to <math>\; p \mid Q \;</math> i&nbsp;otrzymujemy punkt pierwszy.
+
są liczbami różnymi modulo <math>m</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 
'''Punkt 1.'''
 
'''Punkt 1.'''
  
Ponieważ <math>U_2 = P</math>, zatem <math>p \mid U_2</math>. Dla <math>n \geqslant 3</math> wyrażenie <math>U_n = P U_{n - 1} - Q U_{n - 2}</math> jest podzielne przez <math>p</math>.
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
'''Punkt 2.'''
+
::<math>a u_i \equiv a u_j \!\! \pmod{m}</math>
 +
 
 +
Z założenia liczba <math>a</math> ma element odwrotny modulo <math>m</math>, zatem mnożąc obie strony kongruencji przez <math>a^{- 1}</math>, otrzymujemy
  
Indeksy parzyste. Indukcja matematyczna. Mamy <math>U_0 = 0</math> i <math>U_2 = P</math>, zatem <math>p \mid U_0</math> i <math>p \mid U_2</math>. Zakładając, że <math>p \mid U_{2 n}</math>, z definicji ciągu <math>(U_k)</math>, otrzymujemy dla <math>U_{2 n + 2}</math>
+
::<math>u_i \equiv u_j \!\! \pmod{m}</math>
  
::<math>U_{2 n + 2} = P U_{2 n - 1} - Q U_{2 n}</math>
+
dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Dowód punktu 2. jest analogiczny.
  
Z założenia indukcyjnego wynika, że <math>p \mid U_{2 n + 2}</math>, zatem na mocy zasady indukcji matematycznej twierdzenie jest prawdziwe dla wszystkich <math>n \geqslant 0</math>.
+
'''Punkt 3.'''
  
Indeksy nieparzyste. Indukcja matematyczna. Mamy <math>U_1 = 1</math> i <math>U_3 = P^2 - Q</math>, zatem <math>p \nmid U_1</math> i <math>p \nmid U_3</math>. Zakładając, że <math>p \nmid U_{2 n - 1}</math>, z definicji ciągu <math>(U_k)</math>, otrzymujemy dla <math>U_{2 n + 1}</math>
+
Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki <math>i, j</math>, że
  
::<math>U_{2 n + 1} = P U_{2 n} - Q U_{2 n - 1}</math>
+
::<math>u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m}</math>
  
Z założenia indukcyjnego wynika, że <math>p \nmid U_{2 n + 1}</math>, zatem na mocy zasady indukcji matematycznej twierdzenie jest prawdziwe dla wszystkich <math>n \geqslant 1</math>.
+
::<math>u_j u^{- 1}_i \equiv 1 \!\! \pmod{m}</math>
  
'''Punkt 3.'''
+
::<math>u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m}</math>
  
Indukcja matematyczna. Mamy <math>U_1 = 1</math> i <math>U_2 = P</math>, zatem <math>p \nmid U_1</math> i <math>p \nmid U_2</math>. Zakładając, że <math>p \nmid U_n</math> zachodzi dla wszystkich liczb całkowitych dodatnich nie większych od <math>n</math>, z&nbsp;definicji ciągu <math>(U_n)</math>
+
::<math>u_j \equiv u_i \!\! \pmod{m}</math>
otrzymujemy dla <math>n + 1</math>
 
  
::<math>U_{n + 1} = P U_n - Q U_{n - 1}</math>
+
Ponownie otrzymujemy <math>u_i \equiv u_j \!\! \pmod{m}</math> dla <math>i \neq j</math>, wbrew założeniu, że liczby <math>u_1, u_2, \ldots, u_r</math> są różne modulo <math>m</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Z założenia indukcyjnego wynika, że <math>p \nmid U_{n + 1}</math>, zatem na mocy zasady indukcji matematycznej twierdzenie jest prawdziwe dla wszystkich liczb <math>n \geqslant 1</math>.
 
  
'''Punkt 4.'''
 
  
Wynika z&nbsp;punktów pierwszego i&nbsp;trzeciego.
+
<span id="H22" style="font-size: 110%; font-weight: bold;">Zadanie H22</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą. Pokazać, że dla <math>k \in [0, p - 1]</math> prawdziwa jest kongruencja
  
'''Punkt 5.'''
+
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że modulo <math>p</math> mamy
  
Z twierdzenia N7 wiemy, że
+
::<math>\binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}}</math>
  
::<math>2^{n - 1} U_n = \sum_{k = 0}^{\lfloor (n - 1) / 2 \rfloor} \binom{n}{2 k + 1} P^{n - 2 k - 1} D^k</math>
+
::::<math>\;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}}</math>
  
::::<math>\;\; = n P^{n - 1} + \binom{n}{3} P^{n - 3} D + \binom{n}{5} P^{n - 5} D^2 + \ldots +
+
::::<math>\;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1}</math>
\begin{cases}
 
n P D^{(n - 2) / 2} & \text{gdy }n\text{ jest parzyste} \\
 
D^{(n - 1) / 2} & \text{gdy }n\text{ jest nieparzyste} \\
 
\end{cases}</math>
 
  
Z założenia <math>p \mid D</math>, zatem modulo <math>p</math> dostajemy
+
::::<math>\;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1}</math>
  
::<math>2^{n - 1} U_n \equiv n P^{n - 1} \pmod{p}</math>
+
::::<math>\;\;\;\; \equiv (- 1)^k \pmod{p}</math>
  
Ponieważ <math>p \nmid P</math>, zatem <math>p \mid U_n</math> wtedy i&nbsp;tylko wtedy, gdy <math>p \mid n</math>.
 
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
Linia 747: Linia 599:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N18</span><br/>
+
<span id="H23" style="font-size: 110%; font-weight: bold;">Zadanie H23</span><br/>
Jeżeli <math>d</math> jest nieparzystym dzielnikiem <math>Q</math>, to dla <math>n \geqslant 2</math> jest
+
Niech <math>A</math> i <math>B</math> będą zbiorami skończonymi. Pokazać, że jeżeli <math>A \subseteq B \;\; \text{i} \;\; | A | = | B |</math>, to <math>\; A = B</math>.
  
::<math>U_n \equiv P^{n - 1} \pmod{d}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
+
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/><br/>
W szczególności, gdy liczba pierwsza nieparzysta <math>p</math> jest dzielnikiem <math>Q</math> i <math>p \nmid P</math>, to
+
Z definicji zbiory <math>A</math> i <math>B</math> są równe wtedy i&nbsp;tylko wtedy, gdy jednocześnie spełnione są warunki
 
 
::<math>U_p \equiv 1 \pmod{p}</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Oznaczmy <math>\delta = \sqrt{D}</math>, zatem <math>2 \alpha = P + \delta</math> i <math>2 \beta = P - \delta</math>. Ze wzoru dwumianowego, mamy
 
 
 
::<math>2^n \alpha^n = (P + \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} \delta^j</math>
 
  
::<math>2^n \beta^n = (P - \delta)^n = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (- \delta)^j</math>
+
:#&nbsp;&nbsp;<math>x \in A \qquad \Longrightarrow \qquad x \in B</math>
 +
:#&nbsp;&nbsp;<math>x \in B \qquad \Longrightarrow \qquad x \in A</math>
  
 +
Z założenia <math>A \subseteq B</math>, zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element <math>x</math>, że <math>x \in B</math>, ale <math>x \notin A</math>. Jeśli tak, to
  
Obliczając różnicę wyjściowych wzorów, mamy
+
::<math>| B | = | A | + 1</math>
  
::<math>2^n (\alpha^n - \beta^n) = \sum_{j = 0}^{n} \binom{n}{j} P^{n - j} (\delta^j - (- \delta)^j) =</math>
+
Co jest sprzeczne z&nbsp;założeniem, że <math>| A | = | B |</math>.
  
:::::<math>\quad \: = \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j} P^{n - j} \cdot 2 \delta^j</math>
+
'''Uwaga'''<br/>
 +
Łatwo zauważyć, że wybierając z&nbsp;trzech warunków <math>A \subseteq B</math>, <math>B \subseteq A</math> i <math>| A | = | B |</math> dowolne dwa, zawsze otrzymamy z&nbsp;nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych<ref name="cardinality1"/>, ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.
  
:::::<math>\quad \: = 2 \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j} P^{n - j} \cdot \delta \cdot D^{(j - 1) / 2}</math>
 
  
Rozpatrując powyższą równość modulo <math>Q</math> dostajemy (zobacz N43)
+
<span style="border-bottom-style: double;">Drugi sposób</span><br/><br/>
 +
Ponieważ zbiór <math>A</math> jest z&nbsp;założenia podzbiorem zbioru <math>B</math>, to zbiór <math>B</math> można przedstawić w&nbsp;postaci sumy zbioru <math>A</math> i&nbsp;pewnego zbioru <math>C</math> takiego, że żaden element zbioru <math>C</math> nie jest elementem zbioru <math>A</math>. Zatem
  
::<math>2^{n - 1} \cdot {\small\frac{\alpha^n - \beta^n}{\delta}} = 2^{n - 1} U_n \equiv \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j} P^{n - j} \cdot P^{j - 1}</math>
+
::<math>B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing</math>
  
:::::::::<math>\;\:\: \equiv P^{n - 1} \underset{j \; \text{nieparzyste}}{\sum_{j = 1}^{n}} \binom{n}{j}</math>
+
Ponieważ zbiory <math>A</math> i <math>C</math> są rozłączne, to wiemy, że
  
:::::::::<math>\;\:\: \equiv 2^{n - 1} P^{n - 1}</math>
+
::<math>| A \cup C | = | A | + | C |</math>
  
 
Czyli
 
Czyli
  
::<math>2^{n - 1} (U_n - P^{n - 1}) \equiv 0 \pmod{Q}</math>
+
::<math>| B | = | A \cup C | = | A | + | C |</math>
 
 
Ponieważ <math>Q</math> dzieli <math>2^{n - 1} (U_n - P^{n - 1})</math>, to tym bardziej <math>d</math> dzieli <math>2^{n - 1} (U_n - P^{n - 1})</math>. Z założenia <math>\gcd (d, 2^{n - 1}) = 1</math>, zatem <math>d</math> dzieli <math>U_n - P^{n - 1}</math> (zobacz C74).
 
  
W przypadku szczególnym, gdy <math>d = p</math>, gdzie <math>p</math> jest nieparzystą liczbą pierwszą i <math>p \nmid P</math>, z&nbsp;twierdzenia Fermata otrzymujemy natychmiast
+
Skąd wynika, że <math>| C | = 0</math>, zatem zbiór <math>C</math> jest zbiorem pustym i&nbsp;otrzymujemy natychmiast <math>B = A</math>. Co należało pokazać.
  
::<math>U_p \equiv P^{p - 1} \equiv 1 \pmod{p}</math>
+
'''Uwaga (przypadek zbiorów skończonych)'''<br/>
 +
Najczęściej prawdziwe jest jedynie oszacowanie <math>| A \cup C | \leqslant | A | + | C |</math>, bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów <math>| A |</math> i <math>| C |</math>, zatem od sumy <math>| A | + | C |</math> musimy odjąć liczbę elementów iloczynu zbiorów <math>| A |</math> i <math>| C |</math>. Co daje ogólny wzór<ref name="sumazbiorow"/>
  
Co należało pokazać.<br/>
+
::<math>| A \cup C | = | A | + | C | - | A \cap C |</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 796: Linia 643:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N19</span><br/>
+
<span id="H24" style="font-size: 110%; font-weight: bold;">Definicja H24</span><br/>
Niech <math>D = P^2 - 4 Q</math>, a <math>(D \mid p)</math> oznacza symbol Legendre'a, gdzie <math>p</math> jest liczbą pierwszą nieparzystą i <math>p \nmid Q</math>. Mamy
+
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Powiemy, że zbiory <math>A, B</math> są równe modulo <math>m</math>, jeżeli dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja <math>a_k \equiv b_j \!\! \pmod{m}</math>.
  
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; <math>U_p \equiv (D \mid p) \pmod{p}</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>(D \mid p) = - 1 , \;</math> to <math>\; p \mid U_{p + 1}</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; jeżeli <math>(D \mid p) = 1 , \;</math> to <math>\; p \mid U_{p - 1}</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
'''Punkt 1.'''
 
  
Zauważmy, że przypadek gdy <math>p \mid Q</math>, omówiliśmy w&nbsp;twierdzeniu poprzednim. Z&nbsp;założenia <math>p</math> jest liczbą pierwszą nieparzystą. Z&nbsp;twierdzenia N7, w&nbsp;przypadku nieparzystego <math>n = p</math>, otrzymujemy
+
<span id="H25" style="font-size: 110%; font-weight: bold;">Twierdzenie H25</span><br/>
 +
Niech elementy każdego ze zbiorów <math>A = \{ a_1, a_2, \ldots, a_r \}</math> oraz <math>B = \{ b_1, b_2, \ldots, b_r \}</math> będą różne modulo <math>m</math>. Zbiory <math>A, B</math> są równe modulo <math>m</math> wtedy i&nbsp;tylko wtedy, gdy zbiory <math>A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \}</math> i <math>B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \}</math> są równe.
  
::<math>2^{p - 1} U_p = p P^{p - 1} + \binom{p}{3} P^{p - 3} D + \binom{p}{5} P^{p - 5} D^2 + \ldots + \binom{p}{p-2} P^2 D^{(p - 3) / 2} + D^{(p - 1) / 2}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
Ponieważ dla każdego <math>k \in [1, p - 1]</math> (zobacz N43)
+
<math>\Large{\Longrightarrow}</math>
  
::<math>\binom{p}{k} \equiv 0 \pmod{p}</math>
+
Ponieważ elementy każdego ze zbiorów <math>A, B</math> są różne modulo <math>m</math>, to elementy zbiorów <math>A'</math> i <math>B'</math> są wszystkie różne. Czyli <math>| A' | = | B' | = r</math>. Ponieważ warunek
  
to modulo <math>p</math> dostajemy (zobacz J32)
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
::<math>2^{p - 1} U_p \equiv U_p \equiv D^{(p - 1) / 2} \equiv (D \mid p) \pmod{p}</math>
+
oznacza, że reszty z&nbsp;dzielenia liczb <math>a_k</math> i <math>b_j</math> przez <math>m</math> są równe, to z&nbsp;założenia dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że
  
'''Punkt 2.'''
+
::<math>R_m (a_k) = R_m (b_j)</math>
  
Zauważmy, że warunek <math>(D \mid p) = - 1</math> nie może być spełniony, gdy <math>p \mid Q</math>. Istotnie, gdy <math>p \mid Q</math>, to <math>D = P^2 - 4 Q \equiv P^2 \pmod{p}</math>, czyli
+
A to oznacza, że każdy element zbioru <math>A'</math> należy do zbioru <math>B'</math>, czyli <math>A' \subseteq B'</math>. Wynika stąd, że <math>A' = B'</math> (zobacz [[#H23|H23]]). Co należało pokazać.
  
::<math>(D \mid p) = (P^2 \mid p) = (P \mid p)^2 = 0 , \;</math> gdy <math>p \mid P</math>
+
<math>\Large{\Longleftarrow}</math>
  
lub
+
Ponieważ zbiory <math>A', B'</math> są równe, to zbiór <math>A'</math> jest podzbiorem zbioru <math>B'</math>, czyli dla każdego elementu <math>R_m (a_k) \in A'</math> istnieje taki element <math>R_m (b_j) \in B'</math>, że
  
::<math>(D \mid p) = (P^2 \mid p) = (P \mid p)^2 = 1 , \;</math> gdy <math>p \nmid P</math>
+
::<math>R_m (a_k) = R_m (b_j)</math>
  
i nie może być <math>(D \mid p) = - 1</math>.
+
Ponieważ równość reszt oznacza równość modulo, zatem
  
Dla parzystego <math>n = p + 1</math> otrzymujemy z&nbsp;twierdzenia N7
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
::<math>2^p U_{p + 1} = (p + 1) P^p + \binom{p + 1}{3} P^{p - 2} D + \binom{p + 1}{5} P^{p - 4} D^2 + \ldots + \binom{p + 1}{p - 2} P^3 D^{(p - 3) / 2} + (p + 1) P D^{(p - 1) / 2}</math>
+
Wynika stąd, że dla każdego <math>k = 1, \ldots, r</math> istnieje takie <math>j = 1, \ldots, r</math>, że prawdziwa jest kongruencja
  
Ponieważ dla <math>k \in [2, p - 1]</math> (zobacz N44)
+
::<math>a_k \equiv b_j \!\! \pmod{m}</math>
  
::<math>\binom{p + 1}{k} \equiv 0 \pmod{p}</math>
+
czyli zbiory <math>A, B</math> są równe modulo <math>m</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
to modulo <math>p</math> dostajemy
 
  
::<math>2 U_{p + 1} \equiv P + P D^{(p - 1) / 2} \pmod{p}</math>
 
  
 +
<span id="H26" style="font-size: 110%; font-weight: bold;">Twierdzenie H26</span><br/>
 +
Niech będą dane zbiory <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, <math>B = \{ b_1, b_2, \ldots, b_{p - 1} \}</math>, gdzie <math>p</math> jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru <math>B</math> są różne modulo <math>p</math> i&nbsp;żadna z&nbsp;liczb <math>b_k \in B</math> nie jest podzielna przez <math>p</math>, to zbiory <math>A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \}</math> są równe modulo <math>p</math>.
  
Z założenia <math>D</math> jest liczbą niekwadratową modulo <math>p</math>, zatem <math>D^{(p - 1) / 2} \equiv - 1 \pmod{p}</math> (zobacz J30). Skąd wynika natychmiast, że
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z definicji zbioru <math>A</math> wszystkie elementy tego zbioru są różne modulo <math>p</math>. Łatwo zauważamy, że
  
::<math>2 U_{p + 1} \equiv 0 \pmod{p}</math>
+
::<math>A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A'</math>
  
Czyli <math>p \mid U_{p + 1}</math>.
+
Ponieważ wszystkie liczby <math>b_k \in B</math>, gdzie <math>k = 1, \ldots, p - 1</math> są różne modulo <math>p</math> i&nbsp;nie są podzielne przez <math>p</math>, to reszty <math>R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
'''Punkt 3.'''
+
::<math>A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B'</math>
  
Dla parzystego <math>n = p - 1</math> otrzymujemy z&nbsp;twierdzenia N7
+
Na mocy twierdzenia [[#H25|H25]] zbiory <math>A</math> i <math>B</math> są równe modulo <math>p</math>.
  
::<math>2^{p - 2} U_{p - 1} = (p - 1) P^{p - 2} + \binom{p - 1}{3} P^{p - 4} D + \binom{p - 1}{5} P^{p - 6} D^2 + \ldots + \binom{p - 1}{p - 4} P^3 D^{(p - 5) / 2} + (p - 1) P D^{(p - 3) / 2}</math>
+
Z twierdzenia [[#H21|H21]] wiemy, że wszystkie liczby <math>b^{- 1}_k \in C</math> są różne modulo <math>p</math>. Zauważmy, że każda z&nbsp;tych liczb jest względnie pierwsza z <math>p</math>, zatem nie może być podzielna przez <math>p</math>. Wynika stąd, że reszty <math>R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1})</math> są wszystkie dodatnie i&nbsp;różne, a&nbsp;ponieważ jest ich <math>p - 1</math>, czyli dokładnie tyle, ile jest różnych i&nbsp;dodatnich reszt z&nbsp;dzielenia przez liczbę <math>p</math>, to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z&nbsp;dzielenia przez <math>p</math>, czyli ze zbiorem <math>A</math>. Zatem mamy
  
Ponieważ dla <math>k \in [0, p - 1]</math> (zobacz N45)
+
::<math>A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C'</math>
  
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
+
Na mocy twierdzenia [[#H25|H25]] zbiory <math>A</math> i <math>C</math> są równe modulo <math>p</math>. Ponieważ <math>A' = B'</math> i <math>A' = C'</math>, to <math>B' = C'</math> i&nbsp;ponownie na mocy twierdzenia [[#H25|H25]] zbiory <math>B</math> i <math>C</math> są równe modulo <math>p</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
to modulo <math>p</math> mamy
 
  
::<math>2^{p - 2} U_{p - 1} \equiv - (P^{p - 2} + P^{p - 4} D + P^{p - 6} D^2 + \ldots + P D^{(p - 3) / 2}) \pmod{p}</math>
 
  
::::<math>\quad \,\, \equiv - P (P^{p - 3} + P^{p - 5} D + P^{p - 7} D^2 + \ldots + D^{(p - 3) / 2}) \pmod{p}</math>
+
<span id="H27" style="font-size: 110%; font-weight: bold;">Zadanie H27</span><br/>
 +
Niech <math>p</math> będzie liczbą pierwszą nieparzystą. Pokazać, że suma <math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}}</math> jest podzielna przez <math>p</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy najpierw, że modulo <math>p</math> następujące sumy są równe
  
Z założenia <math>D</math> jest liczbą kwadratową modulo <math>p</math> (zobacz J28), zatem istnieje taka liczba <math>R</math>, że
+
::<math>\sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p}</math>
  
::<math>D \equiv R^2 \pmod{p}</math>
+
Istotnie, jeśli przyjmiemy w&nbsp;twierdzeniu [[#H26|H26]], że zbiór <math>B = \{ 1, 2, \ldots, p - 1 \}</math>, to zbiór <math>C</math> będzie zbiorem liczb, które są odwrotnościami liczb <math>1, 2, \ldots, p - 1</math> modulo <math>p</math> i&nbsp;możemy napisać
  
Ponieważ
+
::<math>\sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p}</math>
  
:* <math>(D \mid p) = 1</math>, to <math>p \nmid D</math>, zatem <math>p \nmid R</math>
+
bo
:* z&nbsp;założenia <math>p \nmid Q</math>, to <math>P^2 - R^2 \equiv P^2 - D \equiv 4 Q \not\equiv 0 \pmod{p}</math>
 
  
 +
:* gdy <math>x</math> przebiega kolejne wartości <math>b_k</math>, to <math>x</math> przyjmuje kolejno wartości <math>1, 2, \ldots, p - 1</math>
  
Czyli
+
:* gdy <math>y</math> przebiega kolejne wartości <math>b_k^{- 1}</math>, to <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości ze zbioru <math>A = \{ 1, 2, \ldots, p - 1 \}</math>, czyli liczba <math>y</math> (modulo <math>p</math>) przyjmuje wszystkie wartości <math>1, 2, \ldots, p - 1</math>, ale w&nbsp;innej kolejności
  
::<math>2^{p - 2} U_{p - 1} \equiv - P (P^{p - 3} + P^{p - 5} R^2 + P^{p - 7} R^4 + \ldots + R^{p - 3}) \pmod{p}</math>
+
Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo <math>p</math>.
  
 +
Zatem modulo <math>p</math> otrzymujemy
  
Uwzględniając, że <math>P^2 - R^2 \not\equiv 0 \pmod{p}</math>, możemy napisać
+
::<math>\sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1}</math>
  
::<math>2^{p - 2} (P^2 - R^2) U_{p - 1} \equiv - P (P^2 - R^2) (P^{p - 3} + P^{p - 5} R^2 + P^{p - 7} R^4 + \ldots + R^{p - 3}) \pmod{p}</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1}</math>
  
::::::::<math>\equiv - P (P^{p - 1} - R^{p - 1}) \pmod{p}</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k</math>
  
::::::::<math>\equiv 0 \pmod{p}</math>
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}}</math>
  
Zauważmy, że wynik nie zależy od tego, czy <math>p \mid P</math>, czy <math>p \nmid P</math>. Skąd wynika
+
:::::<math>\;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p</math>
  
::<math>U_{p - 1} \equiv 0 \pmod{p}</math>
+
:::::<math>\;\;\: \equiv 0 \!\! \pmod{p}</math>
  
Co należało pokazać.<br/>
+
Należy zauważyć, że dla liczby pierwszej nieparzystej <math>p</math> liczba <math>{\small\frac{p - 1}{2}}</math> jest liczbą całkowitą.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 904: Linia 749:
  
  
Aby zapisać punkty 2. i 3. twierdzenia N19 (i tylko te punkty) w&nbsp;zwartej formie, musimy założyć, że <math>\gcd (p, D) = 1</math>. Otrzymujemy<br/>
 
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N20</span><br/>
 
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą i <math>\gcd (p, Q D) = 1</math>, to
 
  
::<math>U_{p - (D \mid p)} \equiv 0 \pmod{p}</math>
 
  
 +
== Funkcje multiplikatywne ==
  
 +
<span id="H28" style="font-size: 110%; font-weight: bold;">Definicja H28</span><br/>
 +
Powiemy, że funkcja <math>f(n)</math> określona w&nbsp;zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli <math>f(1) = 1</math> i&nbsp;dla względnie pierwszych liczb <math>a, b</math> spełniony jest warunek <math>f(a b) = f (a) f (b)</math>.
  
  
  
== Liczby pseudopierwsze Lucasa ==
+
<span id="H29" style="font-size: 110%; font-weight: bold;">Uwaga H29</span><br/>
 +
Założenie <math>f(1) = 1</math> możemy równoważnie zastąpić założeniem, że funkcja <math>f(n)</math> nie jest tożsamościowo równa zero.
 +
Gdyby <math>f(n)</math> spełniała jedynie warunek <math>f(a b) = f (a) f (b)</math> dla względnie pierwszych liczb <math>a, b</math>, to mielibyśmy
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N21</span><br/>
+
::a)&nbsp;&nbsp;&nbsp;<math>f(n)</math> jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 0</math>
Z twierdzenia N20 wiemy, że liczby pierwsze nieparzyste <math>p</math> takie, że <math>p \nmid Q D</math> są dzielnikami wyrazów ciągu Lucasa <math>U_{p - (D \mid p)}</math>, gdzie <math>(D \mid p)</math> oznacza symbol Legendre'a. Jeśli zastąpimy symbol Legendre'a symbolem Jacobiego, to będziemy mogli badać prawdziwość tego twierdzenia dla liczb złożonych i&nbsp;łatwo przekonamy się, że dla pewnych liczb złożonych <math>m</math> kongruencja
 
  
::<math>U_{m - (D \mid m)} \equiv 0 \pmod{m}</math>
+
::b)&nbsp;&nbsp;&nbsp;<math>f(n)</math> nie jest tożsamościowo równa zeru wtedy i&nbsp;tylko wtedy, gdy <math>f(1) = 1</math>
  
również jest prawdziwa. Prowadzi to definicji liczb pseudopierwszych Lucasa.
+
Ponieważ <math>f(1) = f (1 \cdot 1) = f (1) f (1)</math>, zatem <math>f(1) = 0</math> lub <math>f (1) = 1</math>.
  
 +
Jeżeli <math>f(1) = 0</math>, to dla dowolnego <math>n</math> mamy
  
 +
::<math>f(n) = f (n \cdot 1) = f (n) f (1) = 0</math>
  
<span style="font-size: 110%; font-weight: bold;">Definicja N22</span><br/>
+
Czyli <math>f(n)</math> jest funkcją tożsamościowo równą zero.
Powiemy, że liczba złożona nieparzysta <math>m</math> jest liczbą pseudopierwszą Lucasa dla parametrów <math>P</math> i <math>Q</math> (symbolicznie: LPSP( <math>P, Q</math> )), jeżeli <math>\gcd (m, Q D) = 1</math> i
 
  
::<math>U_{m - (D \mid m)} \equiv 0 \pmod{m}</math>
+
Jeżeli <math>f(n)</math> nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba <math>a \in \mathbb{Z}_+</math>, że <math>f(a) \neq 0</math>. Zatem
  
gdzie <math>(D \mid m)</math> oznacza symbol Jacobiego.
+
::<math>f(a) = f (a \cdot 1) = f (a) f (1)</math>
  
 +
I dzieląc obie strony przez <math>f(a) \neq 0</math>, dostajemy <math>f(1) = 1</math>.
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N23</span><br/>
 
Jeżeli liczba złożona nieparzysta <math>m</math> jest liczbą pseudopierwszą Lucasa dla parametrów <math>P = a + 1</math> i <math>Q = a</math>, gdzie <math>a \geqslant 2</math>, to jest liczbą pseudopierwszą Fermata przy podstawie <math>a</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
<span id="H30" style="font-size: 110%; font-weight: bold;">Przykład H30</span><br/>
Połóżmy we wzorze definiującym ciąg Lucasa
+
Ponieważ <math>\gcd (1, c) = 1</math>, to <math>\gcd (n, c)</math> rozpatrywana jako funkcja <math>n</math>, gdzie <math>c</math> jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz [[#H8|H8]]).
  
::<math>U_m = {\small\frac{\alpha^m - \beta^m}{\alpha - \beta}}</math>
 
  
<math>\alpha = a</math> i <math>\beta = 1</math>. Odpowiada to parametrom <math>P = \alpha + \beta = a + 1</math>, <math>Q = \alpha \beta = a</math>, <math>D = (\alpha - \beta)^2 = (a - 1)^2</math>.
 
