Szeregi liczbowe: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
 
(Nie pokazano 1 pośredniej wersji utworzonej przez tego samego użytkownika)
Linia 646: Linia 646:
  
 
Niech <math>f : X \rightarrow Y</math>. Powiemy, że <math>f</math> jest funkcją odwracalną, jeżeli istnieje taka funkcja <math>g : Y \rightarrow X</math>, że  
 
Niech <math>f : X \rightarrow Y</math>. Powiemy, że <math>f</math> jest funkcją odwracalną, jeżeli istnieje taka funkcja <math>g : Y \rightarrow X</math>, że  
::&#9679;&nbsp;&nbsp;&nbsp; <math>g (f (x)) = x \;</math> dla każdego <math>\, x \in X</math>
+
::&#9679;&nbsp;&nbsp;&nbsp; <math>g (f (x)) = x</math> dla każdego <math>x \in X</math>
::&#9679;&nbsp;&nbsp;&nbsp; <math>f (g (y)) = y \;\,</math> dla każdego <math>\, y \in Y</math>
+
::&#9679;&nbsp;&nbsp;&nbsp; <math>f (g (y)) = y</math> dla każdego <math>y \in Y</math>
 
Funkcję <math>g</math> spełniającą powyższe warunki będziemy nazywali funkcją odwrotną do <math>f</math> i&nbsp;oznaczali symbolem <math>f^{- 1}</math>.
 
Funkcję <math>g</math> spełniającą powyższe warunki będziemy nazywali funkcją odwrotną do <math>f</math> i&nbsp;oznaczali symbolem <math>f^{- 1}</math>.
  
Linia 759: Linia 759:
  
  
Mamy zatem: <math>S_n \xrightarrow{\; n \rightarrow \infty \;} \infty</math>, gdy <math>n = 3 k + 1 \;</math> i <math>\; S_n \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{\pi^2}{6}}</math>, gdy <math>n = 3 k \,</math> lub <math>\, n = 3 k + 2</math>. Skąd wynika natychmiast rozbieżność szeregu <math>(**)</math>. Zauważmy, że możemy łatwo temu szeregowi przywrócić zbieżność grupując wyrazy po trzy
+
Mamy zatem: <math>S_n \xrightarrow{\; n \rightarrow \infty \;} \infty</math>, gdy <math>n = 3 k + 1</math> i <math>S_n \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{\pi^2}{6}}</math>, gdy <math>n = 3 k</math> lub <math>n = 3 k + 2</math>. Skąd wynika natychmiast rozbieżność szeregu <math>(**)</math>. Zauważmy, że możemy łatwo temu szeregowi przywrócić zbieżność grupując wyrazy po trzy
  
 
::<math>(1 - 1 + 1) + \left( 2 - 2 + {\small\frac{1}{2^2}} \right) + \left( 3 - 3 + {\small\frac{1}{3^2}} \right) + \left( 4 - 4 + {\small\frac{1}{4^2}} \right) + \left( 5 - 5 + {\small\frac{1}{5^2}} \right) + \left( 6 - 6 + {\small\frac{1}{6^2}} \right) + \ldots</math>
 
::<math>(1 - 1 + 1) + \left( 2 - 2 + {\small\frac{1}{2^2}} \right) + \left( 3 - 3 + {\small\frac{1}{3^2}} \right) + \left( 4 - 4 + {\small\frac{1}{4^2}} \right) + \left( 5 - 5 + {\small\frac{1}{5^2}} \right) + \left( 6 - 6 + {\small\frac{1}{6^2}} \right) + \ldots</math>
Linia 1004: Linia 1004:
 
<span id="D30" style="font-size: 110%; font-weight: bold;">Zadanie D30</span><br/>
 
<span id="D30" style="font-size: 110%; font-weight: bold;">Zadanie D30</span><br/>
 
Pokazać, że
 
Pokazać, że
::1. <math>\;\; \left( 1 - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{9}} - {\small\frac{1}{10}} \right) + \left( {\small\frac{1}{11}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{13}} - {\small\frac{1}{14}} \right) + \ldots = \log 2</math>
+
::1.&nbsp;&nbsp; <math>\left( 1 - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{9}} - {\small\frac{1}{10}} \right) + \left( {\small\frac{1}{11}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{13}} - {\small\frac{1}{14}} \right) + \ldots = \log 2</math>
  
::2. <math>\;\; \left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{6}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} \right) + \left( {\small\frac{1}{9}} - {\small\frac{1}{18}} - {\small\frac{1}{20}} \right) + \ldots = {\small\frac{1}{2}} \cdot \log 2</math>
+
::2.&nbsp;&nbsp; <math>\left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{6}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} \right) + \left( {\small\frac{1}{9}} - {\small\frac{1}{18}} - {\small\frac{1}{20}} \right) + \ldots = {\small\frac{1}{2}} \cdot \log 2</math>
  
::3. <math>\;\; \left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{8}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} - {\small\frac{1}{18}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{20}} - {\small\frac{1}{22}} - {\small\frac{1}{24}} \right) + \ldots = {\small\frac{1}{2}} \cdot \log {\small\frac{4}{3}}</math>
+
::3.&nbsp;&nbsp; <math>\left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{8}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} - {\small\frac{1}{18}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{20}} - {\small\frac{1}{22}} - {\small\frac{1}{24}} \right) + \ldots = {\small\frac{1}{2}} \cdot \log {\small\frac{4}{3}}</math>
  
::4. <math>\;\; \left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} - {\small\frac{1}{6}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{18}} - {\small\frac{1}{20}} - {\small\frac{1}{22}} - {\small\frac{1}{24}} \right) + \ldots = 0</math>
+
::4.&nbsp;&nbsp; <math>\left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} - {\small\frac{1}{6}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{18}} - {\small\frac{1}{20}} - {\small\frac{1}{22}} - {\small\frac{1}{24}} \right) + \ldots = 0</math>
  
::5. <math>\;\; \sum_{k = 1}^{\infty} \left( {\small\frac{1}{2 k - 1}} - \underbrace{{\small\frac{1}{2 a k - 2 a + 2}} - {\small\frac{1}{2 a k - 2 a + 4}} - \ldots - {\small\frac{1}{2 a k}}}_{a \; \text{ wyrazów}} \right) = {\small\frac{1}{2}} \cdot \log {\small\frac{4}{a}}</math>
+
::5.&nbsp;&nbsp; <math>\sum_{k = 1}^{\infty} \left( {\small\frac{1}{2 k - 1}} - \underbrace{{\small\frac{1}{2 a k - 2 a + 2}} - {\small\frac{1}{2 a k - 2 a + 4}} - \ldots - {\small\frac{1}{2 a k}}}_{a \; \text{ wyrazów}} \right) = {\small\frac{1}{2}} \cdot \log {\small\frac{4}{a}}</math>
  
::6. <math>\;\; \left( 1 - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{7}} + {\small\frac{1}{9}} + {\small\frac{1}{11}} + {\small\frac{1}{13}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{15}} + {\small\frac{1}{17}} + {\small\frac{1}{19}} + {\small\frac{1}{21}} + {\small\frac{1}{23}} + {\small\frac{1}{25}} + {\small\frac{1}{27}} + {\small\frac{1}{29}} - {\small\frac{1}{8}} \right) + \ldots = + \infty</math>
+
::6.&nbsp;&nbsp; <math>\left( 1 - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{7}} + {\small\frac{1}{9}} + {\small\frac{1}{11}} + {\small\frac{1}{13}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{15}} + {\small\frac{1}{17}} + {\small\frac{1}{19}} + {\small\frac{1}{21}} + {\small\frac{1}{23}} + {\small\frac{1}{25}} + {\small\frac{1}{27}} + {\small\frac{1}{29}} - {\small\frac{1}{8}} \right) + \ldots = + \infty</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Linia 1135: Linia 1135:
 
::<math>\sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{2 a k - 2 a + 2}} - {\small\frac{1}{2 a k - 2 a + 4}} - \ldots - {\small\frac{1}{2 a k}} \right) = \sum_{k = 1}^{n} {\small\frac{1}{2 k - 1}} -  \sum_{k = 1}^{n} \left( {\small\frac{1}{2 a k - 2 a + 2}} + {\small\frac{1}{2 a k - 2 a + 4}} + \ldots + {\small\frac{1}{2 a k}} \right)</math>
 
::<math>\sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{2 a k - 2 a + 2}} - {\small\frac{1}{2 a k - 2 a + 4}} - \ldots - {\small\frac{1}{2 a k}} \right) = \sum_{k = 1}^{n} {\small\frac{1}{2 k - 1}} -  \sum_{k = 1}^{n} \left( {\small\frac{1}{2 a k - 2 a + 2}} + {\small\frac{1}{2 a k - 2 a + 4}} + \ldots + {\small\frac{1}{2 a k}} \right)</math>
  
:::::::<math> = \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} - \left[ \left( {\small\frac{1}{2}} + {\small\frac{1}{4}} + \ldots + {\small\frac{1}{2 a}} \right) + \left( {\small\frac{1}{2 a + 2}} + {\small\frac{1}{2 a + 4}} + \ldots + {\small\frac{1}{4 a}} \right) + \left( {\small\frac{1}{4 a + 2}} + {\small\frac{1}{4 a + 4}} + \ldots + {\small\frac{1}{6 a}} \right) + \ldots + \left( {\small\frac{1}{2 a n - 2 a + 2}} + {\small\frac{1}{2 a n - 2 a + 4}} + \ldots + {\small\frac{1}{2 a n}} \right) \right]</math>
+
:::::::<math>= \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} - \left[ \left( {\small\frac{1}{2}} + {\small\frac{1}{4}} + \ldots + {\small\frac{1}{2 a}} \right) + \left( {\small\frac{1}{2 a + 2}} + {\small\frac{1}{2 a + 4}} + \ldots + {\small\frac{1}{4 a}} \right) + \left( {\small\frac{1}{4 a + 2}} + {\small\frac{1}{4 a + 4}} + \ldots + {\small\frac{1}{6 a}} \right) + \ldots + \left( {\small\frac{1}{2 a n - 2 a + 2}} + {\small\frac{1}{2 a n - 2 a + 4}} + \ldots + {\small\frac{1}{2 a n}} \right) \right]</math>
  
:::::::<math> = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left[ \left( 1 + {\small\frac{1}{2}} + \ldots + {\small\frac{1}{a}} \right) + \left( {\small\frac{1}{a + 1}} + {\small\frac{1}{a + 2}} + \ldots + {\small\frac{1}{2 a}} \right) + \left( {\small\frac{1}{2 a + 1}} + {\small\frac{1}{2 a + 2}} + \ldots + {\small\frac{1}{3 a}} \right) + \ldots + \left( {\small\frac{1}{a n - a + 1}} + {\small\frac{1}{a n - a + 2}} + \ldots + {\small\frac{1}{a n}} \right) \right]</math>
+
:::::::<math>= H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left[ \left( 1 + {\small\frac{1}{2}} + \ldots + {\small\frac{1}{a}} \right) + \left( {\small\frac{1}{a + 1}} + {\small\frac{1}{a + 2}} + \ldots + {\small\frac{1}{2 a}} \right) + \left( {\small\frac{1}{2 a + 1}} + {\small\frac{1}{2 a + 2}} + \ldots + {\small\frac{1}{3 a}} \right) + \ldots + \left( {\small\frac{1}{a n - a + 1}} + {\small\frac{1}{a n - a + 2}} + \ldots + {\small\frac{1}{a n}} \right) \right]</math>
  
:::::::<math> = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left[ 1 + {\small\frac{1}{2}} + \ldots + {\small\frac{1}{a}} + {\small\frac{1}{a + 1}} + {\small\frac{1}{a + 2}} + \ldots + {\small\frac{1}{2 a}} + {\small\frac{1}{2 a + 1}} + {\small\frac{1}{2 a + 2}} + \ldots + {\small\frac{1}{3 a}} + \ldots + {\small\frac{1}{a n - a + 1}} + {\small\frac{1}{a n - a + 2}} + \ldots + {\small\frac{1}{a n}} \right]</math>
+
:::::::<math>= H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left[ 1 + {\small\frac{1}{2}} + \ldots + {\small\frac{1}{a}} + {\small\frac{1}{a + 1}} + {\small\frac{1}{a + 2}} + \ldots + {\small\frac{1}{2 a}} + {\small\frac{1}{2 a + 1}} + {\small\frac{1}{2 a + 2}} + \ldots + {\small\frac{1}{3 a}} + \ldots + {\small\frac{1}{a n - a + 1}} + {\small\frac{1}{a n - a + 2}} + \ldots + {\small\frac{1}{a n}} \right]</math>
  
:::::::<math> = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} H_{a n}</math>
+
:::::::<math>= H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} H_{a n}</math>
  
:::::::<math> \approx \left( \log (2 n) + \gamma + {\small\frac{1}{4 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log n + \gamma + {\small\frac{1}{2 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log (a n) + \gamma + {\small\frac{1}{2 a n}} - \ldots \right)</math>
+
:::::::<math>\approx \left( \log (2 n) + \gamma + {\small\frac{1}{4 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log n + \gamma + {\small\frac{1}{2 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log (a n) + \gamma + {\small\frac{1}{2 a n}} - \ldots \right)</math>
  
:::::::<math> = {\small\frac{1}{2}} \left[ \log (4 n^2) + 2 \gamma + {\small\frac{1}{2 n}} - \log n - \gamma - {\small\frac{1}{2 n}} - \log (a n) - \gamma - {\small\frac{1}{2 a n}} \right]</math>
+
:::::::<math>= {\small\frac{1}{2}} \left[ \log (4 n^2) + 2 \gamma + {\small\frac{1}{2 n}} - \log n - \gamma - {\small\frac{1}{2 n}} - \log (a n) - \gamma - {\small\frac{1}{2 a n}} \right]</math>
  
:::::::<math> = {\small\frac{1}{2}} \left[ \log \left( {\small\frac{4 n^2}{n \cdot a n}} \right) - {\small\frac{1}{2 a n}} \right] \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \cdot \log {\small\frac{4}{a}}</math>
+
:::::::<math>= {\small\frac{1}{2}} \left[ \log \left( {\small\frac{4 n^2}{n \cdot a n}} \right) - {\small\frac{1}{2 a n}} \right] \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \cdot \log {\small\frac{4}{a}}</math>
  
  
Linia 1264: Linia 1264:
  
  
 +
<span id="D32" style="font-size: 110%; font-weight: bold;">Zadanie D32</span><br/>
 +
Pokazać, że każdą liczbę <math>x \in \mathbb{R}</math> można przedstawić jednoznacznie w&nbsp;postaci różnicy liczb nieujemnych <math>p, g</math> tak, aby jednocześnie były spełnione równania <math>x = p - g</math> oraz <math>| x | = p + g</math>.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Problem sprowadza się do rozwiązania układu równań
  
== Szeregi nieskończone i&nbsp;całka oznaczona ==
+
::<math>\begin{cases}
 +
p - g = x \\[0.3em]
 +
p + g = | x | \\
 +
\end{cases}</math>
  
<span id="D32" style="font-size: 110%; font-weight: bold;">Twierdzenie D32</span><br/>
+
Skąd natychmiast otrzymujemy
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
 
  
::<math>0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x</math>
+
::<math>p = {\small\frac{| x | + x}{2}} \qquad g = {\small\frac{| x | - x}{2}}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ <math>| x | \geqslant - x</math> i <math>| x | \geqslant x</math>, to obie liczby <math>p, g</math> są nieujemne. Zauważmy, że rozkład liczby <math>x</math> możemy zapisać w&nbsp;równoważny sposób
Ponieważ funkcja <math>f(x)</math> jest z&nbsp;założenia ciągła, dodatnia i&nbsp;malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.
 
  
::[[File: D_Szereg-i-calka-1.png|none]]
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>p = {\small\frac{| x | + x}{2}} = \max (0, x) =
 +
\begin{cases}
 +
x &  & \text{gdy } x \geqslant 0 \\[0.3em]
 +
0 &  & \text{gdy } x < 0 \\
 +
\end{cases}</math>
 +
</div>
  
Przedstawiona na rysunku krzywa odpowiada funkcji <math>f(x)</math>. Dla współrzędnej <math>x = k</math> zaznaczyliśmy wartość funkcji <math>f(k)</math>, a&nbsp;po lewej i&nbsp;prawej stronie tych punktów zaznaczyliśmy pasy o&nbsp;jednostkowej szerokości. Łatwo zauważamy, że
+
::<math>g = {\small\frac{| x | - x}{2}} = \max (0, - x) =
 +
\begin{cases}
 +
  0 &  & \text{gdy } x \geqslant 0 \\[0.3em]
 +
- x &  & \text{gdy } x < 0 \\
 +
\end{cases}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
* po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
 
* po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
 
  
Korzystając z&nbsp;własności całki oznaczonej, otrzymujemy ciąg nierówności
 
  
::<math>\int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x</math>
+
<span id="D33" style="font-size: 110%; font-weight: bold;">Zadanie D33</span><br/>
 +
Niech <math>(a_n)</math> będzie ciągiem nieskończonym, a <math>(a_{n_j})</math> będzie podciągiem ciągu <math>(a_n)</math> zbudowanym z&nbsp;wyrazów nieujemnych tego ciągu, natomiast <math>(a_{n_k})</math> będzie podciągiem ciągu <math>(a_n)</math> zbudowanym z&nbsp;wyrazów ujemnych tego ciągu. Pokazać, że jeżeli szereg <math>\sum_{n = 1}^{\infty} a_n</math> jest warunkowo zbieżny, to
  
W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z&nbsp;uczynionym założeniem funkcja <math>f(x)</math> może być funkcją słabo malejącą.
+
::<math>\sum_{j = 1}^{\infty} a_{n_j} = + \infty \qquad \qquad \text{i} \qquad \qquad \sum_{k = 1}^{\infty} a_{n_k} = - \infty</math>
  
Sumując lewą nierówność od <math>k = m</math> do <math>k = n</math>, a&nbsp;prawą od <math>k = m + 1</math> do <math>k = n</math>, dostajemy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Każdy wyraz <math>a_n</math> szeregu <math>\sum_{n = 1}^{\infty} a_n</math> przedstawimy w&nbsp;postaci różnicy dwóch liczb nieujemnych <math>a^+_n</math> i <math>a^-_n</math> (zobacz [[#D32|D32]]), gdzie
  
::<math>\int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k)</math>
+
::<math>a^+_n = \max (0, a_n)</math>
  
::<math>\sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x</math>
+
::<math>a^-_n = \max (0, - a_n)</math>
  
Dodając <math>f(m)</math> do obydwu stron drugiej z&nbsp;powyższych nierówności i&nbsp;łącząc je ze sobą, otrzymujemy kolejny i&nbsp;docelowy ciąg nierówności
+
Zauważmy, że
  
::<math>0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math><br/>
+
::&#9679;&nbsp;&nbsp;&nbsp; ciąg <math>(a^+_n)</math> powstaje z&nbsp;ciągu <math>(a_n)</math> przez zastąpienie wyrazów mniejszych od zera zerami
&#9633;
+
::&#9679;&nbsp;&nbsp;&nbsp; ciąg <math>(a^-_n)</math> powstaje z&nbsp;ciągu <math>(a_n)</math> przez zastąpienie wyrazów większych od zera zerami, a&nbsp;wyrazów mniejszych od zera ich wartościami bezwzględnymi
{{\Spoiler}}
 
  
 +
Oczywiście <math>a_n = a^+_n - a^-_n</math> i <math>| a_n | = a^+_n + a^-_n</math> i&nbsp;możemy napisać
  
 +
::<math>\sum_{n = 1}^{\infty} a_n = \sum_{j = 1}^{\infty} a^+_n - \sum^{\infty}_{k = 1} a^-_n</math>
  
<span id="D33" style="font-size: 110%; font-weight: bold;">Przykład D33</span><br/>
+
::<math>\sum_{n = 1}^{\infty} | a_n | = \sum_{j = 1}^{\infty} a^+_n + \sum_{k = 1}^{\infty} a^-_n</math>
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
 
  
Funkcja <math>f(x) = {\small\frac{1}{x}}</math> jest ciągła, dodatnia i&nbsp;silnie malejąca w&nbsp;przedziale <math>(0, + \infty)</math>, zatem dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest oszacowanie
 
  
::<math>\int_{1}^{n + 1} {\small\frac{d x}{x}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \int_{1}^{n} {\small\frac{d x}{x}}</math>
+
Rozważmy możliwe przypadki
  
Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fx+from+1+to+n WolframAlpha].
+
'''Punkt 1.'''
  
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
+
Jeżeli szeregi <math>\sum_{n = 1}^{\infty} a^+_n</math> i <math>\sum_{n = 1}^{\infty} a^-_n</math> są zbieżne, to szereg <math>\sum_{n = 1}^{\infty} | a_n | = \sum_{j = 1}^{\infty} a^+_n + \sum_{k = 1}^{\infty} a^-_n</math> jest zbieżny. Zatem szereg <math>\sum_{n = 1}^{\infty} a_n</math> jest bezwzględnie zbieżny, wbrew założeniu, że jest warunkowo zbieżny.
  
Ponieważ
+
'''Punkt 2.'''
  
::<math>\log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) > \log n + {\small\frac{1}{n + 1}}</math>
+
Jeżeli szereg <math>\sum_{n = 1}^{\infty} a^+_n</math> jest zbieżny, a&nbsp;szereg <math>\sum_{n = 1}^{\infty} a^-_n</math> jest rozbieżny, to szereg <math>\sum_{n = 1}^{\infty} a_n = \sum_{j = 1}^{\infty} a^+_n - \sum_{k = 1}^{\infty} a^-_n</math> jest rozbieżny, wbrew założeniu, że jest warunkowo zbieżny.
  
to dostajemy
+
'''Punkt 3.'''
  
::<math>{\small\frac{1}{n + 1}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n < 1</math>
+
Jeżeli szereg <math>\sum_{n = 1}^{\infty} a^+_n</math> jest rozbieżny, a&nbsp;szereg <math>\sum_{n = 1}^{\infty} a^-_n</math> jest zbieżny, to szereg <math>\sum_{n = 1}^{\infty} a_n = \sum_{j = 1}^{\infty} a^+_n - \sum_{k = 1}^{\infty} a^-_n</math> jest rozbieżny, wbrew założeniu, że jest warunkowo zbieżny.
  
Zauważmy: nie tylko wiemy, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o&nbsp;zbieżności szeregów.
 
  
 +
Wynika stąd, że możliwy jest tylko przypadek, gdy obydwa szeregi <math>\sum_{n = 1}^{\infty} a^+_n</math> i <math>\sum_{n = 1}^{\infty} a^-_n</math> są rozbieżne. Zauważmy teraz, że pary ciągów <math>(a_{n_j})</math> i <math>(a^+_n)</math> oraz <math>(a_{n_k})</math> i <math>(- a^-_n)</math> różnią się jedynie nieskończoną ilością wyrazów równych zero, zatem odpowiednie szeregi również są rozbieżne
  
 +
::<math>\sum_{j = 1}^{\infty} a_{n_j} = \sum_{n = 1}^{\infty} a^+_n = + \infty</math>
  
 +
::<math>\sum_{k = 1}^{\infty} a_{n_k} = - \sum_{k = 1}^{\infty} a^-_n = - \infty</math>
  
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34 (kryterium całkowe zbieżności szeregów)</span><br/>
+
Skąd wynika natychmiast, że obydwa podciągi <math>(a_{n_j})</math> i <math>(a_{n_k})</math> mają nieskończoną liczbę wyrazów różnych od zera.<br/>
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
+
&#9633;
 +
{{\Spoiler}}
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja <math>f(x)</math> jest malejąca, będzie wykorzystane w&nbsp;czasie dowodu twierdzenia, ale rozważanie przypadku, gdy <math>f(x)</math> jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu <math>\sum_{k = m}^{\infty} f(k)</math> (zobacz twierdzenie [[#D4|D4]]).
 
  
Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego <math>x_0</math> byłoby <math>f(x_0) = 0</math>. Ponieważ z&nbsp;założenia funkcja <math>f(x)</math> jest malejąca, zatem mielibyśmy <math>f(x) = 0</math> dla <math>x \geqslant x_0</math>. Odpowiadający tej funkcji szereg <math>\sum_{k = m}^{\infty} f (k)</math> miałby dla <math>k \geqslant x_0</math> tylko wyrazy zerowe i&nbsp;byłby w&nbsp;sposób oczywisty zbieżny.
 
  
Założenie ciągłości funkcji <math>f(x)</math> ma zapewnić całkowalność funkcji <math>f(x)</math><ref name="calkowalnosc1"/>. Założenie to można osłabić<ref name="calkowalnosc2"/>, tutaj ograniczymy się tylko do podania przykładów. Niech <math>a, b \in \mathbb{R}</math>, mamy
+
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34 (Bernhard Riemann</span><ref name="Riemann1"/><span style="font-size: 110\%; font-weight: bold;">, 1854)</span><br/>
 +
Jeżeli szereg <math>\sum_{n = 1}^{\infty} a_n</math> jest warunkowo zbieżny i <math>R \in \mathbb{R}</math>, to istnieje takie przestawienie wyrazów tego szeregu <math>f(k)</math>, że <math>\sum_{n = 1}^{\infty} a_{f (n)} = R</math>.
  
::<math>\int_a^b \text{sgn}(x) d x = | b | - | a |</math> <math>\qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1)</math> <math>\qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Zauważmy od razu (i zapamiętajmy), że ponieważ z&nbsp;założenia szereg <math>\sum_{n = 1}^{\infty} a_n</math> jest zbieżny, to musi być spełniony warunek konieczny zbieżności szeregu <math>\lim_{n \rightarrow \infty} a_n = 0 \;</math> (zobacz [[#D4|D4]]).
  
  
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D32|D32]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
+
Niech <math>(a_{n_j})</math> będzie podciągiem ciągu <math>(a_n)</math> zbudowanym z&nbsp;wyrazów nieujemnych tego ciągu, natomiast <math>(a_{n_k})</math> będzie podciągiem ciągu <math>(a_n)</math> zbudowanym z&nbsp;wyrazów ujemnych tego ciągu. Ponieważ podciągi <math>(a_{n_j})</math> i <math>(a_{n_k})</math> tworzą szeregi rozbieżne (zobacz [[#D33|D33]]) odpowiednio do <math>+ \infty</math> i&nbsp;do <math>- \infty</math>, to skończona suma kolejnych wyrazów tych podciągów może osiągać dowolne wartości skończone odpowiednio dodatnie lub ujemne.
  
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
+
Dla ułatwienia zapisu oznaczmy: <math>(p_i) \equiv (a_{n_j})</math> i <math>(q_i) \equiv (a_{n_k})</math>, a&nbsp;dla ustalenia uwagi załóżmy, że <math>R > 0</math>.
  
 +
Wybierzmy najmniejsze <math>n_1</math> takie, że suma wyrazów <math>p_k</math> (dodatnich) będzie większa od <math>R</math> (liczby dodatniej) o&nbsp;co najwyżej ostatni z&nbsp;wyrazów tej sumy
  
'''Z drugiej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych <math>C_j = \int_{m}^{j} f (x) d x</math> nie może być ograniczony od góry (w&nbsp;przeciwnym wypadku całka <math>\int_{m}^{\infty} f (x) d x</math> byłby zbieżna), zatem również rosnący ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f(k)</math> nie może być ograniczony od góry, co oznacza, że szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest rozbieżny.
+
::<math>\sum_{k = 1}^{n_1 - 1} p_k \leqslant R < \sum_{k = 1}^{n_1} p_k</math>
  
'''Z trzeciej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest zbieżna, to ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f (k)</math> jest ciągiem rosnącym i&nbsp;ograniczonym od góry. Wynika stąd, że ciąg <math>F_j</math> jest zbieżny, zatem szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny.
+
::<math>- p_{n_1} \leqslant R - \sum_{k = 1}^{n_1} p_k < 0</math>
  
Ponieważ zbieżność (rozbieżność) całki <math>\int_{m}^{\infty} f(x) d x</math> nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę <math>\lim_{x \to \infty} F (x)</math>, gdzie <math>F(x) = \int f (x) d x</math> jest dowolną funkcją pierwotną.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
Wybierzmy najmniejsze <math>m_1</math> takie, że suma wyrazów <math>q_k</math> (ujemnych) będzie mniejsza od <math>R - \sum_{k = 1}^{n_1} p_k</math> (liczby ujemnej) o&nbsp;co najwyżej ostatni z&nbsp;wyrazów tej sumy
  
 +
::<math>\sum_{k = 1}^{m_1} q_k < R - \sum_{k = 1}^{n_1} p_k \leqslant \sum^{m_1 - 1}_{k = 1} q_k</math>
  
<span id="D35" style="font-size: 110%; font-weight: bold;">Przykład D35</span><br/>
+
::<math>0 < R - \sum_{k = 1}^{n_1} p_k - \sum_{k = 1}^{m_1} q_k \leqslant - q_{m_1}</math>
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
!
 
! szereg <math>\sum_{k = m}^{\infty} a_k</math>
 
! funkcja <math>f(x)</math>
 
! całka <math>F(x) = \int f(x) d x</math>
 
! granica <math>\lim_{x \to \infty} F(x)</math>
 
! wynik
 
|-
 
| 1. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> || <math>{\small\frac{1}{x}}</math> || <math>\log x</math> || <math>\infty</math> || szereg rozbieżny
 
|-
 
| 2. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{\sqrt{k}}}</math> || <math>{\small\frac{1}{\sqrt{x}}}</math> || <math>2 \sqrt{x}</math> || <math>\infty</math> || szereg rozbieżny
 
|-
 
| 3. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> || <math>{\small\frac{1}{x^2}}</math> || <math>- {\small\frac{1}{x}}</math> || <math>0</math> || szereg zbieżny
 
|-
 
| 4. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log k}}</math> || <math>{\small\frac{1}{x \log x}}</math> || <math>\log \log x</math> || <math>\infty</math> || szereg rozbieżny
 
|-
 
| 5. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^2 \! k}}</math> || <math>{\small\frac{1}{x \log^2 \! x}}</math> || <math>- {\small\frac{1}{\log x}}</math> || <math>0</math> || szereg zbieżny
 
|}
 
  
Stosując kryterium całkowe, można łatwo pokazać, że szeregi
+
Wybierzmy najmniejsze <math>n_2 > n_1</math> takie, że suma wyrazów <math>p_k</math> (dodatnich) będzie większa od <math>R - \sum_{k = 1}^{n_1} p_k - \sum_{k = 1}^{m_1} q_k</math> (liczby dodatniej) o&nbsp;co najwyżej ostatni z&nbsp;wyrazów tej sumy
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
::<math>\sum_{k = n_1 + 1}^{n_2 - 1} p_k \leqslant R - \sum_{k = 1}^{n_1} p_k - \sum_{k = 1}^{m_1} q_k < \sum_{k = n_1 + 1}^{n_2} p_k</math>
  
::<math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}}</math>
+
::<math>- p_{n_2} \leqslant R - \sum_{k = 1}^{n_2} p_k - \sum_{k = 1}^{m_1} q_k < 0</math>
  
są zbieżne dla <math>s > 1</math> i&nbsp;rozbieżne dla <math>s \leqslant 1</math>.
 
  
 +
Wybierzmy najmniejsze <math>m_2 > m_1</math> takie, że suma wyrazów <math>q_k</math> (ujemnych) będzie mniejsza od <math>R - \sum_{k = 1}^{n_2} p_k - \sum_{k = 1}^{m_1} q_k</math> (liczby ujemnej) o&nbsp;co najwyżej ostatni z&nbsp;wyrazów tej sumy
  
 +
::<math>\sum_{k = m_1 + 1}^{m_2} q_k < R - \sum_{k = 1}^{n_2} p_k - \sum^{m_1}_{k = 1} q_k \leqslant \sum_{k = m_1 + 1}^{m_2 - 1} q_k</math>
  
 +
::<math>0 < R - \sum_{k = 1}^{n_2} p_k - \sum_{k = 1}^{m_2} q_k \leqslant - q_{m_2}</math>
  
<span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
 
  
::<math>R(m) = \int_{m}^{\infty} f(x) d x</math>
+
Kontynuując, zgodnie z&nbsp;zasadami przedstawionymi wyżej, naprzemienne dodawanie bloków liczb nieujemnych i&nbsp;ujemnych, osiągamy to, że kolejne sumy oscylują wokół wartości <math>R</math> z&nbsp;coraz mniejszą amplitudą.
  
::<math>S(m) = \sum_{k = a}^{m} f(k)</math>
+
W <math>j</math>-tym kroku dla bloku wyrazów nieujemnych <math>p_k</math> i <math>n_j > n_{j - 1}</math> otrzymujemy
  
gdzie <math>a < m</math>, to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math>
+
::<math>- p_{n_j} \leqslant R - \sum_{k = 1}^{n_j} p_k - \sum^{m_{j - 1}}_{k = 1} q_k < 0</math>
  
::<math>S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m)</math>
+
a dla bloku wyrazów ujemnych <math>q_k</math> i <math>m_j > m_{j - 1}</math> dostajemy
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>0 < R - \sum_{k = 1}^{n_j} p_k - \sum_{k = 1}^{m_j} q_k \leqslant - q_{m_j}</math>
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D32|D32]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
 
  
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
 
  
Czyli
+
Niech
 +
 
 +
::<math>S(n_j, m_j) = \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j} q_k</math>
 +
 
 +
oznacza sumę częściową nowego szeregu (z przestawionymi wyrazami), którego konstrukcję przedstawiliśmy wyżej. Ponieważ <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to z&nbsp;wypisanych nierówności i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C11|C11]]) wynika natychmiast, że
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\lim_{j \rightarrow \infty} S (n_j, m_j) = \lim_{j \rightarrow \infty} S(n_j, m_{j - 1}) = R</math>
 +
</div>
 +
 
 +
Zauważmy teraz, że prawdziwy jest następujący ciąg nierówności
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( \sum_{k = 1}^{n_j} p_k + \sum^{m_{j - 1}}_{k = 1} q_k \right) >
 +
        \left( \sum_{k = 1}^{n_j} p_k + \sum^{m_{j - 1} + 1}_{k = 1} q_k \right) >
 +
        \left( \sum_{k = 1}^{n_j} p_k + \sum^{m_{j - 1} + 2}_{k = 1} q_k \right) > \ldots >
 +
        \left( \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j - 1} q_k \right) >
 +
        \left( \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j} q_k \right)</math>
 +
</div>
 +
 
 +
Jest tak, ponieważ każde kolejne wyrażenie w&nbsp;nawiasie ma coraz więcej wyrazów ujemnych. Podobnie mamy też
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\left( \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant
 +
        \left( \sum_{k = 1}^{n_j + 1} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant
 +
        \left( \sum_{k = 1}^{n_j + 2} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant \ldots \leqslant
 +
        \left( \sum^{n_{j + 1} - 1}_{k = 1} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant
 +
        \left( \sum^{n_{j + 1}}_{k = 1} p_k + \sum_{k = 1}^{m_j} q_k \right)</math>
 +
</div>
 +
 
 +
bo każde kolejne wyrażenie w&nbsp;nawiasie ma coraz więcej wyrazów nieujemnych. Co oznacza, że dla sum częściowych mamy odpowiednio
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 0em;">
 +
::<math>S(n_j, m_{j - 1}) > S (n_j, m_{j - 1} + 1) > S (n_j, m_{j - 1} + 2) > \ldots > S (n_j, m_j - 1) > S (n_j, m_j)</math>
 +
</div>
 +
 
 +
oraz
  
::<math>R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m)</math>
+
<div style="margin-top: 0em; margin-bottom: 1em;">
 +
::<math>S(n_j, m_j) \leqslant S (n_j + 1, m_j) \leqslant S (n_j + 2, m_j) \leqslant \ldots \leqslant S (n_{j + 1} - 1, m_j) \leqslant S (n_{j + 1}, m_j)</math>
 +
</div>
  
Odejmując od każdej ze stron nierówności liczbę <math>f(m)</math> i&nbsp;dodając do każdej ze stron nierówności sumę skończoną <math>S(m) = \sum_{k = a}^{m} f(k)</math>, otrzymujemy
+
Ponieważ <math>\lim_{j \rightarrow \infty} S (n_j, m_j) = \lim_{j \rightarrow \infty} S (n_j, m_{j - 1}) = R ,</math> to z&nbsp;twierdzenia o&nbsp;trzech ciągach wynika natychmiast, że cały ciąg sum częściowych (liczony do dowolnego wyrazu nowego szeregu) jest zbieżny do <math>R</math>. Możemy zatem napisać
  
::<math>S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m)</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\sum_{n = 1}^{\infty} a_{f (n)} = R</math>
 +
</div>
  
Co należało pokazać.<br/>
+
gdzie funkcja <math>f(n)</math> opisuje przestawianie wyrazów szeregu <math>\sum_{n = 1}^{\infty} a_n</math> zgodnie z&nbsp;przedstawioną wyżej metodą. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1418: Linia 1454:
  
  
<span id="D37" style="font-size: 110%; font-weight: bold;">Przykład D37</span><br/>
 
Twierdzenie [[#D36|D36]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
 
  
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
 
  
::<math>\int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right)</math>
+
== Szeregi nieskończone i&nbsp;całka oznaczona ==
 +
 
 +
<span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35</span><br/>
 +
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
  
::<math>R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right)</math>
+
::<math>0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x</math>
  
Zatem
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ funkcja <math>f(x)</math> jest z&nbsp;założenia ciągła, dodatnia i&nbsp;malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.
  
::<math>S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m)</math>
+
::[[File: D_Szereg-i-calka-1.png|none]]
  
Dla kolejnych wartości <math>m</math> otrzymujemy
+
Przedstawiona na rysunku krzywa odpowiada funkcji <math>f(x)</math>. Dla współrzędnej <math>x = k</math> zaznaczyliśmy wartość funkcji <math>f(k)</math>, a&nbsp;po lewej i&nbsp;prawej stronie tych punktów zaznaczyliśmy pasy o&nbsp;jednostkowej szerokości. Łatwo zauważamy, że
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
* po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
! <math>m</math>
+
* po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
! <math>S(m) + R(m) - f(m)</math>
 
! <math>S(m) + R(m)</math>
 
|-
 
| <math>10^1</math> || <math>1.84</math> || <math>1.87</math>
 
|-
 
| <math>10^2</math> || <math>1.85</math> || <math>1.86</math>
 
|-
 
| <math>10^3</math> || <math>1.86000</math> || <math>1.86004</math>
 
|-
 
| <math>10^4</math> || <math>1.860024</math> || <math>1.860025</math>
 
|-
 
| <math>10^5</math> || <math>1.86002506</math> || <math>1.86002509</math>
 
|-
 
| <math>10^6</math> || <math>1.860025078</math> || <math>1.860025079</math>
 
|-
 
| <math>10^7</math> || <math>1.86002507920</math> || <math>1.86002507923</math>
 
|-
 
| <math>10^8</math> || <math>1.860025079220</math> || <math>1.860025079221</math>
 
|-
 
| <math>10^9</math> || <math>1.8600250792211</math> || <math>1.8600250792212</math>
 
|-
 
|}
 
  
 +
Korzystając z&nbsp;własności całki oznaczonej, otrzymujemy ciąg nierówności
  
W programie PARI/GP wystarczy napisać:
+
::<math>\int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x</math>
  
<span style="font-size: 90%; color:black;">f(k) = 1.0 / (k+1) / '''sqrt'''(k)</span>
+
W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z&nbsp;uczynionym założeniem funkcja <math>f(x)</math> może być funkcją słabo malejącą.
<span style="font-size: 90%; color:black;">S(m) = '''sum'''( k = 1, m, f(k) )</span>
 
<span style="font-size: 90%; color:black;">R(m) = '''Pi''' - 2*'''atan'''( '''sqrt'''(m) )</span>
 
<span style="font-size: 90%; color:black;">'''for'''(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); '''print'''( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))</span>
 
  
 +
Sumując lewą nierówność od <math>k = m</math> do <math>k = n</math>, a&nbsp;prawą od <math>k = m + 1</math> do <math>k = n</math>, dostajemy
  
 +
::<math>\int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k)</math>
  
 +
::<math>\sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x</math>
  
Prostym wnioskiem z&nbsp;twierdzenia [[#D32|D32]] jest następujące<br/>
+
Dodając <math>f(m)</math> do obydwu stron drugiej z&nbsp;powyższych nierówności i&nbsp;łącząc je ze sobą, otrzymujemy kolejny i&nbsp;docelowy ciąg nierówności
<span id="D38" style="font-size: 110%; font-weight: bold;">Twierdzenie D38</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math><br/>
Korzystając ze wzoru z&nbsp;twierdzenia [[#D32|D32]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy
+
&#9633;
 +
{{\Spoiler}}
  
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
 
  
Dodając do każdej ze stron nierówności wyrażenie <math>- f(m) + \sum_{k = a}^{m} f(k)</math>, dostajemy
 
  
::<math>- f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x</math>
+
<span id="D36" style="font-size: 110%; font-weight: bold;">Przykład D36</span><br/>
 +
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
 +
 
 +
Funkcja <math>f(x) = {\small\frac{1}{x}}</math> jest ciągła, dodatnia i&nbsp;silnie malejąca w&nbsp;przedziale <math>(0, + \infty)</math>, zatem dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest oszacowanie
  
Skąd wynika natychmiast
+
::<math>\int_{1}^{n + 1} {\small\frac{d x}{x}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \int_{1}^{n} {\small\frac{d x}{x}}</math>
  
::<math>- f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 < f(m)</math>
+
Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fx+from+1+to+n WolframAlpha].
  
Czyli
+
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
  
::<math>\left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m)</math>
+
Ponieważ
  
Co kończy dowód.<br/>
+
::<math>\log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) > \log n + {\small\frac{1}{n + 1}}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
to dostajemy
  
 +
::<math>{\small\frac{1}{n + 1}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n < 1</math>
  
<span id="D39" style="font-size: 110%; font-weight: bold;">Twierdzenie D39</span><br/>
+
Zauważmy: nie tylko wiemy, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o&nbsp;zbieżności szeregów.
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
 
  
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x</math>
 
  
gdzie <math>B</math> oraz <math>C</math> są dowolnymi stałymi spełniającymi nierówności
 
  
::<math>B \geqslant 1</math>
 
  
::<math>C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x</math>
+
<span id="D37" style="font-size: 110%; font-weight: bold;">Twierdzenie D37 (kryterium całkowe zbieżności szeregów)</span><br/>
 +
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#D32|D32]] mamy
+
Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja <math>f(x)</math> jest malejąca, będzie wykorzystane w&nbsp;czasie dowodu twierdzenia, ale rozważanie przypadku, gdy <math>f(x)</math> jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu <math>\sum_{k = m}^{\infty} f(k)</math> (zobacz twierdzenie [[#D4|D4]]).
 +
 
 +
Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego <math>x_0</math> byłoby <math>f(x_0) = 0</math>. Ponieważ z&nbsp;założenia funkcja <math>f(x)</math> jest malejąca, zatem mielibyśmy <math>f(x) = 0</math> dla <math>x \geqslant x_0</math>. Odpowiadający tej funkcji szereg <math>\sum_{k = m}^{\infty} f (k)</math> miałby dla <math>k \geqslant x_0</math> tylko wyrazy zerowe i&nbsp;byłby w&nbsp;sposób oczywisty zbieżny.
 +
 
 +
Założenie ciągłości funkcji <math>f(x)</math> ma zapewnić całkowalność funkcji <math>f(x)</math><ref name="calkowalnosc1"/>. Założenie to można osłabić<ref name="calkowalnosc2"/>, tutaj ograniczymy się tylko do podania przykładów. Niech <math>a, b \in \mathbb{R}</math>, mamy
 +
 
 +
::<math>\int_a^b \text{sgn}(x) d x = | b | - | a |</math> <math>\qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1)</math> <math>\qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a</math>
  
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
 
  
:::::::<math>\;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x</math>
+
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D35|D35]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
  
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
+
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
  
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
 
  
:::::::<math>\;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
+
'''Z drugiej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych <math>C_j = \int_{m}^{j} f (x) d x</math> nie może być ograniczony od góry (w&nbsp;przeciwnym wypadku całka <math>\int_{m}^{\infty} f (x) d x</math> byłby zbieżna), zatem również rosnący ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f(k)</math> nie może być ograniczony od góry, co oznacza, że szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest rozbieżny.
  
:::::::<math>\;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x</math>
+
'''Z trzeciej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest zbieżna, to ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f (k)</math> jest ciągiem rosnącym i&nbsp;ograniczonym od góry. Wynika stąd, że ciąg <math>F_j</math> jest zbieżny, zatem szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny.
  
:::::::<math>\;\! \leqslant C - B \int_{n}^{\infty} f (x) d x</math><br/>
+
Ponieważ zbieżność (rozbieżność) całki <math>\int_{m}^{\infty} f(x) d x</math> nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę <math>\lim_{x \to \infty} F (x)</math>, gdzie <math>F(x) = \int f (x) d x</math> jest dowolną funkcją pierwotną.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1528: Linia 1545:
  
  
<span id="D40" style="font-size: 110%; font-weight: bold;">Uwaga D40</span><br/>
+
<span id="D38" style="font-size: 110%; font-weight: bold;">Przykład D38</span><br/>
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
+
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
  
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D39|D39]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
+
!
 +
! szereg <math>\sum_{k = m}^{\infty} a_k</math>
 +
! funkcja <math>f(x)</math>
 +
! całka <math>F(x) = \int f(x) d x</math>
 +
! granica <math>\lim_{x \to \infty} F(x)</math>
 +
! wynik
 +
|-
 +
| 1. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> || <math>{\small\frac{1}{x}}</math> || <math>\log x</math> || <math>\infty</math> || szereg rozbieżny
 +
|-
 +
| 2. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{\sqrt{k}}}</math> || <math>{\small\frac{1}{\sqrt{x}}}</math> || <math>2 \sqrt{x}</math> || <math>\infty</math> || szereg rozbieżny
 +
|-
 +
| 3. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> || <math>{\small\frac{1}{x^2}}</math> || <math>- {\small\frac{1}{x}}</math> || <math>0</math> || szereg zbieżny
 +
|-
 +
| 4. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log k}}</math> || <math>{\small\frac{1}{x \log x}}</math> || <math>\log \log x</math> || <math>\infty</math> || szereg rozbieżny
 +
|-
 +
| 5. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^2 \! k}}</math> || <math>{\small\frac{1}{x \log^2 \! x}}</math> || <math>- {\small\frac{1}{\log x}}</math> || <math>0</math> || szereg zbieżny
 +
|}
  
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
+
Stosując kryterium całkowe, można łatwo pokazać, że szeregi
  
 +
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
  
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
+
::<math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}}</math>
  
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D39|D39]].
+
są zbieżne dla <math>s > 1</math> i&nbsp;rozbieżne dla <math>s \leqslant 1</math>.
  
  
  
<span id="D41" style="font-size: 110%; font-weight: bold;">Zadanie D41</span><br/>
 
Korzystając z&nbsp;twierdzenia [[#D39|D39]], znaleźć oszacowania sumy częściowej szeregów
 
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
+
<span id="D39" style="font-size: 110%; font-weight: bold;">Twierdzenie D39</span><br/>
 +
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>R(m) = \int_{m}^{\infty} f(x) d x</math>
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(0, + \infty)</math>. Dla <math>n > 0</math> jest
 
  
::<math>\int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2Fx%5E2%2C+x%3Dn%2C+infinity WolframAlpha])
+
::<math>S(m) = \sum_{k = a}^{m} f(k)</math>
  
::<math>C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2</math>
+
gdzie <math>a < m</math>, to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math>
  
Zatem
+
::<math>S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m)</math>
  
::<math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D35|D35]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
  
 +
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
  
Rozważmy szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x (\log x)^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(1, + \infty)</math>. Dla <math>n > 1</math> jest
+
Czyli
  
::<math>\int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2F%28x*%28log%28x%29%29%5E2%29%2C+x%3Dn%2C+infinity WolframAlpha])
+
::<math>R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m)</math>
  
::<math>C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots</math>
+
Odejmując od każdej ze stron nierówności liczbę <math>f(m)</math> i&nbsp;dodając do każdej ze stron nierówności sumę skończoną <math>S(m) = \sum_{k = a}^{m} f(k)</math>, otrzymujemy
  
Przyjmijmy <math>C = 2.5</math>, zatem
+
::<math>S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m)</math>
  
::<math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math><br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1574: Linia 1608:
  
  
<span id="D42" style="font-size: 110%; font-weight: bold;">Zadanie D42</span><br/>
+
<span id="D40" style="font-size: 110%; font-weight: bold;">Przykład D40</span><br/>
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
+
Twierdzenie [[#D39|D39]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla <math>n = 1</math>. Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 
  
::<math>\sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}}</math>
+
::<math>\int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right)</math>
  
::::<math>\: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}}</math>
+
::<math>R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right)</math>
  
::::<math>\: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right)</math>
+
Zatem
  
::::<math>\: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}}</math>
+
::<math>S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m)</math>
  
::::<math>\: < 2 - {\small\frac{1}{n + 1}}</math>
+
Dla kolejnych wartości <math>m</math> otrzymujemy
  
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 1</math> mamy
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
+
! <math>m</math>
::<math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} < 2</math>
+
! <math>S(m) + R(m) - f(m)</math>
 
+
! <math>S(m) + R(m)</math>
Czyli ciąg sum częściowych <math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}}</math> szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
+
|-
&#9633;
+
| <math>10^1</math> || <math>1.84</math> || <math>1.87</math>
{{\Spoiler}}
+
|-
 
+
| <math>10^2</math> || <math>1.85</math> || <math>1.86</math>
 
+
|-
 
+
| <math>10^3</math> || <math>1.86000</math> || <math>1.86004</math>
<span id="D43" style="font-size: 110%; font-weight: bold;">Zadanie D43</span><br/>
+
|-
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
+
| <math>10^4</math> || <math>1.860024</math> || <math>1.860025</math>
 +
|-
 +
| <math>10^5</math> || <math>1.86002506</math> || <math>1.86002509</math>
 +
|-
 +
| <math>10^6</math> || <math>1.860025078</math> || <math>1.860025079</math>
 +
|-
 +
| <math>10^7</math> || <math>1.86002507920</math> || <math>1.86002507923</math>
 +
|-
 +
| <math>10^8</math> || <math>1.860025079220</math> || <math>1.860025079221</math>
 +
|-
 +
| <math>10^9</math> || <math>1.8600250792211</math> || <math>1.8600250792212</math>
 +
|-
 +
|}
 +
 
 +
 
 +
W programie PARI/GP wystarczy napisać:
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
<span style="font-size: 90%; color:black;">f(k) = 1.0 / (k+1) / '''sqrt'''(k)</span>
Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla <math>n = 2</math>
+
<span style="font-size: 90%; color:black;">S(m) = '''sum'''( k = 1, m, f(k) )</span>
 +
<span style="font-size: 90%; color:black;">R(m) = '''Pi''' - 2*'''atan'''( '''sqrt'''(m) )</span>
 +
<span style="font-size: 90%; color:black;">'''for'''(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); '''print'''( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))</span>
  
::<math>\sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 < 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730</math>
 
  
Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 
  
::<math>\sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
 
  
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
+
Prostym wnioskiem z&nbsp;twierdzenia [[#D35|D35]] jest następujące<br/>
 +
<span id="D41" style="font-size: 110%; font-weight: bold;">Twierdzenie D41</span><br/>
 +
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Korzystając ze wzoru z&nbsp;twierdzenia [[#D35|D35]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
Dodając do każdej ze stron nierówności wyrażenie <math>- f(m) + \sum_{k = a}^{m} f(k)</math>, dostajemy
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
::<math>- f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x</math>
  
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
Skąd wynika natychmiast
  
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}}</math>
+
::<math>- f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 < f(m)</math>
  
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 2</math> mamy
+
Czyli
  
::<math>S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}} < 2.5</math>
+
::<math>\left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m)</math>
  
Czyli ciąg sum częściowych <math>S(n)</math> szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
+
Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1636: Linia 1686:
  
  
 +
<span id="D42" style="font-size: 110%; font-weight: bold;">Twierdzenie D42</span><br/>
 +
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
  
 +
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x</math>
  
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
+
gdzie <math>B</math> oraz <math>C</math> są dowolnymi stałymi spełniającymi nierówności
  
<span id="D44" style="font-size: 110%; font-weight: bold;">Twierdzenie D44</span><br/>
+
::<math>B \geqslant 1</math>
Następujące szeregi są zbieżne
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
::<math>C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x</math>
|-
 
| 1. <math>\quad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{p_k}} = 0.269605966 \ldots</math>
 
|
 
|-
 
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2}} = 0.452247420041 \ldots</math>
 
| [https://oeis.org/A085548 A085548]
 
|-
 
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{(p - 1)^2}} = 1.375064994748 \ldots</math>
 
| [https://oeis.org/A086242 A086242]
 
|-
 
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p (p - 1)}} = 0.773156669049 \ldots</math>
 
| [https://oeis.org/A136141 A136141]
 
|}
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Punkt 1.'''<br/>
+
Z twierdzenia [[#D35|D35]] mamy
Szereg jest szeregiem naprzemiennym i&nbsp;jego zbieżność wynika z&nbsp;twierdzenia [[#D5|D5]].
+
 
 +
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
  
'''Punkt 2.'''<br/>
+
:::::::<math>\;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x</math>
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p^2}} < \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} < {\small\frac{\pi^2}{6}}</math>
+
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
  
'''Punkt 3.'''<br/>
+
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} < \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}}</math>
+
:::::::<math>\;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
  
'''Punkt 4.'''<br/>
+
:::::::<math>\;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x</math>
Zbieżność wzoru wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
 
  
::<math>0 < {\small\frac{1}{p (p - 1)}} < {\small\frac{1}{(p - 1)^2}}</math><br/>
+
:::::::<math>\;\! \leqslant C - B \int_{n}^{\infty} f (x) d x</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1681: Linia 1718:
  
  
<span id="D45" style="font-size: 110%; font-weight: bold;">Twierdzenie D45</span><br/>
+
<span id="D43" style="font-size: 110%; font-weight: bold;">Uwaga D43</span><br/>
Następujące szeregi są zbieżne
+
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny
|-
+
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D42|D42]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
| 1. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = 1.636616323351 \ldots</math>
 
| [https://oeis.org/A137245 A137245]
 
|-
 
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2 \log p}} = 0.507782187859 \ldots</math>
 
| [https://oeis.org/A221711 A221711]
 
|-
 
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = 0.755366610831 \ldots</math>
 
| [https://oeis.org/A138312 A138312]
 
|-
 
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p^2}} = 0.493091109368 \ldots</math>
 
| [https://oeis.org/A136271 A136271]
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
'''Punkt 1.'''<br/>
 
Zbieżność tego szeregu udowodniliśmy w&nbsp;twierdzeniu [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B39|B39]], ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w&nbsp;postaci
 
  
::<math>\sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
 
  
Wyrażenie w&nbsp;mianowniku ułamka możemy łatwo oszacować. Z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A1|A1]] mamy (<math>a = 0.72</math>)
+
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
  
::<math>p_k \log p_k > a \cdot k \log k \cdot \log (a \cdot k \log k) =</math>
+
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D42|D42]].
  
