Twierdzenie Czebyszewa o funkcji π(n)

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
07.11.2021



Oznaczenia

Będziemy stosowali następujące oznaczenia:

[math]\displaystyle{ \mathbb{Z} }[/math] — zbiór liczb całkowitych
[math]\displaystyle{ \mathbb{Z}_+ }[/math] — zbiór liczb całkowitych dodatnich
[math]\displaystyle{ \mathbb{N} }[/math] — zbiór liczb naturalnych [math]\displaystyle{ \mathbb{N} = \mathbb{Z}_{+} }[/math]
[math]\displaystyle{ \mathbb{N}_0 }[/math] — zbiór liczb całkowitych nieujemnych [math]\displaystyle{ \mathbb{N}_0 = \mathbb{Z}_{+} \cup \left \{ 0 \right \} }[/math]
[math]\displaystyle{ \mathbb{R} }[/math] — zbiór liczb rzeczywistych
[math]\displaystyle{ d \mid n }[/math] — czytaj: d dzieli n ([math]\displaystyle{ d }[/math] jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ d \nmid n }[/math] — czytaj: d nie dzieli n ([math]\displaystyle{ d }[/math] nie jest dzielnikiem liczby [math]\displaystyle{ n }[/math])
[math]\displaystyle{ p_n }[/math][math]\displaystyle{ n }[/math]-ta liczba pierwsza
[math]\displaystyle{ \pi (n) }[/math] — ilość liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ P(n) }[/math] — iloczyn liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]
[math]\displaystyle{ \lfloor x \rfloor }[/math] — największa liczba całkowita nie większa od [math]\displaystyle{ x }[/math]
[math]\displaystyle{ {\small\binom{n}{m}} }[/math] — współczynnik dwumianowy (symbol Newtona), [math]\displaystyle{ {\small\binom{n}{m}} = {\small\frac{n!}{m! \cdot (n - m) !}} }[/math]
[math]\displaystyle{ \log (x) }[/math] — logarytm naturalny liczby [math]\displaystyle{ x \gt 0 }[/math]
[math]\displaystyle{ W_p (n) }[/math] — wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ n }[/math]
[math]\displaystyle{ n }[/math] — oznacza zawsze liczbę naturalną
[math]\displaystyle{ p }[/math] — oznacza zawsze liczbę pierwszą


Przykładowe wartości niektórych wypisanych wyżej funkcji:

[math]\displaystyle{ p_2 = 3 }[/math],   [math]\displaystyle{ p_{10} = 29 }[/math],   [math]\displaystyle{ p_{100} = 541 }[/math]
[math]\displaystyle{ \pi (10) = 4 }[/math],   [math]\displaystyle{ \pi (100) = 25 }[/math],   [math]\displaystyle{ \pi (541) = 100 }[/math]
[math]\displaystyle{ P(5) = 30 }[/math],   [math]\displaystyle{ P(10) = 210 }[/math],   [math]\displaystyle{ P(50) = 614889782588491410 }[/math]
[math]\displaystyle{ \lfloor 1.2 \rfloor = 1 }[/math],   [math]\displaystyle{ \lfloor 2.8 \rfloor = 2 }[/math],   [math]\displaystyle{ \lfloor - 1.5 \rfloor = - 2 }[/math]
[math]\displaystyle{ {\small\binom{5}{2}} = 10 }[/math],   [math]\displaystyle{ {\small\binom{10}{5}} = 252 }[/math],   [math]\displaystyle{ {\small\binom{9}{3}} = 84 }[/math]
[math]\displaystyle{ W_2 (8) = 3 }[/math],   [math]\displaystyle{ W_3 (18) = 2 }[/math],   [math]\displaystyle{ W_7 (28) = 1 }[/math]


Funkcje te są zaimplementowane w PARI/GP[1]

