Szeregi liczbowe: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
 
(Nie pokazano 16 pośrednich wersji utworzonych przez tego samego użytkownika)
Linia 55: Linia 55:
 
::<math>S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}}  < a_1</math>
 
::<math>S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}}  < a_1</math>
  
Zatem dla każdego <math>m</math> ciąg sum częściowych <math>S_{2 m}</math> jest rosnący i&nbsp;ograniczony od góry, skąd na mocy twierdzenia [[Ciągi liczbowe#C11|C11]] jest zbieżny, czyli
+
Zatem dla każdego <math>m</math> ciąg sum częściowych <math>S_{2 m}</math> jest rosnący i&nbsp;ograniczony od góry, skąd na mocy twierdzenia [[Ciągi liczbowe#C12|C12]] jest zbieżny, czyli
  
 
::<math>\lim_{m \to \infty} S_{2 m} = g</math>
 
::<math>\lim_{m \to \infty} S_{2 m} = g</math>
Linia 70: Linia 70:
  
 
<span id="D6" style="font-size: 110%; font-weight: bold;">Twierdzenie D6</span><br/>
 
<span id="D6" style="font-size: 110%; font-weight: bold;">Twierdzenie D6</span><br/>
Dla <math>s > 1</math> prawdziwy jest następujący związek
+
Szereg harmoniczny naprzemienny <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}}</math> jest zbieżny i
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
::<math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Zauważmy, że założenie <math>s > 1</math> zapewnia zbieżność szeregu po prawej stronie. Zapiszmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math> w&nbsp;postaci sumy dla <math>k</math> parzystych i&nbsp;nieparzystych
+
Zbieżność szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}}</math> wynika natychmiast z&nbsp;kryterium Leibniza ([[#D5|D5]]). Sumę szeregu trudniej policzyć – przedstawiony niżej sposób korzysta z&nbsp;własności całek
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} = 1 + {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} + {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} + \ldots</math>
+
::<math>I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt</math>
  
::::<math>\: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}}</math>
+
gdzie <math>n \geqslant 0</math>. Przykładowo
  
::::<math>\: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
::<math>I_0 = \int_0^1 {\small\frac{1}{1 + t^2}} dt = \operatorname{arctg}(t) \biggr\rvert_{0}^{1} = {\small\frac{\pi}{4}} \approx 0.785398 \ldots</math>
  
Otrzymujemy wzór
+
::<math>I_1 = \int_0^1 {\small\frac{t}{1 + t^2}}  dt = {\small\frac{1}{2}} \int_0^1 {\small\frac{2 t}{1 + t^2}} d t = {\small\frac{1}{2}} \int_0^1 {\small\frac{du}{1 + u}} = {\small\frac{1}{2}} \biggr[ \log (1 + u) \biggr\rvert_{0}^{1} \biggr] = {\small\frac{1}{2}} \cdot \log 2 \approx 0.34657 \ldots</math>
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
::<math>I_2 = \int_0^1 {\small\frac{t^2}{1 + t^2}} dt = \int_0^1 {\small\frac{1 + t^2 - 1}{1 + t^2}} dt = \int_0^1 dt - \int_0^1 {\small\frac{1}{1 + t^2}} dt = 1 - {\small\frac{\pi}{4}} \approx 0.21460 \ldots</math>
  
  
Podobnie rozpiszmy szereg naprzemienny
 
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = 1 - {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} - {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} - \ldots</math>
+
Udowodnimy kolejno, że
  
:::::<math>\;\;\,\, = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} - \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}}</math>
+
::1. <math>\qquad {\small\frac{1}{2 n + 2}} \leqslant I_n \leqslant {\small\frac{1}{n + 1}} \qquad \qquad \;\; \text{dla} \;\; n \geqslant 0</math>
  
:::::<math>\;\;\,\, = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} - {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
::2. <math>\qquad I_n = {\small\frac{1}{n - 1}} - I_{n - 2} \qquad \qquad \qquad \text{dla} \;\; n \geqslant 2</math>
  
:::::<math>\;\;\,\, = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
::3. <math>\qquad I_{2 n + 1} = (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) \qquad \qquad \text{dla} \;\; n \geqslant 0</math>
  
gdzie skorzystaliśmy ze znalezionego wyżej wzoru dla sumy szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}}</math><br/>
+
::4. <math>\qquad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2</math>
&#9633;
 
{{\Spoiler}}
 
  
  
  
<span id="D7" style="font-size: 110%; font-weight: bold;">Przykład D7</span><br/>
+
'''Punkt 1.'''
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta<ref name="DirichletEta"/>, którą definiuje szereg naprzemienny
 
  
::<math>\eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}}</math>
+
Zauważmy, że w&nbsp;przedziale <math>[0, 1]</math> mamy <math>1 \leqslant 1 + t^2 \leqslant 2</math>, zatem <math>{\small\frac{1}{2}} \leqslant {\small\frac{1}{1 + t^2}} \leqslant 1</math>. Wynika stąd oszacowanie od góry
  
lub funkcja dzeta Riemanna<ref name="RiemannZeta"/>, którą definiuje inny szereg
+
::<math>I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt \leqslant \int_0^1 t^n  dt = {\small\frac{1}{n + 1}}</math>
  
::<math>\zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
I oszacowanie od dołu
  
Na podstawie twierdzenia [[#D6|D6]] funkcje te są związane wzorem
+
::<math>I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt \geqslant \int_0^1 {\small\frac{t^n}{2}} dt = {\small\frac{1}{2}} \int_0^1 t^n dt = {\small\frac{1}{2 n + 2}}</math>
  
::<math>\eta (s) = (1 - 2^{1 - s}) \zeta (s)</math>
+
Co kończy dowód punktu 1.
  
Dla <math>s \in \mathbb{R}_+</math> funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}}</math>.
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
'''Punkt 2.'''
|-
 
| <math>s = {\small\frac{1}{2}}</math>
 
| <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{\sqrt{k}}} = 0.604898643421 \ldots</math>
 
| [https://www.wolframalpha.com/input/?i=DirichletEta%5B1%2F2%5D WolframAlpha]
 
|-
 
| <math>s = 1</math>
 
| <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 = 0.693147180559 \ldots</math>
 
| [https://www.wolframalpha.com/input/?i=DirichletEta%5B1%5D WolframAlpha]
 
|-
 
| <math>s = 2</math>
 
| <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^2}} = {\small\frac{\pi^2}{12}} = 0.822467033424 \ldots</math>
 
| [https://www.wolframalpha.com/input/?i=DirichletEta%5B2%5D WolframAlpha]
 
|}
 
  
 +
Mamy
  
 +
::<math>I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt</math>
  
<span id="D8" style="font-size: 110%; font-weight: bold;">Twierdzenie D8</span><br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
Niech <math>N \in \mathbb{Z}_+</math>. Szeregi <math>\sum_{k = 1}^{\infty} a_k</math> oraz <math>\sum_{k = N}^{\infty} a_k</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. W&nbsp;przypadku zbieżności zachodzi związek
+
::<math>\;\;\;\:\, = \int_0^1 {\small\frac{t^{n - 2} \cdot t^2}{1 + t^2}} dt</math>
 +
</div>
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\;\;\;\:\, = \int_0^1 {\small\frac{t^{n - 2} \cdot [(1 + t^2) - 1]}{1 + t^2}} dt</math>
 +
</div>
  
::<math>\sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\;\;\;\:\, = \int_0^1 t^{n - 2} dt- \int_0^1 {\small\frac{t^{n - 2}}{1 + t^2}} dt</math>
 +
</div>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\;\;\;\:\, = {\small\frac{1}{n - 1}} - I_{n - 2}</math>
Niech <math>S(n) =\sum_{k = 1}^{n} a_k</math> (gdzie <math>n \geqslant 1</math>) oznacza sumę częściową pierwszego szeregu, a <math>T(n) = \sum_{k = N}^{\infty} a_k</math> (gdzie <math>n \geqslant N</math>) oznacza sumę częściową drugiego szeregu. Dla <math>n \geqslant N</math> mamy
 
  
::<math>S(n) = (a_1 + a_2 + \ldots + a_{N - 1}) + T (n)</math>
+
Otrzymaliśmy wzór rekurencyjny prawdziwy dla <math>n \geqslant 2</math>
  
Widzimy, że dla <math>n</math> dążącego do nieskończoności zbieżność (rozbieżność) jednego ciągu implikuje zbieżność (rozbieżność) drugiego.<br/>
+
::<math>I_n = {\small\frac{1}{n - 1}} - I_{n - 2}</math>
&#9633;
 
{{\Spoiler}}
 
  
  
 +
'''Punkt 3.'''
  
<span id="D9" style="font-size: 110%; font-weight: bold;">Twierdzenie D9 (kryterium porównawcze)</span><br/>
+
Korzystając ze znalezionego wzoru rekurencyjnego oraz indukcji matematycznej udowodnimy, że prawdziwy jest wzór
Jeżeli istnieje taka liczba całkowita <math>N_0</math>, że dla każdego <math>k > N_0</math> jest spełniony warunek
 
  
::<math>0 \leqslant a_k \leqslant b_k</math>
+
::<math>I_{2 n + 1} = (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right)</math>
  
to
+
Sprawdzamy poprawność wzoru dla <math>n = 1</math>. Z&nbsp;dowodzonego wzoru otrzymujemy
  
#&nbsp;&nbsp;&nbsp;zbieżność szeregu <math>\sum_{k = 1}^{\infty} b_k</math> pociąga za sobą zbieżność szeregu <math>\sum_{k = 1}^{\infty} a_k</math>
+
::<math>I_3 = \sum_{k = 1}^1 {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 = {\small\frac{1}{2}} - I_1</math>
#&nbsp;&nbsp;&nbsp;rozbieżność szeregu <math>\sum_{k = 1}^{\infty} a_k</math> pociąga za sobą rozbieżność szeregu <math>\sum_{k = 1}^{\infty} b_k</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
A ze wzoru rekurencyjnego dostajemy identyczny wzór
Dowód przeprowadzimy dla szeregów <math>\sum_{k = N_0}^{\infty} a_k</math> oraz <math>\sum_{k = N_0}^{\infty} b_k</math>, które są (odpowiednio) jednocześnie zbieżne lub jednocześnie rozbieżne z&nbsp;szeregami <math>\sum_{k = 1}^{\infty} a_k</math> oraz <math>\sum_{k = 1}^{\infty} b_k</math>.
 
  
'''Punkt 1.'''<br/>
+
::<math>I_3 = {\small\frac{1}{2}} - I_1</math>
Z założenia szereg <math>\sum_{k = N_0}^{\infty} b_k</math> jest zbieżny. Niech <math>\sum_{k = N_0}^{\infty} b_k = b</math>, zatem z&nbsp;założonych w&nbsp;twierdzeniu nierówności dostajemy
 
  
::<math>0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k \leqslant b</math>
 
  
Zauważmy, że ciąg sum częściowych <math>A_n = \sum_{k = N_0}^{n} a_k</math> jest ciągiem rosnącym (bo <math>a_k \geqslant 0</math>) i&nbsp;ograniczonym od góry. Wynika stąd, że ciąg <math>\left ( A_n \right )</math> jest zbieżny, zatem szereg <math>\sum_{k = N_0}^{\infty} a_k</math> jest zbieżny.
+
Załóżmy (złożenie indukcyjne), że dowodzony wzór jest prawdziwy dla <math>n</math>, dla <math>n + 1</math> mamy
  
'''Punkt 2.'''<br/>
+
::<math>I_{2 n + 3} = (- 1)^{n + 2} \left( \sum_{k = 1}^{n + 1} {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right)</math>
Z założenia szereg <math>\sum_{k = N_0}^{\infty} a_k</math> jest rozbieżny, a&nbsp;z&nbsp;założonych w&nbsp;twierdzeniu nierówności dostajemy
 
  
::<math>0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\;\: = (- 1)^{n + 2} \left( {\small\frac{(- 1)^{n + 2}}{2 n + 2}} + \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right)</math>
 +
</div>
  
Rosnący ciąg sum częściowych <math>A_n = \sum_{k = N_0}^{n} a_k</math> nie może być ograniczony od góry, bo przeczyłoby to założeniu, że szereg <math>\sum_{k = N_0}^{\infty} a_k</math> jest rozbieżny. Wynika stąd i&nbsp;z&nbsp;wypisanych wyżej nierówności, że również ciąg sum częściowych <math>B_n = \sum_{k = N_0}^{n} b_k</math> nie może być ograniczony od góry, zatem szereg <math>\sum_{k = N_0}^{\infty} b_k</math> jest rozbieżny.<br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
&#9633;
+
:::<math>\;\;\;\: = {\small\frac{1}{2 n + 2}} - (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right)</math>
{{\Spoiler}}
+
</div>
  
 +
:::<math>\;\;\;\: = {\small\frac{1}{(2 n + 3) - 1}} - I_{2 n + 1}</math>
  
 +
Ostatnia równość wynika z&nbsp;założenia indukcyjnego. Pokazaliśmy, że dowodzony wzór jest prawdziwy dla <math>n + 1</math>, co kończy dowód indukcyjny.
  
<span id="D10" style="font-size: 110%; font-weight: bold;">Twierdzenie D10</span><br/>
 
Jeżeli szereg <math>\sum_{k = 1}^{\infty} \left | a_k  \right |</math> jest zbieżny, to szereg <math>\sum_{k = 1}^{\infty} a_k</math> jest również zbieżny.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
'''Punkt 4.'''
Niech <math>b_k = a_k + | a_k |</math>. Z&nbsp;definicji prawdziwe jest następujące kryterium porównawcze
 
  
::<math>0 \leqslant b_k \leqslant 2 | a_k |</math>
+
Z punktu 1. wynika ciąg nierówności
  
Zatem z&nbsp;punktu 1. twierdzenia [[#D9|D9]] wynika, że szereg <math>\sum_{k = 1}^{\infty} b_k</math> jest zbieżny. Z&nbsp;definicji wyrazów ciągu <math>\left ( b_k \right )</math> mamy <math>a_k = b_k - | a_k |</math> i&nbsp;możemy napisać
+
::<math>{\small\frac{1}{4 (n + 1)}} \leqslant I_{2 n + 1} \leqslant {\small\frac{1}{2 (n + 1)}}</math>
  
::<math>\sum_{k = 1}^{\infty} a_k = \sum_{k = 1}^{\infty} b_k - \sum_{k = 1}^{\infty} | a_k |</math>
+
Z twierdzenia o&nbsp;trzech ciągach i&nbsp;twierdzenia [[Ciągi liczbowe#C9|C9]] wynika natychmiast
  
Ponieważ szeregi po prawej stronie są zbieżne, to zbieżny jest też szereg <math>\sum_{k = 1}^{\infty} a_k</math>. Zauważmy, że jedynie w&nbsp;przypadku, gdyby obydwa szeregi po prawej stronie były rozbieżne, nie moglibyśmy wnioskować o&nbsp;zbieżności / rozbieżności szeregu <math>\sum_{k = 1}^{\infty} a_k</math>, bo suma szeregów rozbieżnych może być zbieżna.<br/>
+
::<math>\lim_{n \rightarrow \infty} I_{2 n + 1} = 0 = \lim_{n \rightarrow \infty} | I_{2 n + 1} |</math>
&#9633;
+
 
{{\Spoiler}}
+
Zatem z&nbsp;punktu 3. mamy
  
 +
::<math>\lim_{n \rightarrow \infty} \left| \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right| = 0</math>
  
 +
Czyli
  
<span id="D11" style="font-size: 110%; font-weight: bold;">Definicja D11</span><br/>
+
::<math>\lim_{n \rightarrow \infty} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) = 0</math>
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''bezwzględnie zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest zbieżny.
 