  
Ponieważ musi być <math>\gcd (m, Q D) = 1</math>, to mamy <math>\gcd (m, (a - 1) a) = 1</math> i&nbsp;wynika stąd, że <math>(D \mid m) = 1</math>. Z&nbsp;założenia <math>m</math> jest liczbą pseudopierwszą Lucasa dla parametrów <math>P = a + 1</math> i <math>Q = a</math>, zatem
+
<span id="H31" style="font-size: 110%; font-weight: bold;">Twierdzenie H31</span><br/>
 +
Jeżeli funkcja <math>f(n)</math> jest funkcją multiplikatywną, to funkcja
  
::<math>U_{m - 1} (a + 1, a) \equiv 0 \pmod{m}</math>
+
::<math>F(n) = \sum_{d \mid n} f (d)</math>
  
Czyli
+
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>, jest również funkcją multiplikatywną.
  
::<math>{\small\frac{a^{m - 1} - 1}{a - 1}} \equiv 0 \pmod{m}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ
  
Jeżeli <math>m \biggr\rvert {\small\frac{a^{m - 1} - 1}{a - 1}}</math>, to tym bardziej <math>m \big\rvert (a^{m - 1} - 1)</math> i&nbsp;możemy napisać
+
::<math>F(1) = \sum_{d \mid 1} f (d) = f (1) = 1</math>
  
::<math>a^{m - 1} - 1 \equiv 0 \pmod{m}</math>
+
to funkcja <math>F(n)</math> spełnia pierwszy warunek definicji [[#H28|H28]].
  
Zatem <math>m</math> jest liczbą pseudopierwszą Fermata przy podstawie <math>a</math>. Co należało pokazać.<br/>
+
Niech <math>a, b</math> będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu <math>a b</math> można zapisać w&nbsp;postaci <math>d = d_1 d_2</math>, gdzie <math>d_1 \mid a</math>, <math>\; d_2 \mid b \,</math> oraz <math>\, \gcd (d_1, d_2) = 1</math> (zobacz [[#H14|H14]]). Niech zbiory
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>S_a = \{ d \in \mathbb{Z}_+ : d \mid a \}</math>
  
 +
::<math>S_b = \{ d \in \mathbb{Z}_+ : d \mid b \}</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N24</span><br/>
+
::<math>S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \}</math>
Wykorzystując funkcje <code>jacobi(a, n)</code> i <code>modLucas(n, P, Q, m)</code> (zobacz J47, N15) możemy napisać prosty program, który sprawdza, czy dla liczby nieparzystej <math>m</math> prawdziwe jest twierdzenie N20.
 
  
<span style="font-size: 90%; color:black;">isPrimeOr<span style="background-color: #fee481;">LPSP</span>(m, P, Q) =
+
będą zbiorami dzielników dodatnich liczb <math>a, b</math> i <math>a b</math>. Dla przykładu
{
 
'''local'''(D, js);
 
D = P^2 - 4*Q;
 
'''if'''( gcd(m, 2*Q*D) > 1, '''return'''(0) );
 
js = jacobi(D, m);
 
'''if'''( modLucas(m - js, P, Q, m)[1] == 0, '''return'''(1), '''return'''(0) );
 
}
 
  
 +
::<math>S_5 = \{ 1, 5 \}</math>
  
 +
::<math>S_7 = \{ 1, 7 \}</math>
  
<span style="font-size: 110%; font-weight: bold;">Przykład N25</span><br/>
+
::<math>S_{35} = \{ 1, 5, 7, 35 \}</math>
Poniższa tabela zawiera najmniejsze liczby pseudopierwsze Lucasa dla różnych parametrów <math>P</math> i <math>Q</math>
 
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
Dla dowolnego <math>d_1 \in S_a \,</math> i <math>\, d_2 \in S_b</math> musi być <math>\gcd (d_1, d_2) = 1</math>, bo gdyby było <math>\gcd (d_1, d_2) = g > 1</math>, to
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>  
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>253</math> || <math>121</math> || <math>57</math> || <math>217</math> || style="background-color: yellow" | <math>323</math> || <math>69</math> || <math>121</math> || <math>253</math> || <math>9</math> || style="background-color: yellow" | <math>143</math>  
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>9</math> || style="background-color: yellow" | <math>323</math> || <math>91</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>15</math> || style="background-color: yellow" | <math>119</math> || <math>57</math> || <math>9</math> || <math>9</math> || <math>9</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| <math>217</math> || <math>91</math> || style="background-color: yellow" | <math>527</math> || <math>25</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>65</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>323</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>341</math> || style="background-color: yellow" | <math>209</math> || style="background-color: yellow" | <math>39</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>15</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || <math>9</math> || <math>85</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>119</math> || <math>9</math> || <math>9</math> || style="background-color: yellow" | <math>143</math> || <math>25</math> || <math>33</math> || <math>9</math> || style="background-color: yellow" | <math>15</math>  
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>25</math> || style="background-color: red" | <math></math> || <math>21</math> || style="background-color: yellow" | <math>65</math> || style="background-color: yellow" | <math>115</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>209</math> || <math>9</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| <math>1541</math> || <math>9</math> || <math>341</math> || style="background-color: yellow" | <math>35</math> || <math>21</math> || <math>85</math> || <math>9</math> || style="background-color: yellow" | <math>15</math> || <math>9</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| style="background-color: yellow" | <math>629</math> || style="background-color: yellow" | <math>559</math> || <math>25</math> || <math>91</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>35</math> || <math>55</math> || <math>25</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| style="background-color: yellow" | <math>119</math> || <math>25</math> || style="background-color: yellow" | <math>209</math> || style="background-color: red" | <math></math> || <math>85</math> || <math>21</math> || style="background-color: yellow" | <math>119</math> || style="background-color: yellow" | <math>65</math> || <math>9</math> || style="background-color: yellow" | <math>115</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>9</math> || style="background-color: yellow" | <math>143</math> || <math>49</math> || style="background-color: yellow" | <math>143</math> || style="background-color: yellow" | <math>323</math> || <math>217</math> || style="background-color: yellow" | <math>39</math> || <math>9</math> || <math>9</math> || <math>9</math>  
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
::<math>g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a</math>
<span style="font-size: 90%; color:black;">FirstLPSP(Stop) =
 
\\ najmniejsze LPSP(P,Q) < Stop; dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0,
 
                  '''print'''("Q= ", Q, "  P= ", P, "  ------------------");
 
                  '''next'''();
 
                );
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">LPSP</span>(m, P, Q)  &&  !'''isprime'''(m),
 
                          '''print'''("Q= ", Q, "  P= ", P, "  m= ", m, "  (D|m)= ", jacobi(D, m));
 
                          '''break'''();
 
                        );
 
                      m = m + 2;
 
                    );
 
            );
 
      );
 
}</span>
 
<br/>
 
{{\Spoiler}}
 
  
Żółtym tłem oznaczyliśmy te najmniejsze liczby pseudopierwsze Lucasa, dla których <math>(D \mid m) = - 1</math>.
+
::<math>g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b</math>
  
 +
Zatem <math>g \mid \gcd (a, b)</math> i&nbsp;mielibyśmy <math>\gcd (a, b) \geqslant g > 1</math>, wbrew założeniu.
  
 +
Przekształcając, otrzymujemy
  
<span style="font-size: 110%; font-weight: bold;">Przykład N26</span><br/>
+
::<math>F(a b) = \sum_{d \mid a b} f (d)</math>
Ilość liczb LPSP(<math>P, Q</math>) mniejszych od <math>10^9</math>
 
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
:::<math>\;\;\;\;\: = \sum_{d \in S_{a b}} f (d)</math>
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>4266</math> || <math>4935</math> || <math>4278</math> || <math>4981</math> || <math>6363</math> || <math>6028</math> || <math>5202</math> || <math>4426</math> || <math>5832</math> || <math>6027</math>
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>4599</math> || <math>4152</math> || <math>9272</math> || <math>5886</math> || <math>6958</math> || <math>4563</math> || <math>5600</math> || <math>9509</math> || <math>7007</math> || <math>4142</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| <math>4265</math> || <math>5767</math> || <math>4241</math> || <math>5114</math> || <math>5859</math> || <math>7669</math> || <math>6083</math> || <math>6120</math> || <math>4420</math> || <math>5096</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>5361</math> || <math>4389</math> || <math>5063</math> || <math>5632</math> || <math>5364</math> || <math>5228</math> || <math>5859</math> || <math>10487</math> || <math>5370</math> || <math>9798</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| <math>4152</math> || <math>5886</math> || <math>4563</math> || <math>9509</math> || <math>4142</math> || <math>6273</math> || <math>5773</math> || <math>4497</math> || <math>5166</math> || <math>5305</math>
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>282485800</math> || style="background-color: red" | <math></math> || <math>6567</math> || <math>7669</math> || <math>7131</math> || <math>10882</math> || <math>8626</math> || <math>8974</math> || <math>8509</math> || <math>8752</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| <math>7803</math> || <math>449152466</math> || <math>5597</math> || <math>5886</math> || <math>6509</math> || <math>5761</math> || <math>8115</math> || <math>6945</math> || <math>8380</math> || <math>7095</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| <math>5974</math> || <math>8768</math> || <math>282485800</math> || <math>5767</math> || <math>5651</math> || <math>5632</math> || <math>6640</math> || <math>5725</math> || <math>6058</math> || <math>7050</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| <math>10749</math> || <math>282485800</math> || <math>14425</math> || style="background-color: red" | <math></math> || <math>9735</math> || <math>6567</math> || <math>8164</math> || <math>7669</math> || <math>7608</math> || <math>7131</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>5047</math> || <math>15127</math> || <math>6155</math> || <math>15127</math> || <math>4152</math> || <math>5146</math> || <math>4423</math> || <math>5526</math> || <math>6289</math> || <math>9509</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2)</math>
<span style="font-size: 90%; color:black;">NumOfLPSP(Stop) =
 
\\ ilość liczb pseudopierwszych Lucasa LPSP(P,Q) < Stop; dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0, '''print'''("Q= ", Q, "  P= ", P, "  ------------------"); '''next'''() );
 
              s = 0;
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">LPSP</span>(m, P, Q)  &&  !'''isprime'''(m), s++ );
 
                      m = m + 2;
 
                    );
 
              '''print'''("Q= ", Q, "  P= ", P, "  s= ", s);
 
            );
 
      );
 
}</span>
 
<br/>
 
{{\Spoiler}}
 
  
 +
:::<math>\;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2)</math>
  
 +
:::<math>\;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2)</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N27</span><br/>
+
:::<math>\;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2)</math>
Dla <math>(P, Q) = (1, 1)</math> ciąg Lucasa <math>(U_n)</math> ma postać
 
  
::<math>(U_n) = (0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, 0, - 1, - 1, 0, 1, 1, \ldots)</math>
+
:::<math>\;\;\;\;\: = F (a) F (b)</math>
  
Stosując indukcję matematyczną, udowodnimy, że <math>U_{3 k} = 0</math>. Łatwo sprawdzamy, że dla <math>k = 0</math> i <math>k = 1</math> wzór jest prawdziwy. Zakładając prawdziwość wzoru dla wszystkich liczb naturalnych nie większych od <math>k</math>, otrzymujemy dla <math>k + 1</math> (zobacz N13 p.3)
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>U_{3 (k + 1)} = U_{3 k + 3} = U_{3 k} V_3 - U_{3 (k - 1)} = 0</math>
 
  
Co kończy dowód. Zbadajmy liczby pseudopierwsze Lucasa dla <math>(P, Q) = (1, 1)</math>.
 
  
Mamy <math>D = P^2 - 4 Q = - 3</math>. Wynika stąd, że nie może być <math>3 \mid m</math>, bo mielibyśmy <math>\gcd (m, Q D) = 3 > 1</math>.
 
  
Z zadania J45 wiemy, że
 
  
::<math>(- 3 \mid m) =
+
== Funkcja Eulera <math>\varphi (n)</math> ==
\begin{cases}
 
\;\;\: 1 & \text{gdy } m = 6 k + 1 \\
 
\;\;\: 0 & \text{gdy } m = 6 k + 3 \\
 
      - 1 & \text{gdy } m = 6 k + 5 \\
 
\end{cases}</math>
 
  
Ponieważ <math>3 \nmid m</math>, to wystarczy zbadać przypadki <math>m = 6 k + 1</math> i <math>m = 6 k + 5</math>. W&nbsp;pierwszym przypadku jest
+
<span id="H32" style="font-size: 110%; font-weight: bold;">Definicja H32</span><br/>
 +
Funkcja Eulera <math>\varphi (n)</math><ref name="Euler1"/> jest równa ilości liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math>.
  
::<math>U_{m - (- 3 \mid m)} = U_{6 k + 1 - 1} = U_{6 k} = 0</math>
 
  
W drugim przypadku, gdy <math>m = 6 k + 5</math>, dostajemy
 
  
::<math>U_{m - (- 3 \mid m)} = U_{6 k + 5 + 1} = U_{6 (k + 1)} = 0</math>
+
<span id="H33" style="font-size: 110%; font-weight: bold;">Twierdzenie H33</span><br/>
 +
Funkcja Eulera <math>\varphi (n)</math> jest multiplikatywna, czyli dla względnie pierwszych liczb <math>m, n</math> jest <math>\varphi (m n) = \varphi (m) \varphi (n)</math>.
  
Zatem dla dowolnej liczby nieparzystej <math>m</math> niepodzielnej przez <math>3</math> jest
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>m, n</math> będą dodatnimi liczbami całkowitymi takimi, że <math>\gcd (m, n) = 1</math>. Twierdzenie jest prawdziwe dla <math>n = 1</math>, zatem nie zmniejszając ogólności, możemy założyć, że <math>n > 1</math>. Wypiszmy w&nbsp;tabeli wszystkie liczby od <math>1</math> do <math>m n</math>.
  
::<math>U_{m - (- 3 \mid m)} \equiv 0 \pmod{m}</math>
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
 +
|-
 +
| <math>1</math> || <math>2</math> || <math>…</math> || <math>k</math> || <math>…</math> || <math>m</math>
 +
|-
 +
| <math>m + 1</math> || <math>m + 2</math> || <math>…</math> || <math>m + k</math> || <math>…</math> || <math>2 m</math>
 +
|-
 +
| <math>2 m + 1</math> || <math>2 m + 2</math> || <math>…</math> || <math>2 m + k</math> || <math>…</math> || <math>3 m</math>
 +
|-
 +
| <math>…</math> || <math>…</math> || <math>…</math> || <math>…</math> || <math></math> || <math></math>
 +
|-
 +
| <math>(n - 1) m + 1</math> || <math>(n - 1) m + 2</math> || <math>…</math> || <math>(n - 1) m + k</math> || <math>…</math> || <math>n m</math>
 +
|}
  
Czyli liczbami pseudopierwszymi Lucasa dla parametrów <math>(P, Q) = (1, 1)</math> będą liczby nieparzyste <math>m</math>, które nie są podzielne przez <math>3</math> i&nbsp;nie są liczbami pierwszymi. Ilość takich liczb nie większych od <math>10^k</math> możemy łatwo znaleźć poleceniem
+
'''1.''' Natychmiast widzimy, że w&nbsp;pierwszym wierszu mamy <math>\varphi (m)</math> liczb względnie pierwszych z <math>m</math>. Tak samo jest w&nbsp;każdym kolejnym wierszu, bo (zobacz [[#H5|H5]])
  
<span style="font-size: 90%; color:black;">'''for'''(k = 1, 9, s = 0; '''forstep'''(m = 3, 10^k, 2, '''if'''( m%6 <> 3, s = s + !'''isprime'''(m) )); '''print'''(s))</span>
+
::<math>\gcd (r m + k, m) = \gcd (k, m)</math>
  
 +
Zatem mamy dokładnie <math>\varphi (m)</math> kolumn liczb względnie pierwszych z <math>m</math>.
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie N28</span><br/>
+
'''2.''' Załóżmy, że liczba <math>k</math> jest jedną z&nbsp;liczb względnie pierwszych z <math>m</math>, czyli <math>\gcd (k, m) = 1</math>. Przy tym założeniu <math>k</math>-ta kolumna (pokazana w&nbsp;tabeli) jest kolumną liczb względnie pierwszych z <math>m</math>.
Pokazać, że ilość liczb pseudopierwszych Lucasa dla parametrów <math>(P, Q) = (2, 2)</math> nie większych od <math>10^k</math> możemy znaleźć poleceniem
 
  
<span style="font-size: 90%; color:black;">'''for'''(k = 1, 9, s = 0; '''forstep'''(m = 3, 10^k, 2, s = s + !'''isprime'''(m)); '''print'''(s))</span>
 
  
 +
'''3.''' Zauważmy, że reszty z&nbsp;dzielenia liczb wypisanych w <math>k</math>-tej kolumnie przez <math>n</math> są wszystkie różne. Gdyby tak nie było, to dla pewnych <math>i, j</math>, gdzie <math>0 \leqslant i, j \leqslant n - 1</math>, różnica liczb <math>i m + k</math> oraz <math>j m + k</math> byłaby podzielna przez <math>n</math>. Mielibyśmy
  
 +
::<math>n \mid ((i m + k) - (j m + k))</math>
  
 +
Skąd wynika natychmiast
  
 +
::<math>n \mid (i - j) m</math>
  
== Metoda Selfridge'a wyboru parametrów <math>P</math> i <math>Q</math> ==
+
Ponieważ założyliśmy, że <math>\gcd (n, m) = 1</math>, to musi być <math>n \mid (i - j)</math> (zobacz C74), ale
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N29</span><br/>
+
::<math>0 \leqslant | i - j | \leqslant n - 1</math>
Twierdzenie N20 możemy wykorzystać do testowania pierwszości liczb. Ponieważ musi być spełniony warunek <math>\gcd (m, Q D) = 1</math>, to nie każda para liczb <math>P, Q</math> (np. wybrana losowo) nadaje się do przeprowadzenia testu. Zawsze będziemy zmuszeni określić zasadę postępowania, która doprowadzi do wyboru właściwej pary <math>P, Q</math>.
 
  
Robert Baillie i&nbsp;Samuel Wagstaff przedstawili<ref name="BaillieWagstaff1"/> dwie metody wyboru parametrów dla testu Lucasa. Ograniczymy się do omówienia tylko pierwszej z&nbsp;nich (metodę zaproponował John Selfridge).
+
Czyli <math>n</math> może dzielić <math>i - j</math> tylko w&nbsp;przypadku, gdy <math>i = j</math>. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez <math>n</math>.
  
Rozważmy ciąg <math>a_k = (- 1)^k (2 k + 1)</math>, gdzie <math>k \geqslant 2</math>, czyli <math>a_k = (5, - 7, 9, - 11, 13, - 15, \ldots)</math>. Niech <math>D</math> będzie pierwszym wyrazem ciągu <math>(a_k)</math>, dla którego jest <math>(a_k \mid m) = - 1</math>. Dla tak ustalonego <math>D</math> przyjmujemy <math>P = 1</math> i <math>Q = (1 - D) / 4</math>.
 
  
Tabela przedstawia początkowe wartości <math>Q</math>, jakie otrzymamy, stosując tę metodę.
+
'''4.''' Ponieważ w <math>k</math>-tej kolumnie znajduje się dokładnie <math>n</math> liczb i&nbsp;reszty z&nbsp;dzielenia tych liczb przez <math>n</math> są wszystkie różne, to reszty te tworzą zbiór <math>S = \{ 0, 1, \ldots, n - 1 \}</math>. Wynika stąd, że liczby wypisane w <math>k</math>-tej kolumnie mogą być zapisane w&nbsp;postaci
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
::<math>a_r = b_r \cdot n + r</math>
! <math>\boldsymbol{k}</math>
 
| <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math>
 
|-
 
!  <math>\boldsymbol{a_k}</math>
 
| <math>5</math> || <math>-7</math> || <math>9</math> || <math>-11</math> || <math>13</math> || <math>-15</math> || <math>17</math> || <math>-19</math> || <math>21</math> || <math>-23</math> || <math>25</math> || <math>-27</math> || <math>29</math> || <math>-31</math> || <math>33</math> || <math>-35</math> || <math>37</math> || <math>-39</math> || <math>41</math>
 
|-
 
<math>\boldsymbol{Q}</math>
 
| <math>-1</math> || <math>2</math> || style="background-color: red" | <math>-2</math> || <math>3</math> || <math>-3</math> || <math>4</math> || <math>-4</math> || <math>5</math> || <math>-5</math> || <math>6</math> || style="background-color: red" | <math>-6</math> || <math>7</math> || <math>-7</math> || <math>8</math> || <math>-8</math> || <math>9</math> || <math>-9</math> || <math>10</math> || <math>-10</math>
 
|}
 
  
 +
gdzie <math>r = 0, 1, \ldots, n - 1</math> i <math>b_r \in \mathbb{Z}</math>.
  
Zauważmy, że  
+
Zauważmy, że następujące ilości liczb są sobie równe
:* jeżeli liczba nieparzysta <math>m</math> jest liczbą kwadratową, to wybór <math>D</math> nie będzie możliwy
 
:* w&nbsp;przypadku zastosowania tej metody znajdziemy tylko liczby pierwsze lub pseudopierwsze Lucasa, które spełniają kongruencję <math>U_{m + 1} \equiv 0 \pmod{m}</math>, czyli tylko część liczb pseudopierwszych Lucasa określonych w&nbsp;definicji N22
 
  
 +
:*&nbsp;&nbsp;&nbsp;ilość liczb w <math>k</math>-tej kolumnie względnie pierwszych z <math>n</math>
  
Ponieważ Baillie i&nbsp;Wagstaff określili metodę zaproponowaną przez Selfridge'a jako metodę A, to pozostaniemy przy tej nazwie. Korzystając ze wzoru rekurencyjnego
+
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 0, \ldots, n - 1</math>, bo <math>\gcd (b_r \cdot n + r, n) = \gcd (r, n)</math>
  
::<math> a_{k+1} =
+
:*&nbsp;&nbsp;&nbsp;ilość liczb <math>r</math> względnie pierwszych z <math>n</math>, gdzie <math>r = 1, \ldots, n</math>, bo <math>\gcd (n, n) = \gcd (0, n) = | n | > 1</math>
  \begin{cases}
 
  \qquad \qquad 5 & \text{gdy } k = 1 \\
 
      - a_k - 2 * \mathop{\textnormal{sign}}( a_k ) & \text{gdy } k \geqslant 2 \\
 
  \end{cases}</math>
 
  
możemy łatwo napisać odpowiednią funkcję znajdującą liczby <math>P, Q</math> według tej metody.
+
Ostatnia ilość liczb jest równa <math>\varphi (n)</math>, co wynika wprost z&nbsp;definicji funkcji <math>\varphi (n)</math>.
  
<span style="font-size: 90%; color:black;">MethodA(m) =
 
{
 
'''local'''(a, js);
 
a = 5;
 
'''while'''( 1,
 
        js = jacobi(a, m);
 
        '''if'''( js == 0  &&  a % m <> 0, '''return'''([0, 0]) );
 
        '''if'''( js == -1, '''return'''([1, (1 - a)/4]) );
 
        a = -a - 2*'''sign'''(a);
 
      );
 
}</span>
 
  
Wyjaśnienia wymaga druga linia kodu w&nbsp;pętli <code>while</code>. Wiemy, że (zobacz J41)
+
'''5.''' Zbierając: mamy w&nbsp;wypisanej tabeli dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jednocześnie jest
  
::<math>(a \mid m) = 0 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a, m) > 1</math>
+
::<math>\gcd (u, m) = 1 \quad \text{i} \quad \gcd (u, n) = 1</math>
  
Jednak z&nbsp;faktu, że <math>\gcd (a, m) > 1</math> nie wynika natychmiast, że liczba <math>m</math> jest liczbą złożoną. Rozważmy dwa przypadki: gdy <math>m \mid a</math> i <math>m \nmid a</math>.
+
Z twierdzenia [[#H6|H6]] wynika, że w&nbsp;tabeli jest dokładnie <math>\varphi (m) \varphi (n)</math> liczb <math>u \in [1, m n]</math>, dla których jest
  
Gdy <math>\gcd (a, m) > 1</math> i <math>m \mid a</math>, to <math>\gcd (a, m) = \gcd (k \cdot m, m) = m > 1</math> i&nbsp;nie jesteśmy w&nbsp;stanie rozstrzygnąć, czy liczba <math>m</math> jest liczbą pierwszą, czy złożoną. Widać to dobrze na prostych przykładach
+
::<math>\gcd (u, m n) = 1</math>
  
::<math>\gcd (7, 7) = \gcd (14, 7) = 7 > 1</math>
+
Zatem <math>\varphi (m n) = \varphi (m) \varphi (n)</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\gcd (15, 15) = \gcd (30, 15) = 15 > 1</math>
 
  
Gdy <math>\gcd (a, m) > 1</math> i <math>m \nmid a</math>, to <math>m</math> jest liczbą złożoną. Ponieważ <math>m \nmid a</math>, to <math>a = k \cdot m + r</math>, gdzie <math>r \in [1, m - 1]</math>. Mamy
 
  
::<math>\gcd (a, m) = \gcd (k \cdot m + r, m) = \gcd (r, m) = d</math>
+
<span id="H34" style="font-size: 110%; font-weight: bold;">Twierdzenie H34</span><br/>
 +
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
  
Musi być <math>d > 1</math>, bo założyliśmy, że <math>\gcd (a, m) > 1</math> i&nbsp;musi być <math>d < m</math>, bo <math>d \leqslant r \leqslant m - 1</math>. Zatem <math>d</math> jest dzielnikiem nietrywialnym liczby <math>m</math> i <math>m</math> jest liczbą złożoną.
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
Omawiana linia kodu zapewnia wysłanie informacji o&nbsp;tym, że liczba <math>m</math> jest liczbą złożoną (zwrot wektora [0, 0]). W&nbsp;przypadku, gdy nie mamy takiej pewności, kontynuujemy szukanie liczby <math>a</math>, takiej że <math>(a \mid m) = - 1</math>, pozostawiając zbadanie pierwszości liczby <math>m</math> na kolejnym etapie testowania.
+
gdzie iloczyn obliczamy po wszystkich liczbach pierwszych <math>p</math>, będących dzielnikami liczby <math>n</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej <math>p</math> są jednocześnie pierwsze względem <math>p</math>, to <math>\varphi (p) = p - 1</math>.
  
Uważny Czytelnik dostrzeże, że nie zbadaliśmy, czy spełniony jest warunek <math>\gcd (m, Q) = 1</math>. Nie musimy tego robić, bo zwracana przez funkcję <code>MethodA()</code> liczba <math>Q</math> jest względnie pierwsza z <math>m</math>. Omówimy ten problem dokładnie w&nbsp;zadaniu N30. Poniżej pokażemy, że nawet gdyby było <math>\gcd (m, Q) > 1</math>, to złożona liczba <math>m</math> nie zostanie uznana za liczbę pseudopierwszą Lucasa.
+
Równie łatwo znajdujemy wartość funkcji <math>\varphi (n)</math> w&nbsp;przypadku gdy <math>n</math> jest potęgą liczby pierwszej <math>n = p^k</math>. Wystarczy zauważyć, że w&nbsp;ciągu kolejnych liczb
  
Zauważmy, że jeżeli <math>m</math> jest liczbą złożoną i&nbsp;ma dzielnik pierwszy <math>p < m</math>, który dzieli <math>Q</math>, to <math>p \mid Q</math> i <math>p \nmid P</math> (bo <math>P = 1</math>), zatem <math>p \nmid U_k</math> dla <math>k \geqslant 1</math> (zobacz N17), czyli nie może być
+
::<math>1, 2, 3, 4, \ldots, p^k - 1, p^k</math>
  
::<math>U_{m + 1} (1, Q) \equiv 0 \pmod{m}</math>
+
jedynymi liczbami, które nie są pierwsze względem <math>p^k</math>, są te, które dzielą się przez <math>p</math> i&nbsp;jest ich <math>p^{k - 1}</math>, co widać natychmiast po ich bezpośrednim wypisaniu
  
bo mielibyśmy
+
::<math>1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p</math>
  
::<math>U_{m + 1} (1, Q) \equiv 0 \pmod{p}</math>
+
Zatem
  
a to jest niemożliwe. Zatem program wykorzystujący twierdzenie N20 wykryje złożoność liczby <math>m</math>.
+
::<math>\varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right)</math>
  
Łatwo pokażemy, że nie jest możliwe, aby liczba <math>m</math> była liczbą pierwszą i&nbsp;była dzielnikiem <math>Q</math>. Jeżeli <math>m</math> jest liczbą pierwszą, to istnieje dokładnie <math>\tfrac{m - 1}{2}</math> liczb kwadratowych modulo <math>p</math> i <math>\tfrac{m - 1}{2}</math> liczb niekwadratowych modulo <math>p</math>, zatem rozpoczynając od wyrazu <math>a_2</math> możemy dojść co najwyżej do wyrazu o&nbsp;indeksie <math>k = \tfrac{m - 1}{2} + 2</math>, czyli
+
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to dla <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math> otrzymujemy
  
::<math>| a_k | \leqslant m + 4</math>
+
::<math>\varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k)</math>
  
Skąd wynika, że
+
:::<math>\;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
::<math>| Q | = \left| {\small\frac{1 - a_k}{4}} \right| \leqslant {\small\frac{m + 5}{4}} < m</math>
+
:::<math>\;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right]</math>
  
Ostatnia nierówność jest prawdziwa dla <math>m > {\small\frac{5}{3}}</math>, czyli dla wszystkich liczb pierwszych. Ponieważ <math>| Q | < m</math>, w&nbsp;przypadku gdy <math>m</math> jest liczbą pierwszą, to <math>m</math> nie może być dzielnikiem liczby <math>Q</math>.
+
:::<math>\;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right)</math>
  
 +
:::<math>\;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span style="font-size: 110%; font-weight: bold;">Zadanie N30</span><br/>
 
Pokazać, że w&nbsp;przypadku, gdy dla kolejnych liczb <math>a_k = (- 1)^k (2 k + 1)</math> sprawdzamy, czy konsekwencją <math>(a_k \mid m) = 0</math> jest złożoność liczby <math>m</math>, to dla każdej liczby <math>Q</math> wyznaczonej metodą Selfridge'a jest <math>\gcd (Q, m) = 1</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Niech <math>m = 21</math>. Rozpoczniemy od przykładu liczb <math>a_k = (- 1)^k (2 k + 1)</math> dla <math>k = 0, 1, \ldots, m - 1</math>.
 