[math]\displaystyle{ p_n }[/math] = prime(n)
[math]\displaystyle{ \pi (n) }[/math] = primepi(n)
[math]\displaystyle{ P(n) }[/math] = prodeuler(p=2, n, p)
[math]\displaystyle{ \lfloor x \rfloor }[/math] = floor(x)
[math]\displaystyle{ {\small\binom{n}{m}} }[/math] = binomial(n, m)
[math]\displaystyle{ W_p (n) }[/math] = valuation(n, p)



Twierdzenie Czebyszewa

W 1852 roku rosyjski matematyk Czebyszew[2][3] udowodnił, że dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ a \cdot {\small\frac{n}{\log n}} \: \underset{n \geqslant 11}{\lt } \: \pi (n) \: \underset{n \geqslant 96098}{\lt } \: b \cdot {\small\frac{n}{\log n}} }[/math]

gdzie

[math]\displaystyle{ a = \log (2^{1 / 2} \cdot 3^{1 / 3} \cdot 5^{1 / 5} \cdot 30^{- 1 / 30}) = 0.921292022 \qquad \quad b = \tfrac{6}{5} a = 1.105550428 }[/math]


Dziwnym zrządzeniem losu rezultat ten określany jest jako nierówności Czebyszewa (których nie należy mylić z nierównościami udowodnionymi przez Czebyszewa w teorii prawdopodobieństwa), a twierdzeniem Czebyszewa nazywany jest łatwy wniosek z tych nierówności. Stąd tytuł tego artykułu: „Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math]

Twierdzenie Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] nabrało nowego życia, gdy w 1936 Erdos[4] zelementaryzował jego dowód. Elementarny dowód daje mniej dokładne oszacowania, ale pozwala zapoznać się z tym pięknym twierdzeniem nawet uczniom szkoły podstawowej.


Czytelnik powinien mieć świadomość, że rezultat ten ma już jedynie znaczenie historyczne – dzisiaj dysponujemy znacznie lepszymi oszacowaniami[5][6][7][8] funkcji [math]\displaystyle{ \pi (n) }[/math] oraz [math]\displaystyle{ p_n }[/math]


[math]\displaystyle{ {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \underset{n \geqslant 599}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } {\small\frac{n}{\log n}} \left( 1 + {\small\frac{1.28}{\log n}} \right) }[/math]


[math]\displaystyle{ n (\log n + \log \log n - 1) \underset{n \geqslant 2}{\lt } p_n \underset{n \geqslant 6}{\lt } n (\log n + \log \log n) }[/math]


Przedstawimy tutaj elementarny dowód twierdzenia Czebyszewa o funkcji [math]\displaystyle{ \pi (n) }[/math] oraz analogiczne oszacowanie dla funkcji [math]\displaystyle{ p_n }[/math].


Twierdzenie A1
Prawdziwe są następujące oszacowania:


[math]\displaystyle{ 0.72 \cdot n \log n \underset{n \geqslant 1}{\lt } p_n \underset{n \geqslant 3}{\lt } 2n \log n }[/math]


[math]\displaystyle{ {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} \underset{n \geqslant 3}{\lt } \pi (n) \underset{n \geqslant 2}{\lt } {\small\frac{2 n}{\log n}} }[/math]


Dowód powyższego twierdzenia jest łatwy, ale wymaga udowodnienia kolejno wielu, przeważnie bardzo prostych, twierdzeń pomocniczych.



Oszacowanie [math]\displaystyle{ p_n }[/math] od dołu i [math]\displaystyle{ \pi (n) }[/math] od góry

Rozpoczniemy od oszacowania liczby [math]\displaystyle{ {\small\binom{2n}{n}} }[/math]. Badanie właściwości tego współczynnika dwumianowego jest kluczowe dla naszego dowodu.

Twierdzenie A2
Niech [math]\displaystyle{ n, k \in \mathbb{N} }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{n}{k}} }[/math] jest zawsze liczbą całkowitą dodatnią.

Dowód


Twierdzenie A3
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Współczynnik dwumianowy [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] jest liczbą parzystą.

