Wzór Eulera-Maclaurina: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Linia 23: Linia 23:
  
  
<span id="E2" style="font-size: 110%; font-weight: bold;">Twierdzenie E2*</span><br/>
+
<span id="E2" style="font-size: 110%; font-weight: bold;">Zadanie E2</span><br/>
 +
Korzystając z&nbsp;definicji [[#E1|E1]] znaleźć jawną postać wielomianów <math>B_1 (x)</math>, <math>B_2 (x)</math> i <math>B_3 (x)</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z punktu 2. definicji [[#E1|E1]] mamy
 +
 
 +
::<math>B'_1 (x) = 1 \cdot B_0 (x) = 1</math>
 +
 
 +
Zatem
 +
 
 +
::<math>B_1 (x) = \int dx = x + C</math>
 +
 
 +
Stałą <math>C</math> wyznaczamy z&nbsp;punktu 3. definicji [[#E1|E1]]
 +
 
 +
::<math>0 = \int^1_0 B_1 (x) dx = \int^1_0 (x + C) dx = \left( {\small\frac{x^2}{2}} + C x \right) \Biggr\rvert_{0}^{1} = {\small\frac{1}{2}} + C</math>
 +
 
 +
Otrzymujemy, że <math>C = - {\small\frac{1}{2}}</math>, czyli <math>\boxed{ B_1 (x) = x - {\small\frac{1}{2}} }</math>
 +
 
 +
 
 +
Postępując analogicznie dla <math>n = 2</math>, dostajemy
 +
 
 +
::<math>B'_2 (x) = 2 \cdot B_1 (x) = 2 x - 1</math>
 +
 
 +
::<math>B_2 (x) = \int (2 x - 1) dx = x^2 - x + C</math>
 +
 
 +
::<math>0 = \int^1_0 B_2 (x) dx = \int^1_0 (x^2 - x + C) dx = \left( {\small\frac{x^3}{3}} - {\small\frac{x^2}{2}} + C x \right) \Biggr\rvert_{0}^{1} = {\small\frac{1}{3}} - {\small\frac{1}{2}} + C</math>
 +
 
 +
Otrzymujemy, że <math>C = {\small\frac{1}{6}}</math>, czyli <math>\boxed{ B_2 (x) = x^2 - x + {\small\frac{1}{6}} }</math>
 +
 
 +
 
 +
Powtarzając dla <math>n = 3</math>, mamy
 +
 
 +
::<math>B'_3 (x) = 3 \cdot B_2 (x) = 3 x^2 - 3 x + {\small\frac{1}{2}}</math>
 +
 
 +
::<math>B_3 (x) = \int \left( 3 x^2 - 3 x + {\small\frac{1}{2}} \right) dx = x^3 - {\small\frac{3 x^2}{2}} + {\small\frac{x}{2}} + C</math>
 +
 
 +
::<math>0 = \int^1_0 B_3 (x) dx = \int^1_0 \left( x^3 - {\small\frac{3 x^2}{2}} + {\small\frac{x}{2}} + C \right) dx = \left( {\small\frac{x^4}{4}} - {\small\frac{x^3}{2}} + {\small\frac{x^2}{4}} + C x \right) \Biggr\rvert_{0}^{1} = {\small\frac{1}{4}} - {\small\frac{1}{2}} + {\small\frac{1}{4}} + C</math>
 +
 
 +
Otrzymujemy, że <math>C = 0</math>, czyli <math>\boxed{ B_3 (x) = x^3 - {\small\frac{3 x^2}{2}} + {\small\frac{x}{2}} }</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="E3" style="font-size: 110%; font-weight: bold;">Twierdzenie E3*</span><br/>
 
Wielomiany Bernoulliego <math>B_n(x)</math> określone są następującym wzorem ogólnym
 
Wielomiany Bernoulliego <math>B_n(x)</math> określone są następującym wzorem ogólnym
  
Linia 30: Linia 74:
  
  
<span id="E3" style="font-size: 110%; font-weight: bold;">Przykład E3</span><br/>
+
<span id="E4" style="font-size: 110%; font-weight: bold;">Przykład E4</span><br/>
 
W tabeli wypisaliśmy początkowe wielomiany Bernoulliego.
 
W tabeli wypisaliśmy początkowe wielomiany Bernoulliego.
  
Linia 66: Linia 110:
  
  
<span id="E4" style="font-size: 110%; font-weight: bold;">Przykład E4</span><br/>
+
<span id="E5" style="font-size: 110%; font-weight: bold;">Przykład E5</span><br/>
 
Przedstawiamy wykresy wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x \in [0, 1]</math>
 
Przedstawiamy wykresy wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x \in [0, 1]</math>
  
Linia 85: Linia 129:
  
  
<span id="E5" style="font-size: 110%; font-weight: bold;">Definicja E5</span><br/>
+
<span id="E6" style="font-size: 110%; font-weight: bold;">Definicja E6</span><br/>
 
Liczbami Bernoulliego <math>B_n</math> będziemy nazywali wartości wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x = 0</math>, czyli <math>B_n = B_n (0)</math>.
 
Liczbami Bernoulliego <math>B_n</math> będziemy nazywali wartości wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x = 0</math>, czyli <math>B_n = B_n (0)</math>.
  
  
  
<span id="E6" style="font-size: 110%; font-weight: bold;">Uwaga E6</span><br/>
+
<span id="E7" style="font-size: 110%; font-weight: bold;">Uwaga E7</span><br/>
Ze wzoru podanego w&nbsp;twierdzeniu [[#E2|E2]] wynika natychmiast wzór ogólny dla liczb Bernoulliego.
+
Ze wzoru podanego w&nbsp;twierdzeniu [[#E3|E3]] wynika natychmiast wzór ogólny dla liczb Bernoulliego.
  
 
::<math>B_n = B_n (0) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} \sum_{j = 0}^{k} (- 1)^j {\small\binom{k}{j}} j^n</math>
 
::<math>B_n = B_n (0) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} \sum_{j = 0}^{k} (- 1)^j {\small\binom{k}{j}} j^n</math>
Linia 97: Linia 141:
  
  
<span id="E7" style="font-size: 110%; font-weight: bold;">Twierdzenie E7</span><br/>
+
<span id="E8" style="font-size: 110%; font-weight: bold;">Twierdzenie E8</span><br/>
 
Niech <math>B_n (x)</math> i <math>B_n</math> oznaczają odpowiednio wielomiany i&nbsp;liczby Bernoulliego. Prawdziwe są następujące wzory
 
Niech <math>B_n (x)</math> i <math>B_n</math> oznaczają odpowiednio wielomiany i&nbsp;liczby Bernoulliego. Prawdziwe są następujące wzory
  
Linia 300: Linia 344:
  
  
<span id="E8" style="font-size: 110%; font-weight: bold;">Twierdzenie E8</span><br/>
+
<span id="E9" style="font-size: 110%; font-weight: bold;">Twierdzenie E9</span><br/>
 
Niech <math>f(x)</math> i <math>f' (x)</math> będą ciągłymi funkcjami rzeczywistymi określonymi w&nbsp;przedziale <math>[a, b]</math> i&nbsp;różniczkowalnymi w <math>(a, b)</math>. Jeżeli dla pewnego punktu <math>r \in (a, b)</math> spełnione są warunki <math>f(a) = f (b) = f (r) = 0</math>, to istnieje taki punkt <math>t \in (a, b)</math>, że <math>f'' (t) = 0</math>.
 
Niech <math>f(x)</math> i <math>f' (x)</math> będą ciągłymi funkcjami rzeczywistymi określonymi w&nbsp;przedziale <math>[a, b]</math> i&nbsp;różniczkowalnymi w <math>(a, b)</math>. Jeżeli dla pewnego punktu <math>r \in (a, b)</math> spełnione są warunki <math>f(a) = f (b) = f (r) = 0</math>, to istnieje taki punkt <math>t \in (a, b)</math>, że <math>f'' (t) = 0</math>.
  
Linia 318: Linia 362:
  
  
<span id="E9" style="font-size: 110%; font-weight: bold;">Twierdzenie E9</span><br/>
+
<span id="E10" style="font-size: 110%; font-weight: bold;">Twierdzenie E10</span><br/>
 
Niech <math>k \in \mathbb{Z}_+</math>. Wielomian <math>B_{2 k + 1} (x)</math> ma dokładnie trzy pierwiastki w&nbsp;przedziale <math>[0, 1]</math>. Są to liczby <math>x = 0</math>, <math>x = {\small\frac{1}{2}} \,</math> i <math>\, x = 1</math>.
 
Niech <math>k \in \mathbb{Z}_+</math>. Wielomian <math>B_{2 k + 1} (x)</math> ma dokładnie trzy pierwiastki w&nbsp;przedziale <math>[0, 1]</math>. Są to liczby <math>x = 0</math>, <math>x = {\small\frac{1}{2}} \,</math> i <math>\, x = 1</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#E7|E7]] p.3 wiemy, że dla <math>k \geqslant 1</math> jest
+
Z twierdzenia [[#E8|E8]] p.3 wiemy, że dla <math>k \geqslant 1</math> jest
  
 
::<math>B_{2 k + 1} (0) = B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = B_{2 k + 1} (1) = 0</math>
 
::<math>B_{2 k + 1} (0) = B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = B_{2 k + 1} (1) = 0</math>
Linia 332: Linia 376:
 
Przypuśćmy, dla uzyskania sprzeczności, że <math>B_{2 k + 1} (x)</math> jest wielomianem Bernoulliego o&nbsp;najmniejszym stopniu nieparzystym <math>2 k + 1</math> mającym pierwiastek <math>r \in [0, 1]</math> różny od <math>0, {\small\frac{1}{2}}, 1</math>.
 
Przypuśćmy, dla uzyskania sprzeczności, że <math>B_{2 k + 1} (x)</math> jest wielomianem Bernoulliego o&nbsp;najmniejszym stopniu nieparzystym <math>2 k + 1</math> mającym pierwiastek <math>r \in [0, 1]</math> różny od <math>0, {\small\frac{1}{2}}, 1</math>.
  
Z twierdzenia [[#E7|E7]] p.2 wiemy, że dla <math>n \geqslant 0</math> jest
+
Z twierdzenia [[#E8|E8]] p.2 wiemy, że dla <math>n \geqslant 0</math> jest
  
 
::<math>B_n (1 - x) = (- 1)^n B_n (x)</math>
 
::<math>B_n (1 - x) = (- 1)^n B_n (x)</math>
Linia 338: Linia 382:
 
Łatwo widzimy, że jeżeli <math>r \in [0, 1]</math> jest pierwiastkiem <math>B_{2 k + 1} (x)</math>, to <math>1 - r \in [0, 1]</math> również jest pierwiastkiem <math>B_{2 k + 1} (x)</math>. Zatem nie zmniejszając ogólności, możemy założyć, że <math>r \in \left( 0, {\small\frac{1}{2}} \right)</math>.
 
Łatwo widzimy, że jeżeli <math>r \in [0, 1]</math> jest pierwiastkiem <math>B_{2 k + 1} (x)</math>, to <math>1 - r \in [0, 1]</math> również jest pierwiastkiem <math>B_{2 k + 1} (x)</math>. Zatem nie zmniejszając ogólności, możemy założyć, że <math>r \in \left( 0, {\small\frac{1}{2}} \right)</math>.
  
Ponieważ wielomiany Bernoulliego są funkcjami różniczkowalnymi i <math>B_{2 k + 1} (0) = B_{2 k + 1} (r) = B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = 0</math>, to spełnione są założenia twierdzenia [[#E8|E8]]. Zatem istnieje taka liczba <math>t \in \left( 0, {\small\frac{1}{2}} \right)</math>, że <math>B''_{2 k + 1} (t) = 0</math>. Ale
+
Ponieważ wielomiany Bernoulliego są funkcjami różniczkowalnymi i <math>B_{2 k + 1} (0) = B_{2 k + 1} (r) = B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = 0</math>, to spełnione są założenia twierdzenia [[#E9|E9]]. Zatem istnieje taka liczba <math>t \in \left( 0, {\small\frac{1}{2}} \right)</math>, że <math>B''_{2 k + 1} (t) = 0</math>. Ale
  
 
::<math>B''_{2 k + 1} (x) = (2 k + 1) B'_{2 k} (x) = 2 k (2 k + 1) B_{2 k - 1} (x)</math>
 
::<math>B''_{2 k + 1} (x) = (2 k + 1) B'_{2 k} (x) = 2 k (2 k + 1) B_{2 k - 1} (x)</math>
Linia 348: Linia 392:
  
  
<span id="E10" style="font-size: 110%; font-weight: bold;">Twierdzenie E10</span><br/>
+
<span id="E11" style="font-size: 110%; font-weight: bold;">Twierdzenie E11</span><br/>
 
Niech <math>k \in \mathbb{N}_0</math>. Liczby Bernoulliego <math>B_{2 k}</math> są różne od zera.
 
Niech <math>k \in \mathbb{N}_0</math>. Liczby Bernoulliego <math>B_{2 k}</math> są różne od zera.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Łatwo sprawdzamy, że <math>B_0 = 1</math>, <math>B_2 = {\small\frac{1}{6}}</math>, <math>B_4 = - {\small\frac{1}{30}}</math>, <math>B_6 = {\small\frac{1}{42}}</math>. Przypuśćmy, dla uzyskania sprzeczności, że dla pewnego <math>k > 3</math> jest <math>B_{2 k} = B_{2 k} (0) = 0</math>. Zatem z&nbsp;twierdzenia [[#E7|E7]] p.6 mamy
+
Łatwo sprawdzamy, że <math>B_0 = 1</math>, <math>B_2 = {\small\frac{1}{6}}</math>, <math>B_4 = - {\small\frac{1}{30}}</math>, <math>B_6 = {\small\frac{1}{42}}</math>. Przypuśćmy, dla uzyskania sprzeczności, że dla pewnego <math>k > 3</math> jest <math>B_{2 k} = B_{2 k} (0) = 0</math>. Zatem z&nbsp;twierdzenia [[#E8|E8]] p.6 mamy
  
 
::<math>B_{2 k} \left( {\small\frac{1}{2}} \right) = (2^{1 - 2 k} - 1) B_{2 k} = 0</math>
 
::<math>B_{2 k} \left( {\small\frac{1}{2}} \right) = (2^{1 - 2 k} - 1) B_{2 k} = 0</math>
  
Ponieważ <math>B_{2 k} (0) = B_{2 k} \left( {\small\frac{1}{2}} \right) = 0</math>, to z&nbsp;twierdzenia Rolle'a<ref name="Rolle1"/> wynika, że istnieje taka liczba <math>r \in \left( 0, {\small\frac{1}{2}} \right)</math>, że <math>B'_{2 k} (r) = 0</math>, czyli <math>2 k B_{2 k - 1} (r) = 0</math>. Wbrew temu, że wielomiany Bernoulliego o&nbsp;indeksie nieparzystym mają dokładnie trzy pierwiastki w&nbsp;przedziale <math>[0, 1]</math> i są to liczby <math>x = 0</math>, <math>x = {\small\frac{1}{2}}</math>, <math>x = 1</math> (zobacz [[#E9|E9]]). Otrzymana sprzeczność kończy dowód.<br/>
+
Ponieważ <math>B_{2 k} (0) = B_{2 k} \left( {\small\frac{1}{2}} \right) = 0</math>, to z&nbsp;twierdzenia Rolle'a<ref name="Rolle1"/> wynika, że istnieje taka liczba <math>r \in \left( 0, {\small\frac{1}{2}} \right)</math>, że <math>B'_{2 k} (r) = 0</math>, czyli <math>2 k B_{2 k - 1} (r) = 0</math>. Wbrew temu, że wielomiany Bernoulliego o&nbsp;indeksie nieparzystym mają dokładnie trzy pierwiastki w&nbsp;przedziale <math>[0, 1]</math> i są to liczby <math>x = 0</math>, <math>x = {\small\frac{1}{2}}</math>, <math>x = 1</math> (zobacz [[#E10|E10]]). Otrzymana sprzeczność kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 362: Linia 406:
  
  
<span id="E11" style="font-size: 110%; font-weight: bold;">Twierdzenie E11</span><br/>
+
<span id="E12" style="font-size: 110%; font-weight: bold;">Twierdzenie E12</span><br/>
 
Niech <math>k \in \mathbb{N}_0</math>. Dla wielomianów Bernoulliego <math>B_{2 k} (x) \,</math> i <math>\, x \in [0, 1]</math> prawdziwe jest następujące oszacowanie
 
Niech <math>k \in \mathbb{N}_0</math>. Dla wielomianów Bernoulliego <math>B_{2 k} (x) \,</math> i <math>\, x \in [0, 1]</math> prawdziwe jest następujące oszacowanie
  
Linia 372: Linia 416:
 
:*&nbsp;&nbsp;&nbsp;<math>B'_{2 k} (x) = 2 k B_{2 k - 1} (x)</math>
 
:*&nbsp;&nbsp;&nbsp;<math>B'_{2 k} (x) = 2 k B_{2 k - 1} (x)</math>
  
:*&nbsp;&nbsp;&nbsp;wielomian <math>B_{2 k - 1} (x)</math> ma dokładnie trzy pierwiastki w&nbsp;przedziale <math>[0, 1]</math>: <math>x = 0</math>, <math>x = {\small\frac{1}{2}} \,</math> oraz <math>\, x = 1</math> (zobacz [[#E9|E9]])
+
:*&nbsp;&nbsp;&nbsp;wielomian <math>B_{2 k - 1} (x)</math> ma dokładnie trzy pierwiastki w&nbsp;przedziale <math>[0, 1]</math>: <math>x = 0</math>, <math>x = {\small\frac{1}{2}} \,</math> oraz <math>\, x = 1</math> (zobacz [[#E10|E10]])
  
 
:*&nbsp;&nbsp;&nbsp;<math>B''_{2 k} (x) = 2 k (2 k - 1) B_{2 k - 2} (x)</math>
 
:*&nbsp;&nbsp;&nbsp;<math>B''_{2 k} (x) = 2 k (2 k - 1) B_{2 k - 2} (x)</math>
  
:*&nbsp;&nbsp;&nbsp;<math>B_{2 k - 2} (0) \neq 0</math>, <math>B_{2 k - 2} (1) \neq 0 \,</math> i <math>\, B_{2 k - 2} \left( {\small\frac{1}{2}} \right) \neq 0</math> (zobacz [[#E10|E10]], [[#E7|E7]] p.1 i [[#E7|E7]] p.6)
+
:*&nbsp;&nbsp;&nbsp;<math>B_{2 k - 2} (0) \neq 0</math>, <math>B_{2 k - 2} (1) \neq 0 \,</math> i <math>\, B_{2 k - 2} \left( {\small\frac{1}{2}} \right) \neq 0</math> (zobacz [[#E11|E11]], [[#E8|E8]] p.1 i [[#E8|E8]] p.6)
  
 
Zatem wielomian <math>B_{2 k} (x)</math> ma ekstrema w&nbsp;punktach <math>x = 0, {\small\frac{1}{2}}, 1</math>. Łatwo widzimy, że <math>B_{2 k} (0) = B_{2 k} (1) = B_{2 k} \,</math> i <math>\, B_{2 k} \left( {\small\frac{1}{2}} \right) = (2^{1 - 2 k} - 1) B_{2 k}</math>. Wynika stąd, że wartości funkcji <math>| B_{2 k} (x) |</math> nie przekraczają liczby <math>| B_{2 k} |</math>. Prawdziwość twierdzenia dla wielomianu <math>B_0 (x) = 1</math> jest oczywista, a dla wielomianu <math>B_2 (x) = x^2 - x + {\small\frac{1}{6}}</math> łatwo sprawdzamy ją bezpośrednio, znajdując minimum funkcji <math>B_2 (x)</math> i&nbsp;wartości <math>B_2 (x)</math> w&nbsp;punktach <math>x = 0 \,</math> i <math>\, x = 1</math> (zobacz [https://www.wolframalpha.com/input?i=B_2%28x%29 WolframAlphaB2]). Co kończy dowód.<br/>
 
Zatem wielomian <math>B_{2 k} (x)</math> ma ekstrema w&nbsp;punktach <math>x = 0, {\small\frac{1}{2}}, 1</math>. Łatwo widzimy, że <math>B_{2 k} (0) = B_{2 k} (1) = B_{2 k} \,</math> i <math>\, B_{2 k} \left( {\small\frac{1}{2}} \right) = (2^{1 - 2 k} - 1) B_{2 k}</math>. Wynika stąd, że wartości funkcji <math>| B_{2 k} (x) |</math> nie przekraczają liczby <math>| B_{2 k} |</math>. Prawdziwość twierdzenia dla wielomianu <math>B_0 (x) = 1</math> jest oczywista, a dla wielomianu <math>B_2 (x) = x^2 - x + {\small\frac{1}{6}}</math> łatwo sprawdzamy ją bezpośrednio, znajdując minimum funkcji <math>B_2 (x)</math> i&nbsp;wartości <math>B_2 (x)</math> w&nbsp;punktach <math>x = 0 \,</math> i <math>\, x = 1</math> (zobacz [https://www.wolframalpha.com/input?i=B_2%28x%29 WolframAlphaB2]). Co kończy dowód.<br/>
Linia 384: Linia 428:
  
  
<span id="E12" style="font-size: 110%; font-weight: bold;">Przykład E12</span><br/>
+
<span id="E13" style="font-size: 110%; font-weight: bold;">Przykład E13</span><br/>
 
W tabeli przedstawiamy liczby Bernoulliego <math>B_n</math> oraz minimalne <math>m_n</math> i&nbsp;maksymalne <math>M_n</math> wartości wielomianów <math>B_n(x)</math> dla <math>x \in [0, 1]</math>
 
W tabeli przedstawiamy liczby Bernoulliego <math>B_n</math> oraz minimalne <math>m_n</math> i&nbsp;maksymalne <math>M_n</math> wartości wielomianów <math>B_n(x)</math> dla <math>x \in [0, 1]</math>
  
Linia 410: Linia 454:
  
  
<span id="E13" style="font-size: 110%; font-weight: bold;">Przykład E13</span><br/>
+
<span id="E14" style="font-size: 110%; font-weight: bold;">Przykład E14</span><br/>
 
Minima <math>m_n</math> i&nbsp;maksima <math>M_n</math> wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x \in [0, 1]</math> są równe<ref name="Lehmer1"/>
 
Minima <math>m_n</math> i&nbsp;maksima <math>M_n</math> wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x \in [0, 1]</math> są równe<ref name="Lehmer1"/>
  
Linia 482: Linia 526:
  
  
<span id="E14" style="font-size: 110%; font-weight: bold;">Definicja E14</span><br/>
+
<span id="E15" style="font-size: 110%; font-weight: bold;">Definicja E15</span><br/>
 
Funkcje okresowe Bernoulliego <math>P_n(x)</math> definiujemy następująco
 
Funkcje okresowe Bernoulliego <math>P_n(x)</math> definiujemy następująco
  
Linia 489: Linia 533:
  
  
<span id="E15" style="font-size: 110%; font-weight: bold;">Uwaga E15</span><br/>
+
<span id="E16" style="font-size: 110%; font-weight: bold;">Uwaga E16</span><br/>
 
Inaczej mówiąc funkcja okresowa Bernoulliego <math>P_n(x)</math> na odcinku <math>[0, 1]</math>, przyjmuje te same wartości, co wielomian Bernoulliego <math>B_n(x)</math>. Wartości te powtarzają się dla kolejnych odcinków <math>[k, k + 1]</math>, gdzie <math>k \in \mathbb{Z}</math>.
 
Inaczej mówiąc funkcja okresowa Bernoulliego <math>P_n(x)</math> na odcinku <math>[0, 1]</math>, przyjmuje te same wartości, co wielomian Bernoulliego <math>B_n(x)</math>. Wartości te powtarzają się dla kolejnych odcinków <math>[k, k + 1]</math>, gdzie <math>k \in \mathbb{Z}</math>.
  
  
  
<span id="E16" style="font-size: 110%; font-weight: bold;">Uwaga E16</span><br/>
+
<span id="E17" style="font-size: 110%; font-weight: bold;">Uwaga E17</span><br/>
 
Wprost z&nbsp;definicji funkcji okresowych Bernoulliego wynika, że dla <math>k \in \mathbb{Z}</math> jest
 
Wprost z&nbsp;definicji funkcji okresowych Bernoulliego wynika, że dla <math>k \in \mathbb{Z}</math> jest
  
Linia 501: Linia 545:
  
  
<span id="E17" style="font-size: 110%; font-weight: bold;">Twierdzenie E17</span><br/>
+
<span id="E18" style="font-size: 110%; font-weight: bold;">Twierdzenie E18</span><br/>
 
Własności funkcji okresowych Bernoulliego
 
Własności funkcji okresowych Bernoulliego
 
::{| border="0"  
 
::{| border="0"  
Linia 545: Linia 589:
  
  
Z punktu 1. twierdzenia [[#E7|E7]] wiemy, że dla <math>n \geqslant 2</math> jest <math>B_n (0) = B_n (1)</math>. Oprócz tego dla <math>n = 0</math> i <math>n = 1</math> mamy
+
Z punktu 1. twierdzenia [[#E8|E8]] wiemy, że dla <math>n \geqslant 2</math> jest <math>B_n (0) = B_n (1)</math>. Oprócz tego dla <math>n = 0</math> i <math>n = 1</math> mamy
  
 
::<math>B_0 (0) = B_0 (1) = 1</math>
 
::<math>B_0 (0) = B_0 (1) = 1</math>
Linia 624: Linia 668:
  
  
<span id="E18" style="font-size: 110%; font-weight: bold;">Przykład E18</span><br/>
+
<span id="E19" style="font-size: 110%; font-weight: bold;">Przykład E19</span><br/>
Przedstawiamy przykładowe wykresy funkcji okresowych Bernoulliego <math>P_n (x)</math>. Stanowią one bardzo dobrą ilustrację do twierdzenia [[#E17|E17]].
+
Przedstawiamy przykładowe wykresy funkcji okresowych Bernoulliego <math>P_n (x)</math>. Stanowią one bardzo dobrą ilustrację do twierdzenia [[#E18|E18]].
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Wykresy|Hide=Ukryj wykresy}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Wykresy|Hide=Ukryj wykresy}}
Linia 651: Linia 695:
  
  
<span id="E19" style="font-size: 110%; font-weight: bold;">Twierdzenie E19*</span><br/>
+
<span id="E20" style="font-size: 110%; font-weight: bold;">Twierdzenie E20*</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla liczb Bernoulliego <math>B_{2 n} = (- 1)^{n + 1} | B_{2 n} |</math> prawdziwe są następujące oszacowania <ref name="Abramowitz1"/><ref name="Abramowitz2"/><ref name="DAniello1"/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla liczb Bernoulliego <math>B_{2 n} = (- 1)^{n + 1} | B_{2 n} |</math> prawdziwe są następujące oszacowania <ref name="Abramowitz1"/><ref name="Abramowitz2"/><ref name="DAniello1"/>
  
Linia 666: Linia 710:
  
  
<span id="E20" style="font-size: 110%; font-weight: bold;">Twierdzenie E20*</span><br/>
+
<span id="E21" style="font-size: 110%; font-weight: bold;">Twierdzenie E21*</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla ilorazu kolejnych liczb Bernoulliego <math>B_{2 n}</math> prawdziwe są następujące oszacowania<ref name="FengQi1"/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla ilorazu kolejnych liczb Bernoulliego <math>B_{2 n}</math> prawdziwe są następujące oszacowania<ref name="FengQi1"/>
  
Linia 683: Linia 727:
 
== Wzór sumacyjny Eulera-Maclaurina ==
 
== Wzór sumacyjny Eulera-Maclaurina ==
  
<span id="E21" style="font-size: 110%; font-weight: bold;">Uwaga E21</span><br/>
+
<span id="E22" style="font-size: 110%; font-weight: bold;">Uwaga E22</span><br/>
 
Często w&nbsp;twierdzeniu musimy założyć, że rozważana funkcja <math>f(x)</math> jest określona w&nbsp;pewnym zbiorze liczb rzeczywistych i&nbsp;jest funkcją ciągłą oraz wszystkie jej pochodne od <math>f' (x)</math> do <math>f^{(n)} (x)</math> istnieją i&nbsp;są ciągłe w&nbsp;tym zbiorze. Przekazanie tego prostego założenia wymaga użycia wielu słów, a&nbsp;samo twierdzenie staje się mało czytelne. Ze względów czysto praktycznych wprowadzamy pojęcie klasy funkcji.
 
Często w&nbsp;twierdzeniu musimy założyć, że rozważana funkcja <math>f(x)</math> jest określona w&nbsp;pewnym zbiorze liczb rzeczywistych i&nbsp;jest funkcją ciągłą oraz wszystkie jej pochodne od <math>f' (x)</math> do <math>f^{(n)} (x)</math> istnieją i&nbsp;są ciągłe w&nbsp;tym zbiorze. Przekazanie tego prostego założenia wymaga użycia wielu słów, a&nbsp;samo twierdzenie staje się mało czytelne. Ze względów czysto praktycznych wprowadzamy pojęcie klasy funkcji.
  