  
::{| class="wikitable plainlinks" style="font-size: 90%; text-align: center; margin-right: auto;"
+
<span id="H35" style="font-size: 110%; font-weight: bold;">Twierdzenie H35</span><br/>
! <math>\boldsymbol{k}</math> !! <math>\boldsymbol{0}</math> !!  !!  !!  !!  !!  !!  !!  !!  !!  !! <math>\boldsymbol{(m-1)/2}</math> !!  !!  !!  !!  !!  !!  !!  !!  !!  !! <math>\boldsymbol{m-1}</math>
+
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli <math>q</math> jest liczbą pierwszą, to
|-
 
! <math>\boldsymbol{k}</math>
 
| <math>0</math> || <math>1</math> || <math>2</math> || <math>3</math> || <math>4</math> || <math>5</math> || <math>6</math> || <math>7</math> || <math>8</math> || <math>9</math> || <math>10</math> || <math>11</math> || <math>12</math> || <math>13</math> || <math>14</math> || <math>15</math> || <math>16</math> || <math>17</math> || <math>18</math> || <math>19</math> || <math>20</math>
 
|-
 
! <math>\boldsymbol{a_k}</math>  
 
| <math>1</math> || <math>-3</math> || <math>5</math> || <math>-7</math> || <math>9</math> || <math>-11</math> || <math>13</math> || <math>-15</math> || <math>17</math> || <math>-19</math> || <math>21</math> || <math>-23</math> || <math>25</math> || <math>-27</math> || <math>29</math> || <math>-31</math> || <math>33</math> || <math>-35</math> || <math>37</math> || <math>-39</math> || <math>41</math>
 
|-
 
! <math>\boldsymbol{R_m(a_k)}</math>
 
| <math>1</math> || <math>18</math> || <math>5</math> || <math>14</math> || <math>9</math> || <math>10</math> || <math>13</math> || <math>6</math> || <math>17</math> || <math>2</math> || <math>0</math> || <math>19</math> || <math>4</math> || <math>15</math> || <math>8</math> || <math>11</math> || <math>12</math> || <math>7</math> || <math>16</math> || <math>3</math> || <math>20</math>
 
|}
 
  
Zauważmy, że modulo <math>21</math> ciąg <math>(a_k) = (1, - 3, 5, - 7, \ldots, 37, - 39, 41)</math> jest identyczny z&nbsp;ciągiem <math>(0, 1, 2, \ldots, 19, 20)</math>, a&nbsp;ciąg <math>(| a_k |)</math> to kolejne liczby nieparzyste od <math>1</math> do <math>2 m - 1</math>.
+
::<math>\varphi (q n) = \left\{ \begin{array}{rl}
 +
  (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n \\
 +
  q \varphi (n) & \quad \text{gdy} \quad q \mid n \\
 +
\end{array} \right.</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Jeżeli <math>q \nmid m</math>, to <math>\gcd (q, m) = 1</math>, zatem <math>\varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m)</math>. Jeżeli <math>q \mid m</math>, to liczby <math>m</math> oraz <math>q m</math> mają taki sam zbiór dzielników pierwszych, zatem
  
Poniżej pokażemy, dlaczego musi być <math>\gcd (Q, m) = 1</math>, gdzie <math>Q</math> jest liczbą wyznaczoną metodą Selfridge'a (o ile sprawdzana jest złożoność liczby <math>m</math> przy testowaniu kolejnych liczb <math>a_k</math>). Pogrubioną czcionką zaznaczone są symbole Jacobiego, które wykryły złożoność liczby <math>m</math>. Gdyby nie była badana złożoność, to wyliczona zostałaby wartość <math>Q</math> na podstawie innego wyrazu ciągu <math>a_k</math> (ten symbol Jacobiego został zapisany zwykłą czcionką).
+
::<math>\varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m)</math>
  
::<math>m = 3 , \;\; (5 \mid 3) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>m = 5 , \;\; (5 \mid 5) = 0 , \;\; (- 7 \mid 5) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1 \;\;</math> (zauważmy, że <math>(5 \mid 5) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
 
  
::<math>m = 7 , \;\; (5 \mid 7) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
 
  
::<math>m = 9 , \;\; </math> (liczba kwadratowa)
+
<span id="H36" style="font-size: 110%; font-weight: bold;">Zadanie H36</span><br/>
 +
Niech <math>q \in \mathbb{P}</math> i <math>a, b, m, n \in \mathbb{Z}_+</math>. Pokazać, że
  
::<math>m = 11 , \;\; (- 11 \mid 11) = 0 , \;\; (13 \mid 11) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 1 \;\;</math> (zauważmy, że <math>(- 11 \mid 11) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
+
:*&nbsp;&nbsp;&nbsp;<math>\varphi (q^{a + b}) = q^a \varphi (q^b)</math>
  
::<math>m = 13 , \;\; (5 \mid 13) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
+
:*&nbsp;&nbsp;&nbsp;<math>\varphi (n^m) = n^{m - 1} \varphi (n)</math>
  
::<math>m = 15 , \;\; \boldsymbol{(5 \mid 15) = 0} , \;\; (13 \mid 15) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''Punkt 1.'''
  
::<math>m = 17 , \;\; (5 \mid 17) = - 1 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1</math>
+
::<math>\varphi (q^{a + b}) = (q - 1) q^{a + b - 1} = q^a \cdot (q - 1) q^{b - 1} = q^a \varphi (q^b)</math>
  
::<math>m = 19 , \;\; (- 7 \mid 19) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
'''Punkt 2.'''
  
::<math>m = 21 , \;\; \boldsymbol{(- 7 \mid 21) = 0} , \;\; (- 11 \mid 21) = - 1 , \;\; Q = 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
Niech <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>
  
 +
::<math>\varphi (n^m) = \varphi (p^{m \alpha_1}_1 \cdot \ldots \cdot p^{m \alpha_s}_s)</math>
  
Niech <math>m \geqslant 23</math>. Wiemy, że w&nbsp;ciągu <math>(5, - 7, 9, \ldots, \pm m, \mp (m + 2), \ldots, - (2 m - 3), 2 m - 1)</math> wystąpią liczby <math>a_k</math> takie, że <math>(a_k \mid m) = - 1</math>. Warunek <math>(a_k \mid m) = 0</math> oznacza, że <math>(2 k + 1 \mid m) = 0</math>, bo
+
::::<math>\, = \varphi (p^{m \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{m \alpha_s}_s)</math>
  
::<math>(a_k \mid m) = ((- 1)^k (2 k + 1) \mid m) = ((- 1)^k \mid m) \cdot (2 k + 1 \mid m) = (- 1 \mid m)^k \cdot (2 k + 1 \mid m) = \pm (2 k + 1 \mid m)</math>
+
::::<math>\, = \varphi (p^{(m - 1) \alpha_1 + \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{(m - 1) \alpha_s + \alpha_s}_s)</math>
  
Jeżeli będą spełnione warunki <math>(a_k \mid m) = 0</math> i <math>R_m (a_k) \neq 0</math>, to liczba <math>m</math> będzie liczbą złożoną.
+
::::<math>\, = p^{(m - 1) \alpha_1}_1 \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \varphi (p^{\alpha_s}_s)</math>
  
Wypiszmy kolejne próby dla <math>m \geqslant 23</math>. Liczba <math>r</math> jest numerem próby.
+
::::<math>\, = p^{(m - 1) \alpha_1}_1 \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \cdot \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s)</math>
  
::<math>r = 1 , \;\; a_{r + 1} = 5</math>
+
::::<math>\, = n^{m - 1} \varphi (n)</math>
  
::{| border="0"
+
Co należało pokazać.<br/>
|-style=height:2em
+
&#9633;
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(5 \mid m) = 1</math> || <math>5 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
+
{{\Spoiler}}
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(5 \mid m) = 0</math> || <math>5 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(5 \mid m) = - 1 \quad</math> || <math>5 \nmid m</math> || <math>D = 5 , \;\; Q = - 1 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
  
::<math>r = 2 , \;\; a_{r + 1} = - 7</math>
 
  
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \mid m) = 1</math> || <math>7 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \mid m) = 0</math> || <math>7 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \mid m) = - 1 \quad</math> || <math>7 \nmid m</math> || <math>D = -7 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
  
::<math>r = 3</math>, <math>a_{r + 1} = 9</math>
+
<span id="H37" style="font-size: 110%; font-weight: bold;">Twierdzenie H37</span><br/>
 +
Niech <math>m, n \in \mathbb{Z}_+</math>. Jeżeli <math>m \mid n</math>, to <math>\varphi (m) \mid \varphi (n)</math>.
  
::{| border="0"
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-style=height:2em
+
Niech <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>. Ponieważ założyliśmy, że <math>m \mid n</math>, to <math>m</math> musi być postaci <math>m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s</math>, gdzie <math>0 \leqslant \beta_i \leqslant \alpha_i</math>, dla <math>i = 1, \ldots, s</math>. Łatwo zauważamy, że
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \mid m) = 1</math> || <math>3 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \mid m) = 0</math> || <math>3 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \mid m) \neq - 1 \quad</math> || - - - - || bo <math>9</math> jest liczbą kwadratową
 
|}
 
 
 
 
 
Po wykonaniu trzech prób niezakończonych sukcesem (tzn. wykryciem złożoności <math>m</math> lub ustaleniem wartości liczb <math>D</math> i <math>Q</math>) wiemy, że <math>m</math> nie jest podzielna przez żadną z&nbsp;liczb pierwszych <math>p = 3, 5, 7</math>.
 
 
 
::<math>r</math>-ta próba, gdzie <math>r \geqslant 4 , \;\;</math> wyraz <math>a_{r + 1}</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 1} \mid m) = 1</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 1} | = 2 r + 3</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 1} \mid m) = 0</math> || A. jeżeli <math>m \mid a_{r + 1}</math><sup>( * )</sup><br/>B. jeżeli <math>m \nmid a_{r + 1}</math> || A. przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math> <br/> B. <math>a_{r + 1} \mid m</math><sup>( ** )</sup>, '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 1} \mid m) = - 1 \quad</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 1} | = 2 r + 3</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || <math>D = a_{r + 1}</math>, <math>Q = {\small\frac{1 - a_{r + 1}}{4}}</math>, '''koniec'''
 
|}
 
  
<sup>( * )</sup> jest to możliwe tylko dla <math>a_{r + 1} = a_{(m - 1) / 2} = m</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>\beta_i = 0</math>, to <math>\varphi (p^{\beta_i}_i) = 1</math> i&nbsp;dzieli <math>\varphi (p^{\alpha_i}_i)</math>
  
<sup>( ** )</sup> zauważmy, że jeżeli <math>m \nmid a_{r + 1}</math>, to <math>\gcd (a_{r + 1}, m) = | a_{r + 1} |</math>, bo gdyby liczba <math>| a_{r + 1} |</math> była liczbą złożoną, to żaden z&nbsp;jej dzielników pierwszych nie dzieliłby liczby <math>m</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>1 \leqslant \beta_i \leqslant \alpha_i</math>, to <math>(p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1}</math>, zatem <math>\varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i)</math>
  
 +
Skąd natychmiast wynika, że <math>\varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s)</math> dzieli <math>\varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s)</math>, czyli <math>\varphi (m) \mid \varphi (n)</math>.
  
Jeżeli nie została wykryta złożoność liczby <math>m</math>, to żadna z&nbsp;liczb pierwszych <math>p \leqslant | a_{r + 1} | = 2 r + 3</math> nie dzieli liczby <math>m</math>. Zatem <math>\gcd (Q, m) > 1</math> może być tylko w&nbsp;przypadku, gdy pewna liczba pierwsza <math>q \geqslant 2 r + 5</math> będzie wspólnym dzielnikiem liczb <math>Q</math> i <math>m</math>, ale jest to niemożliwe, bo
+
Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo <math>\varphi (7) \mid \varphi (19)</math>, ale <math>7 \nmid 19</math>.<br/>
 
 
::<math>| Q | = \left| {\small\frac{1 - a_{r + 1}}{4}} \right| \leqslant {\small\frac{| a_{r + 1} | + 1}{4}} = {\small\frac{2 r + 4}{4}} < 2 r + 5 \leqslant q</math>
 
 
 
Przedostatnia (ostra) nierówność jest prawdziwa dla wszystkich <math>r</math> naturalnych.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1371: Linia 1042:
  
  
<span style="font-size: 110%; font-weight: bold;">Zadanie N31</span><br/>
+
<span id="H38" style="font-size: 110%; font-weight: bold;">Zadanie H38</span><br/>
Zmodyfikujmy metodę Selfridge'a w&nbsp;taki sposób, że będziemy rozpoczynali próby nie od wyrazu <math>a_2 = 5</math>, ale od wyrazu <math>a_3 = - 7</math>. Pokazać, że w&nbsp;przypadku, gdy dla kolejnych liczb <math>a_k = (- 1)^k (2 k + 1)</math> sprawdzamy, czy konsekwencją <math>(a_k \mid m) = 0</math> jest złożoność liczby <math>m</math>, to dla każdej liczby <math>Q</math> wyznaczonej tak zmodyfikowaną metodą Selfridge'a jest <math>\gcd (Q, m) = 1</math>.
+
Dla <math>n \geqslant 3</math> wartości <math>\varphi (n)</math> są liczbami parzystymi.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Poniżej pokażemy, dlaczego musi być <math>\gcd (Q, m) = 1</math>, gdzie <math>Q</math> jest liczbą wyznaczoną zmodyfikowaną metodą Selfridge'a (o ile sprawdzana jest złożoność liczby <math>m</math> przy testowaniu kolejnych liczb <math>a_k</math>). Pogrubioną czcionką zaznaczone są symbole Jacobiego, które wykryły złożoność liczby <math>m</math>. Gdyby nie była badana złożoność, to wyliczona zostałaby wartość <math>Q</math> na podstawie innego wyrazu ciągu <math>a_k</math> (ten symbol Jacobiego został zapisany zwykłą czcionką).
+
Jeżeli liczba <math>n \geqslant 3</math> jest podzielna przez liczbę pierwszą nieparzystą <math>p</math>, zaś <math>k</math> jest wykładnikiem, z&nbsp;jakim <math>p</math> wchodzi do rozwinięcia <math>n</math> na czynniki pierwsze, to
  
::<math>m = 3 , \;\; (- 7 \mid 3) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
::<math>\varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k  - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right)</math>
  
::<math>m = 5 , \;\; (- 7 \mid 5) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
zatem <math>\varphi (n)</math> jest liczbą parzystą, ponieważ <math>p - 1</math> jest liczbą parzystą.
  
::<math>m = 7 , \;\; (- 7 \mid 7) = 0 , \;\; (- 11 \mid 7) = - 1 , \;\; Q = 3 , \;\; \gcd (m, Q) = 1</math> (zauważmy, że <math>(- 7 \mid 7) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
+
Jeżeli żadna liczba nieparzysta nie dzieli <math>n</math>, to liczba <math>n</math> jest postaci <math>n = 2^a</math> i <math>\varphi (n) = 2^{a - 1}</math>, ale z&nbsp;założenia <math>n \geqslant 3</math>, zatem <math>a \geqslant 2</math> i <math>\varphi (n)</math> jest liczbą parzystą.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>m = 9 , \;\; </math> (liczba kwadratowa)
 
  
::<math>m = 11 , \;\; (- 11 \mid 11) = 0 , \;\; (13 \mid 11) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 1 \;\;</math> (zauważmy, że <math>(- 11 \mid 11) = 0</math> nie pozwala wnioskować o&nbsp;złożoności)
 
  
::<math>m = 13 , \;\; (- 7 \mid 13) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
<span id="H39" style="font-size: 110%; font-weight: bold;">Twierdzenie H39</span><br/>
 +
Jeżeli <math>n</math> jest liczbą złożoną, to <math>\varphi (n) \leqslant n - \sqrt{n}</math>.
  
::<math>m = 15 , \;\; \boldsymbol{(9 \mid 15) = 0} , \;\; (13 \mid 15) = - 1 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
 +
Niech <math>n = a b</math>, gdzie <math>1 < a \leqslant b < n</math>. Liczby <math>1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a</math> są nie większe od <math>n</math> i&nbsp;nie są względnie pierwsze z <math>n</math>, zatem
  
::<math>m = 17 , \;\; (- 7 \mid 17) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
::<math>\varphi (n) \leqslant n - b</math>
  
::<math>m = 19 , \;\; (- 7 \mid 19) = - 1 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1</math>
+
Ponieważ <math>b \geqslant a</math>, to <math>b^2 \geqslant a b = n</math> i <math>b \geqslant \sqrt{n}</math>. Wynika stąd, że
  
::<math>m = 21 , \;\; \boldsymbol{(- 7 \mid 21) = 0} , \;\; (- 11 \mid 21) = - 1 , \;\; Q = 3 , \;\; \gcd (m, Q) = 3 \;\;</math> (gdyby nie zbadano złożoności)
+
::<math>\varphi (n) \leqslant n - b \leqslant n - \sqrt{n}</math>
  
 +
<br/><span style="border-bottom-style: double;">Drugi sposób</span><br/>
 +
Niech <math>q</math> oznacza najmniejszy dzielnik pierwszy liczby złożonej <math>n</math>, zatem <math>q^2 \leqslant n</math>, czyli <math>q \leqslant \sqrt{n}</math>, a&nbsp;stąd <math>{\small\frac{n}{q}} \geqslant \sqrt{n}</math> i
  
Niech <math>m \geqslant 23</math>. Wiemy, że w&nbsp;ciągu <math>( - 7, 9, \ldots, \pm m, \mp (m + 2), \ldots, - (2 m - 3), 2 m - 1)</math> wystąpią liczby <math>a_k</math> takie, że <math>(a_k \mid m) = - 1</math>. Warunek <math>(a_k \mid m) = 0</math> oznacza, że <math>(2 k + 1 \mid m) = 0</math>, bo
+
::<math>\varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n}</math>
  
::<math>(a_k \mid m) = ((- 1)^k (2 k + 1) \mid m) = ((- 1)^k \mid m) \cdot (2 k + 1 \mid m) = (- 1 \mid m)^k \cdot (2 k + 1 \mid m) = \pm (2 k + 1 \mid m)</math>
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Jeżeli będą spełnione warunki <math>(a_k \mid m) = 0</math> i <math>R_m (a_k) \neq 0</math>, to liczba <math>m</math> będzie liczbą złożoną.
 
  
Wypiszmy kolejne próby dla <math>m \geqslant 23</math>. Liczba <math>r</math> jest numerem próby.
 
  
::<math>r = 1 , \;\; a_{r + 2} = - 7</math>
+
<span id="H40" style="font-size: 110%; font-weight: bold;">Twierdzenie H40</span><br/>
 +
Dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\varphi (n) > {\small\frac{\sqrt{n}}{2}}</math>.
  
::{| border="0"
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-style=height:2em
+
Dla <math>k \geqslant 3</math> jest
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \mid m) = 1</math> || <math>7 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \mid m) = 0</math> || <math>7 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 7 \mid m) = - 1 \quad</math> || <math>7 \nmid m</math> || <math>D = - 7 , \;\; Q = 2 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
 
 
::<math>r = 2 , \;\; a_{r + 2} = 9</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \mid m) = 1</math> || <math>3 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \mid m) = 0</math> || <math>3 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(9 \mid m) \neq - 1 \quad</math> || - - - - || bo <math>9</math> jest liczbą kwadratową
 
|}
 
 
 
::<math>r = 3 , \;\; a_{r + 2} = - 11</math>
 
 
 
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 11 \mid m) = 1</math> || <math>11 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 11 \mid m) = 0</math> || <math>11 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 11 \mid m) = - 1 \quad</math> || <math>11 \nmid m</math> || <math>D = - 11 , \;\; Q = 3 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec''' (bo liczby złożone <math>m = 3 k</math> zostały usunięte w&nbsp;poprzedniej próbie, <math>r = 2</math>)
 
|}
 
  
::<math>r = 4 , \;\; a_{r + 2} = 13</math>
+
::<math>\left( 1 - {\small\frac{1}{k}} \right)^2 > {\small\frac{1}{k}}</math>
  
::{| border="0"
+
Wynika stąd, że jeżeli <math>m \geqslant 3</math> jest liczbą nieparzystą, to
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(13 \mid m) = 1</math> || <math>13 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(13 \mid m) = 0</math> || <math>13 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(13 \mid m) = - 1 \quad</math> || <math>13 \nmid m</math> || <math>D = 13 , \;\; Q = - 3 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec''' (bo liczby złożone <math>m = 3 k</math> zostały usunięte w&nbsp;próbie o&nbsp;numerze <math>r = 2</math>)
 
|}
 
  
::<math>r = 5 , \;\; a_{r + 2} = - 15</math>
+
::<math>\varphi (m)^2 = m^2 \prod_{p|m} \left( 1 - {\small\frac{1}{p}} \right)^2 > m^2 \prod_{p|m} {\small\frac{1}{p}} \geqslant m</math>
  
::{| border="0"
+
bo
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 15 \mid m) = 1</math> || <math>5 \nmid m \quad</math> || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 15 \mid m) = 0</math> || <math>5 \mid m</math> || '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(- 15 \mid m) = - 1 \quad</math> || <math>5 \nmid m</math> || <math>D = - 15 , \;\; Q = 4 , \;\; \gcd (m, Q) = 1 , \;\;</math> '''koniec'''
 
|}
 
  
 +
::<math>\prod_{p|m} p \leqslant m</math>
  
Po wykonaniu pięciu prób niezakończonych sukcesem (tzn. wykryciem złożoności <math>m</math> lub ustaleniem wartości liczb <math>D</math> i <math>Q</math>) wiemy, że <math>m</math> nie jest podzielna przez żadną z&nbsp;liczb pierwszych <math>p = 3, 5, 7, 11, 13</math>.
+
Czyli dla nieparzystych liczb <math>m \geqslant 3</math> mamy
  
::<math>r</math>-ta próba, gdzie <math>r \geqslant 6 , \;\;</math> wyraz <math>a_{r + 2}</math>
+
::<math>\varphi (m) > \sqrt{m} > {\small\frac{\sqrt{m}}{2}}</math>
  
::{| border="0"
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 2} \mid m) = 1</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 2} | = 2 r + 5</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math>
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 2} \mid m) = 0</math> || A. jeżeli <math>m \mid a_{r + 2}</math><sup>( * )</sup><br/>B. jeżeli <math>m \nmid a_{r + 2}</math> || A. przechodzimy do kolejnego wyrazu ciągu <math>(a_k)</math> <br/> B. <math>a_{r + 1} \mid m</math><sup>( ** )</sup>, '''koniec'''
 
|-style=height:2em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>(a_{r + 2} \mid m) = - 1 \quad</math> || żadna liczba pierwsza <math>p \leqslant | a_{r + 2} | = 2 r + 5</math> nie dzieli liczby <math>m \quad</math> &nbsp;&nbsp;&nbsp;  || <math>D = a_{r + 2}</math>, <math>Q = {\small\frac{1 - a_{r + 2}}{4}}</math>, '''koniec'''
 
|}
 
  
<sup>( * )</sup> jest to możliwe tylko dla <math>a_{r + 2} = a_{(m - 1) / 2} = m</math>
+
Jeżeli <math>d = 2^a</math>, gdzie <math>a \geqslant 1</math>, to
  
<sup>( ** )</sup> zauważmy, że jeżeli <math>m \nmid a_{r + 2}</math>, to <math>\gcd (a_{r + 2}, m) = | a_{r + 2} |</math>, bo gdyby liczba <math>| a_{r + 2} |</math> była liczbą złożoną, to żaden z&nbsp;jej dzielników pierwszych nie dzieliłby liczby <math>m</math>
+
::<math>\varphi (d) = \varphi (2^a) = 2^{a - 1} > {\small\frac{\sqrt{2^a}}{2}} = {\small\frac{\sqrt{d}}{2}}</math>
  
  
Jeżeli nie została wykryta złożoność liczby <math>m</math>, to żadna z&nbsp;liczb pierwszych <math>p \leqslant | a_{r + 2} | = 2 r + 5</math> nie dzieli liczby <math>m</math>. Zatem <math>\gcd (Q, m) > 1</math> może być tylko w&nbsp;przypadku, gdy pewna liczba pierwsza <math>q \geqslant 2 r + 7</math> będzie wspólnym dzielnikiem liczb <math>Q</math> i <math>m</math>, ale jest to niemożliwe, bo
+
W przypadku ogólnym, gdy <math>n</math> jest iloczynem liczby nieparzystej <math>m \geqslant 3</math> i&nbsp;potęgi liczby <math>2</math>, dostajemy
  
::<math>| Q | = \left| {\small\frac{1 - a_{r + 2}}{4}} \right| \leqslant {\small\frac{| a_{r + 2} | + 1}{4}} = {\small\frac{2 r + 6}{4}} < 2 r + 7 \leqslant q</math>
+
::<math>\varphi (n) = \varphi (2^a m) = \varphi (2^a) \varphi (m) > {\small\frac{\sqrt{2^a}}{2}} \cdot \sqrt{m} = {\small\frac{\sqrt{2^a m}}{2}} = {\small\frac{\sqrt{n}}{2}}</math>
  
Przedostatnia (ostra) nierówność jest prawdziwa dla wszystkich <math>r</math> naturalnych.<br/>
+
Oczywiście nierówność <math>\varphi (n) > {\small\frac{\sqrt{n}}{2}}</math> jest również prawdziwa dla <math>n = 1</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1490: Linia 1118:
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N32</span><br/>
+
<span id="H41" style="font-size: 110%; font-weight: bold;">Zadanie H41</span><br/>
Przyjmując metodę Selfridge'a wyboru parametrów <math>P, Q</math> dla testu Lucasa, możemy łatwo napisać odpowiedni program w&nbsp;PARI/GP testujący pierwszość liczb
+
Pokazać, że dla <math>n \geqslant 7</math> prawdziwe jest oszacowanie <math>\varphi (n) > \sqrt{n}</math>.
  