Dowód


Twierdzenie A4
Prawdziwe są następujące oszacowania współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]

[math]\displaystyle{ 3.8^{n + 1} \underset{n \geqslant 80}{\lt } {\small\binom{2 n}{n}} \underset{n \geqslant 5}{\lt } 4^{n - 1} }[/math]
Dowód


Twierdzenie A5
Dla [math]\displaystyle{ n \geqslant 12 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt 3 n }[/math].

Dowód


Twierdzenie A6
Ciąg [math]\displaystyle{ a_n = \left( 1 + {\small\frac{1}{n}} \right)^n }[/math] jest rosnący i ograniczony. Dla wyrazów ciągu [math]\displaystyle{ (a_n) }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ 2 \leqslant a_n \lt 3 }[/math].

Dowód


Twierdzenie A7
Prawdziwe są następujące oszacowania:

[math]\displaystyle{ n^n \underset{n \geqslant 13}{\lt } p_1 p_2 \cdot \ldots \cdot p_n \underset{n \geqslant 3}{\lt } (n \log n)^n }[/math]
Dowód


Twierdzenie A8
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{P (2 n)}{P (n)}} \lt 4^{n - 1} }[/math], gdzie [math]\displaystyle{ P (n) }[/math] oznacza iloczyn wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math].

Dowód


Twierdzenie A9
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ P(n) \lt 4^n }[/math]

Dowód


Twierdzenie A10
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \gt {\small\frac{1}{2 \log 2}} \cdot n \log n }[/math].

Dowód


Twierdzenie A11
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (2 n) - \pi (n) \lt 2 \log 2 \cdot {\small\frac{n}{\log n}} }[/math].

Dowód


Twierdzenie A12
Dla [math]\displaystyle{ n \geqslant 2 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \lt 2 \cdot {\small\frac{n}{\log n}} }[/math].

Dowód



Wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Uzyskanie kolejnych oszacowań wymaga znalezienia wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} }[/math].


Definicja A13
Funkcję [math]\displaystyle{ \lfloor x \rfloor }[/math] (czytaj: całość z [math]\displaystyle{ x }[/math]) definiujemy jako największą liczbę całkowitą nie większą od [math]\displaystyle{ x }[/math]. Operacyjnie możemy ją zdefiniować następująco: niech liczby [math]\displaystyle{ x, \varepsilon \in \mathbb{R} }[/math], liczba [math]\displaystyle{ k \in \mathbb{Z} }[/math] oraz [math]\displaystyle{ 0 \leqslant \varepsilon \lt 1 }[/math], jeżeli [math]\displaystyle{ x = k + \varepsilon }[/math], to [math]\displaystyle{ \lfloor x \rfloor = \lfloor k + \varepsilon \rfloor = k }[/math].


Twierdzenie A14
Dla [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], [math]\displaystyle{ x \in \mathbb{R} }[/math] jest [math]\displaystyle{ \left \lfloor {\small\frac{x}{n}} \right\rfloor = \left \lfloor {\small\frac{\left \lfloor x \right \rfloor}{n}} \right \rfloor }[/math].

Dowód


Twierdzenie A15
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Liczba [math]\displaystyle{ \lfloor 2 x \rfloor - 2 \lfloor x \rfloor }[/math] przyjmuje wartości [math]\displaystyle{ 0 }[/math] lub [math]\displaystyle{ 1 }[/math].

Dowód


Bardzo istotnym rezultatem (z punktu widzenia przyszłych obliczeń) będzie znalezienie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n! }[/math]


Definicja A16
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą, zaś [math]\displaystyle{ a }[/math] dowolną liczbą naturalną. Jeżeli liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia liczby naturalnej [math]\displaystyle{ n \geqslant 2 }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ a }[/math], to powiemy, że funkcja [math]\displaystyle{ W_p (n) }[/math] przyjmuje wartość [math]\displaystyle{ a }[/math]. Fakt ten możemy zapisać następująco

[math]\displaystyle{ W_p (n) = a \qquad\qquad \iff \qquad\qquad p^{a} \mid n \qquad \text{i} \qquad p^{a + 1} \nmid n }[/math]