::::<math>\;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) =</math>
 
  
::::<math>\;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right)</math>
 
  
Ponieważ dla <math>k > \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots</math> jest
+
<span id="D44" style="font-size: 110%; font-weight: bold;">Zadanie D44</span><br/>
 +
Korzystając z&nbsp;twierdzenia [[#D42|D42]], znaleźć oszacowania sumy częściowej szeregów
  
::<math>\log a + \log \log k > 0</math>
+
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
  
to dla <math>k \geqslant 5</math> prawdziwe jest oszacowanie
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(0, + \infty)</math>. Dla <math>n > 0</math> jest
  
::<math>p_k \log p_k > a \cdot k \cdot (\log k)^2</math>
+
::<math>\int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2Fx%5E2%2C+x%3Dn%2C+infinity WolframAlpha])
  
Wynika stąd, że dla <math>k \geqslant 5</math> prawdziwy jest ciąg nierówności
+
::<math>C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2</math>
  
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
+
Zatem
  
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D15|D15]] p. 4 lub przykład [[#D35|D35]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
+
::<math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math>
  
'''Punkt 2.'''<br/>
 
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego (twierdzenie [[#D10|D10]]), bo
 
  
::<math>0 < {\small\frac{1}{p^2 \log p}} < {\small\frac{1}{p \log p}}</math>
+
Rozważmy szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x (\log x)^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(1, + \infty)</math>. Dla <math>n > 1</math> jest
  
'''Punkt 3.'''<br/>
+
::<math>\int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2F%28x*%28log%28x%29%29%5E2%29%2C+x%3Dn%2C+infinity WolframAlpha])
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} < \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots</math>
+
::<math>C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots</math>
  
'''Punkt 4.'''<br/>
+
Przyjmijmy <math>C = 2.5</math>, zatem
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
 
  
::<math>0 < {\small\frac{\log p}{p^2}} < {\small\frac{\log p}{p (p - 1)}}</math><br/>
+
::<math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1746: Linia 1764:
  
  
<span id="D46" style="font-size: 110%; font-weight: bold;">Twierdzenie D46</span><br/>
+
<span id="D45" style="font-size: 110%; font-weight: bold;">Zadanie D45</span><br/>
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
+
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla <math>n = 1</math>. Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 +
 
 +
::<math>\sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}}</math>
 +
 
 +
::::<math>\: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}}</math>
 +
 
 +
::::<math>\: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right)</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::::<math>\: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}}</math>
Dla potrzeb dowodu zapiszmy szereg w&nbsp;innej postaci
 
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math>
+
::::<math>\: < 2 - {\small\frac{1}{n + 1}}</math>
  
Zauważmy, że dla <math>k \geqslant 3</math> wyrazy szeregów <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> oraz <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math> spełniają nierówności
+
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 1</math> mamy
  
::<math>0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}}</math>
+
::<math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} < 2</math>
  
Ponieważ szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> jest rozbieżny (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]]), to na mocy kryterium porównawczego rozbieżny jest również szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math><br/>
+
Czyli ciąg sum częściowych <math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}}</math> szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1764: Linia 1790:
  
  
<span id="D47" style="font-size: 110%; font-weight: bold;">Uwaga D47</span><br/>
+
<span id="D46" style="font-size: 110%; font-weight: bold;">Zadanie D46</span><br/>
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
+
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla <math>n = 2</math>
  
 +
::<math>\sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 < 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730</math>
  
<span id="D48" style="font-size: 110%; font-weight: bold;">Twierdzenie D48</span><br/>
+
Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
::<math>\sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
|- style=height:3em
 
| <math>\quad 1. \quad</math> || <math>n! > n^n e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 1</math>
 
|- style=height:3em
 
| <math>\quad 2. \quad</math> || <math>n! < n^{n + 1} e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 7</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
'''Punkt 1. (indukcja matematyczna)'''<br/>
 
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 1</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 
  
::<math>(n + 1) ! = n! \cdot (n + 1) ></math>
+
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right)</math>
  
::::<math>\;\;\; > n^n \cdot e^{- n} \cdot (n + 1) =</math>
+
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
  
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} =</math>
+
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
  
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} ></math>
+
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
  
::::<math>\;\;\; > (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
+
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
  
::::<math>\;\;\; = (n + 1)^{n + 1} e^{- (n + 1)}</math>
+
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}}</math>
  
Ponieważ <math>\left( 1 + {\small\frac{1}{n}} \right)^n < e</math>, zatem <math>{\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} > {\small\frac{1}{e}}</math>. Co kończy dowód punktu 1.
+
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 2</math> mamy
  
 +
::<math>S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}} < 2.5</math>
  
'''Punkt 2. (indukcja matematyczna)'''<br/>
+
Czyli ciąg sum częściowych <math>S(n)</math> szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 7</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
+
&#9633;
 +
{{\Spoiler}}
  
::<math>(n + 1) ! = n! \cdot (n + 1) <</math>
 
  
::::<math>\;\;\; < n^{n + 1} \cdot e^{- n} \cdot (n + 1) =</math>
 
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} =</math>
 
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} =</math>
 
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} <</math>
+
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
  
::::<math>\;\;\; < (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
+
<span id="D47" style="font-size: 110%; font-weight: bold;">Twierdzenie D47</span><br/>
 +
Następujące szeregi są zbieżne
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)}</math>
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 
+
|-
Ostatnia nierówność wynika z&nbsp;faktu, że <math>\left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} < {\small\frac{1}{e}}</math>. Co kończy dowód punktu 2.<br/>
+
| 1. <math>\quad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{p_k}} = 0.269605966 \ldots</math>
&#9633;
+
|  
{{\Spoiler}}
+
|-
 
+
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2}} = 0.452247420041 \ldots</math>
 
+
| [https://oeis.org/A085548 A085548]
 
+
|-
<span id="D49" style="font-size: 110%; font-weight: bold;">Twierdzenie D49</span><br/>
+
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{(p - 1)^2}} = 1.375064994748 \ldots</math>
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
+
| [https://oeis.org/A086242 A086242]
 
+
|-
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
+
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p (p - 1)}} = 0.773156669049 \ldots</math>
|- style=height:3em
+
| [https://oeis.org/A136141 A136141]
| <math>\quad 1. \quad</math> || <math>{\small\frac{n}{p}} - 1 < W_p (n!) < {\small\frac{n}{p - 1}}</math>
 
|- style=height:3em
 
| <math>\quad 2. \quad</math> || <math>{\small\frac{n + 1}{p}} - 1 \leqslant W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>
 
 
|}
 
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Punkt 1. (prawa nierówność)'''
+
'''Punkt 1.'''<br/>
 +
Szereg jest szeregiem naprzemiennym i&nbsp;jego zbieżność wynika z&nbsp;twierdzenia [[#D5|D5]].
  
Zauważmy, że
+
'''Punkt 2.'''<br/>
 +
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
  
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p^2}} < \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} < {\small\frac{\pi^2}{6}}</math>
  
::::<math>\;\, < {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots</math>
+
'''Punkt 3.'''<br/>
 +
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
  
::::<math>\;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} < \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}}</math>
  
::::<math>\;\, = {\small\frac{n}{p - 1}}</math>
+
'''Punkt 4.'''<br/>
 +
Zbieżność wzoru wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
  
'''Punkt 1. (lewa nierówność)'''
+
::<math>0 < {\small\frac{1}{p (p - 1)}} < {\small\frac{1}{(p - 1)^2}}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Łatwo znajdujemy, że
 
  
::<math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor > {\small\frac{n}{p}} - 1</math>
 
  
'''Punkt 2. (prawa nierówność)'''
+
<span id="D48" style="font-size: 110%; font-weight: bold;">Twierdzenie D48</span><br/>
 +
Następujące szeregi są zbieżne
  
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>(p - 1) W_p (n!) < n</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 +
|-
 +
| 1. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = 1.636616323351 \ldots</math>
 +
| [https://oeis.org/A137245 A137245]
 +
|-
 +
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2 \log p}} = 0.507782187859 \ldots</math>
 +
| [https://oeis.org/A221711 A221711]
 +
|-
 +
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = 0.755366610831 \ldots</math>
 +
| [https://oeis.org/A138312 A138312]
 +
|-
 +
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p^2}} = 0.493091109368 \ldots</math>
 +
| [https://oeis.org/A136271 A136271]
 +
|}
  
::<math>(p - 1) W_p (n!) \leqslant n - 1</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
'''Punkt 1.'''<br/>
 +
Zbieżność tego szeregu udowodniliśmy w&nbsp;twierdzeniu [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B39|B39]], ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w&nbsp;postaci
  
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>.
+
::<math>\sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
  
'''Punkt 2. (lewa nierówność)'''
+
Wyrażenie w&nbsp;mianowniku ułamka możemy łatwo oszacować. Z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A1|A1]] mamy (<math>a = 0.72</math>)
  
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>n - p < p \cdot W_p (n!)</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
+
::<math>p_k \log p_k > a \cdot k \log k \cdot \log (a \cdot k \log k) =</math>
  
::<math>n - p \leqslant p \cdot W_p (n!) - 1</math>
+
::::<math>\;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) =</math>
  
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1</math>.<br/>
+
::::<math>\;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
Ponieważ dla <math>k > \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots</math> jest
  
 +
::<math>\log a + \log \log k > 0</math>
  
<span id="D50" style="font-size: 110%; font-weight: bold;">Twierdzenie D50</span><br/>
+
to dla <math>k \geqslant 5</math> prawdziwe jest oszacowanie
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - 1</math>
+
::<math>p_k \log p_k > a \cdot k \cdot (\log k)^2</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Wynika stąd, że dla <math>k \geqslant 5</math> prawdziwy jest ciąg nierówności
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 2</math> mamy
 
  
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
+
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
  
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D48|D48]]), to
+
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D15|D15]] p. 4 lub przykład [[#D38|D38]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
  
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
+
'''Punkt 2.'''<br/>
 +
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego (twierdzenie [[#D10|D10]]), bo
  
Logarytmując, otrzymujemy
+
::<math>0 < {\small\frac{1}{p^2 \log p}} < {\small\frac{1}{p \log p}}</math>
  
::<math>n \log n - n < \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math>
+
'''Punkt 3.'''<br/>
 +
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
 +
 
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} < \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots</math>
 +
 
 +
'''Punkt 4.'''<br/>
 +
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
  
Dzieląc strony przez <math>n</math>, dostajemy szukaną nierówność.<br/>
+
::<math>0 < {\small\frac{\log p}{p^2}} < {\small\frac{\log p}{p (p - 1)}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1894: Linia 1936:
  
  
<span id="D51" style="font-size: 110%; font-weight: bold;">Twierdzenie D51 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
<span id="D49" style="font-size: 110%; font-weight: bold;">Twierdzenie D49</span><br/>
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
+
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
 
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1.755367</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ
+
Dla potrzeb dowodu zapiszmy szereg w&nbsp;innej postaci
  
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}}</math>
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math>
  
 +
Zauważmy, że dla <math>k \geqslant 3</math> wyrazy szeregów <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> oraz <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math> spełniają nierówności
  
to z&nbsp;twierdzenia [[#D50|D50]] dostajemy
+
::<math>0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
+
Ponieważ szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> jest rozbieżny (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]]), to na mocy kryterium porównawczego rozbieżny jest również szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math><br/>
 
 
Czyli
 
 
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
 
 
 
::::::<math>\quad \;\: > - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
 
 
 
::::::<math>\quad \;\: = - 1 - 0.755366610831 \ldots</math>
 
 
 
::::::<math>\quad \;\: > - 1.755367</math>
 
 
 
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D45|D45]] p. 3).<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1925: Linia 1954:
  
  
<span id="D52" style="font-size: 110%; font-weight: bold;">Twierdzenie D52 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
<span id="D50" style="font-size: 110%; font-weight: bold;">Uwaga D50</span><br/>
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
+
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < 0.386295</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 1</math> mamy
 
  
::<math>n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1}</math>
+
<span id="D51" style="font-size: 110%; font-weight: bold;">Twierdzenie D51</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
  
Ponieważ dla <math>n \geqslant 7</math> jest <math>n! < n^{n + 1} e^{- n}</math>, to
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
|- style=height:3em
 +
| <math>\quad 1. \quad</math> || <math>n! > n^n e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 1</math>
 +
|- style=height:3em
 +
| <math>\quad 2. \quad</math> || <math>n! < n^{n + 1} e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 7</math>
 +
|}
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
'''Punkt 1. (indukcja matematyczna)'''<br/>
 +
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 1</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 +
 
 +
::<math>(n + 1) ! = n! \cdot (n + 1) ></math>
 +
 
 +
::::<math>\;\;\; > n^n \cdot e^{- n} \cdot (n + 1) =</math>
  
::<math>\prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} < n^{n + 1} e^{- n}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} =</math>
  
Logarytmując, otrzymujemy
+
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} ></math>
  
::<math>\sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p < (n + 1) \cdot \log n - n</math>
+
::::<math>\;\;\; > (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
  
::<math>(n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p < (n + 1) \cdot \log n - n</math>
+
::::<math>\;\;\; = (n + 1)^{n + 1} e^{- (n + 1)}</math>
  
 +
Ponieważ <math>\left( 1 + {\small\frac{1}{n}} \right)^n < e</math>, zatem <math>{\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} > {\small\frac{1}{e}}</math>. Co kończy dowód punktu 1.
  
Skąd natychmiast wynika, że
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right)</math>
+
'''Punkt 2. (indukcja matematyczna)'''<br/>
 +
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 7</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
  
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n))</math>
+
::<math>(n + 1) ! = n! \cdot (n + 1) <</math>
  
::::::<math>\quad \;\: < - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}}</math>
+
::::<math>\;\;\; < n^{n + 1} \cdot e^{- n} \cdot (n + 1) =</math>
  
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} =</math>
  
::::::<math>\quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} =</math>
  
::::::<math>\quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} <</math>
  
::::::<math>\quad \;\: < \log 4 - 1</math>
+
::::<math>\;\;\; < (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
  
::::::<math>\quad \;\: = 0.386294361 \ldots</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)}</math>
  
Druga nierówność wynika z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A10|A10]]. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla <math>n < 7</math>.<br/>
+
Ostatnia nierówność wynika z&nbsp;faktu, że <math>\left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} < {\small\frac{1}{e}}</math>. Co kończy dowód punktu 2.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1970: Linia 2011:
  
  
<span id="D53" style="font-size: 110%; font-weight: bold;">Twierdzenie D53</span><br/>
+
<span id="D52" style="font-size: 110%; font-weight: bold;">Twierdzenie D52</span><br/>
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
+
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < 1.141661</math>
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
 +
|- style=height:3em
 +
| <math>\quad 1. \quad</math> || <math>{\small\frac{n}{p}} - 1 < W_p (n!) < {\small\frac{n}{p - 1}}</math>
 +
|- style=height:3em
 +
| <math>\quad 2. \quad</math> || <math>{\small\frac{n + 1}{p}} - 1 \leqslant W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>
 +
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ
+
'''Punkt 1. (prawa nierówność)'''
  
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
+
Zauważmy, że
  
to z&nbsp;twierdzenia [[#D52|D52]] dostajemy
+
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
+
::::<math>\;\, < {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots</math>
  
Czyli
+
::::<math>\;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
+
::::<math>\;\, = {\small\frac{n}{p - 1}}</math>
  
:::::::<math>\,\, < \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
+
'''Punkt 1. (lewa nierówność)'''
  
:::::::<math>\,\, = \log 4 - 1 + 0.755366610831 \ldots</math>
+
Łatwo znajdujemy, że
  
:::::::<math>\,\, < 1.141661</math><br/>
+
::<math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor > {\small\frac{n}{p}} - 1</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
'''Punkt 2. (prawa nierówność)'''
  
 +
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>(p - 1) W_p (n!) < n</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
  
<span id="D54" style="font-size: 110%; font-weight: bold;">Uwaga D54</span><br/>
+
::<math>(p - 1) W_p (n!) \leqslant n - 1</math>
{| class="wikitable"
 
|
 
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p}}</math> jest dane wzorem
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots</math>
+
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>.
  
gdzie <math>E = 1.332582275733 \ldots</math>
+
'''Punkt 2. (lewa nierówność)'''
  
Dla <math>n \geqslant 319</math> mamy też<ref name="Rosser1"/>
+
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>n - p < p \cdot W_p (n!)</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
  
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| < {\small\frac{1}{2 \log n}}</math>
+
::<math>n - p \leqslant p \cdot W_p (n!) - 1</math>
  
|}
+
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
<span id="D55" style="font-size: 110%; font-weight: bold;">Uwaga D55</span><br/>
+
<span id="D53" style="font-size: 110%; font-weight: bold;">Twierdzenie D53</span><br/>
{| class="wikitable"
+
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
|
 
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math> jest dane wzorem
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - 1</math>
  
gdzie <math>\gamma = 0.5772156649 \ldots</math> jest stałą Eulera.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 2</math> mamy
  
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie<ref name="twierdzenie"/>
+
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
  
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
+
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D51|D51]]), to
  
|}
+
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
  
 +
Logarytmując, otrzymujemy
  
 +
::<math>n \log n - n < \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math>
  
<span id="D56" style="font-size: 110%; font-weight: bold;">Uwaga D56</span><br/>
+
Dzieląc strony przez <math>n</math>, dostajemy szukaną nierówność.<br/>
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
+
&#9633;
 +
{{\Spoiler}}
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E</math>
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma</math>
 
  
są liczbami dodatnimi.
+
<span id="D54" style="font-size: 110%; font-weight: bold;">Twierdzenie D54 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 +
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1.755367</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ
  
<span id="D57" style="font-size: 110%; font-weight: bold;">Twierdzenie D57</span><br/>
+
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}}</math>
Prawdziwy jest następujący związek
 
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma</math>
 
  
gdzie
+
to z&nbsp;twierdzenia [[#D53|D53]] dostajemy
  
* <math>\quad \gamma = 0.577215664901532 \ldots</math> jest stałą Eulera<ref name="A001620"/>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
* <math>\quad E = 1.332582275733220 \ldots</math><ref name="A083343"/>
 
* <math>\quad E - \gamma = 0.755366610831688 \ldots</math><ref name="A138312"/>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Czyli
Ponieważ
 
  
::<math>{\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
  
zatem
+
::::::<math>\quad \;\: > - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots)</math>
+
::::::<math>\quad \;\: = - 1 - 0.755366610831 \ldots</math>
  
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy
+
::::::<math>\quad \;\: > - 1.755367</math>
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma</math>
+
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D48|D48]] p. 3).<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
Zauważmy teraz, że
 
  
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
+
<span id="D55" style="font-size: 110%; font-weight: bold;">Twierdzenie D55 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 +
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
:::<math>\;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right)</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < 0.386295</math>
  
:::<math>\;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 1</math> mamy
  
Zatem
+
::<math>n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1}</math>
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right)</math><br/>
+
Ponieważ dla <math>n \geqslant 7</math> jest <math>n! < n^{n + 1} e^{- n}</math>, to
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} < n^{n + 1} e^{- n}</math>
  
 +
Logarytmując, otrzymujemy
  
<span id="D58" style="font-size: 110%; font-weight: bold;">Twierdzenie D58</span><br/>
+
::<math>\sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p < (n + 1) \cdot \log n - n</math>
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
 
  
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
+
::<math>(n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p < (n + 1) \cdot \log n - n</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w&nbsp;pracy Pierre'a Dusarta<ref name="Dusart10"/>
 
  
::<math>- \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}}</math>
+
Skąd natychmiast wynika, że
  
Ponieważ dla <math>x > e^2 \approx 7.389</math> jest <math>1 + {\small\frac{1}{\log x}} < 1.5</math>, to dla <math>n \geqslant 8</math> mamy
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right)</math>
  
::<math>{\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) < {\small\frac{0.3}{\log n}}</math>
+
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n))</math>
  
 +
::::::<math>\quad \;\: < - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}}</math>
  
Zatem wyjściowy układ nierówności możemy zapisać w&nbsp;postaci
+
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}}</math>
  
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
+
::::::<math>\quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}}</math>
  
 +
::::::<math>\quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}}</math>
  
Z tożsamości
+
::::::<math>\quad \;\: < \log 4 - 1</math>
  
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
+
::::::<math>\quad \;\: = 0.386294361 \ldots</math>
  
 +
Druga nierówność wynika z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A10|A10]]. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla <math>n < 7</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
wynika natychmiast, że
 
  
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n}  {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
 
  
 +
<span id="D56" style="font-size: 110%; font-weight: bold;">Twierdzenie D56</span><br/>
 +
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
'''Prawa nierówność'''
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < 1.141661</math>
  
Rozważmy prawą nierówność prawdziwą dla <math>n \geqslant 2974</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E < {\small\frac{0.3}{\log n}}</math>
+
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
  
 +
to z&nbsp;twierdzenia [[#D55|D55]] dostajemy
  
Z twierdzenia [[#D57|D57]] wiemy, że
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
+
Czyli
  
Zatem
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
+
:::::::<math>\,\, < \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
  
:::::::<math>\,\, < \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
+
:::::::<math>\,\, = \log 4 - 1 + 0.755366610831 \ldots</math>
  
:::::::<math>\,\, = - \gamma + {\small\frac{0.3}{\log n}}</math>
+
:::::::<math>\,\, < 1.141661</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
:::::::<math>\,\, < - \gamma + {\small\frac{0.5}{\log n}}</math>
 
  
  
Bezpośrednio obliczając, sprawdzamy, że nierówność
+
<span id="D57" style="font-size: 110%; font-weight: bold;">Uwaga D57</span><br/>
 +
{| class="wikitable"
 +
|
 +
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p}}</math> jest dane wzorem
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < - \gamma + {\small\frac{0.5}{\log n}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots</math>
  
jest prawdziwa dla wszystkich liczb <math>318 \leqslant n \leqslant 3000</math>
+
gdzie <math>E = 1.332582275733 \ldots</math>
  
 +
Dla <math>n \geqslant 319</math> mamy też<ref name="Rosser1"/>
  
'''Lewa nierówność'''
+
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| < {\small\frac{1}{2 \log n}}</math>
  
Rozważmy teraz lewą nierówność prawdziwą dla <math>n \geqslant 8</math>
+
|}
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E > - {\small\frac{0.3}{\log n}}</math>
 
  
Mamy
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
+
<span id="D58" style="font-size: 110%; font-weight: bold;">Uwaga D58</span><br/>
 +
{| class="wikitable"
 +
|
 +
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math> jest dane wzorem
  
:::::::<math>\,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots</math>
  
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}}</math>
+
gdzie <math>\gamma = 0.5772156649 \ldots</math> jest stałą Eulera.
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}}</math>
+
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie<ref name="twierdzenie"/>
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}}</math>
+
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
  
 +
|}
  
Korzystając kolejno z&nbsp;twierdzeń [[#D32|D32]] i&nbsp;[[Ciągi liczbowe#C19|C19]], dostajemy
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
 
  
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right)</math>
+
<span id="D59" style="font-size: 110%; font-weight: bold;">Uwaga D59</span><br/>
 +
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E</math>
  
:::::::<math>\,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right)</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma</math>
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.5}{\log n}}</math>
+
są liczbami dodatnimi.
  
  
Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę [https://www.wolframalpha.com/input?i=int+log%28x%29%2F%28x-1%29%5E2+from+n+to+inf WolframAlpha]. Ostatnia nierówność jest prawdziwa dla <math>n \geqslant 153</math>. Bezpośrednio obliczając, sprawdzamy, że nierówność
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.5}{\log n}}</math>
+
<span id="D60" style="font-size: 110%; font-weight: bold;">Twierdzenie D60</span><br/>
 +
Prawdziwy jest następujący związek
  
jest prawdziwa dla wszystkich <math>2 \leqslant n \leqslant 200</math>.<br/>
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
gdzie
  
 +
* <math>\quad \gamma = 0.577215664901532 \ldots</math> jest stałą Eulera<ref name="A001620"/>
 +
* <math>\quad E = 1.332582275733220 \ldots</math><ref name="A083343"/>
 +
* <math>\quad E - \gamma = 0.755366610831688 \ldots</math><ref name="A138312"/>
  
<span id="D59" style="font-size: 110%; font-weight: bold;">Zadanie D59</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
+
Ponieważ
  
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
+
::<math>{\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}}</math>
  
wynika twierdzenie Czebyszewa.
+
zatem
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots)</math>
Z twierdzenia [[#D58|D58]] wiemy, że dla <math>x \geqslant 318</math> jest
 
  
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
+
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy
  
Zatem postulowane oszacowanie jest prawdziwe dla <math>n \geqslant 318</math>. Sprawdzając bezpośrednio dla <math>2 \leqslant x \leqslant 317</math>, łatwo potwierdzamy prawdziwość nierówności
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma</math>
  
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
 
  
dla <math>x \geqslant 32</math>.
+
Zauważmy teraz, że
  
 +
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
  
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D49|D49]], łatwo znajdujemy oszacowanie
+
:::<math>\;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right)</math>
  
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
+
:::<math>\;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots</math>
  
::<math>\quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n</math>
+
Zatem
  
::<math>\quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1}</math>
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right)</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
gdzie <math>p_n \leqslant a < p_{n + 1}</math>. Oznaczając wyrażenie w&nbsp;nawiasie przez <math>U</math>, mamy
 
  
::<math>\log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} < \log a - r</math>
 
  
gdzie skorzystaliśmy z&nbsp;oszacowania wskazanego w&nbsp;treści zadania. Zatem <math>U < a \cdot e^{- r}</math>.
+
<span id="D61" style="font-size: 110%; font-weight: bold;">Twierdzenie D61</span><br/>
 +
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
  
 +
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
  
Przypuśćmy, że mnożymy liczbę <math>a!</math> przez kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math>. Możemy postawić pytanie: kiedy w&nbsp;rozkładzie na czynniki pierwsze liczby <math>b!</math> musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w&nbsp;pracy Pierre'a Dusarta<ref name="Dusart10"/>
  
::<math>a! \cdot (a + 1) \cdot \ldots \cdot b = b!</math>
+
::<math>- \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}}</math>
  
:::::::<math>\;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n</math>
+
Ponieważ dla <math>x > e^2 \approx 7.389</math> jest <math>1 + {\small\frac{1}{\log x}} < 1.5</math>, to dla <math>n \geqslant 8</math> mamy
  
:::::::<math>\;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n</math>
+
::<math>{\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) < {\small\frac{0.3}{\log n}}</math>
  
:::::::<math>\;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1}</math>
 
  
:::::::<math>\;\;\; = U^{b - 1}</math>
+
Zatem wyjściowy układ nierówności możemy zapisać w&nbsp;postaci
  
:::::::<math>\;\;\; < (a \cdot e^{- r})^{b - 1}</math>
+
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
  
  
Jednocześnie z&nbsp;twierdzenia [[#D48|D48]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
+
Z tożsamości
  
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
+
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
  
::<math>b e^{- 1} < \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}}</math>
 
  
::<math>b < \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}}</math>
+
wynika natychmiast, że
  
 +
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n}  {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
  
Ponieważ <math>e^{1 - r} = e^{\log (2)} = 2</math>, to
 
  
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < 2 a</math>
+
'''Prawa nierówność'''
  
 +
Rozważmy prawą nierówność prawdziwą dla <math>n \geqslant 2974</math>
  
Z oszacowania <math>b < 2 a</math> wynika, że <math>(a \cdot e^{- r})^{1 / b} > (a \cdot e^{-r})^{1 / 2 a}</math>. Możemy teraz zapisać uzyskane wyżej oszacowanie w&nbsp;postaci, w&nbsp;której prawa strona nierówności nie zależy od <math>b</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E < {\small\frac{0.3}{\log n}}</math>
  
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}}</math>
 
  
 +
Z twierdzenia [[#D60|D60]] wiemy, że
  
Ponieważ <math>e^{- r} = 0.735758 \ldots</math>, to <math>(a \cdot e^{- r})^{1 / 2 a} > (a / 2)^{1 / 2 a}</math>, co pozwala uprościć uzyskane oszacowanie
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
  
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} < {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}}</math>
+
Zatem
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
  
Pokażemy, że dla <math>a > 303.05</math>
+
:::::::<math>\,\, < \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
  
::<math>{\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} < 2 a - 5</math>
+
:::::::<math>\,\, = - \gamma + {\small\frac{0.3}{\log n}}</math>
  
Istotnie
+
:::::::<math>\,\, < - \gamma + {\small\frac{0.5}{\log n}}</math>
  
::<math>{\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} < 1 - {\small\frac{5}{2 a}}</math>
 
  
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} > 1</math>
+
Bezpośrednio obliczając, sprawdzamy, że nierówność
  
::<math>{\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 > 1</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < - \gamma + {\small\frac{0.5}{\log n}}</math>
  
Wyrażenie w&nbsp;nawiasie kwadratowym jest funkcją rosnącą i&nbsp;ograniczoną (zobacz twierdzenie [[Ciągi liczbowe#C18|C18]]) i&nbsp;dla <math>a \geqslant 32</math> przyjmuje wartości z&nbsp;przedziału <math>[0.353 \ldots, e^{- 1})</math>. Zatem dla odpowiednio dużego <math>a</math> powyższa nierówność z&nbsp;pewnością jest prawdziwa. Łatwo sprawdzamy, że dla <math>a = 304</math> jest
+
jest prawdziwa dla wszystkich liczb <math>318 \leqslant n \leqslant 3000</math>
  
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots</math>
 
  
Wynika stąd, że wszystkie kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math> mogą być liczbami złożonymi co najwyżej do chwili, gdy <math>b < 2 a -
+
'''Lewa nierówność'''
5</math>, czyli <math>b \leqslant 2 a - 6</math>. Zatem w&nbsp;przedziale <math>(a, 2 a)</math> musi znajdować się przynajmniej jedna liczba pierwsza. Dla <math>a \leqslant 303</math> prawdziwość twierdzenia sprawdzamy bezpośrednio.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
Rozważmy teraz lewą nierówność prawdziwą dla <math>n \geqslant 8</math>
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E > - {\small\frac{0.3}{\log n}}</math>
  
<span id="D60" style="font-size: 110%; font-weight: bold;">Definicja D60</span><br/>
+
Mamy
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
 
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
  
 +
:::::::<math>\,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
  
<span id="D61" style="font-size: 110%; font-weight: bold;">Twierdzenie D61* (Viggo Brun, 1919)</span><br/>
+
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}}</math>
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
 
  
::<math>\underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}}
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}}</math>
\right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2</math>
 
  
gdzie <math>B_2 = 1.90216058 \ldots</math> jest stałą Bruna<ref name="Wiki1"/><ref name="A065421"/>.
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}}</math>
  
  
 +
Korzystając kolejno z&nbsp;twierdzeń [[#D35|D35]] i&nbsp;[[Ciągi liczbowe#C19|C19]], dostajemy
  
<span id="D62" style="font-size: 110%; font-weight: bold;">Zadanie D62</span><br/>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right)</math>
Niech <math>p</math> i <math>q = p + 4</math> będą liczbami pierwszymi i <math>n \geqslant 1</math>. Ponieważ liczby <math>p q</math> i <math>p + 2</math> są względnie pierwsze, to z&nbsp;twierdzenia Dirichleta wiemy, że wśród liczb <math>a_n = p q n + (p + 2)</math> jest nieskończenie wiele liczb pierwszych, a&nbsp;jednocześnie żadna z&nbsp;liczb <math>a_n</math> nie tworzy pary liczb bliźniaczych, bo
+
 
 
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}}</math>
::<math>a_n - 2 = p q n + p = p (q n + 1)</math>
+
 
 
+
:::::::<math>\,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right)</math>
::<math>a_n + 2 = p q n + (p + 4) = q (p n + 1)</math>
+
 
 
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.5}{\log n}}</math>
są liczbami złożonymi. Najprostsze przykłady to <math>a_n = 21 n + 5</math> i <math>b_n = 77 n + 9</math>
+
 
 
+
 
Najłatwiej wszystkie przypadki takich ciągów wyszukać w&nbsp;programie PARI/GP. Polecenie
+
Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę [https://www.wolframalpha.com/input?i=int+log%28x%29%2F%28x-1%29%5E2+from+n+to+inf WolframAlpha]. Ostatnia nierówność jest prawdziwa dla <math>n \geqslant 153</math>. Bezpośrednio obliczając, sprawdzamy, że nierówność
 
+
 
  for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, "  b= ",b) )))
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.5}{\log n}}</math>
 
+
 
wyszukuje wszystkie liczby dodatnie <math>a, b</math>, gdzie <math>b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor</math>, które tworzą ciągi <math>a k + b</math> o&nbsp;poszukiwanych właściwościach. Oczywiście ciągi <math>a k + (a - b)</math> również są odpowiednie. Przykładowo dla <math>a \leqslant 50</math> mamy
+
jest prawdziwa dla wszystkich <math>2 \leqslant n \leqslant 200</math>.<br/>
 
+
&#9633;
::<math>15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22</math><br/>
+
{{\Spoiler}}
&#9633;
+
 
{{\Spoiler}}
+
 
 
+
 
 
+
<span id="D62" style="font-size: 110%; font-weight: bold;">Zadanie D62</span><br/>
 
+
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
 
+
 
 
+
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum {\small\frac{1}{p}}</math> ==
+
 
 
+
wynika twierdzenie Czebyszewa.
<span id="D63" style="font-size: 110%; font-weight: bold;">Twierdzenie D63</span><br/>
+
 
Suma odwrotności liczb pierwszych jest rozbieżna.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
+
Z twierdzenia [[#D61|D61]] wiemy, że dla <math>x \geqslant 318</math> jest
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
 
Poniższy dowód został przedstawiony przez Erdősa w&nbsp;pracy<ref name="Erdos1"/> z 1938 roku. Jest to bardzo elegancki i&nbsp;chyba najprostszy dowód tego twierdzenia.
+
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
 
+
 
Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C</math>, gdzie <math>C</math> jest pewną stałą. Zbieżność szeregu o&nbsp;wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i&nbsp;sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby <math>r</math> takiej, że <math>\sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} < {\small\frac{1}{2}}</math>.
+
Zatem postulowane oszacowanie jest prawdziwe dla <math>n \geqslant 318</math>. Sprawdzając bezpośrednio dla <math>2 \leqslant x \leqslant 317</math>, łatwo potwierdzamy prawdziwość nierówności
 
+
 
Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory <math>P = \{ p_1, p_2, \ldots, p_r \} \;</math> i <math>\; Q = \{ p_{r + 1}, p_{r + 2,} \ldots \}</math>.
+
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
 
+
 
Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór <math>\mathbb{Z}_Q</math> liczb podzielnych przez dowolną liczbę pierwszą ze zbioru <math>Q</math> i&nbsp;zbiór <math>\mathbb{Z}_P</math> liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru <math>Q</math>. Czyli liczby ze zbioru <math>\mathbb{Z}_P</math> muszą być iloczynami potęg liczb pierwszych ze zbioru <math>P</math>.
+
dla <math>x \geqslant 32</math>.
 
+
 
 
+
 
Niech <math>M</math> będzie dostatecznie dużą liczbą całkowitą.
+
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D52|D52]], łatwo znajdujemy oszacowanie
 
+
 
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_Q</math> takich, że <math>k \leqslant M</math></span><br/>
+
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
 
+
 
Zauważmy, że liczb nie większych od <math>M</math> i&nbsp;podzielnych przez liczbę pierwszą <math>p</math> jest dokładnie <math>\left\lfloor {\small\frac{M}{p}} \right\rfloor</math> (zobacz [[Twierdzenie Czebyszewa o funkcji π(n)#A20|A20]]). Łatwo otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
+
::<math>\quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n</math>
 
+
 
::<math>\sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor < M \cdot \sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}} M</math>
+
::<math>\quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1}</math>
 
+
 
bo z&nbsp;założenia <math>\sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}}</math>. Zatem liczb takich, że <math>k \in \mathbb{Z}_Q \,</math> i <math>\, k \leqslant M</math> jest mniej niż <math>{\small\frac{M}{2}}</math>.
+
gdzie <math>p_n \leqslant a < p_{n + 1}</math>. Oznaczając wyrażenie w&nbsp;nawiasie przez <math>U</math>, mamy
 
+
 
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math></span><br/>
+
::<math>\log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} < \log a - r</math>
 +
 
 +
gdzie skorzystaliśmy z&nbsp;oszacowania wskazanego w&nbsp;treści zadania. Zatem <math>U < a \cdot e^{- r}</math>.
 +
 
 +
 
 +
Przypuśćmy, że mnożymy liczbę <math>a!</math> przez kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math>. Możemy postawić pytanie: kiedy w&nbsp;rozkładzie na czynniki pierwsze liczby <math>b!</math> musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to
 +
 
 +
::<math>a! \cdot (a + 1) \cdot \ldots \cdot b = b!</math>
 +
 
 +
:::::::<math>\;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n</math>
 +
 
 +
:::::::<math>\;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n</math>
 +
 
 +
:::::::<math>\;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1}</math>
 +
 
 +
:::::::<math>\;\;\; = U^{b - 1}</math>
 +
 
 +
:::::::<math>\;\;\; < (a \cdot e^{- r})^{b - 1}</math>
 +
 
 +
 
 +
Jednocześnie z&nbsp;twierdzenia [[#D51|D51]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
 +
 
 +
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
 +
 
 +
::<math>b e^{- 1} < \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}}</math>
 +
 
 +
::<math>b < \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}}</math>
 +
 
 +
 
 +
Ponieważ <math>e^{1 - r} = e^{\log (2)} = 2</math>, to
 +
 
 +
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < 2 a</math>
 +
 
 +
 
 +
Z oszacowania <math>b < 2 a</math> wynika, że <math>(a \cdot e^{- r})^{1 / b} > (a \cdot e^{-r})^{1 / 2 a}</math>. Możemy teraz zapisać uzyskane wyżej oszacowanie w&nbsp;postaci, w&nbsp;której prawa strona nierówności nie zależy od <math>b</math>
 +
 
 +
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}}</math>
 +
 
 +
 
 +
Ponieważ <math>e^{- r} = 0.735758 \ldots</math>, to <math>(a \cdot e^{- r})^{1 / 2 a} > (a / 2)^{1 / 2 a}</math>, co pozwala uprościć uzyskane oszacowanie
 +
 
 +
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} < {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}}</math>
 +
 
 +
 
 +
Pokażemy, że dla <math>a > 303.05</math>
 +
 
 +
::<math>{\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} < 2 a - 5</math>
 +
 
 +
Istotnie
 +
 
 +
::<math>{\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} < 1 - {\small\frac{5}{2 a}}</math>
 +
 
 +
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} > 1</math>
 +
 
 +
::<math>{\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 > 1</math>
 +
 
 +
Wyrażenie w&nbsp;nawiasie kwadratowym jest funkcją rosnącą i&nbsp;ograniczoną (zobacz twierdzenie [[Ciągi liczbowe#C18|C18]]) i&nbsp;dla <math>a \geqslant 32</math> przyjmuje wartości z&nbsp;przedziału <math>[0.353 \ldots, e^{- 1})</math>. Zatem dla odpowiednio dużego <math>a</math> powyższa nierówność z&nbsp;pewnością jest prawdziwa. Łatwo sprawdzamy, że dla <math>a = 304</math> jest
 +
 
 +
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots</math>
 +
 
 +
Wynika stąd, że wszystkie kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math> mogą być liczbami złożonymi co najwyżej do chwili, gdy <math>b < 2 a -
 +
5</math>, czyli <math>b \leqslant 2 a - 6</math>. Zatem w&nbsp;przedziale <math>(a, 2 a)</math> musi znajdować się przynajmniej jedna liczba pierwsza. Dla <math>a \leqslant 303</math> prawdziwość twierdzenia sprawdzamy bezpośrednio.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D63" style="font-size: 110%; font-weight: bold;">Definicja D63</span><br/>
 +
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
 +
 
 +
 
 +
 
 +
<span id="D64" style="font-size: 110%; font-weight: bold;">Twierdzenie D64* (Viggo Brun, 1919)</span><br/>
 +
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
 +
 
 +
::<math>\underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}}
 +
\right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2</math>
 +
 
 +
gdzie <math>B_2 = 1.90216058 \ldots</math> jest stałą Bruna<ref name="Wiki1"/><ref name="A065421"/>.
 +
 
 +
 
 +
 
 +
<span id="D65" style="font-size: 110%; font-weight: bold;">Zadanie D65</span><br/>
 +
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Niech <math>p</math> i <math>q = p + 4</math> będą liczbami pierwszymi i <math>n \geqslant 1</math>. Ponieważ liczby <math>p q</math> i <math>p + 2</math> są względnie pierwsze, to z&nbsp;twierdzenia Dirichleta wiemy, że wśród liczb <math>a_n = p q n + (p + 2)</math> jest nieskończenie wiele liczb pierwszych, a&nbsp;jednocześnie żadna z&nbsp;liczb <math>a_n</math> nie tworzy pary liczb bliźniaczych, bo
 +
 
 +
::<math>a_n - 2 = p q n + p = p (q n + 1)</math>
 +
 
 +
::<math>a_n + 2 = p q n + (p + 4) = q (p n + 1)</math>
 +
 
 +
są liczbami złożonymi. Najprostsze przykłady to <math>a_n = 21 n + 5</math> i <math>b_n = 77 n + 9</math>
 +
 
 +
Najłatwiej wszystkie przypadki takich ciągów wyszukać w&nbsp;programie PARI/GP. Polecenie
 +
 
 +
  for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, "  b= ",b) )))
 +
 
 +
wyszukuje wszystkie liczby dodatnie <math>a, b</math>, gdzie <math>b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor</math>, które tworzą ciągi <math>a k + b</math> o&nbsp;poszukiwanych właściwościach. Oczywiście ciągi <math>a k + (a - b)</math> również są odpowiednie. Przykładowo dla <math>a \leqslant 50</math> mamy
 +
 
 +
::<math>15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
 
 +
 
 +
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum {\small\frac{1}{p}}</math> ==
 +
 
 +
<span id="D66" style="font-size: 110%; font-weight: bold;">Twierdzenie D66</span><br/>
 +
Suma odwrotności liczb pierwszych jest rozbieżna.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Poniższy dowód został przedstawiony przez Erdősa w&nbsp;pracy<ref name="Erdos1"/> z 1938 roku. Jest to bardzo elegancki i&nbsp;chyba najprostszy dowód tego twierdzenia.
 +
 
 +
Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C</math>, gdzie <math>C</math> jest pewną stałą. Zbieżność szeregu o&nbsp;wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i&nbsp;sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby <math>r</math> takiej, że <math>\sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} < {\small\frac{1}{2}}</math>.
 +
 
 +
Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory <math>P = \{ p_1, p_2, \ldots, p_r \}</math> i <math>Q = \{ p_{r + 1}, p_{r + 2,} \ldots \}</math>.
 +
 
 +
Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór <math>\mathbb{Z}_Q</math> liczb podzielnych przez dowolną liczbę pierwszą ze zbioru <math>Q</math> i&nbsp;zbiór <math>\mathbb{Z}_P</math> liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru <math>Q</math>. Czyli liczby ze zbioru <math>\mathbb{Z}_P</math> muszą być iloczynami potęg liczb pierwszych ze zbioru <math>P</math>.
 +
 
 +
 
 +
Niech <math>M</math> będzie dostatecznie dużą liczbą całkowitą.
 +
 
 +
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_Q</math> takich, że <math>k \leqslant M</math></span><br/>
 +
 
 +
Zauważmy, że liczb nie większych od <math>M</math> i&nbsp;podzielnych przez liczbę pierwszą <math>p</math> jest dokładnie <math>\left\lfloor {\small\frac{M}{p}} \right\rfloor</math> (zobacz [[Twierdzenie Czebyszewa o funkcji π(n)#A20|A20]]). Łatwo otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
 +
 
 +
::<math>\sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor < M \cdot \sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}} M</math>
 +
 
 +
bo z&nbsp;założenia <math>\sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}}</math>. Zatem liczb takich, że <math>k \in \mathbb{Z}_Q</math> i <math>k \leqslant M</math> jest mniej niż <math>{\small\frac{M}{2}}</math>.
 +
 
 +
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math></span><br/>
  
 
Każdą liczbę ze zbioru <math>\mathbb{Z}_P</math> możemy zapisać w&nbsp;postaci <math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r</math>. Niech <math>\alpha_i = 2 \beta_i + \delta_i</math>, gdzie <math>\delta_i</math> jest resztą z&nbsp;dzielenia liczby <math>\alpha_i</math> przez <math>2</math>. Zatem
 
Każdą liczbę ze zbioru <math>\mathbb{Z}_P</math> możemy zapisać w&nbsp;postaci <math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r</math>. Niech <math>\alpha_i = 2 \beta_i + \delta_i</math>, gdzie <math>\delta_i</math> jest resztą z&nbsp;dzielenia liczby <math>\alpha_i</math> przez <math>2</math>. Zatem
Linia 2371: Linia 2561:
 
<span style="color: Green">[a]</span> Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb <math>k</math>. Dla przykładu: gdy <math>M > p_{r + 1} p_{r + 2}</math>, to liczba <math>p_{r + 1} p_{r + 2}</math> zostanie policzona dwukrotnie: raz jako podzielna przez <math>p_{r + 1}</math> i&nbsp;drugi raz jako podzielna przez <math>p_{r + 2}</math>. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.
 
<span style="color: Green">[a]</span> Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb <math>k</math>. Dla przykładu: gdy <math>M > p_{r + 1} p_{r + 2}</math>, to liczba <math>p_{r + 1} p_{r + 2}</math> zostanie policzona dwukrotnie: raz jako podzielna przez <math>p_{r + 1}</math> i&nbsp;drugi raz jako podzielna przez <math>p_{r + 2}</math>. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.
  
<span style="color: Green">[b]</span> Zauważmy, że dla <math>M > 8</math> liczba <math>a^2</math> taka, że <math>a^2 \leqslant M < (a + 1)^2</math> wystąpi dokładnie jeden raz (jako <math>a^2 \cdot 1</math>), ale my oszacujemy, że pojawiła się <math>2^r</math> razy. Można pokazać, że dla dowolnych <math>r \geqslant 1 \;</math> i <math>\; M \geqslant 1</math>, liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math>, jest mniej niż <math>2^r \sqrt{M}</math>. Jest ich nawet mniej niż <math>2^r \left\lfloor \sqrt{M} \right\rfloor</math>, poza przypadkami <math>r = 1 \;</math> i <math>\; M = 2, 3, 8</math>, kiedy to ilość takich liczb jest równa <math>2^r \left\lfloor \sqrt{M} \right\rfloor < 2^r \sqrt{M}</math>.<br/>
+
<span style="color: Green">[b]</span> Zauważmy, że dla <math>M > 8</math> liczba <math>a^2</math> taka, że <math>a^2 \leqslant M < (a + 1)^2</math> wystąpi dokładnie jeden raz (jako <math>a^2 \cdot 1</math>), ale my oszacujemy, że pojawiła się <math>2^r</math> razy. Można pokazać, że dla dowolnych <math>r \geqslant 1</math> i <math>M \geqslant 1</math>, liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math>, jest mniej niż <math>2^r \sqrt{M}</math>. Jest ich nawet mniej niż <math>2^r \left\lfloor \sqrt{M} \right\rfloor</math>, poza przypadkami <math>r = 1</math> i <math>M = 2, 3, 8</math>, kiedy to ilość takich liczb jest równa <math>2^r \left\lfloor \sqrt{M} \right\rfloor < 2^r \sqrt{M}</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2381: Linia 2571:
 
== Sumowanie przez części ==
 
== Sumowanie przez części ==
  
<span id="D64" style="font-size: 110%; font-weight: bold;">Uwaga D64</span><br/>
+
<span id="D67" style="font-size: 110%; font-weight: bold;">Uwaga D67</span><br/>
 
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
 
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
  
Linia 2403: Linia 2593:
  
  
<span id="D65" style="font-size: 110%; font-weight: bold;">Twierdzenie D65</span><br/>
+
<span id="D68" style="font-size: 110%; font-weight: bold;">Twierdzenie D68</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
 
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
  
Linia 2437: Linia 2627:
  
  
<span id="D66" style="font-size: 110%; font-weight: bold;">Zadanie D66</span><br/>
+
<span id="D69" style="font-size: 110%; font-weight: bold;">Zadanie D69</span><br/>
 
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
 
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia [[#D65|D65]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
+
Z twierdzenia [[#D68|D68]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
Linia 2459: Linia 2649:
 
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
 
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
  
Korzystając z&nbsp;twierdzenia [[#D32|D32]], otrzymujemy
+
Korzystając z&nbsp;twierdzenia [[#D35|D35]], otrzymujemy
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
Linia 2475: Linia 2665:
  
  
<span id="D67" style="font-size: 110%; font-weight: bold;">Zadanie D67</span><br/>
+
<span id="D70" style="font-size: 110%; font-weight: bold;">Zadanie D70</span><br/>
 
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
 
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D65|D65]])
+
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D68|D68]])
  
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
 
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
Linia 2501: Linia 2691:
 
:::<math>\quad \; = C_3</math>
 
:::<math>\quad \; = C_3</math>
  
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D63|D63]], [[#D66|D66]]).<br/>
+
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D66|D66]], [[#D69|D69]]).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2507: Linia 2697:
  
  
<span id="D68" style="font-size: 110%; font-weight: bold;">Twierdzenie D68 (sumowanie przez części)</span><br/>
+
<span id="D71" style="font-size: 110%; font-weight: bold;">Twierdzenie D71 (sumowanie przez części)</span><br/>
 
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
 
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
  
Linia 2554: Linia 2744:
  
  
<span id="D69" style="font-size: 110%; font-weight: bold;">Zadanie D69</span><br/>
+
<span id="D72" style="font-size: 110%; font-weight: bold;">Zadanie D72</span><br/>
 
Niech <math>r \neq 1</math>. Pokazać, że <math>\sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>.
 