  
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''warunkowo zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest zbieżny, ale szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest rozbieżny.
+
Skąd natychmiast dostajemy, że
  
 +
::<math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{2 k}} = I_1 = {\small\frac{\log 2}{2}}</math>
  
 +
Mnożąc obie strony przez <math>2</math>, otrzymujemy dowodzony wzór. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
<span id="D12" style="font-size: 110%; font-weight: bold;">Twierdzenie D12</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w&nbsp;jednej z&nbsp;postaci
 
  
# <math>\quad a_k = f_k - f_{k + 1}</math>
 
# <math>\quad a_k = f_{k - 1} - f_k</math>
 
  
to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa
+
<span id="D7" style="font-size: 110%; font-weight: bold;">Twierdzenie D7</span><br/>
 +
Dla <math>s > 1</math> prawdziwy jest następujący związek
  
# <math>\quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1}</math>
+
::<math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
# <math>\quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
::<math>\sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_k - f_{k + 1}) =</math>
+
Zauważmy, że założenie <math>s > 1</math> zapewnia zbieżność szeregu po prawej stronie. Zapiszmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math> w&nbsp;postaci sumy dla <math>k</math> parzystych i&nbsp;nieparzystych
 +
 
 +
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} = 1 + {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} + {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} + \ldots</math>
  
::::<math>= (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + (f_{m + 2} - f_{m + 3}) + \ldots + (f_{n - 1} - f_n) + (f_n - f_{n + 1})</math>
+
::::<math>\: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}}</math>
  
::::<math>= f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + f_{m + 2} - f_{m + 3} + \ldots + f_{n - 1} - f_n + f_n - f_{n + 1}</math>
+
::::<math>\: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
  
::::<math>= f_m + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + f_{m + 2}) + (- f_{m + 3} + \ldots + f_{n - 1}) + (- f_n + f_n) - f_{n + 1}</math>
+
Otrzymujemy wzór
  
::::<math>= f_m - f_{n + 1}</math>
+
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
  
  
 +
Podobnie rozpiszmy szereg naprzemienny
  
::<math>\sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_{k - 1} - f_k) =</math>
+
::<math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = 1 - {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} - {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} - \ldots</math>
  
::::<math>= (f_{m - 1} - f_m) + (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + \ldots + (f_{n - 2} - f_{n - 1}) + (f_{n - 1} - f_n)</math>
+
:::::<math>\;\;\,\, = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} - \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}}</math>
  
::::<math>= f_{m - 1} - f_m + f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + \ldots + f_{n - 2} - f_{n - 1} + f_{n - 1} - f_n</math>
+
:::::<math>\;\;\,\, = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} - {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
  
::::<math>= f_{m - 1} + (- f_m + f_m) + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + \ldots + f_{n - 2}) + (- f_{n - 1} + f_{n - 1}) - f_n</math>
+
:::::<math>\;\;\,\, = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
  
::::<math>= f_{m - 1} - f_n</math><br/>
+
gdzie skorzystaliśmy ze znalezionego wyżej wzoru dla sumy szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 246: Linia 234:
  
  
<span id="D13" style="font-size: 110%; font-weight: bold;">Twierdzenie D13</span><br/>
+
<span id="D8" style="font-size: 110%; font-weight: bold;">Przykład D8</span><br/>
Następujące szeregi zbieżne
+
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta<ref name="DirichletEta"/>, którą definiuje szereg naprzemienny
 +
 
 +
::<math>\eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}}</math>
 +
 
 +
lub funkcja dzeta Riemanna<ref name="RiemannZeta"/>, którą definiuje inny szereg
 +
 
 +
::<math>\zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
 +
 
 +
Na podstawie twierdzenia [[#D7|D7]] funkcje te związane wzorem
 +
 
 +
::<math>\eta (s) = (1 - 2^{1 - s}) \zeta (s)</math>
 +
 
 +
Dla <math>s \in \mathbb{R}_+</math> funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}}</math>.
  
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 
|-
 
|-
| 1. <math>\quad \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1</math>
+
| <math>s = {\small\frac{1}{2}}</math>
|  
+
| <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{\sqrt{k}}} = 0.604898643421 \ldots</math>
 +
| [https://www.wolframalpha.com/input/?i=DirichletEta%5B1%2F2%5D WolframAlpha]
 
|-
 
|-
| 2. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{1}{k (k - 1)}} = 1</math>
+
| <math>s = 1</math>
|  
+
| <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 = 0.693147180559 \ldots</math>
 +
| [https://www.wolframalpha.com/input/?i=DirichletEta%5B1%5D WolframAlpha]
 
|-
 
|-
| 3. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} = {\small\frac{3}{4}}</math>
+
| <math>s = 2</math>
|  
+
| <math>\sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^2}} = {\small\frac{\pi^2}{12}} = 0.822467033424 \ldots</math>
|-
+
| [https://www.wolframalpha.com/input/?i=DirichletEta%5B2%5D WolframAlpha]
| 4. <math>\quad \sum^{\infty}_{k = 1} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} = 1.644934066848 \ldots</math>
 
| [https://oeis.org/A013661 A013661], [https://www.wolframalpha.com/input/?i=Zeta%282%29 WolframAlpha]
 
 
|}
 
|}
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
'''Punkt 1.'''<br/>
 
Dla dowodu wykorzystamy fakt, że rozpatrywany szereg jest szeregiem teleskopowym
 
  
::<math>{\small\frac{1}{k (k + 1)}} = {\small\frac{1}{k}} - {\small\frac{1}{k + 1}}</math>
 
  
Zatem
+
<span id="D9" style="font-size: 110%; font-weight: bold;">Twierdzenie D9</span><br/>
 +
Niech <math>N \in \mathbb{Z}_+</math>. Szeregi <math>\sum_{k = 1}^{\infty} a_k</math> oraz <math>\sum_{k = N}^{\infty} a_k</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. W&nbsp;przypadku zbieżności zachodzi związek
  
::<math>\sum^n_{k = 1} {\small\frac{1}{k (k + 1)}} = \sum^n_{k = 1} \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) = 1 - {\small\frac{1}{n + 1}}</math>
+
::<math>\sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k</math>
  
Przechodząc z <math>n</math> do nieskończoności, dostajemy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>S(n) =\sum_{k = 1}^{n} a_k</math> (gdzie <math>n \geqslant 1</math>) oznacza sumę częściową pierwszego szeregu, a <math>T(n) = \sum_{k = N}^{\infty} a_k</math> (gdzie <math>n \geqslant N</math>) oznacza sumę częściową drugiego szeregu. Dla <math>n \geqslant N</math> mamy
 +
 
 +
::<math>S(n) = (a_1 + a_2 + \ldots + a_{N - 1}) + T (n)</math>
  
::<math>\sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1</math>
+
Widzimy, że dla <math>n</math> dążącego do nieskończoności zbieżność (rozbieżność) jednego ciągu implikuje zbieżność (rozbieżność) drugiego.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="D10" style="font-size: 110%; font-weight: bold;">Twierdzenie D10 (kryterium porównawcze)</span><br/>
 +
Jeżeli istnieje taka liczba całkowita <math>N_0</math>, że dla każdego <math>k > N_0</math> jest spełniony warunek
 +
 
 +
::<math>0 \leqslant a_k \leqslant b_k</math>
 +
 
 +
to
 +
 
 +
#&nbsp;&nbsp;&nbsp;zbieżność szeregu <math>\sum_{k = 1}^{\infty} b_k</math> pociąga za sobą zbieżność szeregu <math>\sum_{k = 1}^{\infty} a_k</math>
 +
#&nbsp;&nbsp;&nbsp;rozbieżność szeregu <math>\sum_{k = 1}^{\infty} a_k</math> pociąga za sobą rozbieżność szeregu <math>\sum_{k = 1}^{\infty} b_k</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Dowód przeprowadzimy dla szeregów <math>\sum_{k = N_0}^{\infty} a_k</math> oraz <math>\sum_{k = N_0}^{\infty} b_k</math>, które są (odpowiednio) jednocześnie zbieżne lub jednocześnie rozbieżne z&nbsp;szeregami <math>\sum_{k = 1}^{\infty} a_k</math> oraz <math>\sum_{k = 1}^{\infty} b_k</math>.
  
'''Punkt 2.'''<br/>
+
'''Punkt 1.'''<br/>
Szereg jest identyczny z&nbsp;szeregiem z&nbsp;punktu 1., co łatwo zauważyć zmieniając zmienną sumowania <math>k = s + 1</math> i&nbsp;odpowiednio granice sumowania.
+
Z założenia szereg <math>\sum_{k = N_0}^{\infty} b_k</math> jest zbieżny. Niech <math>\sum_{k = N_0}^{\infty} b_k = b</math>, zatem z&nbsp;założonych w&nbsp;twierdzeniu nierówności dostajemy
  
'''Punkt 3.'''<br/>
+
::<math>0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k \leqslant b</math>
Należy skorzystać z&nbsp;tożsamości
 
  
::<math>{\small\frac{1}{k^2 - 1}} = {\small\frac{1}{2}} \left[ \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) + \left( {\small\frac{1}{k - 1}} - {\small\frac{1}{k}} \right) \right]</math>
+
Zauważmy, że ciąg sum częściowych <math>A_n = \sum_{k = N_0}^{n} a_k</math> jest ciągiem rosnącym (bo <math>a_k \geqslant 0</math>) i&nbsp;ograniczonym od góry. Wynika stąd, że ciąg <math>\left ( A_n \right )</math> jest zbieżny, zatem szereg <math>\sum_{k = N_0}^{\infty} a_k</math> jest zbieżny.
  
'''Punkt 4.'''<br/>
+
'''Punkt 2.'''<br/>
Ponieważ dla <math>k \geqslant 2</math> prawdziwa jest nierówność
+
Z założenia szereg <math>\sum_{k = N_0}^{\infty} a_k</math> jest rozbieżny, a&nbsp;z&nbsp;założonych w&nbsp;twierdzeniu nierówności dostajemy
  
::<math>0 < {\small\frac{1}{k^2}} < {\small\frac{1}{k^2 - 1}}</math>
+
::<math>0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k</math>
  
to na mocy kryterium porównawczego (twierdzenie [[#D9|D9]]) ze zbieżności szeregu <math>\sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}}</math> wynika zbieżność szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math><br/>
+
Rosnący ciąg sum częściowych <math>A_n = \sum_{k = N_0}^{n} a_k</math> nie może być ograniczony od góry, bo przeczyłoby to założeniu, że szereg <math>\sum_{k = N_0}^{\infty} a_k</math> jest rozbieżny. Wynika stąd i&nbsp;z&nbsp;wypisanych wyżej nierówności, że również ciąg sum częściowych <math>B_n = \sum_{k = N_0}^{n} b_k</math> nie może być ograniczony od góry, zatem szereg <math>\sum_{k = N_0}^{\infty} b_k</math> jest rozbieżny.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 297: Linia 313:
  
  
<span id="D14" style="font-size: 110%; font-weight: bold;">Twierdzenie D14</span><br/>
+
<span id="D11" style="font-size: 110%; font-weight: bold;">Twierdzenie D11</span><br/>
Następujące szeregi są zbieżne
+
Jeżeli szereg <math>\sum_{k = 1}^{\infty} \left | a_k  \right |</math> jest zbieżny, to szereg <math>\sum_{k = 1}^{\infty} a_k</math> jest również zbieżny.
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|-
+
Niech <math>b_k = a_k + | a_k |</math>. Z&nbsp;definicji prawdziwe jest następujące kryterium porównawcze
| 1. <math>\quad \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} = 1.860025079221 \ldots</math>
 
|
 
|-
 
| 2. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} = 0.788530565911 \ldots</math>
 
| [https://oeis.org/A085361 A085361]
 
|-
 
| 3. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k - 1)}} = 1.257746886944 \ldots</math>
 
| [https://oeis.org/A131688 A131688]
 
|-
 
| 4. <math>\quad \sum^{\infty}_{k = 3} {\small\frac{1}{k \cdot \log^2 \! k}} = 1.069058310734 \ldots</math>
 
| [https://oeis.org/A115563 A115563]
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>0 \leqslant b_k \leqslant 2 | a_k |</math>
'''Punkt 1.'''<br/>
 
  
Wystarczy zauważyć, że
+
Zatem z&nbsp;punktu 1. twierdzenia [[#D10|D10]] wynika, że szereg <math>\sum_{k = 1}^{\infty} b_k</math> jest zbieżny. Z&nbsp;definicji wyrazów ciągu <math>\left ( b_k \right )</math> mamy <math>a_k = b_k - | a_k |</math> i&nbsp;możemy napisać
  
::<math>{\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} = {\small\frac{\sqrt{k + 1} - \sqrt{k}}{\sqrt{k} \cdot \sqrt{k + 1}}}</math>
+
::<math>\sum_{k = 1}^{\infty} a_k = \sum_{k = 1}^{\infty} b_k - \sum_{k = 1}^{\infty} | a_k |</math>
  
::::::<math>\:\, = {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot \left( \sqrt{k + 1} + \sqrt{k} \right)}}</math>
+
Ponieważ szeregi po prawej stronie są zbieżne, to zbieżny jest też szereg <math>\sum_{k = 1}^{\infty} a_k</math>. Zauważmy, że jedynie w&nbsp;przypadku, gdyby obydwa szeregi po prawej stronie były rozbieżne, nie moglibyśmy wnioskować o&nbsp;zbieżności / rozbieżności szeregu <math>\sum_{k = 1}^{\infty} a_k</math>, bo suma szeregów rozbieżnych może być zbieżna.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::::<math>\:\, > {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot 2 \sqrt{k + 1}}}</math>
 
  
::::::<math>\:\, = {\small\frac{1}{2 (k + 1) \sqrt{k}}}</math>
 
  
Zatem
+
<span id="D12" style="font-size: 110%; font-weight: bold;">Definicja D12</span><br/>
 +
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''bezwzględnie zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest zbieżny.
  
::<math>\sum_{k = 1}^n {\small\frac{1}{(k + 1) \sqrt{k}}} = 2 \sum_{k = 1}^n {\small\frac{1}{2 (k + 1) \sqrt{k}}}</math>
+
Powiemy, że szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest '''warunkowo zbieżny''', jeżeli szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest zbieżny, ale szereg <math>\sum_{n = 0}^{\infty} | a_n |</math> jest rozbieżny.
  