Przykład A17
[math]\displaystyle{ W_5 (100) = 2 }[/math],   [math]\displaystyle{ W_7 (42) = 1 }[/math],   ponieważ [math]\displaystyle{ 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11 }[/math], to [math]\displaystyle{ W_3 (11!) = 4 }[/math]


Wprost z definicji funkcji [math]\displaystyle{ W_p (n) }[/math] wynikają następujące właściwości:


Twierdzenie A18

Podstawowe własności funkcji [math]\displaystyle{ W_p (n) }[/math]

  1. [math]\displaystyle{ \;\; W_p (n \cdot m) = W_p (n) + W_p (m) }[/math]
  2. [math]\displaystyle{ \;\; W_p (n \cdot p^a) = a + W_p (n) }[/math]
  3. [math]\displaystyle{ \;\; W_{p}\left ( {\small\frac{n}{m}} \right ) = W_{p}\left ( n \right ) - W_{p}\left ( m \right ) \quad \text{o ile} \quad {\small\frac{n}{m}}\in \mathbb{Z}_{+} }[/math]
  4. [math]\displaystyle{ \;\; p \nmid n \quad\quad \iff \quad\quad W_p (n) = 0 }[/math]


Twierdzenie A19
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Ilość liczb podzielnych przez [math]\displaystyle{ p }[/math] i występujących w ciągu [math]\displaystyle{ 1, 2, 3, \ldots, n }[/math] wynosi [math]\displaystyle{ r = \left\lfloor {\small\frac{n}{p}} \right\rfloor }[/math].

Dowód


Przykład A20
Ilość liczb całkowitych dodatnich podzielnych przez [math]\displaystyle{ 5 }[/math] i nie większych od [math]\displaystyle{ 63 }[/math] wynosi [math]\displaystyle{ \left\lfloor {\small\frac{63}{5}} \right\rfloor = 12 }[/math]. Liczby te to [math]\displaystyle{ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 }[/math].


Twierdzenie A19 umożliwi nam określenie wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w [math]\displaystyle{ n! }[/math]

Twierdzenie A21
Liczba pierwsza [math]\displaystyle{ p }[/math] występuje w iloczynie [math]\displaystyle{ n! }[/math] z wykładnikiem [math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

Dowód


Uwaga A22
Łatwo zauważymy, że liczba sumowań jest skończona, gdy powyższy wzór zapiszemy w postaci

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^B \left\lfloor {\small\frac{n}{p^k}} \right\rfloor }[/math]

gdzie [math]\displaystyle{ B = \lfloor \log_2 (n) \rfloor }[/math]. Jest tak dlatego, że jeżeli [math]\displaystyle{ k }[/math] przekroczy [math]\displaystyle{ \lfloor \log_2 (n) \rfloor }[/math], to dla liczby pierwszej [math]\displaystyle{ p = 2 }[/math], jak również dla wszystkich innych liczb pierwszych, mamy

[math]\displaystyle{ {\small\frac{n}{p^k}} \lt 1 }[/math]

czyli dla [math]\displaystyle{ k \gt B }[/math] sumujemy same zera.


Przykład A23
Niech [math]\displaystyle{ n = 30 }[/math], [math]\displaystyle{ p = 3 }[/math]

[math]\displaystyle{ W_3 (30!) = W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot \ldots \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3\cdot 6 \cdot 9 \cdot 12 \cdot 15 \cdot 18 \cdot 21 \cdot 24 \cdot 27 \cdot 30) = }[/math]
[math]\displaystyle{ \quad = W_3 (3^{10} \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3 \cdot 6 \cdot 9) = }[/math]
[math]\displaystyle{ \quad = 10 + W_3 (3^3 \cdot 1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (1 \cdot 2 \cdot 3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + W_3 (3) = }[/math]
[math]\displaystyle{ \quad = 10 + 3 + 1 = }[/math]
[math]\displaystyle{ \quad = 14 }[/math]