  
  
<span id="E22" style="font-size: 110%; font-weight: bold;">Definicja E22</span><br/>
+
<span id="E23" style="font-size: 110%; font-weight: bold;">Definicja E23</span><br/>
 
Funkcję <math>f(x)</math> określoną i&nbsp;ciągłą w&nbsp;zbiorze <math>A \subset \mathbb{R}</math> i&nbsp;mającą kolejno <math>n</math> ciągłych pochodnych w&nbsp;tym zbiorze będziemy nazywali funkcją klasy <math>C^n</math>. Jeżeli funkcja <math>f(x)</math> jest ciągła w <math>A</math>, to powiemy, że jest klasy <math>C^0</math>. Jeżeli funkcja <math>f(x)</math> jest klasy <math>C^n</math> dla dowolnego <math>n \in \mathbb{Z}_+</math>, to powiemy, że funkcja <math>f(x)</math> jest klasy <math>C^{\infty}</math>. W
 
Funkcję <math>f(x)</math> określoną i&nbsp;ciągłą w&nbsp;zbiorze <math>A \subset \mathbb{R}</math> i&nbsp;mającą kolejno <math>n</math> ciągłych pochodnych w&nbsp;tym zbiorze będziemy nazywali funkcją klasy <math>C^n</math>. Jeżeli funkcja <math>f(x)</math> jest ciągła w <math>A</math>, to powiemy, że jest klasy <math>C^0</math>. Jeżeli funkcja <math>f(x)</math> jest klasy <math>C^n</math> dla dowolnego <math>n \in \mathbb{Z}_+</math>, to powiemy, że funkcja <math>f(x)</math> jest klasy <math>C^{\infty}</math>. W
 
przypadku, gdy chcemy jednocześnie zaznaczyć dziedzinę funkcji, to stosujemy zapis <math>C^0 (A)</math>, <math>C^n (A)</math> i <math>C^{\infty} (A)</math>.
 
przypadku, gdy chcemy jednocześnie zaznaczyć dziedzinę funkcji, to stosujemy zapis <math>C^0 (A)</math>, <math>C^n (A)</math> i <math>C^{\infty} (A)</math>.
Linia 694: Linia 738:
  
  
<span id="E23" style="font-size: 110%; font-weight: bold;">Przykład E23</span><br/>
+
<span id="E24" style="font-size: 110%; font-weight: bold;">Przykład E24</span><br/>
 
Tylko dla potrzeb tego przykładu funkcję <math>f(x)</math> określoną następująco
 
Tylko dla potrzeb tego przykładu funkcję <math>f(x)</math> określoną następująco
  
Linia 735: Linia 779:
  
  
<span id="E24" style="font-size: 110%; font-weight: bold;">Twierdzenie E24</span><br/>
+
<span id="E25" style="font-size: 110%; font-weight: bold;">Twierdzenie E25</span><br/>
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [k, k + 1] )</math>, gdzie <math>k \in \mathbb{Z}</math>. Jeżeli zastąpimy na jednostkowym odcinku pole prostokąta całką, to błąd, jaki popełnimy, jest równy
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [k, k + 1] )</math>, gdzie <math>k \in \mathbb{Z}</math>. Jeżeli zastąpimy na jednostkowym odcinku pole prostokąta całką, to błąd, jaki popełnimy, jest równy
  
Linia 767: Linia 811:
  
  
<span id="E25" style="font-size: 110%; font-weight: bold;">Zadanie E25</span><br/>
+
<span id="E26" style="font-size: 110%; font-weight: bold;">Zadanie E26</span><br/>
 
Pokazać, że dla <math>x > 0</math> całka <math>\int^x_0 (t - \lfloor t \rfloor)^n d t</math> jest równa
 
Pokazać, że dla <math>x > 0</math> całka <math>\int^x_0 (t - \lfloor t \rfloor)^n d t</math> jest równa
  
Linia 793: Linia 837:
  
  
<span id="E26" style="font-size: 110%; font-weight: bold;">Twierdzenie E26</span><br/>
+
<span id="E27" style="font-size: 110%; font-weight: bold;">Twierdzenie E27</span><br/>
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [a, b] )</math>, gdzie <math>a, b \in \mathbb{Z}</math>. Możemy zastąpić sumowanie całkowaniem, stosując wzór
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [a, b] )</math>, gdzie <math>a, b \in \mathbb{Z}</math>. Możemy zastąpić sumowanie całkowaniem, stosując wzór
  
Linia 810: Linia 854:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Sumując uzyskany w&nbsp;twierdzeniu [[#E24|E24]] związek od <math>k = a</math> do <math>k = b - 1</math>, dostajemy
+
Sumując uzyskany w&nbsp;twierdzeniu [[#E25|E25]] związek od <math>k = a</math> do <math>k = b - 1</math>, dostajemy
  
 
::<math>\sum_{k = a}^{b - 1} f(k) - \int^b_a f(t) d t = \int_a^b (t - \lfloor t \rfloor - 1) f'(t) d t</math>
 
::<math>\sum_{k = a}^{b - 1} f(k) - \int^b_a f(t) d t = \int_a^b (t - \lfloor t \rfloor - 1) f'(t) d t</math>
Linia 824: Linia 868:
  
  
<span id="E27" style="font-size: 110%; font-weight: bold;">Uwaga E27</span><br/>
+
<span id="E28" style="font-size: 110%; font-weight: bold;">Uwaga E28</span><br/>
 
Czytelnik zapewne już domyśla się, w&nbsp;jakim kierunku zmierzamy. Całkując przez części i&nbsp;korzystając z&nbsp;własności funkcji okresowych Bernoulliego, przekształcimy całkę <math>\int_a^b P_1 (t) f' (t) d t</math> do postaci <math>\int_a^b P_2 (t) f'' (t) d t</math>, a&nbsp;następnie do postaci <math>\int_a^b P_3 (t) f^{(3)} (t) d t</math> itd.
 
Czytelnik zapewne już domyśla się, w&nbsp;jakim kierunku zmierzamy. Całkując przez części i&nbsp;korzystając z&nbsp;własności funkcji okresowych Bernoulliego, przekształcimy całkę <math>\int_a^b P_1 (t) f' (t) d t</math> do postaci <math>\int_a^b P_2 (t) f'' (t) d t</math>, a&nbsp;następnie do postaci <math>\int_a^b P_3 (t) f^{(3)} (t) d t</math> itd.
  
  
  
<span id="E28" style="font-size: 110%; font-weight: bold;">Twierdzenie E28</span><br/>
+
<span id="E29" style="font-size: 110%; font-weight: bold;">Twierdzenie E29</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^1 ( [a, b] )</math>, to
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^1 ( [a, b] )</math>, to
  
Linia 860: Linia 904:
  
  
<span id="E29" style="font-size: 110%; font-weight: bold;">Twierdzenie E29</span><br/>
+
<span id="E30" style="font-size: 110%; font-weight: bold;">Twierdzenie E30</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^k ( [a, b] )</math>, to
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^k ( [a, b] )</math>, to
  
Linia 870: Linia 914:
 
::<math>\int_a^b P_n (t) g (t) d t = {\normalsize\frac{B_{n + 1}}{n + 1}} [g (b) - g (a)] - {\normalsize\frac{1}{n + 1}} \int_a^b P_{n + 1} (t) g^{(1)} (t) d t</math>
 
::<math>\int_a^b P_n (t) g (t) d t = {\normalsize\frac{B_{n + 1}}{n + 1}} [g (b) - g (a)] - {\normalsize\frac{1}{n + 1}} \int_a^b P_{n + 1} (t) g^{(1)} (t) d t</math>
  
Czyli wzór udowodniony w&nbsp;twierdzeniu [[#E28|E28]]. Zatem twierdzenie jest prawdziwe dla <math>k = 1</math>. Zauważmy, że z&nbsp;tego samego twierdzenia natychmiast wynika, że
+
Czyli wzór udowodniony w&nbsp;twierdzeniu [[#E29|E29]]. Zatem twierdzenie jest prawdziwe dla <math>k = 1</math>. Zauważmy, że z&nbsp;tego samego twierdzenia natychmiast wynika, że
  
 
::<math>\int_a^b P_{n + k} (t) g^{(k)} (t) d t = {\normalsize\frac{B_{n + k + 1}}{n + k + 1}} [g^{(k)} (b) - g^{(k)} (a)] - {\normalsize\frac{1}{n + k + 1}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t</math>
 
::<math>\int_a^b P_{n + k} (t) g^{(k)} (t) d t = {\normalsize\frac{B_{n + k + 1}}{n + k + 1}} [g^{(k)} (b) - g^{(k)} (a)] - {\normalsize\frac{1}{n + k + 1}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t</math>
Linia 892: Linia 936:
  
  
<span id="E30" style="font-size: 110%; font-weight: bold;">Twierdzenie E30 (wzór sumacyjny Eulera-Maclaurina, <math>\sim</math>1735)</span><br/>
+
<span id="E31" style="font-size: 110%; font-weight: bold;">Twierdzenie E31 (wzór sumacyjny Eulera-Maclaurina, <math>\sim</math>1735)</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, to
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, to
  
Linia 903: Linia 947:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Lewą stronę wzoru udowodnionego w&nbsp;twierdzeniu [[#E29|E29]]
+
Lewą stronę wzoru udowodnionego w&nbsp;twierdzeniu [[#E30|E30]]
  
 
::<math>\int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t</math>
 
::<math>\int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t</math>
  
chcemy przekształcić do postaci, która występuje po prawej stronie wzoru z&nbsp;twierdzenia [[#E26|E26]]. Jeżeli położymy <math>n = 1</math> oraz <math>g(t) = f' (t) = f^{(1)} (t)</math>, to dostaniemy
+
chcemy przekształcić do postaci, która występuje po prawej stronie wzoru z&nbsp;twierdzenia [[#E27|E27]]. Jeżeli położymy <math>n = 1</math> oraz <math>g(t) = f' (t) = f^{(1)} (t)</math>, to dostaniemy
  
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} \cdot B_{j + 1}}{(j + 1) !} [f^{(j)} (b) - f^{(j)} (a)] + {\normalsize\frac{(- 1)^k}{(k + 1) !}} \int_a^b P_{k + 1} (t) f^{(k + 1)} (t) d t</math>
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} \cdot B_{j + 1}}{(j + 1) !} [f^{(j)} (b) - f^{(j)} (a)] + {\normalsize\frac{(- 1)^k}{(k + 1) !}} \int_a^b P_{k + 1} (t) f^{(k + 1)} (t) d t</math>
Linia 919: Linia 963:
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{k = 2}^r {\normalsize\frac{(- 1)^k \cdot B_k}{k!}} [f^{(k - 1)} (b) - f^{(k - 1)} (a)] - {\normalsize\frac{(- 1)^r}{r!}} \int_a^b P_r (t) f^{(r)} (t) d t</math>
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{k = 2}^r {\normalsize\frac{(- 1)^k \cdot B_k}{k!}} [f^{(k - 1)} (b) - f^{(k - 1)} (a)] - {\normalsize\frac{(- 1)^r}{r!}} \int_a^b P_r (t) f^{(r)} (t) d t</math>
  
Podstawiając powyższy wzór do twierdzenia [[#E26|E26]], otrzymujemy, że jeżeli funkcja <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, gdzie <math>r \geqslant 1</math>, to
+
Podstawiając powyższy wzór do twierdzenia [[#E27|E27]], otrzymujemy, że jeżeli funkcja <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, gdzie <math>r \geqslant 1</math>, to
  
 
::<math>\sum_{k = a}^{b} f (k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{(- 1)^k B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
 
::<math>\sum_{k = a}^{b} f (k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{(- 1)^k B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
  
Zauważmy, że <math>(- 1)^k B_k = B_k</math>, bo dla nieparzystych liczb <math>k \geqslant 2</math> mamy <math>(- 1)^k B_k = 0 = B_k</math>, a&nbsp;dla parzystych liczb <math>k \geqslant 2</math> jest <math>(- 1)^k B_k = B_k</math>. Czynnik <math>(- 1)^k</math> został dodany tylko dla potrzeb dowodu indukcyjnego twierdzenia [[#E29|E29]]. Zatem otrzymujemy
+
Zauważmy, że <math>(- 1)^k B_k = B_k</math>, bo dla nieparzystych liczb <math>k \geqslant 2</math> mamy <math>(- 1)^k B_k = 0 = B_k</math>, a&nbsp;dla parzystych liczb <math>k \geqslant 2</math> jest <math>(- 1)^k B_k = B_k</math>. Czynnik <math>(- 1)^k</math> został dodany tylko dla potrzeb dowodu indukcyjnego twierdzenia [[#E30|E30]]. Zatem otrzymujemy
  
 
::<math>\sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
 
::<math>\sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
Linia 933: Linia 977:
  
  
<span id="E31" style="font-size: 110%; font-weight: bold;">Uwaga E31</span><br/>
+
<span id="E32" style="font-size: 110%; font-weight: bold;">Uwaga E32</span><br/>
 
Uwzględniając, że dla nieparzystych liczb <math>k \geqslant 2</math> jest <math>B_k = 0</math>, możemy dla parzystego <math>r = 2 s</math> napisać
 
Uwzględniając, że dla nieparzystych liczb <math>k \geqslant 2</math> jest <math>B_k = 0</math>, możemy dla parzystego <math>r = 2 s</math> napisać
  
Linia 958: Linia 1002:
 
::<math>- {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s} (t) f^{(2 s)} (t) d t = {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1} (t) f^{(2 s + 1)} (t) d t</math>
 
::<math>- {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s} (t) f^{(2 s)} (t) d t = {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1} (t) f^{(2 s + 1)} (t) d t</math>
  
(zobacz twierdzenie [[#E28|E28]]).
+
(zobacz twierdzenie [[#E29|E29]]).
  
  
  
<span id="E32" style="font-size: 110%; font-weight: bold;">Uwaga E32</span><br/>
+
<span id="E33" style="font-size: 110%; font-weight: bold;">Uwaga E33</span><br/>
 
Poniżej wypisaliśmy gotowe wzory Eulera-Maclaurina dla <math>r = 1, \ldots, 9</math>
 
Poniżej wypisaliśmy gotowe wzory Eulera-Maclaurina dla <math>r = 1, \ldots, 9</math>
  
Linia 1002: Linia 1046:
 
== Całki niewłaściwe – zbieżność i&nbsp;kryteria zbieżności ==
 
== Całki niewłaściwe – zbieżność i&nbsp;kryteria zbieżności ==
  
<span id="E33" style="font-size: 110%; font-weight: bold;">Definicja E33</span><br/>
+
<span id="E34" style="font-size: 110%; font-weight: bold;">Definicja E34</span><br/>
 
Niech funkcja <math>f(x)</math> będzie określona w&nbsp;przedziale <math>[a, + \infty)</math> i&nbsp;całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> tego przedziału. Granicę
 
Niech funkcja <math>f(x)</math> będzie określona w&nbsp;przedziale <math>[a, + \infty)</math> i&nbsp;całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> tego przedziału. Granicę
  
Linia 1015: Linia 1059:
  
  
<span id="E34" style="font-size: 110%; font-weight: bold;">Twierdzenie E34 (kryterium porównawcze)</span><br/>
+
<span id="E35" style="font-size: 110%; font-weight: bold;">Twierdzenie E35 (kryterium porównawcze)</span><br/>
 
Jeżeli dla <math>x \geqslant a</math> funkcje <math>f(x)</math> i <math>g(x)</math> spełniają nierówności
 
Jeżeli dla <math>x \geqslant a</math> funkcje <math>f(x)</math> i <math>g(x)</math> spełniają nierówności
  
Linia 1082: Linia 1126:
  
  
<span id="E35" style="font-size: 110%; font-weight: bold;">Twierdzenie E35</span><br/>
+
<span id="E36" style="font-size: 110%; font-weight: bold;">Twierdzenie E36</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> i&nbsp;całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, to zbieżna jest też całka <math>\int_{a}^{\infty} f(x) d x</math>. O&nbsp;całce <math>\int_{a}^{\infty} f (x) d x</math> powiemy wtedy, że jest bezwzględnie zbieżna.
 
Jeżeli funkcja <math>f(x)</math> jest całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> i&nbsp;całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, to zbieżna jest też całka <math>\int_{a}^{\infty} f(x) d x</math>. O&nbsp;całce <math>\int_{a}^{\infty} f (x) d x</math> powiemy wtedy, że jest bezwzględnie zbieżna.
  
Linia 1104: Linia 1148:
  
  
<span id="E36" style="font-size: 110%; font-weight: bold;">Twierdzenie E36</span><br/>
+
<span id="E37" style="font-size: 110%; font-weight: bold;">Twierdzenie E37</span><br/>
 
Jeżeli całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, a&nbsp;funkcja <math>g(x)</math> jest ograniczona, to zbieżna jest też całka <math>\int_{a}^{\infty} | f(x) g(x) | d x</math>.
 
Jeżeli całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, a&nbsp;funkcja <math>g(x)</math> jest ograniczona, to zbieżna jest też całka <math>\int_{a}^{\infty} | f(x) g(x) | d x</math>.
  
Linia 1118: Linia 1162:
  
  
<span id="E37" style="font-size: 110%; font-weight: bold;">Twierdzenie E37</span><br/>
+
<span id="E38" style="font-size: 110%; font-weight: bold;">Twierdzenie E38</span><br/>
 
Niech <math>F(x)</math> oznacza funkcję pierwotną funkcji <math>f(x)</math>. Całka <math>\int_{a}^{\infty} f(x) d x</math> jest zbieżna wtedy i&nbsp;tylko wtedy, gdy granica <math>\lim_{x \to \infty} F(x)</math> jest skończona.
 
Niech <math>F(x)</math> oznacza funkcję pierwotną funkcji <math>f(x)</math>. Całka <math>\int_{a}^{\infty} f(x) d x</math> jest zbieżna wtedy i&nbsp;tylko wtedy, gdy granica <math>\lim_{x \to \infty} F(x)</math> jest skończona.
  
Linia 1146: Linia 1190:
  
  
<span id="E38" style="font-size: 110%; font-weight: bold;">Twierdzenie E38</span><br/>
+
<span id="E39" style="font-size: 110%; font-weight: bold;">Twierdzenie E39</span><br/>
 
Jeżeli
 
Jeżeli
  
Linia 1177: Linia 1221:
 
::<math>\int_{a}^{\infty} f (t) d t = s \int_{a}^{\infty} [s \cdot f (t)] d t = s \int_{a}^{\infty} | f (t) | d t</math>
 
::<math>\int_{a}^{\infty} f (t) d t = s \int_{a}^{\infty} [s \cdot f (t)] d t = s \int_{a}^{\infty} | f (t) | d t</math>
  
gdzie <math>s</math> jest znakiem funkcji <math>f(x)</math> w&nbsp;przedziale <math>[a, + \infty)</math>. Czyli całka <math>\int_{a}^{\infty} f (t) d t</math> jest bezwzględnie zbieżna. Ponieważ z&nbsp;założenia funkcja <math>g(x)</math> jest ograniczona, to z&nbsp;twierdzenia [[#E36|E36]] wynika, że całka <math>\int_{a}^{\infty} | f (t) g (t) | d t</math> jest zbieżna, zatem jest też zbieżna całka <math>\int_{a}^{\infty} f (t) g (t) d t</math> (twierdzenie [[#E35|E35]]).
+
gdzie <math>s</math> jest znakiem funkcji <math>f(x)</math> w&nbsp;przedziale <math>[a, + \infty)</math>. Czyli całka <math>\int_{a}^{\infty} f (t) d t</math> jest bezwzględnie zbieżna. Ponieważ z&nbsp;założenia funkcja <math>g(x)</math> jest ograniczona, to z&nbsp;twierdzenia [[#E37|E37]] wynika, że całka <math>\int_{a}^{\infty} | f (t) g (t) | d t</math> jest zbieżna, zatem jest też zbieżna całka <math>\int_{a}^{\infty} f (t) g (t) d t</math> (twierdzenie [[#E36|E36]]).
  
 
'''Przypadek 1.'''
 
'''Przypadek 1.'''
Linia 1217: Linia 1261:
  
  
<span id="E39" style="font-size: 110%; font-weight: bold;">Twierdzenie E39</span><br/>
+
<span id="E40" style="font-size: 110%; font-weight: bold;">Twierdzenie E40</span><br/>
 
Niech <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
 
Niech <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
  
Linia 1237: Linia 1281:
 
::<math>P_r(t) = B_r(t - \lfloor t \rfloor)</math>
 
::<math>P_r(t) = B_r(t - \lfloor t \rfloor)</math>
  
a wielomiany Bernoulliego <math>B_r(t)</math> są ograniczone w&nbsp;przedziale <math>[0, 1]</math><ref name="Weierstrass1"/> (zobacz przykład [[#E13|E13]]), wynika stąd, że <math>P_r(t)</math> są funkcjami ograniczonymi. Zatem z&nbsp;twierdzenia [[#E38|E38]] otrzymujemy natychmiast, że całka <math>\int_1^{\infty} {\small\frac{P_r(t)}{t^{\alpha}}} d t</math> jest zbieżna.<br/>
+
a wielomiany Bernoulliego <math>B_r(t)</math> są ograniczone w&nbsp;przedziale <math>[0, 1]</math><ref name="Weierstrass1"/> (zobacz przykład [[#E14|E14]]), wynika stąd, że <math>P_r(t)</math> są funkcjami ograniczonymi. Zatem z&nbsp;twierdzenia [[#E39|E39]] otrzymujemy natychmiast, że całka <math>\int_1^{\infty} {\small\frac{P_r(t)}{t^{\alpha}}} d t</math> jest zbieżna.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1243: Linia 1287:
  
  
<span id="E40" style="font-size: 110%; font-weight: bold;">Twierdzenie E40</span><br/>
+
<span id="E41" style="font-size: 110%; font-weight: bold;">Twierdzenie E41</span><br/>
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
  
Linia 1251: Linia 1295:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W przypadku funkcji <math>g(t) = {\small\frac{1}{t^{\varepsilon}}}</math> z&nbsp;twierdzenia [[#E28|E28]] otrzymujemy
+
W przypadku funkcji <math>g(t) = {\small\frac{1}{t^{\varepsilon}}}</math> z&nbsp;twierdzenia [[#E29|E29]] otrzymujemy
  
 
::<math>\int_1^b {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{b^{\varepsilon}}} - 1 \right] + {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
 
::<math>\int_1^b {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{b^{\varepsilon}}} - 1 \right] + {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
Linia 1259: Linia 1303:
 
::<math>\int_1^{\infty} {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = - {\small\frac{B_{n + 1}}{n + 1}} + {\small\frac{\varepsilon}{n + 1}} \int_1^{\infty} {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
 
::<math>\int_1^{\infty} {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = - {\small\frac{B_{n + 1}}{n + 1}} + {\small\frac{\varepsilon}{n + 1}} \int_1^{\infty} {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
  
Ponieważ na mocy twierdzenia [[#E39|E39]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_1^{\infty} {\small\frac{P_n (t)}{t^{\varepsilon}}} d t</math>. Co należało pokazać.<br/>
+
Ponieważ na mocy twierdzenia [[#E40|E40]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_1^{\infty} {\small\frac{P_n (t)}{t^{\varepsilon}}} d t</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1265: Linia 1309:
  
  
<span id="E41" style="font-size: 110%; font-weight: bold;">Zadanie E41</span><br/>
+
<span id="E42" style="font-size: 110%; font-weight: bold;">Zadanie E42</span><br/>
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
  
Linia 1273: Linia 1317:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W przypadku funkcji <math>g(t) = t^{\varepsilon}</math> z&nbsp;twierdzenia [[#E28|E28]] otrzymujemy
+
W przypadku funkcji <math>g(t) = t^{\varepsilon}</math> z&nbsp;twierdzenia [[#E29|E29]] otrzymujemy
  
 
::<math>\int_1^b P_n(t) t^{\varepsilon} d t = {\small\frac{B_{n + 1}}{n + 1}} [b^{\varepsilon} - 1] - {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 - \varepsilon}}} d t</math>
 
::<math>\int_1^b P_n(t) t^{\varepsilon} d t = {\small\frac{B_{n + 1}}{n + 1}} [b^{\varepsilon} - 1] - {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 - \varepsilon}}} d t</math>
Linia 1283: Linia 1327:
  
  
<span id="E42" style="font-size: 110%; font-weight: bold;">Zadanie E42</span><br/>
+
<span id="E43" style="font-size: 110%; font-weight: bold;">Zadanie E43</span><br/>
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
  
Linia 1291: Linia 1335:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W przypadku funkcji <math>g(t) = {\small\frac{1}{\log t}}</math> z&nbsp;twierdzenia [[#E28|E28]] otrzymujemy
+
W przypadku funkcji <math>g(t) = {\small\frac{1}{\log t}}</math> z&nbsp;twierdzenia [[#E29|E29]] otrzymujemy
  
 
::<math>\int_2^b {\small\frac{P_n(t)}{\log t}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{\log b}} - {\small\frac{1}{\log 2}} \right] + {\small\frac{1}{n + 1}} \int_2^b {\small\frac{P_{n + 1}(t)}{t \cdot \log^2 t}} d t</math>
 
::<math>\int_2^b {\small\frac{P_n(t)}{\log t}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{\log b}} - {\small\frac{1}{\log 2}} \right] + {\small\frac{1}{n + 1}} \int_2^b {\small\frac{P_{n + 1}(t)}{t \cdot \log^2 t}} d t</math>
Linia 1299: Linia 1343:
 
::<math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t = - {\small\frac{B_{n + 1}}{(n + 1) \log 2}} + {\small\frac{1}{n + 1}} \int_2^{\infty} {\small\frac{P_{n + 1} (t)}{t \cdot \log^2 t}} d t</math>
 
::<math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t = - {\small\frac{B_{n + 1}}{(n + 1) \log 2}} + {\small\frac{1}{n + 1}} \int_2^{\infty} {\small\frac{P_{n + 1} (t)}{t \cdot \log^2 t}} d t</math>
  
Ponieważ na mocy twierdzenia [[#E40|E40]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t</math>.<br/>
+
Ponieważ na mocy twierdzenia [[#E41|E41]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1305: Linia 1349:
  
  
<span id="E43" style="font-size: 110%; font-weight: bold;">Zadanie E43</span><br/>
+
<span id="E44" style="font-size: 110%; font-weight: bold;">Zadanie E44</span><br/>
 
Niech <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będzie funkcją okresową Bernoulliego oraz prawdziwe będzie następujące oszacowanie funkcji <math>P_r (t)</math>
 
Niech <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będzie funkcją okresową Bernoulliego oraz prawdziwe będzie następujące oszacowanie funkcji <math>P_r (t)</math>
  
Linia 1321: Linia 1365:
 
:* całka <math>\int^b_n P_r (t) d t</math> istnieje dla każdego <math>b > n</math>
 
:* całka <math>\int^b_n P_r (t) d t</math> istnieje dla każdego <math>b > n</math>
  
Zatem spełnione są założenia twierdzenia [[#E38|E38]] i&nbsp;natychmiast otrzymujemy, że całka <math>\int_{n}^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t</math> jest zbieżna i&nbsp;prawdziwe jest oszacowanie
+
Zatem spełnione są założenia twierdzenia [[#E39|E39]] i&nbsp;natychmiast otrzymujemy, że całka <math>\int_{n}^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t</math> jest zbieżna i&nbsp;prawdziwe jest oszacowanie
  
 
::<math>{\small\frac{m_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} \leqslant \int_n^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t \leqslant {\small\frac{M_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}}</math>
 
::<math>{\small\frac{m_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} \leqslant \int_n^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t \leqslant {\small\frac{M_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}}</math>
Linia 1331: Linia 1375:
  
  
Podamy teraz kryterium Dirichleta, dzięki któremu moglibyśmy natychmiast uzyskać dowody twierdzeń [[#E39|E39]] i&nbsp;[[#E40|E40]] oraz rozwiązanie zadania [[#E42|E42]].
+
Podamy teraz kryterium Dirichleta, dzięki któremu moglibyśmy natychmiast uzyskać dowody twierdzeń [[#E40|E40]] i&nbsp;[[#E41|E41]] oraz rozwiązanie zadania [[#E43|E43]].
Celowo nie stosowaliśmy tego kryterium, aby Czytelnik mógł zapoznać się z&nbsp;ciekawym zastosowaniem twierdzenia [[#E28|E28]].
+
Celowo nie stosowaliśmy tego kryterium, aby Czytelnik mógł zapoznać się z&nbsp;ciekawym zastosowaniem twierdzenia [[#E29|E29]].
  