::::::<math>\:\, < 2 \sum_{k = 1}^n \left( {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} \right)</math>
 
  
::::::<math>\:\, = 2 \left( 1 - {\small\frac{1}{\sqrt{n + 1}}} \right)</math>
 
  
::::::<math>\:\, < 2</math>
+
<span id="D13" style="font-size: 110%; font-weight: bold;">Twierdzenie D13</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math>. Jeżeli wyrazy ciągu <math>(a_n)</math> można zapisać w&nbsp;jednej z&nbsp;postaci
  
Ponieważ ciąg sum częściowych szeregu jest rosnący i&nbsp;ograniczony, to szereg jest zbieżny.
+
# <math>\quad a_k = f_k - f_{k + 1}</math>
 +
# <math>\quad a_k = f_{k - 1} - f_k</math>
  
'''Punkt 2.'''<br/>
+
to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa
Korzystając z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A37|A37]] p.4, możemy napisać oszacowanie
 
  
::<math>0 < {\small\frac{\log k}{k (k + 1)}} < {\small\frac{\sqrt{k}}{k (k + 1)}} = {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
+
# <math>\quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1}</math>
 +
# <math>\quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n</math>
  
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math> wynika zbieżność szeregu <math>\sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
::<math>\sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_k - f_{k + 1}) =</math>
  
'''Punkt 3.'''<br/>
+
::::<math>= (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + (f_{m + 2} - f_{m + 3}) + \ldots + (f_{n - 1} - f_n) + (f_n - f_{n + 1})</math>
Zauważmy, że
 
  
::<math>{\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} = {\small\frac{k \log (k - 1) - (k - 1) \log (k)}{k (k - 1)}}</math>
+
::::<math>= f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + f_{m + 2} - f_{m + 3} + \ldots + f_{n - 1} - f_n + f_n - f_{n + 1}</math>
  
:::::::<math>\;\;\;\, = {\small\frac{k \log \left( k \left( 1 - {\normalsize\frac{1}{k}} \right) \right) - (k - 1) \log (k)}{k (k - 1)}}</math>
+
::::<math>= f_m + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + f_{m + 2}) + (- f_{m + 3} + \ldots + f_{n - 1}) + (- f_n + f_n) - f_{n + 1}</math>
  
:::::::<math>\;\;\;\, = {\small\frac{k \log (k) + k \log \left( 1 - {\normalsize\frac{1}{k}} \right) - k \log (k) + \log (k)}{k (k - 1)}}</math>
+
::::<math>= f_m - f_{n + 1}</math>
  
:::::::<math>\;\;\;\, > {\small\frac{\log (k) - k \cdot {\normalsize\frac{1}{k - 1}}}{k (k - 1)}}</math>
 
  
:::::::<math>\;\;\;\, = {\small\frac{\log (k)}{k (k - 1)}} - {\small\frac{1}{(k - 1)^2}}</math>
 
  
Czyli prawdziwe jest oszacowanie
+
::<math>\sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_{k - 1} - f_k) =</math>
  
::<math>{\small\frac{\log (k)}{k (k - 1)}} < \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + {\small\frac{1}{(k - 1)^2}}</math>
+
::::<math>= (f_{m - 1} - f_m) + (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + \ldots + (f_{n - 2} - f_{n - 1}) + (f_{n - 1} - f_n)</math>
  
Zatem możemy napisać
+
::::<math>= f_{m - 1} - f_m + f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + \ldots + f_{n - 2} - f_{n - 1} + f_{n - 1} - f_n</math>
  
::<math>\sum_{k = 2}^{n} {\small\frac{\log (k)}{k (k - 1)}} < \sum_{k = 2}^{n} \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + \sum_{k = 2}^{n} {\small\frac{1}{(k - 1)^2}}</math>
+
::::<math>= f_{m - 1} + (- f_m + f_m) + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + \ldots + f_{n - 2}) + (- f_{n - 1} + f_{n - 1}) - f_n</math>
  
:::::<math>\;\;\;\, < - {\small\frac{\log (n)}{n}} + \sum_{j = 1}^{n - 1} {\small\frac{1}{j^2}}</math>
+
::::<math>= f_{m - 1} - f_n</math><br/>
 
+
&#9633;
:::::<math>\;\;\;\, < \sum_{j = 1}^{\infty} {\small\frac{1}{j^2}}</math>
+
{{\Spoiler}}
  
:::::<math>\;\;\;\, = {\small\frac{\pi^2}{6}}</math>
 
  
Ponieważ ciąg sum częściowych szeregu jest rosnący i&nbsp;ograniczony, to szereg jest zbieżny.
 
  
'''Punkt 4.'''<br/>
+
<span id="D14" style="font-size: 110%; font-weight: bold;">Twierdzenie D14</span><br/>
Zauważmy, że
+
Następujące szeregi są zbieżne
  
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log (k + 1) - \log (k)}{\log (k) \log (k + 1)}}</math>
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 +
|-
 +
| 1. <math>\quad \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1</math>
 +
|
 +
|-
 +
| 2. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{1}{k (k - 1)}} = 1</math>
 +
|
 +
|-
 +
| 3. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} = {\small\frac{3}{4}}</math>
 +
|
 +
|-
 +
| 4. <math>\quad \sum^{\infty}_{k = 1} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} = 1.644934066848 \ldots</math>
 +
| [https://oeis.org/A013661 A013661], [https://www.wolframalpha.com/input/?i=Zeta%282%29 WolframAlpha]
 +
|}
  
:::::::<math>\;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
'''Punkt 1.'''<br/>
 +
Dla dowodu wykorzystamy fakt, że rozpatrywany szereg jest szeregiem teleskopowym
  
:::::::<math>\;\;\;\, < {\small\frac{1}{k \cdot \log (k) \log (k + 1)}}</math>
+
::<math>{\small\frac{1}{k (k + 1)}} = {\small\frac{1}{k}} - {\small\frac{1}{k + 1}}</math>
  
:::::::<math>\;\;\;\, < {\small\frac{1}{k \cdot \log^2 \! k}}</math>
+
Zatem
  
Z drugiej strony mamy
+
::<math>\sum^n_{k = 1} {\small\frac{1}{k (k + 1)}} = \sum^n_{k = 1} \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) = 1 - {\small\frac{1}{n + 1}}</math>
  
::<math>{\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} = {\small\frac{\log (k) - \log (k - 1)}{\log (k - 1) \log (k)}}</math>
+
Przechodząc z <math>n</math> do nieskończoności, dostajemy
  
:::::::<math>\;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k - 1}} \right)}{\log (k - 1) \log (k)}}</math>
+
::<math>\sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1</math>
  
:::::::<math>\;\;\;\, > {\small\frac{1}{k \cdot \log (k - 1) \log (k)}}</math>
+
'''Punkt 2.'''<br/>
 +
Szereg jest identyczny z&nbsp;szeregiem z&nbsp;punktu 1., co łatwo zauważyć zmieniając zmienną sumowania <math>k = s + 1</math> i&nbsp;odpowiednio granice sumowania.
  
:::::::<math>\;\;\;\, > {\small\frac{1}{k \cdot \log^2 \! k}}</math>
+
'''Punkt 3.'''<br/>
 +
Należy skorzystać z&nbsp;tożsamości
  
Wynika stąd następujący ciąg nierówności
+
::<math>{\small\frac{1}{k^2 - 1}} = {\small\frac{1}{2}} \left[ \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) + \left( {\small\frac{1}{k - 1}} - {\small\frac{1}{k}} \right) \right]</math>
  
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 \! k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
+
'''Punkt 4.'''<br/>
 +
Ponieważ dla <math>k \geqslant 2</math> prawdziwa jest nierówność
  
 +
::<math>0 < {\small\frac{1}{k^2}} < {\small\frac{1}{k^2 - 1}}</math>
  
Rezultat ten wykorzystamy w&nbsp;pełni w&nbsp;przykładzie [[#D15|D15]], a&nbsp;do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy
+
to na mocy kryterium porównawczego (twierdzenie [[#D10|D10]]) ze zbieżności szeregu <math>\sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}}</math> wynika zbieżność szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math>
 
  
:::::<math>\;\;\;\, = {\small\frac{1}{\log 2}} - {\small\frac{1}{\log (n)}}</math>
 
  
:::::<math>\;\;\;\, < {\small\frac{1}{\log 2}}</math>
+
<span id="D15" style="font-size: 110%; font-weight: bold;">Twierdzenie D15</span><br/>
 +
Następujące szeregi są zbieżne
  
Ponieważ ciąg sum częściowych szeregu jest rosnący i&nbsp;ograniczony, to szereg jest zbieżny.<br/>
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
&#9633;
+
|-
{{\Spoiler}}
+
| 1. <math>\quad \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} = 1.860025079221 \ldots</math>
 +
|
 +
|-
 +
| 2. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} = 0.788530565911 \ldots</math>
 +
| [https://oeis.org/A085361 A085361]
 +
|-
 +
| 3. <math>\quad \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k - 1)}} = 1.257746886944 \ldots</math>
 +
| [https://oeis.org/A131688 A131688]
 +
|-
 +
| 4. <math>\quad \sum^{\infty}_{k = 3} {\small\frac{1}{k \cdot \log^2 \! k}} = 1.069058310734 \ldots</math>
 +
| [https://oeis.org/A115563 A115563]
 +
|}
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
'''Punkt 1.'''<br/>
  
 +
Wystarczy zauważyć, że
  
<span id="D15" style="font-size: 110%; font-weight: bold;">Przykład D15</span><br/>
+
::<math>{\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} = {\small\frac{\sqrt{k + 1} - \sqrt{k}}{\sqrt{k} \cdot \sqrt{k + 1}}}</math>
Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
 
  
Ponieważ nie jesteśmy w&nbsp;stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części
+
::::::<math>\:\, = {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot \left( \sqrt{k + 1} + \sqrt{k} \right)}}</math>
  
::<math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math>
+
::::::<math>\:\, > {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot 2 \sqrt{k + 1}}}</math>
  
 +
::::::<math>\:\, = {\small\frac{1}{2 (k + 1) \sqrt{k}}}</math>
  
Wartość pierwszej części możemy policzyć bezpośrednio, a&nbsp;dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
+
Zatem
  
Dowodząc twierdzenie [[#D14|D14]], w&nbsp;punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
+
::<math>\sum_{k = 1}^n {\small\frac{1}{(k + 1) \sqrt{k}}} = 2 \sum_{k = 1}^n {\small\frac{1}{2 (k + 1) \sqrt{k}}}</math>
  
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
+
::::::<math>\:\, < 2 \sum_{k = 1}^n \left( {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} \right)</math>
  
 +
::::::<math>\:\, = 2 \left( 1 - {\small\frac{1}{\sqrt{n + 1}}} \right)</math>
  
Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy
+
::::::<math>\:\, < 2</math>
  
::<math>\sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) < \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} < \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right)</math>
+
Ponieważ ciąg sum częściowych szeregu jest rosnący i&nbsp;ograniczony, to szereg jest zbieżny.
  
 +
'''Punkt 2.'''<br/>
 +
Korzystając z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A40|A40]] p.4, możemy napisać oszacowanie
  
Ponieważ szeregi po lewej i&nbsp;po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że
+
::<math>0 < {\small\frac{\log k}{k (k + 1)}} < {\small\frac{\sqrt{k}}{k (k + 1)}} = {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
  
::<math>{\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} < \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}}</math>
+
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math> wynika zbieżność szeregu <math>\sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}}</math>
  
 +
'''Punkt 3.'''<br/>
 +
Zauważmy, że
  
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy oszacowanie
+
::<math>{\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} = {\small\frac{k \log (k - 1) - (k - 1) \log (k)}{k (k - 1)}}</math>
  
::<math>{\small\frac{1}{\log (m + 1)}} < \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log m}}</math>
+
:::::::<math>\;\;\;\, = {\small\frac{k \log \left( k \left( 1 - {\normalsize\frac{1}{k}} \right) \right) - (k - 1) \log (k)}{k (k - 1)}}</math>
  
 +
:::::::<math>\;\;\;\, = {\small\frac{k \log (k) + k \log \left( 1 - {\normalsize\frac{1}{k}} \right) - k \log (k) + \log (k)}{k (k - 1)}}</math>
  
Teraz pozostaje dodać sumę wyrazów szeregu od <math>k = 3</math> do <math>k = m</math>
+
:::::::<math>\;\;\;\, > {\small\frac{\log (k) - k \cdot {\normalsize\frac{1}{k - 1}}}{k (k - 1)}}</math>
  
::<math>{\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} < \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}}</math>
+
:::::::<math>\;\;\;\, = {\small\frac{\log (k)}{k (k - 1)}} - {\small\frac{1}{(k - 1)^2}}</math>
  
 +
Czyli prawdziwe jest oszacowanie
  
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości <math>m</math>. Wystarczy proste polecenie
+
::<math>{\small\frac{\log (k)}{k (k - 1)}} < \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + {\small\frac{1}{(k - 1)^2}}</math>
  
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 8, s = '''sum'''( k = 3, 10^n, 1/k/('''log'''(k))^2 ); '''print'''( "n= ", n, "  a= ", s + 1/'''log'''(10^n+1), "  b= ", s + 1/'''log'''(10^n) ))</span>
+
Zatem możemy napisać
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
::<math>\sum_{k = 2}^{n} {\small\frac{\log (k)}{k (k - 1)}} < \sum_{k = 2}^{n} \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + \sum_{k = 2}^{n} {\small\frac{1}{(k - 1)^2}}</math>
|-
 
| <math>m = 10^1</math> || <math>1.06</math> || <math>1.07</math>
 
|-
 
| <math>m = 10^2</math> || <math>1.068</math> || <math>1.069</math>
 
|-
 
| <math>m = 10^3</math> || <math>1.06904</math> || <math>1.06906</math>
 
|-
 
| <math>m = 10^4</math> || <math>1.069057</math> || <math>1.069058</math>
 
|-
 
| <math>m = 10^5</math> || <math>1.0690582</math> || <math>1.0690583</math>
 
|-
 
| <math>m = 10^6</math> || <math>1.06905830</math> || <math>1.06905831</math>
 
|-
 
| <math>m = 10^7</math> || <math>1.0690583105</math> || <math>1.0690583109</math>
 
|-
 
| <math>m = 10^8</math> || <math>1.06905831071</math> || <math>1.06905831074</math>
 
|}
 
  
Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z&nbsp;dokładnością 10 miejsc po przecinku.
+
:::::<math>\;\;\;\, < - {\small\frac{\log (n)}{n}} + \sum_{j = 1}^{n - 1} {\small\frac{1}{j^2}}</math>
  
Natomiast samo zsumowanie <math>10^8</math> wyrazów szeregu daje wynik
+
:::::<math>\;\;\;\, < \sum_{j = 1}^{\infty} {\small\frac{1}{j^2}}</math>
  
::<math>\sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots</math>
+
:::::<math>\;\;\;\, = {\small\frac{\pi^2}{6}}</math>
  
Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z&nbsp;dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i&nbsp;od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.
+
Ponieważ ciąg sum częściowych szeregu jest rosnący i&nbsp;ograniczony, to szereg jest zbieżny.
  
Rozpatrywana wyżej sytuacja pokazuje, że w&nbsp;przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.
+
'''Punkt 4.'''<br/>
 +
Zauważmy, że
  
 +
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log (k + 1) - \log (k)}{\log (k) \log (k + 1)}}</math>
  
 +
:::::::<math>\;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}}</math>
  
 +
:::::::<math>\;\;\;\, < {\small\frac{1}{k \cdot \log (k) \log (k + 1)}}</math>
  
 +
:::::::<math>\;\;\;\, < {\small\frac{1}{k \cdot \log^2 \! k}}</math>
  
== Szeregi nieskończone i&nbsp;całka oznaczona ==
+
Z drugiej strony mamy
  
<span id="D16" style="font-size: 110%; font-weight: bold;">Twierdzenie D16</span><br/>
+
::<math>{\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} = {\small\frac{\log (k) - \log (k - 1)}{\log (k - 1) \log (k)}}</math>
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
 
  
::<math>0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x</math>
+
:::::::<math>\;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k - 1}} \right)}{\log (k - 1) \log (k)}}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:::::::<math>\;\;\;\, > {\small\frac{1}{k \cdot \log (k - 1) \log (k)}}</math>
Ponieważ funkcja <math>f(x)</math> jest z&nbsp;założenia ciągła, dodatnia i&nbsp;malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.
 