Co jest zgodne ze wzorem:

[math]\displaystyle{ W_3 (30!) = \left\lfloor {\small\frac{30}{3}} \right\rfloor + \left\lfloor {\small\frac{30}{3^2}} \right\rfloor + \left\lfloor {\small\frac{30}{3^3}} \right\rfloor = 10 + 3 + 1 = 14 }[/math]



Podobnie jak w poprzednim podrozdziale będziemy badali współczynnik dwumianowy postaci [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]. Teraz już łatwo możemy policzyć wykładnik, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze tego współczynnika dwumianowego.


Twierdzenie A24
Liczba pierwsza [math]\displaystyle{ p }[/math] wchodzi do rozwinięcia na czynniki pierwsze liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] z wykładnikiem

[math]\displaystyle{ u = \sum^{\infty}_{k = 1} \left( \left \lfloor {\small\frac{2n}{p^{k}}} \right \rfloor - 2 \left \lfloor {\small\frac{n}{p^{k}}} \right \rfloor \right) }[/math]
Dowód


Twierdzenie A25
Liczby pierwsze spełniające warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math] występują w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem [math]\displaystyle{ u = 1 }[/math] lub [math]\displaystyle{ u = 0 }[/math].

Dowód


Twierdzenie A26
Niech [math]\displaystyle{ p }[/math] będzie liczbą pierwszą. Jeżeli [math]\displaystyle{ p^a \biggr\rvert {\small\binom{2 n}{n}} }[/math], to [math]\displaystyle{ p^a \leqslant 2 n }[/math].

Dowód



Oszacowanie [math]\displaystyle{ p_n }[/math] od góry i [math]\displaystyle{ \pi (n) }[/math] od dołu

Z twierdzenia A26 wynika natychmiast


Twierdzenie A27
Niech [math]\displaystyle{ {\small\binom{2 n}{n}} = q^{\alpha_1}_1 \cdot \ldots \cdot q^{\alpha_s}_s }[/math] będzie rozkładem współczynnika dwumianowego na czynniki pierwsze. Dla każdej liczby pierwszej [math]\displaystyle{ q_i }[/math], [math]\displaystyle{ i = 1, \ldots, s }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ q^{\alpha_i}_i \leqslant 2 n }[/math].

Uwaga: w powyższym twierdzeniu [math]\displaystyle{ q_i }[/math] nie oznacza [math]\displaystyle{ i }[/math]-tej liczby pierwszej, a pewną liczbą pierwszą o indeksie [math]\displaystyle{ i }[/math] ze zboru liczb pierwszych [math]\displaystyle{ q_1, \ldots q_s }[/math], które wchodzą do rozkładu współczynnika dwumianowego na czynniki pierwsze z wykładnikiem większym od zera.


Twierdzenie A28
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest następujące oszacowanie współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math]

[math]\displaystyle{ {\small\binom{2 n}{n}} \leqslant (2 n)^{\pi (2 n)} \lt (2 n + 1)^{\pi (2 n + 1)} }[/math]
Dowód


Twierdzenie A29
Dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]
Dowód


Twierdzenie A30
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 2 n \log n }[/math]

Dowód






Dowód twierdzenia A30 kończy dowód całego twierdzenia A1. Możemy teraz dokończyć dowód twierdzenia A7 i pokazać, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie:

[math]\displaystyle{ p_1 \cdot \ldots \cdot p_n \lt (n \log n)^n }[/math]
Dowód



Uwagi do dowodu

Wydłużając znacząco czas obliczeń, moglibyśmy nieco poprawić uzyskane wyżej oszacowanie i udowodnić


Twierdzenie A31
Niech [math]\displaystyle{ n \geqslant 3 }[/math]. Dla [math]\displaystyle{ n }[/math]-tej liczby pierwszej [math]\displaystyle{ p_n }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ p_n \lt 1.875 \cdot n \log n }[/math]