<span style="font-size: 90%; color:black;">LucasTest(m) =
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
{
+
Zauważmy, że
'''local'''(P, Q, X);
 
'''if'''( m % 2 == 0, '''return'''(m == 2) );
 
'''if'''( '''issquare'''(m), '''return'''(0) ); \\ sprawdzamy, czy m nie jest liczbą kwadratową
 
X = MethodA(m);
 
P = X[1];
 
Q = X[2];
 
'''if'''( P == 0, '''return'''(0) ); \\ jeżeli P = 0, to m jest liczbą złożoną
 
'''if'''( modLucas(m + 1, P, Q, m)[1] == 0, '''return'''(1), '''return'''(0) );
 
}</span>
 
  
 +
::<math>n - 1 > \sqrt{n} \qquad \qquad \;\, \text{dla} \; n \geqslant 3</math>
  
 +
::<math>n - 1 > \sqrt{2 n} \qquad \qquad \text{dla} \; n \geqslant 4</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N33</span><br/>
 
Najmniejsze liczby pseudopierwsze Lucasa, które pojawiają się przy zastosowaniu metody Selfridge'a wyboru parametrów <math>P</math> i <math>Q</math>, to
 
  
::<math>323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877, 11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971, 19043, 22499, \ldots</math>
+
Zatem dla liczby pierwszej <math>p</math> i <math>k \geqslant 1</math> jest
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
::<math>\varphi (p^k) = (p - 1) p^{k - 1} > \sqrt{p} \cdot p^{k - 1} = p^{k - \tfrac{1}{2}} \geqslant p^{\tfrac{k}{2}} = \sqrt{p^k} \qquad \qquad \qquad \qquad \quad \; \text{dla} \;\: p \geqslant 3</math>
<span style="font-size: 90%; color:black;">'''forstep'''(k=1, 3*10^4, 2, '''if'''( LucasTest(k) && !'''isprime'''(k), '''print'''(k)) )</span>
 
<br/>
 
{{\Spoiler}}
 
  
 +
::<math>\varphi (p^k) = (p - 1) p^{k - 1} > \sqrt{2 p} \cdot p^{k - 1} = \sqrt{2} \cdot p^{k - \tfrac{1}{2}} \geqslant \sqrt{2} \cdot p^{\tfrac{k}{2}} = \sqrt{2 p^k} \qquad \qquad \text{dla} \;\, p \geqslant 5</math>
  
  
Tabela przedstawia ilość takich liczb nie większych od <math>10^n</math>
+
'''1. Przypadek, gdy <math>\boldsymbol{n \geqslant 3}</math> jest liczbą nieparzystą'''
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
Liczba <math>n</math> jest iloczynem czynników pierwszych nieparzystych, zatem
! <math>\boldsymbol{n}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math>
 
|-
 
| #LPSP <math>< 10^n</math> (metoda Selfridge'a) || <math>2</math> || <math>9</math> || <math>57</math> || <math>219</math> || <math>659</math> || <math>1911</math> || <math>5485</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
::<math>\varphi (n) = \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) > \sqrt{p^{\alpha_1}_1} \cdot \ldots \cdot \sqrt{p^{\alpha_s}_s} = \sqrt{n}</math>
<span style="font-size: 90%; color:black;">'''for'''(n=3, 9, s=0; '''forstep'''(k = 1, 10^n, 2, '''if'''( LucasTest(k) && !'''isprime'''(k), s++ ) ); '''print'''("n= ", n, "  ", s) )</span>
 
<br/>
 
{{\Spoiler}}
 
  
  
 +
'''2. Przypadek, gdy <math>\boldsymbol{n = 2^a m} \;</math> i <math>\; \boldsymbol{q \mid m ,} \;</math> gdzie <math>\; \boldsymbol{q \geqslant 5}</math>'''
  
 +
Z założenia <math>n = 2^a m = 2^a q^b r</math>, gdzie <math>r \geqslant 1</math> jest liczbą nieparzystą. Zauważmy, że <math>\varphi (r) \geqslant \sqrt{r}</math>, bo może być <math>r = 1</math>.
  
 +
::<math>\varphi (n) = \varphi (2^a q^b r)</math>
  
== Liczby silnie pseudopierwsze Lucasa ==
+
:::<math>\;\;\,\, = \varphi (2^a) \varphi (q^b) \varphi (r)</math>
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N34</span><br/>
+
:::<math>\;\;\,\, > 2^{a - 1} \sqrt{2 q^b} \sqrt{r}</math>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą taką, że <math>\gcd (p, Q D) = 1</math> oraz <math>p - (D \mid p) = 2^r w</math>, gdzie <math>w</math> jest liczbą nieparzystą, to spełniony jest dokładnie jeden z&nbsp;warunków
 
  
::<math>U_w \equiv 0 \pmod{p}</math>
+
:::<math>\;\;\,\, = 2^{a - \tfrac{1}{2}} \sqrt{q^b} \sqrt{r}</math>
  
lub
+
:::<math>\;\;\,\, \geqslant 2^{\tfrac{a}{2}} \sqrt{q^b r}</math>
  
::<math>V_{2^k w} \equiv 0 \pmod{p} \qquad</math> dla pewnego <math>k \in [0, r - 1]</math>
+
:::<math>\;\;\,\, = \sqrt{2^a q^b r}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:::<math>\;\;\,\, = \sqrt{n}</math>
Wiemy (zobacz N20), że jeżeli <math>p</math> jest liczbą pierwszą nieparzystą taką, że <math>\gcd (p, Q D) = 1</math>, to <math>p \mid U_{p - (D \mid p)}</math>. Z&nbsp;założenia jest <math>p - (D \mid p) = 2^r w</math>, zatem <math>p \mid U_{2^r w}</math>. Ponieważ założyliśmy, że <math>p \nmid Q</math> i <math>p \nmid D</math>, to ze wzoru <math>V^2_n - D U^2_n = 4 Q^n</math> (zobacz N13 p.14) wynika natychmiast, że <math>p</math> nie może dzielić jednocześnie liczb <math>U_n</math> i <math>V_n</math>.
 
  
Korzystając ze wzoru <math>U_{2 n} = U_n V_n</math> (zobacz N13 p.11), otrzymujemy
 
  
::{| border="0"
+
'''3. Przypadek, gdy <math>\boldsymbol{n = 2^a m} \;</math> i <math>\; \boldsymbol{q \nmid m ,} \;</math> gdzie <math>\; \boldsymbol{q \geqslant 5}</math>'''
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \mid U_{2^r w} \;\; \Longleftrightarrow \;\; p \mid U_{2^{r - 1} w} \cdot V_{2^{r - 1} w} \quad</math> || Jeżeli <math>p \mid V_{2^{r - 1} w}</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_{2^{r - 1} w}</math>, to <math>p \mid U_{2^{r - 1} w}</math>.
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \mid U_{2^{r - 1} w} \;\; \Longleftrightarrow \;\; p \mid U_{2^{r - 2} w} \cdot V_{2^{r - 2} w} \quad</math> || Jeżeli <math>p \mid V_{2^{r - 2} w}</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_{2^{r - 2} w}</math>, to <math>p \mid U_{2^{r - 2} w}</math>.
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>.................</math> ||
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \mid U_{4 w} \;\; \Longleftrightarrow \;\; p \mid U_{2 w} \cdot V_{2 w}</math> || Jeżeli <math>p \mid V_{2 w}</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_{2 w}</math>, to <math>p \mid U_{2 w}</math>.
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>p \mid U_{2 w} \;\; \Longleftrightarrow \;\; p \mid U_w \cdot V_w</math> || Jeżeli <math>p \mid V_w</math>, to twierdzenie jest dowiedzione. Jeżeli <math>p \nmid V_w</math>, to <math>p \mid U_w</math>.
 
|}
 
  
Z powyższego wynika, że musi być spełniony jeden z wypisanych w twierdzeniu warunków.
+
Jeżeli żadna liczba pierwsza <math>q \geqslant 5</math> nie dzieli <math>m</math>, to możliwe są tylko dwie sytuacje: <math>n = 2^a \,</math> i <math>\, n = 2^a 3^b</math>.
  
 +
'''3a. Przypadek, gdy <math>\boldsymbol{n = 2^a}</math>'''
  
Zauważmy teraz, że jeżeli liczba pierwsza <math>p</math> dzieli <math>V_w</math>, to <math>p \nmid U_w</math>, bo <math>p</math> nie może jednocześnie być dzielnikiem liczb <math>U_w</math> i <math>V_w</math>.
+
::<math>\varphi (n) = \varphi (2^a) = 2^{a - 1} > \sqrt{2^a} = \sqrt{n} \qquad \qquad \;\, \text{dla} \; a \geqslant 3</math>
  
Zauważmy też, że jeżeli dla pewnego <math>k \in [1, r - 1]</math> liczba pierwsza <math>p</math> dzieli <math>V_{2^k w}</math>, to <math>p</math> nie dzieli żadnej liczby <math>V_{2^j w}</math> dla <math>j \in [0, k - 1] \;\; \text{i} \;\; p \nmid U_w</math>. Istotnie:
+
Twierdzenie nie jest prawdziwe dla <math>n = 2 \,</math> i <math>\, n = 4 \,\,</math> (gdy <math>a = 1 \,</math> lub <math>\, a = 2</math>).
  
::{| border="0"
+
'''3b. Przypadek, gdy <math>\boldsymbol{n = 2^a 3^b}</math>'''
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \mid V_{2^k w}</math>, to <math>p \nmid U_{2^k w} \;\; \text{i} \;\; U_{2^k w} = U_{2^{k - 1} w} V_{2^{k - 1} w}</math>, zatem <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_{2^{k - 1} w} \;\; \text{i} \;\; V_{2^{k - 1} w}</math>
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \nmid U_{2^{k - 1} w} \;\; \text{i} \;\; U_{2^{k - 1} w} = U_{2^{k - 2} w} V_{2^{k - 2} w}</math>, to <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_{2^{k - 2} w} \;\; \text{i} \;\; V_{2^{k - 2} w}</math>
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || <math>.................</math> ||
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \nmid U_{4 w} \;\; \text{i} \;\; U_{4 w} = U_{2 w} V_{2 w}</math>, to <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_{2 w} \;\; \text{i} \;\; V_{2 w}</math>
 
|-style=height:3em
 
| &#9679;&nbsp;&nbsp;&nbsp; || jeżeli <math>p \nmid U_{2 w} \;\; \text{i} \;\; U_{2 w} = U_w V_w</math>, to <math>p</math> nie może być dzielnikiem żadnej z liczb <math>U_w \;\; \text{i} \;\; V_w</math>
 
|}
 
  
 +
::<math>\varphi (n) = \varphi (2^a 3^b) = \varphi (2^a) \varphi (3^b) = 2^{a - 1} \cdot 2 \cdot 3^{b - 1} = 2^a 3^{b - 1} = \sqrt{2^a 3^b} \cdot {\small\frac{\sqrt{2^a 3^b}}{3}} > \sqrt{2^a 3^b}</math>
  
Co dowodzi, że spełniony jest dokładnie jeden z <math>r + 1</math> warunków:
+
Ostatnia nierówność jest prawdziwa, o&nbsp;ile <math>\sqrt{2^a 3^b} > 3</math>, czyli gdy <math>2^a 3^b > 9</math>, co ma miejsce, gdy <math>a \geqslant 2</math> lub <math>b \geqslant 2</math>.
  
::<math>U_w \equiv 0 \pmod{p}</math>
+
Twierdzenie nie jest prawdziwe dla <math>n = 6 \;</math> (gdy <math>a = 1 \,</math> i <math>\, b = 1</math>).
  
::<math>V_{2^k w} \equiv 0 \pmod{p} \qquad</math> gdzie <math>k \in [0, r - 1]</math>
 
  
Co należało pokazać.<br/>
+
Zbierając uzyskane wyniki, otrzymujemy: oszacowanie <math>\varphi (n) > \sqrt{n}</math> nie jest prawdziwe dla <math>n = 1, 2, 4, 6</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1598: Linia 1187:
  
  
Konsekwentnie definiujemy liczby pseudopierwsze<br/>
+
<span id="H42" style="font-size: 110%; font-weight: bold;">Zadanie H42</span><br/>
<span style="font-size: 110%; font-weight: bold;">Definicja N35</span><br/>
+
Pokazać, że dla <math>n \geqslant 2</math> prawdziwe jest oszacowanie <math>\varphi (n) > {\small\frac{n}{3 \log n}}</math>. Korzystając z&nbsp;tego wyniku, pokazać, że <math>\varphi (n) > n^{2 / 3}</math> dla <math>n \geqslant 43</math> oraz że <math>\varphi (n) > n^{3 / 4}</math> dla <math>n \geqslant 211</math>.
Powiemy, że liczba złożona nieparzysta <math>m</math> jest liczbą silnie pseudopierwszą Lucasa (SLPSP) dla parametrów <math>P</math> i <math>Q</math>, jeżeli <math>\gcd (m, Q D) = 1</math> oraz <math>m - (D \mid m) = 2^r w</math>, gdzie <math>w</math> jest liczbą nieparzystą i&nbsp;spełniony jest jeden z&nbsp;warunków
 
  
::<math>U_w \equiv 0 \pmod{m}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Niech <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, a <math>n' = q_1 \cdot \ldots \cdot q_s</math> oznacza liczbę, będącą iloczynem dokładnie '''tych samych''' czynników pierwszych, jakie występują w&nbsp;liczbie <math>n</math>, natomiast <math>n^{\!\ast} = p_1 \cdot \ldots \cdot p_s</math> oznacza liczbę, będącą iloczynem dokładnie '''tej samej ilości''' czynników pierwszych, przy czym <math>p_i</math> oznacza teraz <math>i</math>-tą liczbę pierwszą.
  
lub
+
Ponieważ
  
::<math>V_{2^k w} \equiv 0 \pmod{m} \;</math> dla pewnego <math>k \in [0, r - 1]</math>
+
::<math>{\small\frac{\varphi (n)}{n}} = \prod_{p \mid n} \left( 1 - {\small\frac{1}{p}} \right)</math>
  
 +
to
  
 +
::<math>{\small\frac{\varphi (n)}{n}} = {\small\frac{\varphi (n')}{n'}} \geqslant {\small\frac{\varphi (n^{\!\ast})}{n^{\!\ast}}} = \prod^s_{i = 1} \left( 1 - {\small\frac{1}{p_i}} \right) \geqslant \prod^{p_s}_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{p_s}}</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N36</span><br/>
+
Ostatnia równość wynika z&nbsp;prostego wzoru
Każda liczba SLPSP(<math>P, Q</math>) jest LPSP(<math>P, Q</math>). Korzystając ze zdefiniowanych wcześniej funkcji: <code>modPower(a, n, m)</code>, <code>jacobi(a, n)</code> i <code>modLucas(n, P, Q, m)</code> (zobacz M2, J47, N15), możemy napisać prosty program, który sprawdza, czy liczba <math>m</math> spełnia jeden z&nbsp;warunków podanych w&nbsp;twierdzeniu N34.
 
  
<span style="font-size: 90%; color: black;">isPrimeOr<span style="background-color: #fee481;">SLPSP</span>(m, P, Q) =
+
::<math>\prod^m_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{2}} \cdot {\small\frac{2}{3}} \cdot {\small\frac{3}{4}} \cdot \ldots \cdot {\small\frac{m - 2}{m - 1}} \cdot {\small\frac{m - 1}{m}} = {\small\frac{1}{m}}</math>
{
 
'''local'''(a, b, c, D, js, k, r, w, X);
 
D = P^2 - 4*Q;
 
'''if'''( gcd(m, 2*Q*D) > 1, '''return'''(0) );
 
js = jacobi(D, m);
 
r = '''valuation'''(m - js, 2); \\ znajdujemy wykładnik, z jakim liczba 2 występuje w m - js
 
w = (m - js) / 2^r;
 
X = modLucas(w, P, Q, m);
 
a = X[1]; \\ U_w(P, Q) % m
 
b = X[2]; \\ V_w(P, Q) % m
 
'''if'''( a == 0 || b == 0, '''return'''(1) ); \\ b == 0 to przypadek k == 0
 
'''if'''( r == 1, '''return'''(0) ); \\ nie ma dalszych przypadków
 
c = modPower(Q, w, m); \\ Q^w % m
 
k = 0;
 
\\ sprawdzamy warunek V_(2^k * w) % m = 0; korzystamy ze wzoru V_(2*t) = (V_t)^2 - 2*Q^t
 
'''while'''( k++ < r,
 
        b = (b^2 - 2*c) % m;
 
        '''if'''( b == 0, '''return'''(1) );
 
        c = c^2 % m;
 
      );
 
'''return'''(0);
 
}</span>
 
  
  
 +
Musimy oszacować wartość liczby <math>p_s</math>. Z&nbsp;twierdzenia B31 wynika, że dla <math>m \geqslant 2</math> jest <math>P(m) \geqslant 2^{m / 2}</math>, gdzie funkcja <math>P(m)</math> jest równa iloczynowi wszystkich liczb pierwszych nie większych od <math>m</math>. Zatem dla <math>p_s \geqslant 2</math> jest
  
<span style="font-size: 110%; font-weight: bold;">Przykład N37</span><br/>
+
::<math>n^{\!\ast} = p_1 \cdot \ldots \cdot p_s = P (p_s) \geqslant 2^{p_s / 2}</math>
Poniższa tabela zawiera najmniejsze liczby silnie pseudopierwsze Lucasa dla różnych parametrów <math>P</math> i <math>Q</math>
 
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
Logarytmując, otrzymujemy
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>253</math> || <math>121</math> || style="background-color: yellow" | <math>143</math> || <math>781</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>299</math> || <math>121</math> || style="background-color: yellow" | <math>407</math> || <math>9</math> || style="background-color: yellow" | <math>143</math>
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>9</math> || <math>4181</math> || <math>341</math> || <math>169</math> || <math>33</math> || style="background-color: yellow" | <math>119</math> || <math>57</math> || <math>9</math> || <math>9</math> || <math>9</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| style="background-color: yellow" | <math>799</math> || <math>121</math> || style="background-color: yellow" | <math>527</math> || <math>25</math> || <math>85</math> || style="background-color: yellow" | <math>209</math> || style="background-color: yellow" | <math>55</math> || style="background-color: yellow" | <math>35</math> || <math>169</math> || <math>529</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>2047</math> || style="background-color: yellow" | <math>989</math> || <math>161</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>35</math> || <math>9</math> || <math>265</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| <math>4181</math> || <math>169</math> || style="background-color: yellow" | <math>119</math> || <math>9</math> || <math>9</math> || style="background-color: yellow" | <math>629</math> || <math>25</math> || <math>33</math> || <math>9</math> || style="background-color: yellow" | <math>51</math>
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>25</math> || style="background-color: red" | <math></math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>209</math> || style="background-color: yellow" | <math>527</math> || style="background-color: yellow" | <math>35</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>559</math> || <math>9</math> || <math>49</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| style="background-color: yellow" | <math>5459</math> || <math>9</math> || <math>2047</math> || <math>169</math> || <math>21</math> || <math>253</math> || <math>9</math> || style="background-color: yellow" | <math>15</math> || <math>9</math> || <math>49</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| style="background-color: yellow" | <math>899</math> || style="background-color: yellow" | <math>5983</math> || <math>25</math> || <math>121</math> || <math>49</math> || <math>49</math> || style="background-color: yellow" | <math>35</math> || <math>55</math> || <math>25</math> || style="background-color: yellow" | <math>35</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| style="background-color: yellow" | <math>899</math> || <math>25</math> || <math>1541</math> || style="background-color: red" | <math></math> || <math>341</math> || style="background-color: yellow" | <math>323</math> || style="background-color: yellow" | <math>377</math> || style="background-color: yellow" | <math>209</math> || <math>9</math> || style="background-color: yellow" | <math>527</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>9</math> || style="background-color: yellow" | <math>527</math> || <math>49</math> || style="background-color: yellow" | <math>527</math> || <math>4181</math> || <math>781</math> || style="background-color: yellow" | <math>39</math> || <math>9</math> || <math>9</math> || <math>9</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
::<math>p_s \leqslant {\small\frac{2 \log n^{\!\ast}}{\log 2}}</math>
<span style="font-size: 90%; color:black;">FirstSLPSP(Stop) =
 
\\ najmniejsze SLPSP(P,Q) < Stop;  dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0,
 
                  '''print'''("Q= ", Q, "  P= ", P, "  ------------------");
 
                  '''next'''();
 
                );
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">SLPSP</span>(m, P, Q)  &&  !'''isprime'''(m),
 
                          '''print'''("Q= ", Q, "  P= ", P, "  m= ", m, "  (D|m)= ", jacobi(D, m));
 
                          '''break'''();
 
                        );
 
                      m = m + 2;
 
                    );
 
            );
 
      );
 
}</span>
 
<br/>
 
{{\Spoiler}}
 
  
Żółtym tłem oznaczyliśmy te najmniejsze liczby pseudopierwsze Lucasa, dla których <math>(D \mid m) = - 1</math>.
+
Ponieważ <math>n \geqslant n' \geqslant n^{\!\ast}</math>, to
  
 +
::<math>{\small\frac{\varphi (n)}{n}} \geqslant {\small\frac{1}{p_s}} \geqslant {\small\frac{\log 2}{2 \log n^{\!\ast}}} \geqslant {\small\frac{\log 2}{2 \log n}} > {\small\frac{1}{3 \log n}}</math>
  
 +
Ostatecznie otrzymujemy
  
<span style="font-size: 110%; font-weight: bold;">Przykład N38</span><br/>
+
::<math>\varphi (n) > {\small\frac{n}{3 \log n}}</math>
Ilość liczb SLPSP(<math>P, Q</math>) mniejszych od <math>10^9</math>
 
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
Co należało pokazać.
! &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<math>\boldsymbol{P}</math><br/><math>\boldsymbol{Q}</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
 
! <math>\boldsymbol{1}</math> !! <math>\boldsymbol{2}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math> !! <math>\boldsymbol{10}</math>
 
|-
 
! <math>\boldsymbol{- 5}</math>
 
| <math>1056</math> || <math>1231</math> || <math>1184</math> || <math>1264</math> || <math>2278</math> || <math>1284</math> || <math>1181</math> || <math>1174</math> || <math>1281</math> || <math>1429</math>
 
|-
 
! <math>\boldsymbol{- 4}</math>
 
| <math>1043</math> || <math>1165</math> || <math>2139</math> || <math>1316</math> || <math>1151</math> || <math>1079</math> || <math>1112</math> || <math>2377</math> || <math>1197</math> || <math>989</math>
 
|-
 
! <math>\boldsymbol{- 3}</math>
 
| <math>952</math> || <math>1514</math> || <math>1055</math> || <math>1153</math> || <math>1135</math> || <math>2057</math> || <math>998</math> || <math>1202</math> || <math>1077</math> || <math>1112</math>
 
|-
 
! <math>\boldsymbol{- 2}</math>
 
| <math>1282</math> || <math>1092</math> || <math>1212</math> || <math>1510</math> || <math>1155</math> || <math>1179</math> || <math>1173</math> || <math>2240</math> || <math>1089</math> || <math>2109</math>
 
|-
 
! <math>\boldsymbol{- 1}</math>
 
| <math>1165</math> || <math>1316</math> || <math>1079</math> || <math>2377</math> || <math>989</math> || <math>1196</math> || <math>1129</math> || <math>1050</math> || <math>1055</math> || <math>1147</math>
 
|-
 
! <math>\boldsymbol{1}</math>
 
| <math>282485800</math> || style="background-color: red" | <math></math> || <math>2278</math> || <math>2057</math> || <math>2113</math> || <math>2266</math> || <math>4053</math> || <math>2508</math> || <math>2285</math> || <math>3083</math>
 
|-
 
! <math>\boldsymbol{2}</math>
 
| <math>1776</math> || <math>449152466</math> || <math>1282</math> || <math>1316</math> || <math>1645</math> || <math>1413</math> || <math>1564</math> || <math>1595</math> || <math>1683</math> || <math>1435</math>
 
|-
 
! <math>\boldsymbol{3}</math>
 
| <math>1621</math> || <math>1553</math> || <math>282485800</math> || <math>1514</math> || <math>1530</math> || <math>1510</math> || <math>1588</math> || <math>1549</math> || <math>1468</math> || <math>1692</math>
 
|-
 
! <math>\boldsymbol{4}</math>
 
| <math>2760</math> || <math>282485800</math> || <math>2978</math> || style="background-color: red" | <math></math> || <math>2137</math> || <math>2278</math> || <math>1995</math> || <math>2057</math> || <math>2260</math> || <math>2113</math>
 
|-
 
! <math>\boldsymbol{5}</math>
 
| <math>1314</math> || <math>2392</math> || <math>1497</math> || <math>2392</math> || <math>1165</math> || <math>1268</math> || <math>1227</math> || <math>1411</math> || <math>1253</math> || <math>2377</math>
 
|}
 
  
  
 +
Rozwiązując drugą część zadania, wystarczy znaleźć, dla jakich <math>n</math> prawdziwa jest nierówność
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
::<math>{\small\frac{n}{3 \log n}} > n^{2 / 3}</math>
<span style="font-size: 90%; color:black;">NumOfSLPSP(Stop) =
 
\\ ilość liczb silnie pseudopierwszych Lucasa SLPSP(P,Q) < Stop;  dla 1<=P<=10 i -5<=Q<=5
 
{
 
'''local'''(D, m, P, Q);
 
Q = -6;
 
'''while'''( Q++ <= 5,
 
        '''if'''( Q == 0, '''next'''() );
 
        P = 0;
 
        '''while'''( P++ <= 10,
 
              D = P^2 - 4*Q;
 
              '''if'''( D == 0, '''print'''("Q= ", Q, "  P= ", P, "  ------------------"); '''next'''() );
 
              s = 0;
 
              m = 3;
 
              '''while'''( m < Stop,
 
                      '''if'''( isPrimeOr<span style="background-color: #fee481;">SLPSP</span>(m, P, Q)  &&  !'''isprime'''(m), s++ );
 
                      m = m + 2;
 
                    );
 
              '''print'''("Q= ", Q, "  P= ", P, "  s= ", s);
 
            );
 
      );
 
}</span>
 
<br/>
 
{{\Spoiler}}
 
  
 +
Przebieg funkcji <math>{\small\frac{n}{3 \log n}} \,</math> i <math>\, n^{2 / 3}</math> przedstawiliśmy na wykresie
  
 +
::[[File: Euler1.png|1100px|none]]
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N39</span><br/>
+
Punkt przecięcia tych funkcji znajdujemy, wpisując w&nbsp;PARI/GP polecenie
Można pokazać<ref name="Arnault1"/>, że dla liczby złożonej nieparzystej <math>m \neq 9</math> i&nbsp;ustalonego <math>D</math> ilość par <math>P, Q</math> takich, że
 
  
:* <math>0 \leqslant P, Q < m</math>
+
<span style="font-size: 90%; color:black;">'''solve'''(n = 10, 10^5, n/(3*'''log'''(n)) - n^(2/3))</span>
:* <math>\gcd (Q, m) = 1</math>
 
:* <math>P^2 - 4 Q \equiv D \pmod{m}</math>
 
:* <math>m</math> jest SLPSP(<math>P, Q</math>)
 
  
nie przekracza <math>\tfrac{4}{15} n</math>.
+
Otrzymujemy
  
Nie dotyczy to przypadku, gdy <math>m = p (p + 2)</math> jest iloczynem liczb pierwszych bliźniaczych takich, że <math>(D \mid p) = - (D \mid p + 2) = - 1</math>, wtedy mamy słabsze oszacowanie: <math>\# (P, Q) \leqslant \tfrac{1}{2} n</math>. Zauważmy, że taką sytuację łatwo wykryć, bo w&nbsp;tym przypadku <math>m + 1 = (p + 1)^2</math> jest liczbą kwadratową.
+
::<math>n = 29409.965</math>
  
 +
Zatem <math>{\small\frac{n}{3 \log n}} > n^{2 / 3}</math> dla <math>n > 2.95 \cdot 10^4</math>.
  
 +
Poleceniem
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N40</span><br/>
+
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 3*10^4, '''if'''( '''eulerphi'''(n) <= n^(2/3), '''print'''(n) ))</span>
Podobnie jak w&nbsp;przypadku liczb pseudopierwszych Lucasa LPSP(<math>P, Q</math>) tak i&nbsp;w&nbsp;przypadku liczb silnie pseudopierwszych Lucasa SLPSP(<math>P, Q</math>) możemy testować pierwszość liczby <math>m</math>, wybierając liczby <math>P, Q</math> losowo lub zastosować wybraną metodę postępowania. Przedstawiony poniżej program, to zmodyfikowany kod z uwagi N36. Teraz parametry <math>P, Q</math> są wybierane metodą Selfridge'a, a symbol Jacobiego <math>(D \mid m)</math> jest równy <math>- 1</math>.
 