  
::[[File: D_Szereg-i-calka-1.png|none]]
+
:::::::<math>\;\;\;\, > {\small\frac{1}{k \cdot \log^2 \! k}}</math>
  
Przedstawiona na rysunku krzywa odpowiada funkcji <math>f(x)</math>. Dla współrzędnej <math>x = k</math> zaznaczyliśmy wartość funkcji <math>f(k)</math>, a&nbsp;po lewej i&nbsp;prawej stronie tych punktów zaznaczyliśmy pasy o&nbsp;jednostkowej szerokości. Łatwo zauważamy, że
+
Wynika stąd następujący ciąg nierówności
  
* po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
+
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 \! k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
* po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
 
  
Korzystając z&nbsp;własności całki oznaczonej, otrzymujemy ciąg nierówności
 
  
::<math>\int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x</math>
+
Rezultat ten wykorzystamy w&nbsp;pełni w&nbsp;przykładzie [[#D16|D16]], a&nbsp;do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy
  
W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z&nbsp;uczynionym założeniem funkcja <math>f(x)</math> może być funkcją słabo malejącą.
+
::<math>\sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} < \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right]</math>
  
Sumując lewą nierówność od <math>k = m</math> do <math>k = n</math>, a&nbsp;prawą od <math>k = m + 1</math> do <math>k = n</math>, dostajemy
+
:::::<math>\;\;\;\, = {\small\frac{1}{\log 2}} - {\small\frac{1}{\log (n)}}</math>
  
::<math>\int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k)</math>
+
:::::<math>\;\;\;\, < {\small\frac{1}{\log 2}}</math>
  
::<math>\sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x</math>
+
Ponieważ ciąg sum częściowych szeregu jest rosnący i&nbsp;ograniczony, to szereg jest zbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Dodając <math>f(m)</math> do obydwu stron drugiej z&nbsp;powyższych nierówności i&nbsp;łącząc je ze sobą, otrzymujemy kolejny i&nbsp;docelowy ciąg nierówności
 
  
::<math>0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math><br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
<span id="D16" style="font-size: 110%; font-weight: bold;">Przykład D16</span><br/>
 +
Na przykładzie szeregu <math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math> pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.
  
 +
Ponieważ nie jesteśmy w&nbsp;stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części
  
<span id="D17" style="font-size: 110%; font-weight: bold;">Przykład D17</span><br/>
+
::<math>\sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}}</math>
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
 
  
Funkcja <math>f(x) = {\small\frac{1}{x}}</math> jest ciągła, dodatnia i&nbsp;silnie malejąca w&nbsp;przedziale <math>(0, + \infty)</math>, zatem dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest oszacowanie
 
  
::<math>\int_{1}^{n + 1} {\small\frac{d x}{x}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \int_{1}^{n} {\small\frac{d x}{x}}</math>
+
Wartość pierwszej części możemy policzyć bezpośrednio, a&nbsp;dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.
  
Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fx+from+1+to+n WolframAlpha].
+
Dowodząc twierdzenie [[#D15|D15]], w&nbsp;punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności
  
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
+
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} < {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}}</math>
  
Ponieważ
 
  
::<math>\log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) > \log n + {\small\frac{1}{n + 1}}</math>
+
Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy
  
to dostajemy
+
::<math>\sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) < \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} < \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right)</math>
  
::<math>{\small\frac{1}{n + 1}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n < 1</math>
 
  
Zauważmy: nie tylko wiemy, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o&nbsp;zbieżności szeregów.
+
Ponieważ szeregi po lewej i&nbsp;po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że
  
 +
::<math>{\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} < \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}}</math>
  
  
 +
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy oszacowanie
  
<span id="D18" style="font-size: 110%; font-weight: bold;">Twierdzenie D18 (kryterium całkowe zbieżności szeregów)</span><br/>
+
::<math>{\small\frac{1}{\log (m + 1)}} < \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log m}}</math>
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja <math>f(x)</math> jest malejąca, będzie wykorzystane w&nbsp;czasie dowodu twierdzenia, ale rozważanie przypadku, gdy <math>f(x)</math> jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu <math>\sum_{k = m}^{\infty} f(k)</math> (zobacz twierdzenie [[#D4|D4]]).
 
  
Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego <math>x_0</math> byłoby <math>f(x_0) = 0</math>. Ponieważ z&nbsp;założenia funkcja <math>f(x)</math> jest malejąca, zatem mielibyśmy <math>f(x) = 0</math> dla <math>x \geqslant x_0</math>. Odpowiadający tej funkcji szereg <math>\sum_{k = m}^{\infty} f (k)</math> miałby dla <math>k \geqslant x_0</math> tylko wyrazy zerowe i&nbsp;byłby w&nbsp;sposób oczywisty zbieżny.
+
Teraz pozostaje dodać sumę wyrazów szeregu od <math>k = 3</math> do <math>k = m</math>
  
Założenie ciągłości funkcji <math>f(x)</math> ma zapewnić całkowalność funkcji <math>f(x)</math><ref name="calkowalnosc1"/>. Założenie to można osłabić<ref name="calkowalnosc2"/>, tutaj ograniczymy się tylko do podania przykładów. Niech <math>a, b \in \mathbb{R}</math>, mamy
+
::<math>{\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} < \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} < {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}}</math>
  
::<math>\int_a^b \text{sgn}(x) d x = | b | - | a |</math> <math>\qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1)</math> <math>\qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a</math>
 
  
 +
Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości <math>m</math>. Wystarczy proste polecenie
  
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
+
<span style="font-size: 90%; color:black;">'''for'''(n = 1, 8, s = '''sum'''( k = 3, 10^n, 1/k/('''log'''(k))^2 ); '''print'''( "n= ", n, "  a= ", s + 1/'''log'''(10^n+1), "  b= ", s + 1/'''log'''(10^n) ))</span>
  
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
+
|-
 
+
| <math>m = 10^1</math> || <math>1.06</math> || <math>1.07</math>
'''Z drugiej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych <math>C_j = \int_{m}^{j} f (x) d x</math> nie może być ograniczony od góry (w&nbsp;przeciwnym wypadku całka <math>\int_{m}^{\infty} f (x) d x</math> byłby zbieżna), zatem również rosnący ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f(k)</math> nie może być ograniczony od góry, co oznacza, że szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest rozbieżny.
+
|-
 
+
| <math>m = 10^2</math> || <math>1.068</math> || <math>1.069</math>
'''Z trzeciej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest zbieżna, to ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f (k)</math> jest ciągiem rosnącym i&nbsp;ograniczonym od góry. Wynika stąd, że ciąg <math>F_j</math> jest zbieżny, zatem szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny.
+
|-
 
+
| <math>m = 10^3</math> || <math>1.06904</math> || <math>1.06906</math>
Ponieważ zbieżność (rozbieżność) całki <math>\int_{m}^{\infty} f(x) d x</math> nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę <math>\lim_{x \to \infty} F (x)</math>, gdzie <math>F(x) = \int f (x) d x</math> jest dowolną funkcją pierwotną.<br/>
 
&#9633;
 
{{\Spoiler}}
 
 
 
 
 
 
 
<span id="D19" style="font-size: 110%; font-weight: bold;">Przykład D19</span><br/>
 
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
 
 
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 
!
 
! szereg <math>\sum_{k = m}^{\infty} a_k</math>
 
! funkcja <math>f(x)</math>
 
! całka <math>F(x) = \int f(x) d x</math>
 
! granica <math>\lim_{x \to \infty} F(x)</math>
 
! wynik
 
 
|-
 
|-
| 1. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> || <math>{\small\frac{1}{x}}</math> || <math>\log x</math> || <math>\infty</math> || szereg rozbieżny
+
| <math>m = 10^4</math> || <math>1.069057</math> || <math>1.069058</math>
 
|-
 
|-
| 2. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{\sqrt{k}}}</math> || <math>{\small\frac{1}{\sqrt{x}}}</math> || <math>2 \sqrt{x}</math> || <math>\infty</math> || szereg rozbieżny
+
| <math>m = 10^5</math> || <math>1.0690582</math> || <math>1.0690583</math>
 
|-
 
|-
| 3. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> || <math>{\small\frac{1}{x^2}}</math> || <math>- {\small\frac{1}{x}}</math> || <math>0</math> || szereg zbieżny
+
| <math>m = 10^6</math> || <math>1.06905830</math> || <math>1.06905831</math>
 
|-
 
|-
| 4. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log k}}</math> || <math>{\small\frac{1}{x \log x}}</math> || <math>\log \log x</math> || <math>\infty</math> || szereg rozbieżny
+
| <math>m = 10^7</math> || <math>1.0690583105</math> || <math>1.0690583109</math>
 
|-
 
|-
| 5. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^2 \! k}}</math> || <math>{\small\frac{1}{x \log^2 \! x}}</math> || <math>- {\small\frac{1}{\log x}}</math> || <math>0</math> || szereg zbieżny
+
| <math>m = 10^8</math> || <math>1.06905831071</math> || <math>1.06905831074</math>
 
|}
 
|}
  
Stosując kryterium całkowe, można łatwo pokazać, że szeregi
+
Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z&nbsp;dokładnością 10 miejsc po przecinku.
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
+
Natomiast samo zsumowanie <math>10^8</math> wyrazów szeregu daje wynik
  
::<math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}}</math>
+
::<math>\sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots</math>
  
są zbieżne dla <math>s > 1</math> i&nbsp;rozbieżne dla <math>s \leqslant 1</math>.
+
Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z&nbsp;dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i&nbsp;od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.
  
 +
Rozpatrywana wyżej sytuacja pokazuje, że w&nbsp;przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.
  
  
  
<span id="D20" style="font-size: 110%; font-weight: bold;">Twierdzenie D20</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
 
  
::<math>R(m) = \int_{m}^{\infty} f(x) d x</math>
 
  
::<math>S(m) = \sum_{k = a}^{m} f(k)</math>
+
== Szeregi nieskończone i&nbsp;całka oznaczona ==
  
gdzie <math>a < m</math>, to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math>
+
<span id="D17" style="font-size: 110%; font-weight: bold;">Twierdzenie D17</span><br/>
 +
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, n + 1]</math>, to prawdziwy jest następujący ciąg nierówności
  
::<math>S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m)</math>
+
::<math>0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x</math>
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
+
Ponieważ funkcja <math>f(x)</math> jest z&nbsp;założenia ciągła, dodatnia i&nbsp;malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.
  
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
+
::[[File: D_Szereg-i-calka-1.png|none]]
 +
 
 +
Przedstawiona na rysunku krzywa odpowiada funkcji <math>f(x)</math>. Dla współrzędnej <math>x = k</math> zaznaczyliśmy wartość funkcji <math>f(k)</math>, a&nbsp;po lewej i&nbsp;prawej stronie tych punktów zaznaczyliśmy pasy o&nbsp;jednostkowej szerokości. Łatwo zauważamy, że
  
Czyli
+
* po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
 +
* po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o&nbsp;wysokości <math>f(k)</math> i&nbsp;jednostkowej szerokości
  
::<math>R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m)</math>
+
Korzystając z&nbsp;własności całki oznaczonej, otrzymujemy ciąg nierówności
  
Odejmując od każdej ze stron nierówności liczbę <math>f(m)</math> i&nbsp;dodając do każdej ze stron nierówności sumę skończoną <math>S(m) = \sum_{k = a}^{m} f(k)</math>, otrzymujemy
+
::<math>\int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x</math>
  
::<math>S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m)</math>
+
W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z&nbsp;uczynionym założeniem funkcja <math>f(x)</math> może być funkcją słabo malejącą.
  
Co należało pokazać.<br/>
+
Sumując lewą nierówność od <math>k = m</math> do <math>k = n</math>, a&nbsp;prawą od <math>k = m + 1</math> do <math>k = n</math>, dostajemy
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k)</math>
  
 +
::<math>\sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x</math>
  
<span id="D21" style="font-size: 110%; font-weight: bold;">Przykład D21</span><br/>
+
Dodając <math>f(m)</math> do obydwu stron drugiej z&nbsp;powyższych nierówności i&nbsp;łącząc je ze sobą, otrzymujemy kolejny i&nbsp;docelowy ciąg nierówności
Twierdzenie [[#D20|D20]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
 
  
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
+
::<math>0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right)</math>
 
  
::<math>R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right)</math>
 
  
Zatem
+
<span id="D18" style="font-size: 110%; font-weight: bold;">Przykład D18</span><br/>
 +
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math>.
  
::<math>S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m)</math>
+
Funkcja <math>f(x) = {\small\frac{1}{x}}</math> jest ciągła, dodatnia i&nbsp;silnie malejąca w&nbsp;przedziale <math>(0, + \infty)</math>, zatem dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest oszacowanie
  
Dla kolejnych wartości <math>m</math> otrzymujemy
+
::<math>\int_{1}^{n + 1} {\small\frac{d x}{x}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \int_{1}^{n} {\small\frac{d x}{x}}</math>
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fx+from+1+to+n WolframAlpha].
! <math>m</math>
 
! <math>S(m) + R(m) - f(m)</math>
 
! <math>S(m) + R(m)</math>
 
|-
 
| <math>10^1</math> || <math>1.84</math> || <math>1.87</math>
 
|-
 
| <math>10^2</math> || <math>1.85</math> || <math>1.86</math>
 
|-
 
| <math>10^3</math> || <math>1.86000</math> || <math>1.86004</math>
 
|-
 
| <math>10^4</math> || <math>1.860024</math> || <math>1.860025</math>
 
|-
 
| <math>10^5</math> || <math>1.86002506</math> || <math>1.86002509</math>
 
|-
 
| <math>10^6</math> || <math>1.860025078</math> || <math>1.860025079</math>
 
|-
 
| <math>10^7</math> || <math>1.86002507920</math> || <math>1.86002507923</math>
 
|-
 
| <math>10^8</math> || <math>1.860025079220</math> || <math>1.860025079221</math>
 
|-
 
| <math>10^9</math> || <math>1.8600250792211</math> || <math>1.8600250792212</math>
 
|-
 
|}
 
  
 +
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
  
W programie PARI/GP wystarczy napisać:
+
Ponieważ
  
<span style="font-size: 90%; color:black;">f(k) = 1.0 / (k+1) / '''sqrt'''(k)</span>
+
::<math>\log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) > \log n + {\small\frac{1}{n + 1}}</math>
<span style="font-size: 90%; color:black;">S(m) = '''sum'''( k = 1, m, f(k) )</span>
 
<span style="font-size: 90%; color:black;">R(m) = '''Pi''' - 2*'''atan'''( '''sqrt'''(m) )</span>
 
<span style="font-size: 90%; color:black;">'''for'''(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); '''print'''( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))</span>
 
  
 +
to dostajemy
  
 +
::<math>{\small\frac{1}{n + 1}} < \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n < 1</math>
  
 +
Zauważmy: nie tylko wiemy, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o&nbsp;zbieżności szeregów.
  
Prostym wnioskiem z&nbsp;twierdzenia [[#D16|D16]] jest następujące<br/>
 
<span id="D22" style="font-size: 110%; font-weight: bold;">Twierdzenie D22</span><br/>
 
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Korzystając ze wzoru z&nbsp;twierdzenia [[#D16|D16]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy
 
  
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
 
  
Dodając do każdej ze stron nierówności wyrażenie <math>- f(m) + \sum_{k = a}^{m} f(k)</math>, dostajemy
+
<span id="D19" style="font-size: 110%; font-weight: bold;">Twierdzenie D19 (kryterium całkowe zbieżności szeregów)</span><br/>
 +
Załóżmy, że funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, + \infty)</math>. Szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny lub rozbieżny w&nbsp;zależności od tego, czy funkcja pierwotna <math>F(x) = \int f (x) d x</math> ma dla <math>x \rightarrow \infty</math> granicę skończoną, czy nie.
  
::<math>- f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja <math>f(x)</math> jest malejąca, będzie wykorzystane w&nbsp;czasie dowodu twierdzenia, ale rozważanie przypadku, gdy <math>f(x)</math> jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu <math>\sum_{k = m}^{\infty} f(k)</math> (zobacz twierdzenie [[#D4|D4]]).
  
Skąd wynika natychmiast
+
Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego <math>x_0</math> byłoby <math>f(x_0) = 0</math>. Ponieważ z&nbsp;założenia funkcja <math>f(x)</math> jest malejąca, zatem mielibyśmy <math>f(x) = 0</math> dla <math>x \geqslant x_0</math>. Odpowiadający tej funkcji szereg <math>\sum_{k = m}^{\infty} f (k)</math> miałby dla <math>k \geqslant x_0</math> tylko wyrazy zerowe i&nbsp;byłby w&nbsp;sposób oczywisty zbieżny.
  