Niech <math>r \neq 1</math>. Pokazać, że <math>\sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k \;</math> i <math>\; b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
+
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k</math> i <math>b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
  
 
::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
 
::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
Linia 2590: Linia 2780:
  
  
<span id="D70" style="font-size: 110%; font-weight: bold;">Twierdzenie D70 (kryterium Dirichleta)</span><br/>
+
<span id="D73" style="font-size: 110%; font-weight: bold;">Twierdzenie D73 (kryterium Dirichleta)</span><br/>
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
+
Niech <math>(a_k)</math> i <math>(b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
  
 
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest monotoniczny<br/><br/>
 
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest monotoniczny<br/><br/>
Linia 2638: Linia 2828:
  
  
<span id="D71" style="font-size: 110%; font-weight: bold;">Zadanie D71</span><br/>
+
<span id="D74" style="font-size: 110%; font-weight: bold;">Zadanie D74</span><br/>
 
Udowodnić następujące wzory
 
Udowodnić następujące wzory
  
Linia 2706: Linia 2896:
  
  
<span id="D72" style="font-size: 110%; font-weight: bold;">Zadanie D72</span><br/>
+
<span id="D75" style="font-size: 110%; font-weight: bold;">Zadanie D75</span><br/>
 
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
 
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W zadaniu [[#D71|D71]] p.1 pokazaliśmy, że prawdziwy jest wzór
+
W zadaniu [[#D74|D74]] p.1 pokazaliśmy, że prawdziwy jest wzór
  
 
::<math>\sum_{j = 1}^{k} \sin j =  
 
::<math>\sum_{j = 1}^{k} \sin j =  
Linia 2734: Linia 2924:
  
  
<span id="D73" style="font-size: 110%; font-weight: bold;">Zadanie D73</span><br/>
+
<span id="D76" style="font-size: 110%; font-weight: bold;">Zadanie D76</span><br/>
 
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
 
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
  
Linia 2742: Linia 2932:
 
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
 
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
  
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D71|D71]] p.1, otrzymujemy
+
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D74|D74]] p.1, otrzymujemy
  
 
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
Linia 2781: Linia 2971:
 
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
  
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D71|D71]] p.2, otrzymujemy
+
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}}</math> i <math>b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D74|D74]] p.2, otrzymujemy
  
 
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
 
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
Linia 2844: Linia 3034:
 
::<math>| S - S_n | < 2.533 \cdot 10^{- 12}</math>
 
::<math>| S - S_n | < 2.533 \cdot 10^{- 12}</math>
  
Zatem <math>S = 0.6839137864 \ldots </math>, gdzie wszystkie wypisane cyfry są prawidłowe.
+
Zatem <math>S = 0.6839137864 \ldots</math>, gdzie wszystkie wypisane cyfry są prawidłowe.
  
  
Linia 2862: Linia 3052:
  
  
<span id="D74" style="font-size: 110%; font-weight: bold;">Zadanie D74</span><br/>
+
<span id="D77" style="font-size: 110%; font-weight: bold;">Zadanie D77</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
  
Linia 2868: Linia 3058:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 2</math>, <math>a_k = \log k \;</math> i <math>\; b_k = D (k)</math>. Otrzymujemy
+
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 2</math>, <math>a_k = \log k</math> i <math>b_k = D (k)</math>. Otrzymujemy
  
 
::<math>\sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k)</math>
 
::<math>\sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k)</math>
Linia 2888: Linia 3078:
  
  
<span id="D75" style="font-size: 110%; font-weight: bold;">Twierdzenie D75</span><br/>
+
<span id="D78" style="font-size: 110%; font-weight: bold;">Twierdzenie D78</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
  
Linia 2906: Linia 3096:
 
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
 
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
  
(zobacz [[#D74|D74]]) otrzymujemy
+
(zobacz [[#D77|D77]]) otrzymujemy
  
 
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
 
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
Linia 2956: Linia 3146:
  
  
<span id="D76" style="font-size: 110%; font-weight: bold;">Uwaga D76</span><br/>
+
<span id="D79" style="font-size: 110%; font-weight: bold;">Uwaga D79</span><br/>
 
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
 
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
  
 
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
 
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
  
Z twierdzenia [[#D75|D75]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C13|C13]] p.3).
+
Z twierdzenia [[#D78|D78]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C13|C13]] p.3).
  
 
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
 
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
Linia 2969: Linia 3159:
  
  
<span id="D77" style="font-size: 110%; font-weight: bold;">Zadanie D77</span><br/>
+
<span id="D80" style="font-size: 110%; font-weight: bold;">Zadanie D80</span><br/>
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
 
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
  
Linia 2975: Linia 3165:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Kładąc we wzorze na sumowanie przez części (zobacz [[#D68|D68]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
+
Kładąc we wzorze na sumowanie przez części (zobacz [[#D71|D71]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
  
 
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
 
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
Linia 3003: Linia 3193:
 
== Iloczyn Cauchy'ego szeregów ==
 
== Iloczyn Cauchy'ego szeregów ==
  
<span id="D78" style="font-size: 110%; font-weight: bold;">Twierdzenie D78 (kryterium d'Alemberta)</span><br/>
+
<span id="D81" style="font-size: 110%; font-weight: bold;">Twierdzenie D81 (kryterium d'Alemberta)</span><br/>
 
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i&nbsp;istnieje granica
 
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i&nbsp;istnieje granica
  
Linia 3047: Linia 3237:
  
  
<span id="D79" style="font-size: 110%; font-weight: bold;">Uwaga D79</span><br/>
+
<span id="D82" style="font-size: 110%; font-weight: bold;">Uwaga D82</span><br/>
 
W przypadku, gdy <math>\lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1</math> kryterium d'Alemberta nie rozstrzyga o&nbsp;zbieżności lub rozbieżności szeregu <math>\sum_{n = 0}^{\infty} a_n</math>. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
 
W przypadku, gdy <math>\lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1</math> kryterium d'Alemberta nie rozstrzyga o&nbsp;zbieżności lub rozbieżności szeregu <math>\sum_{n = 0}^{\infty} a_n</math>. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
  
Linia 3054: Linia 3244:
  
  
<span id="D80" style="font-size: 110%; font-weight: bold;">Przykład D80</span><br/>
+
<span id="D83" style="font-size: 110%; font-weight: bold;">Przykład D83</span><br/>
 
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu
 
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu
  
Linia 3067: Linia 3257:
  
  
<span id="D81" style="font-size: 110%; font-weight: bold;">Zadanie D81</span><br/>
+
<span id="D84" style="font-size: 110%; font-weight: bold;">Zadanie D84</span><br/>
 
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny.
 
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny.
  
Linia 3081: Linia 3271:
  
  
<span id="D82" style="font-size: 110%; font-weight: bold;">Uwaga D82</span><br/>
+
<span id="D85" style="font-size: 110%; font-weight: bold;">Uwaga D85</span><br/>
 
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A40|A40]], korzystając z&nbsp;następującej definicji funkcji <math>e^x</math>
 
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A40|A40]], korzystając z&nbsp;następującej definicji funkcji <math>e^x</math>
  
Linia 3094: Linia 3284:
 
::{| class="wikitable"  style="text-align:center;"
 
::{| class="wikitable"  style="text-align:center;"
 
|- style="background-color: LightGray"
 
|- style="background-color: LightGray"
| <math> a_6 b_0 </math> || <math> </math> || <math> </math> || <math> </math> || <math> </math> || <math> </math> || <math> \cdots </math>  
+
| <math>a_6 b_0</math> || <math></math> || <math></math> || <math></math> || <math></math> || <math></math> || <math>\cdots</math>  
 
|- style="background-color: Violet"
 
|- style="background-color: Violet"
| <math> a_5 b_0 </math> || <math> a_5 b_1 </math> || <math> a_5 b_2 </math> || <math> a_5 b_3 </math> || <math> a_5 b_4 </math> || <math> a_5 b_5 </math> || <math> \cdots </math>  
+
| <math>a_5 b_0</math> || <math>a_5 b_1</math> || <math>a_5 b_2</math> || <math>a_5 b_3</math> || <math>a_5 b_4</math> || <math>a_5 b_5</math> || <math>\cdots</math>  
 
|- style="background-color: Cyan"
 
|- style="background-color: Cyan"
| <math> a_4 b_0 </math> || <math> a_4 b_1 </math> || <math> a_4 b_2 </math> || <math> a_4 b_3 </math> || <math> a_4 b_4 </math> || <math> a_4 b_5 </math> || <math> \cdots </math>  
+
| <math>a_4 b_0</math> || <math>a_4 b_1</math> || <math>a_4 b_2</math> || <math>a_4 b_3</math> || <math>a_4 b_4</math> || <math>a_4 b_5</math> || <math>\cdots</math>  
 
|- style="background-color: Green"
 
|- style="background-color: Green"
| <math> a_3 b_0 </math> || <math> a_3 b_1 </math> || <math> a_3 b_2 </math> || <math> a_3 b_3 </math> || <math> a_3 b_4 </math> || <math> a_3 b_5 </math> || <math> \cdots </math>  
+
| <math>a_3 b_0</math> || <math>a_3 b_1</math> || <math>a_3 b_2</math> || <math>a_3 b_3</math> || <math>a_3 b_4</math> || <math>a_3 b_5</math> || <math>\cdots</math>  
 
|- style="background-color: Yellow"
 
|- style="background-color: Yellow"
| <math> a_2 b_0 </math> || <math> a_2 b_1 </math> || <math> a_2 b_2 </math> || <math> a_2 b_3 </math> || <math> a_2 b_4 </math> || <math> a_2 b_5 </math> || <math> \cdots </math>  
+
| <math>a_2 b_0</math> || <math>a_2 b_1</math> || <math>a_2 b_2</math> || <math>a_2 b_3</math> || <math>a_2 b_4</math> || <math>a_2 b_5</math> || <math>\cdots</math>  
 
|- style="background-color: Orange"
 
|- style="background-color: Orange"
| <math> a_1 b_0 </math> || <math> a_1 b_1 </math> || <math> a_1 b_2 </math> || <math> a_1 b_3 </math> || <math> a_1 b_4 </math> || <math> a_1 b_5 </math> || <math> \cdots </math>  
+
| <math>a_1 b_0</math> || <math>a_1 b_1</math> || <math>a_1 b_2</math> || <math>a_1 b_3</math> || <math>a_1 b_4</math> || <math>a_1 b_5</math> || <math>\cdots</math>  
 
|- style="background-color: Red"
 
|- style="background-color: Red"
| <math> a_0 b_0 </math> || <math> a_0 b_1 </math> || <math> a_0 b_2 </math> || <math> a_0 b_3 </math> || <math> a_0 b_4 </math> || <math> a_0 b_5 </math> || <math> \; \cdots \; </math>  
+
| <math>a_0 b_0</math> || <math>a_0 b_1</math> || <math>a_0 b_2</math> || <math>a_0 b_3</math> || <math>a_0 b_4</math> || <math>a_0 b_5</math> || <math>\; \cdots \;</math>  
 
|}
 
|}
  
Linia 3113: Linia 3303:
 
::{| class="wikitable"  style="text-align:center;"
 
::{| class="wikitable"  style="text-align:center;"
 
|-
 
|-
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||  
+
| bgcolor="LightGray" | <math>a_6 b_0</math> || <math></math> ||  ||  ||  ||  ||  
 
|-
 
|-
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||  
+
| bgcolor="Violet" | <math>a_5 b_0</math> || bgcolor="LightGray" | <math></math> ||  ||  ||  ||  ||  
 
|-
 
|-
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  
+
| bgcolor="Cyan" | <math>a_4 b_0</math> || bgcolor="Violet" | <math>a_4 b_1</math> || bgcolor="LightGray" | <math></math> ||  ||  ||  ||  
 
|-
 
|-
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  
+
| bgcolor="Green" | <math>a_3 b_0</math> || bgcolor="Cyan" | <math>a_3 b_1</math> || bgcolor="Violet" | <math>a_3 b_2</math> || bgcolor="LightGray" | <math></math> ||  ||  ||  
 
|-
 
|-
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> ||  ||  
+
| bgcolor="Yellow" | <math>a_2 b_0</math> || bgcolor="Green" | <math>a_2 b_1</math> || bgcolor="Cyan" | <math>a_2 b_2</math> || bgcolor="Violet" | <math>a_2 b_3</math> || bgcolor="LightGray" | <math></math> ||  ||  
 
|-
 
|-
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||  
+
| bgcolor="Orange" | <math>a_1 b_0</math> || bgcolor="Yellow" | <math>a_1 b_1</math> || bgcolor="Green" | <math>a_1 b_2</math> || bgcolor="Cyan" | <math>a_1 b_3</math> || bgcolor="Violet" | <math>a_1 b_4</math> || bgcolor="LightGray" | <math></math>  ||  
 
|-
 
|-
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math>  || bgcolor="LightGray" | <math> a_0 b_6 </math>
+
| bgcolor="Red" | <math>a_0 b_0</math> || bgcolor="Orange" | <math>a_0 b_1</math> || bgcolor="Yellow" | <math>a_0 b_2</math> || bgcolor="Green" | <math>a_0 b_3</math> || bgcolor="Cyan" | <math>a_0 b_4</math> || bgcolor="Violet" | <math>a_0 b_5</math>  || bgcolor="LightGray" | <math>a_0 b_6</math>
 
|}
 
|}
  
Linia 3154: Linia 3344:
  
  
<span id="D83" style="font-size: 110%; font-weight: bold;">Definicja D83</span><br/>
+
<span id="D86" style="font-size: 110%; font-weight: bold;">Definicja D86</span><br/>
 
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
 
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
Linia 3165: Linia 3355:
  
  
<span id="D84" style="font-size: 110%; font-weight: bold;">Zadanie D84</span><br/>
+
<span id="D87" style="font-size: 110%; font-weight: bold;">Zadanie D87</span><br/>
 
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że
 
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 0, 0, 0, 0, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = b_n</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 0, 0, 0, 0, \ldots)</math>, <math>(b_n)</math> jest dowolnym ciągiem, to <math>c_n = b_n</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = \sum_{k = 0}^{n} b_k = B_n</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>, <math>(b_n)</math> jest dowolnym ciągiem, to <math>c_n = \sum_{k = 0}^{n} b_k = B_n</math>
  
 
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = b_n = {\small\frac{r^n}{n!}}</math>, to <math>c_n = {\small\frac{(2 r)^n}{n!}}</math>
 
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = b_n = {\small\frac{r^n}{n!}}</math>, to <math>c_n = {\small\frac{(2 r)^n}{n!}}</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, r, r^2, r^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, to <math>c_n =
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, r, r^2, r^3, \ldots)</math>, <math>(b_n) = (b, r, r^2, r^3, \ldots)</math>, to <math>c_n =
 
\begin{cases}
 
\begin{cases}
 
  \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
 
  \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
Linia 3180: Linia 3370:
 
\end{cases}</math>
 
\end{cases}</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, gdzie <math>q \neq r</math>, to <math>c_n =
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>(b_n) = (b, r, r^2, r^3, \ldots)</math>, gdzie <math>q \neq r</math>, to <math>c_n =
 
\begin{cases}
 
\begin{cases}
 
  \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 
  \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
Linia 3262: Linia 3452:
  
  
<span id="D85" style="font-size: 110%; font-weight: bold;">Przykład D85</span><br/>
+
<span id="D88" style="font-size: 110%; font-weight: bold;">Przykład D88</span><br/>
Ostatni punkt zadania [[#D84|D84]] pozwala stworzyć wiele przykładowych szeregów i&nbsp;ich iloczynów Cauchy'ego. Przypomnijmy, że
+
Ostatni punkt zadania [[#D87|D87]] pozwala stworzyć wiele przykładowych szeregów i&nbsp;ich iloczynów Cauchy'ego. Przypomnijmy, że
  
::<math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\quad (b_n) = (b, r, r^2, r^3, \ldots)</math>, &nbsp;gdzie <math>\, q \neq r</math>
+
::<math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\quad (b_n) = (b, r, r^2, r^3, \ldots)</math>, &nbsp;gdzie <math>q \neq r</math>
  
 
::<math>c_n =
 
::<math>c_n =
Linia 3311: Linia 3501:
  
  
<span id="D86" style="font-size: 110%; font-weight: bold;">Przykład D86</span><br/>
+
<span id="D89" style="font-size: 110%; font-weight: bold;">Przykład D89</span><br/>
 
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz [[#D5|D5]])
 
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz [[#D5|D5]])
  
Linia 3321: Linia 3511:
 
  = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math>
 
  = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math>
  
Ale <math>k \leqslant n \;</math> i <math>\; n - k \leqslant n</math>, zatem
+
Ale <math>k \leqslant n</math> i <math>n - k \leqslant n</math>, zatem
  
 
::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math>
 
::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math>
Linia 3333: Linia 3523:
  
  
<span id="D87" style="font-size: 110%; font-weight: bold;">Zadanie D87</span><br/>
+
<span id="D90" style="font-size: 110%; font-weight: bold;">Zadanie D90</span><br/>
Pokazać, że jeżeli <math>a_n = b_n = r^n \;</math> i <math>\; c_n = (n + 1) r^n</math> (zobacz [[#D84|D84]] p.3), to szeregi <math>\sum_{n = 0}^{\infty} a_n</math> oraz <math>\sum_{n = 0}^{\infty} c_n</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w&nbsp;przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór
+
Pokazać, że jeżeli <math>a_n = b_n = r^n</math> i <math>c_n = (n + 1) r^n</math> (zobacz [[#D87|D87]] p.3), to szeregi <math>\sum_{n = 0}^{\infty} a_n</math> oraz <math>\sum_{n = 0}^{\infty} c_n</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w&nbsp;przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór
  
 
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
 
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
Linia 3347: Linia 3537:
 
:*&nbsp;&nbsp;&nbsp; gdy <math>r = 1</math>, <math>c_n = n + 1</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad</math> (zobacz <span style="color: Green">[a]</span>, [https://www.wolframalpha.com/input?i=Sum%5B+n%2B1%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
 
:*&nbsp;&nbsp;&nbsp; gdy <math>r = 1</math>, <math>c_n = n + 1</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad</math> (zobacz <span style="color: Green">[a]</span>, [https://www.wolframalpha.com/input?i=Sum%5B+n%2B1%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
  
:*&nbsp;&nbsp;&nbsp; gdy <math>r = - 1</math>, <math>c_n = (n + 1) (- 1)^n</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad</math> (zobacz [[#D69|D69]], [https://www.wolframalpha.com/input?i=Sum%5B+%28n%2B1%29*%28-1%29%5En%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
+
:*&nbsp;&nbsp;&nbsp; gdy <math>r = - 1</math>, <math>c_n = (n + 1) (- 1)^n</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad</math> (zobacz [[#D72|D72]], [https://www.wolframalpha.com/input?i=Sum%5B+%28n%2B1%29*%28-1%29%5En%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
  
W przypadku, gdy <math>| r | < 1</math> wiemy<ref name="GeometricSeries1"/>, że <math>\sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}}</math>. Korzystając z&nbsp;zadania [[#D69|D69]], otrzymujemy  
+
W przypadku, gdy <math>| r | < 1</math> wiemy<ref name="GeometricSeries1"/>, że <math>\sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}}</math>. Korzystając z&nbsp;zadania [[#D72|D72]], otrzymujemy  
  
 
::<math>\sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}}</math>
 
::<math>\sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}}</math>
Linia 3366: Linia 3556:
  
  
<span id="D88" style="font-size: 110%; font-weight: bold;">Uwaga D88</span><br/>
+
<span id="D91" style="font-size: 110%; font-weight: bold;">Uwaga D91</span><br/>
Przykłady [[#D85|D85]] i [[#D86|D86]] pokazują, że w&nbsp;ogólności nie jest prawdziwy wzór
+
Przykłady [[#D88|D88]] i [[#D89|D89]] pokazują, że w&nbsp;ogólności nie jest prawdziwy wzór
  
 
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
 
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
Linia 3375: Linia 3565:
  
  
<span id="D89" style="font-size: 110%; font-weight: bold;">Uwaga D89</span><br/>
+
<span id="D92" style="font-size: 110%; font-weight: bold;">Uwaga D92</span><br/>
 
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych
 
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych
  
Linia 3384: Linia 3574:
 
::{| class="wikitable"  style="text-align:center;"
 
::{| class="wikitable"  style="text-align:center;"
 
|-
 
|-
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||  
+
| bgcolor="LightGray" | <math>a_6 b_0</math> || <math></math> ||  ||  ||  ||  ||  
 
|-
 
|-
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||  
+
| bgcolor="Violet" | <math>a_5 b_0</math> || bgcolor="LightGray" | <math></math> ||  ||  ||  ||  ||  
 
|-
 
|-
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  
+
| bgcolor="Cyan" | <math>a_4 b_0</math> || bgcolor="Violet" | <math>a_4 b_1</math> || bgcolor="LightGray" | <math></math> ||  ||  ||  ||  
 
|-
 
|-
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  
+
| bgcolor="Green" | <math>a_3 b_0</math> || bgcolor="Cyan" | <math>a_3 b_1</math> || bgcolor="Violet" | <math>a_3 b_2</math> || bgcolor="LightGray" | <math></math> ||  ||  ||  
 
|-
 
|-
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> ||  ||  
+
| bgcolor="Yellow" | <math>a_2 b_0</math> || bgcolor="Green" | <math>a_2 b_1</math> || bgcolor="Cyan" | <math>a_2 b_2</math> || bgcolor="Violet" | <math>a_2 b_3</math> || bgcolor="LightGray" | <math></math> ||  ||  
 
|-
 
|-
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||  
+
| bgcolor="Orange" | <math>a_1 b_0</math> || bgcolor="Yellow" | <math>a_1 b_1</math> || bgcolor="Green" | <math>a_1 b_2</math> || bgcolor="Cyan" | <math>a_1 b_3</math> || bgcolor="Violet" | <math>a_1 b_4</math> || bgcolor="LightGray" | <math></math>  ||  
 
|-
 
|-
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math>  || bgcolor="LightGray" | <math> a_0 b_6 </math>
+
| bgcolor="Red" | <math>a_0 b_0</math> || bgcolor="Orange" | <math>a_0 b_1</math> || bgcolor="Yellow" | <math>a_0 b_2</math> || bgcolor="Green" | <math>a_0 b_3</math> || bgcolor="Cyan" | <math>a_0 b_4</math> || bgcolor="Violet" | <math>a_0 b_5</math>  || bgcolor="LightGray" | <math>a_0 b_6</math>
 
|}
 
|}
  
Linia 3414: Linia 3604:
  
  
<span id="D90" style="font-size: 110%; font-weight: bold;">Twierdzenie D90 (Franciszek Mertens)</span><br/>
+
<span id="D93" style="font-size: 110%; font-weight: bold;">Twierdzenie D93 (Franciszek Mertens)</span><br/>
 
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
 
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
  
Linia 3428: Linia 3618:
 
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
 
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D89|D89]]).
+
Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D92|D92]]).
  
 
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
Linia 3481: Linia 3671:
  
  
<span id="D91" style="font-size: 110%; font-weight: bold;">Zadanie D91</span><br/>
+
<span id="D94" style="font-size: 110%; font-weight: bold;">Zadanie D94</span><br/>
 
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
 
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
  
Linia 3489: Linia 3679:
 
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math>
 
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math>
  
Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D89|D89]]).
+
Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D92|D92]]).
  
 
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math>
 
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math>
Linia 3511: Linia 3701:
  
  
<span id="D92" style="font-size: 110%; font-weight: bold;">Zadanie D92</span><br/>
+
<span id="D95" style="font-size: 110%; font-weight: bold;">Zadanie D95</span><br/>
 
Podać przykład szeregów zbieżnych, z&nbsp;których tylko jeden jest bezwzględnie zbieżny i&nbsp;których iloczyn Cauchy'ego jest warunkowo zbieżny.
 
Podać przykład szeregów zbieżnych, z&nbsp;których tylko jeden jest bezwzględnie zbieżny i&nbsp;których iloczyn Cauchy'ego jest warunkowo zbieżny.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Zauważmy, że szereg <math>\sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}}</math> jest bezwzględnie zbieżny, bo <math>\sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2</math> jest zbieżny. Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest zbieżny na mocy kryterium Leibniza (zobacz [[#D5|D5]]), ale nie jest bezwzględnie zbieżny (zobacz [[#D33|D33]], [[#D35|D35]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]).
+
Zauważmy, że szereg <math>\sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}}</math> jest bezwzględnie zbieżny, bo <math>\sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2</math> jest zbieżny. Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest zbieżny na mocy kryterium Leibniza (zobacz [[#D5|D5]]), ale nie jest bezwzględnie zbieżny (zobacz [[#D36|D36]], [[#D38|D38]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]).
  
 
Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
 
Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
Linia 3541: Linia 3731:
  
  
<span id="D93" style="font-size: 110%; font-weight: bold;">Zadanie D93</span><br/>
+
<span id="D96" style="font-size: 110%; font-weight: bold;">Zadanie D96</span><br/>
 
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.
 
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest warunkowo zbieżny (zobacz [[#D5|D5]], [[#D33|D33]], [[#D35|D35]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). Iloczyn Cauchy'ego dwóch takich szeregów jest równy <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
+
Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest warunkowo zbieżny (zobacz [[#D5|D5]], [[#D36|D36]], [[#D38|D38]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). Iloczyn Cauchy'ego dwóch takich szeregów jest równy <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
 
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
 
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
Linia 3560: Linia 3750:
  
  
Ponieważ (zobacz [[#D33|D33]])
+
Ponieważ (zobacz [[#D36|D36]])
  
 
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
 
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
Linia 3580: Linia 3770:
 
:::::<math>\;\;\;\; \leqslant 0</math>
 
:::::<math>\;\;\;\; \leqslant 0</math>
  
Bo <math>\; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1</math>. Ponieważ ciąg <math>(| c_n |)</math> jest malejący i&nbsp;zbieżny do zera, to z&nbsp;kryterium Leibniza (zobacz [[#D5|D5]]) szereg <math>\sum_{n = 0}^{\infty} (- 1)^n | c_n |</math> jest zbieżny. Zauważmy jeszcze, że dla <math>n \geqslant 1</math> mamy
+
Bo <math>\sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1</math>. Ponieważ ciąg <math>(| c_n |)</math> jest malejący i&nbsp;zbieżny do zera, to z&nbsp;kryterium Leibniza (zobacz [[#D5|D5]]) szereg <math>\sum_{n = 0}^{\infty} (- 1)^n | c_n |</math> jest zbieżny. Zauważmy jeszcze, że dla <math>n \geqslant 1</math> mamy
  
 
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} < | c_n |</math>
 
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} < | c_n |</math>
Linia 3590: Linia 3780:
  
  
<span id="D94" style="font-size: 110%; font-weight: bold;">Uwaga D94</span><br/>
+
<span id="D97" style="font-size: 110%; font-weight: bold;">Uwaga D97</span><br/>
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D96|D96]] pozwala przypisać wartość sumy do szeregów, których suma w&nbsp;zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w&nbsp;sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
+
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D99|D99]] pozwala przypisać wartość sumy do szeregów, których suma w&nbsp;zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w&nbsp;sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
  
 
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i&nbsp;tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy
 
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i&nbsp;tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy
Linia 3603: Linia 3793:
  
  
<span id="D95" style="font-size: 110%; font-weight: bold;">Twierdzenie D95</span><br/>
+
<span id="D98" style="font-size: 110%; font-weight: bold;">Twierdzenie D98</span><br/>
 
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>.
 
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>.
  
Linia 3635: Linia 3825:
  
  
<span id="D96" style="font-size: 110%; font-weight: bold;">Twierdzenie D96</span><br/>
+
<span id="D99" style="font-size: 110%; font-weight: bold;">Twierdzenie D99</span><br/>
 
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy.
 
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy.
  
Linia 3654: Linia 3844:
 
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math>
 
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math>
  
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D95|D95]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C11|C11]]) otrzymujemy
+
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D98|D98]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C11|C11]]) otrzymujemy
  
 
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math>
 
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math>
Linia 3664: Linia 3854:
  
  
<span id="D97" style="font-size: 110%; font-weight: bold;">Twierdzenie D97</span><br/>
+
<span id="D100" style="font-size: 110%; font-weight: bold;">Twierdzenie D100</span><br/>
 
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>.
 
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>.
  
Linia 3675: Linia 3865:
 
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math>
 
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math>
  
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D95|D95]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C11|C11]]) otrzymujemy
+
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D98|D98]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C11|C11]]) otrzymujemy
  
 
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math>
 
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math>
Linia 3692: Linia 3882:
 
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
 
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
  
W granicy, gdy <math>n \longrightarrow \infty</math>, z&nbsp;twierdzenia [[#D96|D96]] i&nbsp;udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy
+
W granicy, gdy <math>n \longrightarrow \infty</math>, z&nbsp;twierdzenia [[#D99|D99]] i&nbsp;udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy
  
 
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>
 
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>
Linia 3703: Linia 3893:
  
  
<span id="D98" style="font-size: 110%; font-weight: bold;">Twierdzenie D98 (Niels Henrik Abel)</span><br/>
+
<span id="D101" style="font-size: 110%; font-weight: bold;">Twierdzenie D101 (Niels Henrik Abel)</span><br/>
 
Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i&nbsp;ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
 
Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i&nbsp;ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
  
Linia 3721: Linia 3911:
 
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
 
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
Od sumowania wyrazów <math>a_k b_{n - k}</math> po <math>m + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D89|D89]]).
+
Od sumowania wyrazów <math>a_k b_{n - k}</math> po <math>m + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D92|D92]]).
  
 
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
Linia 3731: Linia 3921:
 
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k}</math>
 
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k}</math>
  
Od sumowania wyrazów <math>a_k B_{m - k}</math> po <math>L + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>L + 1</math> kolejnych liniach pionowych (zobacz [[#D89|D89]]).
+
Od sumowania wyrazów <math>a_k B_{m - k}</math> po <math>L + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>L + 1</math> kolejnych liniach pionowych (zobacz [[#D92|D92]]).
  
 
::<math>\sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i</math>
 
::<math>\sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i</math>
Linia 3743: Linia 3933:
 
::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math>
 
::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math>
  
W&nbsp;granicy, gdy <math>L \longrightarrow \infty</math>, z&nbsp;twierdzeń [[#D96|D96]] i [[#D97|D97]] otrzymujemy <math>C = A B</math>. Co należało pokazać.<br/>
+
W&nbsp;granicy, gdy <math>L \longrightarrow \infty</math>, z&nbsp;twierdzeń [[#D99|D99]] i [[#D100|D100]] otrzymujemy <math>C = A B</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 3753: Linia 3943:
 
== Liczby Catalana ==
 
== Liczby Catalana ==
  
<span id="D99" style="font-size: 110%; font-weight: bold;">Definicja D99</span><br/>
+
<span id="D102" style="font-size: 110%; font-weight: bold;">Definicja D102</span><br/>
 
Liczby Catalana <math>C_n</math> definiujemy wzorem
 
Liczby Catalana <math>C_n</math> definiujemy wzorem
  
Linia 3762: Linia 3952:
  
  
<span id="D100" style="font-size: 110%; font-weight: bold;">Twierdzenie D100</span><br/>
+
<span id="D103" style="font-size: 110%; font-weight: bold;">Twierdzenie D103</span><br/>
 
Liczby Catalana <math>C_n</math> mają następujące własności
 
Liczby Catalana <math>C_n</math> mają następujące własności
  
Linia 3821: Linia 4011:
 
'''Punkt 4.'''
 
'''Punkt 4.'''
  
Dowód tego punktu został umieszczony w&nbsp;Uzupełnieniu (zobacz [[#D125|D125]]).<br/>
+
Dowód tego punktu został umieszczony w&nbsp;Uzupełnieniu (zobacz [[#D128|D128]]).<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 3827: Linia 4017:
  
  
<span id="D101" style="font-size: 110%; font-weight: bold;">Zadanie D101</span><br/>
+
<span id="D104" style="font-size: 110%; font-weight: bold;">Zadanie D104</span><br/>
 
Niech <math>C_n</math> oznacza <math>n</math>-tą liczbę Catalana i&nbsp;niech <math>\sum_{n = 0}^{\infty} x_n</math> oznacza szereg, który otrzymujemy, mnożąc szereg <math>\sum_{n = 0}^{\infty} a_n</math> przez siebie według reguły Cauchy'ego. Pokazać, że
 
Niech <math>C_n</math> oznacza <math>n</math>-tą liczbę Catalana i&nbsp;niech <math>\sum_{n = 0}^{\infty} x_n</math> oznacza szereg, który otrzymujemy, mnożąc szereg <math>\sum_{n = 0}^{\infty} a_n</math> przez siebie według reguły Cauchy'ego. Pokazać, że
  
 
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = C_n</math>, &nbsp;to&nbsp; <math>x_n = C_{n + 1}</math>
 
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = C_n</math>, &nbsp;to&nbsp; <math>x_n = C_{n + 1}</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_0 = \alpha \;</math> i <math>\; a_n = r^{n - 1} C_{n - 1}</math> dla <math>n \geqslant 1</math>, &nbsp;to&nbsp; <math>x_0 = \alpha^2</math>, <math>\; x_1 = 2 \alpha C_0 \;</math> i <math>\; x_n = (1 + 2 \alpha r) r^{n - 2} C_{n - 1}</math> dla <math>n \geqslant 2</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_0 = \alpha</math> i <math>a_n = r^{n - 1} C_{n - 1}</math> dla <math>n \geqslant 1</math>, &nbsp;to&nbsp; <math>x_0 = \alpha^2</math>, <math>x_1 = 2 \alpha C_0</math> i <math>x_n = (1 + 2 \alpha r) r^{n - 2} C_{n - 1}</math> dla <math>n \geqslant 2</math>
  
 
Dla jakich wartości <math>\alpha, r</math> szereg <math>\sum_{n = 0}^{\infty} x_n</math> jest zbieżny?
 
Dla jakich wartości <math>\alpha, r</math> szereg <math>\sum_{n = 0}^{\infty} x_n</math> jest zbieżny?
Linia 3888: Linia 4078:
 
== Sumy współczynników dwumianowych ==
 
== Sumy współczynników dwumianowych ==
  
<span id="D102" style="font-size: 110%; font-weight: bold;">Twierdzenie D102</span><br/>
+
<span id="D105" style="font-size: 110%; font-weight: bold;">Twierdzenie D105</span><br/>
Dla <math>n \geqslant 0 \;</math> i <math>\; r \in \mathbb{R}</math> prawdziwe są wzory
+
Dla <math>n \geqslant 0</math> i <math>r \in \mathbb{R}</math> prawdziwe są wzory
  
 
::<math>\sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n</math>
 
::<math>\sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n</math>
Linia 3951: Linia 4141:
  
  
<span id="D103" style="font-size: 110%; font-weight: bold;">Twierdzenie D103</span><br/>
+
<span id="D106" style="font-size: 110%; font-weight: bold;">Twierdzenie D106</span><br/>
 
Dla <math>n, m \geqslant 0</math> prawdziwy jest wzór
 
Dla <math>n, m \geqslant 0</math> prawdziwy jest wzór
  
Linia 3993: Linia 4183:
 
=== <span style="border-bottom:2px solid #000;">Suma nieoznaczona</span> ===
 
=== <span style="border-bottom:2px solid #000;">Suma nieoznaczona</span> ===
  
<span id="D104" style="font-size: 110%; font-weight: bold;">Uwaga D104</span><br/>
+
<span id="D107" style="font-size: 110%; font-weight: bold;">Uwaga D107</span><br/>
 
Sumą nieoznaczoną<ref name="IndefiniteSum1"/> (lub antyróżnicą) funkcji <math>f(k)</math>, będziemy nazywali dowolną funkcję <math>F(k)</math> taką, że  
 
Sumą nieoznaczoną<ref name="IndefiniteSum1"/> (lub antyróżnicą) funkcji <math>f(k)</math>, będziemy nazywali dowolną funkcję <math>F(k)</math> taką, że  
  
Linia 4037: Linia 4227:
 
i nie jest prawdą, że <math>F(k) = S (k - 1)</math>, bo pominięty został wyraz <math>{\small\frac{- 1}{r - 1}}</math>, który jest stałą, ale jest to zrozumiałe.
 
i nie jest prawdą, że <math>F(k) = S (k - 1)</math>, bo pominięty został wyraz <math>{\small\frac{- 1}{r - 1}}</math>, który jest stałą, ale jest to zrozumiałe.
  
Niech teraz <math>f(n, k) = {\small\binom{n + k}{n}}</math>. Wiemy, że (zobacz [[#D103|D103]])
+
Niech teraz <math>f(n, k) = {\small\binom{n + k}{n}}</math>. Wiemy, że (zobacz [[#D106|D106]])
  
 
::<math>S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}}</math>
 
::<math>S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}}</math>
Linia 4049: Linia 4239:
  
  
<span id="D105" style="font-size: 110%; font-weight: bold;">Uwaga D105</span><br/>
+
<span id="D108" style="font-size: 110%; font-weight: bold;">Uwaga D108</span><br/>
 
Powiedzmy, że dysponujemy wzorem <math>S(b) = \sum_{k = a}^{b} f (k)</math> i&nbsp;chcemy udowodnić jego poprawność. W&nbsp;prostych przypadkach możemy wykorzystać indukcję matematyczną: wystarczy pokazać, że
 
Powiedzmy, że dysponujemy wzorem <math>S(b) = \sum_{k = a}^{b} f (k)</math> i&nbsp;chcemy udowodnić jego poprawność. W&nbsp;prostych przypadkach możemy wykorzystać indukcję matematyczną: wystarczy pokazać, że
  
Linia 4108: Linia 4298:
  
  
<span id="D106" style="font-size: 110%; font-weight: bold;">Zadanie D106</span><br/>
+
<span id="D109" style="font-size: 110%; font-weight: bold;">Zadanie D109</span><br/>
 
Korzystając z&nbsp;programu Maxima znaleźć sumę nieoznaczoną <math>F(n, k)</math> dla funkcji
 
Korzystając z&nbsp;programu Maxima znaleźć sumę nieoznaczoną <math>F(n, k)</math> dla funkcji
  
Linia 4149: Linia 4339:
 
=== <span style="border-bottom:2px solid #000;">Znajdowanie równania rekurencyjnego dla sumy <math>\boldsymbol{S(n)}</math></span> ===
 
=== <span style="border-bottom:2px solid #000;">Znajdowanie równania rekurencyjnego dla sumy <math>\boldsymbol{S(n)}</math></span> ===
  
<span id="D107" style="font-size: 110%; font-weight: bold;">Uwaga D107</span><br/>
+
<span id="D110" style="font-size: 110%; font-weight: bold;">Uwaga D110</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
 
::<math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>
 
::<math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>
  
W twierdzeniach [[#D123|D123]] i [[#D124|D124]] wyliczyliśmy <math>S(n)</math>, znajdując najpierw równanie rekurencyjne dla sumy. Możemy przypuszczać, że równanie rekurencyjne dla sumy <math>S(n)</math> wynika z&nbsp;istnienia odpowiedniego równania rekurencyjnego dla składników sumy <math>f(n, k)</math>. Zagadnieniem tym zajmowała się siostra Mary Celine Fasenmyer, która podała algorytm postępowania<ref name="Fasenmyer1"/><ref name="Fasenmyer2"/>. Prace Zeilbergera oraz Wilfa i&nbsp;Zeilbergera uogólniły ten algorytm<ref name="Zeilberger1"/><ref name="WilfZeilberger1"/>. My przedstawimy jedynie kilka prostych przypadków, które zilustrujemy przykładami. Szersze omówienie tematu Czytelnik znajdzie w&nbsp;książce Petkovšeka, Wilfa i&nbsp;Zeilbergera<ref name="PetkovsekWilfZeilberger1"/>.
+
W twierdzeniach [[#D126|D126]] i [[#D127|D127]] wyliczyliśmy <math>S(n)</math>, znajdując najpierw równanie rekurencyjne dla sumy. Możemy przypuszczać, że równanie rekurencyjne dla sumy <math>S(n)</math> wynika z&nbsp;istnienia odpowiedniego równania rekurencyjnego dla składników sumy <math>f(n, k)</math>. Zagadnieniem tym zajmowała się siostra Mary Celine Fasenmyer, która podała algorytm postępowania<ref name="Fasenmyer1"/><ref name="Fasenmyer2"/>. Prace Zeilbergera oraz Wilfa i&nbsp;Zeilbergera uogólniły ten algorytm<ref name="Zeilberger1"/><ref name="WilfZeilberger1"/>. My przedstawimy jedynie kilka prostych przypadków, które zilustrujemy przykładami. Szersze omówienie tematu Czytelnik znajdzie w&nbsp;książce Petkovšeka, Wilfa i&nbsp;Zeilbergera<ref name="PetkovsekWilfZeilberger1"/>.
  
  
  
<span id="D108" style="font-size: 110%; font-weight: bold;">Twierdzenie D108</span><br/>
+
<span id="D111" style="font-size: 110%; font-weight: bold;">Twierdzenie D111</span><br/>
 
Niech <math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>. Jeżeli składniki sumy <math>f(n, k)</math> spełniają równanie rekurencyjne
 
Niech <math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>. Jeżeli składniki sumy <math>f(n, k)</math> spełniają równanie rekurencyjne
  
Linia 4207: Linia 4397:
  
  
<span id="D109" style="font-size: 110%; font-weight: bold;">Uwaga D109</span><br/>
+
<span id="D112" style="font-size: 110%; font-weight: bold;">Uwaga D112</span><br/>
 
Nie ma sensu stosowanie opisanej powyżej metody do prostych sum postaci <math>\sum_{k = 0}^{n} f (k)</math>, bo równanie rekurencyjne otrzymujemy w&nbsp;takim przypadku natychmiast: <math>S(n + 1) - S (n) = f (n + 1)</math>.
 
Nie ma sensu stosowanie opisanej powyżej metody do prostych sum postaci <math>\sum_{k = 0}^{n} f (k)</math>, bo równanie rekurencyjne otrzymujemy w&nbsp;takim przypadku natychmiast: <math>S(n + 1) - S (n) = f (n + 1)</math>.
  
  
  
<span id="D110" style="font-size: 110%; font-weight: bold;">Zadanie D110</span><br/>
+
<span id="D113" style="font-size: 110%; font-weight: bold;">Zadanie D113</span><br/>
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D103|D103]])
+
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D106|D106]])
  
 
::<math>\sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}}</math>
 
::<math>\sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}}</math>
Linia 4220: Linia 4410:
 
W tym przypadku nie otrzymamy równania rekurencyjnego, ale od razu wzór ogólny na sumę <math>S(n)</math>.
 
W tym przypadku nie otrzymamy równania rekurencyjnego, ale od razu wzór ogólny na sumę <math>S(n)</math>.
  
Oczywiście <math>f(n, k) = {\small\binom{n + k}{n}}</math>. Po podstawieniu do równania (zobacz [[#D108|D108]])
+
Oczywiście <math>f(n, k) = {\small\binom{n + k}{n}}</math>. Po podstawieniu do równania (zobacz [[#D111|D111]])
  
 
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
 
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
Linia 4243: Linia 4433:
  
  
Łatwo znajdujemy rozwiązania: <math>b = - a</math>, <math>c = - a</math>, <math>d = 0</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D108|D108]])
+
Łatwo znajdujemy rozwiązania: <math>b = - a</math>, <math>c = - a</math>, <math>d = 0</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D111|D111]])
  
 
::<math>- a S (n) = a - a {\small\binom{2 n + 2}{n + 1}} - a \left( 1 - {\small\binom{2 n + 1}{n}} \right)</math>
 
::<math>- a S (n) = a - a {\small\binom{2 n + 2}{n + 1}} - a \left( 1 - {\small\binom{2 n + 1}{n}} \right)</math>
Linia 4287: Linia 4477:
  
  
<span id="D111" style="font-size: 110%; font-weight: bold;">Zadanie D111</span><br/>
+
<span id="D114" style="font-size: 110%; font-weight: bold;">Zadanie D114</span><br/>
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D102|D102]] p.1)
+
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D105|D105]] p.1)
  
 
::<math>\sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n</math>
 
::<math>\sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Oczywiście <math>f(n, k) = r^k {\small\binom{n}{k}}</math>. Po podstawieniu do równania (zobacz [[#D108|D108]])
+
Oczywiście <math>f(n, k) = r^k {\small\binom{n}{k}}</math>. Po podstawieniu do równania (zobacz [[#D111|D111]])
  
 
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
 
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
Linia 4316: Linia 4506:
  
  
Łatwo znajdujemy rozwiązania: <math>b = 0</math>, <math>c = - a</math>, <math>d = - a \cdot r</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D108|D108]])
+
Łatwo znajdujemy rozwiązania: <math>b = 0</math>, <math>c = - a</math>, <math>d = - a \cdot r</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D111|D111]])
  
 
::<math>S(n + 1) = (r + 1) S (n)</math>
 
::<math>S(n + 1) = (r + 1) S (n)</math>
Linia 4357: Linia 4547:
  
  
<span id="D112" style="font-size: 110%; font-weight: bold;">Zadanie D112</span><br/>
+
<span id="D115" style="font-size: 110%; font-weight: bold;">Zadanie D115</span><br/>
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D102|D102]] p.2)
+
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D105|D105]] p.2)
  
 
::<math>\sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{2^{n + 1} - 1}{n + 1}}</math>
 
::<math>\sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{2^{n + 1} - 1}{n + 1}}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Oczywiście <math>f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math>. Po podstawieniu do równania (zobacz [[#D108|D108]])
+
Oczywiście <math>f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math>. Po podstawieniu do równania (zobacz [[#D111|D111]])
  
 
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
 
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
Linia 4386: Linia 4576:
  
  
Łatwo znajdujemy rozwiązania: <math>b = 0</math>, <math>c = - a \cdot {\small\frac{n + 1}{n + 2}}</math>, <math>d = - a \cdot {\small\frac{n + 1}{n + 2}}</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D108|D108]])
+
Łatwo znajdujemy rozwiązania: <math>b = 0</math>, <math>c = - a \cdot {\small\frac{n + 1}{n + 2}}</math>, <math>d = - a \cdot {\small\frac{n + 1}{n + 2}}</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D111|D111]])
  
 
::<math>(n + 2) S (n + 1) = 2 (n + 1) S (n) + 1</math>
 
::<math>(n + 2) S (n + 1) = 2 (n + 1) S (n) + 1</math>
Linia 4427: Linia 4617:
  
  
<span id="D113" style="font-size: 110%; font-weight: bold;">Zadanie D113</span><br/>
+
<span id="D116" style="font-size: 110%; font-weight: bold;">Zadanie D116</span><br/>
Niech <math>n \in \mathbb{N}_0 \;</math> i <math>\; k \in \mathbb{Z}</math>. Uzasadnić, dlaczego przyjmujemy, że <math>{\small\binom{n}{k}} = 0</math>, gdy <math>k < 0 \;</math> lub <math>\; k > n</math>.
+
Niech <math>n \in \mathbb{N}_0</math> i <math>k \in \mathbb{Z}</math>. Uzasadnić, dlaczego przyjmujemy, że <math>{\small\binom{n}{k}} = 0</math>, gdy <math>k < 0</math> lub <math>k > n</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Linia 4441: Linia 4631:
 
::<math>{\small\binom{n}{k}} = {\small\binom{n - 1}{k}} + {\small\binom{n - 1}{k - 1}}</math>
 
::<math>{\small\binom{n}{k}} = {\small\binom{n - 1}{k}} + {\small\binom{n - 1}{k - 1}}</math>
  
położymy <math>n = m + 1 \;</math> i <math>\; k = 0</math>, to otrzymamy
+
położymy <math>n = m + 1</math> i <math>k = 0</math>, to otrzymamy
  
 
::<math>1 = 1 + {\small\binom{m}{- 1}}</math>
 
::<math>1 = 1 + {\small\binom{m}{- 1}}</math>
Linia 4450: Linia 4640:
  
  
Znacznie mocniejszego uzasadnienia dostarczy nam funkcja gamma (zobacz [[#D126|D126]]), która jest uogólnieniem silni na liczby rzeczywiste. Rozważmy funkcję
+
Znacznie mocniejszego uzasadnienia dostarczy nam funkcja gamma (zobacz [[#D129|D129]]), która jest uogólnieniem silni na liczby rzeczywiste. Rozważmy funkcję
  
 
::<math>g(n, x) = {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}}</math>
 
::<math>g(n, x) = {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}}</math>
  
Jeżeli <math>k \in \mathbb{Z} \;</math> i <math>\; 0 \leqslant k \leqslant n</math>, to funkcja <math>g(n, k)</math> jest równa współczynnikowi dwumianowemu <math>{\small\binom{n}{k}}</math>.
+
Jeżeli <math>k \in \mathbb{Z}</math> i <math>0 \leqslant k \leqslant n</math>, to funkcja <math>g(n, k)</math> jest równa współczynnikowi dwumianowemu <math>{\small\binom{n}{k}}</math>.
  
 
::<math>g(n, k) = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1) \Gamma (n - k + 1)}} = {\small\frac{n!}{k! (n - k) !}} = {\small\binom{n}{k}}</math>
 
::<math>g(n, k) = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1) \Gamma (n - k + 1)}} = {\small\frac{n!}{k! (n - k) !}} = {\small\binom{n}{k}}</math>
Linia 4469: Linia 4659:
  
  
Co najlepiej wyjaśnia, dlaczego przyjmujemy, że <math>{\small\binom{n}{k}} = 0</math>, gdy <math>k < 0 \;</math> lub <math>\; k > n</math>.<br/>
+
Co najlepiej wyjaśnia, dlaczego przyjmujemy, że <math>{\small\binom{n}{k}} = 0</math>, gdy <math>k < 0</math> lub <math>k > n</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 4475: Linia 4665:
  
  
<span id="D114" style="font-size: 110%; font-weight: bold;">Twierdzenie D114</span><br/>
+
<span id="D117" style="font-size: 110%; font-weight: bold;">Twierdzenie D117</span><br/>
Niech <math>n, I, J \in \mathbb{N}_0 \;</math> i <math>\; k \in \mathbb{Z}</math>. Jeżeli <math>f(n, k) = 0</math>
+
Niech <math>n, I, J \in \mathbb{N}_0</math> i <math>k \in \mathbb{Z}</math>. Jeżeli <math>f(n, k) = 0</math>
dla <math>k \notin [0, n] \,</math> i&nbsp;składniki sumy <math>f(n, k)</math> spełniają równanie rekurencyjne
+
dla <math>k \notin [0, n]</math> i&nbsp;składniki sumy <math>f(n, k)</math> spełniają równanie rekurencyjne
  
 
::<math>\sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0</math>
 
::<math>\sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0</math>
Linia 4530: Linia 4720:
  
  
<span id="D115" style="font-size: 110%; font-weight: bold;">Uwaga D115</span><br/>
+
<span id="D118" style="font-size: 110%; font-weight: bold;">Uwaga D118</span><br/>
Z zadania [[#D113|D113]] wynika, że jeżeli funkcja <math>f(n, k)</math> zawiera czynnik <math>{\small\binom{n}{k}}</math>, to może spełniać warunek <math>f(n, k) = 0</math> dla <math>k \notin [0, n]</math>. Oczywiście nie jest to warunek wystarczający, bo funkcja <math>f (n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math> jest różna od zera dla <math>k = - 1</math>.
+
Z zadania [[#D116|D116]] wynika, że jeżeli funkcja <math>f(n, k)</math> zawiera czynnik <math>{\small\binom{n}{k}}</math>, to może spełniać warunek <math>f(n, k) = 0</math> dla <math>k \notin [0, n]</math>. Oczywiście nie jest to warunek wystarczający, bo funkcja <math>f (n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math> jest różna od zera dla <math>k = - 1</math>.
  
  
  
<span id="D116" style="font-size: 110%; font-weight: bold;">Zadanie D116</span><br/>
+
<span id="D119" style="font-size: 110%; font-weight: bold;">Zadanie D119</span><br/>
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D102|D102]] p.3)
+
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D105|D105]] p.3)
  
 
::<math>\sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1}</math>
 
::<math>\sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1}</math>
Linia 4581: Linia 4771:
  
  
<span id="D117" style="font-size: 110%; font-weight: bold;">Zadanie D117</span><br/>
+
<span id="D120" style="font-size: 110%; font-weight: bold;">Zadanie D120</span><br/>
 
Pokazać, że dla <math>n \geqslant 0</math> prawdziwe są wzory
 
Pokazać, że dla <math>n \geqslant 0</math> prawdziwe są wzory
  
Linia 4599: Linia 4789:
 
Wskazówki:
 
Wskazówki:
  
Korzystamy z&nbsp;procedury <span style="font-size: 90%; color:black;"><code>sum5()</code></span>, której kod został podany w&nbsp;zadaniu [[#D116|D116]].
+
Korzystamy z&nbsp;procedury <span style="font-size: 90%; color:black;"><code>sum5()</code></span>, której kod został podany w&nbsp;zadaniu [[#D119|D119]].
  