<span id="E44" style="font-size: 110%; font-weight: bold;">Twierdzenie E44* (kryterium Dirichleta)</span><br/>
+
<span id="E45" style="font-size: 110%; font-weight: bold;">Twierdzenie E45* (kryterium Dirichleta)</span><br/>
 
Jeżeli funkcje <math>f(x)</math> i <math>g(x)</math> są całkowalne w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> oraz spełniają warunki
 
Jeżeli funkcje <math>f(x)</math> i <math>g(x)</math> są całkowalne w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> oraz spełniają warunki
 
::{| border="0"  
 
::{| border="0"  
Linia 1348: Linia 1392:
  
  
<span id="E45" style="font-size: 110%; font-weight: bold;">Zadanie E45</span><br/>
+
<span id="E46" style="font-size: 110%; font-weight: bold;">Zadanie E46</span><br/>
 
Korzystając z&nbsp;kryterium Dirichleta, pokazać, że całki
 
Korzystając z&nbsp;kryterium Dirichleta, pokazać, że całki
  
Linia 1385: Linia 1429:
  
  
Ponieważ <math>| B_{2 k} (x) | \leqslant | B_{2 k} | \,</math> dla <math>\, 0 \leqslant x \leqslant 1 \;</math> i <math>\; k \in \mathbb{N}_0</math> (zobacz [[#E11|E11]]), zatem
+
Ponieważ <math>| B_{2 k} (x) | \leqslant | B_{2 k} | \,</math> dla <math>\, 0 \leqslant x \leqslant 1 \;</math> i <math>\; k \in \mathbb{N}_0</math> (zobacz [[#E12|E12]]), zatem
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 1401: Linia 1445:
 
== Przykłady ==
 
== Przykłady ==
  
<span id="E46" style="font-size: 110%; font-weight: bold;">Przykład E46</span><br/>
+
<span id="E47" style="font-size: 110%; font-weight: bold;">Przykład E47</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1413: Linia 1457:
  
  
<span id="E47" style="font-size: 110%; font-weight: bold;">Przykład E47</span><br/>
+
<span id="E48" style="font-size: 110%; font-weight: bold;">Przykład E48</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1442: Linia 1486:
  
  
Ponieważ dla <math>P_1(t) = t - \lfloor t \rfloor - {\small\frac{1}{2}}</math> prawdziwe jest oszacowanie <math>- {\small\frac{1}{2}} \leqslant P_1(t) \leqslant {\small\frac{1}{2}}</math>, to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E43|E43]] wzoru, dostajemy
+
Ponieważ dla <math>P_1(t) = t - \lfloor t \rfloor - {\small\frac{1}{2}}</math> prawdziwe jest oszacowanie <math>- {\small\frac{1}{2}} \leqslant P_1(t) \leqslant {\small\frac{1}{2}}</math>, to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E44|E44]] wzoru, dostajemy
  
 
::<math>- {\small\frac{1}{4 n^2}} \leqslant \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t \leqslant {\small\frac{1}{4 n^2}}</math>
 
::<math>- {\small\frac{1}{4 n^2}} \leqslant \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t \leqslant {\small\frac{1}{4 n^2}}</math>
Linia 1456: Linia 1500:
  
  
<span id="E48" style="font-size: 110%; font-weight: bold;">Przykład E48</span><br/>
+
<span id="E49" style="font-size: 110%; font-weight: bold;">Przykład E49</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1496: Linia 1540:
  
  
Ponieważ prawdziwe są oszacowania (zobacz przykłady [[#E12|E12]] i&nbsp;[[#E13|E13]])
+
Ponieważ prawdziwe są oszacowania (zobacz przykłady [[#E13|E13]] i&nbsp;[[#E14|E14]])
  
 
::<math>- {\small\frac{\sqrt{3}}{36}} \leqslant P_3 (t) \leqslant {\small\frac{\sqrt{3}}{36}}</math>
 
::<math>- {\small\frac{\sqrt{3}}{36}} \leqslant P_3 (t) \leqslant {\small\frac{\sqrt{3}}{36}}</math>
  
to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E43|E43]] wzoru, dostajemy
+
to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E44|E44]] wzoru, dostajemy
  
 
::<math>- {\small\frac{\sqrt{3}}{108 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t \leqslant {\small\frac{\sqrt{3}}{108 n^3}}</math>
 
::<math>- {\small\frac{\sqrt{3}}{108 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t \leqslant {\small\frac{\sqrt{3}}{108 n^3}}</math>
Linia 1516: Linia 1560:
  
  
<span id="E49" style="font-size: 110%; font-weight: bold;">Przykład E49</span><br/>
+
<span id="E50" style="font-size: 110%; font-weight: bold;">Przykład E50</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1538: Linia 1582:
 
::<math>\lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = 1 + \int_{1}^{\infty} {\small\frac{P_1(t)}{t}} d t</math>
 
::<math>\lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = 1 + \int_{1}^{\infty} {\small\frac{P_1(t)}{t}} d t</math>
  
Z twierdzenia [[#E40|E40]] wiemy, że całka <math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t</math> jest zbieżna, a&nbsp;z&nbsp;rozwinięcia asymptotycznego wiemy, że granica po lewej stronie jest równa <math>\tfrac{1}{2} \log \left( 2 \pi \right)</math>, zatem otrzymujemy
+
Z twierdzenia [[#E41|E41]] wiemy, że całka <math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t</math> jest zbieżna, a&nbsp;z&nbsp;rozwinięcia asymptotycznego wiemy, że granica po lewej stronie jest równa <math>\tfrac{1}{2} \log \left( 2 \pi \right)</math>, zatem otrzymujemy
  
 
::<math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t = \tfrac{1}{2} \log (2 \pi) - 1</math>
 
::<math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t = \tfrac{1}{2} \log (2 \pi) - 1</math>
Linia 1560: Linia 1604:
  
  
Z przykładów [[#E12|E12]] i&nbsp;[[#E13|E13]] wiemy, że prawdziwe są oszacowania
+
Z przykładów [[#E13|E13]] i&nbsp;[[#E14|E14]] wiemy, że prawdziwe są oszacowania
  
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
  
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E43|E43]] wzoru, dostajemy
+
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E44|E44]] wzoru, dostajemy
  
 
::<math>- {\small\frac{1}{90 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} (t) d t \leqslant {\small\frac{7}{720 n^3}}</math>
 
::<math>- {\small\frac{1}{90 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} (t) d t \leqslant {\small\frac{7}{720 n^3}}</math>
Linia 1583: Linia 1627:
  
  
<span id="E50" style="font-size: 110%; font-weight: bold;">Przykład E50</span><br/>
+
<span id="E51" style="font-size: 110%; font-weight: bold;">Przykład E51</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1606: Linia 1650:
  
  
Z przykładów [[#E12|E12]] i&nbsp;[[#E13|E13]] wiemy, że prawdziwe są oszacowania
+
Z przykładów [[#E13|E13]] i&nbsp;[[#E14|E14]] wiemy, że prawdziwe są oszacowania
  
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
  
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E43|E43]] wzoru, dostajemy
+
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E44|E44]] wzoru, dostajemy
  
 
::<math>- {\small\frac{1}{75}} n^{- 5 / 2} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{7}{600}} n^{- 5 / 2}</math>
 
::<math>- {\small\frac{1}{75}} n^{- 5 / 2} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{7}{600}} n^{- 5 / 2}</math>
Linia 1631: Linia 1675:
  
  
<span id="E51" style="font-size: 110%; font-weight: bold;">Przykład E51</span><br/>
+
<span id="E52" style="font-size: 110%; font-weight: bold;">Przykład E52</span><br/>
 
Pokażemy, dlaczego lepiej wybrać wartość <math>r</math> za dużą niż za małą i&nbsp;dlaczego należy sprawdzać zbieżność całki
 
Pokażemy, dlaczego lepiej wybrać wartość <math>r</math> za dużą niż za małą i&nbsp;dlaczego należy sprawdzać zbieżność całki
  
 
::<math>\int_a^b P_r(t) f^{(r)}(t) d t</math>
 
::<math>\int_a^b P_r(t) f^{(r)}(t) d t</math>
  
korzystając z&nbsp;kryterium Dirichleta (twierdzenie [[#E44|E44]]) lub z&nbsp;twierdzenia [[#E40|E40]]. Rozważmy sumę
+
korzystając z&nbsp;kryterium Dirichleta (twierdzenie [[#E45|E45]]) lub z&nbsp;twierdzenia [[#E41|E41]]. Rozważmy sumę
  
 
::<math>\sum_{k = 1}^{n} k^{3 / 2}</math>
 
::<math>\sum_{k = 1}^{n} k^{3 / 2}</math>
Linia 1672: Linia 1716:
  
  
<span id="E52" style="font-size: 110%; font-weight: bold;">Uwaga E52</span><br/>
+
<span id="E53" style="font-size: 110%; font-weight: bold;">Uwaga E53</span><br/>
 
Rozwiązując przykłady znaleźliśmy wartości następujących całek oznaczonych
 
Rozwiązując przykłady znaleźliśmy wartości następujących całek oznaczonych
  
Linia 1686: Linia 1730:
 
::<math>\int_a^{\infty} P_{n + 1} (t) f'(t) d t = - B_{n + 1} f(a) - (n + 1) \int_a^{\infty} P_n(t) f(t) d t</math>
 
::<math>\int_a^{\infty} P_{n + 1} (t) f'(t) d t = - B_{n + 1} f(a) - (n + 1) \int_a^{\infty} P_n(t) f(t) d t</math>
  
(Jest to prosty wniosek z&nbsp;twierdzenia [[#E28|E28]]).
+
(Jest to prosty wniosek z&nbsp;twierdzenia [[#E29|E29]]).
  
  
Linia 1703: Linia 1747:
 
== Metody wyliczania stałej we wzorze Eulera-Maclaurina ==
 
== Metody wyliczania stałej we wzorze Eulera-Maclaurina ==
  
<span id="E53" style="font-size: 110%; font-weight: bold;">Uwaga E53</span><br/>
+
<span id="E54" style="font-size: 110%; font-weight: bold;">Uwaga E54</span><br/>
W przedstawionych wyżej przykładach wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina (przykład [[#E48|E48]] i&nbsp;[[#E50|E50]]) oraz pokazaliśmy, że wartość całki <math>\int_a^{\infty} P_r (t) f^{(r)} (t) d t</math> jest związana z&nbsp;wartością stałej (przykład [[#E47|E47]], [[#E48|E48]] i&nbsp;[[#E49|E49]]). Obecnie dokładnie omówimy ten problem.
+
W przedstawionych wyżej przykładach wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina (przykład [[#E49|E49]] i&nbsp;[[#E51|E51]]) oraz pokazaliśmy, że wartość całki <math>\int_a^{\infty} P_r (t) f^{(r)} (t) d t</math> jest związana z&nbsp;wartością stałej (przykład [[#E48|E48]], [[#E49|E49]] i&nbsp;[[#E50|E50]]). Obecnie dokładnie omówimy ten problem.
  
  
  
<span id="E54" style="font-size: 110%; font-weight: bold;">Twierdzenie E54</span><br/>
+
<span id="E55" style="font-size: 110%; font-weight: bold;">Twierdzenie E55</span><br/>
 
Jeżeli założymy, że
 
Jeżeli założymy, że
  
Linia 1750: Linia 1794:
  
  
<span id="E55" style="font-size: 110%; font-weight: bold;">Uwaga E55</span><br/>
+
<span id="E56" style="font-size: 110%; font-weight: bold;">Uwaga E56</span><br/>
 
We wzorze
 
We wzorze
  
Linia 1763: Linia 1807:
 
::<math>C(a) = \sum_{k = a}^b f (k) - E (b)</math>
 
::<math>C(a) = \sum_{k = a}^b f (k) - E (b)</math>
  
W obydwu przypadkach obliczenia wykonamy dla znanej już Czytelnikowi sumy <math>\sum_{k = 1}^{n} {\small\frac{1}{k}}</math> (przykład [[#E44|E44]]).
+
W obydwu przypadkach obliczenia wykonamy dla znanej już Czytelnikowi sumy <math>\sum_{k = 1}^{n} {\small\frac{1}{k}}</math> (przykład [[#E45|E45]]).
  
  
  
<span id="E56" style="font-size: 110%; font-weight: bold;">Przykład E56</span><br/>
+
<span id="E57" style="font-size: 110%; font-weight: bold;">Przykład E57</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1780: Linia 1824:
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
  
to wzór na wartość stałej z&nbsp;twierdzenia [[#E53|E53]]
+
to wzór na wartość stałej z&nbsp;twierdzenia [[#E54|E54]]
  
 
::<math>C(a) = - F(a) + {\small\frac{1}{2}} f(a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t</math>
 
::<math>C(a) = - F(a) + {\small\frac{1}{2}} f(a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t</math>
Linia 1842: Linia 1886:
  
  
<span id="E57" style="font-size: 110%; font-weight: bold;">Uwaga E57</span><br/>
+
<span id="E58" style="font-size: 110%; font-weight: bold;">Uwaga E58</span><br/>
W przykładzie [[#E56|E56]] uzyskaliśmy zaskakująco dokładny wynik, ale wiemy o&nbsp;tym tylko dlatego, że znaliśmy wynik prawidłowy. Gdybyśmy nie znali wartości stałej <math>\gamma</math>, to nie bylibyśmy w&nbsp;stanie określić, ile cyfr sumy <math>C_r + I_r</math> jest prawidłowych.
+
W przykładzie [[#E57|E57]] uzyskaliśmy zaskakująco dokładny wynik, ale wiemy o&nbsp;tym tylko dlatego, że znaliśmy wynik prawidłowy. Gdybyśmy nie znali wartości stałej <math>\gamma</math>, to nie bylibyśmy w&nbsp;stanie określić, ile cyfr sumy <math>C_r + I_r</math> jest prawidłowych.
  
 
Nim przejdziemy do przedstawienia drugiego sposobu wyliczania stałej we wzorze Eulera-Maclaurina, udowodnimy twierdzenie, które pozwoli nam działać bardziej efektywnie.
 
Nim przejdziemy do przedstawienia drugiego sposobu wyliczania stałej we wzorze Eulera-Maclaurina, udowodnimy twierdzenie, które pozwoli nam działać bardziej efektywnie.
Linia 1849: Linia 1893:
  
  
<span id="E58" style="font-size: 110%; font-weight: bold;">Twierdzenie E58</span><br/>
+
<span id="E59" style="font-size: 110%; font-weight: bold;">Twierdzenie E59</span><br/>
 
Jeżeli założymy, że
 
Jeżeli założymy, że
  
Linia 1873: Linia 1917:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#E53|E53]] wiemy, że przy poczynionych założeniach wzór Eulera-Maclaurina może być zapisany w&nbsp;postaci
+
Z twierdzenia [[#E54|E54]] wiemy, że przy poczynionych założeniach wzór Eulera-Maclaurina może być zapisany w&nbsp;postaci
  
 
::<math>\sum_{k = a}^b f (k) = C (a) + E (b)</math>
 
::<math>\sum_{k = a}^b f (k) = C (a) + E (b)</math>
Linia 1893: Linia 1937:
  
  
Ponieważ <math>f^{(2 s - 1)} (t)</math> jest funkcją pierwotną funkcji <math>f^{(2 s)}(t)</math>, a&nbsp;z&nbsp;założenia jest <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math>, to na podstawie twierdzenia [[#E37|E37]] całka <math>\int_b^{\infty} f^{(2 s)}(t) d t</math> jest zbieżna.
+
Ponieważ <math>f^{(2 s - 1)} (t)</math> jest funkcją pierwotną funkcji <math>f^{(2 s)}(t)</math>, a&nbsp;z&nbsp;założenia jest <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math>, to na podstawie twierdzenia [[#E38|E38]] całka <math>\int_b^{\infty} f^{(2 s)}(t) d t</math> jest zbieżna.
  
  
Ponieważ <math>| B_{2 s} (x) | \leqslant | B_{2 s} | \,</math> dla <math>\, 0 \leqslant x \leqslant 1 \;</math> i <math>\; s \in \mathbb{N}_0</math> (zobacz [[#E11|E11]]), zatem dla funkcji okresowych Bernoulliego o&nbsp;indeksie parzystym prawdziwe jest oszacowanie <math>| P_{2 s}(x) | \leqslant | B_{2 s} |</math>. Z&nbsp;twierdzenia [[#E38|E38]] i&nbsp;założenia, że <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math> dostajemy oszacowanie całki
+
Ponieważ <math>| B_{2 s} (x) | \leqslant | B_{2 s} | \,</math> dla <math>\, 0 \leqslant x \leqslant 1 \;</math> i <math>\; s \in \mathbb{N}_0</math> (zobacz [[#E12|E12]]), zatem dla funkcji okresowych Bernoulliego o&nbsp;indeksie parzystym prawdziwe jest oszacowanie <math>| P_{2 s}(x) | \leqslant | B_{2 s} |</math>. Z&nbsp;twierdzenia [[#E39|E39]] i&nbsp;założenia, że <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math> dostajemy oszacowanie całki
  
  
Linia 1938: Linia 1982:
  
  
<span id="E59" style="font-size: 110%; font-weight: bold;">Przykład E59</span><br/>
+
<span id="E60" style="font-size: 110%; font-weight: bold;">Przykład E60</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1951: Linia 1995:
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
  
to z&nbsp;twierdzenia [[#E57|E57]] dostajemy
+
to z&nbsp;twierdzenia [[#E58|E58]] dostajemy
  
 
::<math>W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - \sum_{k = 1}^s {\small\frac{B_{2 k}}{2 k \cdot n^{2 k}}} \right]</math>
 
::<math>W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - \sum_{k = 1}^s {\small\frac{B_{2 k}}{2 k \cdot n^{2 k}}} \right]</math>
Linia 1978: Linia 2022:
  
  
<span id="E60" style="font-size: 110%; font-weight: bold;">Uwaga E60</span><br/>
+
<span id="E61" style="font-size: 110%; font-weight: bold;">Uwaga E61</span><br/>
 
Zauważmy, że wyliczając wartość <math>\Delta</math>, znamy wartość błędu jeszcze przed wykonaniem całości obliczeń. Dobierając odpowiednie wartości liczb <math>s</math> i <math>n</math> możemy sprawić, że błąd będzie odpowiednio mały. Unikamy numerycznego całkowania, które w&nbsp;przypadku bardziej skomplikowanych funkcji może być długie i&nbsp;obarczone znacznym i&nbsp;nieznanym błędem.
 
Zauważmy, że wyliczając wartość <math>\Delta</math>, znamy wartość błędu jeszcze przed wykonaniem całości obliczeń. Dobierając odpowiednie wartości liczb <math>s</math> i <math>n</math> możemy sprawić, że błąd będzie odpowiednio mały. Unikamy numerycznego całkowania, które w&nbsp;przypadku bardziej skomplikowanych funkcji może być długie i&nbsp;obarczone znacznym i&nbsp;nieznanym błędem.
  
  
  
<span id="E61" style="font-size: 110%; font-weight: bold;">Przykład E61</span><br/>
+
<span id="E62" style="font-size: 110%; font-weight: bold;">Przykład E62</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 2015: Linia 2059:
 
::<math>A^k_k = k A^{k - 1}_{k - 1}</math>
 
::<math>A^k_k = k A^{k - 1}_{k - 1}</math>
  
gdzie <math>A^1_1 = 1</math> (zobacz twierdzenia [[#E64|E64]] i&nbsp;[[#E65|E65]]).
+
gdzie <math>A^1_1 = 1</math> (zobacz twierdzenia [[#E65|E65]] i&nbsp;[[#E66|E66]]).
  
  
Zauważmy, że dla <math>k \geqslant 2</math> funkcje <math>f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}}</math> są funkcjami ciągłymi i&nbsp;mają stały znak dla <math>x > 1</math> oraz <math>\lim_{x \to \infty} f^{(k - 1)} (x) = 0</math>. Zatem dla dowolnego <math>k \geqslant 2</math> spełnione są założenia twierdzenia [[#E58|E58]]. W&nbsp;przypadku rozpatrywanej przez nas sumy z&nbsp;twierdzenia [[#E58|E58]] otrzymujemy
+
Zauważmy, że dla <math>k \geqslant 2</math> funkcje <math>f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}}</math> są funkcjami ciągłymi i&nbsp;mają stały znak dla <math>x > 1</math> oraz <math>\lim_{x \to \infty} f^{(k - 1)} (x) = 0</math>. Zatem dla dowolnego <math>k \geqslant 2</math> spełnione są założenia twierdzenia [[#E59|E59]]. W&nbsp;przypadku rozpatrywanej przez nas sumy z&nbsp;twierdzenia [[#E59|E59]] otrzymujemy
  
 
::<math>\Delta = \Delta (s, n) = {\small\frac{| B_{2 s} |}{(2 s) !}} | \mathop{\text{DLog}}(2 s - 2, n) |</math>
 
::<math>\Delta = \Delta (s, n) = {\small\frac{| B_{2 s} |}{(2 s) !}} | \mathop{\text{DLog}}(2 s - 2, n) |</math>
Linia 2026: Linia 2070:
  
  
Obliczenia przeprowadziliśmy w&nbsp;programie PARI/GP. Wymagają one zwiększenia precyzji obliczeń do <math>80</math> miejsc znaczących i&nbsp;wcześniejszego przygotowania kilku funkcji omówionych szerzej w&nbsp;uwadze [[#E66|E66]]. Mamy  
+
Obliczenia przeprowadziliśmy w&nbsp;programie PARI/GP. Wymagają one zwiększenia precyzji obliczeń do <math>80</math> miejsc znaczących i&nbsp;wcześniejszego przygotowania kilku funkcji omówionych szerzej w&nbsp;uwadze [[#E67|E67]]. Mamy  
  
 
  <span style="font-size: 90%; color:black;">B(n, x) = '''sum'''(k = 0, n, 1/(k+1)*'''sum'''(j = 0, k, (-1)^j*'''binomial'''(k,j)*(x+j)^n))</span>
 
  <span style="font-size: 90%; color:black;">B(n, x) = '''sum'''(k = 0, n, 1/(k+1)*'''sum'''(j = 0, k, (-1)^j*'''binomial'''(k,j)*(x+j)^n))</span>
Linia 2054: Linia 2098:
  
  
<span id="E62" style="font-size: 110%; font-weight: bold;">Przykład E62</span><br/>
+
<span id="E63" style="font-size: 110%; font-weight: bold;">Przykład E63</span><br/>
 
Rozważmy jeszcze raz sumę
 
Rozważmy jeszcze raz sumę
  
Linia 2085: Linia 2129:
 
::<math>\int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = -0.117923474371345921663180326620119770994144590988603907635106 \ldots</math>
 
::<math>\int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = -0.117923474371345921663180326620119770994144590988603907635106 \ldots</math>
  
Właśnie w&nbsp;taki sposób została obliczona wartość całki niewłaściwej, która występuje w&nbsp;zadaniu [[#E45|E45]].
+
Właśnie w&nbsp;taki sposób została obliczona wartość całki niewłaściwej, która występuje w&nbsp;zadaniu [[#E46|E46]].
  
  
  
<span id="E63" style="font-size: 110%; font-weight: bold;">Przykład E63</span><br/>
+
<span id="E64" style="font-size: 110%; font-weight: bold;">Przykład E64</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 2125: Linia 2169:
  
  
W obliczeniu granicy całki dla <math>s</math> dążącego do nieskończoności pomocne będzie oszacowanie (zobacz [[#E19|E19]])
+
W obliczeniu granicy całki dla <math>s</math> dążącego do nieskończoności pomocne będzie oszacowanie (zobacz [[#E20|E20]])
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 2163: Linia 2207:
 
== Uzupełnienie ==
 
== Uzupełnienie ==
  
<span id="E64" style="font-size: 110%; font-weight: bold;">Twierdzenie E64</span><br/>
+
<span id="E65" style="font-size: 110%; font-weight: bold;">Twierdzenie E65</span><br/>
 
Ogólny wzór na <math>n</math>-tą pochodną funkcji <math>{\small\frac{1}{\log x}}</math> ma postać
 
Ogólny wzór na <math>n</math>-tą pochodną funkcji <math>{\small\frac{1}{\log x}}</math> ma postać
  
Linia 2227: Linia 2271:
  
  
<span id="E65" style="font-size: 110%; font-weight: bold;">Twierdzenie E65</span><br/>
+
<span id="E66" style="font-size: 110%; font-weight: bold;">Twierdzenie E66</span><br/>
 
Z równań rekurencyjnych
 
Z równań rekurencyjnych
  
Linia 2359: Linia 2403:
  
  
<span id="E66" style="font-size: 110%; font-weight: bold;">Uwaga E66</span><br/>
+
<span id="E67" style="font-size: 110%; font-weight: bold;">Uwaga E67</span><br/>
Z twierdzeń [[#E64|E64]] i&nbsp;[[#E65|E65]] wynika, że ogólną postać <math>n</math>-tej pochodnej funkcji <math>{\small\frac{1}{\log x}}</math> możemy łatwo wypisać
+
Z twierdzeń [[#E65|E65]] i&nbsp;[[#E66|E66]] wynika, że ogólną postać <math>n</math>-tej pochodnej funkcji <math>{\small\frac{1}{\log x}}</math> możemy łatwo wypisać
  
 
::<math>{\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}}</math>
 
::<math>{\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}}</math>

Wersja z 12:54, 28 gru 2024

29.05.2022



Wielomiany, liczby i funkcje okresowe Bernoulliego

Definicja E1
Wielomiany [math]\displaystyle{ B_n(x) }[/math] spełniające warunki

●    [math]\displaystyle{ B_0(x) = 1 }[/math]
●    [math]\displaystyle{ {\small\frac{d}{d x}}B_n(x) = n B_{n - 1}(x) }[/math]
●    [math]\displaystyle{ \int_0^1 B_n(t) d t = 0 \qquad \text{dla} \;\; n \geqslant 1 }[/math]

będziemy nazywali wielomianami Bernoulliego[1][2][3][4].


Zadanie E2
Korzystając z definicji E1 znaleźć jawną postać wielomianów [math]\displaystyle{ B_1 (x) }[/math], [math]\displaystyle{ B_2 (x) }[/math] i [math]\displaystyle{ B_3 (x) }[/math].

Rozwiązanie

Z punktu 2. definicji E1 mamy

[math]\displaystyle{ B'_1 (x) = 1 \cdot B_0 (x) = 1 }[/math]

Zatem

[math]\displaystyle{ B_1 (x) = \int dx = x + C }[/math]

Stałą [math]\displaystyle{ C }[/math] wyznaczamy z punktu 3. definicji E1

[math]\displaystyle{ 0 = \int^1_0 B_1 (x) dx = \int^1_0 (x + C) dx = \left( {\small\frac{x^2}{2}} + C x \right) \Biggr\rvert_{0}^{1} = {\small\frac{1}{2}} + C }[/math]

Otrzymujemy, że [math]\displaystyle{ C = - {\small\frac{1}{2}} }[/math], czyli [math]\displaystyle{ \boxed{ B_1 (x) = x - {\small\frac{1}{2}} } }[/math]


Postępując analogicznie dla [math]\displaystyle{ n = 2 }[/math], dostajemy

[math]\displaystyle{ B'_2 (x) = 2 \cdot B_1 (x) = 2 x - 1 }[/math]
[math]\displaystyle{ B_2 (x) = \int (2 x - 1) dx = x^2 - x + C }[/math]
[math]\displaystyle{ 0 = \int^1_0 B_2 (x) dx = \int^1_0 (x^2 - x + C) dx = \left( {\small\frac{x^3}{3}} - {\small\frac{x^2}{2}} + C x \right) \Biggr\rvert_{0}^{1} = {\small\frac{1}{3}} - {\small\frac{1}{2}} + C }[/math]

Otrzymujemy, że [math]\displaystyle{ C = {\small\frac{1}{6}} }[/math], czyli [math]\displaystyle{ \boxed{ B_2 (x) = x^2 - x + {\small\frac{1}{6}} } }[/math]


Powtarzając dla [math]\displaystyle{ n = 3 }[/math], mamy

[math]\displaystyle{ B'_3 (x) = 3 \cdot B_2 (x) = 3 x^2 - 3 x + {\small\frac{1}{2}} }[/math]
[math]\displaystyle{ B_3 (x) = \int \left( 3 x^2 - 3 x + {\small\frac{1}{2}} \right) dx = x^3 - {\small\frac{3 x^2}{2}} + {\small\frac{x}{2}} + C }[/math]
[math]\displaystyle{ 0 = \int^1_0 B_3 (x) dx = \int^1_0 \left( x^3 - {\small\frac{3 x^2}{2}} + {\small\frac{x}{2}} + C \right) dx = \left( {\small\frac{x^4}{4}} - {\small\frac{x^3}{2}} + {\small\frac{x^2}{4}} + C x \right) \Biggr\rvert_{0}^{1} = {\small\frac{1}{4}} - {\small\frac{1}{2}} + {\small\frac{1}{4}} + C }[/math]

Otrzymujemy, że [math]\displaystyle{ C = 0 }[/math], czyli [math]\displaystyle{ \boxed{ B_3 (x) = x^3 - {\small\frac{3 x^2}{2}} + {\small\frac{x}{2}} } }[/math]


Twierdzenie E3*
Wielomiany Bernoulliego [math]\displaystyle{ B_n(x) }[/math] określone są następującym wzorem ogólnym

[math]\displaystyle{ B_n(x) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} \sum_{j = 0}^{k} (- 1)^j {\small\binom{k}{j}} (x + j)^n }[/math]


Przykład E4
W tabeli wypisaliśmy początkowe wielomiany Bernoulliego.


Przykład E5
Przedstawiamy wykresy wielomianów Bernoulliego [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math]

Wykresy
E B123.png
E B345.png
E B567.png
E B789.png



Definicja E6
Liczbami Bernoulliego [math]\displaystyle{ B_n }[/math] będziemy nazywali wartości wielomianów Bernoulliego [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x = 0 }[/math], czyli [math]\displaystyle{ B_n = B_n (0) }[/math].


Uwaga E7
Ze wzoru podanego w twierdzeniu E3 wynika natychmiast wzór ogólny dla liczb Bernoulliego.