::<math>- f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 < f(m)</math>
+
Założenie ciągłości funkcji <math>f(x)</math> ma zapewnić całkowalność funkcji <math>f(x)</math><ref name="calkowalnosc1"/>. Założenie to można osłabić<ref name="calkowalnosc2"/>, tutaj ograniczymy się tylko do podania przykładów. Niech <math>a, b \in \mathbb{R}</math>, mamy
  
Czyli
+
::<math>\int_a^b \text{sgn}(x) d x = | b | - | a |</math> <math>\qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1)</math> <math>\qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a</math>
  
::<math>\left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m)</math>
 
  
Co kończy dowód.<br/>
+
Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D17|D17]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x</math>
  
  
<span id="D23" style="font-size: 110%; font-weight: bold;">Twierdzenie D23</span><br/>
+
'''Z drugiej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych <math>C_j = \int_{m}^{j} f (x) d x</math> nie może być ograniczony od góry (w&nbsp;przeciwnym wypadku całka <math>\int_{m}^{\infty} f (x) d x</math> byłby zbieżna), zatem również rosnący ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f(k)</math> nie może być ograniczony od góry, co oznacza, że szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest rozbieżny.
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
 
  
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x</math>
+
'''Z trzeciej nierówności wynika''', że jeżeli całka <math>\int_{m}^{\infty} f(x) d x</math> jest zbieżna, to ciąg sum częściowych <math>F_j = \sum_{k = m}^{j} f (k)</math> jest ciągiem rosnącym i&nbsp;ograniczonym od góry. Wynika stąd, że ciąg <math>F_j</math> jest zbieżny, zatem szereg <math>\sum_{k = m}^{\infty} f(k)</math> jest zbieżny.
  
gdzie <math>B</math> oraz <math>C</math> są dowolnymi stałymi spełniającymi nierówności
+
Ponieważ zbieżność (rozbieżność) całki <math>\int_{m}^{\infty} f(x) d x</math> nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę <math>\lim_{x \to \infty} F (x)</math>, gdzie <math>F(x) = \int f (x) d x</math> jest dowolną funkcją pierwotną.<br/>
 
 
::<math>B \geqslant 1</math>
 
 
 
::<math>C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x</math>
 
 
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Z twierdzenia [[#D16|D16]] mamy
 
 
 
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
 
 
 
:::::::<math>\;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x</math>
 
 
 
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
 
 
 
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
 
 
 
:::::::<math>\;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
 
 
 
:::::::<math>\;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x</math>
 
 
 
:::::::<math>\;\! \leqslant C - B \int_{n}^{\infty} f (x) d x</math><br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 750: Linia 707:
  
  
<span id="D24" style="font-size: 110%; font-weight: bold;">Uwaga D24</span><br/>
+
<span id="D20" style="font-size: 110%; font-weight: bold;">Przykład D20</span><br/>
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
+
Przykłady zebraliśmy w&nbsp;tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony [https://www.wolframalpha.com/input?i=integral+1%2Fsqrt%28x%29 WolframAlpha].
  
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D23|D23]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
+
!
 +
! szereg <math>\sum_{k = m}^{\infty} a_k</math>
 +
! funkcja <math>f(x)</math>
 +
! całka <math>F(x) = \int f(x) d x</math>
 +
! granica <math>\lim_{x \to \infty} F(x)</math>
 +
! wynik
 +
|-
 +
| 1. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k}}</math> || <math>{\small\frac{1}{x}}</math> || <math>\log x</math> || <math>\infty</math> || szereg rozbieżny
 +
|-
 +
| 2. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{\sqrt{k}}}</math> || <math>{\small\frac{1}{\sqrt{x}}}</math> || <math>2 \sqrt{x}</math> || <math>\infty</math> || szereg rozbieżny
 +
|-
 +
| 3. || <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> || <math>{\small\frac{1}{x^2}}</math> || <math>- {\small\frac{1}{x}}</math> || <math>0</math> || szereg zbieżny
 +
|-
 +
| 4. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log k}}</math> || <math>{\small\frac{1}{x \log x}}</math> || <math>\log \log x</math> || <math>\infty</math> || szereg rozbieżny
 +
|-
 +
| 5. || <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^2 \! k}}</math> || <math>{\small\frac{1}{x \log^2 \! x}}</math> || <math>- {\small\frac{1}{\log x}}</math> || <math>0</math> || szereg zbieżny
 +
|}
  
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
+
Stosując kryterium całkowe, można łatwo pokazać, że szeregi
  
 +
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^s}}</math>
  
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
+
::<math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}}</math>
  
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D23|D23]].
+
są zbieżne dla <math>s > 1</math> i&nbsp;rozbieżne dla <math>s \leqslant 1</math>.
  
  
  
<span id="D25" style="font-size: 110%; font-weight: bold;">Zadanie D25</span><br/>
 
Korzystając z&nbsp;twierdzenia [[#D23|D23]], znaleźć oszacowania sumy częściowej szeregów
 
  
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
+
<span id="D21" style="font-size: 110%; font-weight: bold;">Twierdzenie D21</span><br/>
 +
Jeżeli funkcja <math>f(x)</math> jest ciągła, dodatnia i&nbsp;malejąca w&nbsp;przedziale <math>[m, \infty)</math> oraz
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>R(m) = \int_{m}^{\infty} f(x) d x</math>
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(0, + \infty)</math>. Dla <math>n > 0</math> jest
 
  
::<math>\int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2Fx%5E2%2C+x%3Dn%2C+infinity WolframAlpha])
+
::<math>S(m) = \sum_{k = a}^{m} f(k)</math>
  
::<math>C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2</math>
+
gdzie <math>a < m</math>, to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math>
  
Zatem
+
::<math>S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m)</math>
  
::<math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Korzystając ze wzoru udowodnionego w&nbsp;twierdzeniu [[#D17|D17]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, dostajemy
  
 +
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
  
Rozważmy szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x (\log x)^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(1, + \infty)</math>. Dla <math>n > 1</math> jest
+
Czyli
  
::<math>\int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2F%28x*%28log%28x%29%29%5E2%29%2C+x%3Dn%2C+infinity WolframAlpha])
+
::<math>R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m)</math>
  
::<math>C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots</math>
+
Odejmując od każdej ze stron nierówności liczbę <math>f(m)</math> i&nbsp;dodając do każdej ze stron nierówności sumę skończoną <math>S(m) = \sum_{k = a}^{m} f(k)</math>, otrzymujemy
  
Przyjmijmy <math>C = 2.5</math>, zatem
+
::<math>S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m)</math>
  
::<math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math><br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 796: Linia 770:
  
  
<span id="D26" style="font-size: 110%; font-weight: bold;">Zadanie D26</span><br/>
+
<span id="D22" style="font-size: 110%; font-weight: bold;">Przykład D22</span><br/>
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
+
Twierdzenie [[#D21|D21]] umożliwia określenie, z&nbsp;jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>. Mamy
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}}</math>
Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla <math>n = 1</math>. Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 
  
::<math>\sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}}</math>
+
::<math>\int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right)</math>
  
::::<math>\: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}}</math>
+
::<math>R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right)</math>
  
::::<math>\: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right)</math>
+
Zatem
  
::::<math>\: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}}</math>
+
::<math>S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m)</math>
  
::::<math>\: < 2 - {\small\frac{1}{n + 1}}</math>
+
Dla kolejnych wartości <math>m</math> otrzymujemy
 
 
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 1</math> mamy
 
 
 
::<math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} < 2</math>
 
 
 
Czyli ciąg sum częściowych <math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}}</math> szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
! <math>m</math>
 +
! <math>S(m) + R(m) - f(m)</math>
 +
! <math>S(m) + R(m)</math>
 +
|-
 +
| <math>10^1</math> || <math>1.84</math> || <math>1.87</math>
 +
|-
 +
| <math>10^2</math> || <math>1.85</math> || <math>1.86</math>
 +
|-
 +
| <math>10^3</math> || <math>1.86000</math> || <math>1.86004</math>
 +
|-
 +
| <math>10^4</math> || <math>1.860024</math> || <math>1.860025</math>
 +
|-
 +
| <math>10^5</math> || <math>1.86002506</math> || <math>1.86002509</math>
 +
|-
 +
| <math>10^6</math> || <math>1.860025078</math> || <math>1.860025079</math>
 +
|-
 +
| <math>10^7</math> || <math>1.86002507920</math> || <math>1.86002507923</math>
 +
|-
 +
| <math>10^8</math> || <math>1.860025079220</math> || <math>1.860025079221</math>
 +
|-
 +
| <math>10^9</math> || <math>1.8600250792211</math> || <math>1.8600250792212</math>
 +
|-
 +
|}
  
  
<span id="D27" style="font-size: 110%; font-weight: bold;">Zadanie D27</span><br/>
+
W programie PARI/GP wystarczy napisać:
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
<span style="font-size: 90%; color:black;">f(k) = 1.0 / (k+1) / '''sqrt'''(k)</span>
Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla <math>n = 2</math>
+
<span style="font-size: 90%; color:black;">S(m) = '''sum'''( k = 1, m, f(k) )</span>
 +
<span style="font-size: 90%; color:black;">R(m) = '''Pi''' - 2*'''atan'''( '''sqrt'''(m) )</span>
 +
<span style="font-size: 90%; color:black;">'''for'''(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); '''print'''( "j= ", j, "  a= ", suma + reszta - f(m), "  b= ", suma + reszta ))</span>
  
::<math>\sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 < 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730</math>
 
  
Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 
  
::<math>\sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
 
  
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
+
Prostym wnioskiem z&nbsp;twierdzenia [[#D17|D17]] jest następujące<br/>
 +
<span id="D23" style="font-size: 110%; font-weight: bold;">Twierdzenie D23</span><br/>
 +
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli przy wyliczaniu sumy szeregu nieskończonego <math>\sum_{k = a}^{\infty} f (k)</math> (gdzie <math>a < m</math>) zastąpimy sumę <math>\sum_{k = m}^{\infty} f (k)</math> całką <math>\int_{m}^{\infty} f (x) d x</math>, to błąd wyznaczenia sumy szeregu nie przekroczy <math>f(m)</math>.
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Korzystając ze wzoru z&nbsp;twierdzenia [[#D17|D17]] i&nbsp;przechodząc z <math>n</math> do nieskończoności, otrzymujemy
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
::<math>\int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x</math>
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
Dodając do każdej ze stron nierówności wyrażenie <math>- f(m) + \sum_{k = a}^{m} f(k)</math>, dostajemy
  
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
::<math>- f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x</math>
  
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
+
Skąd wynika natychmiast
  
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}}</math>
+
::<math>- f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 < f(m)</math>
  
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 2</math> mamy
+
Czyli
  
::<math>S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}} < 2.5</math>
+
::<math>\left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m)</math>
  
Czyli ciąg sum częściowych <math>S(n)</math> szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
+
Co kończy dowód.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 858: Linia 848:
  
  
 +
<span id="D24" style="font-size: 110%; font-weight: bold;">Twierdzenie D24</span><br/>
 +
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, + \infty)</math>. Jeżeli szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny, to dla każdego <math>n \geqslant m</math> prawdziwe jest następujące oszacowanie sumy częściowej szeregu <math>S(n)</math>
  
 +
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x</math>
  
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
+
gdzie <math>B</math> oraz <math>C</math> są dowolnymi stałymi spełniającymi nierówności
  
<span id="D28" style="font-size: 110%; font-weight: bold;">Twierdzenie D28</span><br/>
+
::<math>B \geqslant 1</math>
Następujące szeregi są zbieżne
 
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
::<math>C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x</math>
|-
 
| 1. <math>\quad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{p_k}} = 0.269605966 \ldots</math>
 
|
 
|-
 
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2}} = 0.452247420041 \ldots</math>
 
| [https://oeis.org/A085548 A085548]
 
|-
 
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{(p - 1)^2}} = 1.375064994748 \ldots</math>
 
| [https://oeis.org/A086242 A086242]
 
|-
 
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p (p - 1)}} = 0.773156669049 \ldots</math>
 
| [https://oeis.org/A136141 A136141]
 
|}
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Punkt 1.'''<br/>
+
Z twierdzenia [[#D17|D17]] mamy
Szereg jest szeregiem naprzemiennym i&nbsp;jego zbieżność wynika z&nbsp;twierdzenia [[#D5|D5]].
 
  
'''Punkt 2.'''<br/>
+
::<math>S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x</math>
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p^2}} < \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} < {\small\frac{\pi^2}{6}}</math>
+
:::::::<math>\;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x</math>
  
'''Punkt 3.'''<br/>
+
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} < \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}}</math>
+
:::::::<math>\;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
  
'''Punkt 4.'''<br/>
+
:::::::<math>\;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x</math>
Zbieżność wzoru wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
+
 
 +
:::::::<math>\;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x</math>
  
::<math>0 < {\small\frac{1}{p (p - 1)}} < {\small\frac{1}{(p - 1)^2}}</math><br/>
+
:::::::<math>\;\! \leqslant C - B \int_{n}^{\infty} f (x) d x</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 903: Linia 880:
  
  
<span id="D29" style="font-size: 110%; font-weight: bold;">Twierdzenie D29</span><br/>
+
<span id="D25" style="font-size: 110%; font-weight: bold;">Uwaga D25</span><br/>
Następujące szeregi są zbieżne
+
Niech <math>f(x)</math> będzie funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>[m, \infty)</math>. Rozważmy szereg <math>\sum_{k = m}^{\infty} f (k)</math>. Zauważmy, że:
  
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
+
* korzystając z&nbsp;całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg <math>\sum_{k = m}^{\infty} f (k)</math> jest zbieżny
|-
+
* jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie [[#D24|D24]]), możemy znaleźć oszacowanie sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>
| 1. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = 1.636616323351 \ldots</math>
 
| [https://oeis.org/A137245 A137245]
 
|-
 
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2 \log p}} = 0.507782187859 \ldots</math>
 
| [https://oeis.org/A221711 A221711]
 
|-
 
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = 0.755366610831 \ldots</math>
 
| [https://oeis.org/A138312 A138312]
 
|-
 
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p^2}} = 0.493091109368 \ldots</math>
 
| [https://oeis.org/A136271 A136271]
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Jednak dysponując już oszacowaniem sumy częściowej szeregu <math>S(n) = \sum_{k = m}^{n} f(k)</math>, możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a&nbsp;stąd łatwo pokazać zbieżność szeregu <math>\sum_{k = m}^{\infty} f(k)</math>. Zauważmy, że wybór większego <math>B</math> ułatwia dowód indukcyjny. Stałą <math>C</math> najlepiej zaokrąglić w&nbsp;górę do wygodnej dla nas wartości.
'''Punkt 1.'''<br/>
 
Zbieżność tego szeregu udowodniliśmy w&nbsp;twierdzeniu [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B39|B39]], ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w&nbsp;postaci
 
  
::<math>\sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
 
  
Wyrażenie w&nbsp;mianowniku ułamka możemy łatwo oszacować. Z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A1|A1]] mamy (<math>a = 0.72</math>)
+
Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w&nbsp;jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a&nbsp;do tego wystarczy indukcja matematyczna.
  
::<math>p_k \log p_k > a \cdot k \log k \cdot \log (a \cdot k \log k) =</math>
+
Zamieszczonej niżej zadania pokazują, jak wykorzystać w&nbsp;tym celu twierdzenie [[#D24|D24]].
  