 
Zawsze próbujemy znaleźć rozwiązanie dla najmniejszych wartości parametrów <span style="font-size: 90%; color:black;"><code>I, J</code></span>.
 
Zawsze próbujemy znaleźć rozwiązanie dla najmniejszych wartości parametrów <span style="font-size: 90%; color:black;"><code>I, J</code></span>.
Linia 4621: Linia 4811:
  
  
<span id="D118" style="font-size: 110%; font-weight: bold;">Uwaga D118</span><br/>
+
<span id="D121" style="font-size: 110%; font-weight: bold;">Uwaga D121</span><br/>
Niech <math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>. Wiemy (zobacz [[#D114|D114]]), że jeżeli dla dowolnego <math>n</math> wartość funkcji <math>f(n, k)</math> jest określona dla wszystkich <math>k \in \mathbb{Z} \;</math> i <math>\; f(n, k) = 0</math> dla <math>k \notin [0, n]</math>, to sumę <math>S(n)</math> możemy zapisać w&nbsp;równoważnej postaci  
+
Niech <math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>. Wiemy (zobacz [[#D117|D117]]), że jeżeli dla dowolnego <math>n</math> wartość funkcji <math>f(n, k)</math> jest określona dla wszystkich <math>k \in \mathbb{Z}</math> i <math>f(n, k) = 0</math> dla <math>k \notin [0, n]</math>, to sumę <math>S(n)</math> możemy zapisać w&nbsp;równoważnej postaci  
 
<math>S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k \in \mathbb{Z}} f (n, k)</math>
 
<math>S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k \in \mathbb{Z}} f (n, k)</math>
  
Linia 4703: Linia 4893:
  
  
<span id="D119" style="font-size: 110%; font-weight: bold;">Zadanie D119</span><br/>
+
<span id="D122" style="font-size: 110%; font-weight: bold;">Zadanie D122</span><br/>
 
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór
 
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór
  
Linia 4709: Linia 4899:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Zauważmy, że składniki sumy są równe zero dla <math>k \notin [0, n]</math> (zobacz zadanie [[#D131|D131]]). Zatem korzystając z&nbsp;procedury <span style="font-size: 90%; color:black;"><code>sum6(2, 1)</code></span>, otrzymujemy równanie rekurencyjne
+
Zauważmy, że składniki sumy są równe zero dla <math>k \notin [0, n]</math> (zobacz zadanie [[#D134|D134]]). Zatem korzystając z&nbsp;procedury <span style="font-size: 90%; color:black;"><code>sum6(2, 1)</code></span>, otrzymujemy równanie rekurencyjne
  
 
::<math>(n + 2) S (n + 2) - 4 (2 n + 3) S (n + 1) + 16 (n + 1) S (n) = 0</math>
 
::<math>(n + 2) S (n + 2) - 4 (2 n + 3) S (n + 1) + 16 (n + 1) S (n) = 0</math>
Linia 4723: Linia 4913:
  
  
<span id="D120" style="font-size: 110%; font-weight: bold;">Zadanie D120</span><br/>
+
<span id="D123" style="font-size: 110%; font-weight: bold;">Zadanie D123</span><br/>
 
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór
 
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór
  
Linia 4729: Linia 4919:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Zauważmy, że składniki sumy są równe zero dla <math>k \notin [0, n]</math> (zobacz [[#D131|D131]]) poza punktem <math>k = - 1</math>. Wiemy, że (zobacz [[#D132|D132]])
+
Zauważmy, że składniki sumy są równe zero dla <math>k \notin [0, n]</math> (zobacz [[#D134|D134]]) poza punktem <math>k = - 1</math>. Wiemy, że (zobacz [[#D135|D135]])
  
 
::<math>\lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = - {\small\frac{1}{2}}</math>
 
::<math>\lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = - {\small\frac{1}{2}}</math>
Linia 4764: Linia 4954:
 
=== <span style="border-bottom:2px solid #000; padding-bottom: 0.2em">Dowód własności liczb Catalana <math>{\small C_{n + 1} = \textstyle\sum_{k = 0}^{n} C_k C_{n - k}}</math></span> ===
 
=== <span style="border-bottom:2px solid #000; padding-bottom: 0.2em">Dowód własności liczb Catalana <math>{\small C_{n + 1} = \textstyle\sum_{k = 0}^{n} C_k C_{n - k}}</math></span> ===
  
<span id="D121" style="font-size: 110%; font-weight: bold;">Uwaga D121</span><br/>
+
<span id="D124" style="font-size: 110%; font-weight: bold;">Uwaga D124</span><br/>
Przedstawiony poniżej dowód czwartego punktu twierdzenia [[#D100|D100]] został oparty na pracy Jovana Mikicia<ref name="JovanMikic1"/>.
+
Przedstawiony poniżej dowód czwartego punktu twierdzenia [[#D103|D103]] został oparty na pracy Jovana Mikicia<ref name="JovanMikic1"/>.
  
  
  
<span id="D122" style="font-size: 110%; font-weight: bold;">Twierdzenie D122</span><br/>
+
<span id="D125" style="font-size: 110%; font-weight: bold;">Twierdzenie D125</span><br/>
 
Jeżeli funkcja <math>f(k)</math> nie zależy od <math>n</math> i&nbsp;dane są sumy
 
Jeżeli funkcja <math>f(k)</math> nie zależy od <math>n</math> i&nbsp;dane są sumy
  
Linia 4801: Linia 4991:
  
  
<span id="D123" style="font-size: 110%; font-weight: bold;">Twierdzenie D123</span><br/>
+
<span id="D126" style="font-size: 110%; font-weight: bold;">Twierdzenie D126</span><br/>
 
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
 
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
  
Linia 4829: Linia 5019:
 
:::<math>\;\;\:\, = {\small\frac{n S (n)}{2}}</math>
 
:::<math>\;\;\:\, = {\small\frac{n S (n)}{2}}</math>
  
Ponieważ <math>T(n) = {\small\frac{n S (n)}{2}} \;</math> i <math>\; T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D122|D122]]), to otrzymujemy
+
Ponieważ <math>T(n) = {\small\frac{n S (n)}{2}}</math> i <math>T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D125|D125]]), to otrzymujemy
  
 
::<math>{\small\frac{n S (n)}{2}} = 4 \cdot {\small\frac{(n - 1) S (n - 1)}{2}} + 2 S (n - 1)</math>
 
::<math>{\small\frac{n S (n)}{2}} = 4 \cdot {\small\frac{(n - 1) S (n - 1)}{2}} + 2 S (n - 1)</math>
Linia 4845: Linia 5035:
  
  
<span id="D124" style="font-size: 110%; font-weight: bold;">Twierdzenie D124</span><br/>
+
<span id="D127" style="font-size: 110%; font-weight: bold;">Twierdzenie D127</span><br/>
 
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
 
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
  
Linia 4869: Linia 5059:
 
</div>
 
</div>
  
Ponieważ <math>T(n) = (n + 1) S (n) - 4^n \;</math> i <math>\; T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D122|D122]]), to otrzymujemy
+
Ponieważ <math>T(n) = (n + 1) S (n) - 4^n</math> i <math>T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D125|D125]]), to otrzymujemy
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 4883: Linia 5073:
 
</div>
 
</div>
  
Metodą indukcji matematycznej dowodzimy, że <math>S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>. Dla <math>n = 0</math> mamy <math>S(0) = 1 \;</math> i <math>\; {\small\frac{1}{2}} {\small\binom{2}{1}} = 1</math>. Zatem wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że wzór jest prawdziwy dla <math>n - 1</math>, otrzymujemy dla <math>n</math>
+
Metodą indukcji matematycznej dowodzimy, że <math>S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>. Dla <math>n = 0</math> mamy <math>S(0) = 1</math> i <math>{\small\frac{1}{2}} {\small\binom{2}{1}} = 1</math>. Zatem wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że wzór jest prawdziwy dla <math>n - 1</math>, otrzymujemy dla <math>n</math>
  
 
::<math>{\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\binom{2 n}{n}}</math>
 
::<math>{\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\binom{2 n}{n}}</math>
Linia 4899: Linia 5089:
  
  
<span id="D125" style="font-size: 110%; font-weight: bold;">Twierdzenie D125</span><br/>
+
<span id="D128" style="font-size: 110%; font-weight: bold;">Twierdzenie D128</span><br/>
 
Jeżeli <math>C_n</math> są liczbami Catalana, to
 
Jeżeli <math>C_n</math> są liczbami Catalana, to
  
Linia 4936: Linia 5126:
 
&nbsp;
 
&nbsp;
  
<span id="D126" style="font-size: 110%; font-weight: bold;">Definicja D126</span><br/>
+
<span id="D129" style="font-size: 110%; font-weight: bold;">Definicja D129</span><br/>
 
Funkcja <math>\Gamma (z)</math><ref name="gamma1"/> jest zdefiniowana równoważnymi wzorami
 
Funkcja <math>\Gamma (z)</math><ref name="gamma1"/> jest zdefiniowana równoważnymi wzorami
  
Linia 4957: Linia 5147:
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż wykres|Hide=Ukryj wykres}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż wykres|Hide=Ukryj wykres}}
  
Poniżej przedstawiamy wykresy funkcji <math>\Gamma (x)</math> (kolor niebieski) i <math>\, {\small\frac{1}{\Gamma (x)}}</math> (kolor czerwony).
+
Poniżej przedstawiamy wykresy funkcji <math>\Gamma (x)</math> (kolor niebieski) i <math>{\small\frac{1}{\Gamma (x)}}</math> (kolor czerwony).
  
 
::[[File: gamma1.png|700px|none]]
 
::[[File: gamma1.png|700px|none]]
Linia 4966: Linia 5156:
 
'''Równoważność definicji Gaussa i&nbsp;definicji całkowej Eulera'''
 
'''Równoważność definicji Gaussa i&nbsp;definicji całkowej Eulera'''
  
Niech <math>n \in \mathbb{Z}_+ \,</math> i <math>\; \operatorname{Re}(z) > 0</math>. Rozważmy całki
+
Niech <math>n \in \mathbb{Z}_+</math> i <math>\operatorname{Re}(z) > 0</math>. Rozważmy całki
  
 
::<math>I_k = \int^n_0 t^{z - 1 + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k} d t</math>
 
::<math>I_k = \int^n_0 t^{z - 1 + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k} d t</math>
Linia 5054: Linia 5244:
  
  
<span id="D127" style="font-size: 110%; font-weight: bold;">Twierdzenie D127</span><br/>
+
<span id="D130" style="font-size: 110%; font-weight: bold;">Twierdzenie D130</span><br/>
 
Dla funkcji <math>\Gamma (z)</math> prawdziwe są następujące wzory
 
Dla funkcji <math>\Gamma (z)</math> prawdziwe są następujące wzory
  
Linia 5069: Linia 5259:
 
</div>
 
</div>
  
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) \qquad 2 z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad </math> (wzór Legendre'a o&nbsp;podwajaniu)
+
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) \qquad 2 z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad</math> (wzór Legendre'a o&nbsp;podwajaniu)
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Linia 5188: Linia 5378:
  
  
Ze wzorów podanych w&nbsp;twierdzeniu [[#D127|D127]] otrzymujemy<br/>
+
Ze wzorów podanych w&nbsp;twierdzeniu [[#D130|D130]] otrzymujemy<br/>
<span id="D128" style="font-size: 110%; font-weight: bold;">Twierdzenie D128</span><br/>
+
<span id="D131" style="font-size: 110%; font-weight: bold;">Twierdzenie D131</span><br/>
Niech <math>k \in \mathbb{Z} \;</math> i <math>\; n \in \mathbb{N}_0</math>
+
Niech <math>k \in \mathbb{Z}</math> i <math>n \in \mathbb{N}_0</math>
  
 
<div style="margin-top: 1em; margin-bottom: 1.5em;">
 
<div style="margin-top: 1em; margin-bottom: 1.5em;">
Linia 5224: Linia 5414:
 
'''Punkt 1.'''
 
'''Punkt 1.'''
  
Wystarczy położyć <math>z = {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D127|D127]]
+
Wystarczy położyć <math>z = {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D130|D130]]
  
 
'''Punkt 2.'''
 
'''Punkt 2.'''
Linia 5236: Linia 5426:
 
'''Punkt 3.'''
 
'''Punkt 3.'''
  
Wystarczy położyć <math>z = z' + {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D127|D127]]
+
Wystarczy położyć <math>z = z' + {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D130|D130]]
  
 
'''Punkt 4.'''
 
'''Punkt 4.'''
Linia 5288: Linia 5478:
  
  
<span id="D129" style="font-size: 110%; font-weight: bold;">Twierdzenie D129</span><br/>
+
<span id="D132" style="font-size: 110%; font-weight: bold;">Twierdzenie D132</span><br/>
Jeżeli <math>n \in \mathbb{N}_0 \,</math> i <math>\; a \in \mathbb{Z}_+</math>, to
+
Jeżeli <math>n \in \mathbb{N}_0</math> i <math>a \in \mathbb{Z}_+</math>, to
  
 
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}}</math>
 
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Wiemy, że jeżeli <math>z</math> nie jest liczbą całkowitą, to prawdziwy jest wzór (zobacz [[#D127|D127]] p.3)
+
Wiemy, że jeżeli <math>z</math> nie jest liczbą całkowitą, to prawdziwy jest wzór (zobacz [[#D130|D130]] p.3)
  
 
::<math>\Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}}</math>
 
::<math>\Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}}</math>
Linia 5324: Linia 5514:
  
  
<span id="D130" style="font-size: 110%; font-weight: bold;">Twierdzenie D130</span><br/>
+
<span id="D133" style="font-size: 110%; font-weight: bold;">Twierdzenie D133</span><br/>
Jeżeli <math>n \in \mathbb{N}_0 \,</math> i <math>\; a \in \mathbb{Z}_+</math>, to
+
Jeżeli <math>n \in \mathbb{N}_0</math> i <math>a \in \mathbb{Z}_+</math>, to
  
 
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}}</math>
 
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}}</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#D127|D127]] p.2 wynika, że
+
Z twierdzenia [[#D130|D130]] p.2 wynika, że
  
 
::<math>\Gamma (a z + a n + 1) = \Gamma (a z + 1) \cdot \prod^{a n}_{j = 1} (a z + j)</math>
 
::<math>\Gamma (a z + a n + 1) = \Gamma (a z + 1) \cdot \prod^{a n}_{j = 1} (a z + j)</math>
Linia 5354: Linia 5544:
  
  
<span id="D131" style="font-size: 110%; font-weight: bold;">Zadanie D131</span><br/>
+
<span id="D134" style="font-size: 110%; font-weight: bold;">Zadanie D134</span><br/>
Niech <math>n \in \mathbb{Z}_+ \,</math> i <math>\; g(n) = {\small\binom{2 n}{n}}</math>. Pokazać, że
+
Niech <math>n \in \mathbb{Z}_+</math> i <math>g(n) = {\small\binom{2 n}{n}}</math>. Pokazać, że
  
 
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
 
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
Linia 5372: Linia 5562:
 
bo funkcja <math>\Gamma (x)</math> jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych.
 
bo funkcja <math>\Gamma (x)</math> jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych.
  
Korzystając z&nbsp;twierdzenia [[#D130|D130]], otrzymujemy
+
Korzystając z&nbsp;twierdzenia [[#D133|D133]], otrzymujemy
  
 
::<math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1)^n \cdot {\small\frac{n!}{(2 n) !}}</math>
 
::<math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1)^n \cdot {\small\frac{n!}{(2 n) !}}</math>
  
Ale wiemy, że (zobacz [[#D126|D126]])
+
Ale wiemy, że (zobacz [[#D129|D129]])
  
 
::<math>\lim_{x \rightarrow - n} {\small\frac{1}{\Gamma (x + 1)}} = 0</math>
 
::<math>\lim_{x \rightarrow - n} {\small\frac{1}{\Gamma (x + 1)}} = 0</math>
Linia 5392: Linia 5582:
  
  
<span id="D132" style="font-size: 110%; font-weight: bold;">Zadanie D132</span><br/>
+
<span id="D135" style="font-size: 110%; font-weight: bold;">Zadanie D135</span><br/>
Niech <math>n \in \mathbb{N}_0 \,</math> i <math>\; g(n) = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}}</math>. Pokazać, że
+
Niech <math>n \in \mathbb{N}_0</math> i <math>g(n) = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}}</math>. Pokazać, że
  
 
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
 
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
Linia 5410: Linia 5600:
 
to łatwo pokażemy, że granica funkcji <math>g(x)</math> w&nbsp;punkcje <math>x = - 1</math> istnieje i&nbsp;jest równa <math>- {\small\frac{1}{2}}</math>.
 
to łatwo pokażemy, że granica funkcji <math>g(x)</math> w&nbsp;punkcje <math>x = - 1</math> istnieje i&nbsp;jest równa <math>- {\small\frac{1}{2}}</math>.
  
Z twierdzenia [[#D130|D130]] dostajemy
+
Z twierdzenia [[#D133|D133]] dostajemy
  
 
::<math>\lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1) \cdot {\small\frac{1}{2}} = - {\small\frac{1}{2}}</math>
 
::<math>\lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1) \cdot {\small\frac{1}{2}} = - {\small\frac{1}{2}}</math>
Linia 5444: Linia 5634:
  
 
<ref name="RiemannZeta">Wikipedia, ''Funkcja dzeta Riemanna'', ([https://pl.wikipedia.org/wiki/Funkcja_dzeta_Riemanna Wiki-pl]), ([https://en.wikipedia.org/wiki/Riemann_zeta_function Wiki-en])</ref>
 
<ref name="RiemannZeta">Wikipedia, ''Funkcja dzeta Riemanna'', ([https://pl.wikipedia.org/wiki/Funkcja_dzeta_Riemanna Wiki-pl]), ([https://en.wikipedia.org/wiki/Riemann_zeta_function Wiki-en])</ref>
 +
 +
<ref name="Riemann1">Bernhard Riemann, ''Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe'', [rozprawa habilitacyjna z 1854, w:] Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen vol. 13, 1868, pp. 87 - 1</ref>
  
 
<ref name="calkowalnosc1">Twierdzenie: funkcja ciągła w&nbsp;przedziale domkniętym jest całkowalna w&nbsp;tym przedziale.</ref>
 
<ref name="calkowalnosc1">Twierdzenie: funkcja ciągła w&nbsp;przedziale domkniętym jest całkowalna w&nbsp;tym przedziale.</ref>
Linia 5455: Linia 5647:
 
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
 
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
  
<ref name="twierdzenie">Zobacz twierdzenie [[#D58|D58]].</ref>
+
<ref name="twierdzenie">Zobacz twierdzenie [[#D61|D61]].</ref>
  
 
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>
 
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>

Aktualna wersja na dzień 17:10, 21 sty 2026

07.04.2022



Szeregi nieskończone

Definicja D1
Sumę wszystkich wyrazów ciągu nieskończonego [math]\displaystyle{ (a_n) }[/math]

[math]\displaystyle{ a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{k = 1}^{\infty} a_k }[/math]

nazywamy szeregiem nieskończonym o wyrazach [math]\displaystyle{ a_n }[/math].


Definicja D2
Ciąg [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] nazywamy ciągiem sum częściowych szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math].


Definicja D3
Szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będziemy nazywali zbieżnym, jeżeli ciąg sum częściowych [math]\displaystyle{ \left ( S_n \right ) }[/math] jest zbieżny.


Twierdzenie D4 (warunek konieczny zbieżności szeregu)
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny, to [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math].

Dowód

Niech [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] będzie ciągiem sum częściowych, wtedy [math]\displaystyle{ a_{n + 1} = S_{n + 1} - S_n }[/math]. Z założenia ciąg [math]\displaystyle{ (S_n) }[/math] jest zbieżny, zatem

[math]\displaystyle{ \lim_{n \to \infty} a_{n + 1} = \lim_{n \to \infty} \left ( S_{n+1} - S_{n} \right ) = \lim_{n \to \infty} S_{n + 1} - \lim_{n \to \infty} S_n = 0 }[/math]


Okazuje się, że bardzo łatwo podać przykład szeregów, dla których warunek [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math] jest warunkiem wystarczającym. Opisany w poniższym twierdzeniu rodzaj szeregów nazywamy szeregami naprzemiennymi.
Twierdzenie D5 (kryterium Leibniza)
Niech ciąg [math]\displaystyle{ (a_n) }[/math] będzie ciągiem malejącym o wyrazach nieujemnych. Jeżeli

[math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} a_n = 0 }[/math]

to szereg [math]\displaystyle{ \underset{k = 1}{\overset{\infty}{\sum}} (- 1)^{k + 1} \cdot a_k }[/math] jest zbieżny.

Dowód

Grupując wyrazy szeregu po dwa, otrzymujemy sumę częściową postaci

[math]\displaystyle{ S_{2 m} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2 m - 1} - a_{2 m}) }[/math]

Ponieważ ciąg [math]\displaystyle{ (a_n) }[/math] jest ciągiem malejącym, to każde wyrażenie w nawiasie jest liczbą nieujemną. Z drugiej strony

[math]\displaystyle{ S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}} \lt a_1 }[/math]

Zatem dla każdego [math]\displaystyle{ m }[/math] ciąg sum częściowych [math]\displaystyle{ S_{2 m} }[/math] jest rosnący i ograniczony od góry, skąd na mocy twierdzenia C12 jest zbieżny, czyli

[math]\displaystyle{ \lim_{m \to \infty} S_{2 m} = g }[/math]

Pozostaje zbadać sumy częściowe [math]\displaystyle{ S_{2 m + 1} }[/math]. Rezultat jest natychmiastowy

[math]\displaystyle{ \lim_{m \to \infty} S_{2 m + 1} = \lim_{m \to \infty} (S_{2 m} + a_{2 m + 1}) = \lim_{m \to \infty} S_{2 m} + \lim_{m \to \infty} a_{2 m + 1} = g + 0 = g }[/math]

Co kończy dowód.


Twierdzenie D6
Szereg harmoniczny naprzemienny [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} }[/math] jest zbieżny i

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 }[/math]
Dowód

Zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} }[/math] wynika natychmiast z kryterium Leibniza (D5). Sumę szeregu trudniej policzyć – przedstawiony niżej sposób korzysta z własności całek

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt }[/math]

gdzie [math]\displaystyle{ n \geqslant 0 }[/math]. Przykładowo

[math]\displaystyle{ I_0 = \int_0^1 {\small\frac{1}{1 + t^2}} dt = \operatorname{arctg}(t) \biggr\rvert_{0}^{1} = {\small\frac{\pi}{4}} \approx 0.785398 \ldots }[/math]
[math]\displaystyle{ I_1 = \int_0^1 {\small\frac{t}{1 + t^2}} dt = {\small\frac{1}{2}} \int_0^1 {\small\frac{2 t}{1 + t^2}} d t = {\small\frac{1}{2}} \int_0^1 {\small\frac{du}{1 + u}} = {\small\frac{1}{2}} \biggr[ \log (1 + u) \biggr\rvert_{0}^{1} \biggr] = {\small\frac{1}{2}} \cdot \log 2 \approx 0.34657 \ldots }[/math]
[math]\displaystyle{ I_2 = \int_0^1 {\small\frac{t^2}{1 + t^2}} dt = \int_0^1 {\small\frac{1 + t^2 - 1}{1 + t^2}} dt = \int_0^1 dt - \int_0^1 {\small\frac{1}{1 + t^2}} dt = 1 - {\small\frac{\pi}{4}} \approx 0.21460 \ldots }[/math]


Udowodnimy kolejno, że

1. [math]\displaystyle{ \qquad {\small\frac{1}{2 n + 2}} \leqslant I_n \leqslant {\small\frac{1}{n + 1}} \qquad \qquad \;\; \text{dla} \;\; n \geqslant 0 }[/math]
2. [math]\displaystyle{ \qquad I_n = {\small\frac{1}{n - 1}} - I_{n - 2} \qquad \qquad \qquad \text{dla} \;\; n \geqslant 2 }[/math]
3. [math]\displaystyle{ \qquad I_{2 n + 1} = (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) \qquad \qquad \text{dla} \;\; n \geqslant 0 }[/math]
4. [math]\displaystyle{ \qquad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 }[/math]


Punkt 1.

Zauważmy, że w przedziale [math]\displaystyle{ [0, 1] }[/math] mamy [math]\displaystyle{ 1 \leqslant 1 + t^2 \leqslant 2 }[/math], zatem [math]\displaystyle{ {\small\frac{1}{2}} \leqslant {\small\frac{1}{1 + t^2}} \leqslant 1 }[/math]. Wynika stąd oszacowanie od góry

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt \leqslant \int_0^1 t^n dt = {\small\frac{1}{n + 1}} }[/math]

I oszacowanie od dołu

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt \geqslant \int_0^1 {\small\frac{t^n}{2}} dt = {\small\frac{1}{2}} \int_0^1 t^n dt = {\small\frac{1}{2 n + 2}} }[/math]

Co kończy dowód punktu 1.


Punkt 2.

Mamy

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = \int_0^1 {\small\frac{t^{n - 2} \cdot t^2}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = \int_0^1 {\small\frac{t^{n - 2} \cdot [(1 + t^2) - 1]}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = \int_0^1 t^{n - 2} dt- \int_0^1 {\small\frac{t^{n - 2}}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{1}{n - 1}} - I_{n - 2} }[/math]

Otrzymaliśmy wzór rekurencyjny prawdziwy dla [math]\displaystyle{ n \geqslant 2 }[/math]

[math]\displaystyle{ I_n = {\small\frac{1}{n - 1}} - I_{n - 2} }[/math]


Punkt 3.

Korzystając ze znalezionego wzoru rekurencyjnego oraz indukcji matematycznej udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ I_{2 n + 1} = (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]

Sprawdzamy poprawność wzoru dla [math]\displaystyle{ n = 1 }[/math]. Z dowodzonego wzoru otrzymujemy

[math]\displaystyle{ I_3 = \sum_{k = 1}^1 {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 = {\small\frac{1}{2}} - I_1 }[/math]

A ze wzoru rekurencyjnego dostajemy identyczny wzór

[math]\displaystyle{ I_3 = {\small\frac{1}{2}} - I_1 }[/math]


Załóżmy (złożenie indukcyjne), że dowodzony wzór jest prawdziwy dla [math]\displaystyle{ n }[/math], dla [math]\displaystyle{ n + 1 }[/math] mamy

[math]\displaystyle{ I_{2 n + 3} = (- 1)^{n + 2} \left( \sum_{k = 1}^{n + 1} {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]
[math]\displaystyle{ \;\;\;\: = (- 1)^{n + 2} \left( {\small\frac{(- 1)^{n + 2}}{2 n + 2}} + \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{2 n + 2}} - (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{(2 n + 3) - 1}} - I_{2 n + 1} }[/math]

Ostatnia równość wynika z założenia indukcyjnego. Pokazaliśmy, że dowodzony wzór jest prawdziwy dla [math]\displaystyle{ n + 1 }[/math], co kończy dowód indukcyjny.


Punkt 4.

Z punktu 1. wynika ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{4 (n + 1)}} \leqslant I_{2 n + 1} \leqslant {\small\frac{1}{2 (n + 1)}} }[/math]

Z twierdzenia o trzech ciągach i twierdzenia C9 wynika natychmiast

[math]\displaystyle{ \lim_{n \rightarrow \infty} I_{2 n + 1} = 0 = \lim_{n \rightarrow \infty} | I_{2 n + 1} | }[/math]

Zatem z punktu 3. mamy

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right| = 0 }[/math]

Czyli

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) = 0 }[/math]

Skąd natychmiast dostajemy, że

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{2 k}} = I_1 = {\small\frac{\log 2}{2}} }[/math]

Mnożąc obie strony przez [math]\displaystyle{ 2 }[/math], otrzymujemy dowodzony wzór. Co należało pokazać.


Twierdzenie D7
Dla [math]\displaystyle{ s \gt 1 }[/math] prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Dowód

Zauważmy, że założenie [math]\displaystyle{ s \gt 1 }[/math] zapewnia zbieżność szeregu po prawej stronie. Zapiszmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math] w postaci sumy dla [math]\displaystyle{ k }[/math] parzystych i nieparzystych

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} = 1 + {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} + {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} + \ldots }[/math]
[math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
[math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

Otrzymujemy wzór

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]


Podobnie rozpiszmy szereg naprzemienny

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = 1 - {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} - {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} - \ldots }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} - \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
[math]\displaystyle{ \;\;\,\, = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} - {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
[math]\displaystyle{ \;\;\,\, = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

gdzie skorzystaliśmy ze znalezionego wyżej wzoru dla sumy szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} }[/math]


Przykład D8
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta[1], którą definiuje szereg naprzemienny

[math]\displaystyle{ \eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math]

lub funkcja dzeta Riemanna[2], którą definiuje inny szereg

[math]\displaystyle{ \zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

Na podstawie twierdzenia D7 funkcje te są związane wzorem

[math]\displaystyle{ \eta (s) = (1 - 2^{1 - s}) \zeta (s) }[/math]

Dla [math]\displaystyle{ s \in \mathbb{R}_+ }[/math] funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math].


Twierdzenie D9
Niech [math]\displaystyle{ N \in \mathbb{Z}_+ }[/math]. Szeregi [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N}^{\infty} a_k }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. W przypadku zbieżności zachodzi związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k }[/math]
Dowód

Niech [math]\displaystyle{ S(n) =\sum_{k = 1}^{n} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant 1 }[/math]) oznacza sumę częściową pierwszego szeregu, a [math]\displaystyle{ T(n) = \sum_{k = N}^{\infty} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant N }[/math]) oznacza sumę częściową drugiego szeregu. Dla [math]\displaystyle{ n \geqslant N }[/math] mamy

[math]\displaystyle{ S(n) = (a_1 + a_2 + \ldots + a_{N - 1}) + T (n) }[/math]

Widzimy, że dla [math]\displaystyle{ n }[/math] dążącego do nieskończoności zbieżność (rozbieżność) jednego ciągu implikuje zbieżność (rozbieżność) drugiego.


Twierdzenie D10 (kryterium porównawcze)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ k \gt N_0 }[/math] jest spełniony warunek

[math]\displaystyle{ 0 \leqslant a_k \leqslant b_k }[/math]

to

  1.    zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] pociąga za sobą zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]
  2.    rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] pociąga za sobą rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]
Dowód

Dowód przeprowadzimy dla szeregów [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math], które są (odpowiednio) jednocześnie zbieżne lub jednocześnie rozbieżne z szeregami [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math].

Punkt 1.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest zbieżny. Niech [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k = b }[/math], zatem z założonych w twierdzeniu nierówności dostajemy

[math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k \leqslant b }[/math]

Zauważmy, że ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] jest ciągiem rosnącym (bo [math]\displaystyle{ a_k \geqslant 0 }[/math]) i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ \left ( A_n \right ) }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest zbieżny.

Punkt 2.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny, a z założonych w twierdzeniu nierówności dostajemy

[math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k }[/math]

Rosnący ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] nie może być ograniczony od góry, bo przeczyłoby to założeniu, że szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny. Wynika stąd i z wypisanych wyżej nierówności, że również ciąg sum częściowych [math]\displaystyle{ B_n = \sum_{k = N_0}^{n} b_k }[/math] nie może być ograniczony od góry, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest rozbieżny.


Twierdzenie D11
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} \left | a_k \right | }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest również zbieżny.

Dowód

Niech [math]\displaystyle{ b_k = a_k + | a_k | }[/math]. Z definicji prawdziwe jest następujące kryterium porównawcze

[math]\displaystyle{ 0 \leqslant b_k \leqslant 2 | a_k | }[/math]

Zatem z punktu 1. twierdzenia D10 wynika, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] jest zbieżny. Z definicji wyrazów ciągu [math]\displaystyle{ \left ( b_k \right ) }[/math] mamy [math]\displaystyle{ a_k = b_k - | a_k | }[/math] i możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \sum_{k = 1}^{\infty} b_k - \sum_{k = 1}^{\infty} | a_k | }[/math]

Ponieważ szeregi po prawej stronie są zbieżne, to zbieżny jest też szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]. Zauważmy, że jedynie w przypadku, gdyby obydwa szeregi po prawej stronie były rozbieżne, nie moglibyśmy wnioskować o zbieżności / rozbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math], bo suma szeregów rozbieżnych może być zbieżna.


Definicja D12
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest zbieżny.

Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest warunkowo zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest zbieżny, ale szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest rozbieżny.


Twierdzenie D13
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] można zapisać w jednej z postaci

  1. [math]\displaystyle{ \quad a_k = f_k - f_{k + 1} }[/math]
  2. [math]\displaystyle{ \quad a_k = f_{k - 1} - f_k }[/math]

to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa

  1. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1} }[/math]
  2. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n }[/math]
Dowód
[math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_k - f_{k + 1}) = }[/math]
[math]\displaystyle{ = (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + (f_{m + 2} - f_{m + 3}) + \ldots + (f_{n - 1} - f_n) + (f_n - f_{n + 1}) }[/math]
[math]\displaystyle{ = f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + f_{m + 2} - f_{m + 3} + \ldots + f_{n - 1} - f_n + f_n - f_{n + 1} }[/math]
[math]\displaystyle{ = f_m + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + f_{m + 2}) + (- f_{m + 3} + \ldots + f_{n - 1}) + (- f_n + f_n) - f_{n + 1} }[/math]
[math]\displaystyle{ = f_m - f_{n + 1} }[/math]


[math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_{k - 1} - f_k) = }[/math]
[math]\displaystyle{ = (f_{m - 1} - f_m) + (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + \ldots + (f_{n - 2} - f_{n - 1}) + (f_{n - 1} - f_n) }[/math]
[math]\displaystyle{ = f_{m - 1} - f_m + f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + \ldots + f_{n - 2} - f_{n - 1} + f_{n - 1} - f_n }[/math]
[math]\displaystyle{ = f_{m - 1} + (- f_m + f_m) + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + \ldots + f_{n - 2}) + (- f_{n - 1} + f_{n - 1}) - f_n }[/math]
[math]\displaystyle{ = f_{m - 1} - f_n }[/math]


Twierdzenie D14
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Dla dowodu wykorzystamy fakt, że rozpatrywany szereg jest szeregiem teleskopowym

[math]\displaystyle{ {\small\frac{1}{k (k + 1)}} = {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} }[/math]

Zatem

[math]\displaystyle{ \sum^n_{k = 1} {\small\frac{1}{k (k + 1)}} = \sum^n_{k = 1} \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) = 1 - {\small\frac{1}{n + 1}} }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1 }[/math]

Punkt 2.
Szereg jest identyczny z szeregiem z punktu 1., co łatwo zauważyć zmieniając zmienną sumowania [math]\displaystyle{ k = s + 1 }[/math] i odpowiednio granice sumowania.

Punkt 3.
Należy skorzystać z tożsamości

[math]\displaystyle{ {\small\frac{1}{k^2 - 1}} = {\small\frac{1}{2}} \left[ \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) + \left( {\small\frac{1}{k - 1}} - {\small\frac{1}{k}} \right) \right] }[/math]

Punkt 4.
Ponieważ dla [math]\displaystyle{ k \geqslant 2 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ 0 \lt {\small\frac{1}{k^2}} \lt {\small\frac{1}{k^2 - 1}} }[/math]

to na mocy kryterium porównawczego (twierdzenie D10) ze zbieżności szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]


Twierdzenie D15
Następujące szeregi są zbieżne

Dowód

Punkt 1.

Wystarczy zauważyć, że

[math]\displaystyle{ {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} = {\small\frac{\sqrt{k + 1} - \sqrt{k}}{\sqrt{k} \cdot \sqrt{k + 1}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot \left( \sqrt{k + 1} + \sqrt{k} \right)}} }[/math]
[math]\displaystyle{ \:\, \gt {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot 2 \sqrt{k + 1}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^n {\small\frac{1}{(k + 1) \sqrt{k}}} = 2 \sum_{k = 1}^n {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]
[math]\displaystyle{ \:\, \lt 2 \sum_{k = 1}^n \left( {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} \right) }[/math]
[math]\displaystyle{ \:\, = 2 \left( 1 - {\small\frac{1}{\sqrt{n + 1}}} \right) }[/math]
[math]\displaystyle{ \:\, \lt 2 }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.

Punkt 2.
Korzystając z twierdzenia A40 p.4, możemy napisać oszacowanie

[math]\displaystyle{ 0 \lt {\small\frac{\log k}{k (k + 1)}} \lt {\small\frac{\sqrt{k}}{k (k + 1)}} = {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]

Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} }[/math]

Punkt 3.
Zauważmy, że

[math]\displaystyle{ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} = {\small\frac{k \log (k - 1) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{k \log \left( k \left( 1 - {\normalsize\frac{1}{k}} \right) \right) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{k \log (k) + k \log \left( 1 - {\normalsize\frac{1}{k}} \right) - k \log (k) + \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{\log (k) - k \cdot {\normalsize\frac{1}{k - 1}}}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log (k)}{k (k - 1)}} - {\small\frac{1}{(k - 1)^2}} }[/math]

Czyli prawdziwe jest oszacowanie

[math]\displaystyle{ {\small\frac{\log (k)}{k (k - 1)}} \lt \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + {\small\frac{1}{(k - 1)^2}} }[/math]

Zatem możemy napisać

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\log (k)}{k (k - 1)}} \lt \sum_{k = 2}^{n} \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + \sum_{k = 2}^{n} {\small\frac{1}{(k - 1)^2}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt - {\small\frac{\log (n)}{n}} + \sum_{j = 1}^{n - 1} {\small\frac{1}{j^2}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt \sum_{j = 1}^{\infty} {\small\frac{1}{j^2}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\pi^2}{6}} }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.

Punkt 4.
Zauważmy, że

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log (k + 1) - \log (k)}{\log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]

Z drugiej strony mamy

[math]\displaystyle{ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} = {\small\frac{\log (k) - \log (k - 1)}{\log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k - 1}} \right)}{\log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]

Wynika stąd następujący ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 \! k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]


Rezultat ten wykorzystamy w pełni w przykładzie D16, a do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy

[math]\displaystyle{ \sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} \lt \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right] }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{1}{\log 2}} - {\small\frac{1}{\log (n)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{\log 2}} }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.


Przykład D16
Na przykładzie szeregu [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math] pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.

Ponieważ nie jesteśmy w stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części

[math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.

Dowodząc twierdzenie D15, w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]


Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy

[math]\displaystyle{ \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right) }[/math]


Ponieważ szeregi po lewej i po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}} }[/math]


Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy oszacowanie

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} \lt \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} }[/math]


Teraz pozostaje dodać sumę wyrazów szeregu od [math]\displaystyle{ k = 3 }[/math] do [math]\displaystyle{ k = m }[/math]

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości [math]\displaystyle{ m }[/math]. Wystarczy proste polecenie

for(n = 1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print( "n= ", n, "   a= ", s + 1/log(10^n+1), "   b= ", s + 1/log(10^n) ))

Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z dokładnością 10 miejsc po przecinku.

Natomiast samo zsumowanie [math]\displaystyle{ 10^8 }[/math] wyrazów szeregu daje wynik

[math]\displaystyle{ \sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots }[/math]

Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.

Rozpatrywana wyżej sytuacja pokazuje, że w przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.



Grupowanie i przestawianie wyrazów szeregu

 

Funkcje

 

Definicja D17
Niech będą dane dwa zbiory [math]\displaystyle{ X }[/math] i [math]\displaystyle{ Y }[/math]. Funkcją nazywamy takie odwzorowanie, które każdemu elementowi zbioru [math]\displaystyle{ X }[/math] przyporządkowuje dokładnie jeden element zbioru [math]\displaystyle{ Y }[/math].


Powiemy, że funkcja [math]\displaystyle{ f : X \rightarrow Y }[/math] jest różnowartościowa, jeżeli dla dowolnych elementów [math]\displaystyle{ x_1, x_2 \in X }[/math] prawdziwa jest implikacja

[math]\displaystyle{ x_1 \neq x_2 \Longrightarrow f (x_1) \neq f (x_2) }[/math]

lub implikacja równoważna

[math]\displaystyle{ f(x_1) = f (x_2) \Longrightarrow x_1 = x_2 }[/math]


Powiemy, że funkcja [math]\displaystyle{ f : X \rightarrow Y }[/math] jest funkcją "na", jeżeli dla każdego elementu [math]\displaystyle{ y \in Y }[/math] istnieje taki element [math]\displaystyle{ x \in X }[/math], że [math]\displaystyle{ y = f (x) }[/math]


Funkcję różnowartościową nazywamy też iniekcją, a funkcję na "na" suriekcją.


Funkcję różnowartościową i "na" nazywamy funkcją wzajemnie jednoznaczną (lub bijekcją).


Niech [math]\displaystyle{ f : X \rightarrow Y }[/math]. Powiemy, że [math]\displaystyle{ f }[/math] jest funkcją odwracalną, jeżeli istnieje taka funkcja [math]\displaystyle{ g : Y \rightarrow X }[/math], że

●    [math]\displaystyle{ g (f (x)) = x }[/math] dla każdego [math]\displaystyle{ x \in X }[/math]
●    [math]\displaystyle{ f (g (y)) = y }[/math] dla każdego [math]\displaystyle{ y \in Y }[/math]

Funkcję [math]\displaystyle{ g }[/math] spełniającą powyższe warunki będziemy nazywali funkcją odwrotną do [math]\displaystyle{ f }[/math] i oznaczali symbolem [math]\displaystyle{ f^{- 1} }[/math].


Twierdzenie D18
Jeżeli funkcja [math]\displaystyle{ f : X \rightarrow Y }[/math] jest funkcją wzajemnie jednoznaczną (czyli jest bijekcją), to ma dokładnie jedną funkcję odwrotną.

Dowód

Załóżmy, że [math]\displaystyle{ f : X \rightarrow Y }[/math] jest bijekcją. Zauważmy, że

  • z założenia [math]\displaystyle{ f }[/math] jest funkcją "na" (suriekcją), zatem każdemu elementowi [math]\displaystyle{ y \in Y }[/math] musi odpowiadać przynajmniej jeden element [math]\displaystyle{ x \in X }[/math] taki, że [math]\displaystyle{ f(x) = y }[/math]
  • przypuśćmy, dla uzyskania sprzeczności, że pewnemu elementowi [math]\displaystyle{ y \in Y }[/math] odpowiadają dwa różne elementy [math]\displaystyle{ x_1, x_2 \in X }[/math] takie, że [math]\displaystyle{ f(x_1) = y }[/math] i [math]\displaystyle{ f(x_2) = y }[/math]; ale z założenia [math]\displaystyle{ f }[/math] jest funkcją różnowartościową (iniekcją) i wiemy, że jeżeli [math]\displaystyle{ f(x_1) = f (x_2) }[/math], to [math]\displaystyle{ x_1 = x_2 }[/math]; z otrzymanej sprzeczności wynika natychmiast, że element [math]\displaystyle{ x \in X }[/math] odpowiadający elementowi [math]\displaystyle{ y \in Y }[/math] jest jedyny.

Widzimy, że funkcja [math]\displaystyle{ f }[/math], która jest różnowartościowa i "na" (bijekcja) przypisuje każdemu elementowi [math]\displaystyle{ x \in X }[/math] dokładnie jeden element [math]\displaystyle{ y \in Y }[/math] (to akurat wynika z definicji funkcji) i jednocześnie każdemu elementowi [math]\displaystyle{ y \in Y }[/math] odpowiada dokładnie jeden element [math]\displaystyle{ x \in X }[/math].

Funkcja-odwrotna.png

Zatem możemy zdefiniować funkcję odwrotną [math]\displaystyle{ f^{- 1} : Y \rightarrow X }[/math] w następujący sposób: dla każdego [math]\displaystyle{ y \in Y }[/math] niech [math]\displaystyle{ f^{- 1} (y) }[/math] będzie tym jedynym elementem [math]\displaystyle{ x \in X }[/math] spełniającym [math]\displaystyle{ f(x) = y }[/math].

Z powyższej definicji wynika, że

  • dla dowolnego [math]\displaystyle{ x \in X }[/math] mamy [math]\displaystyle{ f^{- 1} (f (x)) = f^{- 1} (y) = x }[/math]
  • dla dowolnego [math]\displaystyle{ y \in Y }[/math] jest [math]\displaystyle{ f (f^{- 1} (y)) = f (x) = y }[/math]

Pokażemy jeszcze, że funkcja odwrotna [math]\displaystyle{ f }[/math] jest wyznaczona jednoznacznie.

Niech [math]\displaystyle{ g : Y \rightarrow X }[/math] oraz [math]\displaystyle{ h : Y \rightarrow X }[/math] będą dwiema funkcjami odwrotnymi do [math]\displaystyle{ f }[/math]. Niech [math]\displaystyle{ y }[/math] będzie dowolnym elementem zbioru [math]\displaystyle{ Y }[/math]. Z definicji funkcji odwrotnej mamy [math]\displaystyle{ f (g (y)) = y }[/math] i [math]\displaystyle{ f (h (y)) = y }[/math]. Ponieważ [math]\displaystyle{ f }[/math] jest funkcją różnowartościową i [math]\displaystyle{ f (g (y)) = f (h (y)) }[/math], to musi być [math]\displaystyle{ g(y) = h (y) }[/math]. Ponieważ [math]\displaystyle{ y }[/math] był dowolnym elementem zbioru [math]\displaystyle{ Y }[/math], to wypisana równość zachodzi dla każdego [math]\displaystyle{ y \in Y }[/math], skąd natychmiast wynika, że funkcje [math]\displaystyle{ g }[/math] i [math]\displaystyle{ h }[/math] są identyczne. Czyli istnieje dokładnie jedna funkcja odwrotna do funkcji [math]\displaystyle{ f }[/math].


Twierdzenie D19
Jeżeli funkcja [math]\displaystyle{ f : X \rightarrow Y }[/math] ma funkcję odwrotną, to jest funkcją wzajemnie jednoznaczną.

Dowód

Z założenia funkcja [math]\displaystyle{ f : X \rightarrow Y }[/math] ma funkcję odwrotną [math]\displaystyle{ f^{- 1} : Y \rightarrow X }[/math].

1. funkcja [math]\displaystyle{ f : X \rightarrow Y }[/math] jest funkcją "na" (jest suriekcją)

Załóżmy, że [math]\displaystyle{ y \in Y }[/math] i niech [math]\displaystyle{ x = f^{- 1} (y) }[/math], mamy

[math]\displaystyle{ f(x) = f (f^{- 1} (y)) = y }[/math]

Zatem [math]\displaystyle{ f : X \rightarrow Y }[/math] jest funkcją "na".

2. funkcja [math]\displaystyle{ f : X \rightarrow Y }[/math] jest funkcją różnowartościową (jest iniekcją)

Załóżmy, że [math]\displaystyle{ x_1, x_2 \in X }[/math] i [math]\displaystyle{ f(x_1) = f (x_2) }[/math], mamy

[math]\displaystyle{ x_1 = f^{- 1} (f (x_1)) = f^{- 1} (f (x_2)) = x_2 }[/math]

Zatem [math]\displaystyle{ f : X \rightarrow Y }[/math] jest funkcją różnowartościową. Co należało pokazać.


Zadanie D20
Pokazać, że [math]\displaystyle{ A \subset \mathbb{N} }[/math] jest zbiorem skończonym wtedy i tylko wtedy, gdy jest zbiorem ograniczonym.

Rozwiązanie

[math]\displaystyle{ \Large{\Longrightarrow} }[/math]

Z założenia [math]\displaystyle{ A \subset \mathbb{N} }[/math] jest zbiorem skończonym, zatem [math]\displaystyle{ A = \{ k_1, \ldots, k_n \} }[/math], gdzie [math]\displaystyle{ k_i \in \mathbb{N} }[/math], a [math]\displaystyle{ n }[/math] jest iloscią elementów zbioru [math]\displaystyle{ A }[/math]. Wystarczy przyjąć [math]\displaystyle{ M = \max (k_1, \ldots, k_n) }[/math], aby dla każdego [math]\displaystyle{ k_i \in A }[/math] było [math]\displaystyle{ k_i \leqslant M }[/math]. Czyli zbiór [math]\displaystyle{ A }[/math] jest zbiorem ograniczonym.

[math]\displaystyle{ \Large{\Longleftarrow} }[/math]

Z założenia [math]\displaystyle{ A \subset \mathbb{N} }[/math] jest zbiorem ograniczonym, zatem istnieje taka liczba [math]\displaystyle{ M }[/math], że dla każdego [math]\displaystyle{ k_i \in A }[/math] jest [math]\displaystyle{ k_i \leqslant M }[/math]. Ponieważ [math]\displaystyle{ \mathbb{N} }[/math] jest zbiorem dyskretnym, to zbiór ma nie więcej niż [math]\displaystyle{ M }[/math] elementów, zatem jest zbiorem skończonym.


Zadanie D21
Niech [math]\displaystyle{ A }[/math] będzie dowolnym zbiorem skończonym, a [math]\displaystyle{ f }[/math] dowolną funkcją określoną na [math]\displaystyle{ A }[/math]. Pokazać, że obraz [math]\displaystyle{ f(A) }[/math] zbioru [math]\displaystyle{ A }[/math] jest zbiorem skończonym.

Rozwiązanie

Z definicji funkcji wiemy, że każdemu elementowi [math]\displaystyle{ k \in A }[/math] odpowiada dokładnie jeden element zbioru [math]\displaystyle{ A }[/math], zatem obraz [math]\displaystyle{ f(A) }[/math] zbioru [math]\displaystyle{ A }[/math] nie może zawierać więcej elementów niż zbiór [math]\displaystyle{ A }[/math], zatem musi być zbiorem skończonym. Oczywiście [math]\displaystyle{ f(A) }[/math] może zawierać mniej elementów niż zbiór [math]\displaystyle{ A }[/math], np. w przypadku funkcji [math]\displaystyle{ f(k) = k^2 }[/math] i zbioru [math]\displaystyle{ A = \{ - 5, - 4, \ldots, 4, 5 \} }[/math] lub funkcji stałej [math]\displaystyle{ f(k) = C }[/math] i dowolnego skończonego zbioru [math]\displaystyle{ A }[/math].