  
<span style="font-size: 90%; color:black;">StrongLucasTest(m) =
+
sprawdzamy, że oszacowanie <math>\varphi (n) > n^{2 / 3}</math> jest prawdziwe dla <math>n \geqslant 43</math>.
{
 
'''local'''(a, b, c, k, P, Q, r, w, X);
 
'''if'''( m % 2 == 0, '''return'''(m == 2) );
 
'''if'''( '''issquare'''(m), '''return'''(0) ); \\ sprawdzamy, czy liczba m nie jest kwadratowa
 
X = MethodA(m);
 
P = X[1];
 
Q = X[2];
 
'''if'''( P == 0 || '''gcd'''(m, 2*Q) > 1, '''return'''(0) ); \\ jeżeli P = 0, to m jest liczbą złożoną
 
r = '''valuation'''(m + 1, 2); \\ znajdujemy wykładnik, z jakim liczba 2 występuje w m + 1
 
w = (m + 1) / 2^r;
 
X =  modLucas(w, P, Q, m);
 
a = X[1]; \\ U_w(P, Q) % m
 
b = X[2]; \\ V_w(P, Q) % m
 
'''if'''( a == 0 || b == 0, '''return'''(1) ); \\ b == 0 to przypadek k == 0
 
'''if'''( r == 1, '''return'''(0) ); \\ nie ma dalszych przypadków
 
c = modPower(Q, w, m); \\ Q^w % m
 
k = 0;
 
\\ sprawdzamy warunek V_(2^k * w) %m = 0; korzystamy ze wzoru V_(2*w) = (V_w)^2 - 2*Q^w
 
'''while'''( k++ < r,
 
        b = (b^2 - 2*c) % m;
 
        '''if'''( b == 0, '''return'''(1) );
 
        c = c^2 % m;
 
      );
 
'''return'''(0);
 
}</span>
 
  
  
 +
Postępując analogicznie jak wyżej, znajdujemy, dla jakich <math>n</math> prawdziwa jest nierówność
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N41</span><br/>
+
::<math>{\small\frac{n}{3 \log n}} > n^{3 / 4}</math>
Najmniejsze liczby silnie pseudopierwsze Lucasa, które otrzymujemy po zastosowaniu metody Selfridge'a wyboru parametrów <math>P</math> i <math>Q</math>, to
 
  
::<math>5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, 58519, 75077, 97439, \ldots</math>
+
Wpisując w&nbsp;PARI/GP polecenie
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
  <span style="font-size: 90%; color:black;">'''solve'''(n = 10, 10^7, n/(3*'''log'''(n)) - n^(3/4))</span>
  <span style="font-size: 90%; color:black;">'''forstep'''(k=1, 10^5, 2, '''if'''( StrongLucasTest(k) && !'''isprime'''(k), '''print'''(k)) )</span>
 
<br/>
 
{{\Spoiler}}
 
  
 +
otrzymujemy
  
Tabela przedstawia ilość takich liczb nie większych od <math>10^n</math>
+
::<math>n = 4447862.680</math>
  
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: right; margin-right: auto;"
+
Zatem <math>{\small\frac{n}{3 \log n}} > n^{3 / 4}</math> dla <math>n > 4.45 \cdot 10^6</math>
! <math>\boldsymbol{n}</math> !! <math>\boldsymbol{3}</math> !! <math>\boldsymbol{4}</math> !! <math>\boldsymbol{5}</math> !! <math>\boldsymbol{6}</math> !! <math>\boldsymbol{7}</math> !! <math>\boldsymbol{8}</math> !! <math>\boldsymbol{9}</math>
 
|-
 
| #SLPSP <math>< 10^n</math> (metoda Selfridge'a) || <math>0</math> || <math>2</math> || <math>12</math> || <math>58</math> || <math>178</math> || <math>505</math> || <math>1415</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
+
Poleceniem
<span style="font-size: 90%; color:black;">'''for'''(n=3, 9, s=0; '''forstep'''(k = 1, 10^n, 2, '''if'''( StrongLucasTest(k) && !'''isprime'''(k), s++ ) ); '''print'''("n=", n, "  ", s) )</span>
 
<br/>
 
{{\Spoiler}}
 
  
 +
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 5*10^6, '''if'''( '''eulerphi'''(n) <= n^(3/4), '''print'''(n) ))</span>
  
 +
sprawdzamy, że oszacowanie <math>\varphi (n) > n^{3 / 4}</math> jest prawdziwe dla <math>n \geqslant 211</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
== Test BPSW ==
+
<span id="H43" style="font-size: 110%; font-weight: bold;">Twierdzenie H43</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math>. Liczba <math>n</math> jest liczbą pierwszą wtedy i&nbsp;tylko wtedy, gdy <math>\varphi (n) = n - 1</math>.
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N42</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Jest <math>488</math> liczb SPSP(<math>2</math>) mniejszych od <math>10^8</math> i są 582 liczby SPSP(<math>3</math>) mniejsze od <math>10^8</math> (zobacz M21). Ale jest aż <math>21</math> liczb mniejszych od <math>10^8</math> silnie pseudopierwszych jednocześnie względem podstaw <math>2</math> i <math>3</math>:
+
Dla liczb złożonych <math>n \geqslant 4</math> nigdy nie będzie <math>\varphi (n) = n - 1</math>, bo
  
<math>1373653, 1530787, 1987021, 2284453, 3116107, 5173601, 6787327, 11541307, 13694761, 15978007, 16070429,</math>
+
::<math>\varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2</math>
  
<math>16879501, 25326001, 27509653, 27664033, 28527049, 54029741, 61832377, 66096253, 74927161, 80375707</math>
+
Dla <math>n = 1, 2, 3</math> sprawdzamy bezpośrednio: <math>\varphi (1) = 1 \neq 1 - 1</math>, <math>\varphi (2) = 1 = 2 - 1</math>, <math>\varphi (3) = 2 = 3 - 1</math>. Co kończy dowód.<br/>
 
+
&#9633;
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż kod|Hide=Ukryj kod}}
 
<span style="font-size: 90%; color:black;">'''forstep'''(m=3, 10^8, 2, '''if'''( isPrimeOr<span style="background-color: #fee481;">SPSP</span>(m, 2) &&  isPrimeOr<span style="background-color: #fee481;">SPSP</span>(m, 3) &&  !'''isprime'''(m), '''print'''("m=", m) ) )</span>
 
<br/>
 
 
{{\Spoiler}}
 
{{\Spoiler}}
  
Widzimy, że prawdopodobieństwo błędnego rozpoznania pierwszości w&nbsp;przypadku liczb mniejszych od <math>10^8</math> dla podstawy <math>2</math> lub podstawy <math>3</math> jest rzędu kilku milionowych. Gdyby prawdopodobieństwa błędnego rozpoznania pierwszości w&nbsp;przypadku podstawy <math>2</math> lub podstawy <math>3</math> były niezależne, to spodziewalibyśmy się, że nie będzie wcale liczb mniejszych od <math>10^8</math> silnie pseudopierwszych jednocześnie względem podstaw <math>2</math> i <math>3</math>, bo prawdopodobieństwo takiego zdarzenia byłoby równe kilkudziesięciu bilonowym. Ale tak nie jest.
 
  
Jest to mocny argument za tym, że zastosowanie różnych (niezależnych) testów może być znacznie silniejszym narzędziem do testowania pierwszości liczb, niż wielokrotne stosowanie tego samego testu, gdzie poszczególne próby są tylko pozornie niezależne.
 
  
Połączenie znanych nam już testów prowadzi do prostego programu
+
<span id="H44" style="font-size: 110%; font-weight: bold;">Twierdzenie H44</span><br/>
 +
Dla dowolnej liczby całkowitej dodatniej <math>n</math> jest
  
<span style="font-size: 90%; color:black;">BPSWtest(m) =
+
::<math>n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right)</math>
{
 
'''forprime'''(p = 2, 1000, '''if'''( m % p > 0, '''next'''() ); '''if'''( m == p, '''return'''(1), '''return'''(0) ));
 
'''if'''( !isPrimeOr<span style="background-color: #fee481;">SPSP</span>(m, 2), '''return'''(0) );
 
'''if'''( !StrongLucasTest(m), '''return'''(0), '''return'''(1) );
 
}</span>
 
  
 +
gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby <math>n</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ <math>\varphi (n)</math> jest funkcją multiplikatywną, to funkcja
  
Funkcja <code>BPSWtest(m)</code> kolejno sprawdza:
+
::<math>F(n) = \sum_{d \mid n} \varphi (d)</math>
  
:* czy liczba <math>m</math> jest podzielna przez niewielkie liczby pierwsze (w naszym przypadku mniejsze od <math>1000</math>); jeśli tak, to sprawdza, czy <math>m</math> jest liczbą pierwszą, czy złożoną i&nbsp;zwraca odpowiednio <math>1</math> lub <math>0</math>
+
też jest funkcją multiplikatywną (zobacz [[#H31|H31]]). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>n = 1</math>. Niech <math>n > 1</math>. Jeżeli <math>n =
:* czy liczba <math>m</math> przechodzi test Millera-Rabina dla podstawy <math>2</math>; jeśli nie, to zwraca <math>0</math>
+
p^{\alpha}</math> jest potęgą liczby pierwszej, to otrzymujemy
:* czy liczba <math>m</math> przechodzi silny test Lucasa dla parametrów <math>P</math> i <math>Q</math>, które wybieramy metodą Selfridge'a; jeśli nie, to zwraca <math>0</math>, w&nbsp;przeciwnym wypadku zwraca <math>1</math>
 
  
 +
::<math>F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d)</math>
  
Test w&nbsp;dokładnie takiej postaci zaproponowali Robert Baillie i&nbsp;Samuel Wagstaff<ref name="BaillieWagstaff1"/>. Nazwa testu to akronim, utworzony od pierwszych liter nazwisk Roberta Bailliego, Carla Pomerance'a, Johna Selfridge'a i&nbsp;Samuela Wagstaffa.
+
::::<math>= \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) =</math>
  
Nie jest znany żaden przykład liczby złożonej <math>m</math>, którą test BPSW<ref name="BPSW1"/><ref name="BPSW2"/> identyfikowałby jako pierwszą i&nbsp;z&nbsp;pewnością nie ma takich liczb dla <math>m < 2^{64} \approx 1.844 \cdot 10^{19}</math>. Warto przypomnieć: potrzebowaliśmy siedmiu testów Millera-Rabina (dla podstaw <math>2, 3, 5, 7, 11, 13, 17</math>), aby mieć pewność, że dowolna liczba <math>m < 3.41 \cdot 10^{14}</math> jest pierwsza (zobacz M22).
+
::::<math>= 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) =</math>
  
 +
::::<math>= 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1})</math>
  
 +
::::<math>= p^{\alpha}</math>
  
 +
Jeżeli <math>n</math> jest postaci <math>n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>, to
  
 +
::<math>F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) =</math>
  
== Uzupełnienia ==
+
:::<math>\;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) =</math>
  
&nbsp;
+
:::<math>\;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s</math>
  
=== <span style="border-bottom:1px solid #000;">Pewne własności współczynników dwumianowych</span> ===
+
:::<math>\;\;\;\, = n</math>
  
&nbsp;
+
Niech <math>1 < d_1 < d_2 < \ldots < n</math> będą dzielnikami liczby <math>n</math>. Zauważmy, że kiedy <math>d</math> przebiega zbiór dzielników <math>\{ 1, d_1, d_2, \ldots, n \}</math>, to <math>e = {\small\frac{n}{d}}</math> przebiega wszystkie te liczby tylko w&nbsp;odwrotnej kolejności. Zatem
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N43</span><br/>
+
::<math>\sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right)</math>
Jeżeli <math>p</math> jest liczbą pierwszą, to
 
  
::<math>\binom{p}{k} \equiv 0 \pmod{p}</math>
+
Co należało pokazać.<br/>
 
 
dla każdego <math>k \in [1, p - 1]</math>.
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Łatwo zauważamy, że dla <math>k \in [1, p - 1]</math> liczba pierwsza <math>p</math> dzieli licznik, ale nie dzieli mianownika współczynnika dwumianowego
 
 
 
::<math>\binom{p}{k} = {\small\frac{p!}{k! \cdot (p - k)!}}</math>
 
 
 
zatem <math>p \biggr\rvert \binom{p}{k}</math>. Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1921: Linia 1333:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N44</span><br/>
+
<span id="H45" style="font-size: 110%; font-weight: bold;">Zadanie H45</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą nieparzystą, to
+
Niech <math>n \geqslant 2</math>. Pokazać, że suma liczb całkowitych dodatnich nie większych od <math>n</math> i&nbsp;względnie pierwszych z <math>n</math> jest równa <math>{\small\frac{1}{2}} n \varphi (n)</math>.
  
::<math>\binom{p + 1}{k} \equiv 0 \pmod{p}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Łatwo sprawdzamy, że wzór jest prawdziwy dla <math>n = 2</math> i&nbsp;odtąd będziemy przyjmowali, że <math>n \geqslant 3</math>. Zatem wartości <math>\varphi (n)</math> są liczbami parzystymi i&nbsp;niech <math>c = {\small\frac{1}{2}} \varphi (n)</math>. Zauważmy, że jeżeli liczba <math>a</math> jest względnie pierwsza z <math>n</math>, to liczba <math>n - a</math> jest również względnie pierwsza z <math>n</math>, bo <math>\gcd (a, n) = \gcd (n - a, n)</math>. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od <math>n</math> i&nbsp;względnie pierwsze z <math>n</math> w&nbsp;kolejności rosnącej, a&nbsp;pod spodem w&nbsp;kolejności malejącej
  
dla każdego <math>k \in [2, p - 1]</math>.
+
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 
+
|-
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
| <math>1</math> || <math>a_2</math> || <math>…</math> || <math>a_c</math> || <math>n - a_c</math> || <math>…</math> || <math>n - a_2</math> || <math>n - 1</math>
Jeżeli <math>k \in [2, p - 1]</math>, to modulo <math>p</math> dostajemy
+
|-
 +
| <math>n - 1</math> || <math>n - a_2</math> || <math>…</math> || <math>n - a_c</math> || <math>a_c</math> || <math>…</math> || <math>a_2</math> || <math>1</math>
 +
|}
  
::<math>\binom{p + 1}{k} = \binom{p}{k} + \binom{p}{k - 1} \equiv 0 \pmod{p}</math>
+
Suma liczb w&nbsp;każdej kolumnie jest równa <math>n</math>. Ponieważ ilość liczb względnie pierwszych z <math>n</math> jest równa <math>\varphi (n)</math>, to podwojona suma liczb całkowitych nie większych od <math>n</math> i&nbsp;pierwszych względem <math>n</math> wynosi <math>n \varphi (n)</math>. Co należało pokazać.<br/>
 
 
Bo liczba pierwsza <math>p</math> dzieli licznik, ale nie dzieli mianownika współczynników dwumianowych po prawej stronie. Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1939: Linia 1352:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N45</span><br/>
+
<span id="H46" style="font-size: 110%; font-weight: bold;">Zadanie H46</span><br/>
Jeżeli <math>p</math> jest liczbą pierwszą, to
+
Pokazać, że dla liczb naturalnych nieparzystych <math>n \geqslant 5</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
  
::<math>\binom{p - 1}{k} \equiv (- 1)^k \pmod{p}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
'''1.''' Jeżeli <math>n \geqslant 5</math> jest liczbą pierwszą, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze mniejsze od <math>n</math> oraz liczby <math>1, 4</math>. Zatem
  
dla każdego <math>k \in [0, p - 1]</math>.
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 2 > \pi (n)</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
'''2.''' Jeżeli <math>n = p^a</math>, gdzie <math>a \geqslant 2</math>, jest potęgą liczby pierwszej nieparzystej, to <math>n \geqslant 9</math> i&nbsp;liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>p</math>) oraz liczby <math>1, 4, 8</math>. Zatem
Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla liczby pierwszej parzystej <math>p = 2</math>. Załóżmy, że <math>p</math> jest liczbą pierwszą nieparzystą. Równie łatwo sprawdzamy, że twierdzenie jest prawdziwe dla <math>k = 0</math> i <math>k = 1</math>. Zauważmy, że dla <math>k \in [1, p - 1]</math> jest
 
  
::<math>\binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! (p - 1 - k) !}} = {\small\frac{p - k}{k}} \cdot {\small\frac{(p - 1) !}{(k - 1) ! (p - k) !}} = {\small\frac{p - k}{k}} \cdot \binom{p - 1}{k - 1} = {\small\frac{p}{k}} \cdot \binom{p - 1}{k - 1} - \binom{p - 1}{k - 1}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>.
  
Ponieważ współczynniki dwumianowe są liczbami całkowitymi, a&nbsp;liczba <math>k \in [2, p - 1]</math> nie dzieli liczby pierwszej nieparzystej <math>p</math>, to <math>k</math> musi dzielić liczbę <math>\binom{p - 1}{k - 1}</math>. Zatem dla <math>k \in [2, p - 1]</math> modulo <math>p</math> mamy
+
'''3.''' Jeżeli <math>n</math> ma więcej niż jeden dzielnik pierwszy nieparzysty, to <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>s \geqslant 2</math>. Zauważmy, że
  
::<math>\binom{p - 1}{k} \equiv - \binom{p - 1}{k - 1}\pmod{p}</math>
+
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} > 2^{2 s - 1}</math>
  
Skąd otrzymujemy
+
Liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb <math>q_1, \ldots, q_s</math>) oraz liczby <math>1, 2^2, 2^3, \ldots, 2^{2 s - 1}</math>. Zatem
  
::<math>\binom{p - 1}{k} \equiv (- 1)^1 \binom{p - 1}{k - 1} \equiv (- 1)^2 \binom{p - 1}{k - 2} \equiv \ldots \equiv (- 1)^{k - 2} \binom{p - 1}{2} \equiv (- 1)^{k - 1} \binom{p - 1}{1} \equiv (- 1)^k \pmod{p}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 > \pi (n)</math>
  
Co należało pokazać. Zobacz też zadanie H21.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1965: Linia 1378:
  
  
<span style="font-size: 110%; font-weight: bold;">Twierdzenie N46</span><br/>
+
<span id="H47" style="font-size: 110%; font-weight: bold;">Zadanie H47</span><br/>
Dla współczynników dwumianowych prawdziwe są następujące wzory
+
Pokazać, że dla liczb naturalnych <math>n \geqslant 91</math> prawdziwe jest oszacowanie <math>\varphi (n) > \pi (n)</math>.
  
::<math>\underset{k \; \text{parzyste}}{\sum_{k = 0}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Ponieważ <math>p_{2 s} > 1</math> i <math>p_{2 s} \geqslant p_{s + 1}</math>, to z&nbsp;zadania A40 natychmiast wynika nierówność
  
::<math>\underset{k \; \text{nieparzyste}}{\sum_{k = 1}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
::<math>p_1 p_2 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
która jest prawdziwa dla <math>n \geqslant 4</math>.
Ze wzoru dwumianowego
 
  
::<math>(a + b)^n = \sum_{k = 0}^{n} \binom{n}{k} a^{n - k} b^k</math>
+
Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność <math>\varphi (n) > \pi (n)</math> jest zawsze prawdziwa.
  
z łatwością otrzymujemy
+
Przez <math>p_1, p_2, \ldots, p_k, \ldots</math> oznaczymy kolejne liczby pierwsze. Niech <math>n \geqslant 2</math> będzie liczbą naturalną i <math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s</math>, gdzie <math>q_i</math> oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.
  
::<math>(1 + 1)^n = \sum_{k = 0}^{n} \binom{n}{k} = 2^n</math>
+
Wśród kolejnych <math>2 s</math> liczb pierwszych znajduje się przynajmniej <math>s</math> liczb pierwszych '''różnych''' od każdej z&nbsp;liczb <math>q_1, \ldots, q_s</math>. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez <math>r_1, \ldots, r_s</math>, to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania
  
::<math>(1 - 1)^n = \sum_{k = 0}^{n} (- 1)^k \binom{n}{k} = 0</math>
+
:*&nbsp;&nbsp;&nbsp;dla najmniejszej liczby <math>r_1 \leqslant p_{s + 1}</math>
  
Obliczając sumę i&nbsp;różnicę powyższych wzorów mamy
+
:*&nbsp;&nbsp;&nbsp;dla wszystkich liczb <math>r_j \leqslant p_{2 s}</math> dla <math>j = 1, \ldots, s</math>.
  
::<math>\sum_{k = 0}^{n} \binom{n}{k} (1 + (- 1)^k) = 2 \underset{k \; \text{parzyste}}{\sum^n_{k = 0}} \binom{n}{k} = 2^n</math>
+
Korzystając z&nbsp;wypisanej na początku dowodu nierówności, dla <math>s \geqslant 4</math> mamy
  
::<math>\sum_{k = 0}^{n} \binom{n}{k} (1 - (- 1)^k) = 2 \underset{k \; \text{nieparzyste}}{\sum_{k = 1}^{n}} \binom{n}{k} = 2^n</math>
+
::<math>n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s > p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j</math>
  
Skąd natychmiast wynika
+
gdzie <math>j = 1, \ldots, s</math>.
  
::<math>\underset{k \; \text{parzyste}}{\sum_{k = 0}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
Wynika stąd, że jeśli <math>s \geqslant 4</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>q_1, \ldots, q_s</math>) oraz liczby <math>1</math> i <math>r_1 r_j</math>, gdzie <math>j = 1, \ldots, s</math>. Zatem
  
::<math>\underset{k \; \text{nieparzyste}}{\sum_{k = 1}^{n}} \binom{n}{k} = 2^{n - 1}</math>
+
::<math>\varphi (n) \geqslant \pi (n) - s + s + 1> \pi (n)</math>
  
Co należało pokazać.<br/>
+
Co mieliśmy pokazać.
&#9633;
 
{{\Spoiler}}
 
  
  
 +
Uwzględniając rezultat pokazany w&nbsp;zadaniu [[#H46|H46]], pozostaje sprawdzić przypadki gdy <math>n = 2^a</math>, <math>n = 2^a p^b</math>, <math>n = 2^a p^b q^c</math>, gdzie <math>a, b, c \in \mathbb{Z}_+</math>.
  
 +
'''1.''' Niech <math>n = 2^a</math>. Jeśli <math>n \geqslant 16</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczby <math>2</math>) oraz liczby <math>1, 9, 15</math>. Zatem
  
 +
::<math>\varphi (n) \geqslant \pi (n) - 1 + 3 > \pi (n)</math>
  
=== <span style="border-bottom:1px solid #000;">Funkcje <span style="font-size: 95%; background-color: #f8f9fa"><tt>digits(m, b)</tt></span> oraz <span style="font-size: 95%; background-color: #f8f9fa"><tt>issquare(m)</tt></span></span> ===
+
'''2.''' Niech <math>n = 2^a p^b</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math>. Oczywiście <math>r \in \{ 3, 5 \}</math> i&nbsp;jeśli tylko <math>n > 5^3 = 125</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math> i <math>p</math>) oraz liczby <math>1, r^2, r^3</math>. Zatem
  
&nbsp;
+
::<math>\varphi (n) \geqslant \pi (n) - 2 + 3 > \pi (n)</math>
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N47</span><br/>
+
'''3.''' Niech <math>n = 2^a p^b q^c</math>, zaś <math>r</math> będzie najmniejszą liczbą pierwszą nieparzystą różną od <math>p</math> oraz różną od <math>q</math>. Oczywiście <math>r \in \{ 3, 5, 7 \}</math> i&nbsp;jeśli <math>n > 7^4 = 2401</math>, to liczbami pierwszymi względem <math>n</math> są wszystkie liczby pierwsze nie większe od <math>n</math> (oprócz liczb pierwszych <math>2</math>, <math>p</math> i <math>q</math>) oraz liczby <math>1, r^2, r^3, r^4</math>. Zatem
W funkcji <code>modLucas()</code> wykorzystaliśmy zaimplementowaną w&nbsp;PARI/GP funkcję
 
  
<code>digits(m, b)</code> – zwraca wektor cyfr liczby <math>| m |</math> w&nbsp;systemie liczbowym o&nbsp;podstawie <math>b</math>
+
::<math>\varphi (n) \geqslant \pi (n) - 3 + 4 > \pi (n)</math>
  
W naszym przypadku potrzebowaliśmy uzyskać wektor cyfr liczby <math>m</math> w&nbsp;układzie dwójkowym, czyli funkcję <code>digits(m, 2)</code> . Wprowadzenie tej funkcji pozwoliło zwiększyć czytelność kodu, ale bez trudu możemy ją sami napisać. Zauważmy, że do zapisania liczby <math>m \geqslant 1</math> potrzebujemy <math>\log_2 m + 1</math> cyfr. Zastępując funkcję <math>\log_2 m</math> funkcją <math>\left \lfloor \tfrac{\log m}{\log 2} \right \rfloor</math> musimy liczyć się z&nbsp;możliwym błędem zaokrąglenia – dlatego w&nbsp;programie deklarujemy wektor <code>V</code> o&nbsp;długości <code>floor( log(m)/log(2) ) + 2</code>. Zwracany wektor <code>W</code> ma już prawidłową długość.
+
Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy <math>n</math> jest liczbą parzystą i <math>n \leqslant 2401</math>. W&nbsp;GP/PARI wystarczy napisać polecenie
  
  <span style="font-size: 90%; color:black;">Dec2Bin(m) =  
+
  <span style="font-size: 90%; color:black;">for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))</span>
\\ zwraca wektor cyfr liczby m w układzie dwójkowym
 
{
 
'''local'''(i, k, V, W);
 
'''if'''( m == 0, '''return'''([0]) );
 
V = '''vector'''( '''floor'''( '''log'''(m)/'''log'''(2) ) + 2 ); \\ potrzeba floor( log(m)/log(2) ) + 1, ale błąd zaokrąglenia może zepsuć wynik
 
k = 0;
 
'''while'''( m > 0,
 
        V[k++] = m % 2;
 
        m = '''floor'''(m / 2);
 
      );
 
W = '''vector'''(k);
 
'''for'''(i = 1, k, W[i] = V[k + 1 - i]);
 
'''return'''(W);
 
}
 
  
 +
Nierówność <math>\varphi (n) > \pi (n)</math> nie jest prawdziwa dla <math>n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \}</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span style="font-size: 110%; font-weight: bold;">Uwaga N48</span><br/>
 
W funkcjach <code>LucasTest()</code> i <code>StrongLucasTest()</code> wykorzystaliśmy zaimplementowaną w&nbsp;PARI/GP funkcję
 
  
<code>issquare(m)</code> – sprawdza, czy liczba <math>m</math> jest liczbą kwadratową
+
<span id="H48" style="font-size: 110%; font-weight: bold;">Zadanie H48</span><br/>
 +
Pokazać, że <math>\varphi (n) = 2^a</math> wtedy i&nbsp;tylko wtedy, gdy <math>n = 2^b q_1 \cdot \ldots \cdot q_s</math>, gdzie <math>q_1, \ldots, q_s</math> są liczbami pierwszymi Fermata: <math>3, 5, 17, 257, 65537</math>.
  
Wprowadzenie tej funkcji pozwoliło zwiększyć czytelność kodu, ale bez trudu możemy ją sami napisać. Potrzebna nam będzie funkcja, która znajduje całość z&nbsp;pierwiastka z&nbsp;liczby <math>m</math>, czyli <math>\left\lfloor \sqrt{m} \right\rfloor</math>. Wykorzystamy tutaj ciąg
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
W przypadku, gdy <math>2 \mid n</math>, łatwo zauważamy, że liczba <math>2</math> może występować w&nbsp;dowolnej potędze, bo <math>\varphi (2^b) = 2^{b - 1}</math>.
  
::<math>a_{k + 1} =
+
W przypadku, gdy <math>p \mid n</math>, gdzie <math>p</math> jest liczbą pierwszą nieparzystą, mamy <math>\varphi (p^k) = (p - 1) p^{k - 1}</math> i&nbsp;równie łatwo zauważmy, że musi być <math>k = 1</math>, a&nbsp;liczba <math>p - 1</math> musi być potęgą liczby <math>2</math>. Zatem liczba pierwsza <math>p</math> musi być postaci <math>p = 2^t + 1</math>, co jest możliwe tylko wtedy, gdy <math>t</math> jest potęgą liczby <math>2</math> (zobacz C48), czyli <math>p</math> musi być liczbą pierwszą Fermata. Co należało pokazać.<br/>
  \begin{cases}
+
&#9633;
  \qquad \;\; 1 & \text{gdy } k = 0 \\
+
{{\Spoiler}}
      \tfrac{1}{2} \left( a_k + \tfrac{x}{a_k} \right) & \text{gdy } k > 0 \\
 
  \end{cases}</math>
 
 
 
którego granicą jest <math>\sqrt{x}</math> <ref name="pierwiastek1"/>.
 
 
 
Modyfikując powyższą definicję tak, aby operacje były zawsze wykonywane na liczbach całkowitych<ref name="IntegerSquareRoot1"/>
 
 
 
::<math>a_{k + 1} =
 
  \begin{cases}
 
  \qquad \quad \; 1 & \text{gdy } k = 0 \\
 
      \left\lfloor \tfrac{1}{2} \left( a_k + \left\lfloor \tfrac{m}{a_k} \right\rfloor \right) \right\rfloor & \text{gdy } k > 0 \\
 
  \end{cases}</math>
 
 
 
otrzymujemy ciąg, którego wszystkie wyrazy, począwszy od pewnego skończonego <math>n_0</math>, są równe <math>\left\lfloor \sqrt{m} \right\rfloor</math>. Nie dotyczy to przypadku, gdy <math>m + 1</math> jest liczbą kwadratową, wtedy, począwszy od pewnego skończonego <math>n_0</math>, wyrazy ciągu przyjmują na zmianę wartości <math>\left\lfloor \sqrt{m} \right\rfloor</math> oraz <math>\left\lfloor \sqrt{m} \right\rfloor + 1</math>.
 
 
 
Na tej podstawie możemy w&nbsp;PARI/GP napisać funkcję
 
 
 
<span style="font-size: 90%; color:black;">intSqrt(m) =
 
{
 
'''local'''(a, b);
 
'''if'''( m == 0, '''return'''(0) );
 
a = 2^( '''floor'''( '''log'''(m)/'''log'''(2)/2 ) + 2 ); \\ musi być a > sqrt(m)
 
b = '''floor'''(( a + '''floor'''( m/a ) )/2);
 
'''while'''( b < a,
 
        a = b;
 
        b = '''floor'''( ( a + '''floor'''(m/a) )/2 );
 
      );
 
'''return'''(a);
 
}</span>
 
 
 
Oczywiście liczba <math>m</math> jest liczbą kwadratową, wtedy i&nbsp;tylko wtedy, gdy <math>m = \left\lfloor \sqrt{m} \right\rfloor^2</math>, zatem wystarczy sprawdzić, czy <code>m == intSqrt(m)^2</code>.
 