Dowód


Twierdzenie A32
Niech [math]\displaystyle{ n \geqslant 2 }[/math]. Dla funkcji [math]\displaystyle{ \pi (n) }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \pi (n) \lt 1.733 \cdot {\small\frac{n}{\log n}} }[/math]
Dowód


Uwaga A33
Dowód twierdzenia A31 wymagał wykorzystania polecenia PARI/GP, w którym wielokrotnie była wywoływana funkcja prime(n). Analogiczna sytuacja miała miejsce w przypadku twierdzenia A32 – tam musieliśmy wielokrotnie wywoływać funkcję primepi(n). Znacznie lepiej w takim przypadku jest napisać krótki program, który zamiast wielokrotnie wywoływać te funkcje, będzie je obliczał w sposób ciągły w całym testowanym przedziale wartości. Taka zmiana znacząco skraca czas obliczeń. Podane niżej programy Test1(n) i Test2(n) wywołane z parametrami n = 520000 i odpowiednio n = 8*10^6 odpowiadają poleceniom

for(s = 1, 520000, if( prime(s) >= s^(5/4), print(s) ))
for(n = 2, 8 * 10^6, if( primepi(n) >= 1.733 * n / log(n), print(n) ))

ale wykonywane są znacznie szybciej.

Test1(n) = 
\\ test oszacowania: prime(k) >= k^(5/4) dla 1 <= k <= n
\\ bez bezpośredniego odwoływania się do funkcji prime(k)
{
local(p, k);
k = 1;
p = 2;
while( k <= n,
       if( p >= k^(5/4), print(k) );
       k = k + 1;
       p = nextprime(p + 1);  \\ liczba p ma wartość prime(k)
     );
}
Test2(n) = 
\\ test oszacowania: primepi(k) < 1.733*k/log(k) dla 2 <= k <= n 
\\ bez bezpośredniego odwoływania się do funkcji primepi(k)
{
local(s, k);
s = 1;
k = 2;
while( k <= n,
       if( s >= 1.733 * k / log(k), print(k) );
       k = k + 1;
       s = s + isprime(k);  \\ dla kolejnych k liczba s ma wartość primepi(k)
     );
}


Uwaga A34
Czytelnik nie powinien mieć złudzeń, że postępując podobnie, uzyskamy istotne polepszenie oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] lub [math]\displaystyle{ p_n }[/math]. Już osiągnięcie tą drogą oszacowania [math]\displaystyle{ p_n \lt 1.6 \cdot n \log n }[/math] przekracza możliwości obliczeniowe współczesnych komputerów. Wystarczy zauważyć, że nierówność

[math]\displaystyle{ \log x \lt {\small\frac{2}{3}} \cdot x^{1 / 16} }[/math]

jest prawdziwa dla [math]\displaystyle{ x \gt 7.671 \cdot 10^{32} }[/math].



Zastosowania

Ciekawy rezultat wynika z twierdzenia A7, ale wcześniej musimy udowodnić twierdzenie o średniej arytmetycznej i geometrycznej.

Twierdzenie A35
Dla dowolnych liczb dodatnich [math]\displaystyle{ a_1, a_2, \ldots, a_n }[/math] średnia arytmetyczna jest nie mniejsza od średniej geometrycznej

[math]\displaystyle{ {\small\frac{a_1 + a_2 + \ldots + a_n}{n}} \geqslant \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n} }[/math]
Dowód


Twierdzenie A36
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwa jest nierówność [math]\displaystyle{ p_1 + p_2 + \ldots + p_n \gt n^2 }[/math].

Dowód


Twierdzenie A1 pozwala nam udowodnić różne oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math] i [math]\displaystyle{ p_n }[/math], które byłyby trudne do uzyskania inną drogą. Wykorzystujemy do tego znany fakt, że dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] istnieje takie [math]\displaystyle{ n_0 }[/math], że dla każdego [math]\displaystyle{ n \gt n_0 }[/math] prawdziwa jest nierówność [math]\displaystyle{ \log x \lt x^{\varepsilon} }[/math]. Inaczej mówiąc, funkcja [math]\displaystyle{ \log x }[/math] rośnie wolniej niż najwolniej rosnąca funkcja potęgowa. Nim przejdziemy do dowodu takich przykładowych oszacowań, udowodnimy pomocnicze twierdzenie, które wykorzystamy przy szacowaniu.