Grupowanie wyrazów szeregu

 

Uwaga D22
Problem, który pojawia się w przypadku grupowania wyrazów szeregu, zilustrujemy przykładem. Rozważmy szereg

[math]\displaystyle{ 1 + {\small\frac{1}{2^2}} + {\small\frac{1}{3^2}} + {\small\frac{1}{4^2}} + {\small\frac{1}{5^2}} + {\small\frac{1}{6^2}} + {\small\frac{1}{7^2}} + {\small\frac{1}{8^2}} + {\small\frac{1}{9^2}} + {\small\frac{1}{10^2}} + \ldots \qquad (*) }[/math]

Jest to szereg zbieżny (zobacz D14 p.4) i oczywiście jest bezwzględnie zbieżny. Możemy łatwo popsuć zbieżność tego szeregu, dodając nowe wyrazy. Zauważmy, że szereg

[math]\displaystyle{ 1 - 1 + 1 + 2 - 2 + {\small\frac{1}{2^2}} + 3 - 3 + {\small\frac{1}{3^2}} + 4 - 4 + {\small\frac{1}{4^2}} + 5 - 5 + {\small\frac{1}{5^2}} + 6 - 6 + {\small\frac{1}{6^2}} + \ldots \qquad (**) }[/math]

jest rozbieżny. Czytelnik łatwo sprawdzi, że suma częściowa tego szeregu wyraża się wzorem

[math]\displaystyle{ S_n = \sum_{j = 1}^{\lfloor n / 3 \rfloor} {\small\frac{1}{j^2}} + \begin{cases} 0 & & \text{gdy } n = 3 k \\ \lfloor n / 3 \rfloor + 1 & & \text{gdy } n = 3 k + 1 \\ 0 & & \text{gdy } n = 3 k + 2 \\ \end{cases} }[/math]


Mamy zatem: [math]\displaystyle{ S_n \xrightarrow{\; n \rightarrow \infty \;} \infty }[/math], gdy [math]\displaystyle{ n = 3 k + 1 }[/math] i [math]\displaystyle{ S_n \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{\pi^2}{6}} }[/math], gdy [math]\displaystyle{ n = 3 k }[/math] lub [math]\displaystyle{ n = 3 k + 2 }[/math]. Skąd wynika natychmiast rozbieżność szeregu [math]\displaystyle{ (**) }[/math]. Zauważmy, że możemy łatwo temu szeregowi przywrócić zbieżność grupując wyrazy po trzy

[math]\displaystyle{ (1 - 1 + 1) + \left( 2 - 2 + {\small\frac{1}{2^2}} \right) + \left( 3 - 3 + {\small\frac{1}{3^2}} \right) + \left( 4 - 4 + {\small\frac{1}{4^2}} \right) + \left( 5 - 5 + {\small\frac{1}{5^2}} \right) + \left( 6 - 6 + {\small\frac{1}{6^2}} \right) + \ldots }[/math]

W wyniku otrzymujemy zbieżny szereg [math]\displaystyle{ (*) }[/math]. Możemy też zastosować grupowanie: dwa wyrazy, jeden wyraz. Dostajemy

[math]\displaystyle{ (1 - 1) + (1) + (2 - 2) + \left( {\small\frac{1}{2^2}} \right) + (3 - 3) + \left( {\small\frac{1}{3^2}} \right) + (4 - 4) + \left( {\small\frac{1}{4^2}} \right) + (5 - 5) + \left( {\small\frac{1}{5^2}} \right) + (6 - 6) + \left( {\small\frac{1}{6^2}} \right) + \ldots }[/math]

Czyli szereg postaci

[math]\displaystyle{ 0 + 1 + 0 + {\small\frac{1}{2^2}} + 0 + {\small\frac{1}{3^2}} + 0 + {\small\frac{1}{4^2}} + 0 + {\small\frac{1}{5^2}} + 0 + {\small\frac{1}{6^2}} + 0 + {\small\frac{1}{7^2}} + 0 + {\small\frac{1}{8^2}} + 0 + {\small\frac{1}{9^2}} + 0 + {\small\frac{1}{10^2}} + \ldots }[/math]

Suma tego szeregu wynosi oczywiście [math]\displaystyle{ {\small\frac{\pi^2}{6}} }[/math].

Widzimy, że szereg rozbieżny można uczynić zbieżnym, dobierając odpowiednie grupowanie wyrazów szeregu. Podane niżej twierdzenie odpowiada na pytanie: czy szereg zbieżny (bezwzględnie lub warunkowo) możemy uczynić rozbieżnym, dobierając odpowiednie grupowanie wyrazów szeregu.


Zadanie D23
Zbadać, czy suma wypisanych niżej szeregów zależy od sposobu grupowania wyrazów tych szeregów.

[math]\displaystyle{ 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - \ldots }[/math]
[math]\displaystyle{ 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 - 10 + 11 - 12 + \ldots }[/math]
[math]\displaystyle{ 1 - 1 + {\small\frac{1}{2}} - {\small\frac{1}{2}} + {\small\frac{1}{3}} - {\small\frac{1}{3}} + {\small\frac{1}{4}} - {\small\frac{1}{4}} + {\small\frac{1}{5}} - {\small\frac{1}{5}} + {\small\frac{1}{6}} - {\small\frac{1}{6}} + \ldots }[/math]
Rozwiązanie

Pierwszy i drugi szereg nie są zbieżne, bo nie spełniają warunku koniecznego zbieżności szeregu: [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math]. W przypadku pierwszego szeregu mamy

[math]\displaystyle{ S_n = \begin{cases} 0 & & \text{gdy } n \text{ jest parzyste} \\ 1 & & \text{gdy } n \text{ jest nieparzyste} \\ \end{cases} }[/math]

Widzimy, że nie istnieje granica [math]\displaystyle{ S_n }[/math] dla [math]\displaystyle{ n }[/math] dążącego do nieskończoności, czyli szereg jest rozbieżny, ale grupując wyrazy po dwa, dostajemy

[math]\displaystyle{ (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + (1 - 1) + \ldots = 0 + 0 + 0 + \ldots = 0 }[/math]
[math]\displaystyle{ 1 + (- 1 + 1) + (- 1 + 1) + (- 1 + 1) + (- 1 + 1) + (- 1 + 1) + (- 1 + 1) + \ldots = 1 + 0 + 0 + 0 + \ldots = 1 }[/math]


Dla drugiego szeregu jest podobnie

[math]\displaystyle{ S_n = \begin{cases} - {\large\frac{n}{2}} & & \text{gdy } n \text{ jest parzyste} \\ {\large\frac{n + 1}{2}} & & \text{gdy } n \text{ jest nieparzyste} \\ \end{cases} }[/math]

Nie istnieje granica [math]\displaystyle{ S_n }[/math] dla [math]\displaystyle{ n }[/math] dążącego do nieskończoności, zatem szereg jest rozbieżny. Grupując wyrazy po dwa, mamy

[math]\displaystyle{ (1 - 2) + (3 - 4) + (5 - 6) + (7 - 8) + (9 - 10) + (11 - 12) + \ldots = - 1 - 1 - 1 - 1 - 1 - 1 - \ldots = - \infty }[/math]
[math]\displaystyle{ 1 + (- 2 + 3) + (- 4 + 5) + (- 6 + 7) + (- 8 + 9) + (- 10 + 11) + (- 12 + 13) + \ldots = 1 + 1 + 1 + 1 + 1 + 1 + 1 + \ldots = + \infty }[/math]


Trzeci szereg spełnia warunek konieczny zbieżności szeregu, ale nie jest bezwzględnie zbieżny (zobacz B34). Mamy

[math]\displaystyle{ S_n = \begin{cases} \;\;\; 0 & & \text{gdy } n \text{ jest parzyste} \\ {\large\frac{2}{n + 1}} & & \text{gdy } n \text{ jest nieparzyste} \\ \end{cases} }[/math]

Ponieważ [math]\displaystyle{ S_n \xrightarrow{\; n \rightarrow \infty \;} 0 }[/math], to trzeci szereg jest warunkowo zbieżny. Zauważmy, że

[math]\displaystyle{ (1 - 1) + \left( {\small\frac{1}{2}} - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{3}} \right) + \left( {\small\frac{1}{4}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{5}} \right) + \ldots = 0 + 0 + 0 + 0 + 0 + \ldots = 0 }[/math]
[math]\displaystyle{ 1 + \left( - 1 + {\small\frac{1}{2}} \right) + \left( - {\small\frac{1}{2}} + {\small\frac{1}{3}} \right) + \left( - {\small\frac{1}{3}} + {\small\frac{1}{4}} \right) + \left( - {\small\frac{1}{4}} + {\small\frac{1}{5}} \right) + \ldots = 1 - {\small\frac{1}{2}} - {\small\frac{1}{6}} - {\small\frac{1}{12}} - {\small\frac{1}{20}} - \ldots = 1 - \sum_{k = 1}^{\infty} {\small\frac{1}{k (k + 1)}} = 0 \qquad \quad }[/math] (zobacz D14 p.1)
[math]\displaystyle{ \left( 1 - 1 + {\small\frac{1}{2}} \right) + \left( - {\small\frac{1}{2}} + {\small\frac{1}{3}} - {\small\frac{1}{3}} \right) + \left( {\small\frac{1}{4}} - {\small\frac{1}{4}} + {\small\frac{1}{5}} \right) + \left( - {\small\frac{1}{5}} + {\small\frac{1}{6}} - {\small\frac{1}{6}} \right) + \ldots = {\small\frac{1}{2}} - {\small\frac{1}{2}} + {\small\frac{1}{5}} - {\small\frac{1}{5}} + \ldots \longrightarrow 0 }[/math]

Widzimy, że zmiana sposobu grupowania nie zmieniła sumy tego szeregu.


Twierdzenie D24
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny (bezwzględnie lub warunkowo), to jego suma nie zależy od pogrupowania wyrazów pod warunkiem, że każda z grup obejmuje jedynie skończoną ilość wyrazów.

Dowód

Uwaga: warunek, aby grupy obejmowały jedynie skończoną ilość wyrazów, stosujemy do ustalonej grupy, co nie wyklucza sytuacji, że rozmiar grupy rośnie dla kolejnych grup, np. [math]\displaystyle{ n }[/math]-ta grupa zawiera [math]\displaystyle{ n }[/math] wyrazów szeregu. Zauważmy, że podciąg [math]\displaystyle{ k_j = {\small\frac{1}{2}} (j^2 - j + 2) }[/math] jest równie dobrym podciągiem, jak każdy inny, a w tym przypadku [math]\displaystyle{ n }[/math]-ta grupa obejmuje dokładnie [math]\displaystyle{ n }[/math] wyrazów szeregu.


Rozważmy szereg

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11} + a_{12} + a_{13} + a_{14} + \ldots }[/math]

oraz dowolne grupowanie wyrazów tego szeregu, na przykład

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = (a_1) + (a_2 + a_3) + (a_4 + a_5 + a_6) + (a_7 + a_8) + (a_9 + a_{10} + a_{11}) + (a_{12} + a_{13} + a_{14}) + \ldots }[/math]

Każda grupa (zgodnie z założeniem) obejmuje jedynie skończoną ilość wyrazów. Takie grupowanie w rzeczywistości tworzy nowy szereg

[math]\displaystyle{ \sum_{j = 1}^{\infty} b_{k_j} = b_{k_1} + b_{k_2} + b_{k_3} + b_{k_4} + b_{k_5} + b_{k_6} + \ldots }[/math]

gdzie [math]\displaystyle{ (k_j) }[/math] jest pewnym podciągiem ciągu liczb naturalnych określonych przez wskaźnik pierwszego wyrazu po nawiasie otwierającym grupę, a samą grupę możemy zapisać jako

[math]\displaystyle{ b_{k_j} = (a_{k_j} + a_{k_j + 1} + \ldots + a_{k_{j + 1} - 1}) }[/math]

W naszym przykładzie mamy: [math]\displaystyle{ k_1 = 1 }[/math], [math]\displaystyle{ k_2 = 2 }[/math], [math]\displaystyle{ k_3 = 4 }[/math], [math]\displaystyle{ k_4 = 7 }[/math], [math]\displaystyle{ k_5 = 9 }[/math], [math]\displaystyle{ k_6 = 12, \; \ldots }[/math]

Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, zatem ciąg sum częściowych [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] ma granicę. Ciąg sum częściowych szeregu [math]\displaystyle{ \sum_{j = 1}^{\infty} b_{k_j} }[/math] możemy zapisać w postaci

[math]\displaystyle{ T_m = \sum_{j = 1}^{m} b_{k_j} = b_{k_1} + b_{k_2} + \ldots + b_{k_m} = \sum_{j = 1}^{m} (a_{k_j} + a_{k_j + 1} + \ldots + a_{k_{j + 1} - 1}) }[/math]

Łatwo widzimy, że [math]\displaystyle{ T_m }[/math] jest sumą wszystkich wyrazów ciągu [math]\displaystyle{ (a_k) }[/math] o wskaźnikach mniejszych od [math]\displaystyle{ k_{m + 1} }[/math], czyli

[math]\displaystyle{ T_m = S_{k_{m + 1} - 1} }[/math]

Ponieważ ciąg sum częściowych [math]\displaystyle{ (T_m) }[/math] jest podciągiem ciągu zbieżnego [math]\displaystyle{ (S_n) }[/math], to też jest zbieżny do tej samej granicy (zobacz C77). Co kończy dowód.



Przestawianie wyrazów szeregu

 

Definicja D25
Powiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k = \sum_{k = 1}^{\infty} a_{f (k)} }[/math] powstał w wyniku przestawiania wyrazów szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math], jeżeli [math]\displaystyle{ b_k = a_{f (k)} }[/math], gdzie funkcja [math]\displaystyle{ f(k) }[/math] jest funkcją wzajemnie jednoznaczną i [math]\displaystyle{ f : \mathbb{N} \rightarrow \mathbb{N} }[/math].


Uwaga D26
Zauważmy, że funkcja [math]\displaystyle{ f(k) }[/math] musi

  • odwzorowywać zbiór [math]\displaystyle{ \mathbb{N} }[/math] "na" [math]\displaystyle{ \mathbb{N} }[/math], bo każdy wyraz ciągu [math]\displaystyle{ (a_k) }[/math] musi wystąpić w ciągu [math]\displaystyle{ (b_k) }[/math]
  • być funkcją różnowartościową

Różnowartościowość funkcji [math]\displaystyle{ f(k) }[/math] wyklucza sytuację, gdy dwóm wyrazom ciągu [math]\displaystyle{ (b_k) }[/math] o różnych indeksach odpowiada taki sam wyraz z ciągu [math]\displaystyle{ (a_k) }[/math]. Weźmy dla przykładu szeregi

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = 1 + {\small\frac{1}{2^2}} + {\small\frac{1}{3^2}} + {\small\frac{1}{4^2}} + {\small\frac{1}{5^2}} + {\small\frac{1}{6^2}} + {\small\frac{1}{7^2}} + \ldots }[/math]
[math]\displaystyle{ \sum_{k = 1}^{\infty} b_k = \sum_{k = 1}^{\infty} a_{f (k)} = 1 + {\small\frac{1}{2^2}} + {\small\frac{1}{3^2}} + {\small\frac{1}{4^2}} + {\small\frac{1}{5^2}} + {\small\frac{1}{5^2}} + {\small\frac{1}{6^2}} + {\small\frac{1}{7^2}} + \ldots }[/math]

Mamy: [math]\displaystyle{ b_5 = a_{f (5)} = b_6 = a_{f (6)} = a_5 }[/math], czyli [math]\displaystyle{ f(5) = f (6) = 5 }[/math]. Otrzymaliśmy w ten sposób szereg złożony z innych wyrazów: pierwszy ma wszystkie wyrazy różne, a drugi ma dwa takie same.


Uwaga D27
Niech [math]\displaystyle{ f(k) }[/math] będzie funkcją opisującą przestawianie wyrazów. Szereg z przestawionymi wyrazami definiujemy następująco

[math]\displaystyle{ \sum_{k = 1}^{\infty} b_k = \sum_{k = 1}^{\infty} a_{f (k)} }[/math]

Funkcji [math]\displaystyle{ f }[/math] opisującej przestawianie wyrazów zazwyczaj nie daje się zapisać prostym wzorem. Powiedzmy, że dokonujemy tylko jednego przestawienia: wyraz [math]\displaystyle{ a_5 }[/math] będzie teraz dziesiątym wyrazem w nowym szeregu. Takie przestawienie opisuje funkcja

[math]\displaystyle{ f(k) = \begin{cases} k & & \text{gdy } k \lt 5 \\[0.3em] k + 1 & & \text{gdy } 5 \leq k \lt 10 \\[0.3em] 5 & & \text{gdy } k = 10 \\[0.3em] k & & \text{gdy } k \gt 10 \\ \end{cases} }[/math]

Co dobrze pokazuje tabela

Niżej przedstawiamy jeszcze dwa przykłady.


Przykład D28
Niech [math]\displaystyle{ f(k) }[/math] będzie funkcją opisującą przestawianie wyrazów. Funkcja

[math]\displaystyle{ f(k) = \begin{cases} k + 1 & & \text{gdy } k \text{ jest nieparzyste} \\[0.3em] k - 1 & & \text{gdy } k \text{ jest parzyste} \\ \end{cases} }[/math]

tworzy nowy szereg, w którym wyrazy o indeksach parzystych mają w nowym szeregu indeksy nieparzyste, a wyrazy o indeksach nieparzystych mają w nowym szeregu indeksy parzyste.

Co ilustruje tabela


Przykład D29
Niech [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będzie szeregiem harmonicznym naprzemiennym [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} }[/math], a funkcja opisująca przestawianie wyrazów szeregu ma postać

[math]\displaystyle{ f(k) = \begin{cases} \large{\frac{2 k + 1}{3}} & & \text{gdy } k = 3 j + 1 \\ \large{\frac{4 k - 2}{3}} & & \text{gdy } k = 3 j + 2 \\ \large{\frac{4 k}{3}} & & \text{gdy } k = 3 j \\ \end{cases} }[/math]

Rezultaty przestawiania wyrazów szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] zbierzemy w tabeli

Dokładnie z takim przestawieniem wyrazów szeregu harmonicznego naprzemiennego spotkamy się w zadaniu D30 p.2.


Zadanie D30
Pokazać, że

1.   [math]\displaystyle{ \left( 1 - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{9}} - {\small\frac{1}{10}} \right) + \left( {\small\frac{1}{11}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{13}} - {\small\frac{1}{14}} \right) + \ldots = \log 2 }[/math]
2.   [math]\displaystyle{ \left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{6}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} \right) + \left( {\small\frac{1}{9}} - {\small\frac{1}{18}} - {\small\frac{1}{20}} \right) + \ldots = {\small\frac{1}{2}} \cdot \log 2 }[/math]
3.   [math]\displaystyle{ \left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{8}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} - {\small\frac{1}{18}} \right) + \left( {\small\frac{1}{7}} - {\small\frac{1}{20}} - {\small\frac{1}{22}} - {\small\frac{1}{24}} \right) + \ldots = {\small\frac{1}{2}} \cdot \log {\small\frac{4}{3}} }[/math]
4.   [math]\displaystyle{ \left( 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} - {\small\frac{1}{6}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{3}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} \right) + \left( {\small\frac{1}{5}} - {\small\frac{1}{18}} - {\small\frac{1}{20}} - {\small\frac{1}{22}} - {\small\frac{1}{24}} \right) + \ldots = 0 }[/math]
5.   [math]\displaystyle{ \sum_{k = 1}^{\infty} \left( {\small\frac{1}{2 k - 1}} - \underbrace{{\small\frac{1}{2 a k - 2 a + 2}} - {\small\frac{1}{2 a k - 2 a + 4}} - \ldots - {\small\frac{1}{2 a k}}}_{a \; \text{ wyrazów}} \right) = {\small\frac{1}{2}} \cdot \log {\small\frac{4}{a}} }[/math]
6.   [math]\displaystyle{ \left( 1 - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{7}} + {\small\frac{1}{9}} + {\small\frac{1}{11}} + {\small\frac{1}{13}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{15}} + {\small\frac{1}{17}} + {\small\frac{1}{19}} + {\small\frac{1}{21}} + {\small\frac{1}{23}} + {\small\frac{1}{25}} + {\small\frac{1}{27}} + {\small\frac{1}{29}} - {\small\frac{1}{8}} \right) + \ldots = + \infty }[/math]
Rozwiązanie

Uwagi ogólne
Nawiasy nie oznaczają tutaj jakiegoś szczególnego grupowania wyrazów szeregu. Zostały umieszczone jedynie po to, aby pokazać, jak poszczególne szeregi zostały zdefiniowane.

Każdy z zamieszczonych niżej dowodów (poza punktem 6.) wykorzystuje przybliżony wzór na sumę [math]\displaystyle{ n }[/math] początkowych wyrazów szeregu harmonicznego

[math]\displaystyle{ H_n = \sum_{k = 1}^{n} {\small\frac{1}{k}} = 1 + {\small\frac{1}{2}} + {\small\frac{1}{3}} + {\small\frac{1}{4}} + {\small\frac{1}{5}} + {\small\frac{1}{6}} + {\small\frac{1}{7}} + {\small\frac{1}{8}} + {\small\frac{1}{9}} + \ldots = \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + {\small\frac{1}{120 n^4}} - \ldots }[/math]

gdzie [math]\displaystyle{ \gamma \approx 0.57721 \ldots }[/math] jest stałą Eulera (zobacz uwagę po twierdzeniu B34, więcej na ten temat Czytelnik znajdzie w przykładzie E60). Wynika stąd

[math]\displaystyle{ \underset{k \text{ parzyste}}{\sum_{k = 2}^{2 n}} {\small\frac{1}{k}} = \sum_{k = 1}^{n} {\small\frac{1}{2 k}} = {\small\frac{1}{2}} \sum_{k = 1}^{n} {\small\frac{1}{k}} = {\small\frac{1}{2}} H_n }[/math]
[math]\displaystyle{ \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n + 1}} {\small\frac{1}{k}} = \sum_{k = 1}^{2 n + 1} {\small\frac{1}{k}} - \underset{k \text{ parzyste}}{\sum^{2 n}_{k = 2}} {\small\frac{1}{k}} = H_{2 n + 1} - {\small\frac{1}{2}} H_n }[/math]
[math]\displaystyle{ \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} = \sum_{k = 1}^{2 n - 1} {\small\frac{1}{k}} - \underset{k \text{ parzyste}}{\sum^{2 n - 2}_{k = 2}} {\small\frac{1}{k}} = H_{2 n - 1} - {\small\frac{1}{2}} H_{n - 1} = \left( H_{2 n} - {\small\frac{1}{2 n}} \right) - {\small\frac{1}{2}} \left( H_n - {\small\frac{1}{n}} \right) = H_{2 n} - {\small\frac{1}{2}} H_n }[/math]


Punkt 1.

Wzór został udowodniony w twierdzeniu D6, ale zastosujemy tutaj inny sposób. Zauważmy, że sumujemy bloki

[math]\displaystyle{ \sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{2 k}} \right) = \sum^n_{k = 1} {\small\frac{1}{2 k - 1}} - \sum_{k = 1}^{n} {\small\frac{1}{2 k}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} - \left( {\small\frac{1}{2}} + {\small\frac{1}{4}} + {\small\frac{1}{6}} + {\small\frac{1}{8}} + {\small\frac{1}{10}} + {\small\frac{1}{12}} + {\small\frac{1}{14}} + {\small\frac{1}{16}} + \ldots + {\small\frac{1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left( 1 + {\small\frac{1}{2}} + {\small\frac{1}{3}} + {\small\frac{1}{4}} + {\small\frac{1}{5}} + {\small\frac{1}{6}} + {\small\frac{1}{7}} + {\small\frac{1}{8}} + \ldots + {\small\frac{1}{n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} H_n }[/math]
[math]\displaystyle{ \;\;\;\:\, = H_{2 n} - H_n }[/math]
[math]\displaystyle{ \;\;\;\:\, \approx \left( \log (2 n) + \gamma + {\small\frac{1}{4 n}} - \ldots \right) - \left( \log n + \gamma + {\small\frac{1}{2 n}} - \ldots \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \left[ \log \left( {\small\frac{2 n}{n}} \right) - {\small\frac{1}{4 n}} \right] \xrightarrow{\; n \rightarrow \infty \;} \log 2 }[/math]


Punkt 2.

Pierwszy sposób

Z określenia szeregu wynika, że sumujemy bloki złożone z trzech wyrazów

[math]\displaystyle{ 0 \lt \sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{4 k - 2}} - {\small\frac{1}{4 k}} \right) = \sum_{k = 1}^{n} {\small\frac{1}{4 k (2 k - 1)}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k^2}} }[/math]

Z kryterium porównawczego (D10) wynika, że powyższy szereg jest zbieżny, zatem możemy grupować wyrazy (zobacz D24)

[math]\displaystyle{ 1 - {\small\frac{1}{2}} - {\small\frac{1}{4}} + {\small\frac{1}{3}} - {\small\frac{1}{6}} - {\small\frac{1}{8}} + {\small\frac{1}{5}} - {\small\frac{1}{10}} - {\small\frac{1}{12}} + {\small\frac{1}{7}} - {\small\frac{1}{14}} - {\small\frac{1}{16}} + \ldots = \left( 1 - {\small\frac{1}{2}} \right) - {\small\frac{1}{4}} + \left( {\small\frac{1}{3}} - {\small\frac{1}{6}} \right) - {\small\frac{1}{8}} + \left( {\small\frac{1}{5}} - {\small\frac{1}{10}} \right) - {\small\frac{1}{12}} + \left( {\small\frac{1}{7}} - {\small\frac{1}{14}} \right) - {\small\frac{1}{16}} + \ldots }[/math]
[math]\displaystyle{ \: = {\small\frac{1}{2}} - {\small\frac{1}{4}} + {\small\frac{1}{6}} - {\small\frac{1}{8}} + {\small\frac{1}{10}} - {\small\frac{1}{12}} + {\small\frac{1}{14}} - {\small\frac{1}{16}} + \ldots }[/math]
[math]\displaystyle{ \: = {\small\frac{1}{2}} \cdot \left( 1 - {\small\frac{1}{2}} + {\small\frac{1}{3}} - {\small\frac{1}{4}} + {\small\frac{1}{5}} - {\small\frac{1}{6}} + {\small\frac{1}{7}} - {\small\frac{1}{8}} + \ldots \right) }[/math]
[math]\displaystyle{ \: = {\small\frac{1}{2}} \cdot \log 2 }[/math]


Drugi sposób

Szereg jest sumą bloków

[math]\displaystyle{ \sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{4 k - 2}} - {\small\frac{1}{4 k}} \right) = \sum_{k = 1}^{n} {\small\frac{1}{2 k - 1}} - \sum_{k = 1}^{n} \left( {\small\frac{1}{4 k - 2}} + {\small\frac{1}{4 k}} \right) }[/math]
[math]\displaystyle{ \;\;\,\, = \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} - \left( {\small\frac{1}{2}} + {\small\frac{1}{4}} + {\small\frac{1}{6}} + {\small\frac{1}{8}} + {\small\frac{1}{10}} + {\small\frac{1}{12}} + {\small\frac{1}{14}} + {\small\frac{1}{16}} + \ldots + {\small\frac{1}{4 n - 2}} + {\small\frac{1}{4 n}} \right) }[/math]
[math]\displaystyle{ \;\;\,\, = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \cdot \left( 1 + {\small\frac{1}{2}} + {\small\frac{1}{3}} + {\small\frac{1}{4}} + {\small\frac{1}{5}} + {\small\frac{1}{6}} + {\small\frac{1}{7}} + {\small\frac{1}{8}} + \ldots + {\small\frac{1}{2 n - 1}} + {\small\frac{1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\,\, = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} H_{2 n} }[/math]
[math]\displaystyle{ \;\;\,\, = {\small\frac{1}{2}} H_{2 n} - {\small\frac{1}{2}} H_n }[/math]
[math]\displaystyle{ \;\;\,\, \approx {\small\frac{1}{2}} \left[ \left( \log (2 n) + \gamma + {\small\frac{1}{4 n}} - \ldots \right) - \left( \log n + \gamma + {\small\frac{1}{2 n}} - \ldots \right) \right] }[/math]
[math]\displaystyle{ \;\;\,\, = {\small\frac{1}{2}} \left[ \log \left( {\small\frac{2 n}{n}} \right) + {\small\frac{1}{4 n}} - {\small\frac{1}{2 n}} \right] }[/math]
[math]\displaystyle{ \;\;\,\, = {\small\frac{1}{2}} \left( \log 2 - {\small\frac{1}{4 n}} \right) \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \cdot \log 2 }[/math]


Punkt 3.

Zauważmy, że sumujemy bloki

[math]\displaystyle{ \sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{6 k - 4}} - {\small\frac{1}{6 k - 2}} - {\small\frac{1}{6 k}} \right) = \sum_{k = 1}^{n} {\small\frac{1}{2 k - 1}} - \sum^n_{k = 1} \left( {\small\frac{1}{6 k - 4}} + {\small\frac{1}{6 k - 2}} + {\small\frac{1}{6 k}} \right) }[/math]
[math]\displaystyle{ \;\; = \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} - \left( {\small\frac{1}{2}} + {\small\frac{1}{4}} + {\small\frac{1}{6}} + {\small\frac{1}{8}} + {\small\frac{1}{10}} + {\small\frac{1}{12}} + {\small\frac{1}{14}} + {\small\frac{1}{16}} + \ldots + {\small\frac{1}{6 n - 4}} + {\small\frac{1}{6 n - 2}} + {\small\frac{1}{6 n}} \right) }[/math]
[math]\displaystyle{ \;\; = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left( 1 + {\small\frac{1}{2}} + {\small\frac{1}{3}} + {\small\frac{1}{4}} + {\small\frac{1}{5}} + {\small\frac{1}{6}} + {\small\frac{1}{7}} + {\small\frac{1}{8}} + \ldots + {\small\frac{1}{3 n - 2}} + {\small\frac{1}{3 n - 1}} + {\small\frac{1}{3 n}} \right) }[/math]
[math]\displaystyle{ \;\; = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} H_{3 n} }[/math]
[math]\displaystyle{ \;\; \approx \left( \log (2 n) + \gamma + {\small\frac{1}{4 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log n + \gamma + {\small\frac{1}{2 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log (3 n) + \gamma + {\small\frac{1}{6 n}} - \ldots \right) }[/math]
[math]\displaystyle{ \;\; = {\small\frac{1}{2}} \left[ \log (4 n^2) + 2 \gamma + {\small\frac{1}{2 n}} - \log n - \gamma - {\small\frac{1}{2 n}} - \log (3 n) - \gamma - {\small\frac{1}{6 n}} \right] }[/math]
[math]\displaystyle{ \;\; = {\small\frac{1}{2}} \left[ \log \left( {\small\frac{4 n^2}{n \cdot 3 n}} \right) - {\small\frac{1}{6 n}} \right] \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \cdot \log {\small\frac{4}{3}} }[/math]


Punkt 4.

Zauważmy, że sumujemy bloki

[math]\displaystyle{ \sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{8 k - 6}} - {\small\frac{1}{8 k - 4}} - {\small\frac{1}{8 k - 2}} - {\small\frac{1}{8 k}} \right) = \sum_{k = 1}^{n} {\small\frac{1}{2 k - 1}} - \sum_{k = 1}^{n} \left( {\small\frac{1}{8 k - 6}} + {\small\frac{1}{8 k - 4}} + {\small\frac{1}{8 k - 2}} + {\small\frac{1}{8 k}} \right) }[/math]
[math]\displaystyle{ \: = \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} - \left( {\small\frac{1}{2}} + {\small\frac{1}{4}} + {\small\frac{1}{6}} + {\small\frac{1}{8}} + {\small\frac{1}{10}} + {\small\frac{1}{12}} + {\small\frac{1}{14}} + {\small\frac{1}{16}} + \ldots + {\small\frac{1}{8 n - 6}} + {\small\frac{1}{8 n - 4}} + {\small\frac{1}{8 n - 2}} + {\small\frac{1}{8 n}} \right) }[/math]
[math]\displaystyle{ \: = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left( 1 + {\small\frac{1}{2}} + {\small\frac{1}{3}} + {\small\frac{1}{4}} + {\small\frac{1}{5}} + {\small\frac{1}{6}} + {\small\frac{1}{7}} + {\small\frac{1}{8}} + \ldots + {\small\frac{1}{4 n - 3}} + {\small\frac{1}{4 n - 2}} + {\small\frac{1}{4 n - 1}} + {\small\frac{1}{4 n}} \right) }[/math]
[math]\displaystyle{ \: = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} H_{4 n} }[/math]
[math]\displaystyle{ \: \approx \left( \log (2 n) + \gamma + {\small\frac{1}{4 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log n + \gamma + {\small\frac{1}{2 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log (4 n) + \gamma + {\small\frac{1}{8 n}} - \ldots \right) }[/math]
[math]\displaystyle{ \: = {\small\frac{1}{2}} \left[ \log (4 n^2) + 2 \gamma + {\small\frac{1}{2 n}} - \log n - \gamma - {\small\frac{1}{2 n}} - \log (4 n) - \gamma - {\small\frac{1}{8 n}} \right] }[/math]
[math]\displaystyle{ \: = {\small\frac{1}{2}} \left[ \log \left( {\small\frac{4 n^2}{n \cdot 4 n}} \right) - {\small\frac{1}{8 n}} \right] \xrightarrow{\; n \rightarrow \infty \;} 0 }[/math]


Punkt 5.

Sumujemy bloki

[math]\displaystyle{ \sum_{k = 1}^{n} \left( {\small\frac{1}{2 k - 1}} - {\small\frac{1}{2 a k - 2 a + 2}} - {\small\frac{1}{2 a k - 2 a + 4}} - \ldots - {\small\frac{1}{2 a k}} \right) = \sum_{k = 1}^{n} {\small\frac{1}{2 k - 1}} - \sum_{k = 1}^{n} \left( {\small\frac{1}{2 a k - 2 a + 2}} + {\small\frac{1}{2 a k - 2 a + 4}} + \ldots + {\small\frac{1}{2 a k}} \right) }[/math]
[math]\displaystyle{ = \underset{k \text{ nieparzyste}}{\sum_{k = 1}^{2 n - 1}} {\small\frac{1}{k}} - \left[ \left( {\small\frac{1}{2}} + {\small\frac{1}{4}} + \ldots + {\small\frac{1}{2 a}} \right) + \left( {\small\frac{1}{2 a + 2}} + {\small\frac{1}{2 a + 4}} + \ldots + {\small\frac{1}{4 a}} \right) + \left( {\small\frac{1}{4 a + 2}} + {\small\frac{1}{4 a + 4}} + \ldots + {\small\frac{1}{6 a}} \right) + \ldots + \left( {\small\frac{1}{2 a n - 2 a + 2}} + {\small\frac{1}{2 a n - 2 a + 4}} + \ldots + {\small\frac{1}{2 a n}} \right) \right] }[/math]
[math]\displaystyle{ = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left[ \left( 1 + {\small\frac{1}{2}} + \ldots + {\small\frac{1}{a}} \right) + \left( {\small\frac{1}{a + 1}} + {\small\frac{1}{a + 2}} + \ldots + {\small\frac{1}{2 a}} \right) + \left( {\small\frac{1}{2 a + 1}} + {\small\frac{1}{2 a + 2}} + \ldots + {\small\frac{1}{3 a}} \right) + \ldots + \left( {\small\frac{1}{a n - a + 1}} + {\small\frac{1}{a n - a + 2}} + \ldots + {\small\frac{1}{a n}} \right) \right] }[/math]
[math]\displaystyle{ = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} \left[ 1 + {\small\frac{1}{2}} + \ldots + {\small\frac{1}{a}} + {\small\frac{1}{a + 1}} + {\small\frac{1}{a + 2}} + \ldots + {\small\frac{1}{2 a}} + {\small\frac{1}{2 a + 1}} + {\small\frac{1}{2 a + 2}} + \ldots + {\small\frac{1}{3 a}} + \ldots + {\small\frac{1}{a n - a + 1}} + {\small\frac{1}{a n - a + 2}} + \ldots + {\small\frac{1}{a n}} \right] }[/math]
[math]\displaystyle{ = H_{2 n} - {\small\frac{1}{2}} H_n - {\small\frac{1}{2}} H_{a n} }[/math]
[math]\displaystyle{ \approx \left( \log (2 n) + \gamma + {\small\frac{1}{4 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log n + \gamma + {\small\frac{1}{2 n}} - \ldots \right) - {\small\frac{1}{2}} \left( \log (a n) + \gamma + {\small\frac{1}{2 a n}} - \ldots \right) }[/math]
[math]\displaystyle{ = {\small\frac{1}{2}} \left[ \log (4 n^2) + 2 \gamma + {\small\frac{1}{2 n}} - \log n - \gamma - {\small\frac{1}{2 n}} - \log (a n) - \gamma - {\small\frac{1}{2 a n}} \right] }[/math]
[math]\displaystyle{ = {\small\frac{1}{2}} \left[ \log \left( {\small\frac{4 n^2}{n \cdot a n}} \right) - {\small\frac{1}{2 a n}} \right] \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \cdot \log {\small\frac{4}{a}} }[/math]


Punkt 6.

Rozpatrujemy szereg

[math]\displaystyle{ \left( 1 - {\small\frac{1}{2}} \right) + \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} - {\small\frac{1}{4}} \right) + \left( {\small\frac{1}{7}} + {\small\frac{1}{9}} + {\small\frac{1}{11}} + {\small\frac{1}{13}} - {\small\frac{1}{6}} \right) + \left( {\small\frac{1}{15}} + {\small\frac{1}{17}} + {\small\frac{1}{19}} + {\small\frac{1}{21}} + {\small\frac{1}{23}} + {\small\frac{1}{25}} + {\small\frac{1}{27}} + {\small\frac{1}{29}} - {\small\frac{1}{8}} \right) + \left( {\small\frac{1}{31}} + \ldots + {\small\frac{1}{61}} - {\small\frac{1}{16}} \right) + \ldots }[/math]

Zauważmy, że

●    z definicji każda [math]\displaystyle{ k }[/math]-ta grupa obejmuje [math]\displaystyle{ 2^{k - 1} }[/math] wyrazów z mianownikiem nieparzystym i jeden wyraz z mianownikiem parzystym (największy z jeszcze niewykorzystanych wyrazów o mianowniku parzystym)

●    pierwszy wyraz z mianownikiem nieparzystym w [math]\displaystyle{ k }[/math]-tej grupie jest równy [math]\displaystyle{ {\small\frac{1}{2^k - 1}} }[/math], a ostatni to [math]\displaystyle{ {\small\frac{1}{2^{k + 1} - 3}} }[/math]

●    znajdujemy oszacowanie sumy wyrazów z mianownikiem nieparzystym w [math]\displaystyle{ k }[/math]-tej grupie

[math]\displaystyle{ S_{(k)} = {\small\frac{1}{2^k - 1}} + \ldots + {\small\frac{1}{2^{k + 1} - 3}} \geqslant 2^{k - 1} \cdot {\small\frac{1}{2^{k + 1} - 3}} \gt {\small\frac{2^{k - 1}}{2^{k + 1}}} = {\small\frac{1}{4}} }[/math]

●    łatwo sprawdzamy, że suma wyrazów w każdej z pierwszych trzech grup jest większa od [math]\displaystyle{ {\small\frac{1}{8}} }[/math]

●    począwszy od czwartej grupy, od sumy wyrazów z nieparzystym mianownikiem odejmujemy [math]\displaystyle{ {\small\frac{1}{8}} }[/math] lub mniej niż [math]\displaystyle{ {\small\frac{1}{8}} }[/math] (dokładnie [math]\displaystyle{ {\small\frac{1}{8}} }[/math], [math]\displaystyle{ {\small\frac{1}{10}} }[/math], [math]\displaystyle{ {\small\frac{1}{12}} }[/math], [math]\displaystyle{ {\small\frac{1}{14}} }[/math], itd.), zatem suma wszystkich wyrazów w każdej z tych grup jest większa od [math]\displaystyle{ {\small\frac{1}{8}} }[/math]

●    pokazaliśmy, że suma wyrazów w każdej grupie jest większa od [math]\displaystyle{ {\small\frac{1}{8}} }[/math], a ponieważ jest nieskończenie wiele grup, to szereg jest rozbieżny do nieskończoności


Twierdzenie D31
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest bezwzględnie zbieżny, to po dowolnym przestawieniu wyrazów suma tego szeregu nie ulegnie zmianie.

Dowód

Niech [math]\displaystyle{ f(k) }[/math] będzie funkcją opisującą przestawianie wyrazów. Szereg z przestawionymi wyrazami definiujemy następująco

[math]\displaystyle{ \sum_{k = 1}^{\infty} b_k = \sum_{k = 1}^{\infty} a_{f (k)} }[/math]

Widzimy, że

Zatem, po przestawieniu, na [math]\displaystyle{ n }[/math]-tej pozycji w szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] znajdzie się wyraz [math]\displaystyle{ a_{f (n)} }[/math].

Funkcja [math]\displaystyle{ f(k) }[/math] jest funkcją wzajemnie jednoznaczną, co oznacza, że ma funkcję odwrotną. Zauważmy, że [math]\displaystyle{ f (f^{- 1} (n)) = n }[/math], zatem [math]\displaystyle{ f^{- 1} (n) }[/math] zwraca wartość indeksu, z jakim wyraz [math]\displaystyle{ a_n }[/math] z szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] występuje w szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math].

Niech [math]\displaystyle{ N_0 }[/math] będzie dowolną ustaloną liczbą naturalną. Jeżeli przyjmiemy, że

[math]\displaystyle{ M_0 = \max \{ f^{- 1} (1), f^{- 1} (2), \ldots, f^{- 1} (N_0) \} }[/math]

to zapewnimy sobie, że każdy z wyrazów [math]\displaystyle{ a_1, a_2, \ldots, a_{N_0} }[/math] wystąpi w ciągu [math]\displaystyle{ (a_{f (1)}, a_{f (2)}, \ldots, a_{f (M_0)}) }[/math], czyli

[math]\displaystyle{ \{ a_1, a_2, \ldots, a_{N_0} \} \subseteq \{ a_{f (1)}, a_{f (2)}, \ldots, a_{f (M_0)} \} }[/math][a]

Oczywiście musi być [math]\displaystyle{ M_0 \geqslant N_0 }[/math].


Niech

[math]\displaystyle{ S_n = \sum_{k = 1}^n a_k \qquad \qquad S = \sum_{k = 1}^{\infty} a_k \qquad \qquad S^{\ast}_n = \sum_{k = 1}^n | a_k | \qquad \qquad S^{\ast} = \sum_{k = 1}^{\infty} | a_k | }[/math]

Z założenia szereg jest bezwzględnie zbieżny, zatem dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] istnieje takie [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ n \gt N_0 }[/math] mamy

[math]\displaystyle{ | S^{\ast} - S^{\ast}_n | \lt \varepsilon }[/math]

Czyli

[math]\displaystyle{ \sum_{k = N_0 + 1}^{\infty} | a_k | \lt \varepsilon }[/math]


Niech

[math]\displaystyle{ T_m = \sum_{k = 1}^m a_{f (k)} }[/math]

będzie sumą częściową szeregu z przestawionymi wyrazami. Dla dowolnego [math]\displaystyle{ m \gt M_0 }[/math] mamy

[math]\displaystyle{ S - T_m = \sum_{k = 1}^{\infty} a_k - \sum_{k = 1}^m a_{f (k)} }[/math]
[math]\displaystyle{ \;\,\, = \left( \sum_{k = 1}^{N_0} a_k + \sum_{k = N_0 + 1}^{\infty} a_k \right) - \left( \sum_{k = 1}^{N_0} a_k + \underset{f (k) \gt N_0}{\sum_{k = 1}^m} a_{f (k)} \right) }[/math]
[math]\displaystyle{ \;\,\, = \sum_{k = N_0 + 1}^{\infty} a_k - \underset{f (k) \gt N_0}{\sum_{k = 1}^m} a_{f (k)} }[/math]

Rozważmy różnicę sum w ostatnim wierszu. Druga z tych sum [math]\displaystyle{ \underset{f (k) \gt N_0}{\sum_{k = 1}^m} a_{f (k)} }[/math] jest sumą skończoną i zawiera [math]\displaystyle{ m - N_0 }[/math] wyrazów sumy [math]\displaystyle{ \sum_{k = 1}^m a_{f (k)} }[/math], które pozostały po wydzieleniu wyrazów [math]\displaystyle{ a_1, a_2, \ldots, a_{N_0} }[/math]. Zauważmy, że każdy wyraz tej sumy występuje w pierwszej sumie [math]\displaystyle{ \sum_{k = N_0 + 1}^{\infty} a_k }[/math]. Zatem zapisana w ostatnim wierszu różnica sum, jest sumą [math]\displaystyle{ \sum_{k = N_0 + 1}^{\infty} a_k }[/math], w której część wyrazów (skończona liczba) nie występuje, co zaznaczymy, używając znaku prim [math]\displaystyle{ (') }[/math] przy symbolu sumy. Mamy

[math]\displaystyle{ S - T_m = {\mathop{\sum}\nolimits^{\;\! \boldsymbol{\prime}}}\limits_{\!\! k = N_0 + 1}^{\!\! \infty} a_k }[/math]

Teraz już łatwo otrzymujemy

[math]\displaystyle{ | S - T_m | = \left| \,\, {\mathop{\sum}\nolimits^{\;\! \boldsymbol{\prime}}}\limits_{\!\! k = N_0 + 1}^{\!\! \infty} a_k \right| }[/math]
[math]\displaystyle{ \;\;\;\,\, \leqslant \,\, {\mathop{\sum}\nolimits^{\;\! \boldsymbol{\prime}}}\limits_{\!\! k = N_0 + 1}^{\!\! \infty} | a_k | }[/math]
[math]\displaystyle{ \;\;\;\,\, \leqslant \sum_{k = N_0 + 1}^{\infty} | a_k | }[/math]
[math]\displaystyle{ \;\;\;\,\, \lt \varepsilon }[/math]

Pokazaliśmy, że dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] istnieje taka liczba [math]\displaystyle{ M_0 }[/math], że dla wszystkich [math]\displaystyle{ m \gt M_0 }[/math] jest [math]\displaystyle{ | S - T_m | \lt \varepsilon }[/math]. Zatem ciąg [math]\displaystyle{ (T_m) }[/math] ma granicę i wartość tej granicy jest równa [math]\displaystyle{ S }[/math]. Co kończy dowód.



[a] Możemy też argumentować inaczej. Z definicji przestawiania wyrazów szeregu wynika, że każdy wyraz [math]\displaystyle{ a_k }[/math] szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] musi wystąpić w szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]. Zatem musi istnieć taki wyraz [math]\displaystyle{ b_{g (k)} }[/math], że [math]\displaystyle{ b_{g (k)} = a_k }[/math]. Jeżeli dla kolejnych [math]\displaystyle{ N_0 }[/math] wyrazów szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math], czyli dla wyrazów [math]\displaystyle{ \{ a_1, a_2, \ldots, a_{N_0} \} }[/math] zdefiniujemy liczbę [math]\displaystyle{ M_0 = \max \{ b_{g (1)}, b_{g (2)}, \ldots, b_{g (N_0)} \} }[/math], to w zbiorze [math]\displaystyle{ \{ b_1, b_2, \ldots, b_{M_0} \} }[/math] musi wystąpić każdy z wyrazów [math]\displaystyle{ a_k }[/math], gdzie [math]\displaystyle{ k \leqslant N_0 }[/math]. Zbierając: istnieje taka liczba [math]\displaystyle{ M_0 }[/math], że [math]\displaystyle{ \{ a_1, a_2, \ldots, a_{N_0} \} \subseteq \{ b_1, b_2, \ldots, b_{M_0} \} }[/math].


Zadanie D32
Pokazać, że każdą liczbę [math]\displaystyle{ x \in \mathbb{R} }[/math] można przedstawić jednoznacznie w postaci różnicy liczb nieujemnych [math]\displaystyle{ p, g }[/math] tak, aby jednocześnie były spełnione równania [math]\displaystyle{ x = p - g }[/math] oraz [math]\displaystyle{ | x | = p + g }[/math].

Rozwiązanie

Problem sprowadza się do rozwiązania układu równań

[math]\displaystyle{ \begin{cases} p - g = x \\[0.3em] p + g = | x | \\ \end{cases} }[/math]

Skąd natychmiast otrzymujemy

[math]\displaystyle{ p = {\small\frac{| x | + x}{2}} \qquad g = {\small\frac{| x | - x}{2}} }[/math]

Ponieważ [math]\displaystyle{ | x | \geqslant - x }[/math] i [math]\displaystyle{ | x | \geqslant x }[/math], to obie liczby [math]\displaystyle{ p, g }[/math] są nieujemne. Zauważmy, że rozkład liczby [math]\displaystyle{ x }[/math] możemy zapisać w równoważny sposób

[math]\displaystyle{ p = {\small\frac{| x | + x}{2}} = \max (0, x) = \begin{cases} x & & \text{gdy } x \geqslant 0 \\[0.3em] 0 & & \text{gdy } x \lt 0 \\ \end{cases} }[/math]
[math]\displaystyle{ g = {\small\frac{| x | - x}{2}} = \max (0, - x) = \begin{cases} 0 & & \text{gdy } x \geqslant 0 \\[0.3em] - x & & \text{gdy } x \lt 0 \\ \end{cases} }[/math]


Zadanie D33
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem nieskończonym, a [math]\displaystyle{ (a_{n_j}) }[/math] będzie podciągiem ciągu [math]\displaystyle{ (a_n) }[/math] zbudowanym z wyrazów nieujemnych tego ciągu, natomiast [math]\displaystyle{ (a_{n_k}) }[/math] będzie podciągiem ciągu [math]\displaystyle{ (a_n) }[/math] zbudowanym z wyrazów ujemnych tego ciągu. Pokazać, że jeżeli szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n }[/math] jest warunkowo zbieżny, to

[math]\displaystyle{ \sum_{j = 1}^{\infty} a_{n_j} = + \infty \qquad \qquad \text{i} \qquad \qquad \sum_{k = 1}^{\infty} a_{n_k} = - \infty }[/math]
Rozwiązanie

Każdy wyraz [math]\displaystyle{ a_n }[/math] szeregu [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n }[/math] przedstawimy w postaci różnicy dwóch liczb nieujemnych [math]\displaystyle{ a^+_n }[/math] i [math]\displaystyle{ a^-_n }[/math] (zobacz D32), gdzie

[math]\displaystyle{ a^+_n = \max (0, a_n) }[/math]
[math]\displaystyle{ a^-_n = \max (0, - a_n) }[/math]

Zauważmy, że

●    ciąg [math]\displaystyle{ (a^+_n) }[/math] powstaje z ciągu [math]\displaystyle{ (a_n) }[/math] przez zastąpienie wyrazów mniejszych od zera zerami
●    ciąg [math]\displaystyle{ (a^-_n) }[/math] powstaje z ciągu [math]\displaystyle{ (a_n) }[/math] przez zastąpienie wyrazów większych od zera zerami, a wyrazów mniejszych od zera ich wartościami bezwzględnymi

Oczywiście [math]\displaystyle{ a_n = a^+_n - a^-_n }[/math] i [math]\displaystyle{ | a_n | = a^+_n + a^-_n }[/math] i możemy napisać

[math]\displaystyle{ \sum_{n = 1}^{\infty} a_n = \sum_{j = 1}^{\infty} a^+_n - \sum^{\infty}_{k = 1} a^-_n }[/math]
[math]\displaystyle{ \sum_{n = 1}^{\infty} | a_n | = \sum_{j = 1}^{\infty} a^+_n + \sum_{k = 1}^{\infty} a^-_n }[/math]


Rozważmy możliwe przypadki

Punkt 1.

Jeżeli szeregi [math]\displaystyle{ \sum_{n = 1}^{\infty} a^+_n }[/math] i [math]\displaystyle{ \sum_{n = 1}^{\infty} a^-_n }[/math] są zbieżne, to szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} | a_n | = \sum_{j = 1}^{\infty} a^+_n + \sum_{k = 1}^{\infty} a^-_n }[/math] jest zbieżny. Zatem szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n }[/math] jest bezwzględnie zbieżny, wbrew założeniu, że jest warunkowo zbieżny.

Punkt 2.

Jeżeli szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a^+_n }[/math] jest zbieżny, a szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a^-_n }[/math] jest rozbieżny, to szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n = \sum_{j = 1}^{\infty} a^+_n - \sum_{k = 1}^{\infty} a^-_n }[/math] jest rozbieżny, wbrew założeniu, że jest warunkowo zbieżny.

Punkt 3.

Jeżeli szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a^+_n }[/math] jest rozbieżny, a szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a^-_n }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n = \sum_{j = 1}^{\infty} a^+_n - \sum_{k = 1}^{\infty} a^-_n }[/math] jest rozbieżny, wbrew założeniu, że jest warunkowo zbieżny.


Wynika stąd, że możliwy jest tylko przypadek, gdy obydwa szeregi [math]\displaystyle{ \sum_{n = 1}^{\infty} a^+_n }[/math] i [math]\displaystyle{ \sum_{n = 1}^{\infty} a^-_n }[/math] są rozbieżne. Zauważmy teraz, że pary ciągów [math]\displaystyle{ (a_{n_j}) }[/math] i [math]\displaystyle{ (a^+_n) }[/math] oraz [math]\displaystyle{ (a_{n_k}) }[/math] i [math]\displaystyle{ (- a^-_n) }[/math] różnią się jedynie nieskończoną ilością wyrazów równych zero, zatem odpowiednie szeregi również są rozbieżne

[math]\displaystyle{ \sum_{j = 1}^{\infty} a_{n_j} = \sum_{n = 1}^{\infty} a^+_n = + \infty }[/math]
[math]\displaystyle{ \sum_{k = 1}^{\infty} a_{n_k} = - \sum_{k = 1}^{\infty} a^-_n = - \infty }[/math]

Skąd wynika natychmiast, że obydwa podciągi [math]\displaystyle{ (a_{n_j}) }[/math] i [math]\displaystyle{ (a_{n_k}) }[/math] mają nieskończoną liczbę wyrazów różnych od zera.