::::<math>\;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) =</math>
 
  
::::<math>\;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right)</math>
 
  
Ponieważ dla <math>k > \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots</math> jest
+
<span id="D26" style="font-size: 110%; font-weight: bold;">Zadanie D26</span><br/>
 +
Korzystając z&nbsp;twierdzenia [[#D24|D24]], znaleźć oszacowania sumy częściowej szeregów
  
::<math>\log a + \log \log k > 0</math>
+
::<math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad</math> oraz <math>\qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>
  
to dla <math>k \geqslant 5</math> prawdziwe jest oszacowanie
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Rozważmy szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(0, + \infty)</math>. Dla <math>n > 0</math> jest
  
::<math>p_k \log p_k > a \cdot k \cdot (\log k)^2</math>
+
::<math>\int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2Fx%5E2%2C+x%3Dn%2C+infinity WolframAlpha])
  
Wynika stąd, że dla <math>k \geqslant 5</math> prawdziwy jest ciąg nierówności
+
::<math>C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2</math>
  
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
+
Zatem
  
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D14|D14]] p. 4 lub przykład [[#D19|D19]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
+
::<math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math>
  
'''Punkt 2.'''<br/>
 
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego (twierdzenie [[#D9|D9]]), bo
 
  
::<math>0 < {\small\frac{1}{p^2 \log p}} < {\small\frac{1}{p \log p}}</math>
+
Rozważmy szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math>. Funkcja <math>f(x) = {\small\frac{1}{x (\log x)^2}}</math> jest funkcją ciągłą, dodatnią i&nbsp;malejącą w&nbsp;przedziale <math>(1, + \infty)</math>. Dla <math>n > 1</math> jest
  
'''Punkt 3.'''<br/>
+
::<math>\int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad</math> (zobacz: [https://www.wolframalpha.com/input/?i=int+1%2F%28x*%28log%28x%29%29%5E2%29%2C+x%3Dn%2C+infinity WolframAlpha])
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} < \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots</math>
+
::<math>C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots</math>
  
'''Punkt 4.'''<br/>
+
Przyjmijmy <math>C = 2.5</math>, zatem
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
 
  
::<math>0 < {\small\frac{\log p}{p^2}} < {\small\frac{\log p}{p (p - 1)}}</math><br/>
+
::<math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 968: Linia 926:
  
  
<span id="D30" style="font-size: 110%; font-weight: bold;">Twierdzenie D30</span><br/>
+
<span id="D27" style="font-size: 110%; font-weight: bold;">Zadanie D27</span><br/>
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
+
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest zbieżny.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Dla potrzeb dowodu zapiszmy szereg w&nbsp;innej postaci
+
Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla <math>n = 1</math>. Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math>
+
::<math>\sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}}</math>
  
Zauważmy, że dla <math>k \geqslant 3</math> wyrazy szeregów <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> oraz <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math> spełniają nierówności
+
::::<math>\: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}}</math>
  
::<math>0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}}</math>
+
::::<math>\: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right)</math>
  
Ponieważ szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> jest rozbieżny (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]]), to na mocy kryterium porównawczego rozbieżny jest również szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math><br/>
+
::::<math>\: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::::<math>\: < 2 - {\small\frac{1}{n + 1}}</math>
  
 +
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 1</math> mamy
  
<span id="D31" style="font-size: 110%; font-weight: bold;">Uwaga D31</span><br/>
+
::<math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} < 2</math>
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
 
  
 +
Czyli ciąg sum częściowych <math>S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}}</math> szeregu <math>\sum_{k = 1}^{\infty} {\small\frac{1}{k^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span id="D32" style="font-size: 110%; font-weight: bold;">Twierdzenie D32</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
 
  
::{| class="wikitable plainlinks" style="font-size: 100%; text-align: center; margin-right: auto;"
+
<span id="D28" style="font-size: 110%; font-weight: bold;">Zadanie D28</span><br/>
|- style=height:3em
+
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania <math>\sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}}</math> i&nbsp;udowodnić, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest zbieżny.
| <math>\quad 1. \quad</math> || <math>n! > n^n e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 1</math>
 
|- style=height:3em
 
| <math>\quad 2. \quad</math> || <math>n! < n^{n + 1} e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 7</math>
 
|}
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
'''Punkt 1. (indukcja matematyczna)'''<br/>
+
Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla <math>n = 2</math>
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 1</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 
  
::<math>(n + 1) ! = n! \cdot (n + 1) ></math>
+
::<math>\sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 < 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730</math>
  
::::<math>\;\;\; > n^n \cdot e^{- n} \cdot (n + 1) =</math>
+
Zakładając, że oszacowanie jest prawdziwe dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
  
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} =</math>
+
::<math>\sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
  
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} ></math>
+
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}}</math>
  
::::<math>\;\;\; > (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
+
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right)</math>
  
::::<math>\;\;\; = (n + 1)^{n + 1} e^{- (n + 1)}</math>
+
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
  
Ponieważ <math>\left( 1 + {\small\frac{1}{n}} \right)^n < e</math>, zatem <math>{\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} > {\small\frac{1}{e}}</math>. Co kończy dowód punktu 1.
+
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
  
 +
:::::<math>\quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
  
'''Punkt 2. (indukcja matematyczna)'''<br/>
+
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right)</math>
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 7</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 
  
::<math>(n + 1) ! = n! \cdot (n + 1) <</math>
+
:::::<math>\quad \: < 2.5 - {\small\frac{1}{\log (n + 1)}}</math>
  
::::<math>\;\;\; < n^{n + 1} \cdot e^{- n} \cdot (n + 1) =</math>
+
Co kończy dowód indukcyjny. Zatem dla <math>n \geqslant 2</math> mamy
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} =</math>
+
::<math>S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} < 2.5 - {\small\frac{1}{\log n}} < 2.5</math>
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} =</math>
+
Czyli ciąg sum częściowych <math>S(n)</math> szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}}</math> jest rosnący i&nbsp;ograniczony od góry, a&nbsp;zatem zbieżny. Co oznacza, że szereg jest zbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} <</math>
 
  
::::<math>\;\;\; < (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
 
  
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)}</math>
 
  
Ostatnia nierówność wynika z&nbsp;faktu, że <math>\left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} < {\small\frac{1}{e}}</math>. Co kończy dowód punktu 2.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
== Szeregi nieskończone i&nbsp;liczby pierwsze ==
  
 +
<span id="D29" style="font-size: 110%; font-weight: bold;">Twierdzenie D29</span><br/>
 +
Następujące szeregi są zbieżne
  
<span id="D33" style="font-size: 110%; font-weight: bold;">Twierdzenie D33</span><br/>
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
+
|-
 
+
| 1. <math>\quad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{p_k}} = 0.269605966 \ldots</math>
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
+
|
|- style=height:3em
+
|-
| <math>\quad 1. \quad</math> || <math>{\small\frac{n}{p}} - 1 < W_p (n!) < {\small\frac{n}{p - 1}}</math>
+
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2}} = 0.452247420041 \ldots</math>
|- style=height:3em
+
| [https://oeis.org/A085548 A085548]
| <math>\quad 2. \quad</math> || <math>{\small\frac{n + 1}{p}} - 1 \leqslant W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>
+
|-
 +
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{(p - 1)^2}} = 1.375064994748 \ldots</math>
 +
| [https://oeis.org/A086242 A086242]
 +
|-
 +
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p (p - 1)}} = 0.773156669049 \ldots</math>
 +
| [https://oeis.org/A136141 A136141]
 
|}
 
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
'''Punkt 1. (prawa nierówność)'''
+
'''Punkt 1.'''<br/>
 +
Szereg jest szeregiem naprzemiennym i&nbsp;jego zbieżność wynika z&nbsp;twierdzenia [[#D5|D5]].
  
Zauważmy, że
+
'''Punkt 2.'''<br/>
 +
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
  
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p^2}} < \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} < {\small\frac{\pi^2}{6}}</math>
  
::::<math>\;\, < {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots</math>
+
'''Punkt 3.'''<br/>
 +
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
  
::::<math>\;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} < \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}}</math>
  
::::<math>\;\, = {\small\frac{n}{p - 1}}</math>
+
'''Punkt 4.'''<br/>
 +
Zbieżność wzoru wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
  
'''Punkt 1. (lewa nierówność)'''
+
::<math>0 < {\small\frac{1}{p (p - 1)}} < {\small\frac{1}{(p - 1)^2}}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Łatwo znajdujemy, że
 
  
::<math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor > {\small\frac{n}{p}} - 1</math>
 
  
'''Punkt 2. (prawa nierówność)'''
+
<span id="D30" style="font-size: 110%; font-weight: bold;">Twierdzenie D30</span><br/>
 +
Następujące szeregi są zbieżne
  
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>(p - 1) W_p (n!) < n</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 +
|-
 +
| 1. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = 1.636616323351 \ldots</math>
 +
| [https://oeis.org/A137245 A137245]
 +
|-
 +
| 2. <math>\quad \sum_{p \geqslant 2} {\small\frac{1}{p^2 \log p}} = 0.507782187859 \ldots</math>
 +
| [https://oeis.org/A221711 A221711]
 +
|-
 +
| 3. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = 0.755366610831 \ldots</math>
 +
| [https://oeis.org/A138312 A138312]
 +
|-
 +
| 4. <math>\quad \sum_{p \geqslant 2} {\small\frac{\log p}{p^2}} = 0.493091109368 \ldots</math>
 +
| [https://oeis.org/A136271 A136271]
 +
|}
  
::<math>(p - 1) W_p (n!) \leqslant n - 1</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
'''Punkt 1.'''<br/>
 +
Zbieżność tego szeregu udowodniliśmy w&nbsp;twierdzeniu [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B39|B39]], ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w&nbsp;postaci
  
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>.
+
::<math>\sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
  
'''Punkt 2. (lewa nierówność)'''
+
Wyrażenie w&nbsp;mianowniku ułamka możemy łatwo oszacować. Z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A1|A1]] mamy (<math>a = 0.72</math>)
 +
 
 +
::<math>p_k \log p_k > a \cdot k \log k \cdot \log (a \cdot k \log k) =</math>
 +
 
 +
::::<math>\;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) =</math>
  
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>n - p < p \cdot W_p (n!)</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
+
::::<math>\;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right)</math>
  
::<math>n - p \leqslant p \cdot W_p (n!) - 1</math>
+
Ponieważ dla <math>k > \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots</math> jest
  
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1</math>.<br/>
+
::<math>\log a + \log \log k > 0</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
to dla <math>k \geqslant 5</math> prawdziwe jest oszacowanie
  
 +
::<math>p_k \log p_k > a \cdot k \cdot (\log k)^2</math>
  
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34</span><br/>
+
Wynika stąd, że dla <math>k \geqslant 5</math> prawdziwy jest ciąg nierówności
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - 1</math>
+
::<math>0 < {\small\frac{1}{p_k \log p_k}} < {\small\frac{1}{a \cdot k \cdot (\log k)^2}}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Zatem na mocy kryterium porównawczego ze zbieżności szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}}</math> (zobacz twierdzenie [[#D15|D15]] p. 4 lub przykład [[#D20|D20]] p. 5) wynika zbieżność szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}}</math>
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 2</math> mamy
 
  
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
+
'''Punkt 2.'''<br/>
 +
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego (twierdzenie [[#D10|D10]]), bo
  
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D32|D32]]), to
+
::<math>0 < {\small\frac{1}{p^2 \log p}} < {\small\frac{1}{p \log p}}</math>
  
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
+
'''Punkt 3.'''<br/>
 +
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i&nbsp;ograniczony
  
Logarytmując, otrzymujemy
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} < \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots</math>
  
::<math>n \log n - n < \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math>
+
'''Punkt 4.'''<br/>
 +
Zbieżność szeregu wynika z&nbsp;kryterium porównawczego, bo dla każdego <math>p \geqslant 2</math> jest
  
Dzieląc strony przez <math>n</math>, dostajemy szukaną nierówność.<br/>
+
::<math>0 < {\small\frac{\log p}{p^2}} < {\small\frac{\log p}{p (p - 1)}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1116: Linia 1098:
  
  
<span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
<span id="D31" style="font-size: 110%; font-weight: bold;">Twierdzenie D31</span><br/>
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
+
Szereg <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> jest rozbieżny.
 
 
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1.755367</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ
+
Dla potrzeb dowodu zapiszmy szereg w&nbsp;innej postaci
  
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}}</math>
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math>
  
 +
Zauważmy, że dla <math>k \geqslant 3</math> wyrazy szeregów <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> oraz <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math> spełniają nierówności
  
to z&nbsp;twierdzenia [[#D34|D34]] dostajemy
+
::<math>0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
+
Ponieważ szereg <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}}</math> jest rozbieżny (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]]), to na mocy kryterium porównawczego rozbieżny jest również szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Czyli
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
 
  
::::::<math>\quad \;\: > - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
+
<span id="D32" style="font-size: 110%; font-weight: bold;">Uwaga D32</span><br/>
 +
Moglibyśmy oszacować rozbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p}}</math> podobnie, jak to uczyniliśmy w&nbsp;przypadku twierdzenia [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.
  
::::::<math>\quad \;\: = - 1 - 0.755366610831 \ldots</math>
 
  
::::::<math>\quad \;\: > - 1.755367</math>
 
  
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D29|D29]] p. 3).<br/>
+
<span id="D33" style="font-size: 110%; font-weight: bold;">Twierdzenie D33</span><br/>
&#9633;
+
Niech <math>n \in \mathbb{Z}_+</math>. Prawdziwe są następujące nierówności
{{\Spoiler}}
 
  
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
|- style=height:3em
 +
| <math>\quad 1. \quad</math> || <math>n! > n^n e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 1</math>
 +
|- style=height:3em
 +
| <math>\quad 2. \quad</math> || <math>n! < n^{n + 1} e^{- n}</math> || <math>\text{dla} \;\; n \geqslant 7</math>
 +
|}
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
'''Punkt 1. (indukcja matematyczna)'''<br/>
 +
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 1</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
  
<span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
+
::<math>(n + 1) ! = n! \cdot (n + 1) ></math>
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < 0.386295</math>
+
::::<math>\;\;\; > n^n \cdot e^{- n} \cdot (n + 1) =</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} =</math>
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 1</math> mamy
 
  
::<math>n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} ></math>
  
Ponieważ dla <math>n \geqslant 7</math> jest <math>n! < n^{n + 1} e^{- n}</math>, to
+
::::<math>\;\;\; > (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
  
::<math>\prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} < n^{n + 1} e^{- n}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 1} e^{- (n + 1)}</math>
  
Logarytmując, otrzymujemy
+
Ponieważ <math>\left( 1 + {\small\frac{1}{n}} \right)^n < e</math>, zatem <math>{\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} > {\small\frac{1}{e}}</math>. Co kończy dowód punktu 1.
  