Twierdzenie A37
Prawdziwe są następujące nierówności:

1.    [math]\displaystyle{ e^x \gt x \qquad \qquad \qquad \quad \:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
2.    [math]\displaystyle{ e^x \geqslant x + 1 \qquad \qquad \quad \;\:\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]   (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 0 }[/math])
3.    [math]\displaystyle{ e^x \gt 2 x \qquad \qquad \qquad \;\;\,\, }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R} }[/math]
4.    [math]\displaystyle{ \log x \lt n \cdot x^{1 / n} \qquad \quad \;\;\: }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
5.    [math]\displaystyle{ \log x \lt \tfrac{1}{2} n \cdot x^{1 / n} \qquad \quad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]
6.    [math]\displaystyle{ \log x \leqslant n (x^{1 / n} - 1) \qquad }[/math] dla każdego [math]\displaystyle{ x \in \mathbb{R}_+ }[/math] i dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]   (równość zachodzi wtedy i tylko wtedy, gdy [math]\displaystyle{ x = 1 }[/math])
Dowód


Zadanie A38
Niech [math]\displaystyle{ x \in \mathbb{R}_+ }[/math]. Pokazać, że dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] istnieje takie [math]\displaystyle{ x_0 }[/math], że dla każdego [math]\displaystyle{ x \gt x_0 }[/math] jest [math]\displaystyle{ \log x \lt x^{1 / n} }[/math].

Rozwiązanie


Twierdzenie A39
Dla funkcji [math]\displaystyle{ p_n }[/math] i [math]\displaystyle{ \pi (n) }[/math] prawdziwe są następujące oszacowania:

[math]\displaystyle{ 10 n \underset{n \geqslant 6473}{\lt } p_n \underset{n \geqslant 2}{\lt } n^2 }[/math]
[math]\displaystyle{ \sqrt{n} \underset{n \geqslant 5}{\lt } \pi (n) \underset{n \geqslant 64721}{\lt } {\small\frac{n}{10}} }[/math]
Dowód


Twierdzenie A40
Dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n^2})^{n / 3} }[/math]
Dowód


Zadanie A41
Korzystając z twierdzenia A40 pokazać, że

  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{n + 1})^2 \qquad \qquad \text{dla } \; n \geqslant 4 }[/math]
  •    [math]\displaystyle{ p_1 p_2 \cdot \ldots \cdot p_n \gt (p_{2 n})^3 \qquad \qquad \;\; \text{dla } \; n \geqslant 7 }[/math]
Rozwiązanie


Twierdzenie A42
Każda liczba pierwsza [math]\displaystyle{ p }[/math] taka, że [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, n \right] }[/math] występuje w rozwinięciu [math]\displaystyle{ n! }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód


Rezultat uzyskany w twierdzeniu A25 zainspirował nas do postawienia pytania: jakie warunki musi spełniać liczba pierwsza [math]\displaystyle{ p }[/math], aby występowała w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden lub równym zero? Twierdzenia A43 i A45 udzielają na to pytanie precyzyjnej odpowiedzi. Przykłady A44 i A46 to tylko twierdzenia A43 i A45 dla wybranych wartości liczby [math]\displaystyle{ k }[/math]. Jeśli Czytelnik nie miał problemów ze zrozumieniem dowodów twierdzeń A43 i A45, to może je pominąć.


Twierdzenie A43
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą naturalną. Jeżeli [math]\displaystyle{ n \geqslant 2 (k + 1) \left( k + \tfrac{1}{2} \right) }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + 1}}, {\small\frac{n}{k + \tfrac{1}{2}}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód


Przykład A44
Jeżeli [math]\displaystyle{ n \geqslant 6 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math], to [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze z wykładnikiem równym jeden.