[math]\displaystyle{ B_n = B_n (0) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} \sum_{j = 0}^{k} (- 1)^j {\small\binom{k}{j}} j^n }[/math]


Twierdzenie E8
Niech [math]\displaystyle{ B_n (x) }[/math] i [math]\displaystyle{ B_n }[/math] oznaczają odpowiednio wielomiany i liczby Bernoulliego. Prawdziwe są następujące wzory

Dowód

Punkt 1.

Dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy

[math]\displaystyle{ B_n (1) - B_n (0) = \int_0^1 B'_n (t) d t = n \int_0^1 B_{n - 1} (t) d t = 0 }[/math]

Punkt 2.

Indukcja matematyczna. Wzór jest prawdziwy dla [math]\displaystyle{ n = 1 }[/math]. Załóżmy, że jest prawdziwy dla wszystkich liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math]. Z założenia mamy

[math]\displaystyle{ B_n (1 - x) = (- 1)^n B_n (x) }[/math]
[math]\displaystyle{ - {\small\frac{d}{d x}} B_{n + 1} (1 - x) = (- 1)^n {\small\frac{d}{d x}} B_{n + 1} (x) }[/math]

Całkując, otrzymujemy

[math]\displaystyle{ B_{n + 1} (1 - x) = (- 1)^{n + 1} B_{n + 1} (x) + C }[/math]

Wystarczy pokazać, że stała [math]\displaystyle{ C }[/math] jest równa zero, istotnie

[math]\displaystyle{ \int_0^1 B_{n + 1} (1 - t) d t = (- 1)^{n + 1} \int_0^1 B_{n + 1} (t) d t + C \int_0^1 d t }[/math]
[math]\displaystyle{ - \int_1^0 B_{n + 1}(u) d u = C }[/math]

Punkt 3.

Kładąc we wzorze 2. [math]\displaystyle{ x = 0 }[/math] oraz [math]\displaystyle{ n = 2 k + 1 }[/math], gdzie [math]\displaystyle{ k \geqslant 1 }[/math], otrzymujemy

[math]\displaystyle{ B_{2 k + 1} (1) = - B_{2 k + 1} (0) }[/math]

ale ze wzoru 1. mamy [math]\displaystyle{ B_{2 k + 1} (1) = B_{2 k + 1} (0) }[/math], dodając równania stronami, dostajemy [math]\displaystyle{ B_{2 k + 1} (1) = 0 }[/math].

Kładąc we wzorze 2. [math]\displaystyle{ x = {\small\frac{1}{2}} }[/math] oraz [math]\displaystyle{ n = 2 k + 1 }[/math], gdzie [math]\displaystyle{ k \geqslant 1 }[/math], mamy

[math]\displaystyle{ B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = - B_{2 k + 1} \left( {\small\frac{1}{2}} \right) }[/math]

czyli [math]\displaystyle{ B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = 0 }[/math].

Punkt 4.

Indukcja matematyczna. Dla ułatwienia rachunków połóżmy [math]\displaystyle{ x = {\small\frac{y}{a}} }[/math], zatem będziemy dowodzili, że

[math]\displaystyle{ B_n (y) = a^{n - 1} \sum_{k = 0}^{a - 1} B_n \left( {\small\frac{y + k}{a}} \right) }[/math]

Bez trudu możemy sprawdzić prawdziwość wzoru dla [math]\displaystyle{ n = 1 }[/math].

[math]\displaystyle{ \sum_{k = 0}^{a - 1} B_1 \left( {\small\frac{y + k}{a}} \right) = \sum_{k = 0}^{a - 1} \left( {\small\frac{y + k}{a}} - {\small\frac{1}{2}} \right) }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{y}{a}} \cdot a - {\small\frac{1}{2}} \cdot a + \sum_{k = 0}^{a - 1} {\small\frac{k}{a}} }[/math]
[math]\displaystyle{ \;\;\;\: = y - {\small\frac{a}{2}} + {\small\frac{1}{a}} \cdot {\small\frac{a (a - 1)}{2}} }[/math]
[math]\displaystyle{ \;\;\;\: = y - {\small\frac{1}{2}} }[/math]
[math]\displaystyle{ \;\;\;\: = B_1 (y) }[/math]


Załóżmy, że dowodzony wzór jest prawdziwy dla wszystkich liczb naturalnych nie większych od [math]\displaystyle{ n }[/math]. Korzystając z definicji wielomianów Bernoulliego, możemy napisać

[math]\displaystyle{ {\small\frac{1}{n + 1}} {\small\frac{d}{d y}} B_{n + 1} (y) = a^{n - 1} \sum_{k = 0}^{a - 1} {\small\frac{a}{n + 1}} {\small\frac{d}{d y}} B_{n + 1} \left( {\small\frac{y + k}{a}} \right) }[/math]

Całkując, otrzymujemy

[math]\displaystyle{ B_{n + 1} (y) = a^n \sum_{k = 0}^{a - 1} B_{n + 1} \left( {\small\frac{y + k}{a}} \right) + C }[/math]

Wystarczy pokazać, że stała [math]\displaystyle{ C }[/math] jest równa zero. Mamy

[math]\displaystyle{ \int_0^1 \sum_{k = 0}^{a - 1} B_{n + 1} \left( {\small\frac{y + k}{a}} \right) d y = \sum_{k = 0}^{a - 1} \int_0^1 \left[ {\small\frac{a}{n + 2}} {\small\frac{d}{d y}} B_{n + 2} \left( {\small\frac{y + k}{a}} \right) \right] d y }[/math]
[math]\displaystyle{ \:\, = {\small\frac{a}{n + 2}} \sum_{k = 0}^{a - 1} \biggl[ B_{n + 2} \left( {\small\frac{y + k}{a}} \right) \biggr\rvert_{0}^{1} \biggr] }[/math]
[math]\displaystyle{ \:\, = {\small\frac{a}{n + 2}} \sum_{k = 0}^{a - 1} \left[ B_{n + 2} \left( {\small\frac{k + 1}{a}} \right) - B_{n + 2} \left( {\small\frac{k}{a}} \right) \right] }[/math]
[math]\displaystyle{ \:\, = {\small\frac{a}{n + 2}} [B_{n + 2} (1) - B_{n + 2} (0)] }[/math]
[math]\displaystyle{ \:\, = 0 }[/math]

dla [math]\displaystyle{ n \geqslant 0 }[/math]. Przekształcając, skorzystaliśmy z faktu, że suma jest teleskopowa (zobacz D12). Ponieważ [math]\displaystyle{ \int^1_0 B_{n + 1} (y) d y = 0 }[/math], to [math]\displaystyle{ \int_0^1 C d t = C = 0 }[/math].

Punkt 5.

Połóżmy [math]\displaystyle{ x = 0 }[/math] we wzorze udowodnionym w punkcie 4. Mamy

[math]\displaystyle{ B_n (0) = a^{n - 1} \sum_{k = 0}^{a - 1} B_n \left( {\small\frac{k}{a}} \right) = a^{n - 1} \sum_{k = 1}^{a - 1} B_n \left( {\small\frac{k}{a}} \right) + a^{n - 1} B_n (0) }[/math]

Skąd natychmiast otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{a - 1} B_n \left( {\small\frac{k}{a}} \right) = \left( {\small\frac{1}{a^{n - 1}}} - 1 \right) B_n }[/math]

Punkt 6.

Kładąc [math]\displaystyle{ a = 2 }[/math] we wzorze 5, otrzymujemy

[math]\displaystyle{ B_n \left( {\small\frac{1}{2}} \right) = \left( {\small\frac{1}{2^{n - 1}}} - 1 \right) B_n }[/math]

Co należało udowodnić.

Punkt 7.

Wzór podany w punkcie 5. dla [math]\displaystyle{ n = 2 m }[/math] i [math]\displaystyle{ a = 3 }[/math] przyjmuje postać

[math]\displaystyle{ \sum_{k = 1}^2 B_{2 m} \left( {\small\frac{k}{3}} \right) = (3^{1 - 2 m} - 1) B_{2 m} }[/math]

Czyli

[math]\displaystyle{ B_{2 m} \left( {\small\frac{1}{3}} \right) + B_{2 m} \left( {\small\frac{2}{3}} \right) = (3^{1 - 2 m} - 1) B_{2 m} }[/math]

Korzystając z punktu 2, dostajemy

[math]\displaystyle{ 2 B_{2 m} \left( {\small\frac{1}{3}} \right) = (3^{1 - 2 m} - 1) B_{2 m} }[/math]

Punkt 8.

Wzór podany w punkcie 5. dla [math]\displaystyle{ n = 2 m }[/math] i [math]\displaystyle{ a = 4 }[/math] przyjmuje postać

[math]\displaystyle{ \sum_{k = 1}^3 B_{2 m} \left( {\small\frac{k}{4}} \right) = (4^{1 - 2 m} - 1) B_{2 m} }[/math]

Czyli

[math]\displaystyle{ B_{2 m} \left( {\small\frac{1}{4}} \right) + B_{2 m} \left( {\small\frac{1}{2}} \right) + B_{2 m} \left( {\small\frac{3}{4}} \right) = (2^{2 - 4 m} - 1) B_{2 m} }[/math]

Korzystając z punktów 6. i 2., dostajemy

[math]\displaystyle{ B_{2 m} \left( {\small\frac{1}{4}} \right) + (2^{1 - 2 m} - 1) B_{2 m} + (- 1)^{2 m} B_{2 m} \left( {\small\frac{1}{4}} \right) = (2^{2 - 4 m} - 1) B_{2 m} }[/math]
[math]\displaystyle{ 2 B_{2 m} \left( {\small\frac{1}{4}} \right) = B_{2 m} (2^{2 - 4 m} - 2^{1 - 2 m}) }[/math]

Zatem

[math]\displaystyle{ B_{2 m} \left( {\small\frac{1}{4}} \right) = 2^{- 2 m} (2^{1 - 2 m} - 1) B_{2 m} }[/math]

Punkt 9.

Wzór podany w punkcie 5. dla [math]\displaystyle{ n = 2 m }[/math] i [math]\displaystyle{ a = 6 }[/math] przyjmuje postać

[math]\displaystyle{ \sum_{k = 1}^5 B_{2 m} \left( {\small\frac{k}{6}} \right) = (6^{1 - 2 m} - 1) B_{2 m} }[/math]

Czyli

[math]\displaystyle{ B_{2 m} \left( {\small\frac{1}{6}} \right) + B_{2 m} \left( {\small\frac{1}{3}} \right) + B_{2 m} \left( {\small\frac{1}{2}} \right) + B_{2 m} \left( {\small\frac{2}{3}} \right) + B_{2 m} \left( {\small\frac{5}{6}} \right) = (6^{1 - 2 m} - 1) B_{2 m} }[/math]

Korzystając z udowodnionych wyżej wzorów, dostajemy

[math]\displaystyle{ 2 B_{2 m} \left( {\small\frac{1}{6}} \right) + 2 B_{2 m} \left( {\small\frac{1}{3}} \right) = (6^{1 - 2 m} - 1) B_{2 m} - (2^{1 - 2 m} - 1) B_{2 m} = 6^{1 - 2 m} B_{2 m} - 2^{1 - 2 m} B_{2 m} = 2^{1 - 2 m} (3^{1 - 2 m} - 1) B_{2 m} }[/math]
[math]\displaystyle{ 2 B_{2 m} \left( {\small\frac{1}{6}} \right) = 2^{1 - 2 m} (3^{1 - 2 m} - 1) B_{2 m} - (3^{1 - 2 m} - 1) B_{2 m} = (2^{1 - 2 m} - 1) (3^{1 - 2 m} - 1) B_{2 m} }[/math]

Zatem

[math]\displaystyle{ B_{2 m} \left( {\small\frac{1}{6}} \right) = \tfrac{1}{2} (2^{1 - 2 m} - 1) (3^{1 - 2 m} - 1) B_{2 m} }[/math]

Punkt 10.

Indukcja matematyczna. Łatwo sprawdzamy, że wzór jest prawdziwy dla [math]\displaystyle{ n = 0, 1, 2 }[/math]. Zakładając, że wzór jest prawdziwy dla wszystkich liczb całkowitych dodatnich nie większych od [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ x^n = \int^x_0 n t^{n - 1} d t }[/math]
[math]\displaystyle{ \;\;\;\;\: = \int^x_0 (B_n (t + 1) - B_n (t) ) d t }[/math]
[math]\displaystyle{ \;\;\;\;\: = \int^x_0 B_n (t + 1) d t - \int^x_0 B_n (t) d t \qquad \qquad \qquad u = t + 1 }[/math]
[math]\displaystyle{ \;\;\;\;\: = \int_{1}^{x + 1} B_n (u) d u - \int^x_0 B_n (t) d t }[/math]
[math]\displaystyle{ \;\;\;\;\: = {\small\frac{1}{n + 1}} \int_{1}^{x + 1} B'_{n + 1} (u) d u - {\small\frac{1}{n + 1}} \int^x_0 B'_{n + 1} (t) d t }[/math]
[math]\displaystyle{ \;\;\;\;\: = {\small\frac{1}{n + 1}} (B_{n + 1} (x + 1) - B_{n + 1} (1) - B_{n + 1} (x) + B_{n + 1} (0)) }[/math]
[math]\displaystyle{ \;\;\;\;\: = {\small\frac{1}{n + 1}} (B_{n + 1} (x + 1) - B_{n + 1} (x)) }[/math]

Bo [math]\displaystyle{ B_n (1) = B_n (0) }[/math] dla [math]\displaystyle{ n \geqslant 2 }[/math]. Co należało pokazać.


Twierdzenie E9
Niech [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ f' (x) }[/math] będą ciągłymi funkcjami rzeczywistymi określonymi w przedziale [math]\displaystyle{ [a, b] }[/math] i różniczkowalnymi w [math]\displaystyle{ (a, b) }[/math]. Jeżeli dla pewnego punktu [math]\displaystyle{ r \in (a, b) }[/math] spełnione są warunki [math]\displaystyle{ f(a) = f (b) = f (r) = 0 }[/math], to istnieje taki punkt [math]\displaystyle{ t \in (a, b) }[/math], że [math]\displaystyle{ f'' (t) = 0 }[/math].

Dowód

Łatwo zauważamy, że dla funkcji [math]\displaystyle{ f(x) }[/math] i dla każdego z przedziałów [math]\displaystyle{ [a, r] }[/math] oraz [math]\displaystyle{ [r, b] }[/math] spełnione są założenia twierdzenia Rolle'a[5]. Zatem istnieją takie punkty [math]\displaystyle{ s_1 \in (a, r) \, }[/math] i [math]\displaystyle{ \, s_2 \in (r, b) }[/math], że

[math]\displaystyle{ f' (s_1) = f' (s_2) = 0 }[/math]

Teraz widzimy, że dla funkcji [math]\displaystyle{ f' (x) }[/math] i przedziału [math]\displaystyle{ [s_1, s_2] }[/math] również spełnione są założenia twierdzenia Rolle'a. Zatem istnieje taki punkt [math]\displaystyle{ t \in (s_1, s_2) \subset (a, b) }[/math], że

[math]\displaystyle{ f'' (t) = 0 }[/math]

Co należało pokazać.


Twierdzenie E10
Niech [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Wielomian [math]\displaystyle{ B_{2 k + 1} (x) }[/math] ma dokładnie trzy pierwiastki w przedziale [math]\displaystyle{ [0, 1] }[/math]. Są to liczby [math]\displaystyle{ x = 0 }[/math], [math]\displaystyle{ x = {\small\frac{1}{2}} \, }[/math] i [math]\displaystyle{ \, x = 1 }[/math].

Dowód

Z twierdzenia E8 p.3 wiemy, że dla [math]\displaystyle{ k \geqslant 1 }[/math] jest

[math]\displaystyle{ B_{2 k + 1} (0) = B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = B_{2 k + 1} (1) = 0 }[/math]

Zatem dla [math]\displaystyle{ k \geqslant 1 }[/math] każdy wielomian Bernoulliego [math]\displaystyle{ B_{2 k + 1} (x) }[/math] ma trzy pierwiastki: [math]\displaystyle{ x = 0 }[/math], [math]\displaystyle{ x = {\small\frac{1}{2}} }[/math] i [math]\displaystyle{ x = 1 }[/math].

Pozostaje udowodnić, że wielomiany te nie mają innych pierwiastków w przedziale [math]\displaystyle{ [0, 1] }[/math]. Bez trudu możemy sprawdzić, że twierdzenie jest prawdziwe dla początkowych liczb całkowitych dodatnich, np. dla [math]\displaystyle{ k = 1, 2, 3, 4 }[/math] (zobacz WolframAlphaB3, WolframAlphaB5, WolframAlphaB7, WolframAlphaB9).

Przypuśćmy, dla uzyskania sprzeczności, że [math]\displaystyle{ B_{2 k + 1} (x) }[/math] jest wielomianem Bernoulliego o najmniejszym stopniu nieparzystym [math]\displaystyle{ 2 k + 1 }[/math] mającym pierwiastek [math]\displaystyle{ r \in [0, 1] }[/math] różny od [math]\displaystyle{ 0, {\small\frac{1}{2}}, 1 }[/math].

Z twierdzenia E8 p.2 wiemy, że dla [math]\displaystyle{ n \geqslant 0 }[/math] jest

[math]\displaystyle{ B_n (1 - x) = (- 1)^n B_n (x) }[/math]

Łatwo widzimy, że jeżeli [math]\displaystyle{ r \in [0, 1] }[/math] jest pierwiastkiem [math]\displaystyle{ B_{2 k + 1} (x) }[/math], to [math]\displaystyle{ 1 - r \in [0, 1] }[/math] również jest pierwiastkiem [math]\displaystyle{ B_{2 k + 1} (x) }[/math]. Zatem nie zmniejszając ogólności, możemy założyć, że [math]\displaystyle{ r \in \left( 0, {\small\frac{1}{2}} \right) }[/math].

Ponieważ wielomiany Bernoulliego są funkcjami różniczkowalnymi i [math]\displaystyle{ B_{2 k + 1} (0) = B_{2 k + 1} (r) = B_{2 k + 1} \left( {\small\frac{1}{2}} \right) = 0 }[/math], to spełnione są założenia twierdzenia E9. Zatem istnieje taka liczba [math]\displaystyle{ t \in \left( 0, {\small\frac{1}{2}} \right) }[/math], że [math]\displaystyle{ B''_{2 k + 1} (t) = 0 }[/math]. Ale

[math]\displaystyle{ B''_{2 k + 1} (x) = (2 k + 1) B'_{2 k} (x) = 2 k (2 k + 1) B_{2 k - 1} (x) }[/math]

Skąd wynika, że [math]\displaystyle{ B_{2 k - 1} (t) = 0 }[/math], wbrew założeniu, że [math]\displaystyle{ B_{2 k + 1} (x) }[/math] jest wielomianem Bernoulliego o najmniejszym stopniu nieparzystym [math]\displaystyle{ 2 k + 1 }[/math] mającym pierwiastek [math]\displaystyle{ r \in [0, 1] }[/math] różny od [math]\displaystyle{ 0, {\small\frac{1}{2}}, 1 }[/math]. Otrzymana sprzeczność kończy dowód.


Twierdzenie E11
Niech [math]\displaystyle{ k \in \mathbb{N}_0 }[/math]. Liczby Bernoulliego [math]\displaystyle{ B_{2 k} }[/math] są różne od zera.

Dowód

Łatwo sprawdzamy, że [math]\displaystyle{ B_0 = 1 }[/math], [math]\displaystyle{ B_2 = {\small\frac{1}{6}} }[/math], [math]\displaystyle{ B_4 = - {\small\frac{1}{30}} }[/math], [math]\displaystyle{ B_6 = {\small\frac{1}{42}} }[/math]. Przypuśćmy, dla uzyskania sprzeczności, że dla pewnego [math]\displaystyle{ k \gt 3 }[/math] jest [math]\displaystyle{ B_{2 k} = B_{2 k} (0) = 0 }[/math]. Zatem z twierdzenia E8 p.6 mamy

[math]\displaystyle{ B_{2 k} \left( {\small\frac{1}{2}} \right) = (2^{1 - 2 k} - 1) B_{2 k} = 0 }[/math]

Ponieważ [math]\displaystyle{ B_{2 k} (0) = B_{2 k} \left( {\small\frac{1}{2}} \right) = 0 }[/math], to z twierdzenia Rolle'a[5] wynika, że istnieje taka liczba [math]\displaystyle{ r \in \left( 0, {\small\frac{1}{2}} \right) }[/math], że [math]\displaystyle{ B'_{2 k} (r) = 0 }[/math], czyli [math]\displaystyle{ 2 k B_{2 k - 1} (r) = 0 }[/math]. Wbrew temu, że wielomiany Bernoulliego o indeksie nieparzystym mają dokładnie trzy pierwiastki w przedziale [math]\displaystyle{ [0, 1] }[/math] i są to liczby [math]\displaystyle{ x = 0 }[/math], [math]\displaystyle{ x = {\small\frac{1}{2}} }[/math], [math]\displaystyle{ x = 1 }[/math] (zobacz E10). Otrzymana sprzeczność kończy dowód.


Twierdzenie E12
Niech [math]\displaystyle{ k \in \mathbb{N}_0 }[/math]. Dla wielomianów Bernoulliego [math]\displaystyle{ B_{2 k} (x) \, }[/math] i [math]\displaystyle{ \, x \in [0, 1] }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ | B_{2 k} (x) | \leqslant | B_{2 k} | }[/math]
Dowód

Zauważmy, że dla [math]\displaystyle{ k \geqslant 2 }[/math]

  •    [math]\displaystyle{ B'_{2 k} (x) = 2 k B_{2 k - 1} (x) }[/math]
  •    wielomian [math]\displaystyle{ B_{2 k - 1} (x) }[/math] ma dokładnie trzy pierwiastki w przedziale [math]\displaystyle{ [0, 1] }[/math]: [math]\displaystyle{ x = 0 }[/math], [math]\displaystyle{ x = {\small\frac{1}{2}} \, }[/math] oraz [math]\displaystyle{ \, x = 1 }[/math] (zobacz E10)
  •    [math]\displaystyle{ B''_{2 k} (x) = 2 k (2 k - 1) B_{2 k - 2} (x) }[/math]
  •    [math]\displaystyle{ B_{2 k - 2} (0) \neq 0 }[/math], [math]\displaystyle{ B_{2 k - 2} (1) \neq 0 \, }[/math] i [math]\displaystyle{ \, B_{2 k - 2} \left( {\small\frac{1}{2}} \right) \neq 0 }[/math] (zobacz E11, E8 p.1 i E8 p.6)

Zatem wielomian [math]\displaystyle{ B_{2 k} (x) }[/math] ma ekstrema w punktach [math]\displaystyle{ x = 0, {\small\frac{1}{2}}, 1 }[/math]. Łatwo widzimy, że [math]\displaystyle{ B_{2 k} (0) = B_{2 k} (1) = B_{2 k} \, }[/math] i [math]\displaystyle{ \, B_{2 k} \left( {\small\frac{1}{2}} \right) = (2^{1 - 2 k} - 1) B_{2 k} }[/math]. Wynika stąd, że wartości funkcji [math]\displaystyle{ | B_{2 k} (x) | }[/math] nie przekraczają liczby [math]\displaystyle{ | B_{2 k} | }[/math]. Prawdziwość twierdzenia dla wielomianu [math]\displaystyle{ B_0 (x) = 1 }[/math] jest oczywista, a dla wielomianu [math]\displaystyle{ B_2 (x) = x^2 - x + {\small\frac{1}{6}} }[/math] łatwo sprawdzamy ją bezpośrednio, znajdując minimum funkcji [math]\displaystyle{ B_2 (x) }[/math] i wartości [math]\displaystyle{ B_2 (x) }[/math] w punktach [math]\displaystyle{ x = 0 \, }[/math] i [math]\displaystyle{ \, x = 1 }[/math] (zobacz WolframAlphaB2). Co kończy dowód.


Przykład E13
W tabeli przedstawiamy liczby Bernoulliego [math]\displaystyle{ B_n }[/math] oraz minimalne [math]\displaystyle{ m_n }[/math] i maksymalne [math]\displaystyle{ M_n }[/math] wartości wielomianów [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math]

Zauważmy, że [math]\displaystyle{ M_3 = {\small\frac{\sqrt{3}}{36}} \lt {\small\frac{3}{62}} }[/math], [math]\displaystyle{ \quad M_5 \lt {\small\frac{1}{40}} }[/math], [math]\displaystyle{ \quad M_7 \lt {\small\frac{1}{38}} \quad }[/math] oraz [math]\displaystyle{ \quad M_9 \lt {\small\frac{1}{21}} }[/math]


Przykład E14
Minima [math]\displaystyle{ m_n }[/math] i maksima [math]\displaystyle{ M_n }[/math] wielomianów Bernoulliego [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math] są równe[6]


W zamieszczonej niżej tabeli przedstawiamy liczby Bernoulliego [math]\displaystyle{ B_n }[/math] oraz minimalne i maksymalne wartości wielomianów [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math] w zapisie dziesiętnym.

Tabela

Pogrubiliśmy czcionkę w rzędzie, w którym wartości bezwzględne liczb [math]\displaystyle{ B_n, m_n, M_n }[/math] przyjmują najmniejszą wartość.



Definicja E15
Funkcje okresowe Bernoulliego [math]\displaystyle{ P_n(x) }[/math] definiujemy następująco

[math]\displaystyle{ P_n(x) = B_n(x - \lfloor x \rfloor) }[/math]


Uwaga E16
Inaczej mówiąc funkcja okresowa Bernoulliego [math]\displaystyle{ P_n(x) }[/math] na odcinku [math]\displaystyle{ [0, 1] }[/math], przyjmuje te same wartości, co wielomian Bernoulliego [math]\displaystyle{ B_n(x) }[/math]. Wartości te powtarzają się dla kolejnych odcinków [math]\displaystyle{ [k, k + 1] }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z} }[/math].


Uwaga E17
Wprost z definicji funkcji okresowych Bernoulliego wynika, że dla [math]\displaystyle{ k \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ P_n (k) = B_n (k - \lfloor k \rfloor) = B_n (0) = B_n }[/math]


Twierdzenie E18
Własności funkcji okresowych Bernoulliego

●    funkcja [math]\displaystyle{ P_0 (x) }[/math] jest ciągła i różniczkowalna
●    funkcja [math]\displaystyle{ P_1 (x) }[/math] nie jest ciągła w punktach [math]\displaystyle{ x \in \mathbb{Z} }[/math]
●    funkcja [math]\displaystyle{ P_2 (x) }[/math] jest ciągła, ale nie jest różniczkowalna w punktach [math]\displaystyle{ x \in \mathbb{Z} }[/math]
●    dla [math]\displaystyle{ n \geqslant 3 }[/math] funkcje [math]\displaystyle{ P_n (x) }[/math] są ciągłe i różniczkowalne
●    [math]\displaystyle{ {\small\frac{d}{d x}} P_n (x) = n P_{n - 1} (x) \qquad }[/math] o ile [math]\displaystyle{ n \neq 1, 2 }[/math] lub [math]\displaystyle{ n = 1, 2 }[/math] oraz [math]\displaystyle{ x \notin \mathbb{Z} }[/math]
●    [math]\displaystyle{ \int^x_0 P_n (t) d t = {\small\frac{P_{n + 1} (x)}{n + 1}} - {\small\frac{B_{n + 1}}{n + 1}} }[/math]
Dowód

Ciągłość funkcji okresowych Bernoulliego

Policzymy granice prawostronne i granice lewostronne funkcji okresowych Bernoulliego [math]\displaystyle{ P_n (x) }[/math] w punktach [math]\displaystyle{ x = k }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z} }[/math]. Mamy

[math]\displaystyle{ \lim_{x \to k^+} P_n (x) = \lim_{\varepsilon \to 0} P_n (k + \varepsilon) }[/math]
[math]\displaystyle{ \;\,\, = \lim_{\varepsilon \to 0} B_n (k + \varepsilon - \lfloor k + \varepsilon \rfloor) }[/math]
[math]\displaystyle{ \;\,\, = \lim_{\varepsilon \to 0} B_n (k + \varepsilon - k) }[/math]
[math]\displaystyle{ \;\,\, = \lim_{\varepsilon \to 0} B_n (\varepsilon) }[/math]
[math]\displaystyle{ \;\,\, = B_n (0) }[/math]


[math]\displaystyle{ \lim_{x \to k^-} P_n (x) = \lim_{\varepsilon \to 0} P_n (k - \varepsilon) }[/math]
[math]\displaystyle{ \;\,\, = \lim_{\varepsilon \to 0} B_n (k - \varepsilon - \lfloor k - \varepsilon \rfloor) }[/math]
[math]\displaystyle{ \;\,\, = \lim_{\varepsilon \to 0} B_n (k - \varepsilon - (k - 1)) }[/math]
[math]\displaystyle{ \;\,\, = \lim_{\varepsilon \to 0} B_n (k - \varepsilon - k + 1) }[/math]
[math]\displaystyle{ \;\,\, = \lim_{\varepsilon \to 0} B_n (1 - \varepsilon) }[/math]
[math]\displaystyle{ \;\,\, = B_n (1) }[/math]


Z punktu 1. twierdzenia E8 wiemy, że dla [math]\displaystyle{ n \geqslant 2 }[/math] jest [math]\displaystyle{ B_n (0) = B_n (1) }[/math]. Oprócz tego dla [math]\displaystyle{ n = 0 }[/math] i [math]\displaystyle{ n = 1 }[/math] mamy

[math]\displaystyle{ B_0 (0) = B_0 (1) = 1 }[/math]

oraz

[math]\displaystyle{ B_1 (0) = - {\small\frac{1}{2}} \neq {\small\frac{1}{2}} = B_1 (1) }[/math]

Wynika stąd, że wszystkie funkcje okresowe Bernoulliego [math]\displaystyle{ P_n (x) }[/math] są ciągłe poza funkcją [math]\displaystyle{ P_1 (x) }[/math].