::<math>\sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p < (n + 1) \cdot \log n - n</math>
 
  
::<math>(n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p < (n + 1) \cdot \log n - n</math>
+
'''Punkt 2. (indukcja matematyczna)'''<br/>
 +
Łatwo sprawdzić prawdziwość nierówności dla <math>n = 7</math>. Zakładając prawdziwość dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
  
 +
::<math>(n + 1) ! = n! \cdot (n + 1) <</math>
  
Skąd natychmiast wynika, że
+
::::<math>\;\;\; < n^{n + 1} \cdot e^{- n} \cdot (n + 1) =</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right)</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} =</math>
  
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n))</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} =</math>
  
::::::<math>\quad \;\: < - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} <</math>
  
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}}</math>
+
::::<math>\;\;\; < (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} =</math>
  
::::::<math>\quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}}</math>
+
::::<math>\;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)}</math>
  
::::::<math>\quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}}</math>
+
Ostatnia nierówność wynika z&nbsp;faktu, że <math>\left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} < {\small\frac{1}{e}}</math>. Co kończy dowód punktu 2.<br/>
 
 
::::::<math>\quad \;\: < \log 4 - 1</math>
 
 
 
::::::<math>\quad \;\: = 0.386294361 \ldots</math>
 
 
 
Druga nierówność wynika z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A9|A9]]. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla <math>n < 7</math>.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1192: Linia 1173:
  
  
<span id="D37" style="font-size: 110%; font-weight: bold;">Twierdzenie D37</span><br/>
+
<span id="D34" style="font-size: 110%; font-weight: bold;">Twierdzenie D34</span><br/>
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
+
Niech <math>n \in \mathbb{Z}_+</math>. Dla wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, prawdziwe są oszacowania
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < 1.141661</math>
+
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: right; margin-right: auto;"
 +
|- style=height:3em
 +
| <math>\quad 1. \quad</math> || <math>{\small\frac{n}{p}} - 1 < W_p (n!) < {\small\frac{n}{p - 1}}</math>
 +
|- style=height:3em
 +
| <math>\quad 2. \quad</math> || <math>{\small\frac{n + 1}{p}} - 1 \leqslant W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>
 +
|}
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Ponieważ
+
'''Punkt 1. (prawa nierówność)'''
  
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
+
Zauważmy, że
  
to z&nbsp;twierdzenia [[#D36|D36]] dostajemy
+
::<math>W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
+
::::<math>\;\, < {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots</math>
  
Czyli
+
::::<math>\;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
+
::::<math>\;\, = {\small\frac{n}{p - 1}}</math>
  
:::::::<math>\,\, < \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
+
'''Punkt 1. (lewa nierówność)'''
  
:::::::<math>\,\, = \log 4 - 1 + 0.755366610831 \ldots</math>
+
Łatwo znajdujemy, że
  
:::::::<math>\,\, < 1.141661</math><br/>
+
::<math>W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor > {\small\frac{n}{p}} - 1</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
'''Punkt 2. (prawa nierówność)'''
  
 +
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>(p - 1) W_p (n!) < n</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
  
<span id="D38" style="font-size: 110%; font-weight: bold;">Uwaga D38</span><br/>
+
::<math>(p - 1) W_p (n!) \leqslant n - 1</math>
{| class="wikitable"
 
|
 
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p}}</math> jest dane wzorem
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots</math>
+
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}}</math>.
  
gdzie <math>E = 1.332582275733 \ldots</math>
+
'''Punkt 2. (lewa nierówność)'''
  
Dla <math>n \geqslant 319</math> mamy też<ref name="Rosser1"/>
+
Z uzyskanego w&nbsp;punkcie 1. oszacowania wynika, że <math>n - p < p \cdot W_p (n!)</math>. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać
  
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| < {\small\frac{1}{2 \log n}}</math>
+
::<math>n - p \leqslant p \cdot W_p (n!) - 1</math>
  
|}
+
Skąd otrzymujemy natychmiast nierówność nieostrą <math>W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
  
<span id="D39" style="font-size: 110%; font-weight: bold;">Uwaga D39</span><br/>
+
<span id="D35" style="font-size: 110%; font-weight: bold;">Twierdzenie D35</span><br/>
{| class="wikitable"
+
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
|
 
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math> jest dane wzorem
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - 1</math>
  
gdzie <math>\gamma = 0.5772156649 \ldots</math> jest stałą Eulera.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 2</math> mamy
  
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie<ref name="twierdzenie"/>
+
::<math>n! < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
  
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
+
Ponieważ dla <math>n \geqslant 1</math> jest <math>n! > n^n e^{- n}</math> (zobacz punkt 1. twierdzenia [[#D33|D33]]), to
  
|}
+
::<math>n^n e^{- n} < \prod_{p \leqslant n} p^{n / (p - 1)}</math>
  
 +
Logarytmując, otrzymujemy
  
 +
::<math>n \log n - n < \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math>
  
<span id="D40" style="font-size: 110%; font-weight: bold;">Uwaga D40</span><br/>
+
Dzieląc strony przez <math>n</math>, dostajemy szukaną nierówność.<br/>
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
+
&#9633;
 +
{{\Spoiler}}
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E</math>
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma</math>
 
  
są liczbami dodatnimi.
+
<span id="D36" style="font-size: 110%; font-weight: bold;">Twierdzenie D36 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 +
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1.755367</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ
  
<span id="D41" style="font-size: 110%; font-weight: bold;">Twierdzenie D41</span><br/>
+
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}}</math>
Prawdziwy jest następujący związek
 
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma</math>
 
  
gdzie
+
to z&nbsp;twierdzenia [[#D35|D35]] dostajemy
  
* <math>\quad \gamma = 0.577215664901532 \ldots</math> jest stałą Eulera<ref name="A001620"/>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n > - 1</math>
* <math>\quad E = 1.332582275733220 \ldots</math><ref name="A083343"/>
 
* <math>\quad E - \gamma = 0.755366610831688 \ldots</math><ref name="A138312"/>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Czyli
Ponieważ
 
  
::<math>{\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n > - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
  
zatem
+
::::::<math>\quad \;\: > - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots)</math>
+
::::::<math>\quad \;\: = - 1 - 0.755366610831 \ldots</math>
  
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy
+
::::::<math>\quad \;\: > - 1.755367</math>
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma</math>
+
Gdzie wykorzystaliśmy zbieżność szeregu <math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math> (twierdzenie [[#D30|D30]] p. 3).<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
Zauważmy teraz, że
 
  
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
+
<span id="D37" style="font-size: 110%; font-weight: bold;">Twierdzenie D37 (pierwsze twierdzenie Mertensa</span><ref name="Mertens1"/><ref name="Mertens2"/><span style="font-size: 110%; font-weight: bold;">, 1874)</span><br/>
 +
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
:::<math>\;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right)</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < 0.386295</math>
  
:::<math>\;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z oszacowania wykładnika, z&nbsp;jakim liczba pierwsza <math>p</math> występuje w&nbsp;rozwinięciu liczby <math>n!</math> na czynniki pierwsze, wynika natychmiast, że dla <math>n \geqslant 1</math> mamy
  
Zatem
+
::<math>n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1}</math>
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right)</math><br/>
+
Ponieważ dla <math>n \geqslant 7</math> jest <math>n! < n^{n + 1} e^{- n}</math>, to
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} < n^{n + 1} e^{- n}</math>
  
 +
Logarytmując, otrzymujemy
  
<span id="D42" style="font-size: 110%; font-weight: bold;">Twierdzenie D42</span><br/>
+
::<math>\sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p < (n + 1) \cdot \log n - n</math>
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
 
  
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
+
::<math>(n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p < (n + 1) \cdot \log n - n</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w&nbsp;pracy Pierre'a Dusarta<ref name="Dusart10"/>
 
  
::<math>- \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}}</math>
+
Skąd natychmiast wynika, że
  
Ponieważ dla <math>x > e^2 \approx 7.389</math> jest <math>1 + {\small\frac{1}{\log x}} < 1.5</math>, to dla <math>n \geqslant 8</math> mamy
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n < - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right)</math>
  
::<math>{\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) < {\small\frac{0.3}{\log n}}</math>
+
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n))</math>
  
 +
::::::<math>\quad \;\: < - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}}</math>
  
Zatem wyjściowy układ nierówności możemy zapisać w&nbsp;postaci
+
::::::<math>\quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}}</math>
  
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
+
::::::<math>\quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}}</math>
  
 +
::::::<math>\quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}}</math>
  
Z tożsamości
+
::::::<math>\quad \;\: < \log 4 - 1</math>
  
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
+
::::::<math>\quad \;\: = 0.386294361 \ldots</math>
  
 +
Druga nierówność wynika z&nbsp;twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A10|A10]]. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla <math>n < 7</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
wynika natychmiast, że
 
  
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n}  {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
 
  
 +
<span id="D38" style="font-size: 110%; font-weight: bold;">Twierdzenie D38</span><br/>
 +
Dla dowolnego <math>n \in \mathbb{Z}_+</math> prawdziwe jest następujące oszacowanie
  
'''Prawa nierówność'''
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < 1.141661</math>
  
Rozważmy prawą nierówność prawdziwą dla <math>n \geqslant 2974</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E < {\small\frac{0.3}{\log n}}</math>
+
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
  
 +
to z&nbsp;twierdzenia [[#D37|D37]] dostajemy
  
Z twierdzenia [[#D41|D41]] wiemy, że
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n < \log 4 - 1</math>
  
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
+
Czyli
  
Zatem
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}}</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
+
:::::::<math>\,\, < \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}}</math>
  
:::::::<math>\,\, < \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
+
:::::::<math>\,\, = \log 4 - 1 + 0.755366610831 \ldots</math>
  
:::::::<math>\,\, = - \gamma + {\small\frac{0.3}{\log n}}</math>
+
:::::::<math>\,\, < 1.141661</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
:::::::<math>\,\, < - \gamma + {\small\frac{0.5}{\log n}}</math>
 
  
  
Bezpośrednio obliczając, sprawdzamy, że nierówność
+
<span id="D39" style="font-size: 110%; font-weight: bold;">Uwaga D39</span><br/>
 +
{| class="wikitable"
 +
|
 +
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p}}</math> jest dane wzorem
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < - \gamma + {\small\frac{0.5}{\log n}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots</math>
  
jest prawdziwa dla wszystkich liczb <math>318 \leqslant n \leqslant 3000</math>
+
gdzie <math>E = 1.332582275733 \ldots</math>
  
 +
Dla <math>n \geqslant 319</math> mamy też<ref name="Rosser1"/>
  
'''Lewa nierówność'''
+
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| < {\small\frac{1}{2 \log n}}</math>
  
Rozważmy teraz lewą nierówność prawdziwą dla <math>n \geqslant 8</math>
+
|}
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E > - {\small\frac{0.3}{\log n}}</math>
 
  
Mamy
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
+
<span id="D40" style="font-size: 110%; font-weight: bold;">Uwaga D40</span><br/>
 +
{| class="wikitable"
 +
|
 +
Dokładniejsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}}</math> jest dane wzorem
  
:::::::<math>\,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots</math>
  
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}}</math>
+
gdzie <math>\gamma = 0.5772156649 \ldots</math> jest stałą Eulera.
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}}</math>
+
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie<ref name="twierdzenie"/>
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}}</math>
+
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
  
 +
|}
  
Korzystając kolejno z&nbsp;twierdzeń [[#D16|D16]] i&nbsp;[[Ciągi liczbowe#C18|C18]], dostajemy
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
 
  
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right)</math>
+
<span id="D41" style="font-size: 110%; font-weight: bold;">Uwaga D41</span><br/>
 +
Dla <math>n \leqslant 10^{10}</math> wartości wyrażeń
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}}</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E</math>
  
:::::::<math>\,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right)</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma</math>
  
:::::::<math>\,\, > - \gamma - {\small\frac{0.5}{\log n}}</math>
+
są liczbami dodatnimi.
  
  
Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę [https://www.wolframalpha.com/input?i=int+log%28x%29%2F%28x-1%29%5E2+from+n+to+inf WolframAlpha]. Ostatnia nierówność jest prawdziwa dla <math>n \geqslant 153</math>. Bezpośrednio obliczając, sprawdzamy, że nierówność
 
  
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.5}{\log n}}</math>
+
<span id="D42" style="font-size: 110%; font-weight: bold;">Twierdzenie D42</span><br/>
 +
Prawdziwy jest następujący związek
  
jest prawdziwa dla wszystkich <math>2 \leqslant n \leqslant 200</math>.<br/>
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
gdzie
  
 +
* <math>\quad \gamma = 0.577215664901532 \ldots</math> jest stałą Eulera<ref name="A001620"/>
 +
* <math>\quad E = 1.332582275733220 \ldots</math><ref name="A083343"/>
 +
* <math>\quad E - \gamma = 0.755366610831688 \ldots</math><ref name="A138312"/>
  
<span id="D43" style="font-size: 110%; font-weight: bold;">Zadanie D43</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
+
Ponieważ
  
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
+
::<math>{\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}}</math>
  
wynika twierdzenie Czebyszewa.
+
zatem
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots)</math>
Z twierdzenia [[#D42|D42]] wiemy, że dla <math>x \geqslant 318</math> jest
 
  
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
+
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy
  
Zatem postulowane oszacowanie jest prawdziwe dla <math>n \geqslant 318</math>. Sprawdzając bezpośrednio dla <math>2 \leqslant x \leqslant 317</math>, łatwo potwierdzamy prawdziwość nierówności
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma</math>
  
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
 
  
dla <math>x \geqslant 32</math>.
+
Zauważmy teraz, że
  
 +
::<math>{\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}}</math>
  
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D33|D33]], łatwo znajdujemy oszacowanie
+
:::<math>\;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right)</math>
  
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
+
:::<math>\;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots</math>
  
::<math>\quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n</math>
+
Zatem
  
::<math>\quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1}</math>
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right)</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
gdzie <math>p_n \leqslant a < p_{n + 1}</math>. Oznaczając wyrażenie w&nbsp;nawiasie przez <math>U</math>, mamy
 
  
::<math>\log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} < \log a - r</math>
 
  
gdzie skorzystaliśmy z&nbsp;oszacowania wskazanego w&nbsp;treści zadania. Zatem <math>U < a \cdot e^{- r}</math>.
+
<span id="D43" style="font-size: 110%; font-weight: bold;">Twierdzenie D43</span><br/>
 +
Dla <math>n \geqslant 318</math> prawdziwe jest oszacowanie
  
 +
::<math>\left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| < {\small\frac{1}{2 \log n}}</math>
  
Przypuśćmy, że mnożymy liczbę <math>a!</math> przez kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math>. Możemy postawić pytanie: kiedy w&nbsp;rozkładzie na czynniki pierwsze liczby <math>b!</math> musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w&nbsp;pracy Pierre'a Dusarta<ref name="Dusart10"/>
  
::<math>a! \cdot (a + 1) \cdot \ldots \cdot b = b!</math>
+
::<math>- \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}}</math>
  
:::::::<math>\;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n</math>
+
Ponieważ dla <math>x > e^2 \approx 7.389</math> jest <math>1 + {\small\frac{1}{\log x}} < 1.5</math>, to dla <math>n \geqslant 8</math> mamy
  
:::::::<math>\;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n</math>
+
::<math>{\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) < {\small\frac{0.3}{\log n}}</math>
  
:::::::<math>\;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1}</math>
 
  
:::::::<math>\;\;\; = U^{b - 1}</math>
+
Zatem wyjściowy układ nierówności możemy zapisać w&nbsp;postaci
  
:::::::<math>\;\;\; < (a \cdot e^{- r})^{b - 1}</math>
+
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
  
  
Jednocześnie z&nbsp;twierdzenia [[#D32|D32]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
+
Z tożsamości
  
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
+
::<math>{\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}}</math>
  
::<math>b e^{- 1} < \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}}</math>
 
  
::<math>b < \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}}</math>
+
wynika natychmiast, że
  
 +
::<math>- {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{<} \; \sum_{p \leqslant n}  {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{<} \; {\small\frac{0.3}{\log n}}</math>
  
Ponieważ <math>e^{1 - r} = e^{\log (2)} = 2</math>, to
 
  
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < 2 a</math>
+
'''Prawa nierówność'''
  
 +
Rozważmy prawą nierówność prawdziwą dla <math>n \geqslant 2974</math>
  
Z oszacowania <math>b < 2 a</math> wynika, że <math>(a \cdot e^{- r})^{1 / b} > (a \cdot e^{-r})^{1 / 2 a}</math>. Możemy teraz zapisać uzyskane wyżej oszacowanie w&nbsp;postaci, w&nbsp;której prawa strona nierówności nie zależy od <math>b</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E < {\small\frac{0.3}{\log n}}</math>
  
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}}</math>
 
  
 +
Z twierdzenia [[#D42|D42]] wiemy, że
  
Ponieważ <math>e^{- r} = 0.735758 \ldots</math>, to <math>(a \cdot e^{- r})^{1 / 2 a} > (a / 2)^{1 / 2 a}</math>, co pozwala uprościć uzyskane oszacowanie
+
::<math>\sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma</math>
  
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} < {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}}</math>
+
Zatem
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
  
Pokażemy, że dla <math>a > 303.05</math>
+
:::::::<math>\,\, < \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}}</math>
  