Twierdzenie D34 (Bernhard Riemann[3], 1854)
Jeżeli szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n }[/math] jest warunkowo zbieżny i [math]\displaystyle{ R \in \mathbb{R} }[/math], to istnieje takie przestawienie wyrazów tego szeregu [math]\displaystyle{ f(k) }[/math], że [math]\displaystyle{ \sum_{n = 1}^{\infty} a_{f (n)} = R }[/math].

Dowód

Zauważmy od razu (i zapamiętajmy), że ponieważ z założenia szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n }[/math] jest zbieżny, to musi być spełniony warunek konieczny zbieżności szeregu [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 \; }[/math] (zobacz D4).


Niech [math]\displaystyle{ (a_{n_j}) }[/math] będzie podciągiem ciągu [math]\displaystyle{ (a_n) }[/math] zbudowanym z wyrazów nieujemnych tego ciągu, natomiast [math]\displaystyle{ (a_{n_k}) }[/math] będzie podciągiem ciągu [math]\displaystyle{ (a_n) }[/math] zbudowanym z wyrazów ujemnych tego ciągu. Ponieważ podciągi [math]\displaystyle{ (a_{n_j}) }[/math] i [math]\displaystyle{ (a_{n_k}) }[/math] tworzą szeregi rozbieżne (zobacz D33) odpowiednio do [math]\displaystyle{ + \infty }[/math] i do [math]\displaystyle{ - \infty }[/math], to skończona suma kolejnych wyrazów tych podciągów może osiągać dowolne wartości skończone odpowiednio dodatnie lub ujemne.

Dla ułatwienia zapisu oznaczmy: [math]\displaystyle{ (p_i) \equiv (a_{n_j}) }[/math] i [math]\displaystyle{ (q_i) \equiv (a_{n_k}) }[/math], a dla ustalenia uwagi załóżmy, że [math]\displaystyle{ R \gt 0 }[/math].

Wybierzmy najmniejsze [math]\displaystyle{ n_1 }[/math] takie, że suma wyrazów [math]\displaystyle{ p_k }[/math] (dodatnich) będzie większa od [math]\displaystyle{ R }[/math] (liczby dodatniej) o co najwyżej ostatni z wyrazów tej sumy

[math]\displaystyle{ \sum_{k = 1}^{n_1 - 1} p_k \leqslant R \lt \sum_{k = 1}^{n_1} p_k }[/math]
[math]\displaystyle{ - p_{n_1} \leqslant R - \sum_{k = 1}^{n_1} p_k \lt 0 }[/math]


Wybierzmy najmniejsze [math]\displaystyle{ m_1 }[/math] takie, że suma wyrazów [math]\displaystyle{ q_k }[/math] (ujemnych) będzie mniejsza od [math]\displaystyle{ R - \sum_{k = 1}^{n_1} p_k }[/math] (liczby ujemnej) o co najwyżej ostatni z wyrazów tej sumy

[math]\displaystyle{ \sum_{k = 1}^{m_1} q_k \lt R - \sum_{k = 1}^{n_1} p_k \leqslant \sum^{m_1 - 1}_{k = 1} q_k }[/math]
[math]\displaystyle{ 0 \lt R - \sum_{k = 1}^{n_1} p_k - \sum_{k = 1}^{m_1} q_k \leqslant - q_{m_1} }[/math]


Wybierzmy najmniejsze [math]\displaystyle{ n_2 \gt n_1 }[/math] takie, że suma wyrazów [math]\displaystyle{ p_k }[/math] (dodatnich) będzie większa od [math]\displaystyle{ R - \sum_{k = 1}^{n_1} p_k - \sum_{k = 1}^{m_1} q_k }[/math] (liczby dodatniej) o co najwyżej ostatni z wyrazów tej sumy

[math]\displaystyle{ \sum_{k = n_1 + 1}^{n_2 - 1} p_k \leqslant R - \sum_{k = 1}^{n_1} p_k - \sum_{k = 1}^{m_1} q_k \lt \sum_{k = n_1 + 1}^{n_2} p_k }[/math]
[math]\displaystyle{ - p_{n_2} \leqslant R - \sum_{k = 1}^{n_2} p_k - \sum_{k = 1}^{m_1} q_k \lt 0 }[/math]


Wybierzmy najmniejsze [math]\displaystyle{ m_2 \gt m_1 }[/math] takie, że suma wyrazów [math]\displaystyle{ q_k }[/math] (ujemnych) będzie mniejsza od [math]\displaystyle{ R - \sum_{k = 1}^{n_2} p_k - \sum_{k = 1}^{m_1} q_k }[/math] (liczby ujemnej) o co najwyżej ostatni z wyrazów tej sumy

[math]\displaystyle{ \sum_{k = m_1 + 1}^{m_2} q_k \lt R - \sum_{k = 1}^{n_2} p_k - \sum^{m_1}_{k = 1} q_k \leqslant \sum_{k = m_1 + 1}^{m_2 - 1} q_k }[/math]
[math]\displaystyle{ 0 \lt R - \sum_{k = 1}^{n_2} p_k - \sum_{k = 1}^{m_2} q_k \leqslant - q_{m_2} }[/math]


Kontynuując, zgodnie z zasadami przedstawionymi wyżej, naprzemienne dodawanie bloków liczb nieujemnych i ujemnych, osiągamy to, że kolejne sumy oscylują wokół wartości [math]\displaystyle{ R }[/math] z coraz mniejszą amplitudą.

W [math]\displaystyle{ j }[/math]-tym kroku dla bloku wyrazów nieujemnych [math]\displaystyle{ p_k }[/math] i [math]\displaystyle{ n_j \gt n_{j - 1} }[/math] otrzymujemy

[math]\displaystyle{ - p_{n_j} \leqslant R - \sum_{k = 1}^{n_j} p_k - \sum^{m_{j - 1}}_{k = 1} q_k \lt 0 }[/math]

a dla bloku wyrazów ujemnych [math]\displaystyle{ q_k }[/math] i [math]\displaystyle{ m_j \gt m_{j - 1} }[/math] dostajemy

[math]\displaystyle{ 0 \lt R - \sum_{k = 1}^{n_j} p_k - \sum_{k = 1}^{m_j} q_k \leqslant - q_{m_j} }[/math]


Niech

[math]\displaystyle{ S(n_j, m_j) = \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j} q_k }[/math]

oznacza sumę częściową nowego szeregu (z przestawionymi wyrazami), którego konstrukcję przedstawiliśmy wyżej. Ponieważ [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to z wypisanych nierówności i twierdzenia o trzech ciągach (zobacz C11) wynika natychmiast, że

[math]\displaystyle{ \lim_{j \rightarrow \infty} S (n_j, m_j) = \lim_{j \rightarrow \infty} S(n_j, m_{j - 1}) = R }[/math]

Zauważmy teraz, że prawdziwy jest następujący ciąg nierówności

[math]\displaystyle{ \left( \sum_{k = 1}^{n_j} p_k + \sum^{m_{j - 1}}_{k = 1} q_k \right) \gt \left( \sum_{k = 1}^{n_j} p_k + \sum^{m_{j - 1} + 1}_{k = 1} q_k \right) \gt \left( \sum_{k = 1}^{n_j} p_k + \sum^{m_{j - 1} + 2}_{k = 1} q_k \right) \gt \ldots \gt \left( \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j - 1} q_k \right) \gt \left( \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j} q_k \right) }[/math]

Jest tak, ponieważ każde kolejne wyrażenie w nawiasie ma coraz więcej wyrazów ujemnych. Podobnie mamy też

[math]\displaystyle{ \left( \sum_{k = 1}^{n_j} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant \left( \sum_{k = 1}^{n_j + 1} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant \left( \sum_{k = 1}^{n_j + 2} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant \ldots \leqslant \left( \sum^{n_{j + 1} - 1}_{k = 1} p_k + \sum_{k = 1}^{m_j} q_k \right) \leqslant \left( \sum^{n_{j + 1}}_{k = 1} p_k + \sum_{k = 1}^{m_j} q_k \right) }[/math]

bo każde kolejne wyrażenie w nawiasie ma coraz więcej wyrazów nieujemnych. Co oznacza, że dla sum częściowych mamy odpowiednio

[math]\displaystyle{ S(n_j, m_{j - 1}) \gt S (n_j, m_{j - 1} + 1) \gt S (n_j, m_{j - 1} + 2) \gt \ldots \gt S (n_j, m_j - 1) \gt S (n_j, m_j) }[/math]

oraz

[math]\displaystyle{ S(n_j, m_j) \leqslant S (n_j + 1, m_j) \leqslant S (n_j + 2, m_j) \leqslant \ldots \leqslant S (n_{j + 1} - 1, m_j) \leqslant S (n_{j + 1}, m_j) }[/math]

Ponieważ [math]\displaystyle{ \lim_{j \rightarrow \infty} S (n_j, m_j) = \lim_{j \rightarrow \infty} S (n_j, m_{j - 1}) = R , }[/math] to z twierdzenia o trzech ciągach wynika natychmiast, że cały ciąg sum częściowych (liczony do dowolnego wyrazu nowego szeregu) jest zbieżny do [math]\displaystyle{ R }[/math]. Możemy zatem napisać

[math]\displaystyle{ \sum_{n = 1}^{\infty} a_{f (n)} = R }[/math]

gdzie funkcja [math]\displaystyle{ f(n) }[/math] opisuje przestawianie wyrazów szeregu [math]\displaystyle{ \sum_{n = 1}^{\infty} a_n }[/math] zgodnie z przedstawioną wyżej metodą. Co należało pokazać.



Szeregi nieskończone i całka oznaczona

Twierdzenie D35
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, n + 1] }[/math], to prawdziwy jest następujący ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x }[/math]
Dowód

Ponieważ funkcja [math]\displaystyle{ f(x) }[/math] jest z założenia ciągła, dodatnia i malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.

D Szereg-i-calka-1.png

Przedstawiona na rysunku krzywa odpowiada funkcji [math]\displaystyle{ f(x) }[/math]. Dla współrzędnej [math]\displaystyle{ x = k }[/math] zaznaczyliśmy wartość funkcji [math]\displaystyle{ f(k) }[/math], a po lewej i prawej stronie tych punktów zaznaczyliśmy pasy o jednostkowej szerokości. Łatwo zauważamy, że

  • po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości
  • po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości

Korzystając z własności całki oznaczonej, otrzymujemy ciąg nierówności

[math]\displaystyle{ \int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x }[/math]

W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z uczynionym założeniem funkcja [math]\displaystyle{ f(x) }[/math] może być funkcją słabo malejącą.

Sumując lewą nierówność od [math]\displaystyle{ k = m }[/math] do [math]\displaystyle{ k = n }[/math], a prawą od [math]\displaystyle{ k = m + 1 }[/math] do [math]\displaystyle{ k = n }[/math], dostajemy

[math]\displaystyle{ \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) }[/math]
[math]\displaystyle{ \sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x }[/math]

Dodając [math]\displaystyle{ f(m) }[/math] do obydwu stron drugiej z powyższych nierówności i łącząc je ze sobą, otrzymujemy kolejny i docelowy ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]


Przykład D36
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math].

Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math] jest ciągła, dodatnia i silnie malejąca w przedziale [math]\displaystyle{ (0, + \infty) }[/math], zatem dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \int_{1}^{n + 1} {\small\frac{d x}{x}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \int_{1}^{n} {\small\frac{d x}{x}} }[/math]

Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

[math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]

Ponieważ

[math]\displaystyle{ \log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) \gt \log n + {\small\frac{1}{n + 1}} }[/math]

to dostajemy

[math]\displaystyle{ {\small\frac{1}{n + 1}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \lt 1 }[/math]

Zauważmy: nie tylko wiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o zbieżności szeregów.



Twierdzenie D37 (kryterium całkowe zbieżności szeregów)
Załóżmy, że funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna [math]\displaystyle{ F(x) = \int f (x) d x }[/math] ma dla [math]\displaystyle{ x \rightarrow \infty }[/math] granicę skończoną, czy nie.

Dowód

Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, będzie wykorzystane w czasie dowodu twierdzenia, ale rozważanie przypadku, gdy [math]\displaystyle{ f(x) }[/math] jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] (zobacz twierdzenie D4).

Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego [math]\displaystyle{ x_0 }[/math] byłoby [math]\displaystyle{ f(x_0) = 0 }[/math]. Ponieważ z założenia funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, zatem mielibyśmy [math]\displaystyle{ f(x) = 0 }[/math] dla [math]\displaystyle{ x \geqslant x_0 }[/math]. Odpowiadający tej funkcji szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] miałby dla [math]\displaystyle{ k \geqslant x_0 }[/math] tylko wyrazy zerowe i byłby w sposób oczywisty zbieżny.

Założenie ciągłości funkcji [math]\displaystyle{ f(x) }[/math] ma zapewnić całkowalność funkcji [math]\displaystyle{ f(x) }[/math][4]. Założenie to można osłabić[5], tutaj ograniczymy się tylko do podania przykładów. Niech [math]\displaystyle{ a, b \in \mathbb{R} }[/math], mamy

[math]\displaystyle{ \int_a^b \text{sgn}(x) d x = | b | - | a | }[/math] [math]\displaystyle{ \qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1) }[/math] [math]\displaystyle{ \qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a }[/math]


Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w twierdzeniu D35 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ 0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x }[/math]


Z drugiej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych [math]\displaystyle{ C_j = \int_{m}^{j} f (x) d x }[/math] nie może być ograniczony od góry (w przeciwnym wypadku całka [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math] byłby zbieżna), zatem również rosnący ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f(k) }[/math] nie może być ograniczony od góry, co oznacza, że szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest rozbieżny.

Z trzeciej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest zbieżna, to ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f (k) }[/math] jest ciągiem rosnącym i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ F_j }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny.

Ponieważ zbieżność (rozbieżność) całki [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę [math]\displaystyle{ \lim_{x \to \infty} F (x) }[/math], gdzie [math]\displaystyle{ F(x) = \int f (x) d x }[/math] jest dowolną funkcją pierwotną.


Przykład D38
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

Stosując kryterium całkowe, można łatwo pokazać, że szeregi

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}} }[/math]

są zbieżne dla [math]\displaystyle{ s \gt 1 }[/math] i rozbieżne dla [math]\displaystyle{ s \leqslant 1 }[/math].



Twierdzenie D39
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, \infty) }[/math] oraz

[math]\displaystyle{ R(m) = \int_{m}^{\infty} f(x) d x }[/math]
[math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math]

gdzie [math]\displaystyle{ a \lt m }[/math], to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math]

[math]\displaystyle{ S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m) }[/math]
Dowód

Korzystając ze wzoru udowodnionego w twierdzeniu D35 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]

Czyli

[math]\displaystyle{ R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m) }[/math]

Odejmując od każdej ze stron nierówności liczbę [math]\displaystyle{ f(m) }[/math] i dodając do każdej ze stron nierówności sumę skończoną [math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math], otrzymujemy

[math]\displaystyle{ S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m) }[/math]

Co należało pokazać.


Przykład D40
Twierdzenie D39 umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]. Mamy

[math]\displaystyle{ S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
[math]\displaystyle{ \int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right) }[/math]
[math]\displaystyle{ R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right) }[/math]

Zatem

[math]\displaystyle{ S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m) }[/math]

Dla kolejnych wartości [math]\displaystyle{ m }[/math] otrzymujemy


W programie PARI/GP wystarczy napisać:

f(k) = 1.0 / (k+1) / sqrt(k)
S(m) = sum( k = 1, m, f(k) )
R(m) = Pi - 2*atan( sqrt(m) )
for(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); print( "j= ", j, "   a= ", suma + reszta - f(m), "   b= ", suma + reszta ))



Prostym wnioskiem z twierdzenia D35 jest następujące
Twierdzenie D41
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli przy wyliczaniu sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math] (gdzie [math]\displaystyle{ a \lt m }[/math]) zastąpimy sumę [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] całką [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math], to błąd wyznaczenia sumy szeregu nie przekroczy [math]\displaystyle{ f(m) }[/math].

Dowód

Korzystając ze wzoru z twierdzenia D35 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]

Dodając do każdej ze stron nierówności wyrażenie [math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) }[/math], dostajemy

[math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x }[/math]

Skąd wynika natychmiast

[math]\displaystyle{ - f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 \lt f(m) }[/math]

Czyli

[math]\displaystyle{ \left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m) }[/math]

Co kończy dowód.


Twierdzenie D42
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny, to dla każdego [math]\displaystyle{ n \geqslant m }[/math] prawdziwe jest następujące oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) }[/math]

[math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]

gdzie [math]\displaystyle{ B }[/math] oraz [math]\displaystyle{ C }[/math] są dowolnymi stałymi spełniającymi nierówności

[math]\displaystyle{ B \geqslant 1 }[/math]
[math]\displaystyle{ C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x }[/math]
Dowód

Z twierdzenia D35 mamy

[math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]
[math]\displaystyle{ \;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]


Uwaga D43
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, \infty) }[/math]. Rozważmy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math]. Zauważmy, że:

  • korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny
  • jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie D42), możemy znaleźć oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math]

Jednak dysponując już oszacowaniem sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math], możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math]. Zauważmy, że wybór większego [math]\displaystyle{ B }[/math] ułatwia dowód indukcyjny. Stałą [math]\displaystyle{ C }[/math] najlepiej zaokrąglić w górę do wygodnej dla nas wartości.


Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna.

Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie D42.


Zadanie D44
Korzystając z twierdzenia D42, znaleźć oszacowania sumy częściowej szeregów

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad }[/math] oraz [math]\displaystyle{ \qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]
Rozwiązanie

Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (0, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 0 }[/math] jest

[math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad }[/math] (zobacz: WolframAlpha)
[math]\displaystyle{ C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2 }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math]


Rozważmy szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x (\log x)^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (1, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 1 }[/math] jest

[math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad }[/math] (zobacz: WolframAlpha)
[math]\displaystyle{ C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots }[/math]

Przyjmijmy [math]\displaystyle{ C = 2.5 }[/math], zatem

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math]


Zadanie D45
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest zbieżny.

Rozwiązanie

Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}} }[/math]
[math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} }[/math]
[math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right) }[/math]
[math]\displaystyle{ \: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}} }[/math]
[math]\displaystyle{ \: \lt 2 - {\small\frac{1}{n + 1}} }[/math]

Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} \lt 2 }[/math]

Czyli ciąg sum częściowych [math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} }[/math] szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.


Zadanie D46
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest zbieżny.

Rozwiązanie

Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 2 }[/math]

[math]\displaystyle{ \sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 \lt 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730 }[/math]

Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} }[/math]

Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy

[math]\displaystyle{ S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} \lt 2.5 }[/math]

Czyli ciąg sum częściowych [math]\displaystyle{ S(n) }[/math] szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.



Szeregi nieskończone i liczby pierwsze

Twierdzenie D47
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Szereg jest szeregiem naprzemiennym i jego zbieżność wynika z twierdzenia D5.

Punkt 2.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p^2}} \lt \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} \lt {\small\frac{\pi^2}{6}} }[/math]

Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} \lt \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} }[/math]

Punkt 4.
Zbieżność wzoru wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest

[math]\displaystyle{ 0 \lt {\small\frac{1}{p (p - 1)}} \lt {\small\frac{1}{(p - 1)^2}} }[/math]


Twierdzenie D48
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Zbieżność tego szeregu udowodniliśmy w twierdzeniu B39, ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w postaci

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]

Wyrażenie w mianowniku ułamka możemy łatwo oszacować. Z twierdzenia A1 mamy ([math]\displaystyle{ a = 0.72 }[/math])

[math]\displaystyle{ p_k \log p_k \gt a \cdot k \log k \cdot \log (a \cdot k \log k) = }[/math]
[math]\displaystyle{ \;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) = }[/math]
[math]\displaystyle{ \;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right) }[/math]

Ponieważ dla [math]\displaystyle{ k \gt \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots }[/math] jest

[math]\displaystyle{ \log a + \log \log k \gt 0 }[/math]

to dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_k \log p_k \gt a \cdot k \cdot (\log k)^2 }[/math]

Wynika stąd, że dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwy jest ciąg nierówności

[math]\displaystyle{ 0 \lt {\small\frac{1}{p_k \log p_k}} \lt {\small\frac{1}{a \cdot k \cdot (\log k)^2}} }[/math]

Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}} }[/math] (zobacz twierdzenie D15 p. 4 lub przykład D38 p. 5) wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]

Punkt 2.
Zbieżność szeregu wynika z kryterium porównawczego (twierdzenie D10), bo

[math]\displaystyle{ 0 \lt {\small\frac{1}{p^2 \log p}} \lt {\small\frac{1}{p \log p}} }[/math]

Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} \lt \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots }[/math]

Punkt 4.
Zbieżność szeregu wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest

[math]\displaystyle{ 0 \lt {\small\frac{\log p}{p^2}} \lt {\small\frac{\log p}{p (p - 1)}} }[/math]


Twierdzenie D49
Szereg [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] jest rozbieżny.

Dowód

Dla potrzeb dowodu zapiszmy szereg w innej postaci

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]

Zauważmy, że dla [math]\displaystyle{ k \geqslant 3 }[/math] wyrazy szeregów [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math] spełniają nierówności

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}} }[/math]

Ponieważ szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] jest rozbieżny (zobacz B37), to na mocy kryterium porównawczego rozbieżny jest również szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]


Uwaga D50
Moglibyśmy oszacować rozbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] podobnie, jak to uczyniliśmy w przypadku twierdzenia B37, ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.


Twierdzenie D51
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Prawdziwe są następujące nierówności

Dowód

Punkt 1. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 1 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \gt }[/math]
[math]\displaystyle{ \;\;\; \gt n^n \cdot e^{- n} \cdot (n + 1) = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} \gt }[/math]
[math]\displaystyle{ \;\;\; \gt (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} e^{- (n + 1)} }[/math]

Ponieważ [math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n \lt e }[/math], zatem [math]\displaystyle{ {\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} \gt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 1.


Punkt 2. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 7 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \lt }[/math]
[math]\displaystyle{ \;\;\; \lt n^{n + 1} \cdot e^{- n} \cdot (n + 1) = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} \lt }[/math]
[math]\displaystyle{ \;\;\; \lt (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)} }[/math]

Ostatnia nierówność wynika z faktu, że [math]\displaystyle{ \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \lt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 2.


Twierdzenie D52
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, prawdziwe są oszacowania

Dowód

Punkt 1. (prawa nierówność)

Zauważmy, że

[math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots }[/math]
[math]\displaystyle{ \;\, \lt {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots }[/math]
[math]\displaystyle{ \;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
[math]\displaystyle{ \;\, = {\small\frac{n}{p - 1}} }[/math]

Punkt 1. (lewa nierówność)

Łatwo znajdujemy, że

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor \gt {\small\frac{n}{p}} - 1 }[/math]

Punkt 2. (prawa nierówność)

Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ (p - 1) W_p (n!) \lt n }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać

[math]\displaystyle{ (p - 1) W_p (n!) \leqslant n - 1 }[/math]

Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}} }[/math].

Punkt 2. (lewa nierówność)

Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ n - p \lt p \cdot W_p (n!) }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać

[math]\displaystyle{ n - p \leqslant p \cdot W_p (n!) - 1 }[/math]

Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1 }[/math].


Twierdzenie D53
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - 1 }[/math]
Dowód

Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy

[math]\displaystyle{ n! \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]

Ponieważ dla [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ n! \gt n^n e^{- n} }[/math] (zobacz punkt 1. twierdzenia D51), to

[math]\displaystyle{ n^n e^{- n} \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ n \log n - n \lt \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math]

Dzieląc strony przez [math]\displaystyle{ n }[/math], dostajemy szukaną nierówność.


Twierdzenie D54 (pierwsze twierdzenie Mertensa[6][7], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1.755367 }[/math]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}} }[/math]


to z twierdzenia D53 dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \gt - 1 }[/math]

Czyli

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \quad \;\: \gt - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \quad \;\: = - 1 - 0.755366610831 \ldots }[/math]
[math]\displaystyle{ \quad \;\: \gt - 1.755367 }[/math]

Gdzie wykorzystaliśmy zbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math] (twierdzenie D48 p. 3).


Twierdzenie D55 (pierwsze twierdzenie Mertensa[6][7], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt 0.386295 }[/math]
Dowód

Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} }[/math]

Ponieważ dla [math]\displaystyle{ n \geqslant 7 }[/math] jest [math]\displaystyle{ n! \lt n^{n + 1} e^{- n} }[/math], to

[math]\displaystyle{ \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} \lt n^{n + 1} e^{- n} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p \lt (n + 1) \cdot \log n - n }[/math]
[math]\displaystyle{ (n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p \lt (n + 1) \cdot \log n - n }[/math]


Skąd natychmiast wynika, że

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right) }[/math]
[math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n)) }[/math]
[math]\displaystyle{ \quad \;\: \lt - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: \lt \log 4 - 1 }[/math]
[math]\displaystyle{ \quad \;\: = 0.386294361 \ldots }[/math]

Druga nierówność wynika z twierdzenia A10. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla [math]\displaystyle{ n \lt 7 }[/math].


Twierdzenie D56
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt 1.141661 }[/math]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]

to z twierdzenia D55 dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \lt \log 4 - 1 }[/math]

Czyli

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, \lt \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, = \log 4 - 1 + 0.755366610831 \ldots }[/math]
[math]\displaystyle{ \,\, \lt 1.141661 }[/math]


Uwaga D57

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots }[/math]

gdzie [math]\displaystyle{ E = 1.332582275733 \ldots }[/math]

Dla [math]\displaystyle{ n \geqslant 319 }[/math] mamy też[8]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D58

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots }[/math]

gdzie [math]\displaystyle{ \gamma = 0.5772156649 \ldots }[/math] jest stałą Eulera.

Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie[9]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D59
Dla [math]\displaystyle{ n \leqslant 10^{10} }[/math] wartości wyrażeń

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E }[/math]
[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma }[/math]

są liczbami dodatnimi.


Twierdzenie D60
Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma }[/math]

gdzie

  • [math]\displaystyle{ \quad \gamma = 0.577215664901532 \ldots }[/math] jest stałą Eulera[10]
  • [math]\displaystyle{ \quad E = 1.332582275733220 \ldots }[/math][11]
  • [math]\displaystyle{ \quad E - \gamma = 0.755366610831688 \ldots }[/math][12]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}} }[/math]

zatem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots) }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma }[/math]


Zauważmy teraz, że

[math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots }[/math]

Zatem

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) }[/math]


Twierdzenie D61
Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]
Dowód

Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w pracy Pierre'a Dusarta[13]

[math]\displaystyle{ - \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} }[/math]

Ponieważ dla [math]\displaystyle{ x \gt e^2 \approx 7.389 }[/math] jest [math]\displaystyle{ 1 + {\small\frac{1}{\log x}} \lt 1.5 }[/math], to dla [math]\displaystyle{ n \geqslant 8 }[/math] mamy

[math]\displaystyle{ {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \lt {\small\frac{0.3}{\log n}} }[/math]


Zatem wyjściowy układ nierówności możemy zapisać w postaci

[math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]


Z tożsamości

[math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]


wynika natychmiast, że

[math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]


Prawa nierówność

Rozważmy prawą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 2974 }[/math]

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \lt {\small\frac{0.3}{\log n}} }[/math]


Z twierdzenia D60 wiemy, że

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma }[/math]

Zatem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, \lt \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = - \gamma + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]


Bezpośrednio obliczając, sprawdzamy, że nierówność

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]

jest prawdziwa dla wszystkich liczb [math]\displaystyle{ 318 \leqslant n \leqslant 3000 }[/math]


Lewa nierówność

Rozważmy teraz lewą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 8 }[/math]

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \gt - {\small\frac{0.3}{\log n}} }[/math]

Mamy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}} }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}} }[/math]


Korzystając kolejno z twierdzeń D35C19, dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right) }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}} }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right) }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]


Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę WolframAlpha. Ostatnia nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 153 }[/math]. Bezpośrednio obliczając, sprawdzamy, że nierówność

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]

jest prawdziwa dla wszystkich [math]\displaystyle{ 2 \leqslant n \leqslant 200 }[/math].


Zadanie D62
Niech [math]\displaystyle{ r = 1 - \log (2) \approx 0.30685281944 }[/math]. Pokazać, że z nierówności prawdziwej dla [math]\displaystyle{ x \geqslant 32 }[/math]

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]

wynika twierdzenie Czebyszewa.

Rozwiązanie

Z twierdzenia D61 wiemy, że dla [math]\displaystyle{ x \geqslant 318 }[/math] jest

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x \lt - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots \lt - 0.306852 \ldots = - r }[/math]

Zatem postulowane oszacowanie jest prawdziwe dla [math]\displaystyle{ n \geqslant 318 }[/math]. Sprawdzając bezpośrednio dla [math]\displaystyle{ 2 \leqslant x \leqslant 317 }[/math], łatwo potwierdzamy prawdziwość nierówności

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]

dla [math]\displaystyle{ x \geqslant 32 }[/math].


Niech [math]\displaystyle{ a \in \mathbb{Z} }[/math] i [math]\displaystyle{ a \geqslant 32 }[/math]. Korzystając z twierdzenia D52, łatwo znajdujemy oszacowanie

[math]\displaystyle{ a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n }[/math]
[math]\displaystyle{ \quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n }[/math]
[math]\displaystyle{ \quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1} }[/math]

gdzie [math]\displaystyle{ p_n \leqslant a \lt p_{n + 1} }[/math]. Oznaczając wyrażenie w nawiasie przez [math]\displaystyle{ U }[/math], mamy

[math]\displaystyle{ \log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} \lt \log a - r }[/math]

gdzie skorzystaliśmy z oszacowania wskazanego w treści zadania. Zatem [math]\displaystyle{ U \lt a \cdot e^{- r} }[/math].


Przypuśćmy, że mnożymy liczbę [math]\displaystyle{ a! }[/math] przez kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math]. Możemy postawić pytanie: kiedy w rozkładzie na czynniki pierwsze liczby [math]\displaystyle{ b! }[/math] musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to

[math]\displaystyle{ a! \cdot (a + 1) \cdot \ldots \cdot b = b! }[/math]
[math]\displaystyle{ \;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n }[/math]
[math]\displaystyle{ \;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n }[/math]
[math]\displaystyle{ \;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1} }[/math]
[math]\displaystyle{ \;\;\; = U^{b - 1} }[/math]
[math]\displaystyle{ \;\;\; \lt (a \cdot e^{- r})^{b - 1} }[/math]


Jednocześnie z twierdzenia D51 wiemy, że prawdziwa jest nierówność [math]\displaystyle{ b! \gt b^b e^{- b} }[/math], zatem

[math]\displaystyle{ b^b e^{- b} \lt b! \lt {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}} }[/math]
[math]\displaystyle{ b e^{- 1} \lt \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}} }[/math]
[math]\displaystyle{ b \lt \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}} }[/math]


Ponieważ [math]\displaystyle{ e^{1 - r} = e^{\log (2)} = 2 }[/math], to

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt 2 a }[/math]


Z oszacowania [math]\displaystyle{ b \lt 2 a }[/math] wynika, że [math]\displaystyle{ (a \cdot e^{- r})^{1 / b} \gt (a \cdot e^{-r})^{1 / 2 a} }[/math]. Możemy teraz zapisać uzyskane wyżej oszacowanie w postaci, w której prawa strona nierówności nie zależy od [math]\displaystyle{ b }[/math]

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} }[/math]


Ponieważ [math]\displaystyle{ e^{- r} = 0.735758 \ldots }[/math], to [math]\displaystyle{ (a \cdot e^{- r})^{1 / 2 a} \gt (a / 2)^{1 / 2 a} }[/math], co pozwala uprościć uzyskane oszacowanie

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} \lt {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} }[/math]


Pokażemy, że dla [math]\displaystyle{ a \gt 303.05 }[/math]

[math]\displaystyle{ {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} \lt 2 a - 5 }[/math]

Istotnie

[math]\displaystyle{ {\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} \lt 1 - {\small\frac{5}{2 a}} }[/math]
[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} \gt 1 }[/math]
[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 \gt 1 }[/math]

Wyrażenie w nawiasie kwadratowym jest funkcją rosnącą i ograniczoną (zobacz twierdzenie C18) i dla [math]\displaystyle{ a \geqslant 32 }[/math] przyjmuje wartości z przedziału [math]\displaystyle{ [0.353 \ldots, e^{- 1}) }[/math]. Zatem dla odpowiednio dużego [math]\displaystyle{ a }[/math] powyższa nierówność z pewnością jest prawdziwa. Łatwo sprawdzamy, że dla [math]\displaystyle{ a = 304 }[/math] jest

[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots }[/math]

Wynika stąd, że wszystkie kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math] mogą być liczbami złożonymi co najwyżej do chwili, gdy [math]\displaystyle{ b \lt 2 a - 5 }[/math], czyli [math]\displaystyle{ b \leqslant 2 a - 6 }[/math]. Zatem w przedziale [math]\displaystyle{ (a, 2 a) }[/math] musi znajdować się przynajmniej jedna liczba pierwsza. Dla [math]\displaystyle{ a \leqslant 303 }[/math] prawdziwość twierdzenia sprawdzamy bezpośrednio.


Definicja D63
Powiemy, że liczby pierwsze [math]\displaystyle{ p, q }[/math] są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli [math]\displaystyle{ \left | p - q \right | = 2 }[/math]


Twierdzenie D64* (Viggo Brun, 1919)
Suma odwrotności par liczb pierwszych [math]\displaystyle{ p }[/math] i [math]\displaystyle{ p + 2 }[/math], takich że liczba [math]\displaystyle{ p + 2 }[/math] jest również pierwsza, jest skończona

[math]\displaystyle{ \underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} \right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2 }[/math]

gdzie [math]\displaystyle{ B_2 = 1.90216058 \ldots }[/math] jest stałą Bruna[14][15].


Zadanie D65
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.

Rozwiązanie

Niech [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q = p + 4 }[/math] będą liczbami pierwszymi i [math]\displaystyle{ n \geqslant 1 }[/math]. Ponieważ liczby [math]\displaystyle{ p q }[/math] i [math]\displaystyle{ p + 2 }[/math] są względnie pierwsze, to z twierdzenia Dirichleta wiemy, że wśród liczb [math]\displaystyle{ a_n = p q n + (p + 2) }[/math] jest nieskończenie wiele liczb pierwszych, a jednocześnie żadna z liczb [math]\displaystyle{ a_n }[/math] nie tworzy pary liczb bliźniaczych, bo

[math]\displaystyle{ a_n - 2 = p q n + p = p (q n + 1) }[/math]
[math]\displaystyle{ a_n + 2 = p q n + (p + 4) = q (p n + 1) }[/math]

są liczbami złożonymi. Najprostsze przykłady to [math]\displaystyle{ a_n = 21 n + 5 }[/math] i [math]\displaystyle{ b_n = 77 n + 9 }[/math]

Najłatwiej wszystkie przypadki takich ciągów wyszukać w programie PARI/GP. Polecenie

for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, "   b= ",b) )))

wyszukuje wszystkie liczby dodatnie [math]\displaystyle{ a, b }[/math], gdzie [math]\displaystyle{ b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor }[/math], które tworzą ciągi [math]\displaystyle{ a k + b }[/math] o poszukiwanych właściwościach. Oczywiście ciągi [math]\displaystyle{ a k + (a - b) }[/math] również są odpowiednie. Przykładowo dla [math]\displaystyle{ a \leqslant 50 }[/math] mamy

[math]\displaystyle{ 15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22 }[/math]



Dowód z Księgi. Rozbieżność sumy [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math]

Twierdzenie D66
Suma odwrotności liczb pierwszych jest rozbieżna.

Dowód

Poniższy dowód został przedstawiony przez Erdősa w pracy[16] z 1938 roku. Jest to bardzo elegancki i chyba najprostszy dowód tego twierdzenia.

Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C }[/math], gdzie [math]\displaystyle{ C }[/math] jest pewną stałą. Zbieżność szeregu o wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby [math]\displaystyle{ r }[/math] takiej, że [math]\displaystyle{ \sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} \lt {\small\frac{1}{2}} }[/math].

Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory [math]\displaystyle{ P = \{ p_1, p_2, \ldots, p_r \} }[/math] i [math]\displaystyle{ Q = \{ p_{r + 1}, p_{r + 2,} \ldots \} }[/math].

Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór [math]\displaystyle{ \mathbb{Z}_Q }[/math] liczb podzielnych przez dowolną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math] i zbiór [math]\displaystyle{ \mathbb{Z}_P }[/math] liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math]. Czyli liczby ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] muszą być iloczynami potęg liczb pierwszych ze zbioru [math]\displaystyle{ P }[/math].


Niech [math]\displaystyle{ M }[/math] będzie dostatecznie dużą liczbą całkowitą.

Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_Q }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]

Zauważmy, że liczb nie większych od [math]\displaystyle{ M }[/math] i podzielnych przez liczbę pierwszą [math]\displaystyle{ p }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor {\small\frac{M}{p}} \right\rfloor }[/math] (zobacz A20). Łatwo otrzymujemy oszacowanie[a]

[math]\displaystyle{ \sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor \lt M \cdot \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} M }[/math]

bo z założenia [math]\displaystyle{ \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} }[/math]. Zatem liczb takich, że [math]\displaystyle{ k \in \mathbb{Z}_Q }[/math] i [math]\displaystyle{ k \leqslant M }[/math] jest mniej niż [math]\displaystyle{ {\small\frac{M}{2}} }[/math].

Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]

Każdą liczbę ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] możemy zapisać w postaci [math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r }[/math]. Niech [math]\displaystyle{ \alpha_i = 2 \beta_i + \delta_i }[/math], gdzie [math]\displaystyle{ \delta_i }[/math] jest resztą z dzielenia liczby [math]\displaystyle{ \alpha_i }[/math] przez [math]\displaystyle{ 2 }[/math]. Zatem

[math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r) }[/math]

Ponieważ [math]\displaystyle{ \delta_i }[/math] może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci [math]\displaystyle{ p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r }[/math] jest dokładnie [math]\displaystyle{ 2^r }[/math], a kwadratów liczb całkowitych nie większych od [math]\displaystyle{ M }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M} }[/math]. Zatem liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest nie więcej niż [math]\displaystyle{ 2^r \sqrt{M} \, }[/math][b].


Ponieważ [math]\displaystyle{ \mathbb{Z}_P \cup \mathbb{Z}_Q =\mathbb{Z}_+ }[/math] i liczb [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest po prostu [math]\displaystyle{ M }[/math], to musi być prawdziwe oszacowanie

[math]\displaystyle{ M \lt 2^r \sqrt{M} + {\small\frac{M}{2}} }[/math]

Czyli

[math]\displaystyle{ 2^{r + 1} \gt \sqrt{M} }[/math]

Co jest niemożliwe, bo [math]\displaystyle{ r }[/math] jest ustalone, a [math]\displaystyle{ M }[/math] może być dowolnie duże. Wystarczy przyjąć [math]\displaystyle{ M \geqslant 2^{2 r + 2} }[/math].



[a] Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb [math]\displaystyle{ k }[/math]. Dla przykładu: gdy [math]\displaystyle{ M \gt p_{r + 1} p_{r + 2} }[/math], to liczba [math]\displaystyle{ p_{r + 1} p_{r + 2} }[/math] zostanie policzona dwukrotnie: raz jako podzielna przez [math]\displaystyle{ p_{r + 1} }[/math] i drugi raz jako podzielna przez [math]\displaystyle{ p_{r + 2} }[/math]. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.

[b] Zauważmy, że dla [math]\displaystyle{ M \gt 8 }[/math] liczba [math]\displaystyle{ a^2 }[/math] taka, że [math]\displaystyle{ a^2 \leqslant M \lt (a + 1)^2 }[/math] wystąpi dokładnie jeden raz (jako [math]\displaystyle{ a^2 \cdot 1 }[/math]), ale my oszacujemy, że pojawiła się [math]\displaystyle{ 2^r }[/math] razy. Można pokazać, że dla dowolnych [math]\displaystyle{ r \geqslant 1 }[/math] i [math]\displaystyle{ M \geqslant 1 }[/math], liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math], jest mniej niż [math]\displaystyle{ 2^r \sqrt{M} }[/math]. Jest ich nawet mniej niż [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor }[/math], poza przypadkami [math]\displaystyle{ r = 1 }[/math] i [math]\displaystyle{ M = 2, 3, 8 }[/math], kiedy to ilość takich liczb jest równa [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor \lt 2^r \sqrt{M} }[/math].



Sumowanie przez części

Uwaga D67
Omawianie metody sumowania przez części[17] rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja

[math]\displaystyle{ D(k) = \begin{cases} 1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\ 0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\ \end{cases} }[/math]


Łatwo znajdujemy związek funkcji [math]\displaystyle{ D(k) }[/math] z funkcją [math]\displaystyle{ \pi (k) }[/math]

[math]\displaystyle{ \pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1 }[/math]
[math]\displaystyle{ \; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) }[/math]


Twierdzenie D68
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]. Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Dowód

Rozpatrywaną sumę możemy zapisać w postaci

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{D (k)}{k}} }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k) - \pi (k - 1)}{k}} }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^n {\small\frac{\pi (k - 1)}{k}} }[/math]

W drugiej sumie zmieniamy zmienną sumowania. Niech [math]\displaystyle{ j = k - 1 }[/math]. Sumowanie po [math]\displaystyle{ k }[/math] przebiegało od [math]\displaystyle{ 2 }[/math] do [math]\displaystyle{ n }[/math], zatem sumowanie po [math]\displaystyle{ j }[/math] będzie przebiegało od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ n - 1 }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{j = 1}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{j = 2}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]

Ponieważ [math]\displaystyle{ \pi (1) = 0 }[/math]. Zmieniając jedynie oznaczenie zmiennej sumowania, mamy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k + 1}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^n \pi (k) \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

Co należało pokazać.


Zadanie D69
Pokazać, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math].

Rozwiązanie

Z twierdzenia D68 wiemy, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Zatem dla [math]\displaystyle{ n \geqslant 4 }[/math] jest

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + {\small\frac{1}{3}} + \sum_{k = 4}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot {\small\frac{1}{\log n}} + {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{k}{\log k \cdot k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log k}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}} }[/math]

Korzystając z twierdzenia D35, otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log x \biggr\rvert_{5}^{n + 1} + {\small\frac{1}{3}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log (n + 1) - {\small\frac{2}{3}} \cdot \log \log 5 + {\small\frac{1}{3}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math]

Zauważmy, że znacznie mniejszym nakładem pracy otrzymaliśmy lepsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] (porównaj B37).


Zadanie D70
Pokazać, że oszacowanie [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math], gdzie [math]\displaystyle{ \varepsilon \in (0, 1) }[/math], nie może być prawdziwe dla prawie wszystkich liczb naturalnych.

Rozwiązanie

Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Zatem istnieje taka liczba [math]\displaystyle{ n_0 }[/math], że dla wszystkich [math]\displaystyle{ n \geqslant n_0 }[/math] jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Korzystając ze wzoru (zobacz D68)

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

dla liczby [math]\displaystyle{ n \gt n_0 }[/math] otrzymujemy oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \lt {\small\frac{n^{1 - \varepsilon}}{n}} + \sum_{k = 2}^{n_0 - 1} {\small\frac{\pi (k)}{k (k + 1)}} + \sum_{k = n_0}^{n - 1} {\small\frac{k^{1 - \varepsilon}}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{1}{n^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n - 1} {\small\frac{1}{k^{\varepsilon} (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n} {\small\frac{1}{k^{1 + \varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; \leqslant {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + {\small\frac{1}{(n_0)^{1 + \varepsilon}}} + \int^n_{n_0} {\small\frac{d x}{x^{1 + \varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; = C_2 + \left[ - {\small\frac{1}{\varepsilon \cdot x^{\varepsilon}}} \biggr\rvert_{n_0}^{n} \right] }[/math]
[math]\displaystyle{ \quad \; = C_2 - {\small\frac{1}{\varepsilon n^{\varepsilon}}} + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; \lt C_2 + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; = C_3 }[/math]

Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem [math]\displaystyle{ n }[/math] (zobacz B37, D66, D69).


Twierdzenie D71 (sumowanie przez części)
Niech [math]\displaystyle{ a_j }[/math], [math]\displaystyle{ b_j }[/math] będą ciągami określonymi przynajmniej dla [math]\displaystyle{ s \leqslant j \leqslant n }[/math]. Prawdziwy jest następujący wzór

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Wzór ten nazywamy wzorem na sumowanie przez części.

Dowód

Jeżeli potrafimy wyliczyć lub oszacować sumę liczoną dla jednego z czynników (powiedzmy, że dla [math]\displaystyle{ b_j }[/math]), to do wyliczenia lub oszacowania sumy [math]\displaystyle{ \sum_{j = s}^{n} a_j b_j }[/math] może być pomocny dowodzony wzór

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Nim przejdziemy do dowodu, zauważmy, że wprost z definicji funkcji [math]\displaystyle{ B(k) }[/math] otrzymujemy

[math]\displaystyle{ B(s) = \sum_{j = s}^{s} b_j = b_s }[/math]

oraz

[math]\displaystyle{ B(k) - B (k - 1) = \sum_{j = s}^{k} b_j - \sum^{k - 1}_{j = s} b_j = b_k + \sum_{j = s}^{k - 1} b_j - \sum_{j = s}^{k - 1} b_j = b_k }[/math]


Przekształcając prawą stronę dowodzonego wzoru, pokażemy, że obie strony są równe.

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
[math]\displaystyle{ \;\;\,\, = a_n B (n) - \sum^{n - 1}_{k = s} a_{k + 1} B (k) + \sum_{k = s}^{n - 1} a_k B (k) }[/math]

W pierwszej sumie po prawej stronie zmieniamy wskaźnik sumowania na [math]\displaystyle{ j = k + 1 }[/math], a w drugiej sumie zmieniamy tylko nazwę wskaźnika

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n B (n) - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n - 1} a_j B (j) }[/math]
[math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n} a_j B (j) }[/math]
[math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s + 1}^{n} a_j B (j) + a_s B (s) }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j [B (j) - B (j - 1)] + a_s b_s }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j b_j + a_s b_s }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s}^{n} a_j b_j }[/math]

Co należało pokazać.


Zadanie D72
Niech [math]\displaystyle{ r \neq 1 }[/math]. Pokazać, że [math]\displaystyle{ \sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math].

Rozwiązanie

Korzystając ze wzoru na sumowanie przez części, połóżmy [math]\displaystyle{ s = 0 }[/math], [math]\displaystyle{ a_k = k }[/math] i [math]\displaystyle{ b_k = r^k }[/math]. Zauważmy, że sumowanie od [math]\displaystyle{ k = 0 }[/math] nic nie zmienia, a nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy

[math]\displaystyle{ \sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}} }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r) }[/math]
[math]\displaystyle{ \;\, = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math]

Co należało pokazać.


Twierdzenie D73 (kryterium Dirichleta)
Niech [math]\displaystyle{ (a_k) }[/math] i [math]\displaystyle{ (b_k) }[/math] będą ciągami liczb rzeczywistych. Jeżeli

  •    ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny

  •    [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = 0 }[/math]
  •    istnieje taka stała [math]\displaystyle{ M }[/math], że [math]\displaystyle{ \left| \sum_{j = 1}^{k} b_j \right| \leqslant M }[/math] dla dowolnej liczby [math]\displaystyle{ k }[/math]

to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] jest zbieżny.

Dowód

Korzystając ze wzoru na sumowanie przez części, możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = 1}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
[math]\displaystyle{ \;\;\,\, = a_n \cdot B (n) + \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = 1}^{k} b_j }[/math]. Z założenia ciąg [math]\displaystyle{ B(n) }[/math] jest ograniczony i [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], zatem (zobacz C14)

[math]\displaystyle{ \lim_{n \rightarrow \infty} a_n \cdot B (n) = 0 }[/math]

Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny. Jeżeli jest malejący, to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = M (a_1 - a_n) }[/math]

(zobacz D13). Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest rosnący, to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k) }[/math]
[math]\displaystyle{ \;\;\; = - M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = - M (a_1 - a_n) }[/math]

Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg [math]\displaystyle{ (a_n) }[/math] jest ograniczony, bo jest zbieżny (zobacz C10), możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U }[/math]

Ponieważ sumy częściowe szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) | }[/math] tworzą ciąg rosnący i ograniczony od góry, to szereg ten jest zbieżny (zobacz C11). Wynika stąd zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k) }[/math] (zobacz D11). Zatem szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] musi być zbieżny. Co należało pokazać.


Zadanie D74
Udowodnić następujące wzory

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

Rozwiązanie

Punkt 1.

Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) }[/math]

Ponieważ

[math]\displaystyle{ 2 \sin x \cdot \sin y = \cos (x - y) - \cos (x + y) }[/math]

to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \sin j = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j + 2 \sin \left( \tfrac{1}{2} \right) \sin (k + 1) }[/math]
[math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) + \cos \left( k + \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]

Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.


Punkt 2.

Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = \sin (k + 1) - \sin (1) }[/math]

Ponieważ

[math]\displaystyle{ 2 \sin x \cos y = \sin (x - y) + \sin (x + y) }[/math]

to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \cos \left( j + \tfrac{1}{2} \right) = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) + 2 \sin \left( \tfrac{1}{2} \right) \cdot \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \quad \,\, = \sin (k + 1) - \sin (1) - \sin (k + 1) + \sin (k + 2) }[/math]
[math]\displaystyle{ \quad \,\, = \sin (k + 2) - \sin (1) }[/math]

Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.


Zadanie D75
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny.

Rozwiązanie

W zadaniu D74 p.1 pokazaliśmy, że prawdziwy jest wzór

[math]\displaystyle{ \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} }[/math]

Skąd natychmiast otrzymujemy oszacowanie[a]

[math]\displaystyle{ \left| \sum_{j = 1}^{k} \sin j \right| = \left| {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \right| \leqslant {\small\frac{1}{\sin \left( \tfrac{1}{2} \right)}} }[/math]

Ponieważ spełnione są założenia kryterium Dirichleta, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny. Wiemy, że [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} = \tfrac{1}{2} (\pi - 1) = 1.070796 \ldots }[/math] (WolframAlpha).



[a] Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie

[math]\displaystyle{ - 0.127671 \lt {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} \lt 1.958159 }[/math]


Zadanie D76
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math] jest zbieżny, a suma tego szeregu jest w przybliżeniu równa [math]\displaystyle{ 0.6839137864 \ldots }[/math]

Rozwiązanie

Zbieżność szeregu wynika z kryterium Dirichleta, co pokazujemy tak samo jak w zadaniu poprzednim. Oszacowanie sumy szeregu jest znacznie trudniejsze, bo ciąg sum częściowych [math]\displaystyle{ S_n = \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} }[/math] silnie oscyluje i dopiero dla bardzo dużych [math]\displaystyle{ n }[/math] wynik sumowania mógłby być znaczący. Przykładowo:

[math]\displaystyle{ S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078 }[/math]

Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = \sin k }[/math]. Korzystając ze wzoru pokazanego w zadaniu D74 p.1, otrzymujemy

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) }[/math]

gdzie

[math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Sumując przez części, dostajemy

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k)}} \right) B (k) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + \sum^{n - 1}_{k = 2} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \left( C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, mamy

[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika [math]\displaystyle{ \cos \left( k + \tfrac{1}{2} \right) }[/math], bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz D13). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum

[math]\displaystyle{ S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

otrzymujemy

[math]\displaystyle{ S_{10^6} = 0.683913783004 \qquad S_{10^7} = 0.683913786642 \qquad S_{10^8} = 0.683913786411 \qquad S_{10^9} = 0.683913786415 }[/math]

Jest to przybliżona wartość sumy szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math].


Oszacowanie błędu z jakim wyznaczona została wartość sumy

Kolejne sumowanie przez części pozwoli określić błąd z jakim wyznaczona została wartość sumy [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math]. Rozważmy sumę

[math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] i [math]\displaystyle{ b_k = \cos \left( k + \tfrac{1}{2} \right) }[/math]. Korzystając ze wzoru pokazanego w zadaniu D74 p.2, otrzymujemy

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1) }[/math]

gdzie

[math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Wzór na sumowanie przez części ma teraz postać

[math]\displaystyle{ \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} - {\small\frac{1}{\log (k)}} + {\small\frac{1}{\log (k + 1)}} \right) B (k) }[/math]
[math]\displaystyle{ \;\;\, = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) + \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) (C_3 + C_4 \cdot \sin (k + 1)) }[/math]

Zauważmy, że

[math]\displaystyle{ C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) = C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) }[/math]
[math]\displaystyle{ \:\, = C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) - C_3 \left( {\small\frac{1}{\log (3)}} - {\small\frac{1}{\log (n + 1)}} \right) }[/math]

bo szeregi po prawej stronie są szeregami teleskopowymi.