Różniczkowalność funkcji okresowych Bernoulliego

Pochodne funkcji okresowych Bernoulliego [math]\displaystyle{ P_n (x) }[/math] są równe

[math]\displaystyle{ {\small\frac{d}{d x}} P_n (x) = {\small\frac{d}{d x}} B_n (x - \lfloor x \rfloor) }[/math]
[math]\displaystyle{ \;\;\;\;\, = n B_{n - 1} (x - \lfloor x \rfloor) \cdot \left( 1 - {\small\frac{d}{d x}} \lfloor x \rfloor \right) }[/math]
[math]\displaystyle{ \;\;\;\;\, = n P_{n - 1} (x) \cdot \left( 1 - {\small\frac{d}{d x}} \lfloor x \rfloor \right) }[/math]


Zauważmy, że pochodna [math]\displaystyle{ {\small\frac{d}{d x}} \lfloor x \rfloor = 0 }[/math] dla [math]\displaystyle{ x \notin \mathbb{Z} }[/math], ale funkcja [math]\displaystyle{ \lfloor x \rfloor }[/math] nie jest różniczkowalna w punktach [math]\displaystyle{ x \in \mathbb{Z} }[/math]. Wiemy, że pochodna funkcji w punkcie istnieje wtedy i tylko wtedy, gdy obie pochodne jednostronne w tym punkcie istnieją i są równe. Zatem musimy zbadać, czy pochodne prawostronne i lewostronne funkcji okresowych Bernoulliego [math]\displaystyle{ P_n (x) }[/math] są równe w punktach [math]\displaystyle{ x = k }[/math]. Ponieważ dla [math]\displaystyle{ x \notin \mathbb{Z} }[/math] mamy

[math]\displaystyle{ {\small\frac{d}{d x}} P_n (x) = n P_{n - 1} (x) }[/math]

a jednocześnie dla [math]\displaystyle{ n \geqslant 3 }[/math] funkcje [math]\displaystyle{ P_{n - 1} (x) }[/math] są ciągłe, to

[math]\displaystyle{ \lim_{x \to k^+} n P_{n - 1} (x) = \lim_{x \to k^-} n P_{n - 1} (x) }[/math]

Czyli

[math]\displaystyle{ \lim_{x \to k^+} {\small\frac{d}{d x}} P_n (x) = \lim_{x \to k^-} {\small\frac{d}{d x}} P_n (x) }[/math]

Wynika stąd, że dla [math]\displaystyle{ n \geqslant 3 }[/math] pochodne prawostronne i lewostronne funkcji [math]\displaystyle{ P_n (x) }[/math] są równe w punktach [math]\displaystyle{ x = k }[/math]. Zatem funkcje [math]\displaystyle{ P_n (x) }[/math] są różniczkowalne w tych punktach.


Dla [math]\displaystyle{ n = 0 }[/math] jest [math]\displaystyle{ P_0 (x) = B_0 (x - \lfloor x \rfloor) = 1 }[/math], zatem [math]\displaystyle{ P_0 (x) }[/math] jest ciągła i różniczkowalna.

Dla [math]\displaystyle{ n = 1 }[/math] wiemy już, że funkcja [math]\displaystyle{ P_1 (x) }[/math] nie jest ciągła w punktach [math]\displaystyle{ x \in \mathbb{Z} }[/math], zatem nie jest w nich różniczkowalna.

Dla [math]\displaystyle{ n = 2 }[/math] mamy

[math]\displaystyle{ \lim_{x \to k^+} 2 P_1 (x) = 2 B_1 (0) = - 1 \neq 1 = 2 B_1 (1) = \lim_{x \to k^-} 2 P_1 (x) }[/math]

Skąd wynika natychmiast, że

[math]\displaystyle{ \lim_{x \to k^+} {\small\frac{d}{d x}} P_2 (x) \neq \lim_{x \to k^-} {\small\frac{d}{d x}} P_2 (x) }[/math]

Zatem funkcja [math]\displaystyle{ P_2 (x) }[/math] nie jest różniczkowalna w punktach [math]\displaystyle{ x \in \mathbb{Z} }[/math].


Przeprowadzane wyżej rozważania dotyczące ciągłości i różniczkowalności funkcji okresowych Bernoulliego [math]\displaystyle{ P_n (x) }[/math] stanowią dowody pierwszych pięciu punktów twierdzenia.


Punkt 6.

Ponieważ funkcja [math]\displaystyle{ P_n (t) }[/math] jest funkcją okresową o okresie równym [math]\displaystyle{ 1 }[/math], to całka oznaczona będzie równa sumie wielokrotności całek na odcinku [math]\displaystyle{ [0, 1] }[/math] i całce na odcinku [math]\displaystyle{ [0, x - \lfloor x \rfloor] }[/math].

[math]\displaystyle{ \int^x_0 P_n (t) d t = \int_{0}^{\lfloor x \rfloor} P_n (t) d t + \int^x_{\lfloor x \rfloor} P_n (t) d t }[/math]
[math]\displaystyle{ \;\;\; = \lfloor x \rfloor \int^1_0 P_n (t) d t + \int_{0}^{x - \lfloor x \rfloor} P_n (t) d t }[/math]
[math]\displaystyle{ \;\;\; = \int_{0}^{x - \lfloor x \rfloor} B_n (t - \lfloor t \rfloor) d t }[/math]
[math]\displaystyle{ \;\;\; = \int_{0}^{x - \lfloor x \rfloor} B_n (t) d t }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{1}{n + 1}} \int_{0}^{x - \lfloor x \rfloor} \left [ {\small\frac{d}{d t}} B_{n + 1} (t) \right ] d t }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{1}{n + 1}} \cdot B_{n + 1} (t) \biggr\rvert_{0}^{x - \lfloor x \rfloor} }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{1}{n + 1}} [B_{n + 1} (x - \lfloor x \rfloor) - B_{n + 1} (0)] }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{P_{n + 1} (x)}{n + 1}} - {\small\frac{B_{n + 1}}{n + 1}} }[/math]



Przykład E19
Przedstawiamy przykładowe wykresy funkcji okresowych Bernoulliego [math]\displaystyle{ P_n (x) }[/math]. Stanowią one bardzo dobrą ilustrację do twierdzenia E18.

Wykresy
E P1.png
E P2.png
E P3.png
E P4.png
E P5.png
E P6.png
E P7.png
E P8.png



Twierdzenie E20*
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla liczb Bernoulliego [math]\displaystyle{ B_{2 n} = (- 1)^{n + 1} | B_{2 n} | }[/math] prawdziwe są następujące oszacowania [7][8][9]

[math]\displaystyle{ {\small\frac{2 (2 n) !}{(2 \pi)^{2 n}}} \cdot {\small\frac{1}{1 - 2^{- 2 n}}} \lt | B_{2 n} | \lt {\small\frac{2 (2 n) !}{(2 \pi)^{2 n}}} \cdot {\small\frac{1}{1 - 2^{1 - 2 n}}} }[/math]

i asymptotyki

[math]\displaystyle{ B_{2 n} \sim (- 1)^{n + 1} \cdot {\small\frac{2 (2 n) !}{(2 \pi)^{2 n}}} }[/math]
[math]\displaystyle{ B_{2 n} \sim (- 1)^{n + 1} \cdot 4 \sqrt{\pi n} \cdot \left( {\small\frac{n}{\pi e}} \right)^{2 n} }[/math]


Twierdzenie E21*
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla ilorazu kolejnych liczb Bernoulliego [math]\displaystyle{ B_{2 n} }[/math] prawdziwe są następujące oszacowania[10]

[math]\displaystyle{ {\small\frac{2^{2 n - 1} - 1}{2^{2 n + 1} - 1}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{\pi^2}} \lt \left| {\small\frac{B_{2 n + 2}}{B_{2 n}}} \right| \lt {\small\frac{2^{2 n} - 1}{2^{2 n + 2} - 1}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{\pi^2}} }[/math]

i asymptotyka

[math]\displaystyle{ {\small\frac{B_{2 n + 2}}{B_{2 n}}} \sim - {\small\frac{n^2}{\pi^2}} }[/math]



Wzór sumacyjny Eulera-Maclaurina

Uwaga E22
Często w twierdzeniu musimy założyć, że rozważana funkcja [math]\displaystyle{ f(x) }[/math] jest określona w pewnym zbiorze liczb rzeczywistych i jest funkcją ciągłą oraz wszystkie jej pochodne od [math]\displaystyle{ f' (x) }[/math] do [math]\displaystyle{ f^{(n)} (x) }[/math] istnieją i są ciągłe w tym zbiorze. Przekazanie tego prostego założenia wymaga użycia wielu słów, a samo twierdzenie staje się mało czytelne. Ze względów czysto praktycznych wprowadzamy pojęcie klasy funkcji.


Definicja E23
Funkcję [math]\displaystyle{ f(x) }[/math] określoną i ciągłą w zbiorze [math]\displaystyle{ A \subset \mathbb{R} }[/math] i mającą kolejno [math]\displaystyle{ n }[/math] ciągłych pochodnych w tym zbiorze będziemy nazywali funkcją klasy [math]\displaystyle{ C^n }[/math]. Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła w [math]\displaystyle{ A }[/math], to powiemy, że jest klasy [math]\displaystyle{ C^0 }[/math]. Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest klasy [math]\displaystyle{ C^n }[/math] dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], to powiemy, że funkcja [math]\displaystyle{ f(x) }[/math] jest klasy [math]\displaystyle{ C^{\infty} }[/math]. W przypadku, gdy chcemy jednocześnie zaznaczyć dziedzinę funkcji, to stosujemy zapis [math]\displaystyle{ C^0 (A) }[/math], [math]\displaystyle{ C^n (A) }[/math] i [math]\displaystyle{ C^{\infty} (A) }[/math].


Przykład E24
Tylko dla potrzeb tego przykładu funkcję [math]\displaystyle{ f(x) }[/math] określoną następująco

[math]\displaystyle{ f(x) = \left\{ \begin{array}{lll} g (x) & & x \lt 0\\ h (x) & & x \geqslant 0 \end{array} \right. }[/math]

będziemy zapisywali jako [math]\displaystyle{ f(x) = \left \{ g (x) \big\rvert h (x) \right \} }[/math].


Przykłady funkcji klasy [math]\displaystyle{ C^0 (\mathbb{R}) }[/math]

[math]\displaystyle{ \left \{ - x \big\rvert x \right \} \;\; \text{czyli} \;\; | x | , \quad \left \{ 0 \big\rvert x \right \} , \quad \left \{ 1 \big\rvert e^x \right \} , \quad \left \{ 1 + x \big\rvert \cos (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^1 (\mathbb{R}) }[/math]

[math]\displaystyle{ \left \{ 0 \big\rvert x^2 \right \} , \quad \left \{ 1 + x \big\rvert e^x \right \} , \quad \left \{ 1 \big\rvert \cos (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^2 (\mathbb{R}) }[/math]

[math]\displaystyle{ x^2 \sqrt{x^2} , \quad \left \{ 0 \big\rvert x^3 \right \} , \quad \left \{ 1 + x + \tfrac{1}{2} x^2 \big\rvert e^x \right \} , \quad \left \{ x \big\rvert \sin (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^3 (\mathbb{R}) }[/math]

[math]\displaystyle{ \left \{ 0 \big\rvert x^4 \right \} , \quad \left \{ 1 + x + \tfrac{1}{2} x^2 + \tfrac{1}{6} x^3 \big\rvert e^x \right \} , \quad \left \{ 1 - \tfrac{1}{2} x^2 \big\rvert \cos (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^n (\mathbb{R}) }[/math]

[math]\displaystyle{ P_{n + 2} (x) , \quad x^n \sqrt{x^2} , \quad \left \{ 0 \big\rvert x^{n + 1} \right \} , \quad \left\{ \sum_{k = 0}^{n} {\small\frac{x^k}{k!}} \biggr\rvert e^x \right\} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^{\infty} (\mathbb{R}) }[/math]

[math]\displaystyle{ x^k \;\; \text{dla} \;\; k \in \mathbb{N}_0 , \quad e^x , \quad \sin (x) , \quad \cos (x) }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^{\infty} (\mathbb{R}_+) }[/math]

[math]\displaystyle{ {\small\frac{1}{x}} }[/math],    [math]\displaystyle{ \sqrt{x} }[/math],    [math]\displaystyle{ \log x }[/math]


Twierdzenie E25
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją rzeczywistą klasy [math]\displaystyle{ C^1 ( [k, k + 1] ) }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z} }[/math]. Jeżeli zastąpimy na jednostkowym odcinku pole prostokąta całką, to błąd, jaki popełnimy, jest równy

[math]\displaystyle{ f(k) - \int_{k}^{k + 1} f(t) d t = \int_k^{k + 1} (t - \lfloor t \rfloor - 1) f'(t) d t }[/math]
Dowód

Całkując przez części, dostajemy

[math]\displaystyle{ \int_k^{k + 1} f(t) d t = f(t) \cdot t \biggr\rvert_{k}^{k+1} - \int_k^{k + 1} f'(t) \cdot t d t }[/math]
[math]\displaystyle{ \quad \, = (k + 1) \cdot f(k + 1) - k \cdot f(k) - \int_k^{k + 1} t \cdot f'(t) d t }[/math]
[math]\displaystyle{ \quad \, = k \cdot f(k + 1) + f(k + 1) - k \cdot f(k) - \int_k^{k + 1} t \cdot f'(t) d t }[/math]
[math]\displaystyle{ \quad \, = f(k + 1) + \int_k^{k + 1} k \cdot f'(t) d t - \int_k^{k + 1} t \cdot f'(t) d t }[/math]

Zatem poszukiwaną różnicę możemy zapisać w postaci

[math]\displaystyle{ f(k) - \int_{k}^{k + 1} f(t) d t = f(k) - f(k + 1) - \int_k^{k + 1} k \cdot f'(t) d t + \int_k^{k + 1} t \cdot f'(t) d t }[/math]
[math]\displaystyle{ = - \int_k^{k + 1} f'(t) d t - \int_k^{k + 1} k \cdot f'(t) d t + \int_k^{k + 1} t \cdot f'(t) d t }[/math]
[math]\displaystyle{ = \int_k^{k + 1} (t - k - 1) f'(t) d t }[/math]
[math]\displaystyle{ = \int_k^{k + 1} (t - \lfloor t \rfloor - 1) f'(t) d t }[/math]

Co należało pokazać.


Zadanie E26
Pokazać, że dla [math]\displaystyle{ x \gt 0 }[/math] całka [math]\displaystyle{ \int^x_0 (t - \lfloor t \rfloor)^n d t }[/math] jest równa

[math]\displaystyle{ \int^x_0 (t - \lfloor t \rfloor)^n d t = {\small\frac{\lfloor x \rfloor + (x - \lfloor x \rfloor)^{n + 1}}{n + 1}} }[/math]
Rozwiązanie

Ponieważ funkcja [math]\displaystyle{ (x - \lfloor x \rfloor)^n }[/math] jest funkcją okresową o okresie równym [math]\displaystyle{ 1 }[/math], to całka oznaczona będzie równa sumie wielokrotności całek na odcinku [math]\displaystyle{ [0, 1] }[/math] i całce na odcinku [math]\displaystyle{ [0, x - \lfloor x \rfloor] }[/math].

[math]\displaystyle{ \int^x_0 (t - \lfloor t \rfloor)^n d t = \int_{0}^{\lfloor x \rfloor} (t - \lfloor t \rfloor)^n d t + \int^x_{\lfloor x \rfloor} (t - \lfloor t \rfloor)^n d t }[/math]
[math]\displaystyle{ \;\;\;\; = \lfloor x \rfloor \cdot \int^1_0 (t - \lfloor t \rfloor)^n d t + \int^{x - \lfloor x \rfloor}_0 (t - \lfloor t \rfloor)^n d t }[/math]
[math]\displaystyle{ \;\;\;\; = \lfloor x \rfloor \cdot \int^1_0 t^n d t + \int_{0}^{x - \lfloor x \rfloor} t^n d t }[/math]
[math]\displaystyle{ \;\;\;\; = \lfloor x \rfloor \cdot {\normalsize\frac{t^{n + 1}}{n + 1}} \biggr\rvert_{0}^{1} + {\normalsize\frac{t^{n + 1}}{n + 1}} \biggr\rvert_{0}^{x - \lfloor x \rfloor} }[/math]
[math]\displaystyle{ \;\;\;\; = \lfloor x \rfloor \cdot {\normalsize\frac{1}{n + 1}} + {\normalsize\frac{(x - \lfloor x \rfloor)^{n + 1}}{n + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\normalsize\frac{\lfloor x \rfloor + (x - \lfloor x \rfloor)^{n + 1}}{n + 1}} }[/math]

Co należało pokazać.


Twierdzenie E27
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją rzeczywistą klasy [math]\displaystyle{ C^1 ( [a, b] ) }[/math], gdzie [math]\displaystyle{ a, b \in \mathbb{Z} }[/math]. Możemy zastąpić sumowanie całkowaniem, stosując wzór

[math]\displaystyle{ \sum_{k = a}^{b} f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \int_a^b \left( t - \lfloor t \rfloor - {\small\frac{1}{2}} \right) f'(t) d t }[/math]

Powyższy wzór można zapisać w postaci

[math]\displaystyle{ \sum_{k = a}^{b} f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \int_a^b P_1(t) f'(t) d t }[/math]

gdzie [math]\displaystyle{ P_1(t) }[/math] jest funkcją okresową Bernoulliego.

Dowód

Sumując uzyskany w twierdzeniu E25 związek od [math]\displaystyle{ k = a }[/math] do [math]\displaystyle{ k = b - 1 }[/math], dostajemy

[math]\displaystyle{ \sum_{k = a}^{b - 1} f(k) - \int^b_a f(t) d t = \int_a^b (t - \lfloor t \rfloor - 1) f'(t) d t }[/math]

Dodając do obydwu stron [math]\displaystyle{ f(b) }[/math] i przekształcając prawą stronę, mamy

[math]\displaystyle{ \sum_{k = a}^{b} f(k) = f(b) + \int^b_a f(t) d t + \int_a^b \left( t - \lfloor t \rfloor - {\small\frac{1}{2}} \right) f'(t) d t - {\small\frac{1}{2}} f(b) + {\small\frac{1}{2}} f(a) }[/math]
[math]\displaystyle{ \;\;\:\, = \int^b_a f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \int_a^b \left( t - \lfloor t \rfloor - {\small\frac{1}{2}} \right) f'(t) d t }[/math]


Uwaga E28
Czytelnik zapewne już domyśla się, w jakim kierunku zmierzamy. Całkując przez części i korzystając z własności funkcji okresowych Bernoulliego, przekształcimy całkę [math]\displaystyle{ \int_a^b P_1 (t) f' (t) d t }[/math] do postaci [math]\displaystyle{ \int_a^b P_2 (t) f'' (t) d t }[/math], a następnie do postaci [math]\displaystyle{ \int_a^b P_3 (t) f^{(3)} (t) d t }[/math] itd.


Twierdzenie E29
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], a funkcje [math]\displaystyle{ P_n(t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista [math]\displaystyle{ g(t) }[/math] jest klasy [math]\displaystyle{ C^1 ( [a, b] ) }[/math], to

[math]\displaystyle{ \int_a^b P_n(t) g(t) d t = {\small\frac{B_{n + 1}}{n + 1}} [g(b) - g(a)] - {\small\frac{1}{n + 1}} \int_a^b P_{n + 1}(t) g'(t) d t }[/math]
Dowód

Niech [math]\displaystyle{ k \in \mathbb{Z} }[/math]. Rozważmy całkę [math]\displaystyle{ \int_a^b P_n(t) g(t) d t }[/math] na odcinku [math]\displaystyle{ [k, k + 1] \subset [a, b] }[/math]. Całkując przez części, dostajemy

[math]\displaystyle{ \int_k^{k + 1} P_n(t) g(t) d t = {\small\frac{1}{n + 1}} P_{n + 1}(t) g(t) \biggr\rvert_{k}^{k + 1} - {\small\frac{1}{n + 1}} \int_k^{k + 1} P_{n + 1}(t) g'(t) d t }[/math]
[math]\displaystyle{ \;\: = {\small\frac{1}{n + 1}} P_{n + 1}(k + 1) g(k + 1) - {\small\frac{1}{n + 1}} P_{n + 1}(k) g(k) - {\small\frac{1}{n + 1}} \int_k^{k + 1} P_{n + 1}(t) g'(t) d t }[/math]
[math]\displaystyle{ \;\: = {\small\frac{1}{n + 1}} B_{n + 1} \cdot g (k + 1) - {\small\frac{1}{n + 1}} B_{n + 1} \cdot g (k) - {\small\frac{1}{n + 1}} \int_k^{k + 1} P_{n + 1}(t) g'(t) d t }[/math]
[math]\displaystyle{ \;\: = {\small\frac{B_{n + 1}}{n + 1}} \cdot [g (k + 1) - g (k)] - {\small\frac{1}{n + 1}} \int_k^{k + 1} P_{n + 1}(t) g'(t) d t }[/math]

Przekształcając, skorzystaliśmy z faktu, że dla [math]\displaystyle{ n \geqslant 1 }[/math] jest

[math]\displaystyle{ P_{n + 1} (k + 1) = P_{n + 1} (k) = B_{n + 1} }[/math]


Sumując po [math]\displaystyle{ k }[/math] od [math]\displaystyle{ k = a }[/math] do [math]\displaystyle{ k = b - 1 }[/math], natychmiast otrzymujemy

[math]\displaystyle{ \int_a^b P_n(t) g(t) d t = {\small\frac{B_{n + 1}}{n + 1}} [g(b) - g(a)] - {\small\frac{1}{n + 1}} \int_a^b P_{n + 1}(t) g'(t) d t }[/math]

Co należało udowodnić.


Twierdzenie E30
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], a funkcje [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista [math]\displaystyle{ g(t) }[/math] jest klasy [math]\displaystyle{ C^k ( [a, b] ) }[/math], to

[math]\displaystyle{ \int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t }[/math]
Dowód

Indukcja matematyczna. Dla [math]\displaystyle{ k = 1 }[/math] dostajemy

[math]\displaystyle{ \int_a^b P_n (t) g (t) d t = {\normalsize\frac{B_{n + 1}}{n + 1}} [g (b) - g (a)] - {\normalsize\frac{1}{n + 1}} \int_a^b P_{n + 1} (t) g^{(1)} (t) d t }[/math]

Czyli wzór udowodniony w twierdzeniu E29. Zatem twierdzenie jest prawdziwe dla [math]\displaystyle{ k = 1 }[/math]. Zauważmy, że z tego samego twierdzenia natychmiast wynika, że

[math]\displaystyle{ \int_a^b P_{n + k} (t) g^{(k)} (t) d t = {\normalsize\frac{B_{n + k + 1}}{n + k + 1}} [g^{(k)} (b) - g^{(k)} (a)] - {\normalsize\frac{1}{n + k + 1}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t }[/math]


Korzystając z powyższego wyniku, przy założeniu, że dowodzony wzór jest prawdziwy dla [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math], otrzymujemy

[math]\displaystyle{ \int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \left[ {\normalsize\frac{B_{n + k + 1}}{n + k + 1}} [g^{(k)} (b) - g^{(k)} (a)] - {\normalsize\frac{1}{n + k + 1}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t \right] }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + \frac{(- 1)^{k + 2} n! \cdot B_{n + k + 1}}{(n + k + 1) !} [g^{(k)} (b) - g^{(k)} (a)] + {\normalsize\frac{(- 1)^{k + 1} n!}{(n + k + 1) !}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{j = 1}^{k + 1} \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^{k + 1} n!}{(n + k + 1) !}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t }[/math]


Tym samym pokazaliśmy prawdziwość dowodzonego wzoru dla [math]\displaystyle{ k + 1 }[/math]. Na mocy zasady indukcji matematycznej dowodzony wzór jest prawdziwy dla wszystkich [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math].


Twierdzenie E31 (wzór sumacyjny Eulera-Maclaurina, [math]\displaystyle{ \sim }[/math]1735)
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], a funkcje [math]\displaystyle{ P_r (t) }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math], będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista [math]\displaystyle{ f(t) }[/math] jest klasy [math]\displaystyle{ C^r ( [a, b] ) }[/math], to

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t }[/math]

Dowód

Lewą stronę wzoru udowodnionego w twierdzeniu E30

[math]\displaystyle{ \int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t }[/math]

chcemy przekształcić do postaci, która występuje po prawej stronie wzoru z twierdzenia E27. Jeżeli położymy [math]\displaystyle{ n = 1 }[/math] oraz [math]\displaystyle{ g(t) = f' (t) = f^{(1)} (t) }[/math], to dostaniemy

[math]\displaystyle{ \int_a^b P_1 (t) f' (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} \cdot B_{j + 1}}{(j + 1) !} [f^{(j)} (b) - f^{(j)} (a)] + {\normalsize\frac{(- 1)^k}{(k + 1) !}} \int_a^b P_{k + 1} (t) f^{(k + 1)} (t) d t }[/math]

Niech [math]\displaystyle{ k = r - 1 }[/math]

[math]\displaystyle{ \int_a^b P_1 (t) f' (t) d t = \sum_{j = 1}^{r - 1} \frac{(- 1)^{j + 1} \cdot B_{j + 1}}{(j + 1) !} [f^{(j)} (b) - f^{(j)} (a)] + {\normalsize\frac{(- 1)^{r - 1}}{r!}} \int_a^b P_r (t) f^{(r)} (t) d t }[/math]

Ponieważ litera [math]\displaystyle{ k }[/math] już nie występuje we wzorze, to wykorzystamy ją jako nowy wskaźnik sumowania. Od sumowania po [math]\displaystyle{ j }[/math] przejdźmy do sumowania po [math]\displaystyle{ k = j + 1 }[/math], czyli [math]\displaystyle{ k }[/math] zmienia się teraz od [math]\displaystyle{ 2 }[/math] do [math]\displaystyle{ r }[/math]

[math]\displaystyle{ \int_a^b P_1 (t) f' (t) d t = \sum_{k = 2}^r {\normalsize\frac{(- 1)^k \cdot B_k}{k!}} [f^{(k - 1)} (b) - f^{(k - 1)} (a)] - {\normalsize\frac{(- 1)^r}{r!}} \int_a^b P_r (t) f^{(r)} (t) d t }[/math]

Podstawiając powyższy wzór do twierdzenia E27, otrzymujemy, że jeżeli funkcja [math]\displaystyle{ f(t) }[/math] jest klasy [math]\displaystyle{ C^r ( [a, b] ) }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math], to

[math]\displaystyle{ \sum_{k = a}^{b} f (k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{(- 1)^k B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t }[/math]

Zauważmy, że [math]\displaystyle{ (- 1)^k B_k = B_k }[/math], bo dla nieparzystych liczb [math]\displaystyle{ k \geqslant 2 }[/math] mamy [math]\displaystyle{ (- 1)^k B_k = 0 = B_k }[/math], a dla parzystych liczb [math]\displaystyle{ k \geqslant 2 }[/math] jest [math]\displaystyle{ (- 1)^k B_k = B_k }[/math]. Czynnik [math]\displaystyle{ (- 1)^k }[/math] został dodany tylko dla potrzeb dowodu indukcyjnego twierdzenia E30. Zatem otrzymujemy

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t }[/math]

Co należało pokazać.


Uwaga E32
Uwzględniając, że dla nieparzystych liczb [math]\displaystyle{ k \geqslant 2 }[/math] jest [math]\displaystyle{ B_k = 0 }[/math], możemy dla parzystego [math]\displaystyle{ r = 2 s }[/math] napisać

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} [f^{(2 k - 1)}(b) - f^{(2 k - 1)}(a)] - {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s}(t) f^{(2 s)}(t) d t }[/math]


W przypadku, gdy [math]\displaystyle{ r = 2 s + 1 }[/math] mamy [math]\displaystyle{ B_{2 s + 1} = 0 }[/math], zatem nie pojawi się nowy składnik sumy, ale ostatni wyraz ulegnie zmianie

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} [f^{(2 k - 1)}(b) - f^{(2 k - 1)}(a)] + {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1}(t) f^{(2 s + 1)}(t) d t }[/math]


Oczywiście

[math]\displaystyle{ - {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s} (t) f^{(2 s)} (t) d t = {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1} (t) f^{(2 s + 1)} (t) d t }[/math]

(zobacz twierdzenie E29).


Uwaga E33
Poniżej wypisaliśmy gotowe wzory Eulera-Maclaurina dla [math]\displaystyle{ r = 1, \ldots, 9 }[/math]

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + Q_r }[/math]

gdzie


Nim przejdziemy do przykładów, przypomnimy kilka podstawowych definicji i twierdzeń dotyczących całek niewłaściwych.