  
  
Linia 2091: Linia 1462:
 
<references>
 
<references>
  
<ref name="BaillieWagstaff1">Robert Baillie and Samuel S. Wagstaff Jr., ''Lucas Pseudoprimes'', Mathematics of Computation Vol. 35, No. 152 (1980), ([http://mpqs.free.fr/LucasPseudoprimes.pdf LINK])</ref>
+
<ref name="GCD1">Wikipedia, ''Największy wspólny dzielnik'', ([https://pl.wikipedia.org/wiki/Najwi%C4%99kszy_wsp%C3%B3lny_dzielnik Wiki-pl]), ([https://en.wikipedia.org/wiki/Greatest_common_divisor Wiki-en])</ref>
  
<ref name="Arnault1">François Arnault, ''The Rabin-Monier Theorem for Lucas Pseudoprimes'', Mathematics of Computation Vol. 66, No. 218 (1997)</ref>
+
<ref name="cardinality1">Wikipedia, ''Moc zbioru'', ([https://pl.wikipedia.org/wiki/Moc_zbioru Wiki-pl]), ([https://en.wikipedia.org/wiki/Cardinality Wiki-en])</ref>
  
<ref name="pierwiastek1">Wikipedia, ''Pierwiastek kwadratowy'', ([https://pl.wikipedia.org/wiki/Metody_obliczania_pierwiastka_kwadratowego#Metoda_babilo%C5%84ska Wiki-pl]), ([https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method Wiki-en])</ref>
+
<ref name="sumazbiorow">Wikipedia, ''Zasada włączeń i&nbsp;wyłączeń'', ([https://pl.wikipedia.org/wiki/Zasada_w%C5%82%C4%85cze%C5%84_i_wy%C5%82%C4%85cze%C5%84 Wiki-pl]), ([https://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion_principle Wiki-en])</ref>
  
<ref name="IntegerSquareRoot1">Wikipedia, ''Integer square root'', ([https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division Wiki-en])</ref>
+
<ref name="Euler1">Wikipedia, ''Funkcja φ'', ([https://pl.wikipedia.org/wiki/Funkcja_%CF%86 Wiki-pl]), ([https://en.wikipedia.org/wiki/Euler%27s_totient_function Wiki-en])</ref>
  
<ref name="BPSW1">Wikipedia, ''Baillie–PSW primality test'', ([https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test Wiki-en])</ref>
+
</references>
  
<ref name="BPSW2">MathWorld, ''Baillie-PSW Primality Test'', ([https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html LINK])</ref>
 
  
</references>
 
  
  

Wersja z 13:15, 5 mar 2024

22.12.2023



Największy wspólny dzielnik

Definicja H1
Niech będą dane dwie liczby całkowite [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] niebędące jednocześnie zerami. Największym wspólnym dzielnikiem[1] liczb [math]\displaystyle{ a }[/math] i [math]\displaystyle{ b }[/math] będziemy nazywali liczbę całkowitą [math]\displaystyle{ D }[/math] taką, że

  1.   [math]\displaystyle{ D \mid a \quad \text{i} \quad D \mid b }[/math]
  2.   [math]\displaystyle{ \,\, d \mid a \quad \text{i} \quad \; d \mid b \qquad \Longrightarrow \qquad d \leqslant D }[/math]

gdzie [math]\displaystyle{ d }[/math] jest dowolną liczbą całkowitą.


Uwaga H2
Tak zdefiniowaną liczbę [math]\displaystyle{ D }[/math] będziemy oznaczali przez [math]\displaystyle{ \gcd (a, b) }[/math]. Ponieważ [math]\displaystyle{ 1 \mid a \; }[/math] i [math]\displaystyle{ \; 1 \mid b }[/math], to z definicji wynika natychmiast, że [math]\displaystyle{ \gcd (a, b) \geqslant 1 }[/math].


Zadanie H3
Pokazać, że

[math]\displaystyle{ d \mid \gcd (a, b) \qquad \Longleftrightarrow \qquad d \mid a \quad \text{i} \quad d \mid b }[/math]
Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d \mid \gcd (a, b) }[/math]. Z definicji największego wspólnego dzielnika [math]\displaystyle{ \gcd (a, b) \mid a }[/math], zatem [math]\displaystyle{ d \mid a }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ d \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ a = r d }[/math], [math]\displaystyle{ b = s d }[/math]. Z lematu Bézouta (zobacz C73) istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ \gcd (a, b) = a x + b y = r d x + s d y = d (r x + s y) }[/math]

Zatem [math]\displaystyle{ d \mid \gcd (a, b) }[/math].


Twierdzenie H4
Jeżeli liczby całkowite [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero i [math]\displaystyle{ \gcd (a, b) = a x + b y }[/math], to [math]\displaystyle{ \gcd (x, y) = 1 }[/math].

Dowód

Z lematu Bézouta (zobacz C73) wiemy, że liczby całkowite [math]\displaystyle{ x, y }[/math] zawsze istnieją. Niech [math]\displaystyle{ \gcd (a, b) = d \gt 0 }[/math], zatem [math]\displaystyle{ a = d k }[/math] i [math]\displaystyle{ b = d m }[/math], czyli

[math]\displaystyle{ (d k) x + (d m) y = d }[/math]

Co oznacza, że [math]\displaystyle{ k x + m y = 1 }[/math], ale [math]\displaystyle{ \gcd (x, y) }[/math] jest dzielnikiem [math]\displaystyle{ k x + m y }[/math] (bo jest dzielnikiem [math]\displaystyle{ x }[/math] i [math]\displaystyle{ y }[/math]), zatem [math]\displaystyle{ \gcd (x, y) \mid 1 }[/math], czyli [math]\displaystyle{ \gcd (x, y) = 1 }[/math]. Co należało pokazać.


Twierdzenie H5
Niech [math]\displaystyle{ a, b, k \in \mathbb{Z} }[/math]. Prawdziwy jest wzór

[math]\displaystyle{ \gcd (a + k b, b) = \gcd (a, b) }[/math]
Dowód

Niech [math]\displaystyle{ d_1 = \gcd (a + k b, b) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (a, b) }[/math].

Z definicji [math]\displaystyle{ d_1 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_1 \mid b }[/math], zatem [math]\displaystyle{ a + k b = x d_1 \; }[/math] i [math]\displaystyle{ \; b = y d_1 }[/math], czyli [math]\displaystyle{ a + k x d_1 = x d_1 }[/math], skąd natychmiast wynika, że [math]\displaystyle{ d_1 \mid a }[/math]. Ponieważ [math]\displaystyle{ d_1 \mid b }[/math], to [math]\displaystyle{ d_1 \mid d_2 }[/math] (zobacz H3).

Z definicji [math]\displaystyle{ d_2 \mid a \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], zatem [math]\displaystyle{ d_2 \mid (a + k b) \; }[/math] i [math]\displaystyle{ \; d_2 \mid b }[/math], czyli [math]\displaystyle{ d_2 \mid d_1 }[/math].

Ponieważ [math]\displaystyle{ d_1 \mid d_2 \; }[/math] i [math]\displaystyle{ \; d_2 \mid d_1 }[/math], to [math]\displaystyle{ | d_1 | = | d_2 | }[/math]. Co kończy dowód.


Twierdzenie H6
Niech [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math]. Prawdziwa jest następująca równoważność

[math]\displaystyle{ \gcd (a, m) = 1 \quad \text{i} \quad \gcd (b, m) = 1 \quad \qquad \Longleftrightarrow \quad \qquad \gcd (a b, m) = 1 }[/math]
Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a b, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Gdyby było [math]\displaystyle{ d \gt 1 }[/math], to istniałaby liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \mid d }[/math] i mielibyśmy [math]\displaystyle{ p \mid a b }[/math] i [math]\displaystyle{ p \mid m }[/math]. Jeżeli [math]\displaystyle{ p \mid a b }[/math], to [math]\displaystyle{ p \mid a }[/math] lub [math]\displaystyle{ p \mid b }[/math] (zobacz C74). W przypadku, gdy [math]\displaystyle{ p \mid a }[/math] dostajemy [math]\displaystyle{ \gcd (a, m) \geqslant p \gt 1 }[/math], wbrew założeniu, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Analogicznie pokazujemy sprzeczność, gdy [math]\displaystyle{ p \mid b }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Niech [math]\displaystyle{ \gcd (a, m) = d }[/math]. Z definicji [math]\displaystyle{ d \mid a }[/math] i [math]\displaystyle{ d \mid m }[/math], zatem również [math]\displaystyle{ d \mid a b }[/math] i [math]\displaystyle{ d \mid m }[/math]. Mamy stąd

[math]\displaystyle{ 1 = \gcd (a b, m) \geqslant d \geqslant 1 }[/math]

Czyli musi być [math]\displaystyle{ d = 1 }[/math]. Analogicznie pokazujemy, że [math]\displaystyle{ \gcd (b, m) = 1 }[/math].


Twierdzenie H7
Dla [math]\displaystyle{ a, b, m \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ \gcd (a b, m) \mid \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z lematu Bézouta (zobacz C73) istnieją takie liczby [math]\displaystyle{ x, y, X, Y }[/math], że

[math]\displaystyle{ s = a x + m y }[/math]
[math]\displaystyle{ t = b X + m Y }[/math]

Zatem

[math]\displaystyle{ s t = (a x + m y) (b X + m Y) = a b x X + a m x Y + m b y X + m^2 y Y }[/math]

ale [math]\displaystyle{ r \mid a b }[/math] i [math]\displaystyle{ r \mid m }[/math], skąd otrzymujemy, że [math]\displaystyle{ r \mid s t }[/math]. Co należało pokazać.


Twierdzenie H8
Jeżeli liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to

[math]\displaystyle{ \gcd (a b, m) = \gcd (a, m) \cdot \gcd (b, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]
[math]\displaystyle{ t = \gcd (b, m) }[/math]

Z założenia [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Ponieważ [math]\displaystyle{ s \mid a }[/math] oraz [math]\displaystyle{ t \mid b }[/math], to [math]\displaystyle{ \gcd (s, t) = 1 }[/math], zatem (zobacz C75)

[math]\displaystyle{ s \mid a \qquad \,\, \text{i} \qquad t \mid b \qquad \qquad \;\, \Longrightarrow \qquad \qquad s t \mid a b }[/math]
[math]\displaystyle{ s \mid m \qquad \text{i} \qquad t \mid m \qquad \qquad \Longrightarrow \qquad \qquad s t \mid m }[/math]

Wynika stąd, że [math]\displaystyle{ s t \mid \gcd (a b, m) }[/math], czyli [math]\displaystyle{ s t \mid r }[/math]. Z poprzedniego twierdzenia wiemy, że [math]\displaystyle{ r \mid s t }[/math], zatem [math]\displaystyle{ |r| = |s t| }[/math]. Co kończy dowód.


Twierdzenie H9
Jeżeli liczby [math]\displaystyle{ b, m }[/math] są względnie pierwsze, to

[math]\displaystyle{ \gcd (a b, m) = \gcd (a, m) }[/math]
Dowód

Wprowadźmy oznaczenia

[math]\displaystyle{ r = \gcd (a b, m) }[/math]
[math]\displaystyle{ s = \gcd (a, m) }[/math]

Z lematu Bézouta istnieją takie liczby [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ r = a b x + m y }[/math]

Ale [math]\displaystyle{ s \mid a \; }[/math] i [math]\displaystyle{ \; s \mid m }[/math], zatem [math]\displaystyle{ s \mid r }[/math].

Z założenia [math]\displaystyle{ \gcd (b, m) = 1 }[/math], zatem z twierdzenia H7 wynika natychmiast, że [math]\displaystyle{ r \mid s }[/math]. Ponieważ [math]\displaystyle{ s \mid r \; }[/math] i [math]\displaystyle{ \; r \mid s }[/math], to [math]\displaystyle{ | r | = | s | }[/math]. Co należało pokazać.


Twierdzenie H10
Jeżeli liczby [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero i [math]\displaystyle{ m \neq 0 }[/math], to

[math]\displaystyle{ \gcd (a m, b m) = | m | \cdot \gcd (a, b) }[/math]
Dowód

Oznaczmy [math]\displaystyle{ d = \gcd (a, b) \; }[/math] i [math]\displaystyle{ \; D = \gcd (a m, b m) }[/math]. Pokażemy, że [math]\displaystyle{ d m \mid D }[/math].

[math]\displaystyle{ \begin{array}{llll} d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d \mid a \quad \text{i} \quad d \mid b & \text{(zobacz H3)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid a m \quad \text{i} \quad d m \mid b m & \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid \gcd (a m, b m) & \text{(zobacz H3)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m \mid D & \\ \end{array} }[/math]

Pokażemy, że [math]\displaystyle{ D \mid d m }[/math].

[math]\displaystyle{ \begin{array}{llll} d = \gcd (a, b) & \qquad \Longrightarrow \qquad & d = a x + b y & \text{(lemat Bézouta C73)} \\ & & & \\ & \qquad \Longrightarrow \qquad & d m = a m x + b m y & \\ & & & \\ & \qquad \Longrightarrow \qquad & D \mid d m & \\ \end{array} }[/math]

Ostatnia implikacja korzysta z tego, że [math]\displaystyle{ D \mid a m \; }[/math] i [math]\displaystyle{ \; D \mid b m }[/math] (zobacz H3). Ponieważ [math]\displaystyle{ d m \mid D \; }[/math] i [math]\displaystyle{ \; D \mid d m }[/math], to [math]\displaystyle{ | D | = | d m | }[/math]. Co należało pokazać.


Zadanie H11
Pokazać, że jeżeli liczby [math]\displaystyle{ a, b }[/math] nie są jednocześnie równe zero, to

[math]\displaystyle{ \gcd \left( {\small\frac{a}{\gcd (a, b)}}, {\small\frac{b}{\gcd (a, b)}} \right) = 1 }[/math]
Rozwiązanie

Z twierdzenia H10 otrzymujemy

[math]\displaystyle{ \gcd (a, b) = \gcd \left( \gcd (a, b) \cdot {\small\frac{a}{\gcd (a, b)}}, \gcd (a, b) \cdot {\small\frac{b}{\gcd (a, b)}} \right) }[/math]
[math]\displaystyle{ \;\;\;\; = \gcd (a, b) \cdot \gcd \left( {\small\frac{a}{\gcd (a, b)}}, {\small\frac{b}{\gcd (a, b)}} \right) }[/math]

Zatem

[math]\displaystyle{ \gcd \left( {\small\frac{a}{\gcd (a, b)}}, {\small\frac{b}{\gcd (a, b)}} \right) = 1 }[/math]

Co należało pokazać.


Zadanie H12
Pokazać, że [math]\displaystyle{ a \mid b }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ a \mid \gcd (a, b) }[/math].

Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Zakładając, że [math]\displaystyle{ a \mid b }[/math], dostajemy

[math]\displaystyle{ \begin{array}{llll} a \mid b & \qquad \Longrightarrow \qquad & b = k a & \\ & & & \\ & \qquad \Longrightarrow \qquad & \gcd (a, b) = \gcd (a, k a) = | a | \cdot \gcd (1, k) = | a | & \qquad \text{(zobacz H10)} \\ & & & \\ & \qquad \Longrightarrow \qquad & a \mid \gcd (a, b) & \\ \end{array} }[/math]

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Jeżeli [math]\displaystyle{ a \mid \gcd (a, b) }[/math], to [math]\displaystyle{ a \mid b }[/math] (zobacz H3). Co należało pokazać.


Zadanie H13
Niech [math]\displaystyle{ \gcd (a, d) = 1 }[/math]. Pokazać, że [math]\displaystyle{ d \nmid a b }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ d \nmid b }[/math].

Rozwiązanie

Korzystając z rezultatu pokazanego w zadaniu H12, dostajemy

[math]\displaystyle{ \begin{array}{llll} d \nmid a b & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, a b) & \\ & & & \\ & \qquad \Longleftrightarrow \qquad & d \nmid \gcd (d, b) & \text{(zobacz H9)} \\ & & & \\ & \qquad \Longleftrightarrow \qquad & d \nmid b & \\ \end{array} }[/math]

Co należało pokazać.


Twierdzenie H14
Jeżeli dodatnie liczby [math]\displaystyle{ a, b }[/math] są względnie pierwsze, to każdy dzielnik [math]\displaystyle{ d }[/math] iloczynu [math]\displaystyle{ a b }[/math] można przedstawić jednoznacznie w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a , }[/math] [math]\displaystyle{ \; d_2 \mid b \; }[/math] [math]\displaystyle{ \text{i} \; \gcd (d_1, d_2) = 1 }[/math].

Dowód

Niech [math]\displaystyle{ d_1 = \gcd (d, a) \; }[/math] i [math]\displaystyle{ \; d_2 = \gcd (d, b) }[/math]. Z twierdzenia H8 mamy

[math]\displaystyle{ d_1 d_2 = \gcd (d, a) \cdot \gcd (d, b) = \gcd (d, a b) = d }[/math]

Bo z założenia [math]\displaystyle{ d \mid a b }[/math]. Z definicji największego wspólnego dzielnika i zadania H3 dostajemy

[math]\displaystyle{ \gcd (d_1, d_2) = e \qquad \Longrightarrow \qquad e \mid d_1 \quad \text{i} \quad e \mid d_2 }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (d, a) \quad \text{i} \quad e \mid \gcd (d, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid a \quad \text{i} \quad e \mid b }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad e \mid \gcd (a, b) }[/math]
[math]\displaystyle{ \, \Longrightarrow \qquad \gcd (a, b) \geqslant e }[/math]

Gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = e \gt 1 }[/math], to mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant e \gt 1 }[/math]. Wbrew założeniu, że [math]\displaystyle{ \gcd (a, b) = 1 }[/math]. Co kończy dowód.


Twierdzenie H15
Jeżeli [math]\displaystyle{ a, m, n \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \gcd (a^m - 1, a^n - 1) = a^{\gcd (m, n)} - 1 }[/math]
Dowód

Pokażemy najpierw, że jeżeli [math]\displaystyle{ d }[/math] jest dzielnikiem lewej strony dowodzonej równości, to jest również dzielnikiem prawej strony i odwrotnie.

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ d }[/math] jest dzielnikiem [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) }[/math], czyli [math]\displaystyle{ d \mid (a^m - 1) \; }[/math] i [math]\displaystyle{ \; d \mid (a^n - 1) }[/math], co możemy zapisać w postaci

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

Z lematu Bézouta (zobacz C73) wiemy, że istnieją takie liczby [math]\displaystyle{ x, y }[/math], że [math]\displaystyle{ \gcd (m, n) = m x + n y }[/math]. Łatwo znajdujemy, że

[math]\displaystyle{ a^{\gcd (m, n)} \equiv a^{m x + n y} \equiv (a^m)^x \cdot (a^n)^y \equiv 1^x \cdot 1^y \equiv 1 \!\! \pmod{d} }[/math]

Czyli [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ d \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math], czyli

[math]\displaystyle{ a^{\gcd (m, n)} \equiv 1 \!\! \pmod{d} }[/math]

Zatem

[math]\displaystyle{ a^m \equiv \left[ a^{\gcd (m, n)} \right]^{\tfrac{m}{\gcd (m, n)}} \equiv 1 \!\! \pmod{d} }[/math]

Podobnie otrzymujemy

[math]\displaystyle{ a^n \equiv 1 \!\! \pmod{d} }[/math]

Zatem [math]\displaystyle{ d }[/math] dzieli [math]\displaystyle{ a^m - 1 \; }[/math] i [math]\displaystyle{ \; a^n - 1 }[/math], czyli

[math]\displaystyle{ d \mid \gcd (a^m - 1, a^n - 1) }[/math]


W szczególności wynika stąd, że

  •    [math]\displaystyle{ \gcd (a^m - 1, a^n - 1) \, \biggr\rvert \left( a^{\gcd (m, n)} - 1 \right) }[/math]
  •    [math]\displaystyle{ \left( a^{\gcd (m, n)} - 1 \right) \, \biggr\rvert \, \gcd (a^m - 1, a^n - 1) }[/math]

Czyli [math]\displaystyle{ \left| \gcd (a^m - 1, a^n - 1) \right| = \left| a^{\gcd (m, n)} - 1 \right| }[/math]. Co kończy dowód.


Uwaga H16
W dowodzie twierdzenia H15 pominęliśmy milczeniem fakt, że jedna z liczb [math]\displaystyle{ x, y }[/math] może być (i często jest) ujemna. Choć rezultat jest prawidłowy, to nie wiemy, co oznacza zapis

[math]\displaystyle{ a^{- 1000} \equiv 1^{- 10} \equiv 1 \!\! \pmod{d} }[/math]

Omówimy ten problem w następnej sekcji. Zauważmy, wyprzedzając materiał, że z kongruencji

[math]\displaystyle{ a^m \equiv 1 \!\! \pmod{d} \quad \qquad \text{oraz} \quad \qquad a^n \equiv 1 \!\! \pmod{d} }[/math]

wynika, że [math]\displaystyle{ \gcd (a, d) = 1 }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ d }[/math].



Element odwrotny modulo [math]\displaystyle{ m }[/math]

Twierdzenie H17
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Dla liczby [math]\displaystyle{ a \in \mathbb{Z} }[/math] istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

wtedy i tylko wtedy, gdy [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia istnieje taka liczba [math]\displaystyle{ x }[/math], że

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Zatem dla pewnego [math]\displaystyle{ k \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ a x = 1 + k m }[/math]

Czyli [math]\displaystyle{ a x - k m = 1 }[/math]. Wynika stąd, że [math]\displaystyle{ \gcd (a, m) }[/math] dzieli [math]\displaystyle{ 1 }[/math], co oznacza, że [math]\displaystyle{ \gcd (a, m) = 1 }[/math].

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ \gcd (a, m) = 1 }[/math]. Z lematu Bézouta (zobacz C73) wynika, że istnieją takie liczby całkowite [math]\displaystyle{ x, y }[/math], że

[math]\displaystyle{ a x + m y = 1 }[/math]

Zatem modulo [math]\displaystyle{ m }[/math] dostajemy

[math]\displaystyle{ a x \equiv 1 \!\! \pmod{m} }[/math]

Co kończy dowód.


Definicja H18
Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Liczbę [math]\displaystyle{ x }[/math] taką, że

[math]\displaystyle{ a \cdot x \equiv 1 \!\! \pmod{m} }[/math]

będziemy nazywali elementem odwrotnym liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] i oznaczali jako [math]\displaystyle{ a^{- 1} }[/math].


Uwaga H19
Oznaczenie elementu odwrotnego ma naturalne uzasadnienie. Zauważmy, że jeżeli [math]\displaystyle{ b \mid a }[/math] oraz [math]\displaystyle{ b }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], to prawdziwa jest kongruencja

[math]\displaystyle{ {\small\frac{a}{b}} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

Istotnie

[math]\displaystyle{ {\small\frac{a}{b}} = {\small\frac{a}{b}} \cdot 1 \equiv {\small\frac{a}{b}} \cdot b b^{- 1} \equiv a b^{- 1} \!\! \pmod{m} }[/math]

W PARI/GP odwrotność liczby [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ m }[/math] znajdujemy, wpisując Mod(a, m)^(-1).


Twierdzenie H20
Niech [math]\displaystyle{ a, k \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math]. Poniższa tabelka przedstawia elementy odwrotne do elementu [math]\displaystyle{ a }[/math] w przypadku niektórych modułów [math]\displaystyle{ m }[/math]. W szczególności, jeżeli moduł [math]\displaystyle{ m }[/math] jest liczbą nieparzystą, to [math]\displaystyle{ 2^{- 1} \equiv {\small\frac{m + 1}{2}} \!\! \pmod{m} }[/math].

Dowód

Punkty 1. - 3.

Ponieważ dla liczb nieparzystych jest

[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^2 \equiv 1 \!\! \pmod{8} }[/math]

to liczba nieparzysta [math]\displaystyle{ a }[/math] jest swoją odwrotnością modulo [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ 4 }[/math] i [math]\displaystyle{ 8 }[/math]. Ponieważ element odwrotny jest definiowany modulo, zatem możemy napisać

[math]\displaystyle{ a^{- 1} \equiv R_2 (a) \!\! \pmod{2} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_4 (a) \!\! \pmod{4} }[/math]
[math]\displaystyle{ a^{- 1} \equiv R_8 (a) \!\! \pmod{8} }[/math]

W pierwszym przypadku wynik jest oczywisty, bo [math]\displaystyle{ R_2 (a) = 1 }[/math].

Punkt 4.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 1) = \gcd (a, - 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot {\small\frac{m + 1}{a}} = m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 5.

Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k + 1) = \gcd (a, 1) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m - 1) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left[ - \left( {\small\frac{m - 1}{a}} \right) \right] = - m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Punkt 6.

Ponieważ zakładamy, że [math]\displaystyle{ 2 \mid (m + 1) }[/math], to [math]\displaystyle{ m }[/math] musi być liczbą nieparzystą, czyli [math]\displaystyle{ a }[/math] też musi być liczbą nieparzystą. Zauważmy, że

[math]\displaystyle{ \gcd (a, m) = \gcd (a, a k - 2) = \gcd (a, - 2) = 1 }[/math]

oraz [math]\displaystyle{ a \mid (m + 2) }[/math]. Zatem

[math]\displaystyle{ a \cdot a^{- 1} = a \cdot \left( {\small\frac{m + 1}{2}} \cdot {\small\frac{m + 2}{a}} \right) = {\small\frac{m + 1}{2}} \cdot (m + 2) \equiv {\small\frac{m + 1}{2}} \cdot 2 \equiv m + 1 \equiv 1 \!\! \pmod{m} }[/math]

Podobnie pokazujemy punkt 7. Co kończy dowód.


Twierdzenie H21
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] i liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math]. Jeżeli liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są liczbami różnymi modulo [math]\displaystyle{ m }[/math], to liczby

1.   [math]\displaystyle{ a u_1, a u_2, \ldots, a u_r }[/math]
2.   [math]\displaystyle{ a u_1 + b, a u_2 + b, \ldots, a u_r + b }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math]. Jeżeli ponadto liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są względnie pierwsze z [math]\displaystyle{ m }[/math], to również liczby

3.   [math]\displaystyle{ u^{- 1}_1, u^{- 1}_2, \ldots, u^{- 1}_r }[/math]

są liczbami różnymi modulo [math]\displaystyle{ m }[/math].

Dowód

Punkt 1.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ a u_i \equiv a u_j \!\! \pmod{m} }[/math]

Z założenia liczba [math]\displaystyle{ a }[/math] ma element odwrotny modulo [math]\displaystyle{ m }[/math], zatem mnożąc obie strony kongruencji przez [math]\displaystyle{ a^{- 1} }[/math], otrzymujemy

[math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math]

dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Dowód punktu 2. jest analogiczny.

Punkt 3.

Przypuśćmy dla uzyskania sprzeczności, że istnieją takie różne wskaźniki [math]\displaystyle{ i, j }[/math], że

[math]\displaystyle{ u^{- 1}_i \equiv u^{- 1}_j \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i \equiv 1 \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j u^{- 1}_i u_i \equiv u_i \!\! \pmod{m} }[/math]
[math]\displaystyle{ u_j \equiv u_i \!\! \pmod{m} }[/math]

Ponownie otrzymujemy [math]\displaystyle{ u_i \equiv u_j \!\! \pmod{m} }[/math] dla [math]\displaystyle{ i \neq j }[/math], wbrew założeniu, że liczby [math]\displaystyle{ u_1, u_2, \ldots, u_r }[/math] są różne modulo [math]\displaystyle{ m }[/math]. Co należało pokazać.


Zadanie H22
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Pokazać, że dla [math]\displaystyle{ k \in [0, p - 1] }[/math] prawdziwa jest kongruencja

[math]\displaystyle{ \binom{p - 1}{k} \equiv (- 1)^k \pmod{p} }[/math]
Rozwiązanie

Zauważmy, że modulo [math]\displaystyle{ p }[/math] mamy

[math]\displaystyle{ \binom{p - 1}{k} = {\small\frac{(p - 1) !}{k! \cdot (p - 1 - k) !}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{(p - 1) (p - 2) \cdot \ldots \cdot (p - k)}{k!}} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (p - 1) (p - 2) \cdot \ldots \cdot (p - k) \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \cdot k! \cdot (k!)^{- 1} }[/math]
[math]\displaystyle{ \;\;\;\; \equiv (- 1)^k \pmod{p} }[/math]

Co należało pokazać.


Zadanie H23
Niech [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] będą zbiorami skończonymi. Pokazać, że jeżeli [math]\displaystyle{ A \subseteq B \;\; \text{i} \;\; | A | = | B | }[/math], to [math]\displaystyle{ \; A = B }[/math].

Rozwiązanie

Pierwszy sposób

Z definicji zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe wtedy i tylko wtedy, gdy jednocześnie spełnione są warunki

  1.   [math]\displaystyle{ x \in A \qquad \Longrightarrow \qquad x \in B }[/math]
  2.   [math]\displaystyle{ x \in B \qquad \Longrightarrow \qquad x \in A }[/math]

Z założenia [math]\displaystyle{ A \subseteq B }[/math], zatem warunek 1. jest spełniony. Przypuśćmy, że istnieje taki element [math]\displaystyle{ x }[/math], że [math]\displaystyle{ x \in B }[/math], ale [math]\displaystyle{ x \notin A }[/math]. Jeśli tak, to

[math]\displaystyle{ | B | = | A | + 1 }[/math]

Co jest sprzeczne z założeniem, że [math]\displaystyle{ | A | = | B | }[/math].