Dowód


Twierdzenie A45
Niech [math]\displaystyle{ k }[/math] będzie dowolną ustaloną liczbą całkowitą dodatnią. Jeżeli liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{n}{k + \tfrac{1}{2}}}, {\small\frac{n}{k}} \right] }[/math], to dla [math]\displaystyle{ n \geqslant 2 k (k + \tfrac{1}{2}) }[/math] liczba [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Dowód


Przykład A46
Jeżeli [math]\displaystyle{ n \geqslant 8 }[/math] i liczba pierwsza [math]\displaystyle{ p \in \left( {\small\frac{2 n}{5}}, {\small\frac{n}{2}} \right] }[/math], to [math]\displaystyle{ p }[/math] nie występuje w rozwinięciu liczby [math]\displaystyle{ {\small\binom{2 n}{n}} }[/math] na czynniki pierwsze.

Dowód


Uwaga A47
Z przykładu A44 nie wynika, że w przedziale [math]\displaystyle{ \left( {\small\frac{n}{2}}, {\small\frac{2 n}{3}} \right] }[/math] znajduje się choćby jedna liczba pierwsza [math]\displaystyle{ p }[/math]. Analogiczna uwaga jest prawdziwa w przypadku przykładu A46 oraz twierdzeń A43A45. Istnienie liczby pierwszej w określonym przedziale będzie tematem kolejnego artykułu.


Przykład A48
Pokazujemy i omawiamy wynik zastosowania twierdzeń A43 i A45 do współczynnika dwumianowego [math]\displaystyle{ {\small\binom{2 \cdot 3284}{3284}} }[/math]. Można udowodnić, że granicę stosowalności obu twierdzeń bardzo dokładnie opisuje warunek [math]\displaystyle{ p \gt \sqrt{2 n} }[/math], co w naszym przypadku daje [math]\displaystyle{ p \gt \sqrt{2 \cdot 3284} \approx 81.04 }[/math].

Pokaż przykład








Przypisy

  1. Wikipedia, PARI/GP, (Wiki-en)
  2. Wikipedia, Pafnuty Czebyszew (1821 - 1893), (Wiki-pl), (Wiki-ru)
  3. P. L. Chebyshev, Mémoire sur les nombres premiers, J. de Math. Pures Appl. (1) 17 (1852), 366-390, (LINK)
  4. P. Erdos, Beweis eines Satzes von Tschebyschef, Acta Litt. Sci. Szeged 5 (1932), 194-198, (LINK1), (LINK2)
  5. P. Dusart, The [math]\displaystyle{ k^{th} }[/math] prime is greater than [math]\displaystyle{ k (\ln k + \ln \ln k - 1) }[/math] for [math]\displaystyle{ k \geqslant 2 }[/math], Math. Of Computation, Vol. 68, Number 225 (January 1999), pp. 411-415.
  6. P. Dusart, Sharper bounds for [math]\displaystyle{ \psi }[/math], [math]\displaystyle{ \theta }[/math], [math]\displaystyle{ \pi }[/math], [math]\displaystyle{ p_k }[/math], Rapport de recherche no. 1998-06, Université de Limoges
  7. P. Dusart, Estimates of some functions over primes without R.H., (2010), (LINK)
  8. P. Dusart, Explicit estimates of some functions over primes, Ramanujan Journal. 45 (1) (January 2018) pp. 225-234.
  9. Wikipedia, Wzór Stirlinga, (Wiki-pl), (Wiki-en)
  10. Wikipedia, Twierdzenie o zbieżności ciągu monotonicznego, (LINK)
  11. Skocz do: 11,0 11,1 Wikipedia, Characterizations of the exponential function, (Wiki-en)
  12. Wikipedia, Cauchy product, (Wiki-en)
  13. Wikipedia, Szereg (matematyka) - Działania, (Wiki-pl)