Całki niewłaściwe – zbieżność i kryteria zbieżności

Definicja E34
Niech funkcja [math]\displaystyle{ f(x) }[/math] będzie określona w przedziale [math]\displaystyle{ [a, + \infty) }[/math] i całkowalna w każdym podprzedziale [math]\displaystyle{ [a, b] }[/math] tego przedziału. Granicę

[math]\displaystyle{ \lim_{b \to + \infty} \int^b_a f(x) d x }[/math]

będziemy nazywali całką niewłaściwą funkcji [math]\displaystyle{ f(x) }[/math] w granicach od [math]\displaystyle{ a }[/math] do [math]\displaystyle{ + \infty }[/math] i zapisywali symbolicznie jako

[math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math]

Jeżeli powyższa granica jest skończona, to powiemy, że całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] jest zbieżna. Jeżeli granica jest nieskończona lub nie istnieje, to powiemy, że całka jest rozbieżna.


Twierdzenie E35 (kryterium porównawcze)
Jeżeli dla [math]\displaystyle{ x \geqslant a }[/math] funkcje [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ g(x) }[/math] spełniają nierówności

[math]\displaystyle{ 0 \leqslant f(x) \leqslant g(x) }[/math]

to

●    ze zbieżności całki [math]\displaystyle{ \int_{a}^{\infty} g(x) d x }[/math] wynika zbieżność całki [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math]
●    z rozbieżności całki [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] wynika rozbieżność całki [math]\displaystyle{ \int_{a}^{\infty} g(x) d x }[/math]
Dowód

Punkt 1.

Niech [math]\displaystyle{ m \in \mathbb{Z}_+ }[/math] będzie wybrane dowolnie, ale tak, aby [math]\displaystyle{ m \gt a }[/math]. Ponieważ z założenia funkcje [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ g(x) }[/math] są całkowalne w dowolnym podprzedziale [math]\displaystyle{ [a, b] }[/math] przedziału [math]\displaystyle{ [a, \infty) }[/math], to całki

[math]\displaystyle{ \int^m_a f(x) d x \qquad }[/math] oraz [math]\displaystyle{ \qquad \int^m_a g(x) d x }[/math]

istnieją, a ich wartość nie wpływa na zbieżność / rozbieżność odpowiednich całek niewłaściwych. Zatem możemy ograniczyć się do badania zbieżności całek

[math]\displaystyle{ \int_{m}^{\infty} f(x) d x \qquad }[/math] oraz [math]\displaystyle{ \qquad \int_{m}^{\infty} g(x) d x }[/math]

Niech dla [math]\displaystyle{ k \geqslant m }[/math] ciąg [math]\displaystyle{ (U_k) }[/math] będzie rosnącym ciągiem kolejnych całek oznaczonych

[math]\displaystyle{ U_k = \int_m^k f(x) d x }[/math]

Ponieważ z założenia dla [math]\displaystyle{ x \geqslant m \gt a }[/math] funkcje [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ g(x) }[/math] spełniają nierówności

[math]\displaystyle{ 0 \leqslant f(x) \leqslant g(x) }[/math]

to ciąg [math]\displaystyle{ (U_k) }[/math] jest ograniczony od góry

[math]\displaystyle{ U_k = \int^k_m f(x) d x \leqslant \int^k_m g(x) d x \leqslant \int_{m}^{\infty} g(x) d x }[/math]

bo założyliśmy, że całka [math]\displaystyle{ \int_{m}^{\infty} g(x) d x }[/math] jest zbieżna. Ponieważ ciąg [math]\displaystyle{ (U_k) }[/math] jest rosnący i ograniczony od góry, to jest zbieżny. Wynika stąd istnienie granic


1. [math]\displaystyle{ \qquad \lim_{k \to \infty} U_k = g }[/math]


2. [math]\displaystyle{ \qquad \lim_{k \to \infty} \int_{k}^{k + 1} f(x) d x = \lim_{k \to \infty} U_{k + 1} - \lim_{k \to \infty} U_k = g - g = 0 }[/math]


3. [math]\displaystyle{ \qquad \lim_{b \to \infty} \left( \int^b_m f(x) d x - U_{\lfloor b \rfloor} \right) = 0 }[/math]


4. [math]\displaystyle{ \qquad \lim_{b \to \infty} \int^b_m f(x) d x = \lim_{b \to \infty} \left[ \left( \int^b_m f(x) d x - U_{\lfloor b \rfloor} \right) + U_{\lfloor b \rfloor} \right] = \lim_{b \to \infty} \left( \int^b_m f(x) d x - U_{\lfloor b \rfloor} \right) + \lim_{b \to \infty} U_{\lfloor b \rfloor} = 0 + g = g }[/math]


Trzecia granica wymaga krótkiego omówienia. Prawdziwy jest następujący ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int^b_m f(x) d x - U_{\lfloor b \rfloor} = \int^b_m f(x) d x - \int_{m}^{\lfloor b \rfloor} f(x) d x = \int^b_{\lfloor b \rfloor} f(x) d x \leqslant \int^{\lfloor b \rfloor + 1}_{\lfloor b \rfloor} f(x) d x }[/math]

Wystarczy zauważyć, że w granicy dla [math]\displaystyle{ b \rightarrow \infty }[/math] ostatni wyraz po prawej stronie dąży do zera (granica nr 2).

Zatem całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest zbieżna. Co kończy dowód punktu 1.


Punkt 2.

Z założenia całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] jest rozbieżna. Przypuśćmy, że całka [math]\displaystyle{ \int_{a}^{\infty} g(x) d x }[/math] jest zbieżna. Jeśli tak, to na podstawie udowodnionego już punktu 1. całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] musiałaby być zbieżna, wbrew założeniu, że jest rozbieżna. Otrzymana sprzeczność dowodzi, że nasze przypuszczenie o zbieżności całki [math]\displaystyle{ \int_{a}^{\infty} g(x) d x }[/math] jest fałszywe. Co kończy dowód punktu 2.


Twierdzenie E36
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest całkowalna w każdym podprzedziale [math]\displaystyle{ [a, b] }[/math] przedziału [math]\displaystyle{ [a, + \infty) }[/math] i całka [math]\displaystyle{ \int_{a}^{\infty} | f(x) | d x }[/math] jest zbieżna, to zbieżna jest też całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math]. O całce [math]\displaystyle{ \int_{a}^{\infty} f (x) d x }[/math] powiemy wtedy, że jest bezwzględnie zbieżna.

Dowód

Ponieważ

[math]\displaystyle{ 0 \leqslant f(x) + | f(x) | \leqslant 2 | f(x) | }[/math]

to z kryterium porównawczego wynika, że całka

[math]\displaystyle{ \int_{a}^{\infty} (f(x) + | f(x) |) d x }[/math]

jest zbieżna. Zatem całka

[math]\displaystyle{ \int_{a}^{\infty} f(x) d x = \int_{a}^{\infty} (f(x) + | f(x) |) d x - \int_{a}^{\infty} | f(x) | d x }[/math]

jest różnicą całek zbieżnych i również musi być zbieżna.


Twierdzenie E37
Jeżeli całka [math]\displaystyle{ \int_{a}^{\infty} | f(x) | d x }[/math] jest zbieżna, a funkcja [math]\displaystyle{ g(x) }[/math] jest ograniczona, to zbieżna jest też całka [math]\displaystyle{ \int_{a}^{\infty} | f(x) g(x) | d x }[/math].

Dowód

Z założenia funkcja [math]\displaystyle{ g(x) }[/math] jest ograniczona, zatem istnieje taka liczba [math]\displaystyle{ M \gt 0 }[/math], że dla każdego [math]\displaystyle{ x \geqslant a }[/math] jest [math]\displaystyle{ | g(x) | \leqslant M }[/math]. Zauważmy, że dla [math]\displaystyle{ x \geqslant a }[/math] prawdziwy jest układ nierówności

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{M}} | f(x) g(x) | \leqslant | f(x) | }[/math]

Zatem na podstawie kryterium porównawczego ze zbieżności całki [math]\displaystyle{ \int_{a}^{\infty} | f(x) | d x }[/math] wynika zbieżność całki [math]\displaystyle{ \int_{a}^{\infty} | f(x) g(x) | d x }[/math].


Twierdzenie E38
Niech [math]\displaystyle{ F(x) }[/math] oznacza funkcję pierwotną funkcji [math]\displaystyle{ f(x) }[/math]. Całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] jest zbieżna wtedy i tylko wtedy, gdy granica [math]\displaystyle{ \lim_{x \to \infty} F(x) }[/math] jest skończona.

Dowód

Z definicji całki niewłaściwej mamy

[math]\displaystyle{ \int_{a}^{\infty} f(t) d t = \lim_{b \to \infty} \int^b_a f(t) d t }[/math]
[math]\displaystyle{ \;\; = \lim_{b \to \infty} \biggl[ F(t) \biggr\rvert_{a}^{b} \biggr] }[/math]
[math]\displaystyle{ \;\; = \lim_{b \to \infty} [F (b) - F (a)] }[/math]
[math]\displaystyle{ \;\; = - F (a) + \lim_{b \to \infty} F (b) }[/math]

Zauważmy, że aby możliwe było rozważanie, czy całka [math]\displaystyle{ \int_{a}^{\infty} f (x) d x }[/math] jest zbieżna, muszą być spełnione warunki dodatkowe, których już jawnie nie wypisaliśmy

●    funkcja [math]\displaystyle{ f(x) }[/math] musi być określona w przedziale [math]\displaystyle{ [a, \infty) }[/math]
●    funkcja [math]\displaystyle{ f(x) }[/math] musi być całkowalna w każdym podprzedziale [math]\displaystyle{ [a, b] }[/math] przedziału [math]\displaystyle{ [a, \infty) }[/math]

Ponieważ [math]\displaystyle{ \int^b_a f(t) d t = F(b) - F(a) }[/math], to wartość [math]\displaystyle{ F(a) }[/math] musi być skończona. Zatem granica [math]\displaystyle{ \lim_{x \to \infty} F(x) }[/math] jest skończona wtedy i tylko wtedy, gdy granica [math]\displaystyle{ \lim_{b \to \infty} \int^b_a f (t) d t }[/math] jest skończona. Co należało pokazać.


Twierdzenie E39
Jeżeli

●    funkcja [math]\displaystyle{ f(x) }[/math] jest funkcją ciągłą i ma stały znak w przedziale [math]\displaystyle{ [a, + \infty) }[/math]
●    całka [math]\displaystyle{ \int_{a}^{\infty} f (x) d x }[/math] jest zbieżna
●    funkcja [math]\displaystyle{ g(x) }[/math] jest ograniczona w przedziale [math]\displaystyle{ [a, + \infty) }[/math], czyli dla [math]\displaystyle{ x \geqslant a }[/math] jest

1. [math]\displaystyle{ \qquad m \leqslant g (x) \leqslant M }[/math]

      lub

2. [math]\displaystyle{ \qquad | g (x) | \leqslant L }[/math]
●    całka [math]\displaystyle{ \int^b_a g (x) d x }[/math] istnieje dla każdego [math]\displaystyle{ b \gt a }[/math]

to całki [math]\displaystyle{ \int_{a}^{\infty} | f (x) g (x) | d x }[/math] oraz [math]\displaystyle{ \int_{a}^{\infty} f (x) g (x) d x }[/math] są zbieżne i prawdziwe są następujące oszacowania

1. [math]\displaystyle{ \qquad s \:\! m \int_{a}^{\infty} f (x) d x \leqslant s \int_{a}^{\infty} f (x) g (x) d x \leqslant s M \int_{a}^{\infty} f (x) d x }[/math]

lub

2. [math]\displaystyle{ \qquad \int_{a}^{\infty} | f (x) g (x) | d x \leqslant L \left| \int_{a}^{\infty} f (x) d x \right| }[/math]

gdzie [math]\displaystyle{ s }[/math] jest znakiem funkcji [math]\displaystyle{ f(x) }[/math] w przedziale [math]\displaystyle{ [a, + \infty) }[/math].

Dowód

Z założenia funkcja [math]\displaystyle{ f (t) }[/math] ma stały znak w przedziale [math]\displaystyle{ [a, + \infty) }[/math], zatem mamy

[math]\displaystyle{ \int_{a}^{\infty} f (t) d t = s \int_{a}^{\infty} [s \cdot f (t)] d t = s \int_{a}^{\infty} | f (t) | d t }[/math]

gdzie [math]\displaystyle{ s }[/math] jest znakiem funkcji [math]\displaystyle{ f(x) }[/math] w przedziale [math]\displaystyle{ [a, + \infty) }[/math]. Czyli całka [math]\displaystyle{ \int_{a}^{\infty} f (t) d t }[/math] jest bezwzględnie zbieżna. Ponieważ z założenia funkcja [math]\displaystyle{ g(x) }[/math] jest ograniczona, to z twierdzenia E37 wynika, że całka [math]\displaystyle{ \int_{a}^{\infty} | f (t) g (t) | d t }[/math] jest zbieżna, zatem jest też zbieżna całka [math]\displaystyle{ \int_{a}^{\infty} f (t) g (t) d t }[/math] (twierdzenie E36).

Przypadek 1.

Funkcja [math]\displaystyle{ s \cdot f (t) }[/math] jest dodatnia, gdzie [math]\displaystyle{ s }[/math] jest znakiem funkcji [math]\displaystyle{ f(x) }[/math] w przedziale [math]\displaystyle{ [a, + \infty) }[/math]. Stąd i z założonej postaci ograniczenia funkcji [math]\displaystyle{ g (t) }[/math] wynika, że prawdziwy jest następujący układ nierówności

[math]\displaystyle{ s \:\! m f (x) \leqslant s f (x) g (x) \leqslant s M f (x) }[/math]

Wynika stąd odpowiedni układ nierówności dla całek oznaczonych właściwych

[math]\displaystyle{ s \:\! m \int^b_a f (x) d x \leqslant s \int^b_a f (x) g (x) d x \leqslant s M \int^b_a f (x) d x }[/math]

gdzie [math]\displaystyle{ b \gt a }[/math]. Ponieważ całki [math]\displaystyle{ \int_{a}^{\infty} f (x) d x }[/math] oraz [math]\displaystyle{ \int_{a}^{\infty} f (x) g (x) d x }[/math] są zbieżne, to uprawnione jest przejście do granicy i w granicy, gdy [math]\displaystyle{ b }[/math] dąży do nieskończoności, otrzymujemy

[math]\displaystyle{ s \:\! m \int_{a}^{\infty} f (x) d x \leqslant s \int_{a}^{\infty} f (x) g (x) d x \leqslant s M \int_{a}^{\infty} f (x) d x }[/math]

Przypadek 2.

Ponieważ funkcja [math]\displaystyle{ | f (t) | }[/math] jest dodatnia, to prawdziwe jest oszacowanie

[math]\displaystyle{ | g (x) | \cdot | f (x) | \leqslant L | f (x) | }[/math]

Wynika stąd oszacowanie dla całek oznaczonych właściwych

[math]\displaystyle{ \int^b_a | f (x) g (x) | d x \leqslant L \int^b_a | f (x) | d x }[/math]
[math]\displaystyle{ \, = s L \int^b_a f (x) d x }[/math]
[math]\displaystyle{ \, = L \left| \int^b_a f (x) d x \right| }[/math]

gdzie [math]\displaystyle{ b \gt a }[/math]. Ponieważ całki [math]\displaystyle{ \int_{a}^{\infty} f (x) d x }[/math] i [math]\displaystyle{ \int_{a}^{\infty} | f (x) g (x) | d x }[/math] są zbieżne, to możemy przejść do granicy i w granicy, gdy [math]\displaystyle{ b }[/math] dąży do nieskończoności, otrzymujemy

[math]\displaystyle{ \int_{a}^{\infty} | f (x) g (x) | d x \leqslant L \left| \int_{a}^{\infty} f (x) d x \right| }[/math]

Co należało pokazać.


Twierdzenie E40
Niech [math]\displaystyle{ P_n(t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Całka

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_n(t)}{t^{\alpha}}} d t }[/math]

gdzie [math]\displaystyle{ \alpha \gt 1 }[/math], jest zbieżna.

Dowód

Funkcja [math]\displaystyle{ {\small\frac{1}{t^{\alpha}}} }[/math] spełnia warunki

●    jest ciągła i nie zmienia znaku w przedziale [math]\displaystyle{ (0, + \infty) }[/math]
●    całka [math]\displaystyle{ \int_1^{\infty} {\small\frac{d t}{t^{\alpha}}} = {\small\frac{1}{\alpha - 1}} }[/math] jest zbieżna

Funkcje okresowe Bernoulliego [math]\displaystyle{ P_r (t) }[/math] są zdefiniowane wzorem

[math]\displaystyle{ P_r(t) = B_r(t - \lfloor t \rfloor) }[/math]

a wielomiany Bernoulliego [math]\displaystyle{ B_r(t) }[/math] są ograniczone w przedziale [math]\displaystyle{ [0, 1] }[/math][11] (zobacz przykład E14), wynika stąd, że [math]\displaystyle{ P_r(t) }[/math] są funkcjami ograniczonymi. Zatem z twierdzenia E39 otrzymujemy natychmiast, że całka [math]\displaystyle{ \int_1^{\infty} {\small\frac{P_r(t)}{t^{\alpha}}} d t }[/math] jest zbieżna.


Twierdzenie E41
Niech [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Całka

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_n(t)}{t^{\varepsilon}}} d t }[/math]

gdzie [math]\displaystyle{ \varepsilon \gt 0 }[/math], jest zbieżna.

Dowód

W przypadku funkcji [math]\displaystyle{ g(t) = {\small\frac{1}{t^{\varepsilon}}} }[/math] z twierdzenia E29 otrzymujemy

[math]\displaystyle{ \int_1^b {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{b^{\varepsilon}}} - 1 \right] + {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t }[/math]

W granicy, gdy [math]\displaystyle{ b }[/math] dąży do nieskończoności, mamy

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = - {\small\frac{B_{n + 1}}{n + 1}} + {\small\frac{\varepsilon}{n + 1}} \int_1^{\infty} {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t }[/math]

Ponieważ na mocy twierdzenia E40 całka po prawej stronie jest zbieżna, to jest też zbieżna całka [math]\displaystyle{ \int_1^{\infty} {\small\frac{P_n (t)}{t^{\varepsilon}}} d t }[/math]. Co należało pokazać.


Zadanie E42
Niech [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Pokazać, że całka

[math]\displaystyle{ \int_1^{\infty} P_n (t) t^{\varepsilon} d t }[/math]

gdzie [math]\displaystyle{ 0 \lt \varepsilon \lt 1 }[/math], jest rozbieżna.

Rozwiązanie

W przypadku funkcji [math]\displaystyle{ g(t) = t^{\varepsilon} }[/math] z twierdzenia E29 otrzymujemy

[math]\displaystyle{ \int_1^b P_n(t) t^{\varepsilon} d t = {\small\frac{B_{n + 1}}{n + 1}} [b^{\varepsilon} - 1] - {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 - \varepsilon}}} d t }[/math]

Dla [math]\displaystyle{ 0 \lt \varepsilon \lt 1 }[/math] całka [math]\displaystyle{ \int_1^{\infty} {\small\frac{P_{n + 1}(t)}{t^{1 - \varepsilon}}} d t }[/math] jest zbieżna, ale pierwszy wyraz po prawej stronie jest rozbieżny, gdy [math]\displaystyle{ b }[/math] dąży do nieskończoności, zatem cała prawa strona jest rozbieżna.


Zadanie E43
Niech [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Pokazać, że całka

[math]\displaystyle{ \int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t }[/math]

jest zbieżna.

Rozwiązanie

W przypadku funkcji [math]\displaystyle{ g(t) = {\small\frac{1}{\log t}} }[/math] z twierdzenia E29 otrzymujemy

[math]\displaystyle{ \int_2^b {\small\frac{P_n(t)}{\log t}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{\log b}} - {\small\frac{1}{\log 2}} \right] + {\small\frac{1}{n + 1}} \int_2^b {\small\frac{P_{n + 1}(t)}{t \cdot \log^2 t}} d t }[/math]

W granicy, gdy [math]\displaystyle{ b }[/math] dąży do nieskończoności, mamy

[math]\displaystyle{ \int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t = - {\small\frac{B_{n + 1}}{(n + 1) \log 2}} + {\small\frac{1}{n + 1}} \int_2^{\infty} {\small\frac{P_{n + 1} (t)}{t \cdot \log^2 t}} d t }[/math]

Ponieważ na mocy twierdzenia E41 całka po prawej stronie jest zbieżna, to jest też zbieżna całka [math]\displaystyle{ \int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t }[/math].


Zadanie E44
Niech [math]\displaystyle{ P_r (t) }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego oraz prawdziwe będzie następujące oszacowanie funkcji [math]\displaystyle{ P_r (t) }[/math]

[math]\displaystyle{ m_r \leqslant P_r (t) \leqslant M_r }[/math]

Pokazać, że dla [math]\displaystyle{ \alpha \gt 1 }[/math] i [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] jest

[math]\displaystyle{ {\small\frac{m_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} \leqslant \int_n^{\infty} {\small\frac{P_r(t)}{t^{\alpha}}} d t \leqslant {\small\frac{M_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} }[/math]
Rozwiązanie

Zauważmy, że

  • funkcja [math]\displaystyle{ {\small\frac{1}{t^{\alpha}}} }[/math] jest funkcją ciągłą i zachowuje stały (dodatni) znak w przedziale [math]\displaystyle{ (0, + \infty) }[/math]
  • całka [math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d t}{t^{\alpha}}} = {\small\frac{1}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} }[/math] jest zbieżna
  • funkcja [math]\displaystyle{ P_r (t) }[/math] jest ograniczona i z założenia prawdziwy jest układ nierówności [math]\displaystyle{ m_r \leqslant P_r (t) \leqslant M_r }[/math]
  • całka [math]\displaystyle{ \int^b_n P_r (t) d t }[/math] istnieje dla każdego [math]\displaystyle{ b \gt n }[/math]

Zatem spełnione są założenia twierdzenia E39 i natychmiast otrzymujemy, że całka [math]\displaystyle{ \int_{n}^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t }[/math] jest zbieżna i prawdziwe jest oszacowanie

[math]\displaystyle{ {\small\frac{m_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} \leqslant \int_n^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t \leqslant {\small\frac{M_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} }[/math]

Co należało pokazać.


Podamy teraz kryterium Dirichleta, dzięki któremu moglibyśmy natychmiast uzyskać dowody twierdzeń E40E41 oraz rozwiązanie zadania E43. Celowo nie stosowaliśmy tego kryterium, aby Czytelnik mógł zapoznać się z ciekawym zastosowaniem twierdzenia E29.

Twierdzenie E45* (kryterium Dirichleta)
Jeżeli funkcje [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ g(x) }[/math] są całkowalne w każdym podprzedziale [math]\displaystyle{ [a, b] }[/math] przedziału [math]\displaystyle{ [a, + \infty) }[/math] oraz spełniają warunki

●    całka z funkcji [math]\displaystyle{ f(x) }[/math] jest ograniczona, czyli istnieje taka stała [math]\displaystyle{ M \gt 0 }[/math], że dla każdego [math]\displaystyle{ b \gt a }[/math] jest [math]\displaystyle{ \left| \int^b_a f(x) d x \right| \leqslant M }[/math]
●    funkcja [math]\displaystyle{ g(x) }[/math] jest funkcją monotoniczną (czyli malejącą lub rosnącą)
●    [math]\displaystyle{ \lim_{x \to \infty} g (x) = 0 }[/math]

to całka [math]\displaystyle{ \int_{a}^{\infty} f (x) g (x) d x }[/math] jest zbieżna.


Zadanie E46
Korzystając z kryterium Dirichleta, pokazać, że całki

[math]\displaystyle{ \int_{0}^{\infty} {\small\frac{\sin x}{x}} d x = {\small\frac{1}{2}} \pi }[/math]
[math]\displaystyle{ \int_{2}^{\infty} {\small\frac{P_1 (x)}{\log x}} d x = - 0.117923474371 \ldots }[/math]

są zbieżne.

Rozwiązanie

Punkt 1.

Zauważmy, że funkcja [math]\displaystyle{ {\small\frac{\sin x}{x}} }[/math] jest ciągła w punkcie [math]\displaystyle{ x = 0 }[/math]. Mamy też [math]\displaystyle{ \lim_{x \to 0} {\small\frac{\sin x}{x}} = 1 }[/math]. Oszacowanie całki jest natychmiastowe

[math]\displaystyle{ \left| \int^b_0 \sin t d t \right| = \biggl| - \cos t \big\rvert_{0}^{b} \biggr| = | - \cos b + 1 | \leqslant 2 }[/math]

Zatem z kryterium Dirichleta wynika, że całka [math]\displaystyle{ \int_{0}^{\infty} {\small\frac{\sin x}{x}} d x }[/math] jest zbieżna.

Punkt 2.

Ponieważ [math]\displaystyle{ P_1 (x) }[/math] jest funkcją okresową o okresie równym [math]\displaystyle{ 1 }[/math], to całka oznaczona będzie równa sumie wielokrotności całek na odcinku [math]\displaystyle{ [0, 1] }[/math] i całce na odcinku [math]\displaystyle{ [0, x - \lfloor x \rfloor] }[/math]. Pamiętając o tym, że

[math]\displaystyle{ \int^1_0 P_1 (t) d t = 0 }[/math]
[math]\displaystyle{ \int B_n (x) = {\small\frac{1}{n + 1}} B_{n + 1} (x) }[/math]

otrzymujemy

[math]\displaystyle{ \int^b_2 P_1 (t) d t = (\lfloor b \rfloor - 2) \cdot \int^1_0 P_1 (t) d t + \int_{0}^{b - \lfloor b \rfloor} P_1 (t) d t = }[/math]
[math]\displaystyle{ \;\;\, = \int_{0}^{b - \lfloor b \rfloor} B_1 (t) d t }[/math]
[math]\displaystyle{ \;\;\, = {\small\frac{1}{2}} B_2 (t) \biggr\rvert_{0}^{b - \lfloor b \rfloor} }[/math]
[math]\displaystyle{ \;\;\, = {\small\frac{1}{2}} (B_2 (b - \lfloor b \rfloor) - B_2 (0)) }[/math]


Ponieważ [math]\displaystyle{ | B_{2 k} (x) | \leqslant | B_{2 k} | \, }[/math] dla [math]\displaystyle{ \, 0 \leqslant x \leqslant 1 \; }[/math] i [math]\displaystyle{ \; k \in \mathbb{N}_0 }[/math] (zobacz E12), zatem

[math]\displaystyle{ \left| \int^b_2 P_1 (t) d t \right| = {\small\frac{1}{2}} | B_2 (b - \lfloor b \rfloor) - B_2 | \leqslant {\small\frac{1}{2}} (| B_2 (b - \lfloor b \rfloor) | + | B_2 |) \leqslant B_2 }[/math]

Z kryterium Dirichleta wynika natychmiast, że całka [math]\displaystyle{ \int_{2}^{\infty} P_1 (t) d t }[/math] jest zbieżna.



Przykłady

Przykład E47
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^n k^2 }[/math]

Ponieważ [math]\displaystyle{ f(t) = t^2 }[/math], to [math]\displaystyle{ f'(t) = 2 t }[/math], [math]\displaystyle{ f''(t) = 2 }[/math], a dla [math]\displaystyle{ i \geqslant 3 }[/math] mamy [math]\displaystyle{ f^{(i)}(t) = 0 }[/math]. Zatem dla [math]\displaystyle{ r = 3 }[/math] wyraz [math]\displaystyle{ {\small\frac{1}{6}} \int_1^n P_3(t) f^{(3)}(t) d t }[/math] jest równy zero i otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^n k^2 = {\small\frac{1}{6}} n (n + 1) (2 n + 1) }[/math]


Przykład E48
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} }[/math]

Wiemy, że przypadku szeregu nieskończonego jest

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} }[/math]

gdzie [math]\displaystyle{ {\small\frac{\pi^2}{6}} = 1.644934066848226436472415166646 \ldots }[/math]


Dla [math]\displaystyle{ r = 1 }[/math] mamy

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} = {\small\frac{3}{2}} - {\small\frac{1}{n}} + {\small\frac{1}{2 n^2}} - 2 \int_1^n {\small\frac{P_1 (t)}{t^3}} d t }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{3}{2}} - 2 \int_1^{\infty} {\small\frac{P_1 (t)}{t^3}} d t }[/math]

Rzeczywiście, całka po prawej stronie jest zbieżna i równa [math]\displaystyle{ \tfrac{1}{12} ( 9 - \pi^2 ) }[/math].

Jeżeli tak, to możemy sumę zapisać w postaci

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} = {\small\frac{3}{2}} - {\small\frac{1}{n}} + {\small\frac{1}{2 n^2}} - 2 \int_1^{\infty} {\small\frac{P_1 (t)}{t^3}} d t + 2 \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t }[/math]
[math]\displaystyle{ \:\:\, = {\small\frac{\pi^2}{6}} - {\small\frac{1}{n}} + {\small\frac{1}{2 n^2}} + 2 \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t }[/math]


Ponieważ dla [math]\displaystyle{ P_1(t) = t - \lfloor t \rfloor - {\small\frac{1}{2}} }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ - {\small\frac{1}{2}} \leqslant P_1(t) \leqslant {\small\frac{1}{2}} }[/math], to korzystając z pokazanego w zadaniu E44 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{1}{4 n^2}} \leqslant \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t \leqslant {\small\frac{1}{4 n^2}} }[/math]

Teraz już łatwo otrzymujemy oszacowania

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant {\small\frac{\pi^2}{6}} - {\small\frac{1}{n}} + {\small\frac{1}{n^2}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \geqslant {\small\frac{\pi^2}{6}} - {\small\frac{1}{n}} }[/math]

Jeśli we wzorze Eulera-Maclaurina uwzględnimy więcej wyrazów, to otrzymamy dokładniejsze oszacowania.