Uwaga
Łatwo zauważyć, że wybierając z trzech warunków [math]\displaystyle{ A \subseteq B }[/math], [math]\displaystyle{ B \subseteq A }[/math] i [math]\displaystyle{ | A | = | B | }[/math] dowolne dwa, zawsze otrzymamy z nich trzeci. Oczywiście nie dotyczy to zbiorów nieskończonych. Przykładowo liczby parzyste stanowią podzbiór liczb całkowitych, liczb parzystych jest tyle samo, co liczb całkowitych[2], ale zbiór liczb całkowitych nie jest podzbiorem zbioru liczb parzystych.


Drugi sposób

Ponieważ zbiór [math]\displaystyle{ A }[/math] jest z założenia podzbiorem zbioru [math]\displaystyle{ B }[/math], to zbiór [math]\displaystyle{ B }[/math] można przedstawić w postaci sumy zbioru [math]\displaystyle{ A }[/math] i pewnego zbioru [math]\displaystyle{ C }[/math] takiego, że żaden element zbioru [math]\displaystyle{ C }[/math] nie jest elementem zbioru [math]\displaystyle{ A }[/math]. Zatem

[math]\displaystyle{ B = A \cup C \qquad \text{i} \qquad A \cap C = \varnothing }[/math]

Ponieważ zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są rozłączne, to wiemy, że

[math]\displaystyle{ | A \cup C | = | A | + | C | }[/math]

Czyli

[math]\displaystyle{ | B | = | A \cup C | = | A | + | C | }[/math]

Skąd wynika, że [math]\displaystyle{ | C | = 0 }[/math], zatem zbiór [math]\displaystyle{ C }[/math] jest zbiorem pustym i otrzymujemy natychmiast [math]\displaystyle{ B = A }[/math]. Co należało pokazać.

Uwaga (przypadek zbiorów skończonych)
Najczęściej prawdziwe jest jedynie oszacowanie [math]\displaystyle{ | A \cup C | \leqslant | A | + | C | }[/math], bo niektóre elementy mogą zostać policzone dwa razy. Elementy liczone dwukrotnie to te, które należą do iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math], zatem od sumy [math]\displaystyle{ | A | + | C | }[/math] musimy odjąć liczbę elementów iloczynu zbiorów [math]\displaystyle{ | A | }[/math] i [math]\displaystyle{ | C | }[/math]. Co daje ogólny wzór[3]

[math]\displaystyle{ | A \cup C | = | A | + | C | - | A \cap C | }[/math]


Definicja H24
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Powiemy, że zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math], jeżeli dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja [math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math].


Twierdzenie H25
Niech elementy każdego ze zbiorów [math]\displaystyle{ A = \{ a_1, a_2, \ldots, a_r \} }[/math] oraz [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_r \} }[/math] będą różne modulo [math]\displaystyle{ m }[/math]. Zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math] wtedy i tylko wtedy, gdy zbiory [math]\displaystyle{ A' = \{ R_m (a_1), R_m (a_2), \ldots, R_m (a_r) \} }[/math] i [math]\displaystyle{ B' = \{ R_m (b_1), R_m (b_2), \ldots, R_m (b_r) \} }[/math] są równe.

Dowód

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Ponieważ elementy każdego ze zbiorów [math]\displaystyle{ A, B }[/math] są różne modulo [math]\displaystyle{ m }[/math], to elementy zbiorów [math]\displaystyle{ A' }[/math] i [math]\displaystyle{ B' }[/math] są wszystkie różne. Czyli [math]\displaystyle{ | A' | = | B' | = r }[/math]. Ponieważ warunek

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

oznacza, że reszty z dzielenia liczb [math]\displaystyle{ a_k }[/math] i [math]\displaystyle{ b_j }[/math] przez [math]\displaystyle{ m }[/math] są równe, to z założenia dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

A to oznacza, że każdy element zbioru [math]\displaystyle{ A' }[/math] należy do zbioru [math]\displaystyle{ B' }[/math], czyli [math]\displaystyle{ A' \subseteq B' }[/math]. Wynika stąd, że [math]\displaystyle{ A' = B' }[/math] (zobacz H23). Co należało pokazać.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Ponieważ zbiory [math]\displaystyle{ A', B' }[/math] są równe, to zbiór [math]\displaystyle{ A' }[/math] jest podzbiorem zbioru [math]\displaystyle{ B' }[/math], czyli dla każdego elementu [math]\displaystyle{ R_m (a_k) \in A' }[/math] istnieje taki element [math]\displaystyle{ R_m (b_j) \in B' }[/math], że

[math]\displaystyle{ R_m (a_k) = R_m (b_j) }[/math]

Ponieważ równość reszt oznacza równość modulo, zatem

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

Wynika stąd, że dla każdego [math]\displaystyle{ k = 1, \ldots, r }[/math] istnieje takie [math]\displaystyle{ j = 1, \ldots, r }[/math], że prawdziwa jest kongruencja

[math]\displaystyle{ a_k \equiv b_j \!\! \pmod{m} }[/math]

czyli zbiory [math]\displaystyle{ A, B }[/math] są równe modulo [math]\displaystyle{ m }[/math]. Co kończy dowód.


Twierdzenie H26
Niech będą dane zbiory [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], [math]\displaystyle{ B = \{ b_1, b_2, \ldots, b_{p - 1} \} }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą. Jeżeli wszystkie elementy zbioru [math]\displaystyle{ B }[/math] są różne modulo [math]\displaystyle{ p }[/math] i żadna z liczb [math]\displaystyle{ b_k \in B }[/math] nie jest podzielna przez [math]\displaystyle{ p }[/math], to zbiory [math]\displaystyle{ A, B, C = \{ b^{- 1}_1, b^{- 1}_2, \ldots, b^{- 1}_{p - 1} \} }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Dowód

Z definicji zbioru [math]\displaystyle{ A }[/math] wszystkie elementy tego zbioru są różne modulo [math]\displaystyle{ p }[/math]. Łatwo zauważamy, że

[math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} = \{ R_p (1), R_p (2), \ldots, R_p (p - 1) \} = A' }[/math]

Ponieważ wszystkie liczby [math]\displaystyle{ b_k \in B }[/math], gdzie [math]\displaystyle{ k = 1, \ldots, p - 1 }[/math] są różne modulo [math]\displaystyle{ p }[/math] i nie są podzielne przez [math]\displaystyle{ p }[/math], to reszty [math]\displaystyle{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b_1), R_p (b_2), \ldots, R_p (b_{p - 1}) \} = B' }[/math]

Na mocy twierdzenia H25 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ B }[/math] są równe modulo [math]\displaystyle{ p }[/math].

Z twierdzenia H21 wiemy, że wszystkie liczby [math]\displaystyle{ b^{- 1}_k \in C }[/math] są różne modulo [math]\displaystyle{ p }[/math]. Zauważmy, że każda z tych liczb jest względnie pierwsza z [math]\displaystyle{ p }[/math], zatem nie może być podzielna przez [math]\displaystyle{ p }[/math]. Wynika stąd, że reszty [math]\displaystyle{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) }[/math] są wszystkie dodatnie i różne, a ponieważ jest ich [math]\displaystyle{ p - 1 }[/math], czyli dokładnie tyle, ile jest różnych i dodatnich reszt z dzielenia przez liczbę [math]\displaystyle{ p }[/math], to zbiór tych reszt jest identyczny ze zbiorem dodatnich reszt z dzielenia przez [math]\displaystyle{ p }[/math], czyli ze zbiorem [math]\displaystyle{ A }[/math]. Zatem mamy

[math]\displaystyle{ A = A' = \{ R_p (b^{- 1}_1), R_p (b^{- 1}_2), \ldots, R_p (b^{- 1}_{p - 1}) \} = C' }[/math]

Na mocy twierdzenia H25 zbiory [math]\displaystyle{ A }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Ponieważ [math]\displaystyle{ A' = B' }[/math] i [math]\displaystyle{ A' = C' }[/math], to [math]\displaystyle{ B' = C' }[/math] i ponownie na mocy twierdzenia H25 zbiory [math]\displaystyle{ B }[/math] i [math]\displaystyle{ C }[/math] są równe modulo [math]\displaystyle{ p }[/math]. Co należało pokazać.


Zadanie H27
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą nieparzystą. Pokazać, że suma [math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} }[/math] jest podzielna przez [math]\displaystyle{ p }[/math].

Rozwiązanie

Zauważmy najpierw, że modulo [math]\displaystyle{ p }[/math] następujące sumy są równe

[math]\displaystyle{ \sum_{k = 1}^{p - 1} k \equiv \sum_{k = 1}^{p - 1} k^{- 1} \!\! \pmod{p} }[/math]

Istotnie, jeśli przyjmiemy w twierdzeniu H26, że zbiór [math]\displaystyle{ B = \{ 1, 2, \ldots, p - 1 \} }[/math], to zbiór [math]\displaystyle{ C }[/math] będzie zbiorem liczb, które są odwrotnościami liczb [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math] modulo [math]\displaystyle{ p }[/math] i możemy napisać

[math]\displaystyle{ \sum_{x \in B} x \equiv \sum_{y \in C} y \!\! \pmod{p} }[/math]

bo

  • gdy [math]\displaystyle{ x }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k }[/math], to [math]\displaystyle{ x }[/math] przyjmuje kolejno wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math]
  • gdy [math]\displaystyle{ y }[/math] przebiega kolejne wartości [math]\displaystyle{ b_k^{- 1} }[/math], to [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości ze zbioru [math]\displaystyle{ A = \{ 1, 2, \ldots, p - 1 \} }[/math], czyli liczba [math]\displaystyle{ y }[/math] (modulo [math]\displaystyle{ p }[/math]) przyjmuje wszystkie wartości [math]\displaystyle{ 1, 2, \ldots, p - 1 }[/math], ale w innej kolejności

Ponieważ kolejność sumowania tych samych składników nie wpływa na wartość sumy, to prawdziwa jest wyżej wypisana równość sum modulo [math]\displaystyle{ p }[/math].

Zatem modulo [math]\displaystyle{ p }[/math] otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{p - 1} {\small\frac{(p - 1) !}{k}} \equiv \sum_{k = 1}^{p - 1} (p - 1)! \cdot k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k^{- 1} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot \sum_{k = 1}^{p - 1} k }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{(p - 1) p}{2}} }[/math]
[math]\displaystyle{ \;\;\: \equiv (p - 1) ! \cdot {\small\frac{p - 1}{2}} \cdot p }[/math]
[math]\displaystyle{ \;\;\: \equiv 0 \!\! \pmod{p} }[/math]

Należy zauważyć, że dla liczby pierwszej nieparzystej [math]\displaystyle{ p }[/math] liczba [math]\displaystyle{ {\small\frac{p - 1}{2}} }[/math] jest liczbą całkowitą.



Funkcje multiplikatywne

Definicja H28
Powiemy, że funkcja [math]\displaystyle{ f(n) }[/math] określona w zbiorze liczb całkowitych dodatnich jest funkcją multiplikatywną, jeżeli [math]\displaystyle{ f(1) = 1 }[/math] i dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math] spełniony jest warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math].


Uwaga H29
Założenie [math]\displaystyle{ f(1) = 1 }[/math] możemy równoważnie zastąpić założeniem, że funkcja [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zero. Gdyby [math]\displaystyle{ f(n) }[/math] spełniała jedynie warunek [math]\displaystyle{ f(a b) = f (a) f (b) }[/math] dla względnie pierwszych liczb [math]\displaystyle{ a, b }[/math], to mielibyśmy

a)   [math]\displaystyle{ f(n) }[/math] jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 0 }[/math]
b)   [math]\displaystyle{ f(n) }[/math] nie jest tożsamościowo równa zeru wtedy i tylko wtedy, gdy [math]\displaystyle{ f(1) = 1 }[/math]

Ponieważ [math]\displaystyle{ f(1) = f (1 \cdot 1) = f (1) f (1) }[/math], zatem [math]\displaystyle{ f(1) = 0 }[/math] lub [math]\displaystyle{ f (1) = 1 }[/math].

Jeżeli [math]\displaystyle{ f(1) = 0 }[/math], to dla dowolnego [math]\displaystyle{ n }[/math] mamy

[math]\displaystyle{ f(n) = f (n \cdot 1) = f (n) f (1) = 0 }[/math]

Czyli [math]\displaystyle{ f(n) }[/math] jest funkcją tożsamościowo równą zero.

Jeżeli [math]\displaystyle{ f(n) }[/math] nie jest funkcją tożsamościowo równą zero, to istnieje taka liczba [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math], że [math]\displaystyle{ f(a) \neq 0 }[/math]. Zatem

[math]\displaystyle{ f(a) = f (a \cdot 1) = f (a) f (1) }[/math]

I dzieląc obie strony przez [math]\displaystyle{ f(a) \neq 0 }[/math], dostajemy [math]\displaystyle{ f(1) = 1 }[/math].


Przykład H30
Ponieważ [math]\displaystyle{ \gcd (1, c) = 1 }[/math], to [math]\displaystyle{ \gcd (n, c) }[/math] rozpatrywana jako funkcja [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ c }[/math] jest ustaloną liczbą całkowitą, jest funkcją multiplikatywną (zobacz H8).


Twierdzenie H31
Jeżeli funkcja [math]\displaystyle{ f(n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} f (d) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math], jest również funkcją multiplikatywną.

Dowód

Ponieważ

[math]\displaystyle{ F(1) = \sum_{d \mid 1} f (d) = f (1) = 1 }[/math]

to funkcja [math]\displaystyle{ F(n) }[/math] spełnia pierwszy warunek definicji H28.

Niech [math]\displaystyle{ a, b }[/math] będą względnie pierwszymi liczbami dodatnimi. Każdy dzielnik dodatni iloczynu [math]\displaystyle{ a b }[/math] można zapisać w postaci [math]\displaystyle{ d = d_1 d_2 }[/math], gdzie [math]\displaystyle{ d_1 \mid a }[/math], [math]\displaystyle{ \; d_2 \mid b \, }[/math] oraz [math]\displaystyle{ \, \gcd (d_1, d_2) = 1 }[/math] (zobacz H14). Niech zbiory

[math]\displaystyle{ S_a = \{ d \in \mathbb{Z}_+ : d \mid a \} }[/math]
[math]\displaystyle{ S_b = \{ d \in \mathbb{Z}_+ : d \mid b \} }[/math]
[math]\displaystyle{ S_{a b} = \{ d \in \mathbb{Z}_+ : d \mid a b \} }[/math]

będą zbiorami dzielników dodatnich liczb [math]\displaystyle{ a, b }[/math] i [math]\displaystyle{ a b }[/math]. Dla przykładu

[math]\displaystyle{ S_5 = \{ 1, 5 \} }[/math]
[math]\displaystyle{ S_7 = \{ 1, 7 \} }[/math]
[math]\displaystyle{ S_{35} = \{ 1, 5, 7, 35 \} }[/math]

Dla dowolnego [math]\displaystyle{ d_1 \in S_a \, }[/math] i [math]\displaystyle{ \, d_2 \in S_b }[/math] musi być [math]\displaystyle{ \gcd (d_1, d_2) = 1 }[/math], bo gdyby było [math]\displaystyle{ \gcd (d_1, d_2) = g \gt 1 }[/math], to

[math]\displaystyle{ g \mid d_1 \quad \; \text{i} \quad \; d_1 \mid a \qquad \quad \Longrightarrow \qquad \quad g \mid a }[/math]
[math]\displaystyle{ g \mid d_2 \quad \; \text{i} \quad \; d_2 \mid b \qquad \quad \Longrightarrow \qquad \quad g \mid b }[/math]

Zatem [math]\displaystyle{ g \mid \gcd (a, b) }[/math] i mielibyśmy [math]\displaystyle{ \gcd (a, b) \geqslant g \gt 1 }[/math], wbrew założeniu.

Przekształcając, otrzymujemy

[math]\displaystyle{ F(a b) = \sum_{d \mid a b} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d \in S_{a b}} f (d) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1 d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \underset{d_2 \in S_{b}}{\sum_{d_1 \in S_{a}}} f (d_1) f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \in S_{a}} f (d_1) \sum_{d_2 \in S_{b}} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = \sum_{d_1 \mid a} f (d_1) \sum_{d_2 \mid b} f (d_2) }[/math]
[math]\displaystyle{ \;\;\;\;\: = F (a) F (b) }[/math]

Co należało pokazać.



Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math]

Definicja H32
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math][4] jest równa ilości liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math].


Twierdzenie H33
Funkcja Eulera [math]\displaystyle{ \varphi (n) }[/math] jest multiplikatywna, czyli dla względnie pierwszych liczb [math]\displaystyle{ m, n }[/math] jest [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ m, n }[/math] będą dodatnimi liczbami całkowitymi takimi, że [math]\displaystyle{ \gcd (m, n) = 1 }[/math]. Twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math], zatem nie zmniejszając ogólności, możemy założyć, że [math]\displaystyle{ n \gt 1 }[/math]. Wypiszmy w tabeli wszystkie liczby od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ m n }[/math].

1. Natychmiast widzimy, że w pierwszym wierszu mamy [math]\displaystyle{ \varphi (m) }[/math] liczb względnie pierwszych z [math]\displaystyle{ m }[/math]. Tak samo jest w każdym kolejnym wierszu, bo (zobacz H5)

[math]\displaystyle{ \gcd (r m + k, m) = \gcd (k, m) }[/math]

Zatem mamy dokładnie [math]\displaystyle{ \varphi (m) }[/math] kolumn liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


2. Załóżmy, że liczba [math]\displaystyle{ k }[/math] jest jedną z liczb względnie pierwszych z [math]\displaystyle{ m }[/math], czyli [math]\displaystyle{ \gcd (k, m) = 1 }[/math]. Przy tym założeniu [math]\displaystyle{ k }[/math]-ta kolumna (pokazana w tabeli) jest kolumną liczb względnie pierwszych z [math]\displaystyle{ m }[/math].


3. Zauważmy, że reszty z dzielenia liczb wypisanych w [math]\displaystyle{ k }[/math]-tej kolumnie przez [math]\displaystyle{ n }[/math] są wszystkie różne. Gdyby tak nie było, to dla pewnych [math]\displaystyle{ i, j }[/math], gdzie [math]\displaystyle{ 0 \leqslant i, j \leqslant n - 1 }[/math], różnica liczb [math]\displaystyle{ i m + k }[/math] oraz [math]\displaystyle{ j m + k }[/math] byłaby podzielna przez [math]\displaystyle{ n }[/math]. Mielibyśmy

[math]\displaystyle{ n \mid ((i m + k) - (j m + k)) }[/math]

Skąd wynika natychmiast

[math]\displaystyle{ n \mid (i - j) m }[/math]

Ponieważ założyliśmy, że [math]\displaystyle{ \gcd (n, m) = 1 }[/math], to musi być [math]\displaystyle{ n \mid (i - j) }[/math] (zobacz C74), ale

[math]\displaystyle{ 0 \leqslant | i - j | \leqslant n - 1 }[/math]

Czyli [math]\displaystyle{ n }[/math] może dzielić [math]\displaystyle{ i - j }[/math] tylko w przypadku, gdy [math]\displaystyle{ i = j }[/math]. Wbrew naszemu przypuszczeniu, że istnieją różne liczby dające takie same reszty przy dzieleniu przez [math]\displaystyle{ n }[/math].


4. Ponieważ w [math]\displaystyle{ k }[/math]-tej kolumnie znajduje się dokładnie [math]\displaystyle{ n }[/math] liczb i reszty z dzielenia tych liczb przez [math]\displaystyle{ n }[/math] są wszystkie różne, to reszty te tworzą zbiór [math]\displaystyle{ S = \{ 0, 1, \ldots, n - 1 \} }[/math]. Wynika stąd, że liczby wypisane w [math]\displaystyle{ k }[/math]-tej kolumnie mogą być zapisane w postaci

[math]\displaystyle{ a_r = b_r \cdot n + r }[/math]

gdzie [math]\displaystyle{ r = 0, 1, \ldots, n - 1 }[/math] i [math]\displaystyle{ b_r \in \mathbb{Z} }[/math].

Zauważmy, że następujące ilości liczb są sobie równe

  •    ilość liczb w [math]\displaystyle{ k }[/math]-tej kolumnie względnie pierwszych z [math]\displaystyle{ n }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 0, \ldots, n - 1 }[/math], bo [math]\displaystyle{ \gcd (b_r \cdot n + r, n) = \gcd (r, n) }[/math]
  •    ilość liczb [math]\displaystyle{ r }[/math] względnie pierwszych z [math]\displaystyle{ n }[/math], gdzie [math]\displaystyle{ r = 1, \ldots, n }[/math], bo [math]\displaystyle{ \gcd (n, n) = \gcd (0, n) = | n | \gt 1 }[/math]

Ostatnia ilość liczb jest równa [math]\displaystyle{ \varphi (n) }[/math], co wynika wprost z definicji funkcji [math]\displaystyle{ \varphi (n) }[/math].


5. Zbierając: mamy w wypisanej tabeli dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jednocześnie jest

[math]\displaystyle{ \gcd (u, m) = 1 \quad \text{i} \quad \gcd (u, n) = 1 }[/math]

Z twierdzenia H6 wynika, że w tabeli jest dokładnie [math]\displaystyle{ \varphi (m) \varphi (n) }[/math] liczb [math]\displaystyle{ u \in [1, m n] }[/math], dla których jest

[math]\displaystyle{ \gcd (u, m n) = 1 }[/math]

Zatem [math]\displaystyle{ \varphi (m n) = \varphi (m) \varphi (n) }[/math]. Co należało pokazać.


Twierdzenie H34
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

gdzie iloczyn obliczamy po wszystkich liczbach pierwszych [math]\displaystyle{ p }[/math], będących dzielnikami liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ wszystkie liczby naturalne mniejsze od liczby pierwszej [math]\displaystyle{ p }[/math] są jednocześnie pierwsze względem [math]\displaystyle{ p }[/math], to [math]\displaystyle{ \varphi (p) = p - 1 }[/math].

Równie łatwo znajdujemy wartość funkcji [math]\displaystyle{ \varphi (n) }[/math] w przypadku gdy [math]\displaystyle{ n }[/math] jest potęgą liczby pierwszej [math]\displaystyle{ n = p^k }[/math]. Wystarczy zauważyć, że w ciągu kolejnych liczb

[math]\displaystyle{ 1, 2, 3, 4, \ldots, p^k - 1, p^k }[/math]

jedynymi liczbami, które nie są pierwsze względem [math]\displaystyle{ p^k }[/math], są te, które dzielą się przez [math]\displaystyle{ p }[/math] i jest ich [math]\displaystyle{ p^{k - 1} }[/math], co widać natychmiast po ich bezpośrednim wypisaniu

[math]\displaystyle{ 1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, (p^{k - 1} - 1) \cdot p, p^{k - 1} \cdot p }[/math]

Zatem

[math]\displaystyle{ \varphi (p^k) = p^k - p^{k - 1} = p^k \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to dla [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math] otrzymujemy

[math]\displaystyle{ \varphi (n) = \prod^s_{k = 1} \varphi (p^{\alpha_k}_k) }[/math]
[math]\displaystyle{ \;\;\; = \prod^s_{k = 1} p^{\alpha_k}_k \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = \left[ \prod^s_{k = 1} p^{\alpha_k}_k \right] \cdot \left[ \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) \right] }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod^s_{k = 1} \left( 1 - {\small\frac{1}{p_k}} \right) }[/math]
[math]\displaystyle{ \;\;\; = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

Co należało pokazać.


Twierdzenie H35
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ q }[/math] jest liczbą pierwszą, to

[math]\displaystyle{ \varphi (q n) = \left\{ \begin{array}{rl} (q - 1) \varphi (n) & \quad \text{gdy} \quad q \nmid n \\ q \varphi (n) & \quad \text{gdy} \quad q \mid n \\ \end{array} \right. }[/math]
Dowód

Jeżeli [math]\displaystyle{ q \nmid m }[/math], to [math]\displaystyle{ \gcd (q, m) = 1 }[/math], zatem [math]\displaystyle{ \varphi (q m) = \varphi (q) \varphi (m) = (q - 1) \varphi (m) }[/math]. Jeżeli [math]\displaystyle{ q \mid m }[/math], to liczby [math]\displaystyle{ m }[/math] oraz [math]\displaystyle{ q m }[/math] mają taki sam zbiór dzielników pierwszych, zatem

[math]\displaystyle{ \varphi (q m) = q m \prod_{p \mid q m} \left( 1 - {\small\frac{1}{p}} \right) = q \cdot \left[ m \prod_{p \mid m} \left( 1 - {\small\frac{1}{p}} \right) \right] = q \varphi (m) }[/math]

Co należało pokazać.


Zadanie H36
Niech [math]\displaystyle{ q \in \mathbb{P} }[/math] i [math]\displaystyle{ a, b, m, n \in \mathbb{Z}_+ }[/math]. Pokazać, że

  •    [math]\displaystyle{ \varphi (q^{a + b}) = q^a \varphi (q^b) }[/math]
  •    [math]\displaystyle{ \varphi (n^m) = n^{m - 1} \varphi (n) }[/math]
Rozwiązanie

Punkt 1.

[math]\displaystyle{ \varphi (q^{a + b}) = (q - 1) q^{a + b - 1} = q^a \cdot (q - 1) q^{b - 1} = q^a \varphi (q^b) }[/math]

Punkt 2.

Niech [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]

[math]\displaystyle{ \varphi (n^m) = \varphi (p^{m \alpha_1}_1 \cdot \ldots \cdot p^{m \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = \varphi (p^{m \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{m \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = \varphi (p^{(m - 1) \alpha_1 + \alpha_1}_1) \cdot \ldots \cdot \varphi (p^{(m - 1) \alpha_s + \alpha_s}_s) }[/math]
[math]\displaystyle{ \, = p^{(m - 1) \alpha_1}_1 \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \varphi (p^{\alpha_s}_s) }[/math]
[math]\displaystyle{ \, = p^{(m - 1) \alpha_1}_1 \cdot \ldots \cdot p^{(m - 1) \alpha_s}_s \cdot \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) }[/math]
[math]\displaystyle{ \, = n^{m - 1} \varphi (n) }[/math]

Co należało pokazać.


Twierdzenie H37
Niech [math]\displaystyle{ m, n \in \mathbb{Z}_+ }[/math]. Jeżeli [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Dowód

Niech [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]. Ponieważ założyliśmy, że [math]\displaystyle{ m \mid n }[/math], to [math]\displaystyle{ m }[/math] musi być postaci [math]\displaystyle{ m = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_s}_s }[/math], gdzie [math]\displaystyle{ 0 \leqslant \beta_i \leqslant \alpha_i }[/math], dla [math]\displaystyle{ i = 1, \ldots, s }[/math]. Łatwo zauważamy, że

  •    jeżeli [math]\displaystyle{ \beta_i = 0 }[/math], to [math]\displaystyle{ \varphi (p^{\beta_i}_i) = 1 }[/math] i dzieli [math]\displaystyle{ \varphi (p^{\alpha_i}_i) }[/math]
  •    jeżeli [math]\displaystyle{ 1 \leqslant \beta_i \leqslant \alpha_i }[/math], to [math]\displaystyle{ (p_i - 1) p_i^{\beta_i - 1} \mid (p_i - 1) p_i^{\alpha_i - 1} }[/math], zatem [math]\displaystyle{ \varphi (p^{\beta_i}_i) \mid \varphi (p^{\alpha_i}_i) }[/math]

Skąd natychmiast wynika, że [math]\displaystyle{ \varphi (p^{\beta_1}_1) \cdot \ldots \cdot \varphi (p^{\beta_s}_s) }[/math] dzieli [math]\displaystyle{ \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) }[/math], czyli [math]\displaystyle{ \varphi (m) \mid \varphi (n) }[/math].

Zauważmy, że twierdzenie odwrotne nie jest prawdziwe, bo [math]\displaystyle{ \varphi (7) \mid \varphi (19) }[/math], ale [math]\displaystyle{ 7 \nmid 19 }[/math].


Zadanie H38
Dla [math]\displaystyle{ n \geqslant 3 }[/math] wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi.

Rozwiązanie

Jeżeli liczba [math]\displaystyle{ n \geqslant 3 }[/math] jest podzielna przez liczbę pierwszą nieparzystą [math]\displaystyle{ p }[/math], zaś [math]\displaystyle{ k }[/math] jest wykładnikiem, z jakim [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia [math]\displaystyle{ n }[/math] na czynniki pierwsze, to

[math]\displaystyle{ \varphi (n) = \varphi \left( p^k \cdot {\small\frac{n}{p^k}} \right) = (p - 1) p^{k - 1} \cdot \varphi \left( {\small\frac{n}{p^k}} \right) }[/math]

zatem [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą, ponieważ [math]\displaystyle{ p - 1 }[/math] jest liczbą parzystą.