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = {\small\frac{C_3}{\log (2)}} - {\small\frac{C_3}{\log (3)}} + C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]


Zbierając, otrzymaliśmy wzór

[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]

gdzie

[math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad \quad \: C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]
[math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Dla sum

[math]\displaystyle{ S_n = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]

dostajemy

[math]\displaystyle{ S_{10^7} = 0.68391378641827479894 \qquad S_{10^8} = 0.68391378641827482233 \qquad S_{10^9} = 0.68391378641827482268 }[/math]

Łatwo oszacujemy błąd z jakim wyliczyliśmy wartość sumy szeregu [math]\displaystyle{ S }[/math]

[math]\displaystyle{ | S - S_n | = \left| C_2 C_4 \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left| \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
[math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) | }[/math]
[math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| }[/math]                (zobacz przypis [a])
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right] }[/math]
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log (n + 2)}} \right) }[/math]

Dla [math]\displaystyle{ n = 10^9 }[/math] otrzymujemy

[math]\displaystyle{ | S - S_n | \lt 2.533 \cdot 10^{- 12} }[/math]

Zatem [math]\displaystyle{ S = 0.6839137864 \ldots }[/math], gdzie wszystkie wypisane cyfry są prawidłowe.



[a] Z łatwego do sprawdzenia wzoru

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]

wynika, że wyrażenie [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] maleje ze wzrostem [math]\displaystyle{ k }[/math], czyli ciąg [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] jest ciągiem malejącym, zatem

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \gt {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} }[/math]

Ciągi [math]\displaystyle{ (a_k)_{k = 1}^n }[/math] liczb rzeczywistych takie, że [math]\displaystyle{ 2 a_k \leqslant a_{k - 1} + a_{k + 1} }[/math] dla [math]\displaystyle{ k = 2, \ldots, n - 1 }[/math] nazywamy ciągami wypukłymi[18]. Wprost z definicji funkcji wypukłej wynika, że jeżeli [math]\displaystyle{ f(x) }[/math] jest funkcją wypukłą i [math]\displaystyle{ a_k = f (k) }[/math], to ciąg [math]\displaystyle{ (a_k) }[/math] jest ciągiem wypukłym.


Zadanie D77
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Rozwiązanie

Korzystając ze wzoru na sumowanie przez części, połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = \log k }[/math] i [math]\displaystyle{ b_k = D (k) }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) = \pi (k) }[/math]
[math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \sum_{p \leqslant n} \log p = \theta (n) }[/math]

Zatem

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

Co należało pokazać.


Twierdzenie D78
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math], gdzie [math]\displaystyle{ A, B \in \mathbb{R}_+ }[/math], to istnieje granica

[math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Dowód

Z definicji funkcji [math]\displaystyle{ \theta (n) }[/math] łatwo otrzymujemy

[math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p \lt \sum_{p \leqslant n} \log n = \log n \cdot \pi (n) }[/math]

Skąd wynika, że

[math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]

Oszacowanie wyrażenia [math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} }[/math] od dołu będzie wymagało więcej pracy. Ze wzoru

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

(zobacz D77) otrzymujemy

[math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

Z twierdzenia C19 i założonego oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math]

[math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math]

dostajemy

[math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{\log n}{\log n \cdot A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{k}} \cdot {\small\frac{B \cdot k}{\log k}} }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{B}{A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} }[/math]

Nie możemy oszacować sumy całką, bo całka [math]\displaystyle{ \int {\small\frac{d x}{\log x}} }[/math] jest funkcją nieelementarną. Nie możemy też pozwolić sobie na zbyt niedokładne oszacowanie sumy i nie możemy napisać

[math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} \lt {\small\frac{n - 2}{\log 2}} \lt {\small\frac{n}{\log 2}} }[/math]

Wyjściem z tej sytuacji jest odpowiedni podział przedziału sumowania i szacowanie w każdym przedziale osobno. Niech punkt podziału [math]\displaystyle{ M }[/math] spełnia warunek [math]\displaystyle{ \sqrt{n} \leqslant M \lt \sqrt{n} + 1 }[/math]. Mamy

[math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} = \sum_{k = 2}^{M - 1} {\small\frac{1}{\log k}} + \sum^{n - 1}_{k = M} {\small\frac{1}{\log k}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{M - 2}{\log 2}} + {\small\frac{n - M}{\log M}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{M}{\log 2}} + {\small\frac{n}{\log M}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{n}{\log \sqrt{n}}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{B}{A \cdot n}} \cdot \left( {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} \right) }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) }[/math]

Łącząc otrzymane rezultaty, otrzymujemy

[math]\displaystyle{ 1 - {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) \lt {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]

Na mocy twierdzenia o trzech ciągach (zobacz C10) mamy

[math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]

Co należało pokazać.


Uwaga D79
Funkcja [math]\displaystyle{ \theta (n) }[/math] jest ściśle związana z dobrze nam znaną funkcją [math]\displaystyle{ P (n) }[/math]. Ponieważ [math]\displaystyle{ P(n) = \prod_{p \leqslant n} p }[/math], to

[math]\displaystyle{ \log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n) }[/math].

Z twierdzenia D78 wynika, że jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math]. Jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math] (zobacz C13 p.3).

Wiemy, że dla funkcji [math]\displaystyle{ \theta (n) }[/math], gdzie [math]\displaystyle{ n \geqslant 2 }[/math], prawdziwe jest oszacowanie[19]

[math]\displaystyle{ \left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}} }[/math]


Zadanie D80
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Rozwiązanie

Kładąc we wzorze na sumowanie przez części (zobacz D71) [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = D (k) \cdot \log k }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) \cdot \log k = \sum_{p \leqslant k} \log p = \theta (k) }[/math]
[math]\displaystyle{ \sum_{k = 2}^{n} D (k) = \sum_{p \leqslant n} 1 = \pi (n) }[/math]

Zatem

[math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) \theta (k) }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} {\small\frac{\log k - \log (k + 1)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]

Co należało pokazać.



Iloczyn Cauchy'ego szeregów

Twierdzenie D81 (kryterium d'Alemberta)
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem liczb rzeczywistych i istnieje granica

[math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| }[/math]

Jeżeli

  •    [math]\displaystyle{ g \lt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny
  •    [math]\displaystyle{ g \gt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest rozbieżny
Dowód

Rozważmy najpierw przypadek, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt 1 }[/math]. Niech [math]\displaystyle{ r }[/math] będzie dowolną liczbą rzeczywistą taką, że [math]\displaystyle{ g \lt r \lt 1 }[/math] i przyjmijmy [math]\displaystyle{ \varepsilon = r - g }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek

[math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]

Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math]. Z prawej nierówności otrzymujemy, że dla [math]\displaystyle{ n \geqslant N }[/math] jest

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt r }[/math]
[math]\displaystyle{ | a_{n + 1} | \lt r | a_n | }[/math]
[math]\displaystyle{ | a_{n + k} | \lt r^k | a_n | }[/math]

Ostatnią nierówność można łatwo udowodnić metodą indukcji matematycznej względem [math]\displaystyle{ k }[/math]. Korzystając ze wzoru na sumę szeregu geometrycznego[20], otrzymujemy

[math]\displaystyle{ \sum_{k = N + 1}^{\infty} | a_k | = \sum_{k = 1}^{\infty} | a_{N + k} | \lt \sum_{k = 1}^{\infty} r^k | a_n | = r | a_n | \sum_{k = 1}^{\infty} r^{k - 1} = | a_n | \cdot {\small\frac{r}{1 - r}} }[/math]

Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest bezwzględnie zbieżny.


W przypadku, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt 1 }[/math] wybieramy liczbę [math]\displaystyle{ r }[/math] tak, aby spełniała warunek [math]\displaystyle{ 1 \lt r \lt g }[/math] i przyjmujemy [math]\displaystyle{ \varepsilon = g - r }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek

[math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]

Przyjmując, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math], z lewej nierówności otrzymujemy dla [math]\displaystyle{ n \geqslant N }[/math]

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt r \gt 1 }[/math]

Czyli [math]\displaystyle{ | a_{n + 1} | \gt | a_n | }[/math], zatem dla wszystkich [math]\displaystyle{ k \gt N }[/math] jest [math]\displaystyle{ | a_k | \gt | a_N | \gt 0 }[/math] i nie może być spełniony podstawowy warunek zbieżności szeregu (zobacz D4). Zatem szereg jest rozbieżny. Co kończy dowód.


Uwaga D82
W przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1 }[/math] kryterium d'Alemberta nie rozstrzyga o zbieżności lub rozbieżności szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math]. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów

[math]\displaystyle{ \sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}} }[/math]


Przykład D83
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Zbadamy zbieżność szeregu

[math]\displaystyle{ e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

Ponieważ

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0 }[/math]

to z kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.


Zadanie D84
Pokazać, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}} }[/math] jest rozbieżny.

Rozwiązanie

Łatwo znajdujemy, że

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| = {\small\frac{(n + 1)^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{n^n}} = {\small\frac{(n + 1) (n + 1)^n}{(n + 1) n!}} \cdot {\small\frac{n!}{n^n}} = \left( 1 + {\small\frac{1}{n}} \right)^n \xrightarrow{\; n \rightarrow \infty \;} e \gt 1 }[/math]

Z kryterium d'Alemberta wynika, że szereg jest rozbieżny.


Uwaga D85
W twierdzeniu A40, korzystając z następującej definicji funkcji [math]\displaystyle{ e^x }[/math]

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

pominęliśmy dowód własności [math]\displaystyle{ e^x e^{- x} = 1 }[/math]. Spróbujemy teraz pokazać, że [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

[math]\displaystyle{ e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} }[/math]

Oznaczmy [math]\displaystyle{ a_i = {\small\frac{x^i}{i!}} }[/math] oraz [math]\displaystyle{ b_j = {\small\frac{y^j}{j!}} }[/math] i przyjrzyjmy się sumowaniu po [math]\displaystyle{ i, j }[/math]. W podwójnej sumie po prawej stronie [math]\displaystyle{ \sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j }[/math] sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ a_5 b_1 }[/math] [math]\displaystyle{ a_5 b_2 }[/math] [math]\displaystyle{ a_5 b_3 }[/math] [math]\displaystyle{ a_5 b_4 }[/math] [math]\displaystyle{ a_5 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ a_4 b_2 }[/math] [math]\displaystyle{ a_4 b_3 }[/math] [math]\displaystyle{ a_4 b_4 }[/math] [math]\displaystyle{ a_4 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ a_3 b_3 }[/math] [math]\displaystyle{ a_3 b_4 }[/math] [math]\displaystyle{ a_3 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ a_2 b_4 }[/math] [math]\displaystyle{ a_2 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ a_1 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ \; \cdots \; }[/math]

Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Co odpowiada sumie [math]\displaystyle{ \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k} b_{n - k} }[/math], gdzie [math]\displaystyle{ n }[/math] numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} }[/math]

Ponieważ

[math]\displaystyle{ {\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} }[/math]

to otrzymujemy

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y} }[/math]

Pokazaliśmy tym samym, że z definicji

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i w związku z tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.


Definicja D86
Iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0 }[/math]

W przypadku szeregów, których wyrazy są numerowane od liczby [math]\displaystyle{ 1 }[/math], iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 1}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 1}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1 }[/math]


Zadanie D87
Niech [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]. Pokazać, że

  •    jeżeli [math]\displaystyle{ (a_n) = (1, 0, 0, 0, 0, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = b_n }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math], [math]\displaystyle{ (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = \sum_{k = 0}^{n} b_k = B_n }[/math]
  •    jeżeli [math]\displaystyle{ a_n = b_n = {\small\frac{r^n}{n!}} }[/math], to [math]\displaystyle{ c_n = {\small\frac{(2 r)^n}{n!}} }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (a, r, r^2, r^3, \ldots) }[/math], [math]\displaystyle{ (b_n) = (b, r, r^2, r^3, \ldots) }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\ (a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ q \neq r }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Rozwiązanie

Punkt 1.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n = b_n }[/math]

Punkt 2.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_{n - k} = \sum^n_{j = 0} b_j = B_n }[/math]

Punkt 3.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} {\small\frac{r^k r^{n - k}}{k!(n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\frac{n!}{k! (n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} = {\small\frac{(2 r)^n}{n!}} }[/math]

Punkt 4.

Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ c_0 = a_0 b_0 = a b }[/math]

Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ c_1 = a_0 b_1 + a_1 b_0 = a \cdot r + r \cdot b = (a + b) r }[/math]

Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a \cdot r^n + r^n \cdot b + \sum_{k = 1}^{n - 1} r^k r^{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (a + b) r^n + \sum_{k = 1}^{n - 1} r^n }[/math]
[math]\displaystyle{ \;\;\;\:\, = (a + b + n - 1) r^n }[/math]

Zbierając, otrzymujemy

[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\ (a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]

Punkt 5.

Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ c_0 = a_0 b_0 = a b }[/math]

Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ c_1 = a_0 b_1 + a_1 b_0 = a r + b q }[/math]

Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k} }[/math]

Jeżeli [math]\displaystyle{ r = 0 }[/math], to [math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = 0 }[/math]. Jeżeli [math]\displaystyle{ r \neq 0 }[/math], to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot {\small\frac{\left( {\normalsize\frac{q}{r}} \right)^n - {\normalsize\frac{q}{r}}}{{\normalsize\frac{q}{r}} - 1}} = {\small\frac{r q^n - q r^n}{q - r}} }[/math]

Zauważmy, że znaleziony wzór obejmuje również przypadek [math]\displaystyle{ r = 0 }[/math]. Zatem

[math]\displaystyle{ c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right) }[/math]

Zbierając, otrzymujemy

[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]


Przykład D88
Ostatni punkt zadania D87 pozwala stworzyć wiele przykładowych szeregów i ich iloczynów Cauchy'ego. Przypomnijmy, że

[math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ \quad (b_n) = (b, r, r^2, r^3, \ldots) }[/math],  gdzie [math]\displaystyle{ q \neq r }[/math]
[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]


Przykłady zebraliśmy w tabeli.


Przykład D89
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz D5)

[math]\displaystyle{ \sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad }[/math] (WolframAlpha)

Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} }[/math]

Ale [math]\displaystyle{ k \leqslant n }[/math] i [math]\displaystyle{ n - k \leqslant n }[/math], zatem

[math]\displaystyle{ {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}} }[/math]

Czyli

[math]\displaystyle{ | c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1 }[/math]

Ponieważ [math]\displaystyle{ \lim_{n \rightarrow \infty} c_n \neq 0 }[/math], to iloczyn Cauchy'ego jest rozbieżny (zobacz D4).


Zadanie D90
Pokazać, że jeżeli [math]\displaystyle{ a_n = b_n = r^n }[/math] i [math]\displaystyle{ c_n = (n + 1) r^n }[/math] (zobacz D87 p.3), to szeregi [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] oraz [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Rozwiązanie

Zbieżność szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] łatwo zbadamy, stosując kryterium d'Alemberta.

[math]\displaystyle{ \left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r | }[/math]

Zatem szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] jest zbieżny, gdy [math]\displaystyle{ | r | \lt 1 }[/math] i rozbieżny, gdy [math]\displaystyle{ | r | \gt 1 }[/math], tak samo, jak szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n }[/math]. W przypadku, gdy [math]\displaystyle{ r = \pm 1 }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n }[/math] jest rozbieżny, a odpowiednie sumy częściowe szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] są równe

  •     gdy [math]\displaystyle{ r = 1 }[/math], [math]\displaystyle{ c_n = n + 1 }[/math], [math]\displaystyle{ \quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad }[/math] (zobacz [a], WolframAlpha)
  •     gdy [math]\displaystyle{ r = - 1 }[/math], [math]\displaystyle{ c_n = (n + 1) (- 1)^n }[/math], [math]\displaystyle{ \quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad }[/math] (zobacz D72, WolframAlpha)

W przypadku, gdy [math]\displaystyle{ | r | \lt 1 }[/math] wiemy[20], że [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}} }[/math]. Korzystając z zadania D72, otrzymujemy

[math]\displaystyle{ \sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}} }[/math]


Ponieważ szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] jest zbieżny, gdy [math]\displaystyle{ | r | \lt 1 }[/math], to musi być [math]\displaystyle{ \lim_{n \rightarrow \infty} (n + 1) r^n = 0 }[/math] (zobacz D4). Pokazaliśmy, że w rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów.



[a] Zauważmy, że

[math]\displaystyle{ \sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}} }[/math]


Uwaga D91
Przykłady D88 i D89 pokazują, że w ogólności nie jest prawdziwy wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]

Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.


Uwaga D92
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy [math]\displaystyle{ m = 5 }[/math].

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Przejście do sumowania po liniach poziomych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii poziomej.


Przejście do sumowania po liniach pionowych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii pionowej.


Twierdzenie D93 (Franciszek Mertens)
Jeżeli szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] jest zbieżny bezwzględnie, szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] jest zbieżny, to ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny i [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód

Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny bezwzględnie, oznaczmy [math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' }[/math]. Niech

[math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad B_n = \sum_{j = 0}^{n} b_j \qquad \qquad C_n = \sum_{k = 0}^{n} c_k \qquad \qquad \beta_n = B_n - B }[/math]

Przekształcając sumę [math]\displaystyle{ C_m }[/math], otrzymujemy

[math]\displaystyle{ C_m = \sum_{n = 0}^{m} c_n }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

Przechodzimy od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D92).

[math]\displaystyle{ C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \sum_{j = 0}^{m - i} b_j }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \left( {B + \beta_{m - i}} \right) }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
[math]\displaystyle{ \; = B \sum_{i = 0}^{m} a_i + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
[math]\displaystyle{ \; = A_m B + \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Zatem

[math]\displaystyle{ C_m - A_m B = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Niech

[math]\displaystyle{ \delta_m = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Oczywiście chcemy pokazać, że [math]\displaystyle{ C_m \longrightarrow A B }[/math]. Ponieważ [math]\displaystyle{ A_m B \longrightarrow A B }[/math], to wystarczy pokazać, że [math]\displaystyle{ \delta_m \longrightarrow 0 }[/math].

Z założenia [math]\displaystyle{ B_m \longrightarrow B }[/math], zatem [math]\displaystyle{ \beta_m \longrightarrow 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (\beta_k) }[/math] wynika, że

  •    ciąg [math]\displaystyle{ (\beta_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | \beta_k | \leqslant U }[/math] (zobacz C10)
  •    dla dowolnego [math]\displaystyle{ \varepsilon_1 \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (\beta_k) }[/math] spełniają warunek [math]\displaystyle{ | \beta_k | \lt \varepsilon_1 }[/math] (zobacz C5, C7)

Możemy przyjąć, że warunek [math]\displaystyle{ | \beta_k | \lt \varepsilon_1 }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ M = M (\varepsilon_1) }[/math]. Zatem dla [math]\displaystyle{ m \gt M }[/math] dostajemy

[math]\displaystyle{ | \delta_m | \leqslant \sum_{k = 0}^{M} | \beta_k | | a_{m - k} | + \sum_{k = M + 1}^{m} | \beta_k | | a_{m - k} | }[/math]
[math]\displaystyle{ \;\; \lt U (| a_m | + \ldots + | a_{m - M} |) + \varepsilon_1 \sum_{k = M + 1}^{m} | a_{m - k} | }[/math]
[math]\displaystyle{ \;\; \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]

Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny, zatem musi być [math]\displaystyle{ \lim_{m \rightarrow \infty} a_m = 0 }[/math] (zobacz D4). Czyli dla dowolnego [math]\displaystyle{ \varepsilon_2 \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_k) }[/math] spełniają warunek [math]\displaystyle{ | a_k | \lt \varepsilon_2 }[/math]. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon_2) }[/math]. Zatem dla [math]\displaystyle{ m \gt M + N }[/math] otrzymujemy

[math]\displaystyle{ | \delta_m | \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]
[math]\displaystyle{ \;\; \lt \varepsilon_2 (M + 1) U + \varepsilon_1 A' }[/math]


Prawa strona nierówności jest dowolnie mała. Przykładowo dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] wystarczy wybrać [math]\displaystyle{ \varepsilon_1 = {\small\frac{\varepsilon / 2}{A'}} }[/math] i [math]\displaystyle{ \varepsilon_2 = {\small\frac{\varepsilon / 2}{(M + 1) U}} }[/math], aby otrzymać [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math] dla wszystkich [math]\displaystyle{ m \gt M + N }[/math]. Ponieważ prawie wszystkie wyrazy ciągu [math]\displaystyle{ \delta_m }[/math] spełniają warunek [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math], to [math]\displaystyle{ \lim_{m \rightarrow \infty} \delta_m = 0 }[/math]. Co należało pokazać.


Zadanie D94
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.

Rozwiązanie

Z założenia szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] są bezwzględnie zbieżne, zatem możemy napisać

[math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B' }[/math]

Zauważmy, że suma [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math] obejmuje [math]\displaystyle{ m + 1 }[/math] przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D92).

[math]\displaystyle{ C'_m = \sum_{n = 0}^{m} | c_n | }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \left| \sum_{k = 0}^{n} a_k b_{n - k} \right| }[/math]
[math]\displaystyle{ \; \leqslant \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k b_{n - k} | }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} | a_i | | b_j | \qquad \qquad }[/math] (zmieniliśmy sposób sumowania)
[math]\displaystyle{ \; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j | }[/math]
[math]\displaystyle{ \; \leqslant A' B' }[/math]

Ponieważ ciąg sum częściowych [math]\displaystyle{ C'_m }[/math] jest rosnący (bo sumujemy wartości nieujemne) i ograniczony od góry, to jest zbieżny.


Zadanie D95
Podać przykład szeregów zbieżnych, z których tylko jeden jest bezwzględnie zbieżny i których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie

Zauważmy, że szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}} }[/math] jest bezwzględnie zbieżny, bo [math]\displaystyle{ \sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2 }[/math] jest zbieżny. Szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2 }[/math] jest zbieżny na mocy kryterium Leibniza (zobacz D5), ale nie jest bezwzględnie zbieżny (zobacz D36, D38 p.1, B34).

Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]

jest zbieżny. Łatwo widzimy, że

[math]\displaystyle{ | c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]
[math]\displaystyle{ \; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]
[math]\displaystyle{ \; \geqslant {\small\frac{1}{n + 1}} }[/math]

Ponieważ szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}} }[/math] jest rozbieżny i

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n | }[/math]

to na mocy kryterium porównawczego (zobacz D10) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | c_n | }[/math] jest rozbieżny. Co należało pokazać.


Zadanie D96
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie

Szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2 }[/math] jest warunkowo zbieżny (zobacz D5, D36, D38 p.1, B34). Iloczyn Cauchy'ego dwóch takich szeregów jest równy [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} }[/math]


Ponieważ (zobacz D36)

[math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]

to

[math]\displaystyle{ {\small\frac{2}{n + 2}} \cdot \log (n + 2) \lt | c_n | \lt {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1)) }[/math]

Z twierdzenia o trzech ciągach wynika natychmiast, że [math]\displaystyle{ \lim_{n \rightarrow \infty} | c_n | = 0 }[/math]. Pokażemy teraz, że ciąg [math]\displaystyle{ (| c_n |) }[/math] jest ciągiem malejącym.

[math]\displaystyle{ | c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; \leqslant 0 }[/math]

Bo [math]\displaystyle{ \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1 }[/math]. Ponieważ ciąg [math]\displaystyle{ (| c_n |) }[/math] jest malejący i zbieżny do zera, to z kryterium Leibniza (zobacz D5) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (- 1)^n | c_n | }[/math] jest zbieżny. Zauważmy jeszcze, że dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} \lt | c_n | }[/math]

Zatem na podstawie kryterium porównawczego (zobacz D10) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | c_n | }[/math] jest rozbieżny.


Uwaga D97
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie D99 pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro[21]. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.

Rozważmy szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math]. Sumy częściowe tego szeregu wynoszą [math]\displaystyle{ S_k = {\small\frac{1 + (- 1)^k}{2}} }[/math] i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu [math]\displaystyle{ (S_k) }[/math] jest równy

[math]\displaystyle{ x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad }[/math] (WolframAlfa)

Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math] jest sumowalny w sensie Cesàro i jego suma jest równa [math]\displaystyle{ {\small\frac{1}{2}} }[/math].


Twierdzenie D98
Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math].

Dowód

Z założenia [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (a_k) }[/math] wynika, że

  •    ciąg [math]\displaystyle{ (a_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | a_k | \leqslant U }[/math] (zobacz C10)
  •    dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_k) }[/math] spełniają warunek [math]\displaystyle{ | a_k | \lt \varepsilon }[/math] (zobacz C5, C7)

Możemy przyjąć, że warunek [math]\displaystyle{ | a_k | \lt \varepsilon }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon) }[/math]. Zatem dla [math]\displaystyle{ n \gt N }[/math] możemy napisać

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}} }[/math]
[math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}} }[/math]
[math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + \varepsilon }[/math]

Ponieważ liczba [math]\displaystyle{ n }[/math] może być dowolnie duża, to wyrażenie [math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} }[/math] może być dowolnie małe. W szczególności warunek

[math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} \lt \varepsilon }[/math]

jest spełniony dla [math]\displaystyle{ n \gt {\small\frac{U (N + 1)}{\varepsilon}} - 1 }[/math] i otrzymujemy, że

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | \lt 2 \varepsilon }[/math]

dla wszystkich [math]\displaystyle{ n \gt \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right) }[/math]. Zatem [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math]. Co należało pokazać.


Twierdzenie D99
Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, to ciąg kolejnych średnich arytmetycznych [math]\displaystyle{ x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}} }[/math] jest zbieżny do tej samej granicy.

Dowód

Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, zatem możemy napisać

[math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = g }[/math]

Z definicji ciągu [math]\displaystyle{ (x_n) }[/math] dostajemy

[math]\displaystyle{ x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g = {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}} = {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}} = {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}} }[/math]

Wynika stąd, że

[math]\displaystyle{ 0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g | }[/math]

W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D98 i twierdzenia o trzech ciągach (zobacz C11) otrzymujemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} | x_n - g | = 0 }[/math]

Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = g }[/math] (zobacz C9 p.2). Co należało pokazać.


Twierdzenie D100
Niech [math]\displaystyle{ (a_n) }[/math] i [math]\displaystyle{ (b_n) }[/math] będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math] i [math]\displaystyle{ \lim_{n \rightarrow \infty} b_n = b }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math].

Dowód

1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n = 0} }[/math]

Ponieważ ciąg [math]\displaystyle{ (b_n) }[/math] jest zbieżny, to jest ograniczony (zobacz C10), czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | b_k | \leqslant U }[/math]. Zatem

[math]\displaystyle{ 0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k | }[/math]

W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D98 i twierdzenia o trzech ciągach (zobacz C11) otrzymujemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0 }[/math]

Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0 }[/math] (zobacz C9 p.2).


2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0} }[/math]

Niech [math]\displaystyle{ x_n = a_n - a }[/math]. Oczywiście [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = 0 }[/math]. Podstawiając, otrzymujemy

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k} }[/math]
[math]\displaystyle{ \, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]
[math]\displaystyle{ \, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]

W granicy, gdy [math]\displaystyle{ n \longrightarrow \infty }[/math], z twierdzenia D99 i udowodnionego wyżej przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], dostajemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math]

Co kończy dowód.



Twierdzenie D101 (Niels Henrik Abel)
Jeżeli szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] są zbieżne i ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny, to [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód

Będziemy stosowali następujące oznaczenia

[math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad \;\, B_n = \sum_{i = 0}^{n} b_i \qquad \qquad \;\; C_n = \sum_{i = 0}^{n} c_i }[/math]

Z założenia szeregi są zbieżne, zatem możemy napisać

[math]\displaystyle{ \lim_{n \rightarrow \infty} A_n = A \qquad \qquad \lim_{n \rightarrow \infty} B_n = B \qquad \qquad \lim_{n \rightarrow \infty} C_n = C }[/math]

Rozważmy sumę

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{n = 0}^{m} c_n }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

Od sumowania wyrazów [math]\displaystyle{ a_k b_{n - k} }[/math] po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D92).

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i \sum^{m - i}_{j = 0} b_j }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k} }[/math]

Od sumowania wyrazów [math]\displaystyle{ a_k B_{m - k} }[/math] po [math]\displaystyle{ L + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ L + 1 }[/math] kolejnych liniach pionowych (zobacz D92).

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i }[/math]
[math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i \sum_{j = 0}^{L - i} a_j }[/math]
[math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i A_{L - i} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i} }[/math]

W granicy, gdy [math]\displaystyle{ L \longrightarrow \infty }[/math], z twierdzeń D99 i D100 otrzymujemy [math]\displaystyle{ C = A B }[/math]. Co należało pokazać.



Liczby Catalana

Definicja D102
Liczby Catalana [math]\displaystyle{ C_n }[/math] definiujemy wzorem

[math]\displaystyle{ C_n = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} }[/math]

gdzie [math]\displaystyle{ n \geqslant 0 }[/math].


Twierdzenie D103
Liczby Catalana [math]\displaystyle{ C_n }[/math] mają następujące własności

  •    [math]\displaystyle{ C_n }[/math] są liczbami całkowitymi dodatnimi
  •    [math]\displaystyle{ C_n = {\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{n}} {\small\binom{2 n}{n - 1}} }[/math]
  •    [math]\displaystyle{ C_{n + 1} = {\small\frac{2 (2 n + 1)}{n + 2}} C_n }[/math]
  •    [math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math]
Dowód

Punkt 1.

Twierdzenie jest prawdziwe dla początkowych wartości [math]\displaystyle{ n \geqslant 0 }[/math], bo [math]\displaystyle{ (C_n) = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, \ldots) }[/math]. W ogólności wystarczy zauważyć, że dla [math]\displaystyle{ n \geqslant 0 }[/math] mamy

[math]\displaystyle{ {\small\binom{2 n}{n + 1}} = {\small\frac{(2 n) !}{(n + 1) ! (n - 1) !}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} \lt {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ {\small\binom{2 n}{n}} - {\small\binom{2 n}{n + 1}} = {\small\binom{2 n}{n}} - {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n }[/math]

Zatem [math]\displaystyle{ C_n }[/math] jest liczbą całkowitą większą od zera.

Punkt 2.

[math]\displaystyle{ {\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{(2 n + 1) !}{n! (n + 1) !}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n }[/math]
[math]\displaystyle{ {\small\frac{1}{n}} {\small\binom{2 n}{n - 1}} = {\small\frac{1}{n}} \cdot {\small\frac{(2 n) !}{(n - 1) ! (n + 1) !}} = {\small\frac{1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n }[/math]

Punkt 3.

[math]\displaystyle{ {\small\frac{C_{n + 1}}{C_n}} = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) !}{(n + 1) ! (n + 1) !}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}} }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1)^2}} \cdot {\small\frac{(2 n) !}{n!n!}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}} = }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{2 (2 n + 1)}{n + 2}} }[/math]

Punkt 4.

Dowód tego punktu został umieszczony w Uzupełnieniu (zobacz D128).


Zadanie D104
Niech [math]\displaystyle{ C_n }[/math] oznacza [math]\displaystyle{ n }[/math]-tą liczbę Catalana i niech [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] oznacza szereg, który otrzymujemy, mnożąc szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] przez siebie według reguły Cauchy'ego. Pokazać, że

  •    jeżeli [math]\displaystyle{ a_n = C_n }[/math],  to  [math]\displaystyle{ x_n = C_{n + 1} }[/math]
  •    jeżeli [math]\displaystyle{ a_0 = \alpha }[/math] i [math]\displaystyle{ a_n = r^{n - 1} C_{n - 1} }[/math] dla [math]\displaystyle{ n \geqslant 1 }[/math],  to  [math]\displaystyle{ x_0 = \alpha^2 }[/math], [math]\displaystyle{ x_1 = 2 \alpha C_0 }[/math] i [math]\displaystyle{ x_n = (1 + 2 \alpha r) r^{n - 2} C_{n - 1} }[/math] dla [math]\displaystyle{ n \geqslant 2 }[/math]

Dla jakich wartości [math]\displaystyle{ \alpha, r }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] jest zbieżny?

Rozwiązanie

Punkt 2.

Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ x_0 = a_0 a_0 = \alpha^2 }[/math]

Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ x_1 = a_0 a_1 + a_1 a_0 = 2 a_0 a_1 = 2 \alpha C_0 }[/math]

Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest

[math]\displaystyle{ x_n = \sum_{k = 0}^{n} a_k a_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\;\: = a_0 a_n + a_n a_0 + \sum_{k = 1}^{n - 1} a_k a_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 a_0 a_n + \sum_{k = 1}^{n - 1} r^{k - 1} C_{k - 1} \cdot r^{n - k - 1} C_{n - k - 1} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{k = 1}^{n - 1} C_{k - 1} C_{n - k - 1} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{j = 0}^{n - 2} C_j C_{n - 2 - j} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} C_{n - 1} }[/math]
[math]\displaystyle{ \;\;\;\;\: = r^{n - 2} C_{n - 1} (1 + 2 \alpha r) }[/math]

Zauważmy, że

[math]\displaystyle{ {\small\frac{C_n}{C_{n - 1}}} = \frac{{\normalsize\frac{1}{n + 1}} {\normalsize\binom{2 n}{n}}}{{\normalsize\frac{1}{n}} {\normalsize\binom{2 n - 2}{n - 1}}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1) (2 n - 2) !}{n^2 [(n - 1) !]^2}} \cdot {\small\frac{[(n - 1) !]^2}{(2 n - 2) !}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1)}{n^2}} = {\small\frac{2 (2 n - 1)}{n + 1}} }[/math]

Z kryterium d'Alemberta dla szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] i szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] otrzymujemy

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| = \left| {\small\frac{r^n C_n}{r^{n - 1} C_{n - 1}}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} = | r | \cdot {\small\frac{2 (2 n - 1)}{n + 1}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r | }[/math]


[math]\displaystyle{ \left| {\small\frac{x_{n + 1}}{x_n}} \right| = \left| {\small\frac{r^{n - 1} C_n (1 + 2 \alpha r)}{r^{n - 2} C_{n - 1} (1 + 2 \alpha r)}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r | }[/math]

Zatem szeregi te są bezwzględnie zbieżne w przypadku, gdy [math]\displaystyle{ | r | \lt {\small\frac{1}{4}} }[/math]. W szczególności dla [math]\displaystyle{ \alpha = - {\small\frac{1}{2 r}} }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] zawsze będzie zbieżny, bo od trzeciego wyrazu będzie się składał z samych zer. Wiemy, że w przypadku, gdy [math]\displaystyle{ r = {\small\frac{1}{4}} }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{C_n}{4^n}} = 2 }[/math] jest zbieżny.



Sumy współczynników dwumianowych

Twierdzenie D105
Dla [math]\displaystyle{ n \geqslant 0 }[/math] i [math]\displaystyle{ r \in \mathbb{R} }[/math] prawdziwe są wzory

[math]\displaystyle{ \sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{r^{k + 1}}{k + 1}} {\small\binom{n}{k}} = {\small\frac{(r + 1)^{n + 1} - 1}{n + 1}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2} }[/math]
Dowód

Punkt 1.

Ze wzoru dwumianowego natychmiast otrzymujemy

[math]\displaystyle{ (1 + r)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} r^k }[/math]

Punkt 2.

Całkując obie strony wzoru dwumianowego

[math]\displaystyle{ (1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k }[/math]

otrzymujemy

[math]\displaystyle{ \int^r_0 (1 + x)^n d x = \sum_{k = 0}^{n} {\small\binom{n}{k}} \int^r_0 x^k d x }[/math]
[math]\displaystyle{ {\small\frac{(r + 1)^{n + 1} - 1}{n + 1}} = \sum_{k = 0}^{n} {\small\frac{r^{k + 1}}{k + 1}} {\small\binom{n}{k}} }[/math]

Punkt 3.

Obliczając pochodną każdej ze stron wzoru dwumianowego

[math]\displaystyle{ (1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k }[/math]

otrzymujemy

[math]\displaystyle{ n (1 + x)^{n - 1} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k x^{k - 1} }[/math]

Kładąc [math]\displaystyle{ x = 1 }[/math], dostajemy dowodzony wzór.

Punkt 4.

Obliczając drugą pochodną każdej ze stron wzoru dwumianowego

[math]\displaystyle{ (1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k }[/math]

otrzymujemy

[math]\displaystyle{ n(n - 1) (1 + x)^{n - 2} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k (k - 1) x^{k - 1} }[/math]

Kładąc [math]\displaystyle{ x = 1 }[/math], dostajemy

[math]\displaystyle{ n(n - 1) 2^{n - 2} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k (k - 1) = \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} - \sum_{k = 0}^{n} k {\small\binom{n}{k}} = \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} - n 2^{n - 1} }[/math]

Skąd natychmiast wynika dowodzony wzór.


Twierdzenie D106
Dla [math]\displaystyle{ n, m \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{m} {\small\binom{n + k}{n}} = {\small\binom{n + m + 1}{n}} }[/math]
Dowód

Ze wzoru Pascala

[math]\displaystyle{ {\small\binom{a}{k}} = {\small\binom{a - 1}{k}} + {\small\binom{a - 1}{k - 1}} }[/math]

otrzymujemy

[math]\displaystyle{ {\small\binom{a - 1}{k}} = {\small\binom{a}{k}} - {\small\binom{a - 1}{k - 1}} }[/math]

Kładąc [math]\displaystyle{ a = n + k + 1 }[/math], mamy

[math]\displaystyle{ {\small\binom{n + k}{k}} = {\small\binom{n + k + 1}{k}} - {\small\binom{n + k}{k - 1}} }[/math]

Czyli

[math]\displaystyle{ {\small\binom{n + k}{n}} = {\small\binom{n + k + 1}{n + 1}} - {\small\binom{n + k}{n + 1}} }[/math]

Wykorzystując powyższy wzór, łatwo pokazujemy, że (zobacz D13)

[math]\displaystyle{ \sum_{k = 0}^{m} {\small\binom{n + k}{n}} = 1 + \sum_{k = 1}^{m} {\small\binom{n + k}{n}} }[/math]
[math]\displaystyle{ \;\;\,\, = 1 + \sum_{k = 1}^{m} \left[ {\small\binom{n + k + 1}{n + 1}} - {\small\binom{n + k}{n + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\,\, = 1 - \sum_{k = 1}^{m} \left[ {\small\binom{n + k}{n + 1}} - {\small\binom{n + k + 1}{n + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\,\, = 1 - \left[ 1 - {\small\binom{n + m + 1}{n + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\,\, = {\small\binom{n + m + 1}{n}} }[/math]

Co kończy dowód.


Suma nieoznaczona

Uwaga D107
Sumą nieoznaczoną[22] (lub antyróżnicą) funkcji [math]\displaystyle{ f(k) }[/math], będziemy nazywali dowolną funkcję [math]\displaystyle{ F(k) }[/math] taką, że

[math]\displaystyle{ F(k + 1) - F (k) = f (k) }[/math]

Łatwo zauważamy, że istnieje cała rodzina funkcji [math]\displaystyle{ F(k) }[/math], bo jeżeli [math]\displaystyle{ F (k) }[/math] jest sumą nieoznaczoną, to [math]\displaystyle{ F (k) + C }[/math], gdzie [math]\displaystyle{ C }[/math] jest stałą, również jest sumą nieoznaczoną. W szczególności

[math]\displaystyle{ \sum_{k = a}^{b} f (k) = \sum_{k = a}^{b} (F (k + 1) - F (k)) }[/math]
[math]\displaystyle{ \;\;\;\: = - \sum_{k = a}^{b} (F (k) - F (k + 1)) }[/math]
[math]\displaystyle{ \;\;\;\: = - ( F (a) - F (b + 1) ) }[/math]
[math]\displaystyle{ \;\;\;\: = F (b + 1) - F (a) }[/math]

Co przez analogię do całki nieoznaczonej możemy zapisać jako

[math]\displaystyle{ \sum_{k = a}^{b} f (k) = F (k) \biggr\rvert_{a}^{b + 1} \qquad \qquad \qquad ( 1 ) }[/math]


Należy podkreślić różnicę między sumą oznaczoną [math]\displaystyle{ S(n) }[/math] a sumą nieoznaczoną [math]\displaystyle{ F(k) }[/math]. Niech [math]\displaystyle{ f(k) = k^2 }[/math]. Oczywiście

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} k^2 = {\small\frac{1}{6}} n (n + 1) (2 n + 1) }[/math]
[math]\displaystyle{ F(k) = {\small\frac{1}{6}} (k - 1) k (2 k - 1) }[/math]

Ponieważ dla sumy [math]\displaystyle{ S(n) }[/math] prawdziwy jest związek [math]\displaystyle{ S(n + 1) - S (n) = f (n + 1) }[/math], to otrzymujemy [math]\displaystyle{ F(k) = S (k - 1) }[/math]. Weźmy kolejny przykład, niech [math]\displaystyle{ f(k) = r^k }[/math], gdzie [math]\displaystyle{ r }[/math] jest stałą. Mamy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} r^k = {\small\frac{r^{n + 1} - 1}{r - 1}} }[/math]

ale

[math]\displaystyle{ F(k) = {\small\frac{r^k}{r - 1}} }[/math]

i nie jest prawdą, że [math]\displaystyle{ F(k) = S (k - 1) }[/math], bo pominięty został wyraz [math]\displaystyle{ {\small\frac{- 1}{r - 1}} }[/math], który jest stałą, ale jest to zrozumiałe.

Niech teraz [math]\displaystyle{ f(n, k) = {\small\binom{n + k}{n}} }[/math]. Wiemy, że (zobacz D106)

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]
[math]\displaystyle{ F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}} }[/math]

Tym razem otrzymujemy zupełnie inne wyniki: suma [math]\displaystyle{ S(n) }[/math] nie zależy od dwóch zmiennych, bo jest to niemożliwe, a suma nieoznaczona nadal zależy od [math]\displaystyle{ k }[/math], bo dla [math]\displaystyle{ F(n, k) }[/math] musi być prawdziwy wzór [math]\displaystyle{ (1) }[/math]. Łatwo widzimy, że

[math]\displaystyle{ S (n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]


Uwaga D108
Powiedzmy, że dysponujemy wzorem [math]\displaystyle{ S(b) = \sum_{k = a}^{b} f (k) }[/math] i chcemy udowodnić jego poprawność. W prostych przypadkach możemy wykorzystać indukcję matematyczną: wystarczy pokazać, że

[math]\displaystyle{ S(k + 1) = S (k) + f (k + 1) }[/math]

Jeżeli już udało nam się pokazać związek [math]\displaystyle{ f(k) = S (k) - S (k - 1) }[/math], to równie dobrze możemy zamienić sumę na sumę teleskopową (zobacz D13), aby otrzymać, że

[math]\displaystyle{ \sum_{k = a + 1}^{b} f (k) = \sum_{k = a + 1}^{b} ( S (k) - S (k - 1) ) }[/math]
[math]\displaystyle{ \;\, = - \sum_{k = a + 1}^{b} ( S (k - 1) - S (k) ) }[/math]
[math]\displaystyle{ \;\, = - ( S (a) - S (b) ) }[/math]
[math]\displaystyle{ \;\, = S (b) - S (a) }[/math]

Czyli

[math]\displaystyle{ S(b) = \sum_{k = a + 1}^{b} f (k) + S (a) = \sum_{k = a}^{b} f (k) }[/math]

bo [math]\displaystyle{ S(a) = f (a) }[/math].


W przypadkach bardziej skomplikowanych nie możemy tak postąpić. W poprzedniej uwadze rozważaliśmy sumę

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]

ale

[math]\displaystyle{ S(n) - S (n - 1) = {\small\frac{3 n + 1}{2 (n + 1)}} {\small\binom{2 n}{n}} }[/math]

I nie da się pokazać związku [math]\displaystyle{ S(k) - S (k - 1) = f (n, k) }[/math], bo różnica [math]\displaystyle{ S(k) - S (k - 1) }[/math] nie zależy od [math]\displaystyle{ n }[/math].

Tutaj z pomocą przychodzi nam suma nieoznaczona. W programie Maxima możemy ją policzyć, wpisując polecenia

load ("zeilberger");
AntiDifference(binomial(n+k, n), k);

Otrzymujemy

[math]\displaystyle{ F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}} }[/math]

Oczywiście

[math]\displaystyle{ F(n, k + 1) - F (n, k) = {\small\binom{n + k}{n}} }[/math]

i

[math]\displaystyle{ S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} = {\small\binom{2 n + 1}{n}} }[/math]

Podsumujmy. Jakkolwiek znalezienie ogólnego wzoru na sumę [math]\displaystyle{ S (n) = \sum_{k = 0}^{n} f (k) }[/math] może być bardzo trudne, to udowodnienie poprawności tego wzoru może być znacznie łatwiejsze (metodą indukcji matematycznej lub obliczając sumę teleskopową). Podobnie jest w bardziej skomplikowanym przypadku, gdy szukamy ogólnego wzoru na sumę [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Tutaj wymienionych przed chwilą metod zastosować nie można, a znalezienie wzoru na sumę nieoznaczoną [math]\displaystyle{ F(n, k) }[/math] może być jeszcze trudniejsze, ale gdy już taki wzór mamy, to sprawdzenie jego poprawności, czyli związku [math]\displaystyle{ F(n, k + 1) - F (n, k) = f (n, k) }[/math], może być bardzo łatwe, a wtedy otrzymujemy natychmiast

[math]\displaystyle{ S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]


Zadanie D109
Korzystając z programu Maxima znaleźć sumę nieoznaczoną [math]\displaystyle{ F(n, k) }[/math] dla funkcji

[math]\displaystyle{ f(n, k) = {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

i pokazać, że prawdziwy jest wzór [math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math], gdzie [math]\displaystyle{ C_n }[/math] są liczbami Catalana.

Rozwiązanie

Wpisując w programie Maxima polecenia

load ("zeilberger");
AntiDifference( 1/(k+1) * 1/(n-k+1) * binomial(2*k, k) * binomial(2*n-2*k, n-k), k);

otrzymujemy

[math]\displaystyle{ F(n, k) = - {\small\frac{(n - 2 k + 1) (2 n - 2 k + 1)}{(n + 1) (n + 2) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 (n - k)}{n - k}} }[/math]

Czytelnik bez trudu pokaże, że

[math]\displaystyle{ F(n, k + 1) = - {\small\frac{(2 k + 1) (n - 2 k - 1)}{(n + 1) (n + 2) (k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

oraz łatwo sprawdzi związek [math]\displaystyle{ F(n, k + 1) - F (n, k) = f (n, k) }[/math] i wyliczy sumę oznaczoną.

Chcemy zwrócić uwagę na występującą tutaj trudność. Oczywiście

[math]\displaystyle{ S (n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]

ale funkcja [math]\displaystyle{ F(n, k) }[/math] nie jest określona dla [math]\displaystyle{ k = n + 1 }[/math]. Żeby ominąć ten problem, możemy przekształcić funkcję [math]\displaystyle{ F(n, k) }[/math] tak, aby możliwe było obliczenie jej wartości dla [math]\displaystyle{ k = n + 1 }[/math]

[math]\displaystyle{ F(n, k) = - {\small\frac{n - 2 k + 1}{2 (n + 1) (n + 2)}} {\small\binom{2 k}{k}} {\small\binom{2 (n - k + 1)}{n - k + 1}} }[/math]

lub zapisać sumę w postaci

[math]\displaystyle{ \sum_{k = 0}^{n} f (n, k) = \sum_{k = 0}^{n - 1} f (n, k) + f (n, n) = F (n, k) \biggr\rvert_{k = 0}^{k = n} + f (n, n) }[/math]


Znajdowanie równania rekurencyjnego dla sumy [math]\displaystyle{ \boldsymbol{S(n)} }[/math]

Uwaga D110
Rozważmy sumę

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]

W twierdzeniach D126 i D127 wyliczyliśmy [math]\displaystyle{ S(n) }[/math], znajdując najpierw równanie rekurencyjne dla sumy. Możemy przypuszczać, że równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) }[/math] wynika z istnienia odpowiedniego równania rekurencyjnego dla składników sumy [math]\displaystyle{ f(n, k) }[/math]. Zagadnieniem tym zajmowała się siostra Mary Celine Fasenmyer, która podała algorytm postępowania[23][24]. Prace Zeilbergera oraz Wilfa i Zeilbergera uogólniły ten algorytm[25][26]. My przedstawimy jedynie kilka prostych przypadków, które zilustrujemy przykładami. Szersze omówienie tematu Czytelnik znajdzie w książce Petkovšeka, Wilfa i Zeilbergera[27].


Twierdzenie D111
Niech [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Jeżeli składniki sumy [math]\displaystyle{ f(n, k) }[/math] spełniają równanie rekurencyjne

[math]\displaystyle{ a \cdot f (n + 1, k + 1) + b \cdot f (n + 1, k) + c \cdot f (n, k + 1) + d \cdot f (n, k) = 0 }[/math]

gdzie współczynniki [math]\displaystyle{ a, b, c, d }[/math] są funkcjami tylko [math]\displaystyle{ n }[/math], to suma [math]\displaystyle{ S (n) }[/math] spełnia równanie rekurencyjne

[math]\displaystyle{ (a + b) S (n + 1) + (c + d) S (n) - a \cdot f (n + 1, 0) - b \cdot f (n + 1, n + 1) - c [f (n, 0) - f (n, n + 1)] = 0 }[/math]
Dowód

Łatwo zauważamy, że

[math]\displaystyle{ \sum_{k = 0}^{n} f (n + 1, k + 1) = \sum_{j = 1}^{n + 1} f (n + 1, j) }[/math]
[math]\displaystyle{ \;\;\;\,\, = - f (n + 1, 0) + \sum^{n + 1}_{j = 0} f (n + 1, j) }[/math]
[math]\displaystyle{ \;\;\;\,\, = - f (n + 1, 0) + S (n + 1) }[/math]


[math]\displaystyle{ \sum_{k = 0}^{n} f (n + 1, k) = - f (n + 1, n + 1) + \sum_{k = 0}^{n + 1} f (n + 1, k) = }[/math]
[math]\displaystyle{ \;\;\; = - f (n + 1, n + 1) + S (n + 1) }[/math]


[math]\displaystyle{ \sum_{k = 0}^{n} f (n, k + 1) = \sum_{j = 1}^{n + 1} f (n, j) }[/math]
[math]\displaystyle{ \;\;\; = - f (n, 0) + f (n, n + 1) + \sum_{j = 0}^{n} f (n, j) }[/math]
[math]\displaystyle{ \;\;\; = - f (n, 0) + f (n, n + 1) + S (n) }[/math]


Zatem sumując założone równanie rekurencyjne

[math]\displaystyle{ a \cdot f (n + 1, k + 1) + b \cdot f (n + 1, k) + c \cdot f (n, k + 1) + d \cdot f (n, k) = 0 }[/math]

po [math]\displaystyle{ k }[/math] od [math]\displaystyle{ k = 0 }[/math] do [math]\displaystyle{ k = n }[/math], otrzymujemy

[math]\displaystyle{ a \cdot [- f (n + 1, 0) + S (n + 1)] + b \cdot [- f (n + 1, n + 1) + S (n + 1)] + c \cdot [- f (n, 0) + f (n, n + 1) + S (n)] + d \cdot S (n) = 0 }[/math]

Czyli

[math]\displaystyle{ (a + b) S (n + 1) + (c + d) S (n) - a \cdot f (n + 1, 0) - b \cdot f (n + 1, n + 1) - c [f (n, 0) - f (n, n + 1)] = 0 }[/math]

Co należało pokazać.


Uwaga D112
Nie ma sensu stosowanie opisanej powyżej metody do prostych sum postaci [math]\displaystyle{ \sum_{k = 0}^{n} f (k) }[/math], bo równanie rekurencyjne otrzymujemy w takim przypadku natychmiast: [math]\displaystyle{ S(n + 1) - S (n) = f (n + 1) }[/math].


Zadanie D113
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D106)

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]
Rozwiązanie

W tym przypadku nie otrzymamy równania rekurencyjnego, ale od razu wzór ogólny na sumę [math]\displaystyle{ S(n) }[/math].