Przykład E49
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math]

Rozwinięcie asymptotyczne tej sumy jest dobrze znane[12]

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + \gamma + {\small\frac{1}{2 n}} - \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2k \cdot n^{2 k}}} }[/math]
[math]\displaystyle{ = \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + {\small\frac{1}{120 n^4}} - {\small\frac{1}{252 n^6}} + {\small\frac{1}{240 n^8}} - {\small\frac{1}{132 n^{10}}} + \cdots }[/math]

gdzie [math]\displaystyle{ \gamma = 0.57721566490153286060651209 \ldots }[/math] jest stałą Eulera.


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + {\small\frac{1}{2}} + {\small\frac{1}{2 n}} - \int_1^n {\small\frac{P_1 (t)}{t^2}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left( \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \right) = {\small\frac{1}{2}} - \int_1^{\infty} {\small\frac{P_1 (t)}{t^2}} d t }[/math]

Rzeczywiście, całka po prawej stronie jest zbieżna i równa [math]\displaystyle{ \tfrac{1}{2} - \gamma }[/math].


Zastosujemy teraz wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 3 }[/math] i znajdziemy oszacowanie

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + {\small\frac{7}{12}} + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} - \int_1^n {\small\frac{P_3 (t)}{t^4}} d t }[/math]
[math]\displaystyle{ \: = \log n + {\small\frac{7}{12}} + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} - \int_1^{\infty} {\small\frac{P_3 (t)}{t^4}} d t + \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t }[/math]

Oczywiście

[math]\displaystyle{ {\small\frac{7}{12}} - \int_1^{\infty} {\small\frac{P_3 (t)}{t^4}} d t = \gamma }[/math]

Dostajemy

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t }[/math]


Ponieważ prawdziwe są oszacowania (zobacz przykłady E13E14)

[math]\displaystyle{ - {\small\frac{\sqrt{3}}{36}} \leqslant P_3 (t) \leqslant {\small\frac{\sqrt{3}}{36}} }[/math]

to korzystając z pokazanego w zadaniu E44 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{\sqrt{3}}{108 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t \leqslant {\small\frac{\sqrt{3}}{108 n^3}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} \leqslant \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + {\small\frac{\sqrt{3}}{108 n^3}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} \geqslant \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} - {\small\frac{\sqrt{3}}{108 n^3}} }[/math]

Powyższe nierówności mogą nam posłużyć do wyznaczenia stałej [math]\displaystyle{ \gamma }[/math]. Przykładowo dla [math]\displaystyle{ n = 10^6 }[/math], otrzymujemy

[math]\displaystyle{ 0.5772156649015328605 \leqslant \gamma \leqslant 0.5772156649015328607 }[/math]


Przykład E50
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} \log k }[/math]

Rozwinięcie asymptotyczne tej sumy jest dobrze znane[13]

[math]\displaystyle{ \log n! = n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2 k (2 k - 1) \cdot n^{2 k - 1}}} }[/math]
[math]\displaystyle{ \quad \; = n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{1260 n^5}} - {\small\frac{1}{1680 n^7}} + {\small\frac{1}{1188 n^9}} - \cdots }[/math]

gdzie [math]\displaystyle{ \tfrac{1}{2} \log \left( 2 \pi \right) = 0.91893853320467274178 \ldots }[/math]


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + 1 + \int_1^n {\small\frac{P_1 (t)}{t}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = 1 + \int_{1}^{\infty} {\small\frac{P_1(t)}{t}} d t }[/math]

Z twierdzenia E41 wiemy, że całka [math]\displaystyle{ \int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t }[/math] jest zbieżna, a z rozwinięcia asymptotycznego wiemy, że granica po lewej stronie jest równa [math]\displaystyle{ \tfrac{1}{2} \log \left( 2 \pi \right) }[/math], zatem otrzymujemy

[math]\displaystyle{ \int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t = \tfrac{1}{2} \log (2 \pi) - 1 }[/math]


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 4 }[/math], otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + {\small\frac{331}{360}} + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{4}} \int_1^n {\small\frac{P_4 (t)}{t^4}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = {\small\frac{331}{360}} + {\small\frac{1}{4}} \int_1^{\infty} {\small\frac{P_4 (t)}{t^4}} d t }[/math]

Ponieważ całka po prawej stronie jest zbieżna, to granica wypisana po lewej stronie istnieje i jest równa stałej – w tym przypadku [math]\displaystyle{ \tfrac{1}{2} \log \left( 2 \pi \right) }[/math]. Możemy teraz wzór Eulera-Maclaurina zapisać w postaci

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + {\small\frac{331}{360}} + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{4}} \int_1^{\infty} {\small\frac{P_4(t)}{t^4}} d t - {\small\frac{1}{4}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} d t }[/math]

Czyli

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} - {\small\frac{1}{4}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} d t }[/math]


Z przykładów E13E14 wiemy, że prawdziwe są oszacowania

[math]\displaystyle{ - {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}} }[/math]

Zatem korzystając z pokazanego w zadaniu E44 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{1}{90 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} (t) d t \leqslant {\small\frac{7}{720 n^3}} }[/math]

Czyli

[math]\displaystyle{ - {\small\frac{7}{2880 n^3}} \leqslant - {\small\frac{1}{4}} \int_n^{\infty} {\small\frac{P_4(t)}{t^4}} (t) d t \leqslant {\small\frac{1}{360 n^3}} }[/math]


Skąd natychmiast otrzymujemy oszacowania

[math]\displaystyle{ \sum_{k = 1}^{n} \log k \leqslant n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} \log k \geqslant n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} - {\small\frac{1}{192 n^3}} }[/math]

Oczywiście, podobnie jak w poprzednim przykładzie, powyższe nierówności mogą służyć do wyznaczenia wartości stałej.


Przykład E51
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} }[/math]

Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 4 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} = {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} - {\small\frac{133}{640}} + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1920}} n^{- 5 / 2} + {\small\frac{5}{128}} \int_1^n {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \sqrt{k} - \left( {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} \right) \right] = - {\small\frac{133}{640}} + {\small\frac{5}{128}} \int_1^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]


Ponieważ całka po prawej stronie jest zbieżna, to granica wypisana po lewej stronie istnieje i jest równa pewnej stałej [math]\displaystyle{ C }[/math]. Możemy teraz wzór Eulera-Maclaurina zapisać w postaci

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} = {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} - {\small\frac{133}{640}} + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1920}} n^{- 5 / 2} + {\small\frac{5}{128}} \int_1^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t - {\small\frac{5}{128}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} = {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} + C + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1920}} n^{- 5 / 2} - {\small\frac{5}{128}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]


Z przykładów E13E14 wiemy, że prawdziwe są oszacowania

[math]\displaystyle{ - {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}} }[/math]

Zatem korzystając z pokazanego w zadaniu E44 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{1}{75}} n^{- 5 / 2} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{7}{600}} n^{- 5 / 2} }[/math]

Czyli

[math]\displaystyle{ - {\small\frac{7}{15360}} n^{- 5 / 2} \leqslant - {\small\frac{5}{128}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{1}{1920}} n^{- 5 / 2} }[/math]


I otrzymujemy oszacowania

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} \leqslant {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} + C + {\small\frac{1}{24}} n^{- 1 / 2} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} \geqslant {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} + C + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1024}} n^{- 5 / 2} }[/math]

Powyższe nierówności mogą nam posłużyć do wyznaczenia stałej [math]\displaystyle{ C }[/math]. Przykładowo dla [math]\displaystyle{ n = 10^6 }[/math], otrzymujemy

[math]\displaystyle{ - 0.207886224977354567 \leqslant C \leqslant - 0.207886224977354565 }[/math]


Przykład E52
Pokażemy, dlaczego lepiej wybrać wartość [math]\displaystyle{ r }[/math] za dużą niż za małą i dlaczego należy sprawdzać zbieżność całki

[math]\displaystyle{ \int_a^b P_r(t) f^{(r)}(t) d t }[/math]

korzystając z kryterium Dirichleta (twierdzenie E45) lub z twierdzenia E41. Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} }[/math]

Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} = {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{10}} + {\small\frac{3}{2}} \int_1^n \sqrt{t} \cdot P_1 (t) d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} k^{3 / 2} - \left( {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} \right) \right] = {\small\frac{1}{10}} + {\small\frac{3}{2}} \int_1^{\infty} \sqrt{t} \cdot P_1(t) d t }[/math]

Jeszcze nie wszystkie wyrazy rozbieżne, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, zostały wyodrębnione – lewa strona jest rozbieżna. Podobnie rozbieżna jest całka po prawej stronie – rozbieżność tej całki informuje nas, że wybraliśmy za małą wartość [math]\displaystyle{ r }[/math].


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 2 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} = {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} - {\small\frac{1}{40}} - {\small\frac{3}{8}} \int_1^n {\small\frac{P_2(t)}{\sqrt{t}}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, otrzymujemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} k^{3 / 2} - \left( {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} \right) \right] = - {\small\frac{1}{40}} - {\small\frac{3}{8}} \int_1^{\infty} {\small\frac{P_2(t)}{\sqrt{t}}} d t }[/math]

Całka po prawej stronie jest zbieżna, co wynika z kryterium Dirichleta. Zatem i lewa strona jest zbieżna, czyli wszystkie wyrazy rozbieżne, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, zostały wyodrębnione. Możemy to łatwo sprawdzić, obierając większą wartość [math]\displaystyle{ r }[/math].


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 4 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} = {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} - {\small\frac{49}{1920}} + {\small\frac{1}{1920}} n^{- 3 / 2} - {\small\frac{3}{128}} \int_1^n {\small\frac{P_4 (t)}{t^{5 / 2}}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} k^{3 / 2} - \left( {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} \right) \right] = - {\small\frac{49}{1920}} - {\small\frac{3}{128}} \int_1^{\infty} {\small\frac{P_4(t)}{t^{5 / 2}}} d t }[/math]


Uwaga E53
Rozwiązując przykłady znaleźliśmy wartości następujących całek oznaczonych

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_1 (t)}{t}} d t = {\small\frac{1}{2}} \log (2 \pi) - 1 }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_1 (t)}{t^2}} d t = {\small\frac{1}{2}} - \gamma }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_1 (t)}{t^3}} d t = {\small\frac{9 - \pi^2}{12}} }[/math]


Jeżeli funkcja rzeczywista [math]\displaystyle{ f(t) }[/math] ma ciągłą pochodną w [math]\displaystyle{ [a, b] \subset \mathbb{R} }[/math] oraz [math]\displaystyle{ \lim_{t \to \infty} f (t) = 0 }[/math], to dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ \int_a^{\infty} P_{n + 1} (t) f'(t) d t = - B_{n + 1} f(a) - (n + 1) \int_a^{\infty} P_n(t) f(t) d t }[/math]

(Jest to prosty wniosek z twierdzenia E29).


Powyższy rezultat możemy wykorzystać do wyliczenia kolejnych całek zawierających funkcje okresowe Bernoulliego. Przykładowo mamy

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_2 (t)}{t^2}} d t = \log (2 \pi) - {\small\frac{11}{6}} }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_2 (t)}{t^3}} d t = {\small\frac{7}{12}} - \gamma }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_2 (t)}{t^4}} d t = {\small\frac{10 - \pi^2}{18}} }[/math]



Metody wyliczania stałej we wzorze Eulera-Maclaurina

Uwaga E54
W przedstawionych wyżej przykładach wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina (przykład E49E51) oraz pokazaliśmy, że wartość całki [math]\displaystyle{ \int_a^{\infty} P_r (t) f^{(r)} (t) d t }[/math] jest związana z wartością stałej (przykład E48, E49E50). Obecnie dokładnie omówimy ten problem.


Twierdzenie E55
Jeżeli założymy, że

●    całka nieoznaczona [math]\displaystyle{ F(x) = \int f(x) d x }[/math] nie zawiera wyrazów, które nie zależą od [math]\displaystyle{ x }[/math] (takie wyrazy ulegają redukcji przy wyliczaniu całki [math]\displaystyle{ \int_a^b f(t) d t = F(b) - F(a) }[/math] i nie występują we wzorze Eulera-Maclaurina)
●    dla pewnego [math]\displaystyle{ r \geqslant 1 }[/math] całka [math]\displaystyle{ \int_a^{\infty} P_r (t) f^{(r)} (t) d t }[/math] jest zbieżna

to wzór Eulera-Maclaurina może być zapisany w postaci

[math]\displaystyle{ \sum_{k = a}^b f (k) = C (a) + E (b) }[/math]

gdzie

[math]\displaystyle{ C(a) = - F (a) + {\small\frac{1}{2}} f (a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)} (a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r (t) f^{(r)} (t) d t }[/math]
[math]\displaystyle{ E(b) = F (b) + {\small\frac{1}{2}} f (b) + \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(b) + {\small\frac{(- 1)^r}{r!}} \int_b^{\infty} P_r (t) f^{(r)} (t) d t }[/math]
Dowód

Jeżeli całka [math]\displaystyle{ \int_a^{\infty} P_r (t) f^{(r)} (t) d t }[/math] jest zbieżna, to możemy napisać

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t }[/math]
[math]\displaystyle{ \;\;\,\, = F(b) - F(a) + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t + {\small\frac{(- 1)^r}{r!}} \int_b^{\infty} P_r(t) f^{(r)}(t) d t }[/math]
[math]\displaystyle{ \;\;\,\, = \left[ - F (a) + {\small\frac{1}{2}} f (a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)} (a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r (t) f^{(r)} (t) d t \right] + \left[ F (b) + {\small\frac{1}{2}} f (b) + \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)} (b) + {\small\frac{(- 1)^r}{r!}} \int_b^{\infty} P_r (t) f^{(r)} (t) d t \right] }[/math]
[math]\displaystyle{ \;\;\,\, = C (a) + E (b) }[/math]

gdzie

[math]\displaystyle{ C(a) = - F (a) + {\small\frac{1}{2}} f (a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r (t) f^{(r)}(t) d t }[/math]
[math]\displaystyle{ E(b) = F (b) + {\small\frac{1}{2}} f (b) + \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(b) + {\small\frac{(- 1)^r}{r!}} \int_b^{\infty} P_r (t) f^{(r)} (t) d t }[/math]

Co należało pokazać.


Uwaga E56
We wzorze

[math]\displaystyle{ \sum_{k = a}^b f (k) = C (a) + E (b) }[/math]

składnik [math]\displaystyle{ C(a) }[/math] jest wartością stałej [math]\displaystyle{ C }[/math] we wzorze Eulera-Maclaurina, a [math]\displaystyle{ E(b) }[/math] zwraca kolejne wyrazy rozwinięcia. Pokażemy, że wartość tej stałej możemy wyliczyć bezpośrednio ze wzoru

[math]\displaystyle{ C = C (a) }[/math]

lub metodą pośrednią, wykorzystując związek

[math]\displaystyle{ C(a) = \sum_{k = a}^b f (k) - E (b) }[/math]

W obydwu przypadkach obliczenia wykonamy dla znanej już Czytelnikowi sumy [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math] (przykład E45).


Przykład E57
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math]

Ponieważ

[math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math]
[math]\displaystyle{ F(x) = \int {\small\frac{d x}{x}} = \log x }[/math]
[math]\displaystyle{ f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}} }[/math]

to wzór na wartość stałej z twierdzenia E54

[math]\displaystyle{ C(a) = - F(a) + {\small\frac{1}{2}} f(a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t }[/math]

przyjmuje postać

[math]\displaystyle{ C(1) = - \log (1) + {\small\frac{1}{2}} - \sum_{k = 2}^r {\small\frac{B_k}{k!}} \cdot {\small\frac{(- 1)^{k - 1} (k - 1) !}{x^k}} - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r (t) \cdot {\small\frac{(- 1)^r r!}{x^{r + 1}}} d t }[/math]
[math]\displaystyle{ C(1) = {\small\frac{1}{2}} + \sum_{k = 2}^r {\small\frac{B_k}{k}} - \int_1^{\infty} {\small\frac{P_r(t)}{t^{r + 1}}} d t }[/math]

Oznaczmy

[math]\displaystyle{ C_r = {\small\frac{1}{2}} + \sum_{k = 2}^r {\small\frac{B_k}{k}} }[/math]
[math]\displaystyle{ I_r = - \int_1^{\infty} {\small\frac{P_r (t)}{t^{r + 1}}} d t }[/math]

Wartość [math]\displaystyle{ I_r }[/math] obliczymy numerycznie w programie PARI/GP poleceniem

Int(r) = - intnum(t = 1,+oo, P(r, t)/t^(r+1), 12 )

gdzie

P(r, t) = B(r, t - floor(t))

jest funkcją okresową Bernoulliego [math]\displaystyle{ P_r (t) }[/math].

Ponieważ wyliczenie wartości [math]\displaystyle{ C_r }[/math] jest bardzo łatwe, to w tabeli przedstawiamy jedynie wartość całki [math]\displaystyle{ I_r }[/math] oraz wielkość błędu, z jakim wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina. Przy precyzji obliczeń w PARI/GP równej [math]\displaystyle{ 77 }[/math] cyfr znaczących (wyświetlanych jest tylko [math]\displaystyle{ 60 }[/math]) otrzymujemy


Zwróćmy uwagę, jak bardzo [math]\displaystyle{ C_r \approx \gamma - I_r }[/math] odbiega od wartości stałej [math]\displaystyle{ \gamma }[/math] dla dużych wartości [math]\displaystyle{ r }[/math] – dopiero suma [math]\displaystyle{ C_r + I_r }[/math] daje prawidłowy rezultat. Tylko po to, aby uwidocznić ten fakt, przedstawiliśmy dane dla tak wielu wartości [math]\displaystyle{ r }[/math].


Uwaga E58
W przykładzie E57 uzyskaliśmy zaskakująco dokładny wynik, ale wiemy o tym tylko dlatego, że znaliśmy wynik prawidłowy. Gdybyśmy nie znali wartości stałej [math]\displaystyle{ \gamma }[/math], to nie bylibyśmy w stanie określić, ile cyfr sumy [math]\displaystyle{ C_r + I_r }[/math] jest prawidłowych.

Nim przejdziemy do przedstawienia drugiego sposobu wyliczania stałej we wzorze Eulera-Maclaurina, udowodnimy twierdzenie, które pozwoli nam działać bardziej efektywnie.


Twierdzenie E59
Jeżeli założymy, że

●    całka nieoznaczona [math]\displaystyle{ F(x) = \int f (x) d x }[/math] nie zawiera wyrazów, które nie zależą od [math]\displaystyle{ x }[/math] (takie wyrazy ulegają redukcji przy wyliczaniu całki [math]\displaystyle{ \int_a^b f (t) d t = F (b) - F (a) }[/math] i nie występują we wzorze Eulera-Maclaurina)
●    funkcja [math]\displaystyle{ f^{(2 s)} (t) }[/math] jest funkcją ciągłą i ma stały znak w przedziale [math]\displaystyle{ [b, \infty) }[/math]
●    [math]\displaystyle{ \lim_{t \to \infty} f^{(2 s - 1)} (t) = 0 }[/math]

to dla stałej [math]\displaystyle{ C(a) }[/math] we wzorze Eulera-Maclaurina prawdziwe jest oszacowanie

[math]\displaystyle{ W - \Delta \leqslant C(a) \leqslant W + \Delta }[/math]

gdzie

[math]\displaystyle{ W = W (s, a, b) = \sum_{k = a}^b f(k) - \left[ F (b) + {\small\frac{1}{2}} f(b) + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} f^{(2 k - 1)}(b) \right] }[/math]
[math]\displaystyle{ \Delta = \Delta (s, b) = {\small\frac{| B_{2 s} |}{(2 s) !}} | f^{(2 s - 1)} (b) | }[/math]

Czyli błąd, jakim obarczony jest wynik [math]\displaystyle{ W }[/math], jest nie większy od wartości bezwzględnej ostatniego składnika sumy.

Dowód

Z twierdzenia E54 wiemy, że przy poczynionych założeniach wzór Eulera-Maclaurina może być zapisany w postaci

[math]\displaystyle{ \sum_{k = a}^b f (k) = C (a) + E (b) }[/math]

gdzie

[math]\displaystyle{ C(a) = - F(a) + {\small\frac{1}{2}} f(a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t }[/math]
[math]\displaystyle{ E(b) = F(b) + {\small\frac{1}{2}} f(b) + \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(b) + {\small\frac{(- 1)^r}{r!}} \int_b^{\infty} P_r(t) f^{(r)}(t) d t }[/math]

Zatem

[math]\displaystyle{ C(a) = \sum_{k = a}^b f(k) - E(b) }[/math]


W przypadku, gdy [math]\displaystyle{ r = 2 s }[/math] jest liczbą parzystą, możemy położyć [math]\displaystyle{ k = 2 j }[/math] i otrzymujemy

[math]\displaystyle{ E(b) = F(b) + {\small\frac{1}{2}} f(b) + \sum_{j = 1}^s {\small\frac{B_{2 j}}{(2 j) !}} f^{(2 j - 1)}(b) + {\small\frac{1}{(2 s) !}} \int_b^{\infty} P_{2 s}(t) f^{(2 s)}(t) d t }[/math]


Ponieważ [math]\displaystyle{ f^{(2 s - 1)} (t) }[/math] jest funkcją pierwotną funkcji [math]\displaystyle{ f^{(2 s)}(t) }[/math], a z założenia jest [math]\displaystyle{ \lim_{t \to \infty} f^{(2 s - 1)}(t) = 0 }[/math], to na podstawie twierdzenia E38 całka [math]\displaystyle{ \int_b^{\infty} f^{(2 s)}(t) d t }[/math] jest zbieżna.


Ponieważ [math]\displaystyle{ | B_{2 s} (x) | \leqslant | B_{2 s} | \, }[/math] dla [math]\displaystyle{ \, 0 \leqslant x \leqslant 1 \; }[/math] i [math]\displaystyle{ \; s \in \mathbb{N}_0 }[/math] (zobacz E12), zatem dla funkcji okresowych Bernoulliego o indeksie parzystym prawdziwe jest oszacowanie [math]\displaystyle{ | P_{2 s}(x) | \leqslant | B_{2 s} | }[/math]. Z twierdzenia E39 i założenia, że [math]\displaystyle{ \lim_{t \to \infty} f^{(2 s - 1)}(t) = 0 }[/math] dostajemy oszacowanie całki


[math]\displaystyle{ {\small\frac{1}{(2 s) !}} \left| \int_b^{\infty} P_{2 s} (t) f^{(2 s)}(t) d t \right| \leqslant {\small\frac{1}{(2 s) !}} \int_b^{\infty} | P_{2 s}(t) f^{(2 s)}(t) | d t }[/math]
[math]\displaystyle{ \,\, \leqslant {\small\frac{1}{(2 s) !}} | B_{2 s} | \cdot \left| \int_b^{\infty} f^{(2 s)}(t) d t \right| }[/math]
[math]\displaystyle{ \,\, = {\small\frac{1}{(2 s) !}} | B_{2 s} | \cdot \biggl| f^{(2 s - 1)}(t) \big\rvert_{b}^{\infty} \biggr| }[/math]
[math]\displaystyle{ \,\, = {\small\frac{1}{(2 s) !}} | B_{2 s} | \cdot | - f^{(2 s - 1)}(b) | }[/math]
[math]\displaystyle{ \,\, = {\small\frac{| B_{2 s} |}{(2 s) !}} | f^{(2 s - 1)}(b) | }[/math]


Łącząc powyższe rezultaty, otrzymujemy oszacowanie stałej [math]\displaystyle{ C(a) }[/math]

[math]\displaystyle{ C(a) = \sum_{k = a}^b f (k) - \left[ F (b) + {\small\frac{1}{2}} f (b) + \sum_{j = 1}^s {\small\frac{B_{2 j}}{(2 j) !}} f^{(2 j - 1)} (b) \right] - {\small\frac{1}{(2 s) !}} \int_b^{\infty} P_{2 s} (t) f^{(2 s)} (t) d t }[/math]
[math]\displaystyle{ \;\:\:\: \leqslant \sum_{k = a}^b f (k) - \left[ F (b) + {\small\frac{1}{2}} f (b) + \sum_{j = 1}^s {\small\frac{B_{2 j}}{(2 j) !}} f^{(2 j - 1)} (b) \right] + \Delta }[/math]
[math]\displaystyle{ C(a) = \sum_{k = a}^b f (k) - \left[ F (b) + {\small\frac{1}{2}} f (b) + \sum_{j = 1}^s {\small\frac{B_{2 j}}{(2 j) !}} f^{(2 j - 1)} (b) \right] - {\small\frac{1}{(2 s) !}} \int_b^{\infty} P_{2 s} (t) f^{(2 s)} (t) d t }[/math]
[math]\displaystyle{ \;\:\:\: \geqslant \sum_{k = a}^b f (k) - \left[ F (b) + {\small\frac{1}{2}} f (b) + \sum_{j = 1}^s {\small\frac{B_{2 j}}{(2 j) !}} f^{(2 j - 1)} (b) \right] - \Delta }[/math]

gdzie oznaczyliśmy

[math]\displaystyle{ \Delta = {\small\frac{| B_{2 s} |}{(2 s) !}} | f^{(2 s - 1)} (b) | }[/math]

Jeśli dodatkowo oznaczymy

[math]\displaystyle{ W = \sum_{k = a}^b f (k) - \left[ F (b) + {\small\frac{1}{2}} f (b) + \sum_{j = 1}^s {\small\frac{B_{2 j}}{(2 j) !}} f^{(2 j - 1)} (b) \right] }[/math]

to dostaniemy oszacowanie

[math]\displaystyle{ W - \Delta \leqslant C(a) \leqslant W + \Delta }[/math]

Co należało pokazać.


Przykład E60
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math]

Ponieważ

[math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math]
[math]\displaystyle{ F(x) = \int {\small\frac{d x}{x}} = \log x }[/math]
[math]\displaystyle{ f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}} }[/math]

to z twierdzenia E58 dostajemy

[math]\displaystyle{ W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - \sum_{k = 1}^s {\small\frac{B_{2 k}}{2 k \cdot n^{2 k}}} \right] }[/math]
[math]\displaystyle{ \Delta = {\small\frac{| B_{2 s} |}{2 s \cdot n^{2 s}}} }[/math]


Dla [math]\displaystyle{ s = 4 }[/math] i [math]\displaystyle{ n = 10^8 }[/math] mamy

[math]\displaystyle{ \Delta = 4.17 \cdot 10^{- 67} }[/math]

Uznając, że dokładność rzędu [math]\displaystyle{ 10^{- 65} }[/math] nas zadowala, otrzymujemy dla [math]\displaystyle{ s = 4 }[/math]

[math]\displaystyle{ W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + {\small\frac{1}{120 n^4}} - {\small\frac{1}{252 n^6}} + {\small\frac{1}{240 n^8}} \right] }[/math]

Wyliczając wartość prawej strony dla [math]\displaystyle{ n = 10^8 }[/math], dostajemy

[math]\displaystyle{ W = 0.57721566490153286060651209008240243104215933593992359880576723488486772677766467 \ldots }[/math]

Ponieważ [math]\displaystyle{ \Delta = 4.17 \cdot 10^{- 67} }[/math], to ostatecznie możemy napisać

[math]\displaystyle{ \gamma = 0.57721566490153286060651209008240243104215933593992359880576723488 \ldots }[/math]

Wyznaczyliśmy stałą [math]\displaystyle{ \gamma }[/math] z dokładnością [math]\displaystyle{ 65 }[/math] cyfr po przecinku. W rzeczywistości błąd jest mniejszy od [math]\displaystyle{ 10^{- 81} }[/math].


Uwaga E61
Zauważmy, że wyliczając wartość [math]\displaystyle{ \Delta }[/math], znamy wartość błędu jeszcze przed wykonaniem całości obliczeń. Dobierając odpowiednie wartości liczb [math]\displaystyle{ s }[/math] i [math]\displaystyle{ n }[/math] możemy sprawić, że błąd będzie odpowiednio mały. Unikamy numerycznego całkowania, które w przypadku bardziej skomplikowanych funkcji może być długie i obarczone znacznym i nieznanym błędem.


Przykład E62
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 2}^n \mathop{\text{li}}(k) }[/math]

W PARI/GP funkcję specjalną [math]\displaystyle{ \mathop{\text{li}}(x) = \int^x_0 {\small\frac{d t}{\log t}} }[/math] (logarytm całkowy[14][15]) możemy uzyskać następująco

li(x) = real( -eint1( -log(x) ) )

W powyższym wzorze wykorzystaliśmy zaimplementowaną pod nazwą [math]\displaystyle{ \text{eint1} (x) }[/math] inną funkcję specjalną [math]\displaystyle{ E_1 (x) = \int_{x}^{\infty} {\small\frac{e^{- t}}{t}} d t }[/math][16][17].