Jeżeli żadna liczba nieparzysta nie dzieli [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = 2^a }[/math] i [math]\displaystyle{ \varphi (n) = 2^{a - 1} }[/math], ale z założenia [math]\displaystyle{ n \geqslant 3 }[/math], zatem [math]\displaystyle{ a \geqslant 2 }[/math] i [math]\displaystyle{ \varphi (n) }[/math] jest liczbą parzystą.


Twierdzenie H39
Jeżeli [math]\displaystyle{ n }[/math] jest liczbą złożoną, to [math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} }[/math].

Dowód

Pierwszy sposób
Niech [math]\displaystyle{ n = a b }[/math], gdzie [math]\displaystyle{ 1 \lt a \leqslant b \lt n }[/math]. Liczby [math]\displaystyle{ 1 \cdot a, 2 \cdot a, 3 \cdot a, \ldots, b \cdot a }[/math] są nie większe od [math]\displaystyle{ n }[/math] i nie są względnie pierwsze z [math]\displaystyle{ n }[/math], zatem

[math]\displaystyle{ \varphi (n) \leqslant n - b }[/math]

Ponieważ [math]\displaystyle{ b \geqslant a }[/math], to [math]\displaystyle{ b^2 \geqslant a b = n }[/math] i [math]\displaystyle{ b \geqslant \sqrt{n} }[/math]. Wynika stąd, że

[math]\displaystyle{ \varphi (n) \leqslant n - b \leqslant n - \sqrt{n} }[/math]


Drugi sposób
Niech [math]\displaystyle{ q }[/math] oznacza najmniejszy dzielnik pierwszy liczby złożonej [math]\displaystyle{ n }[/math], zatem [math]\displaystyle{ q^2 \leqslant n }[/math], czyli [math]\displaystyle{ q \leqslant \sqrt{n} }[/math], a stąd [math]\displaystyle{ {\small\frac{n}{q}} \geqslant \sqrt{n} }[/math] i

[math]\displaystyle{ \varphi (n) = n \cdot \prod_{p|n} \left( 1 - {\small\frac{1}{p}} \right) \leqslant n \left( 1 - {\small\frac{1}{q}} \right) = n - {\small\frac{n}{q}} \leqslant n - \sqrt{n} }[/math]

Co należało pokazać.


Twierdzenie H40
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt {\small\frac{\sqrt{n}}{2}} }[/math].

Dowód

Dla [math]\displaystyle{ k \geqslant 3 }[/math] jest

[math]\displaystyle{ \left( 1 - {\small\frac{1}{k}} \right)^2 \gt {\small\frac{1}{k}} }[/math]

Wynika stąd, że jeżeli [math]\displaystyle{ m \geqslant 3 }[/math] jest liczbą nieparzystą, to

[math]\displaystyle{ \varphi (m)^2 = m^2 \prod_{p|m} \left( 1 - {\small\frac{1}{p}} \right)^2 \gt m^2 \prod_{p|m} {\small\frac{1}{p}} \geqslant m }[/math]

bo

[math]\displaystyle{ \prod_{p|m} p \leqslant m }[/math]

Czyli dla nieparzystych liczb [math]\displaystyle{ m \geqslant 3 }[/math] mamy

[math]\displaystyle{ \varphi (m) \gt \sqrt{m} \gt {\small\frac{\sqrt{m}}{2}} }[/math]


Jeżeli [math]\displaystyle{ d = 2^a }[/math], gdzie [math]\displaystyle{ a \geqslant 1 }[/math], to

[math]\displaystyle{ \varphi (d) = \varphi (2^a) = 2^{a - 1} \gt {\small\frac{\sqrt{2^a}}{2}} = {\small\frac{\sqrt{d}}{2}} }[/math]


W przypadku ogólnym, gdy [math]\displaystyle{ n }[/math] jest iloczynem liczby nieparzystej [math]\displaystyle{ m \geqslant 3 }[/math] i potęgi liczby [math]\displaystyle{ 2 }[/math], dostajemy

[math]\displaystyle{ \varphi (n) = \varphi (2^a m) = \varphi (2^a) \varphi (m) \gt {\small\frac{\sqrt{2^a}}{2}} \cdot \sqrt{m} = {\small\frac{\sqrt{2^a m}}{2}} = {\small\frac{\sqrt{n}}{2}} }[/math]

Oczywiście nierówność [math]\displaystyle{ \varphi (n) \gt {\small\frac{\sqrt{n}}{2}} }[/math] jest również prawdziwa dla [math]\displaystyle{ n = 1 }[/math]. Co należało pokazać.


Zadanie H41
Pokazać, że dla [math]\displaystyle{ n \geqslant 7 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \sqrt{n} }[/math].

Rozwiązanie

Zauważmy, że

[math]\displaystyle{ n - 1 \gt \sqrt{n} \qquad \qquad \;\, \text{dla} \; n \geqslant 3 }[/math]
[math]\displaystyle{ n - 1 \gt \sqrt{2 n} \qquad \qquad \text{dla} \; n \geqslant 4 }[/math]


Zatem dla liczby pierwszej [math]\displaystyle{ p }[/math] i [math]\displaystyle{ k \geqslant 1 }[/math] jest

[math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} \gt \sqrt{p} \cdot p^{k - 1} = p^{k - \tfrac{1}{2}} \geqslant p^{\tfrac{k}{2}} = \sqrt{p^k} \qquad \qquad \qquad \qquad \quad \; \text{dla} \;\: p \geqslant 3 }[/math]
[math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} \gt \sqrt{2 p} \cdot p^{k - 1} = \sqrt{2} \cdot p^{k - \tfrac{1}{2}} \geqslant \sqrt{2} \cdot p^{\tfrac{k}{2}} = \sqrt{2 p^k} \qquad \qquad \text{dla} \;\, p \geqslant 5 }[/math]


1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n \geqslant 3} }[/math] jest liczbą nieparzystą

Liczba [math]\displaystyle{ n }[/math] jest iloczynem czynników pierwszych nieparzystych, zatem

[math]\displaystyle{ \varphi (n) = \varphi (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = \varphi (p^{\alpha_1}_1) \cdot \ldots \cdot \varphi (p^{\alpha_s}_s) \gt \sqrt{p^{\alpha_1}_1} \cdot \ldots \cdot \sqrt{p^{\alpha_s}_s} = \sqrt{n} }[/math]


2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a m} \; }[/math] i [math]\displaystyle{ \; \boldsymbol{q \mid m ,} \; }[/math] gdzie [math]\displaystyle{ \; \boldsymbol{q \geqslant 5} }[/math]

Z założenia [math]\displaystyle{ n = 2^a m = 2^a q^b r }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math] jest liczbą nieparzystą. Zauważmy, że [math]\displaystyle{ \varphi (r) \geqslant \sqrt{r} }[/math], bo może być [math]\displaystyle{ r = 1 }[/math].

[math]\displaystyle{ \varphi (n) = \varphi (2^a q^b r) }[/math]
[math]\displaystyle{ \;\;\,\, = \varphi (2^a) \varphi (q^b) \varphi (r) }[/math]
[math]\displaystyle{ \;\;\,\, \gt 2^{a - 1} \sqrt{2 q^b} \sqrt{r} }[/math]
[math]\displaystyle{ \;\;\,\, = 2^{a - \tfrac{1}{2}} \sqrt{q^b} \sqrt{r} }[/math]
[math]\displaystyle{ \;\;\,\, \geqslant 2^{\tfrac{a}{2}} \sqrt{q^b r} }[/math]
[math]\displaystyle{ \;\;\,\, = \sqrt{2^a q^b r} }[/math]
[math]\displaystyle{ \;\;\,\, = \sqrt{n} }[/math]


3. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a m} \; }[/math] i [math]\displaystyle{ \; \boldsymbol{q \nmid m ,} \; }[/math] gdzie [math]\displaystyle{ \; \boldsymbol{q \geqslant 5} }[/math]

Jeżeli żadna liczba pierwsza [math]\displaystyle{ q \geqslant 5 }[/math] nie dzieli [math]\displaystyle{ m }[/math], to możliwe są tylko dwie sytuacje: [math]\displaystyle{ n = 2^a \, }[/math] i [math]\displaystyle{ \, n = 2^a 3^b }[/math].

3a. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a} }[/math]

[math]\displaystyle{ \varphi (n) = \varphi (2^a) = 2^{a - 1} \gt \sqrt{2^a} = \sqrt{n} \qquad \qquad \;\, \text{dla} \; a \geqslant 3 }[/math]

Twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 2 \, }[/math] i [math]\displaystyle{ \, n = 4 \,\, }[/math] (gdy [math]\displaystyle{ a = 1 \, }[/math] lub [math]\displaystyle{ \, a = 2 }[/math]).

3b. Przypadek, gdy [math]\displaystyle{ \boldsymbol{n = 2^a 3^b} }[/math]

[math]\displaystyle{ \varphi (n) = \varphi (2^a 3^b) = \varphi (2^a) \varphi (3^b) = 2^{a - 1} \cdot 2 \cdot 3^{b - 1} = 2^a 3^{b - 1} = \sqrt{2^a 3^b} \cdot {\small\frac{\sqrt{2^a 3^b}}{3}} \gt \sqrt{2^a 3^b} }[/math]

Ostatnia nierówność jest prawdziwa, o ile [math]\displaystyle{ \sqrt{2^a 3^b} \gt 3 }[/math], czyli gdy [math]\displaystyle{ 2^a 3^b \gt 9 }[/math], co ma miejsce, gdy [math]\displaystyle{ a \geqslant 2 }[/math] lub [math]\displaystyle{ b \geqslant 2 }[/math].

Twierdzenie nie jest prawdziwe dla [math]\displaystyle{ n = 6 \; }[/math] (gdy [math]\displaystyle{ a = 1 \, }[/math] i [math]\displaystyle{ \, b = 1 }[/math]).


Zbierając uzyskane wyniki, otrzymujemy: oszacowanie [math]\displaystyle{ \varphi (n) \gt \sqrt{n} }[/math] nie jest prawdziwe dla [math]\displaystyle{ n = 1, 2, 4, 6 }[/math]. Co należało pokazać.


Zadanie H42
Pokazać, że dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt {\small\frac{n}{3 \log n}} }[/math]. Korzystając z tego wyniku, pokazać, że [math]\displaystyle{ \varphi (n) \gt n^{2 / 3} }[/math] dla [math]\displaystyle{ n \geqslant 43 }[/math] oraz że [math]\displaystyle{ \varphi (n) \gt n^{3 / 4} }[/math] dla [math]\displaystyle{ n \geqslant 211 }[/math].

Rozwiązanie

Niech [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], a [math]\displaystyle{ n' = q_1 \cdot \ldots \cdot q_s }[/math] oznacza liczbę, będącą iloczynem dokładnie tych samych czynników pierwszych, jakie występują w liczbie [math]\displaystyle{ n }[/math], natomiast [math]\displaystyle{ n^{\!\ast} = p_1 \cdot \ldots \cdot p_s }[/math] oznacza liczbę, będącą iloczynem dokładnie tej samej ilości czynników pierwszych, przy czym [math]\displaystyle{ p_i }[/math] oznacza teraz [math]\displaystyle{ i }[/math]-tą liczbę pierwszą.

Ponieważ

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} = \prod_{p \mid n} \left( 1 - {\small\frac{1}{p}} \right) }[/math]

to

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} = {\small\frac{\varphi (n')}{n'}} \geqslant {\small\frac{\varphi (n^{\!\ast})}{n^{\!\ast}}} = \prod^s_{i = 1} \left( 1 - {\small\frac{1}{p_i}} \right) \geqslant \prod^{p_s}_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{p_s}} }[/math]

Ostatnia równość wynika z prostego wzoru

[math]\displaystyle{ \prod^m_{k = 2} \left( 1 - {\small\frac{1}{k}} \right) = {\small\frac{1}{2}} \cdot {\small\frac{2}{3}} \cdot {\small\frac{3}{4}} \cdot \ldots \cdot {\small\frac{m - 2}{m - 1}} \cdot {\small\frac{m - 1}{m}} = {\small\frac{1}{m}} }[/math]


Musimy oszacować wartość liczby [math]\displaystyle{ p_s }[/math]. Z twierdzenia B31 wynika, że dla [math]\displaystyle{ m \geqslant 2 }[/math] jest [math]\displaystyle{ P(m) \geqslant 2^{m / 2} }[/math], gdzie funkcja [math]\displaystyle{ P(m) }[/math] jest równa iloczynowi wszystkich liczb pierwszych nie większych od [math]\displaystyle{ m }[/math]. Zatem dla [math]\displaystyle{ p_s \geqslant 2 }[/math] jest

[math]\displaystyle{ n^{\!\ast} = p_1 \cdot \ldots \cdot p_s = P (p_s) \geqslant 2^{p_s / 2} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ p_s \leqslant {\small\frac{2 \log n^{\!\ast}}{\log 2}} }[/math]

Ponieważ [math]\displaystyle{ n \geqslant n' \geqslant n^{\!\ast} }[/math], to

[math]\displaystyle{ {\small\frac{\varphi (n)}{n}} \geqslant {\small\frac{1}{p_s}} \geqslant {\small\frac{\log 2}{2 \log n^{\!\ast}}} \geqslant {\small\frac{\log 2}{2 \log n}} \gt {\small\frac{1}{3 \log n}} }[/math]

Ostatecznie otrzymujemy

[math]\displaystyle{ \varphi (n) \gt {\small\frac{n}{3 \log n}} }[/math]

Co należało pokazać.


Rozwiązując drugą część zadania, wystarczy znaleźć, dla jakich [math]\displaystyle{ n }[/math] prawdziwa jest nierówność

[math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{2 / 3} }[/math]

Przebieg funkcji [math]\displaystyle{ {\small\frac{n}{3 \log n}} \, }[/math] i [math]\displaystyle{ \, n^{2 / 3} }[/math] przedstawiliśmy na wykresie

Euler1.png

Punkt przecięcia tych funkcji znajdujemy, wpisując w PARI/GP polecenie

solve(n = 10, 10^5, n/(3*log(n)) - n^(2/3))

Otrzymujemy

[math]\displaystyle{ n = 29409.965 }[/math]

Zatem [math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{2 / 3} }[/math] dla [math]\displaystyle{ n \gt 2.95 \cdot 10^4 }[/math].

Poleceniem

for(n = 1, 3*10^4, if( eulerphi(n) <= n^(2/3), print(n) ))

sprawdzamy, że oszacowanie [math]\displaystyle{ \varphi (n) \gt n^{2 / 3} }[/math] jest prawdziwe dla [math]\displaystyle{ n \geqslant 43 }[/math].


Postępując analogicznie jak wyżej, znajdujemy, dla jakich [math]\displaystyle{ n }[/math] prawdziwa jest nierówność

[math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{3 / 4} }[/math]

Wpisując w PARI/GP polecenie

solve(n = 10, 10^7, n/(3*log(n)) - n^(3/4))

otrzymujemy

[math]\displaystyle{ n = 4447862.680 }[/math]

Zatem [math]\displaystyle{ {\small\frac{n}{3 \log n}} \gt n^{3 / 4} }[/math] dla [math]\displaystyle{ n \gt 4.45 \cdot 10^6 }[/math]

Poleceniem

for(n = 1, 5*10^6, if( eulerphi(n) <= n^(3/4), print(n) ))

sprawdzamy, że oszacowanie [math]\displaystyle{ \varphi (n) \gt n^{3 / 4} }[/math] jest prawdziwe dla [math]\displaystyle{ n \geqslant 211 }[/math]. Co należało pokazać.


Twierdzenie H43
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Liczba [math]\displaystyle{ n }[/math] jest liczbą pierwszą wtedy i tylko wtedy, gdy [math]\displaystyle{ \varphi (n) = n - 1 }[/math].

Dowód

Dla liczb złożonych [math]\displaystyle{ n \geqslant 4 }[/math] nigdy nie będzie [math]\displaystyle{ \varphi (n) = n - 1 }[/math], bo

[math]\displaystyle{ \varphi (n) \leqslant n - \sqrt{n} \leqslant n - 2 }[/math]

Dla [math]\displaystyle{ n = 1, 2, 3 }[/math] sprawdzamy bezpośrednio: [math]\displaystyle{ \varphi (1) = 1 \neq 1 - 1 }[/math], [math]\displaystyle{ \varphi (2) = 1 = 2 - 1 }[/math], [math]\displaystyle{ \varphi (3) = 2 = 3 - 1 }[/math]. Co kończy dowód.


Twierdzenie H44
Dla dowolnej liczby całkowitej dodatniej [math]\displaystyle{ n }[/math] jest

[math]\displaystyle{ n = \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right) }[/math]

gdzie sumowanie przebiega po wszystkich dzielnikach dodatnich liczby [math]\displaystyle{ n }[/math].

Dowód

Ponieważ [math]\displaystyle{ \varphi (n) }[/math] jest funkcją multiplikatywną, to funkcja

[math]\displaystyle{ F(n) = \sum_{d \mid n} \varphi (d) }[/math]

też jest funkcją multiplikatywną (zobacz H31). Łatwo sprawdzamy, że twierdzenie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Niech [math]\displaystyle{ n \gt 1 }[/math]. Jeżeli [math]\displaystyle{ n = p^{\alpha} }[/math] jest potęgą liczby pierwszej, to otrzymujemy

[math]\displaystyle{ F (p^{\alpha}) = \sum_{d \mid p^{\alpha}} \varphi (d) }[/math]
[math]\displaystyle{ = \varphi (1) + \varphi (p) + \varphi (p^2) + \ldots + \varphi (p^{\alpha}) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + p (p - 1) + \ldots + p^{\alpha - 1} (p - 1) = }[/math]
[math]\displaystyle{ = 1 + (p - 1) + (p^2 - p) + \ldots + (p^{\alpha} - p^{\alpha - 1}) }[/math]
[math]\displaystyle{ = p^{\alpha} }[/math]

Jeżeli [math]\displaystyle{ n }[/math] jest postaci [math]\displaystyle{ n = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math], to

[math]\displaystyle{ F(n) = F (p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = F (p^{\alpha_1}_1) \cdot \ldots \cdot F (p^{\alpha_s}_s) = }[/math]
[math]\displaystyle{ \;\;\;\, = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_s}_s }[/math]
[math]\displaystyle{ \;\;\;\, = n }[/math]

Niech [math]\displaystyle{ 1 \lt d_1 \lt d_2 \lt \ldots \lt n }[/math] będą dzielnikami liczby [math]\displaystyle{ n }[/math]. Zauważmy, że kiedy [math]\displaystyle{ d }[/math] przebiega zbiór dzielników [math]\displaystyle{ \{ 1, d_1, d_2, \ldots, n \} }[/math], to [math]\displaystyle{ e = {\small\frac{n}{d}} }[/math] przebiega wszystkie te liczby tylko w odwrotnej kolejności. Zatem

[math]\displaystyle{ \sum_{d \mid n} \varphi (d) = \sum_{d \mid n} \varphi \left( {\small\frac{n}{d}} \right) }[/math]

Co należało pokazać.


Zadanie H45
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Pokazać, że suma liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math] i względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ {\small\frac{1}{2}} n \varphi (n) }[/math].

Rozwiązanie

Łatwo sprawdzamy, że wzór jest prawdziwy dla [math]\displaystyle{ n = 2 }[/math] i odtąd będziemy przyjmowali, że [math]\displaystyle{ n \geqslant 3 }[/math]. Zatem wartości [math]\displaystyle{ \varphi (n) }[/math] są liczbami parzystymi i niech [math]\displaystyle{ c = {\small\frac{1}{2}} \varphi (n) }[/math]. Zauważmy, że jeżeli liczba [math]\displaystyle{ a }[/math] jest względnie pierwsza z [math]\displaystyle{ n }[/math], to liczba [math]\displaystyle{ n - a }[/math] jest również względnie pierwsza z [math]\displaystyle{ n }[/math], bo [math]\displaystyle{ \gcd (a, n) = \gcd (n - a, n) }[/math]. Wypiszmy wszystkie liczby całkowite dodatnie nie większe od [math]\displaystyle{ n }[/math] i względnie pierwsze z [math]\displaystyle{ n }[/math] w kolejności rosnącej, a pod spodem w kolejności malejącej

Suma liczb w każdej kolumnie jest równa [math]\displaystyle{ n }[/math]. Ponieważ ilość liczb względnie pierwszych z [math]\displaystyle{ n }[/math] jest równa [math]\displaystyle{ \varphi (n) }[/math], to podwojona suma liczb całkowitych nie większych od [math]\displaystyle{ n }[/math] i pierwszych względem [math]\displaystyle{ n }[/math] wynosi [math]\displaystyle{ n \varphi (n) }[/math]. Co należało pokazać.


Zadanie H46
Pokazać, że dla liczb naturalnych nieparzystych [math]\displaystyle{ n \geqslant 5 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

1. Jeżeli [math]\displaystyle{ n \geqslant 5 }[/math] jest liczbą pierwszą, to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze mniejsze od [math]\displaystyle{ n }[/math] oraz liczby [math]\displaystyle{ 1, 4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 2 \gt \pi (n) }[/math].

2. Jeżeli [math]\displaystyle{ n = p^a }[/math], gdzie [math]\displaystyle{ a \geqslant 2 }[/math], jest potęgą liczby pierwszej nieparzystej, to [math]\displaystyle{ n \geqslant 9 }[/math] i liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, 4, 8 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math].

3. Jeżeli [math]\displaystyle{ n }[/math] ma więcej niż jeden dzielnik pierwszy nieparzysty, to [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ s \geqslant 2 }[/math]. Zauważmy, że

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant 3 \cdot 5^{s - 1} \gt 2^{2 s - 1} }[/math]

Liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1, 2^2, 2^3, \ldots, 2^{2 s - 1} }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + 2 s - 1 = \pi (n) + s - 1 \gt \pi (n) }[/math]

Co należało pokazać.


Zadanie H47
Pokazać, że dla liczb naturalnych [math]\displaystyle{ n \geqslant 91 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math].

Rozwiązanie

Ponieważ [math]\displaystyle{ p_{2 s} \gt 1 }[/math] i [math]\displaystyle{ p_{2 s} \geqslant p_{s + 1} }[/math], to z zadania A40 natychmiast wynika nierówność

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} }[/math]

która jest prawdziwa dla [math]\displaystyle{ n \geqslant 4 }[/math].

Pokażemy najpierw, że dla każdej liczby naturalnej mającej nie mniej niż cztery dzielniki pierwsze nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] jest zawsze prawdziwa.

Przez [math]\displaystyle{ p_1, p_2, \ldots, p_k, \ldots }[/math] oznaczymy kolejne liczby pierwsze. Niech [math]\displaystyle{ n \geqslant 2 }[/math] będzie liczbą naturalną i [math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math], gdzie [math]\displaystyle{ q_i }[/math] oznaczają dowolne (nie muszą być kolejne) liczby pierwsze.

Wśród kolejnych [math]\displaystyle{ 2 s }[/math] liczb pierwszych znajduje się przynajmniej [math]\displaystyle{ s }[/math] liczb pierwszych różnych od każdej z liczb [math]\displaystyle{ q_1, \ldots, q_s }[/math]. Jeśli oznaczymy te liczby (w rosnącej kolejności) przez [math]\displaystyle{ r_1, \ldots, r_s }[/math], to łatwo zauważymy, że prawdziwe są dla nich następujące oszacowania

  •    dla najmniejszej liczby [math]\displaystyle{ r_1 \leqslant p_{s + 1} }[/math]
  •    dla wszystkich liczb [math]\displaystyle{ r_j \leqslant p_{2 s} }[/math] dla [math]\displaystyle{ j = 1, \ldots, s }[/math].

Korzystając z wypisanej na początku dowodu nierówności, dla [math]\displaystyle{ s \geqslant 4 }[/math] mamy

[math]\displaystyle{ n = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s \geqslant q_1 \cdot \ldots \cdot q_s \geqslant p_1 \cdot \ldots \cdot p_s \gt p_{s + 1} p_{2 s} \geqslant r_1 \cdot r_j }[/math]

gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math].

Wynika stąd, że jeśli [math]\displaystyle{ s \geqslant 4 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ q_1, \ldots, q_s }[/math]) oraz liczby [math]\displaystyle{ 1 }[/math] i [math]\displaystyle{ r_1 r_j }[/math], gdzie [math]\displaystyle{ j = 1, \ldots, s }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - s + s + 1\gt \pi (n) }[/math]

Co mieliśmy pokazać.


Uwzględniając rezultat pokazany w zadaniu H46, pozostaje sprawdzić przypadki gdy [math]\displaystyle{ n = 2^a }[/math], [math]\displaystyle{ n = 2^a p^b }[/math], [math]\displaystyle{ n = 2^a p^b q^c }[/math], gdzie [math]\displaystyle{ a, b, c \in \mathbb{Z}_+ }[/math].

1. Niech [math]\displaystyle{ n = 2^a }[/math]. Jeśli [math]\displaystyle{ n \geqslant 16 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczby [math]\displaystyle{ 2 }[/math]) oraz liczby [math]\displaystyle{ 1, 9, 15 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 1 + 3 \gt \pi (n) }[/math]

2. Niech [math]\displaystyle{ n = 2^a p^b }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5 \} }[/math] i jeśli tylko [math]\displaystyle{ n \gt 5^3 = 125 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math] i [math]\displaystyle{ p }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 2 + 3 \gt \pi (n) }[/math]

3. Niech [math]\displaystyle{ n = 2^a p^b q^c }[/math], zaś [math]\displaystyle{ r }[/math] będzie najmniejszą liczbą pierwszą nieparzystą różną od [math]\displaystyle{ p }[/math] oraz różną od [math]\displaystyle{ q }[/math]. Oczywiście [math]\displaystyle{ r \in \{ 3, 5, 7 \} }[/math] i jeśli [math]\displaystyle{ n \gt 7^4 = 2401 }[/math], to liczbami pierwszymi względem [math]\displaystyle{ n }[/math] są wszystkie liczby pierwsze nie większe od [math]\displaystyle{ n }[/math] (oprócz liczb pierwszych [math]\displaystyle{ 2 }[/math], [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q }[/math]) oraz liczby [math]\displaystyle{ 1, r^2, r^3, r^4 }[/math]. Zatem

[math]\displaystyle{ \varphi (n) \geqslant \pi (n) - 3 + 4 \gt \pi (n) }[/math]

Zbierając: pozostaje sprawdzić bezpośrednio przypadki, gdy [math]\displaystyle{ n }[/math] jest liczbą parzystą i [math]\displaystyle{ n \leqslant 2401 }[/math]. W GP/PARI wystarczy napisać polecenie

for(n = 1, 2500, if( eulerphi(n) <= primepi(n), print(n) ))

Nierówność [math]\displaystyle{ \varphi (n) \gt \pi (n) }[/math] nie jest prawdziwa dla [math]\displaystyle{ n \in \{ 2, 3, 4, 6, 8, 10, 12, 14, 18, 20, 24, 30, 42, 60, 90 \} }[/math]. Co kończy dowód.


Zadanie H48
Pokazać, że [math]\displaystyle{ \varphi (n) = 2^a }[/math] wtedy i tylko wtedy, gdy [math]\displaystyle{ n = 2^b q_1 \cdot \ldots \cdot q_s }[/math], gdzie [math]\displaystyle{ q_1, \ldots, q_s }[/math] są liczbami pierwszymi Fermata: [math]\displaystyle{ 3, 5, 17, 257, 65537 }[/math].

Rozwiązanie

W przypadku, gdy [math]\displaystyle{ 2 \mid n }[/math], łatwo zauważamy, że liczba [math]\displaystyle{ 2 }[/math] może występować w dowolnej potędze, bo [math]\displaystyle{ \varphi (2^b) = 2^{b - 1} }[/math].

W przypadku, gdy [math]\displaystyle{ p \mid n }[/math], gdzie [math]\displaystyle{ p }[/math] jest liczbą pierwszą nieparzystą, mamy [math]\displaystyle{ \varphi (p^k) = (p - 1) p^{k - 1} }[/math] i równie łatwo zauważmy, że musi być [math]\displaystyle{ k = 1 }[/math], a liczba [math]\displaystyle{ p - 1 }[/math] musi być potęgą liczby [math]\displaystyle{ 2 }[/math]. Zatem liczba pierwsza [math]\displaystyle{ p }[/math] musi być postaci [math]\displaystyle{ p = 2^t + 1 }[/math], co jest możliwe tylko wtedy, gdy [math]\displaystyle{ t }[/math] jest potęgą liczby [math]\displaystyle{ 2 }[/math] (zobacz C48), czyli [math]\displaystyle{ p }[/math] musi być liczbą pierwszą Fermata. Co należało pokazać.








Przypisy

  1. Wikipedia, Największy wspólny dzielnik, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Moc zbioru, (Wiki-pl), (Wiki-en)
  3. Wikipedia, Zasada włączeń i wyłączeń, (Wiki-pl), (Wiki-en)
  4. Wikipedia, Funkcja φ, (Wiki-pl), (Wiki-en)