Oczywiście [math]\displaystyle{ f(n, k) = {\small\binom{n + k}{n}} }[/math]. Po podstawieniu do równania (zobacz D111)

[math]\displaystyle{ a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0 }[/math]

i zredukowaniu silni, otrzymujemy

[math]\displaystyle{ a \cdot {\small\frac{(n + k + 1) (n + k + 2)}{(k + 1) (n + 1)}} + b \cdot {\small\frac{n + k + 1}{n + 1}} + c \cdot {\small\frac{n + k + 1}{k + 1}} + d = 0 }[/math]

Sprowadzając do wspólnego mianownika, mamy

[math]\displaystyle{ (a + b) k^2 + ((2 a + b + c + d) n + 3 a + 2 b + c + d) k + (a + c) n^2 + (3 a + b + 2 c + d) n + 2 a + b + c + d = 0 }[/math]

Ponieważ powyższe równanie musi być prawdziwe dla każdego [math]\displaystyle{ k }[/math], to współczynniki przy potęgach [math]\displaystyle{ k }[/math] muszą być równe zero. Zatem dostajemy układ równań

[math]\displaystyle{ \begin{cases} a + b = 0 \\ (2 a + b + c + d) n + 3 a + 2 b + c + d = 0 \\ (a + c) n^2 + (3 a + b + 2 c + d) n + 2 a + b + c + d = 0 \\ \end{cases} }[/math]


Łatwo znajdujemy rozwiązania: [math]\displaystyle{ b = - a }[/math], [math]\displaystyle{ c = - a }[/math], [math]\displaystyle{ d = 0 }[/math]. Skąd wynika związek dla [math]\displaystyle{ S(n) }[/math] (zobacz D111)

[math]\displaystyle{ - a S (n) = a - a {\small\binom{2 n + 2}{n + 1}} - a \left( 1 - {\small\binom{2 n + 1}{n}} \right) }[/math]
[math]\displaystyle{ \;\;\: = - a \left[ {\small\binom{2 n + 2}{n + 1}} - {\small\binom{2 n + 1}{n}} \right] }[/math]
[math]\displaystyle{ \;\;\: = - a {\small\binom{2 n + 1}{n}} }[/math]

I otrzymaliśmy dowodzony wzór.


Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.

sum1() := 
(
f(n, k):= binomial(n+k, n),   /* składnik sumy */
print("f(n, k) = ", f(n,k) ),
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,   /* równanie rekurencyjne dla składników sumy f(n, k) */
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),   /* równanie rekurencyjne dla sumy S(n) */
/*   przekształcamy F1, S1   */
F2: minfactorial( makefact(F1) ),   /* zamień na silnie i uprość silnie */
print("równanie: ", F2),
F3: num( factor(F2) ),   /* faktoryzuj i weź licznik */
print("licznik = ", rat(F3, k)),
deg: hipow(F3, k),
print("stopień = ", deg),
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */
LE:  [subst(0, k, F3) = 0],
for i: 1 thru deg do push(coeff(F3, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
print("lista równań: ", LE),
sol: solve( LE, [a, b, c, d] ),   /* lista rozwiązań */
print("rozwiązanie: ", sol),
S2: minfactorial( makefact(S1) ),   /* zamień na silnie i uprość silnie */
S3: subst( sol[1], S2 ),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
solve( S4 = 0, S[n] )
/*     S[n] = (2*n+1)! / (n! * (n+1)!)     */
)$


Zadanie D114
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D105 p.1)

[math]\displaystyle{ \sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n }[/math]
Rozwiązanie

Oczywiście [math]\displaystyle{ f(n, k) = r^k {\small\binom{n}{k}} }[/math]. Po podstawieniu do równania (zobacz D111)

[math]\displaystyle{ a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0 }[/math]

i zredukowaniu silni, otrzymujemy

[math]\displaystyle{ a \cdot {\small\frac{(n + 1) r}{k + 1}} + b \cdot {\small\frac{n + 1}{n - k + 1}} + c \cdot {\small\frac{(n - k) r}{k + 1}} + d = 0 }[/math]

Sprowadzając do wspólnego mianownika, mamy

[math]\displaystyle{ (c r - d) k^2 + (- ((a + 2 c) n + a + c) r + (b + d) n + b) k + ((a + c) n^2 + (2 a + c) n + a) r + (b + d) n + b + d = 0 }[/math]

Ponieważ powyższe równanie musi być prawdziwe dla każdego [math]\displaystyle{ k }[/math], to współczynniki przy potęgach [math]\displaystyle{ k }[/math] muszą być równe zero. Zatem dostajemy układ równań

[math]\displaystyle{ \begin{cases} c r - d = 0 \\ - ((a + 2 c) n + a + c) r + (b + d) n + b = 0 \\ ((a + c) n^2 + (2 a + c) n + a) r + (b + d) n + b + d = 0 \\ \end{cases} }[/math]


Łatwo znajdujemy rozwiązania: [math]\displaystyle{ b = 0 }[/math], [math]\displaystyle{ c = - a }[/math], [math]\displaystyle{ d = - a \cdot r }[/math]. Skąd wynika związek dla [math]\displaystyle{ S(n) }[/math] (zobacz D111)

[math]\displaystyle{ S(n + 1) = (r + 1) S (n) }[/math]

Metodą indukcji matematycznej dowodzimy, że [math]\displaystyle{ S(n) = (r + 1)^n }[/math].


Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.

sum2() := 
(
f(n, k):= r^k * binomial(n, k),   /* składnik sumy */
print("f(n, k) = ", f(n,k) ),
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,   /* równanie rekurencyjne dla składników sumy f(n, k) */
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),   /* równanie rekurencyjne dla sumy S(n) */
/*   przekształcamy F1, S1   */
F2: minfactorial( makefact(F1) ),   /* zamień na silnie i uprość silnie */
print("równanie: ", F2),
F3: num( factor(F2) ),   /* faktoryzuj i weź licznik */
print("licznik = ", rat(F3, k)),
deg: hipow(F3, k),
print("stopień = ", deg),
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */
LE:  [subst(0, k, F3) = 0],
for i: 1 thru deg do push(coeff(F3, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
print("lista równań: ", LE),
sol: solve( LE, [a, b, c, d] ),   /* lista rozwiązań */
print("rozwiązanie: ", sol),
S2: minfactorial( makefact(S1) ),   /* zamień na silnie i uprość silnie */
S3: subst( sol[1], S2),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
/*     S[n+1] = (r+1)*S[n]     */
load("solve_rec"),
solve_rec( S4 = 0, S[n] )        /*   S[n] = C*(r+1)^n   */
)$


Zadanie D115
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D105 p.2)

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{2^{n + 1} - 1}{n + 1}} }[/math]
Rozwiązanie

Oczywiście [math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math]. Po podstawieniu do równania (zobacz D111)

[math]\displaystyle{ a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0 }[/math]

i zredukowaniu silni, otrzymujemy

[math]\displaystyle{ a \cdot {\small\frac{n + 1}{k + 2}} + b \cdot {\small\frac{n + 1}{n - k + 1}} + c \cdot {\small\frac{n - k}{k + 2}} + d = 0 }[/math]

Sprowadzając do wspólnego mianownika, mamy

[math]\displaystyle{ (c - d) k^2 + ((- a + b - 2 c + d) n - a + b - c - d) k + (a + c) n^2 + (2 a + 2 b + c + 2 d) n + a + 2 b + 2 d = 0 }[/math]

Ponieważ powyższe równanie musi być prawdziwe dla każdego [math]\displaystyle{ k }[/math], to współczynniki przy potęgach [math]\displaystyle{ k }[/math] muszą być równe zero. Zatem dostajemy układ równań

[math]\displaystyle{ \begin{cases} c - d = 0 \\ (- a + b - 2 c + d) n - a + b - c - d = 0 \\ (a + c) n^2 + (2 a + 2 b + c + 2 d) n + a + 2 b + 2 d = 0 \\ \end{cases} }[/math]


Łatwo znajdujemy rozwiązania: [math]\displaystyle{ b = 0 }[/math], [math]\displaystyle{ c = - a \cdot {\small\frac{n + 1}{n + 2}} }[/math], [math]\displaystyle{ d = - a \cdot {\small\frac{n + 1}{n + 2}} }[/math]. Skąd wynika związek dla [math]\displaystyle{ S(n) }[/math] (zobacz D111)

[math]\displaystyle{ (n + 2) S (n + 1) = 2 (n + 1) S (n) + 1 }[/math]

Metodą indukcji matematycznej łatwo dowodzimy, że [math]\displaystyle{ S(n) = {\small\frac{2^{n + 1} - 1}{n + 1}} }[/math].


Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.

sum3() := 
(
f(n, k):= 1/(k+1) * binomial(n, k),   /* składnik sumy */
print("f(n, k) = ", f(n,k) ),
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,   /* równanie rekurencyjne dla składników sumy f(n, k) */
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),   /* równanie rekurencyjne dla sumy S(n) */
/*   przekształcamy F1, S1   */
F2: minfactorial( makefact(F1) ),   /* zamień na silnie i uprość silnie */
print("równanie: ", F2),
F3: num( factor(F2) ),   /* faktoryzuj i weź licznik */
print("licznik = ", rat(F3, k)),
deg: hipow(F3, k),
print("stopień = ", deg),
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */
LE:  [subst(0, k, F3) = 0],
for i: 1 thru deg do push(coeff(F3, k^i)=0, LE),   /* kolejne równania wpisujemy do listy LE */
print("lista równań: ", LE),
sol: solve( LE, [a, b, c, d] ),   /* lista rozwiązań */
print("rozwiązanie: ", sol),
S2: minfactorial( makefact(S1) ),   /* zamień na silnie i uprość silnie */
S3: subst( sol[1], S2),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
/*       (n+2)*S[n+1] = 2*(n+1)*S[n] + 1     */
load("solve_rec"),
solve_rec( S4 = 0, S[n] )        /*   S[n] = ( (C+1) * 2^n - 1 )/(n + 1)   */
)$


Zadanie D116
Niech [math]\displaystyle{ n \in \mathbb{N}_0 }[/math] i [math]\displaystyle{ k \in \mathbb{Z} }[/math]. Uzasadnić, dlaczego przyjmujemy, że [math]\displaystyle{ {\small\binom{n}{k}} = 0 }[/math], gdy [math]\displaystyle{ k \lt 0 }[/math] lub [math]\displaystyle{ k \gt n }[/math].

Rozwiązanie

Jeżeli zapiszmy [math]\displaystyle{ {\small\binom{n}{k}} }[/math] w postaci

[math]\displaystyle{ {\small\binom{n}{k}} = {\small\frac{n!}{k! (n - k) !}} = {\small\frac{n \cdot (n - 1) \cdot \ldots \cdot (n - k + 1)}{k!}} }[/math]

to natychmiast widzimy, że prawa strona musi być równa zero dla [math]\displaystyle{ k \gt n }[/math].

Jeżeli we wzorze Pascala

[math]\displaystyle{ {\small\binom{n}{k}} = {\small\binom{n - 1}{k}} + {\small\binom{n - 1}{k - 1}} }[/math]

położymy [math]\displaystyle{ n = m + 1 }[/math] i [math]\displaystyle{ k = 0 }[/math], to otrzymamy

[math]\displaystyle{ 1 = 1 + {\small\binom{m}{- 1}} }[/math]

czyli [math]\displaystyle{ {\small\binom{m}{- 1}} = 0 }[/math]

I tak samo dla wszystkich [math]\displaystyle{ k \lt 0 }[/math].


Znacznie mocniejszego uzasadnienia dostarczy nam funkcja gamma (zobacz D129), która jest uogólnieniem silni na liczby rzeczywiste. Rozważmy funkcję

[math]\displaystyle{ g(n, x) = {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} }[/math]

Jeżeli [math]\displaystyle{ k \in \mathbb{Z} }[/math] i [math]\displaystyle{ 0 \leqslant k \leqslant n }[/math], to funkcja [math]\displaystyle{ g(n, k) }[/math] jest równa współczynnikowi dwumianowemu [math]\displaystyle{ {\small\binom{n}{k}} }[/math].

[math]\displaystyle{ g(n, k) = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1) \Gamma (n - k + 1)}} = {\small\frac{n!}{k! (n - k) !}} = {\small\binom{n}{k}} }[/math]


W przypadku, gdy [math]\displaystyle{ k \lt 0 }[/math], mamy

[math]\displaystyle{ \lim_{x \rightarrow k} g (n, x) = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} = \lim_{x \rightarrow k} {\small\frac{1}{\Gamma (x + 1)}} \cdot \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (n - x + 1)}} = 0 \cdot {\small\frac{\Gamma (n + 1)}{\Gamma (n - k + 1)}} = 0 }[/math]


W przypadku, gdy [math]\displaystyle{ k \gt n }[/math], dostajemy

[math]\displaystyle{ \lim_{x \rightarrow k} g (n, x) = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1)}} \cdot \lim_{x \rightarrow k} {\small\frac{1}{\Gamma (n - x + 1)}} = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1)}} \cdot 0 = 0 }[/math]


Co najlepiej wyjaśnia, dlaczego przyjmujemy, że [math]\displaystyle{ {\small\binom{n}{k}} = 0 }[/math], gdy [math]\displaystyle{ k \lt 0 }[/math] lub [math]\displaystyle{ k \gt n }[/math].


Twierdzenie D117
Niech [math]\displaystyle{ n, I, J \in \mathbb{N}_0 }[/math] i [math]\displaystyle{ k \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math] i składniki sumy [math]\displaystyle{ f(n, k) }[/math] spełniają równanie rekurencyjne

[math]\displaystyle{ \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0 }[/math]

gdzie współczynniki [math]\displaystyle{ a_{i j} }[/math] są funkcjami tylko [math]\displaystyle{ n }[/math], to suma

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]

spełnia następujące równanie rekurencyjne

[math]\displaystyle{ \sum_{i = 0}^{I} S (n + i) \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]
Dowód

Z założenia [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math], zatem sumę [math]\displaystyle{ S(n) }[/math] możemy zapisać w postaci

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k = - \infty}^{+ \infty} f (n, k) }[/math]

Niech [math]\displaystyle{ 0 \leqslant i \leqslant I }[/math] oraz [math]\displaystyle{ 0 \leqslant j \leqslant J }[/math]. Rozważmy sumę

[math]\displaystyle{ \sum_{k = - J}^{n + I} f (n + i, k + j) }[/math]

Zauważmy, że [math]\displaystyle{ f(n + i, k + j) = 0 }[/math] dla [math]\displaystyle{ k \notin [- J, n + I] }[/math], bo

  •    dla [math]\displaystyle{ k \lt - J }[/math] mamy [math]\displaystyle{ k + j \lt - J + j \leqslant 0 }[/math]
  •    dla [math]\displaystyle{ k \gt n + I }[/math] mamy [math]\displaystyle{ k + j \gt n + I + j \geqslant n + I \geqslant n + i }[/math]

Wynika stąd, że rozszerzając rozpatrywaną sumę na cały zbiór liczb całkowitych, nie zmienimy wartości sumy. Czyli, że

[math]\displaystyle{ \sum_{k = - J}^{n + I} f (n + i, k + j) = \sum_{k = - \infty}^{+ \infty} f (n + i, k + j) }[/math]


Teraz już łatwo otrzymujemy równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) }[/math]

[math]\displaystyle{ 0 = \sum_{k = - J}^{n + I} \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k = - J}^{n + I} f (n + i, k + j) \, }[/math][a]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k = - \infty}^{+ \infty} f (n + i, k + j) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum^{+ \infty}_{l = - \infty} f (n + i, l) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot S (n + i) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} S (n + i) \left[ \sum_{j = 0}^{J} a_{i j} \right] }[/math]

Co należało pokazać.



[a] W przypadku wielokrotnych sum skończonych możemy dowolnie zmieniać ich kolejność ze względu na łączność dodawania.


Uwaga D118
Z zadania D116 wynika, że jeżeli funkcja [math]\displaystyle{ f(n, k) }[/math] zawiera czynnik [math]\displaystyle{ {\small\binom{n}{k}} }[/math], to może spełniać warunek [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math]. Oczywiście nie jest to warunek wystarczający, bo funkcja [math]\displaystyle{ f (n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math] jest różna od zera dla [math]\displaystyle{ k = - 1 }[/math].


Zadanie D119
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D105 p.3)

[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1} }[/math]
Rozwiązanie

Oczywiście [math]\displaystyle{ f(n, k) = k {\small\binom{n}{k}} }[/math]. Do rozwiązania problemu wykorzystamy oprogramowanie Maxima i procedurę

sum5(I, J) := 
(
read("podaj definicję f(n, k)"),   /* składnik sumy */
print("f(n, k) = ", f(n, k) ),
F1: sum( sum( a[i,j] * f(n+i, k+j), i, 0, I), j, 0, J) / f(n, k),
F2: num( factor( minfactorial( makefact( expand( F1 ) ) ) ) ),
deg: hipow(F2, k),
LE:  [subst(0, k, F2) = 0],
for i: 1 thru deg do push(coeff(F2, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
LV: create_list(a[i, j], i, 0, I , j, 0, J),   /* lista zmiennych */
sol: solve( LE, LV ),   /* lista rozwiązań */
S1: sum( S[n+i] * sum(a[i,j], j, 0, J), i, 0, I),
S2: subst( sol[1], S1 ),   /* pierwszy element listy sol */
S3: num( factor( expand( S2 ) ) ),
print("rekurencja: ", S3 = 0),
load("solve_rec"),
solve_rec( S3 = 0,  S[n] )
)$


Wywołujemy procedurę sum5(1, 2) i wpisujemy funkcję

f(n, k):= k * binomial(n, k)

W wyniku otrzymujemy równanie rekurencyjne

n * S[n+1] = 2 * (n+1) * S[n]

którego rozwiązanie jest postaci

S[n] = C * n * 2^(n-1)

Łatwo sprawdzamy, że C = 1. Co należało pokazać.


Zadanie D120
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwe są wzory

[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^3 {\small\binom{n}{k}} = n^2 (n + 3) 2^{n - 3} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{n}{k}}^2 = {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}}^2 = n^2 {\small\binom{2 n - 2}{n - 1}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^3 {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n^2 (n + 1) {\small\binom{2 n - 2}{n - 1}} }[/math]
Rozwiązanie

Wskazówki:

Korzystamy z procedury sum5(), której kod został podany w zadaniu D119.

Zawsze próbujemy znaleźć rozwiązanie dla najmniejszych wartości parametrów I, J.

[math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} = 2^{- 2 n} \sqrt{\pi} \cdot n! \cdot {\small\binom{2 n}{n}} }[/math]

Punkt 1. sum5(1, 2), zobacz też sum5(2, 1)

Punkt 2. sum5(1, 3), zobacz też sum5(2, 2)

Punkt 3. sum5(2, 2)

Punkt 4. sum5(2, 2)

Punkt 5. sum5(2, 2)

Punkt 6. sum5(2, 3), zobacz też sum5(3, 2)


Uwaga D121
Niech [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Wiemy (zobacz D117), że jeżeli dla dowolnego [math]\displaystyle{ n }[/math] wartość funkcji [math]\displaystyle{ f(n, k) }[/math] jest określona dla wszystkich [math]\displaystyle{ k \in \mathbb{Z} }[/math] i [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math], to sumę [math]\displaystyle{ S(n) }[/math] możemy zapisać w równoważnej postaci [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k \in \mathbb{Z}} f (n, k) }[/math]


Rozważmy teraz funkcję [math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math], która powyższego warunku nie spełnia, bo jest różna od zera dla [math]\displaystyle{ k = - 1 }[/math]. Jeżeli zapiszemy [math]\displaystyle{ f(n, k) }[/math] w postaci

[math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{n!}{k! (n - k) !}} = {\small\frac{n!}{(k + 1) ! (n - k) !}} }[/math]

to natychmiast widzimy, że

[math]\displaystyle{ f(n, - 1) = {\small\frac{n!}{0! (n + 1) !}} = {\small\frac{1}{n + 1}} }[/math]

Zatem w przypadku tej funkcji mamy

[math]\displaystyle{ \sum_{k \in \mathbb{Z}} f (n, k) = \sum_{k = 0}^{n} f (n, k) + f (n, - 1) = S (n) + {\small\frac{1}{n + 1}} }[/math]


Zakładając, że spełnione jest równanie

[math]\displaystyle{ \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0 }[/math]

otrzymujemy następujące równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) = \sum_{k \in \mathbb{Z}} f (n, k) }[/math]

[math]\displaystyle{ \sum_{k \in \mathbb{Z}} \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k \in \mathbb{Z}} f (n + i, k + j) }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{l \in \mathbb{Z}} f (n + i, l) }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]


Jeżeli mamy skończoną liczbę punktów [math]\displaystyle{ k_r \notin [0, n] }[/math], w których funkcja [math]\displaystyle{ f(n, k) }[/math] jest określona i różna od zera, to możemy zdefiniować funkcję

[math]\displaystyle{ T(n) = f (n, k_1) + f (n, k_2) + f (n, k_3) + \ldots = \sum_r f (n, k_r) }[/math]

W takim przypadku otrzymamy następujące równanie rekurencyjne dla sumy [math]\displaystyle{ S (n) = \sum_{k = 0}^{n} f (n, k) }[/math]

[math]\displaystyle{ \sum_{i = 0}^{I} [S (n + i) + T (n + i)] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]


Wystarczy drobna modyfikacja procedury sum5(), aby obejmowała ona również takie przypadki

sum6(I, J):= 
(
read("podaj definicję f(n, k)"),   /* składnik sumy */
print("f(n, k) = ", f(n, k) ),
read("podaj definicję T(n)"),   /* suma skończonych wartości funkcji f(n, k), gdzie k<0 lub k>n */
print("T(n) = ", T(n) ),
F1: sum( sum( a[i,j] * f(n+i, k+j), i, 0, I), j, 0, J) / f(n, k),
F2: num( factor( minfactorial( makefact( expand( F1 ) ) ) ) ),
deg: hipow(F2, k),
LE:  [subst(0, k, F2) = 0],
for i: 1 thru deg do push(coeff(F2, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
LV: create_list(a[i, j], i, 0, I , j, 0, J),   /* lista zmiennych */
sol: solve( LE, LV ),   /* lista rozwiązań */
S1: sum( ( S[n+i] + T(n+i) ) * sum( a[i,j], j, 0, J ), i, 0, I ),
S2: num( factor( minfactorial( makefact( expand( S1 ) ) ) ) ),
S3: subst( sol[1], S2 ),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
load("solve_rec"),
solve_rec( S4 = 0,  S[n] )
)$


Korzystając z powyższej procedury, Czytelnik może łatwo policzyć wypisane poniżej sumy.


Zadanie D122
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n }[/math]
Rozwiązanie

Zauważmy, że składniki sumy są równe zero dla [math]\displaystyle{ k \notin [0, n] }[/math] (zobacz zadanie D134). Zatem korzystając z procedury sum6(2, 1), otrzymujemy równanie rekurencyjne

[math]\displaystyle{ (n + 2) S (n + 2) - 4 (2 n + 3) S (n + 1) + 16 (n + 1) S (n) = 0 }[/math]

i rozwiązanie

[math]\displaystyle{ S(n) = C \cdot 4^n }[/math]

Łatwo sprawdzamy, że [math]\displaystyle{ C = 1 }[/math].


Zadanie D123
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
Rozwiązanie

Zauważmy, że składniki sumy są równe zero dla [math]\displaystyle{ k \notin [0, n] }[/math] (zobacz D134) poza punktem [math]\displaystyle{ k = - 1 }[/math]. Wiemy, że (zobacz D135)

[math]\displaystyle{ \lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = - {\small\frac{1}{2}} }[/math]

Zatem

[math]\displaystyle{ \lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = - {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]

Czyli

[math]\displaystyle{ f(n, - 1) = - {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]


Korzystając z procedury sum6(2, 1), otrzymujemy równanie rekurencyjne

[math]\displaystyle{ (n^2 + 5 n + 6) S (n + 2) - 8 (n^2 + 4 n + 4) S (n + 1) + 16 (n^2 + 3 n + 2) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{[(n + 1) !]^2}} = 0 }[/math]
[math]\displaystyle{ (n + 2) (n + 3) S (n + 2) - 8 (n + 2)^2 S (n + 1) + 16 (n + 1) (n + 2) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{[(n + 1) !]^2}} = 0 }[/math]
[math]\displaystyle{ (n + 3) S (n + 2) - 8 (n + 2) S (n + 1) + 16 (n + 1) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{(n + 1) ! (n + 2) !}} = 0 }[/math]

Maxima nie potrafi rozwiązać tego równania rekurencyjnego, ale można sprawdzić, że [math]\displaystyle{ S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math] jest jego rozwiązaniem.



Uzupełnienie

 

Dowód własności liczb Catalana [math]\displaystyle{ {\small C_{n + 1} = \textstyle\sum_{k = 0}^{n} C_k C_{n - k}} }[/math]

Uwaga D124
Przedstawiony poniżej dowód czwartego punktu twierdzenia D103 został oparty na pracy Jovana Mikicia[28].


Twierdzenie D125
Jeżeli funkcja [math]\displaystyle{ f(k) }[/math] nie zależy od [math]\displaystyle{ n }[/math] i dane są sumy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

to

[math]\displaystyle{ T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math]
Dowód

Z definicji sumy [math]\displaystyle{ T(n) }[/math] ostatni wyraz tej sumy jest równy zero, zatem dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ T(n) = \sum_{k = 0}^{n - 1} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n - 1} (n - k) f (k) \cdot {\small\frac{(2 n - 2 k) (2 n - 2 k - 1)}{(n - k)^2}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n - 1} 2 (2 n - 2 k - 1) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n - 1} [4 (n - 1 - k) + 2] f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}} }[/math]

Czyli

[math]\displaystyle{ T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math]

Co kończy dowód.


Twierdzenie D126
Dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n }[/math]
Dowód

Niech

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

Zauważmy, że

[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} j {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} k {\small\binom{2 n - 2 k}{n - k}} {\small\binom{2 k}{k}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \sum_{k = 0}^{n} (n - k + k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{n}{2}} \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{n S (n)}{2}} }[/math]

Ponieważ [math]\displaystyle{ T(n) = {\small\frac{n S (n)}{2}} }[/math] i [math]\displaystyle{ T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math] (zobacz D125), to otrzymujemy

[math]\displaystyle{ {\small\frac{n S (n)}{2}} = 4 \cdot {\small\frac{(n - 1) S (n - 1)}{2}} + 2 S (n - 1) }[/math]

Czyli

[math]\displaystyle{ n S (n) = 4 n S (n - 1) - 4 S (n - 1) + 4 S (n - 1) }[/math]
[math]\displaystyle{ S(n) = 4 S (n - 1) }[/math]

Metodą indukcji matematycznej łatwo dowodzimy, że [math]\displaystyle{ S(n) = 4^n }[/math]. Co należało pokazać.


Twierdzenie D127
Dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
Dowód

Oznaczmy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

Zauważmy, że

[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n} {\small\frac{n + 1 - (k + 1)}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = (n + 1) \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} - \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = (n + 1) S (n) - 4^n }[/math]

Ponieważ [math]\displaystyle{ T(n) = (n + 1) S (n) - 4^n }[/math] i [math]\displaystyle{ T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math] (zobacz D125), to otrzymujemy

[math]\displaystyle{ (n + 1) S (n) - 4^n = 4 \cdot (n S (n - 1) - 4^{n - 1}) + 2 S (n - 1) }[/math]
[math]\displaystyle{ (n + 1) S (n) - 4^n = 4 n S (n - 1) - 4^n + 2 S (n - 1) }[/math]
[math]\displaystyle{ S(n) = {\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) }[/math]

Metodą indukcji matematycznej dowodzimy, że [math]\displaystyle{ S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]. Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ S(0) = 1 }[/math] i [math]\displaystyle{ {\small\frac{1}{2}} {\small\binom{2}{1}} = 1 }[/math]. Zatem wzór jest prawdziwy dla [math]\displaystyle{ n = 0 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ n - 1 }[/math], otrzymujemy dla [math]\displaystyle{ n }[/math]

[math]\displaystyle{ {\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(n + 1)^2}{(2 n + 1) (2 n + 2)}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{(n + 1)^2}} \cdot {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
[math]\displaystyle{ \;\;\; = S (n) }[/math]

Co kończy dowód.


Twierdzenie D128
Jeżeli [math]\displaystyle{ C_n }[/math] są liczbami Catalana, to

[math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math]
Dowód

Zauważmy, że

[math]\displaystyle{ \sum_{k = 0}^{n} C_k C_{n - k} = \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} {\small\frac{1}{n - k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = C_{n + 1} }[/math]

Co należało pokazać.




Funkcja gamma

 

Definicja D129
Funkcja [math]\displaystyle{ \Gamma (z) }[/math][29] jest zdefiniowana równoważnymi wzorami

[math]\displaystyle{ \Gamma (z) = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t \qquad \operatorname{Re}(z) \gt 0 \qquad \qquad }[/math] (definicja całkowa Eulera)
[math]\displaystyle{ \Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja Gaussa)
[math]\displaystyle{ \Gamma (z) = {\small\frac{1}{z}} \prod_{n = 1}^{\infty} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja iloczynowa Eulera)
[math]\displaystyle{ \Gamma (z) = {\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja iloczynowa Weierstrassa)

Trzy ostatnie wzory możemy wykorzystać do zdefiniowania funkcji [math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} }[/math], która jest określona dla dowolnych [math]\displaystyle{ z \in \mathbb{C} }[/math]

[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = \lim_{n \rightarrow \infty} {\small\frac{z (z + 1) \cdot \ldots \cdot (z + n)}{n^z n!}} }[/math]
[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = z \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right) }[/math]
[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = z e^{\gamma z} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right) e^{- \tfrac{z}{n}} }[/math]
Pokaż wykres

Poniżej przedstawiamy wykresy funkcji [math]\displaystyle{ \Gamma (x) }[/math] (kolor niebieski) i [math]\displaystyle{ {\small\frac{1}{\Gamma (x)}} }[/math] (kolor czerwony).

Gamma1.png

Pokaż równoważność definicji

Równoważność definicji Gaussa i definicji całkowej Eulera

Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ \operatorname{Re}(z) \gt 0 }[/math]. Rozważmy całki

[math]\displaystyle{ I_k = \int^n_0 t^{z - 1 + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k} d t }[/math]

gdzie [math]\displaystyle{ k = 0, \ldots, n }[/math]. Całkując przez części

[math]\displaystyle{ d u = t^{z - 1 + k} \, d t \qquad \qquad \qquad v = \left( 1 - {\small\frac{t}{n}} \right)^{n - k} }[/math]
[math]\displaystyle{ u = {\small\frac{t^{z + k}}{z + k}} \qquad \qquad \qquad \quad \; d v = - {\small\frac{n - k}{n}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t }[/math]

otrzymujemy

[math]\displaystyle{ I_k = {\small\frac{t^{z + k}}{z + k}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k} \, \biggr\rvert_{0}^{n} \; + \; {\small\frac{n - k}{n (z + k)}} \int^n_0 t^{z + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n - k}{n (z + k)}} \cdot I_{k + 1} }[/math]

Zatem całkując [math]\displaystyle{ n }[/math]-krotnie przez części, mamy

[math]\displaystyle{ I_0 = {\small\frac{n}{n z}} \cdot I_1 }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot I_2 }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot I_3 }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot I_n }[/math]

Ponieważ

[math]\displaystyle{ I_n = \int^n_0 t^{z + n - 1} \, d t = {\small\frac{n^{z + n}}{z + n}} }[/math]

to

[math]\displaystyle{ I_0 = \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot {\small\frac{n^{z + n}}{z + n}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} = \lim_{n \rightarrow \infty} \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t }[/math]

Co należało pokazać.


Równoważność definicji iloczynowej Eulera i definicji Gaussa

[math]\displaystyle{ {\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \left( 1 + {\small\frac{1}{k}} \right)^z \left( 1 + {\small\frac{z}{k}} \right)^{- 1} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{\left( 1 + {\small\frac{1}{k}} \right)^z}{1 + {\small\frac{z}{k}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} {\small\frac{k (k + 1)^z}{(k + z) k^z}} }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( {\small\frac{(n + 1) !}{n!}} \right)^z }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{(n + 1)^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( 1 + {\small\frac{1}{n}} \right)^z }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]

Co należało pokazać.


Równoważność definicji iloczynowej Weierstrassa i definicji Gaussa

Stała [math]\displaystyle{ \gamma }[/math] jest równa

[math]\displaystyle{ \gamma = \lim_{n \rightarrow \infty} \left( - \log n + \sum_{k = 1}^{n} {\small\frac{1}{k}} \right) }[/math]

Zatem

[math]\displaystyle{ {\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} = z^{- 1} \cdot e^{- \gamma z} \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{e^{\tfrac{z}{k}}}{1 + \tfrac{z}{k}} \right) }[/math]
[math]\displaystyle{ \, = z^{- 1} \cdot \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{k e^{\tfrac{z}{k}}}{z + k} \right) }[/math]
[math]\displaystyle{ \, = \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot e^{\left( 1 + \tfrac{1}{2} + \ldots + \tfrac{1}{n} \right) z} \right) }[/math]
[math]\displaystyle{ \, = \lim_{n \rightarrow \infty} e^{z \log n} \cdot {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]

Co należało pokazać.


Twierdzenie D130
Dla funkcji [math]\displaystyle{ \Gamma (z) }[/math] prawdziwe są następujące wzory

  •    [math]\displaystyle{ \Gamma (1) = 1 }[/math]
  •    [math]\displaystyle{ z \Gamma (z) = \Gamma (z + 1) \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} }[/math]
  •    [math]\displaystyle{ \Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}} \qquad z \notin \mathbb{Z} }[/math]
  •    [math]\displaystyle{ \Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) \qquad 2 z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (wzór Legendre'a o podwajaniu)
Dowód

Punkt 1.

[math]\displaystyle{ \Gamma (1) = \int_{0}^{\infty} t^{1 - 1} e^{- t} d t = \int_{0}^{\infty} e^{- t} d t = - e^{- t} \biggr\rvert_{0}^{\infty} = 0 - (- 1) = 1 }[/math]

Punkt 2.

Z definicji Gaussa funkcji [math]\displaystyle{ \Gamma (z) }[/math] otrzymujemy

[math]\displaystyle{ \Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \Gamma (z + 1) = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) (z + 2) \cdot \ldots \cdot (z + n + 1)}} }[/math]

Zatem

[math]\displaystyle{ z \Gamma (z) = z \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{(z + 1) \cdot \ldots \cdot (z + n)}} \cdot {\small\frac{n}{z + n + 1}} \cdot {\small\frac{z + n + 1}{n}} }[/math]
[math]\displaystyle{ \;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) \cdot \ldots \cdot (z + n) (z + n + 1)}} \cdot \left( 1 + {\small\frac{z + 1}{n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) \cdot \ldots \cdot (z + n) (z + n + 1)}} \cdot \lim_{n \rightarrow \infty} \left( 1 + {\small\frac{z + 1}{n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\;\, = \Gamma (z + 1) }[/math]

Punkt 3.

Z definicji iloczynowej Eulera mamy

[math]\displaystyle{ \Gamma (z) = {\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{1}{- z \Gamma (z) \Gamma (- z)}} }[/math]
[math]\displaystyle{ \; = {\small\frac{z \cdot (- z)}{- z}} \cdot \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right) \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 - {\small\frac{z}{n}} \right) }[/math]
[math]\displaystyle{ \; = z \cdot \prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right) }[/math]
[math]\displaystyle{ \; = {\small\frac{\sin (\pi z)}{\pi}} }[/math]

gdzie wykorzystaliśmy wzór Eulera

[math]\displaystyle{ \prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right) = {\small\frac{\sin (\pi z)}{\pi z}} }[/math]

Dowód wzoru Eulera jest trudny. Elegancki dowód, ale tylko dla liczb rzeczywistych, Czytelnik znajdzie na stronie ProofWiki.


Punkt 4.

Z definicji Gaussa funkcji gamma mamy

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{n^{2 z} n!}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + n)}} }[/math]

Jeżeli w powyższym równaniu położymy [math]\displaystyle{ 2 n }[/math] zamiast [math]\displaystyle{ n }[/math], to dostaniemy

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}} }[/math]


Zauważmy teraz, że

[math]\displaystyle{ 2^{2 n + 2} [z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right] = [2 z (2 z + 2) \cdot \ldots \cdot (2 z + 2 n)] \cdot [(2 z + 1) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n + 1)] }[/math]
[math]\displaystyle{ \;\;\;\,\, = 2 z (2 z + 1) (2 z + 2) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n) (2 z + 2 n + 1) }[/math]

Czyli

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n) (2 z + 2 n + 1)}} \cdot (2 z + 2 n + 1) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2^{2 n + 2} [z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right]}} \cdot 2 n \left( 1 + {\small\frac{2 z + 1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = 2^{2 z} \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot {\small\frac{n^{z + (1 / 2)} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)}} \cdot {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} \cdot \left( 1 + {\small\frac{2 z + 1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = 2^{2 z} \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \lim_{n \rightarrow \infty}{\small\frac{n^{z + (1 / 2)} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)}} \cdot \lim_{n \rightarrow \infty} {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} \cdot \lim_{n \rightarrow \infty} \left( 1 + {\small\frac{2 z + 1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = 2^{2 z} \cdot \Gamma (z) \cdot \Gamma \left( z + {\small\frac{1}{2}} \right) \cdot C \cdot 1 }[/math]


Ponieważ wyrażenie

[math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} }[/math]

nie zależy od [math]\displaystyle{ z }[/math], a wartości funkcji [math]\displaystyle{ \Gamma (2 z) }[/math], [math]\displaystyle{ \Gamma (z) }[/math] i [math]\displaystyle{ \Gamma \left( z + {\small\frac{1}{2}} \right) }[/math] są określone dla [math]\displaystyle{ 2 z \notin \mathbb{Z}_- \cup \{ 0 \} }[/math], to powyższa granica musi być pewną stałą. Jeżeli po lewej stronie położymy [math]\displaystyle{ z = {\small\frac{1}{2}} }[/math], to otrzymamy

[math]\displaystyle{ \Gamma (1) = 2 \cdot \Gamma \left( {\small\frac{1}{2}} \right) \Gamma (1) \cdot C }[/math]

Czyli

[math]\displaystyle{ C = {\small\frac{1}{2 \sqrt{\pi}}} }[/math]

I ostatecznie dostajemy

[math]\displaystyle{ \Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) }[/math]


Przy okazji pokazaliśmy asymptotykę: [math]\displaystyle{ {\small\binom{2 n}{n}} \sim {\small\frac{2^{2 n}}{\sqrt{\pi \, n}}} }[/math]


Zauważmy jeszcze, że gdy położymy [math]\displaystyle{ 2 n + 1 }[/math] zamiast [math]\displaystyle{ n }[/math], to otrzymamy taki sam rezultat, bo

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n + 1)^{2 z} (2 n + 1) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n + 1)}} = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}} \cdot \left( 1 + {\small\frac{1}{2 n}} \right)^{\! 2 z} \cdot \left( {\small\frac{1}{1 + {\normalsize\frac{2 z}{2 n + 1}}}} \right) }[/math]


Ze wzorów podanych w twierdzeniu D130 otrzymujemy
Twierdzenie D131
Niech [math]\displaystyle{ k \in \mathbb{Z} }[/math] i [math]\displaystyle{ n \in \mathbb{N}_0 }[/math]

  •    [math]\displaystyle{ \Gamma \left( {\small\frac{1}{2}} \right) = \sqrt{\pi} }[/math]
  •    [math]\displaystyle{ \Gamma (n + 1) = n! }[/math]
  •    [math]\displaystyle{ \Gamma \left( z + {\small\frac{1}{2}} \right) \Gamma \left( - z + {\small\frac{1}{2}} \right) = {\small\frac{\pi}{\cos (\pi z)}} \qquad z \neq k + {\small\frac{1}{2}} }[/math]
  •    [math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) \Gamma \left( - n + {\small\frac{1}{2}} \right) = \pi \cdot (- 1)^n }[/math]
  •    [math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} }[/math]
  •    [math]\displaystyle{ \Gamma \left( - n + {\small\frac{1}{2}} \right) = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
  •    [math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
Dowód

Punkt 1.

Wystarczy położyć [math]\displaystyle{ z = {\small\frac{1}{2}} }[/math] we wzorze 3. twierdzenia D130

Punkt 2.

Indukcja matematyczna. Wzór jest prawdziwy dla [math]\displaystyle{ n = 0 }[/math]. Zakładając, że jest prawdziwy dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \Gamma (n + 2) = (n + 1) \Gamma (n + 1) = (n + 1) n! = (n + 1) ! }[/math]

Zauważmy, że funkcja [math]\displaystyle{ \Gamma (z) }[/math] jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych / zespolonych.

Punkt 3.

Wystarczy położyć [math]\displaystyle{ z = z' + {\small\frac{1}{2}} }[/math] we wzorze 3. twierdzenia D130

Punkt 4.

Wystarczy położyć [math]\displaystyle{ z = n }[/math] we wzorze 3. tego twierdzenia

Punkt 5.

Indukcja matematyczna. Wzór jest prawdziwy dla [math]\displaystyle{ n = 0 }[/math]. Zakładając, że jest prawdziwy dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \Gamma \left( n + 1 + {\small\frac{1}{2}} \right) = \left( n + {\small\frac{1}{2}} \right) \Gamma \left( n + {\small\frac{1}{2}} \right) }[/math]
[math]\displaystyle{ \;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} }[/math]
[math]\displaystyle{ \;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} \cdot 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}} }[/math]
[math]\displaystyle{ \;\;\:\, = 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}} }[/math]

bo

[math]\displaystyle{ \left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} = 1 }[/math]

Punkt 6.

Ze wzoru 3. i 4. tego twierdzenia dostajemy

[math]\displaystyle{ \Gamma \left( - n + {\small\frac{1}{2}} \right) = \frac{\pi \cdot (- 1)^n}{\Gamma \left( n + {\small\frac{1}{2}} \right)} = \frac{\pi \cdot (- 1)^n \cdot n!}{2^{- 2 n} \sqrt{\pi} \cdot (2 n) !} = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} }[/math]

Punkt 7.

Ze wzoru Legendre'a o podwajaniu otrzymujemy

[math]\displaystyle{ {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( z + {\small\frac{1}{2}} \right) }[/math]

gdzie [math]\displaystyle{ z \notin \mathbb{Z}_- \cup \{ 0 \} }[/math]

Dla [math]\displaystyle{ z = - n }[/math] po lewej stronie mamy symbol nieoznaczony [math]\displaystyle{ {\small\frac{\infty}{\infty}} }[/math], ale w punktach [math]\displaystyle{ z = - n }[/math] istnieje granica funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 z)}{\Gamma (z)}} }[/math]

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( - n + {\small\frac{1}{2}} \right) = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
Pokaż wykres

Poniżej przedstawiamy wykres funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 x)}{\Gamma (x)}} \cdot 10^{| x |} }[/math]. Uwaga: wykres funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 x)}{\Gamma (x)}} }[/math] został celowo zniekształcony przez dodanie czynnika [math]\displaystyle{ 10^{| x |} }[/math], aby dało się zauważyć, że wartości granic [math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x)}{\Gamma (x)}} }[/math] są różne od zera dla [math]\displaystyle{ n \in \mathbb{N}_0 }[/math].

Gamma2.png



Twierdzenie D132
Jeżeli [math]\displaystyle{ n \in \mathbb{N}_0 }[/math] i [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}} }[/math]
Dowód

Wiemy, że jeżeli [math]\displaystyle{ z }[/math] nie jest liczbą całkowitą, to prawdziwy jest wzór (zobacz D130 p.3)

[math]\displaystyle{ \Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}} }[/math]

Zatem

[math]\displaystyle{ \Gamma (a z) \Gamma (- a z + 1) = {\small\frac{\pi}{\sin (\pi a z)}} }[/math]

Dzieląc powyższe równania przez siebie, otrzymujemy

[math]\displaystyle{ {\small\frac{\Gamma (a z) \Gamma (- a z + 1)}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{\pi}{\sin (\pi a z)}} \cdot {\small\frac{\sin (\pi z)}{\pi}} = {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} }[/math]

Skąd dostajemy

[math]\displaystyle{ {\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (- z + 1)}{\Gamma (- a z + 1)}} \cdot {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} }[/math]

Niech [math]\displaystyle{ k }[/math] oznacza dowolną liczbę całkowitą. W granicy, gdy [math]\displaystyle{ z \rightarrow k }[/math], mamy

[math]\displaystyle{ \lim_{z \rightarrow k} {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} = {\small\frac{\pi \cdot \cos (\pi k)}{a \pi \cdot \cos (\pi a k)}} = {\small\frac{1}{a}} \cdot {\small\frac{(- 1)^k}{(- 1)^{a k}}} = {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) k} }[/math]

gdzie skorzystaliśmy z reguły de l'Hospitala. Wynika stąd, że

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (n + 1)}{\Gamma (a n + 1)}} \cdot {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) n} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}} }[/math]

Co należało pokazać.


Twierdzenie D133
Jeżeli [math]\displaystyle{ n \in \mathbb{N}_0 }[/math] i [math]\displaystyle{ a \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}} }[/math]
Dowód

Z twierdzenia D130 p.2 wynika, że

[math]\displaystyle{ \Gamma (a z + a n + 1) = \Gamma (a z + 1) \cdot \prod^{a n}_{j = 1} (a z + j) }[/math]
[math]\displaystyle{ \Gamma (b z + b n + 1) = \Gamma (b z + 1) \cdot \prod^{b n}_{j = 1} (b z + j) }[/math]

Dzieląc równania przez siebie, otrzymujemy

[math]\displaystyle{ {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (b z + b n + 1)}} \cdot \frac{\displaystyle\prod^{b n}_{j = 1} (b z + j)}{\displaystyle\prod^{a n}_{j = 1} (a z + j)} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (z + n + 1)}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (b z + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (a z + j)} \cdot {\small\frac{b}{a}} }[/math]

Zatem

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = {\small\frac{b}{a}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (- b n + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (- a n + j)} \cdot {\small\frac{\Gamma (1)}{\Gamma (1)}} = {\small\frac{b}{a}} \cdot \frac{(- 1)^{b n - 1} \cdot \displaystyle\prod^{b n - 1}_{j = 1} (b n - j)}{(- 1)^{a n - 1} \cdot \displaystyle\prod^{a n - 1}_{j = 1} (a n - j)} = {\small\frac{b}{a}} \cdot (- 1)^{(a - b) n} \cdot {\small\frac{(b n - 1) !}{(a n - 1) !}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}} }[/math]

Co należało pokazać.


Zadanie D134
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i [math]\displaystyle{ g(n) = {\small\binom{2 n}{n}} }[/math]. Pokazać, że

  •    rozszerzając funkcję [math]\displaystyle{ g(n) }[/math] na zbiór liczb rzeczywistych, otrzymujemy [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} }[/math]
  •    [math]\displaystyle{ \lim_{x \rightarrow - n} g (x) = 0 }[/math]
Rozwiązanie

Zapiszmy funkcję [math]\displaystyle{ g(n) = {\small\binom{2 n}{n}} }[/math] w postaci

[math]\displaystyle{ g(n) = {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{\Gamma (2 n + 1)}{\Gamma (n + 1)^2}} }[/math]

Możemy teraz przejść do zmiennej rzeczywistej

[math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} }[/math]

bo funkcja [math]\displaystyle{ \Gamma (x) }[/math] jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych.

Korzystając z twierdzenia D133, otrzymujemy

[math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1)^n \cdot {\small\frac{n!}{(2 n) !}} }[/math]

Ale wiemy, że (zobacz D129)

[math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{1}{\Gamma (x + 1)}} = 0 }[/math]

Zatem

[math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} = 0 }[/math]

Co należało pokazać i co jest dobrze widoczne na wykresie funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} }[/math]

Gamma3.png


Zadanie D135
Niech [math]\displaystyle{ n \in \mathbb{N}_0 }[/math] i [math]\displaystyle{ g(n) = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} }[/math]. Pokazać, że

  •    rozszerzając funkcję [math]\displaystyle{ g(n) }[/math] na zbiór liczb rzeczywistych, otrzymujemy [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} }[/math]
  •    [math]\displaystyle{ \lim_{x \rightarrow - 1} g (x) = - {\small\frac{1}{2}} }[/math]
Rozwiązanie

Oczywiście funkcja [math]\displaystyle{ g(k) }[/math] nie jest określona w punkcie [math]\displaystyle{ k = - 1 }[/math]

[math]\displaystyle{ g(k) = {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{(2 k) !}{(k!)^2}} = {\small\frac{(2 k) !}{(k + 1) !k!}} = {\small\frac{\Gamma (2 k + 1)}{\Gamma (k + 2) \Gamma (k + 1)}} }[/math]

Jeżeli przejdziemy do zmiennej rzeczywistej

[math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} }[/math]

to łatwo pokażemy, że granica funkcji [math]\displaystyle{ g(x) }[/math] w punkcje [math]\displaystyle{ x = - 1 }[/math] istnieje i jest równa [math]\displaystyle{ - {\small\frac{1}{2}} }[/math].

Z twierdzenia D133 dostajemy

[math]\displaystyle{ \lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1) \cdot {\small\frac{1}{2}} = - {\small\frac{1}{2}} }[/math]

Czyli

[math]\displaystyle{ \lim_{x \rightarrow - 1} g (x) = \lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} = - {\small\frac{1}{2}} \cdot {\small\frac{1}{\Gamma (1)}} = - {\small\frac{1}{2}} }[/math]


Co dobrze widać na wykresie funkcji [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} }[/math]

Gamma4.png








Przypisy

  1. Wikipedia, Funkcja η, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Funkcja dzeta Riemanna, (Wiki-pl), (Wiki-en)
  3. Bernhard Riemann, Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe, [rozprawa habilitacyjna z 1854, w:] Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen vol. 13, 1868, pp. 87 - 1
  4. Twierdzenie: funkcja ciągła w przedziale domkniętym jest całkowalna w tym przedziale.
  5. W szczególności: funkcja ograniczona i mająca skończoną liczbę punktów nieciągłości w przedziale domkniętym jest w tym przedziale całkowalna.
  6. 6,0 6,1 Wikipedia, Twierdzenia Mertensa, (Wiki-pl), (Wiki-en)
  7. 7,0 7,1 Wikipedia, Franciszek Mertens, (Wiki-pl)
  8. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94, (LINK)
  9. Zobacz twierdzenie D61.
  10. The On-Line Encyclopedia of Integer Sequences, A001620 - Decimal expansion of Euler's constant, (A001620)
  11. The On-Line Encyclopedia of Integer Sequences, A083343 - Decimal expansion of constant B3 (or B_3) related to the Mertens constant, (A083343)
  12. The On-Line Encyclopedia of Integer Sequences, A138312 - Decimal expansion of Mertens's constant minus Euler's constant, (A138312)
  13. Pierre Dusart, Estimates of Some Functions Over Primes without R.H., 2010, (LINK)
  14. Wikipedia, Stałe Bruna, (Wiki-pl), (Wiki-en)
  15. The On-Line Encyclopedia of Integer Sequences, A065421 - Decimal expansion of Viggo Brun's constant B, (A065421)
  16. Paul Erdős, Über die Reihe [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math], Mathematica, Zutphen B 7, 1938, 1-2.
  17. sumowanie przez części (ang. summation by parts)
  18. ciąg wypukły (ang. convex sequence)
  19. Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, vol. 45(1), 2018, 227-251.
  20. 20,0 20,1 Wikipedia, Szereg geometryczny, (Wiki-pl), (Wiki-en)
  21. Wikipedia, Sumowalność metodą Cesàro, (Wiki-pl), (Wiki-en)
  22. Wikipedia, Indefinite sum, (Wiki-en)
  23. Sister Mary Celine Fasenmyer, Some Generalized Hypergeometric Polynomials, Bull. Amer. Math. Soc. 53 (1947), 806-812
  24. Sister Mary Celine Fasenmyer, A Note on Pure Recurrence Relations, Amer. Math. Monthly 56 (1949), 14-17
  25. Doron Zeilberger, Sister Celine's technique and its generalizations, Journal of Mathematical Analysis and Applications, 85 (1982), 114-145
  26. Herbert Wilf and Doron Zeilberger, Rational Functions Certify Combinatorial Identities, J. Amer. Math. Soc. 3 (1990), 147-158
  27. Marko Petkovšek, Herbert Wilf and Doron Zeilberger, A = B, AK Peters, Ltd., 1996
  28. Jovan Mikić, A Proof of a Famous Identity Concerning the Convolution of the Central Binomial Coefficients, Journal of Integer Sequences, Vol. 19, No. 6 (2016), pp. 1 - 10, (LINK)
  29. Wikipedia, Funkcja Γ, (Wiki-pl), (Wiki-en)