Mamy:

[math]\displaystyle{ f(x) = \mathop{\text{li}}(x) }[/math]
[math]\displaystyle{ F(x) = \int \mathop{\text{li}}(x) d x = x \mathop{\text{li}}(x) - \mathop{\text{li}}(x^2) }[/math]
[math]\displaystyle{ f^{(1)} (x) = {\small\frac{1}{\log x}} }[/math]

dla [math]\displaystyle{ k \geqslant 2 }[/math] jest

[math]\displaystyle{ f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}} = (- 1)^{k - 1} \sum_{j = 1}^{k - 1} {\small\frac{A^{k - 1}_j}{x^{k - 1} \log^{j + 1} x}} = \mathop{\text{DLog}}(k - 1, x) }[/math]

Oznaczenie [math]\displaystyle{ k }[/math]-tej pochodnej funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] jako [math]\displaystyle{ \mathop{\text{DLog}}(k, x) }[/math] znacząco ułatwi nam zapisywanie wzorów. Liczby naturalne [math]\displaystyle{ A^k_j }[/math] spełniają następujące równania rekurencyjne

[math]\displaystyle{ A^k_1 = (k - 1) A^{k - 1}_1 }[/math]
[math]\displaystyle{ A_j^k = j A^{k - 1}_{j - 1} + (k - 1) A^{k - 1}_j \qquad }[/math] dla [math]\displaystyle{ \quad j = 2, \ldots, k - 1 }[/math]
[math]\displaystyle{ A^k_k = k A^{k - 1}_{k - 1} }[/math]

gdzie [math]\displaystyle{ A^1_1 = 1 }[/math] (zobacz twierdzenia E65E66).


Zauważmy, że dla [math]\displaystyle{ k \geqslant 2 }[/math] funkcje [math]\displaystyle{ f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}} }[/math] są funkcjami ciągłymi i mają stały znak dla [math]\displaystyle{ x \gt 1 }[/math] oraz [math]\displaystyle{ \lim_{x \to \infty} f^{(k - 1)} (x) = 0 }[/math]. Zatem dla dowolnego [math]\displaystyle{ k \geqslant 2 }[/math] spełnione są założenia twierdzenia E59. W przypadku rozpatrywanej przez nas sumy z twierdzenia E59 otrzymujemy

[math]\displaystyle{ \Delta = \Delta (s, n) = {\small\frac{| B_{2 s} |}{(2 s) !}} | \mathop{\text{DLog}}(2 s - 2, n) | }[/math]
[math]\displaystyle{ W = W (s, 2, n) = \sum_{k = 2}^n \mathop{\text{li}}(k) - \left[ n \mathop{\text{li}}(n) - \mathop{\text{li}}(n^2) + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{B_2}{2 \log n}} + \sum_{k = 2}^s {\small\frac{B_{2 k}}{(2 k) !}} \mathop{\text{DLog}}(2 k - 2, n) \right] }[/math]


Obliczenia przeprowadziliśmy w programie PARI/GP. Wymagają one zwiększenia precyzji obliczeń do [math]\displaystyle{ 80 }[/math] miejsc znaczących i wcześniejszego przygotowania kilku funkcji omówionych szerzej w uwadze E67. Mamy

B(n, x) = sum(k = 0, n, 1/(k+1)*sum(j = 0, k, (-1)^j*binomial(k,j)*(x+j)^n))

A(n, k) = if( k == 1 || k == n, k*(n-1)!, k*A(n-1, k-1) + (n-1)*A(n-1, k) )

DLog(n, x) = (-1)^n * sum(k = 1, n, A(n,k)/( x^n * log(x)^(k+1) ))

li(x) = real( -eint1( -log(x) ) )

delta(s, n) = B(2*s, 0)/(2*s)! * DLog(2*s-2, n)

W(s, n) = sum(k = 2, n, li(k)) - n*li(n) + li(n^2) - 1/2*li(n) - B(2,0)/2! * 1/log(n) - sum(k = 2, s, B(2*k,0)/(2*k)! * DLog(2*k-2, n))


Dla [math]\displaystyle{ s = 5 }[/math] i [math]\displaystyle{ n = 10^7 }[/math] otrzymujemy (porównaj WolframAlpha)

[math]\displaystyle{ \Delta = {\small\frac{B_{10}}{10!}} \cdot | \mathop{\text{DLog}}(8, 10^7) | = 5.632 \cdot 10^{- 63} }[/math]

[math]\displaystyle{ W = 1.28191595049146577908068521816208913078488987854947239276268700691879666704021184913771562 }[/math]


Po uwzględnieniu możliwego błędu znajdujemy wartość stałej z dokładnością [math]\displaystyle{ 61 }[/math] miejsc po przecinku.

[math]\displaystyle{ C = 1.2819159504914657790806852181620891307848898785494723927626870 \ldots }[/math]


Przykład E63
Rozważmy jeszcze raz sumę

[math]\displaystyle{ \sum_{k = 2}^n \mathop{\text{li}}(k) }[/math]

Wypiszmy dla tej sumy wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math].

[math]\displaystyle{ \sum_{k = 2}^n \mathop{\text{li}}(k) = \int_2^n \mathop{\text{li}}(t) d t + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{1}{2}} \mathop{\text{li}}(2) + \int_2^n {\small\frac{P_1(t)}{\log t}} d t }[/math]
[math]\displaystyle{ \;\;\;\: = (x \mathop{\text{li}}(x) - \mathop{\text{li}}(x^2)) \biggr\rvert_{2}^{n} + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{1}{2}} \mathop{\text{li}}(2) + \int_2^n {\small\frac{P_1 (t)}{\log t}} d t }[/math]
[math]\displaystyle{ \;\;\;\: = n \mathop{\text{li}}(n) - \mathop{\text{li}}(n^2) - 2 \mathop{\text{li}}(2) + \mathop{\text{li}}(4) + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{1}{2}} \mathop{\text{li}}(2) + \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t - \int_n^{\infty} {\small\frac{P_1 (t)}{\log t}} d t }[/math]
[math]\displaystyle{ \;\;\;\: = \left[ - {\small\frac{3}{2}} \mathop{\text{li}}(2) + \mathop{\text{li}}(4) + \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t \right] + n \mathop{\text{li}}(n) - \mathop{\text{li}}(n^2) + {\small\frac{1}{2}} \mathop{\text{li}}(n) - \int_n^{\infty} {\small\frac{P_1 (t)}{\log t}} d t }[/math]


Wyrażenie w nawiasie kwadratowym jest stałą wstępującą we wzorze Eulera-Maclaurina, zatem

[math]\displaystyle{ C = - {\small\frac{3}{2}} \mathop{\text{li}}(2) + \mathop{\text{li}}(4) + \int_2^{\infty} {\small\frac{P_1(t)}{\log t}} d t }[/math]
[math]\displaystyle{ \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = C + {\small\frac{3}{2}} \mathop{\text{li}}(2) - \mathop{\text{li}}(4) }[/math]


W poprzednim przykładzie wyliczyliśmy wartość stałej [math]\displaystyle{ C }[/math]

[math]\displaystyle{ C = 1.2819159504914657790806852181620891307848898785494723927626870 \ldots }[/math]

Wynika stąd natychmiast, że

[math]\displaystyle{ \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = -0.117923474371345921663180326620119770994144590988603907635106 \ldots }[/math]

Właśnie w taki sposób została obliczona wartość całki niewłaściwej, która występuje w zadaniu E46.


Przykład E64
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 0}^{n} e^k }[/math]

Mamy

[math]\displaystyle{ f(x) = e^x }[/math]
[math]\displaystyle{ F(x) = \int e^x d x = e^x }[/math]
[math]\displaystyle{ f^{(r)} (x) = {\small\frac{d^r}{d x^r}} e^x = e^x }[/math]

Zatem ze wzoru Eulera-Maclaurina otrzymujemy

[math]\displaystyle{ \sum_{k = 0}^{n} e^k = e^n - 1 + {\small\frac{1}{2}} (e^n + 1) + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} (e^n - 1) - {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} e^k = 1 + (e^n - 1) + {\small\frac{1}{2}} (e^n - 1) + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} (e^n - 1) - {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} e^k = 1 + (e^n - 1) \left( 1 + {\small\frac{1}{2}} + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} \right) - {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t }[/math]


Ponieważ dla [math]\displaystyle{ | x | \lt 2 \pi }[/math] prawdziwy jest wzór[18]

[math]\displaystyle{ {\small\frac{x}{e^x - 1}} = \sum_{k = 0}^{\infty} {\small\frac{B_k \cdot x^k}{k!}} }[/math]

to dla [math]\displaystyle{ x = 1 }[/math] dostajemy

[math]\displaystyle{ {\small\frac{1}{e - 1}} = \sum_{k = 0}^{\infty} {\small\frac{B_k}{k!}} = 1 - {\small\frac{1}{2}} + \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{(2 k) !}} = {\small\frac{1}{2}} + \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{(2 k) !}} }[/math]


W granicy, gdy [math]\displaystyle{ s }[/math] dąży do nieskończoności, mamy

[math]\displaystyle{ \lim_{s \to \infty} \left[ 1 + (e^n - 1) \left( {\small\frac{3}{2}} + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} \right) \right] = 1 + (e^n - 1) \left( {\small\frac{3}{2}} + {\small\frac{1}{e - 1}} - {\small\frac{1}{2}} \right) = 1 + (e^n - 1) \left( 1 + {\small\frac{1}{e - 1}} \right) = {\small\frac{e^{n + 1} - 1}{e - 1}} }[/math]


W obliczeniu granicy całki dla [math]\displaystyle{ s }[/math] dążącego do nieskończoności pomocne będzie oszacowanie (zobacz E20)

[math]\displaystyle{ {\small\frac{| B_{2 k} |}{(2 k) !}} \lt {\small\frac{2}{(2 \pi)^{2 k}}} \cdot {\small\frac{1}{1 - 2^{1 - 2 k}}} \leqslant {\small\frac{4}{(2 \pi)^{2 k}}} }[/math]

prawdziwe dla [math]\displaystyle{ k \geqslant 1 }[/math].


Teraz już łatwo znajdujemy

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{(2 s) !}} \left| \int_0^n P_{2 s} (t) e^t d t \right| \leqslant {\small\frac{1}{(2 s) !}} \int_0^n | P_{2 s} (t) | e^t d t \leqslant {\small\frac{| B_{2 s} |}{(2 s) !}} \int_0^n e^t d t = {\small\frac{| B_{2 s} |}{(2 s) !}} (e^n - 1) \lt {\small\frac{4}{(2 \pi)^{2 s}}} (e^n - 1) }[/math]


Dla dowolnego, ale ustalonego [math]\displaystyle{ n }[/math], jest

[math]\displaystyle{ \lim_{s \to \infty} {\small\frac{4}{(2 \pi)^{2 s}}} (e^n - 1) = 0 }[/math]


Zatem z twierdzenia o trzech ciągach (zobacz twierdzenia C10C8) dostajemy natychmiast

[math]\displaystyle{ \lim_{s \to \infty} {\small\frac{1}{(2 s) !}} \left| \int_0^n P_{2 s} (t) e^t d t \right| = \lim_{s \to \infty} {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t = 0 }[/math]


Ostatecznie otrzymujemy wzór

[math]\displaystyle{ \sum_{k = 0}^{n} e^k = {\small\frac{e^{n + 1} - 1}{e - 1}} }[/math]


Znalezienie wzoru na sumę częściową szeregu geometrycznego nie jest odkrywcze, ale z pewnością było pouczające.




Uzupełnienie

Twierdzenie E65
Ogólny wzór na [math]\displaystyle{ n }[/math]-tą pochodną funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] ma postać

[math]\displaystyle{ {\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}} }[/math]

Liczby naturalne [math]\displaystyle{ A^n_k }[/math] spełniają następujące równania rekurencyjne

[math]\displaystyle{ A^n_1 = (n - 1) A^{n - 1}_1 }[/math]
[math]\displaystyle{ A_k^n = k A^{n - 1}_{k - 1} + (n - 1) A^{n - 1}_k \qquad }[/math] dla [math]\displaystyle{ \quad k = 2, \ldots, n - 1 }[/math]
[math]\displaystyle{ A^n_n = n A^{n - 1}_{n - 1} }[/math]

gdzie [math]\displaystyle{ A^1_1 = 1 }[/math].

Dowód

Indukcja matematyczna. Łatwo sprawdzamy, że dowodzony wzór jest prawdziwy dla [math]\displaystyle{ n = 1 }[/math]. Ponieważ

[math]\displaystyle{ \left( {\small\frac{1}{x^n \log^{k + 1} x}} \right)' = \frac{- (k + 1)}{x^{n + 1} \log^{k + 2} x} + \frac{- n}{x^{n + 1} \log^{k + 1} x} }[/math]

to zakładając, że wzór

[math]\displaystyle{ {\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\normalsize\frac{A^n_k}{x^n \log^{k + 1} x}} }[/math]

jest prawdziwy dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ {\small\frac{d^{n + 1}}{d x^{n + 1}}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} \left( {\normalsize\frac{A^n_k}{x^n \log^{k + 1} x}} \right)' = }[/math]
[math]\displaystyle{ \;\,\, = (- 1)^n \sum_{k = 1}^{n} \left( \frac{- (k + 1) A^n_k}{x^{n + 1} \log^{k + 2} x} + \frac{- n A^n_k}{x^{n + 1} \log^{k + 1} x} \right) }[/math]


Mnożąc obie strony przez [math]\displaystyle{ (- 1)^{n + 1} }[/math] ułatwimy sobie przekształcanie prawej strony

[math]\displaystyle{ (- 1)^{n + 1} {\small\frac{d^{n + 1}}{d x^{n + 1}}} {\small\frac{1}{\log x}} = \sum_{k = 1}^{n} \left( \frac{(k + 1) A^n_k}{x^{n + 1} \log^{k + 2} x} + \frac{n A^n_k}{x^{n + 1} \log^{k + 1} x} \right) = }[/math]
[math]\displaystyle{ \! = \sum_{k = 1}^{n} \frac{(k + 1) A^n_k}{x^{n + 1} \log^{k + 2} x} + \sum_{k = 1}^{n} \frac{n A^n_k}{x^{n + 1} \log^{k + 1} x} = }[/math]
[math]\displaystyle{ \! = \frac{(n + 1) A^n_n}{x^{n + 1} \log^{n + 2} x} + \sum_{k = 1}^{n - 1} \frac{(k + 1) A^n_k}{x^{n + 1} \log^{k + 2} x} + \sum_{k = 2}^{n} \frac{n A^n_k}{x^{n + 1} \log^{k + 1} x} + {\normalsize\frac{n A^n_1}{x^{n + 1} \log^2 x}} }[/math]


Zmieniając w pierwszej sumie wskaźnik sumowania na [math]\displaystyle{ j = k + 1 }[/math], dostajemy

[math]\displaystyle{ (- 1)^{n + 1} {\small\frac{d^{n + 1}}{d x^{n + 1}}} {\small\frac{1}{\log x}} = \frac{(n + 1) A^n_n}{x^{n + 1} \log^{n + 2} x} + \sum_{j = 2}^{n} \frac{j A^n_{j - 1}}{x^{n + 1} \log^{j + 1} x} + \sum_{k = 2}^{n} \frac{n A^n_k}{x^{n + 1} \log^{k + 1} x} + {\normalsize\frac{n A^n_1}{x^{n + 1} \log^2 x}} = }[/math]
[math]\displaystyle{ \! = {\normalsize\frac{n A^n_1}{x^{n + 1} \log^2 x}} + \sum_{k = 2}^{n} \left( \frac{k A^n_{k - 1} + n A^n_k}{x^{n + 1} \log^{k + 1} x} \right) + \frac{(n + 1) A^n_n}{x^{n + 1} \log^{n + 2} x} }[/math]

Oznaczając

[math]\displaystyle{ A^{n + 1}_1 = n A^n_1 }[/math]
[math]\displaystyle{ A_k^{n + 1} = k A^n_{k - 1} + n A^n_k \qquad }[/math] dla [math]\displaystyle{ \quad k = 2, \ldots, n }[/math]
[math]\displaystyle{ A^{n + 1}_{n + 1} = (n + 1) A^n_n }[/math]

Otrzymujemy wzór

[math]\displaystyle{ {\small\frac{d^{n+1}}{d x^{n+1}}} {\small\frac{1}{\log x}} = (- 1)^{n + 1} \sum_{k = 1}^{n + 1} {\small\frac{A^{n + 1}_k}{x^n \log^{k + 1} x}} }[/math]

Co kończy dowód indukcyjny. Aby uzyskać podane w twierdzeniu równania rekurencyjne, wystarczy we wprowadzonych oznaczeniach zamienić [math]\displaystyle{ n }[/math] na [math]\displaystyle{ n - 1 }[/math].


Twierdzenie E66
Z równań rekurencyjnych

[math]\displaystyle{ A^n_1 = (n - 1) A^{n - 1}_1 }[/math]
[math]\displaystyle{ A_k^n = k A^{n - 1}_{k - 1} + (n - 1) A^{n - 1}_k \qquad }[/math] dla [math]\displaystyle{ \quad k = 2, \ldots, n - 1 }[/math]
[math]\displaystyle{ A^n_n = n A^{n - 1}_{n - 1} }[/math]

gdzie [math]\displaystyle{ A^1_1 = 1 }[/math], wynikają następujące wzory ogólne

[math]\displaystyle{ A^n_1 = (n - 1) ! }[/math]
[math]\displaystyle{ A^n_n = n! }[/math]

oraz

[math]\displaystyle{ A^n_{n - 1} = {\small\frac{1}{2}} (n - 1) \cdot n! }[/math]
[math]\displaystyle{ A^n_{n - 2} = {\small\frac{1}{24}} (n - 2) (3 n - 1) \cdot n! }[/math]
[math]\displaystyle{ A^n_{n - 3} = {\small\frac{1}{48}} n (n - 1) (n - 3) \cdot n! }[/math]
[math]\displaystyle{ A^n_{n - 4} = {\small\frac{1}{5760}} (n - 4) (15 n^3 - 30 n^2 + 5 n + 2) \cdot n! }[/math]
[math]\displaystyle{ A^n_2 = 2 (n - 1) ! \cdot \sum_{k = 1}^{n - 1} {\small\frac{1}{k}} }[/math]
Dowód

Rozwiązania pierwszego i trzeciego równania rekurencyjnego łatwo sprawdzamy. Drugie równanie jest znacznie trudniejsze. Rozważmy je dla [math]\displaystyle{ k = n - 1 }[/math], mamy

[math]\displaystyle{ A_{n - 1}^n = (n - 1) A^{n - 1}_{n - 2} + (n - 1) A^{n - 1}_{n - 1} }[/math]

Uwzględniając, że [math]\displaystyle{ A^{n - 1}_{n - 1} = (n - 1) ! }[/math], dostajemy

[math]\displaystyle{ A_{n - 1}^n = (n - 1) A^{n - 1}_{n - 2} + (n - 1) (n - 1) ! }[/math]

Połóżmy

[math]\displaystyle{ A_{n - 1}^n = (n - 1) ! \cdot U^n_{n - 1} }[/math]

Zauważmy, że [math]\displaystyle{ A_1^2 = U^2_1 = 1 }[/math]. Podstawiając, mamy

[math]\displaystyle{ (n - 1) ! \cdot U^n_{n - 1} = (n - 1) \cdot (n - 2) ! \cdot U^{n - 1}_{n - 2} + (n - 1) (n - 1) ! }[/math]

Zatem

[math]\displaystyle{ U^n_{n - 1} = U^{n - 1}_{n - 2} + (n - 1) }[/math]

Czyli

[math]\displaystyle{ U^n_{n - 1} - U^{n - 1}_{n - 2} = n - 1 }[/math]

Łatwo znajdujemy ogólną postać [math]\displaystyle{ U^n_{n - 1} }[/math]

[math]\displaystyle{ U^n_{n - 1} = U^2_1 + \sum_{k = 3}^{n} (U^k_{k - 1} - U^{k - 1}_{k - 2}) = 1 + \sum_{k = 3}^{n} (k - 1) = 1 + {\small\frac{1}{2}} (n - 2) (n + 1) = {\small\frac{1}{2}} n (n - 1) }[/math]

Skąd natychmiast otrzymujemy

[math]\displaystyle{ A_{n - 1}^n = (n - 1) ! \cdot U^n_{n - 1} = (n - 1) ! \cdot {\small\frac{1}{2}} n (n - 1) = {\small\frac{1}{2}} (n - 1) \cdot n! }[/math]


Zbadajmy drugie równanie rekurencyjne dla [math]\displaystyle{ k = n - 2 }[/math], mamy

[math]\displaystyle{ A_{n - 2}^n = (n - 2) A^{n - 1}_{n - 3} + (n - 1) A^{n - 1}_{n - 2} }[/math]

Uwzględniając, że [math]\displaystyle{ A^{n - 1}_{n - 2} = {\small\frac{1}{2}} (n - 2) \cdot (n - 1)! }[/math], dostajemy

[math]\displaystyle{ A_{n - 2}^n = (n - 2) A^{n - 1}_{n - 3} + {\small\frac{1}{2}} (n - 1) (n - 2) \cdot (n - 1) ! }[/math]

Połóżmy

[math]\displaystyle{ A_{n - 2}^n = (n - 2) ! \cdot U^n_{n - 2} }[/math]

Zauważmy, że [math]\displaystyle{ A_1^3 = U^3_1 = 2 }[/math]. Podstawiając, mamy

[math]\displaystyle{ (n - 2) ! \cdot U^n_{n - 2} = (n - 2) \cdot (n - 3) ! \cdot U^{n - 1}_{n - 3} + {\small\frac{1}{2}} (n - 1) (n - 2) \cdot (n - 1) ! }[/math]

Zatem

[math]\displaystyle{ U^n_{n - 2} = U^{n - 1}_{n - 3} + {\small\frac{1}{2}} (n - 1)^2 (n - 2) }[/math]

Czyli

[math]\displaystyle{ U^n_{n - 2} - U^{n - 1}_{n - 3} = {\small\frac{1}{2}} (n - 1)^2 (n - 2) }[/math]

Łatwo znajdujemy ogólną postać [math]\displaystyle{ U^n_{n - 2} }[/math]

[math]\displaystyle{ U^n_{n - 2} = U^3_1 + \sum_{k = 4}^{n} (U^k_{k - 2} - U^{k - 1}_{k - 3}) = 2 + {\small\frac{1}{2}} \sum_{k = 4}^{n} (k - 1)^2 (k - 2) = {\small\frac{1}{24}} n (n - 1) (n - 2) (3 n - 1) }[/math]

Skąd natychmiast otrzymujemy

[math]\displaystyle{ A_{n - 2}^n = (n - 2) ! \cdot U^n_{n - 2} = {\small\frac{1}{24}} (n - 2) (3 n - 1) \cdot n! }[/math]


Podobnie znajdujemy rozwiązania [math]\displaystyle{ k = n - 3 }[/math] i [math]\displaystyle{ k = n - 4 }[/math]. Przypadek [math]\displaystyle{ k = 2 }[/math] jest podobny do poprzednich, ale w tym przypadku wyliczona suma nie może być przedstawiona w zwartej formie. Dlatego omówimy go dodatkowo.

[math]\displaystyle{ A_2^n = 2 A^{n - 1}_1 + (n - 1) A^{n - 1}_2 }[/math]

Uwzględniając, że [math]\displaystyle{ A^{n - 1}_1 = (n - 2) ! }[/math], dostajemy

[math]\displaystyle{ A_2^n = 2 (n - 2) ! + (n - 1) A^{n - 1}_2 }[/math]

Połóżmy

[math]\displaystyle{ A_2^n = (n - 1) ! \cdot U^n_2 }[/math]

Zauważmy, że [math]\displaystyle{ A_2^2 = U^2_2 = 2 }[/math]. Podstawiając, mamy

[math]\displaystyle{ (n - 1) ! \cdot U^n_2 = (n - 1) \cdot (n - 2) ! \cdot U^{n - 1}_2 + 2 (n - 2)! }[/math]

Zatem

[math]\displaystyle{ U^n_2 = U^{n - 1}_2 + {\small\frac{2}{n - 1}} }[/math]

Czyli

[math]\displaystyle{ U^n_2 - U^{n - 1}_2 = {\small\frac{2}{n - 1}} }[/math]

Łatwo znajdujemy ogólną postać [math]\displaystyle{ U^n_2 }[/math]

[math]\displaystyle{ U^n_2 = U^2_2 + \sum_{k = 3}^{n} (U^k_2 - U^{k - 1}_2) = 2 + 2 \sum_{k = 3}^{n} {\small\frac{1}{k - 1}} = 2 \sum_{k = 2}^{n} {\small\frac{1}{k - 1}} }[/math]

Skąd natychmiast otrzymujemy

[math]\displaystyle{ A_2^n = (n - 1) ! \cdot U^n_2 = 2 (n - 1) ! \cdot \sum_{k = 2}^{n} {\small\frac{1}{k - 1}} = 2 (n - 1) ! \cdot \sum_{k = 1}^{n - 1} {\small\frac{1}{k}} }[/math]


Uwaga E67
Z twierdzeń E65E66 wynika, że ogólną postać [math]\displaystyle{ n }[/math]-tej pochodnej funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] możemy łatwo wypisać

[math]\displaystyle{ {\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}} }[/math]

ale nie istnieje wzór ogólny, który pozwoliłby łatwo wyliczać wartości współczynników [math]\displaystyle{ A_k^n }[/math]. W tej sytuacji jedynym wyjściem jest wykorzystanie równania rekurencyjnego

[math]\displaystyle{ A_k^n = k A^{n - 1}_{k - 1} + (n - 1) A^{n - 1}_k \qquad }[/math] dla [math]\displaystyle{ \quad k = 2, \ldots, n - 1 }[/math]

oraz wzorów

[math]\displaystyle{ A^n_1 = (n - 1) ! }[/math]
[math]\displaystyle{ A^n_n = n! }[/math]


Programy odwołujące się do wzorów rekurencyjnych są zazwyczaj niezwykle proste, ale należy ich unikać, bo działają wolno i zużywają duże ilości pamięci. Niżej podajemy przykłady prostych funkcji rekurencyjnych wyliczających silnię i liczby Fibonacciego napisanych w PARI/GP

silnia(n) = if( n == 0, 1, n*silnia(n-1) )
Fibonacci(n) = if( n <= 1, n, Fibonacci(n-1) + Fibonacci(n-2) )


W naszym przypadku rekurencji ominąć nie można, ale rozwiązaniem problemu jest równie prosta funkcja

A(n, k) = if( k == 1 || k == n, k*(n-1)!, k*A(n-1, k-1) + (n-1)*A(n-1, k) )


Dysponując funkcją wyliczającą współczynniki A(n, k), możemy łatwo zapisać wzór na [math]\displaystyle{ n }[/math]-tą pochodną funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math]

DLog(n, x) = (-1)^n * sum(k = 1, n, A(n, k)/( x^n * log(x)^(k+1) ))


Powyższy wzór jest bardzo przydatny przy wyliczaniu wartości [math]\displaystyle{ {\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} }[/math] dla większych liczb [math]\displaystyle{ n }[/math]. Jednak [math]\displaystyle{ n }[/math] nie może być zbyt duże – ceną, jaką musimy zapłacić za użycie funkcji rekurencyjnych, jest wydłużenie czasu obliczeń. Przykładowo obliczenie

DLog(26, 10^8) = 7.1305293508389973644228947613613744962 10^(-186)

trwało ponad pół minuty. Zobacz też WolframAlpha









Przypisy

  1. Wikipedia, Bernoulli polynomials, (Wiki-en)
  2. WolframAlpha, Bernoulli Polynomial, (WolframAlpha)
  3. Wolfram MathWorld, Bernoulli Polynomial, (Wolfram)
  4. NIST Digital Library of Mathematical Functions, Bernoulli and Euler Polynomials, (LINK)
  5. 5,0 5,1 Wikipedia, Twierdzenie Rolle’a, (Wiki-pl), (Wiki-en)
  6. D. H. Lehmer, On the Maxima and Minima of Bernoulli Polynomials, The American Mathematical Monthly, Vol. 47, No. 8 (Oct., 1940), pp. 533-538
  7. M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972, (LINK)
  8. Wikipedia, Abramowitz and Stegun, (Wiki-en)
  9. C. D'Aniello, On some inequalities for the Bernoulli numbers, Rendiconti del Circolo Matematico di Palermo Series II, Volume 43 (1994), pp. 329-332
  10. Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics, Volume 351 (2019), pp. 1-5, (LINK)
  11. Twierdzenie Weierstrassa: Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] określona w przedziale domkniętym jest ciągła, to jest w nim ograniczona. (Wiki-pl), (Wiki-en)
  12. Wikipedia, Euler–Maclaurin formula, (Wiki-en)
  13. Wikipedia, Wzór Stirlinga, (Wiki-pl), (Wiki-en)
  14. Wikipedia, Logarytm całkowy, (Wiki-pl), (Wiki-en)
  15. Wolfram MathWorld, Logarithmic Integral, (Wolfram)
  16. Wikipedia, Funkcja całkowo-wykładnicza, (Wiki-pl), (Wiki-en)
  17. Wolfram MathWorld, Exponential Integral, (Wolfram)
  18. Wikipedia, Liczby Bernoulliego, (Wiki-pl)