::<math>{\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} < 2 a - 5</math>
+
:::::::<math>\,\, = - \gamma + {\small\frac{0.3}{\log n}}</math>
  
Istotnie
+
:::::::<math>\,\, < - \gamma + {\small\frac{0.5}{\log n}}</math>
  
::<math>{\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} < 1 - {\small\frac{5}{2 a}}</math>
 
  
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} > 1</math>
+
Bezpośrednio obliczając, sprawdzamy, że nierówność
  
::<math>{\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 > 1</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n < - \gamma + {\small\frac{0.5}{\log n}}</math>
  
Wyrażenie w&nbsp;nawiasie kwadratowym jest funkcją rosnącą i&nbsp;ograniczoną (zobacz twierdzenie [[Ciągi liczbowe#C17|C17]]) i&nbsp;dla <math>a \geqslant 32</math> przyjmuje wartości z&nbsp;przedziału <math>[0.353 \ldots, e^{- 1})</math>. Zatem dla odpowiednio dużego <math>a</math> powyższa nierówność z&nbsp;pewnością jest prawdziwa. Łatwo sprawdzamy, że dla <math>a = 304</math> jest
+
jest prawdziwa dla wszystkich liczb <math>318 \leqslant n \leqslant 3000</math>
  
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots</math>
 
  
Wynika stąd, że wszystkie kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math> mogą być liczbami złożonymi co najwyżej do chwili, gdy <math>b < 2 a -
+
'''Lewa nierówność'''
5</math>, czyli <math>b \leqslant 2 a - 6</math>. Zatem w&nbsp;przedziale <math>(a, 2 a)</math> musi znajdować się przynajmniej jedna liczba pierwsza. Dla <math>a \leqslant 303</math> prawdziwość twierdzenia sprawdzamy bezpośrednio.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
Rozważmy teraz lewą nierówność prawdziwą dla <math>n \geqslant 8</math>
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E > - {\small\frac{0.3}{\log n}}</math>
  
<span id="D44" style="font-size: 110%; font-weight: bold;">Definicja D44</span><br/>
+
Mamy
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
 
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
  
 +
:::::::<math>\,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}}</math>
  
<span id="D45" style="font-size: 110%; font-weight: bold;">Twierdzenie D45* (Viggo Brun, 1919)</span><br/>
+
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p > n} {\small\frac{\log p}{p (p - 1)}}</math>
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
 
  
::<math>\underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}}
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}}</math>
\right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2</math>
 
  
gdzie <math>B_2 = 1.90216058 \ldots</math> jest stałą Bruna<ref name="Wiki1"/><ref name="A065421"/>.
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}}</math>
  
  
 +
Korzystając kolejno z&nbsp;twierdzeń [[#D17|D17]] i&nbsp;[[Ciągi liczbowe#C19|C19]], dostajemy
  
<span id="D46" style="font-size: 110%; font-weight: bold;">Zadanie D46</span><br/>
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x</math>
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
:::::::<math>\,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right)</math>
Niech <math>p</math> i <math>q = p + 4</math> będą liczbami pierwszymi i <math>n \geqslant 1</math>. Ponieważ liczby <math>p q</math> i <math>p + 2</math> są względnie pierwsze, to z&nbsp;twierdzenia Dirichleta wiemy, że wśród liczb <math>a_n = p q n + (p + 2)</math> jest nieskończenie wiele liczb pierwszych, a&nbsp;jednocześnie żadna z&nbsp;liczb <math>a_n</math> nie tworzy pary liczb bliźniaczych, bo
 
  
::<math>a_n - 2 = p q n + p = p (q n + 1)</math>
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}}</math>
  
::<math>a_n + 2 = p q n + (p + 4) = q (p n + 1)</math>
+
:::::::<math>\,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right)</math>
  
są liczbami złożonymi. Najprostsze przykłady to <math>a_n = 21 n + 5</math> i <math>b_n = 77 n + 9</math>
+
:::::::<math>\,\, > - \gamma - {\small\frac{0.5}{\log n}}</math>
  
Najłatwiej wszystkie przypadki takich ciągów wyszukać w&nbsp;programie PARI/GP. Polecenie
 
  
for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, "  b= ",b) )))
+
Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę [https://www.wolframalpha.com/input?i=int+log%28x%29%2F%28x-1%29%5E2+from+n+to+inf WolframAlpha]. Ostatnia nierówność jest prawdziwa dla <math>n \geqslant 153</math>. Bezpośrednio obliczając, sprawdzamy, że nierówność
  
wyszukuje wszystkie liczby dodatnie <math>a, b</math>, gdzie <math>b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor</math>, które tworzą ciągi <math>a k + b</math> o&nbsp;poszukiwanych właściwościach. Oczywiście ciągi <math>a k + (a - b)</math> również są odpowiednie. Przykładowo dla <math>a \leqslant 50</math> mamy
+
::<math>\sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n > - \gamma - {\small\frac{0.5}{\log n}}</math>
  
::<math>15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22</math><br/>
+
jest prawdziwa dla wszystkich <math>2 \leqslant n \leqslant 200</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1542: Linia 1537:
  
  
 +
<span id="D44" style="font-size: 110%; font-weight: bold;">Zadanie D44</span><br/>
 +
Niech <math>r = 1 - \log (2) \approx 0.30685281944</math>. Pokazać, że z&nbsp;nierówności prawdziwej dla <math>x \geqslant 32</math>
  
 +
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
  
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum {\small\frac{1}{p}}</math> ==
+
wynika twierdzenie Czebyszewa.
  
<span id="D47" style="font-size: 110%; font-weight: bold;">Twierdzenie D47</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Suma odwrotności liczb pierwszych jest rozbieżna.
+
Z twierdzenia [[#D43|D43]] wiemy, że dla <math>x \geqslant 318</math> jest
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x < - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots < - 0.306852 \ldots = - r</math>
Poniższy dowód został przedstawiony przez Erdősa w&nbsp;pracy<ref name="Erdos1"/> z 1938 roku. Jest to bardzo elegancki i&nbsp;chyba najprostszy dowód tego twierdzenia.
 
  
Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C</math>, gdzie <math>C</math> jest pewną stałą. Zbieżność szeregu o&nbsp;wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i&nbsp;sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby <math>r</math> takiej, że <math>\sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} < {\small\frac{1}{2}}</math>.
+
Zatem postulowane oszacowanie jest prawdziwe dla <math>n \geqslant 318</math>. Sprawdzając bezpośrednio dla <math>2 \leqslant x \leqslant 317</math>, łatwo potwierdzamy prawdziwość nierówności
  
Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory <math>P = \{ p_1, p_2, \ldots, p_r \} \;</math> i <math>\; Q = \{ p_{r + 1}, p_{r + 2,} \ldots \}</math>.
+
::<math>\sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} < \log x - r</math>
  
Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór <math>\mathbb{Z}_Q</math> liczb podzielnych przez dowolną liczbę pierwszą ze zbioru <math>Q</math> i&nbsp;zbiór <math>\mathbb{Z}_P</math> liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru <math>Q</math>. Czyli liczby ze zbioru <math>\mathbb{Z}_P</math> muszą być iloczynami potęg liczb pierwszych ze zbioru <math>P</math>.
+
dla <math>x \geqslant 32</math>.
  
  
Niech <math>M</math> będzie dostatecznie dużą liczbą całkowitą.
+
Niech <math>a \in \mathbb{Z}</math> i <math>a \geqslant 32</math>. Korzystając z&nbsp;twierdzenia [[#D34|D34]], łatwo znajdujemy oszacowanie
  
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_Q</math> takich, że <math>k \leqslant M</math></span><br/>
+
::<math>a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n</math>
  
Zauważmy, że liczb nie większych od <math>M</math> i&nbsp;podzielnych przez liczbę pierwszą <math>p</math> jest dokładnie <math>\left\lfloor {\small\frac{M}{p}} \right\rfloor</math> (zobacz [[Twierdzenie Czebyszewa o funkcji π(n)#A19|A19]]). Łatwo otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
+
::<math>\quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n</math>
  
::<math>\sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor < M \cdot \sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}} M</math>
+
::<math>\quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1}</math>
  
bo z&nbsp;założenia <math>\sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}}</math>. Zatem liczb takich, że <math>k \in \mathbb{Z}_Q \,</math> i <math>\, k \leqslant M</math> jest mniej niż <math>{\small\frac{M}{2}}</math>.
+
gdzie <math>p_n \leqslant a < p_{n + 1}</math>. Oznaczając wyrażenie w&nbsp;nawiasie przez <math>U</math>, mamy
  
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math></span><br/>
+
::<math>\log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} < \log a - r</math>
  
Każdą liczbę ze zbioru <math>\mathbb{Z}_P</math> możemy zapisać w&nbsp;postaci <math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r</math>. Niech <math>\alpha_i = 2 \beta_i + \delta_i</math>, gdzie <math>\delta_i</math> jest resztą z&nbsp;dzielenia liczby <math>\alpha_i</math> przez <math>2</math>. Zatem
+
gdzie skorzystaliśmy z&nbsp;oszacowania wskazanego w&nbsp;treści zadania. Zatem <math>U < a \cdot e^{- r}</math>.
  
::<math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r)</math>
 
  
Ponieważ <math>\delta_i</math> może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci <math>p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r</math> jest dokładnie <math>2^r</math>, a&nbsp;kwadratów liczb całkowitych nie większych od <math>M</math> jest dokładnie <math>\left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M}</math>. Zatem liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math> jest nie więcej niż <math>2^r \sqrt{M} \,</math><span style="color: Green"><sup>[b]</sup></span>.
+
Przypuśćmy, że mnożymy liczbę <math>a!</math> przez kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math>. Możemy postawić pytanie: kiedy w&nbsp;rozkładzie na czynniki pierwsze liczby <math>b!</math> musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to
  
 +
::<math>a! \cdot (a + 1) \cdot \ldots \cdot b = b!</math>
  
 +
:::::::<math>\;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n</math>
  
Ponieważ <math>\mathbb{Z}_P \cup \mathbb{Z}_Q =\mathbb{Z}_+</math> i&nbsp;liczb <math>k \in \mathbb{Z}_+</math> takich, że <math>k \leqslant M</math> jest po prostu <math>M</math>, to musi być prawdziwe oszacowanie
+
:::::::<math>\;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n</math>
  
::<math>M < 2^r \sqrt{M} + {\small\frac{M}{2}}</math>
+
:::::::<math>\;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1}</math>
  
Czyli
+
:::::::<math>\;\;\; = U^{b - 1}</math>
  
::<math>2^{r + 1} > \sqrt{M}</math>
+
:::::::<math>\;\;\; < (a \cdot e^{- r})^{b - 1}</math>
  
Co jest niemożliwe, bo <math>r</math> jest ustalone, a <math>M</math> może być dowolnie duże. Wystarczy przyjąć <math>M \geqslant 2^{2 r + 2}</math>.
 
  
 +
Jednocześnie z&nbsp;twierdzenia [[#D33|D33]] wiemy, że prawdziwa jest nierówność <math>b! > b^b e^{- b}</math>, zatem
  
<hr style="width: 25%; height: 2px; " />
+
::<math>b^b e^{- b} < b! < {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}}</math>
<span style="color: Green">[a]</span> Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb <math>k</math>. Dla przykładu: gdy <math>M > p_{r + 1} p_{r + 2}</math>, to liczba <math>p_{r + 1} p_{r + 2}</math> zostanie policzona dwukrotnie: raz jako podzielna przez <math>p_{r + 1}</math> i&nbsp;drugi raz jako podzielna przez <math>p_{r + 2}</math>. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.
 
  
<span style="color: Green">[b]</span> Zauważmy, że dla <math>M > 8</math> liczba <math>a^2</math> taka, że <math>a^2 \leqslant M < (a + 1)^2</math> wystąpi dokładnie jeden raz (jako <math>a^2 \cdot 1</math>), ale my oszacujemy, że pojawiła się <math>2^r</math> razy. Można pokazać, że dla dowolnych <math>r \geqslant 1 \;</math> i <math>\; M \geqslant 1</math>, liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math>, jest mniej niż <math>2^r \sqrt{M}</math>. Jest ich nawet mniej niż <math>2^r \left\lfloor \sqrt{M} \right\rfloor</math>, poza przypadkami <math>r = 1 \;</math> i <math>\; M = 2, 3, 8</math>, kiedy to ilość takich liczb jest równa <math>2^r \left\lfloor \sqrt{M} \right\rfloor < 2^r \sqrt{M}</math>.<br/>
+
::<math>b e^{- 1} < \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>b < \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}}</math>
  
  
 +
Ponieważ <math>e^{1 - r} = e^{\log (2)} = 2</math>, to
  
 +
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < 2 a</math>
  
== Sumowanie przez części ==
 
  
<span id="D48" style="font-size: 110%; font-weight: bold;">Uwaga D48</span><br/>
+
Z oszacowania <math>b < 2 a</math> wynika, że <math>(a \cdot e^{- r})^{1 / b} > (a \cdot e^{-r})^{1 / 2 a}</math>. Możemy teraz zapisać uzyskane wyżej oszacowanie w&nbsp;postaci, w&nbsp;której prawa strona nierówności nie zależy od <math>b</math>
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
 
  
::<math>D(k) =
+
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / b}} < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}}</math>
\begin{cases}
 
1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\
 
0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\
 
\end{cases}</math>
 
  
  
Łatwo znajdujemy związek funkcji <math>D(k)</math> z&nbsp;funkcją <math>\pi (k)</math>
+
Ponieważ <math>e^{- r} = 0.735758 \ldots</math>, to <math>(a \cdot e^{- r})^{1 / 2 a} > (a / 2)^{1 / 2 a}</math>, co pozwala uprościć uzyskane oszacowanie
  
::<math>\pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1</math>
+
::<math>b < \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} < {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}}</math>
  
:::::::<math>\; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i)</math>
 
  
:::::::<math>\; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i)</math>
+
Pokażemy, że dla <math>a > 303.05</math>
  
:::::::<math>\; = D (k)</math>
+
::<math>{\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} < 2 a - 5</math>
  
 +
Istotnie
  
 +
::<math>{\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} < 1 - {\small\frac{5}{2 a}}</math>
  
<span id="D49" style="font-size: 110%; font-weight: bold;">Twierdzenie D49</span><br/>
+
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} > 1</math>
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
+
::<math>{\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 > 1</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Wyrażenie w&nbsp;nawiasie kwadratowym jest funkcją rosnącą i&nbsp;ograniczoną (zobacz twierdzenie [[Ciągi liczbowe#C18|C18]]) i&nbsp;dla <math>a \geqslant 32</math> przyjmuje wartości z&nbsp;przedziału <math>[0.353 \ldots, e^{- 1})</math>. Zatem dla odpowiednio dużego <math>a</math> powyższa nierówność z&nbsp;pewnością jest prawdziwa. Łatwo sprawdzamy, że dla <math>a = 304</math> jest
Rozpatrywaną sumę możemy zapisać w&nbsp;postaci
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{D (k)}{k}}</math>
+
::<math>{\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots</math>
  
:::<math>\quad \; = \sum_{k = 2}^n {\small\frac{\pi (k) - \pi (k - 1)}{k}}</math>
+
Wynika stąd, że wszystkie kolejne liczby naturalne <math>a + 1, a + 2, \ldots, b - 1, b</math> mogą być liczbami złożonymi co najwyżej do chwili, gdy <math>b < 2 a -
 +
5</math>, czyli <math>b \leqslant 2 a - 6</math>. Zatem w&nbsp;przedziale <math>(a, 2 a)</math> musi znajdować się przynajmniej jedna liczba pierwsza. Dla <math>a \leqslant 303</math> prawdziwość twierdzenia sprawdzamy bezpośrednio.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
:::<math>\quad \; = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^n {\small\frac{\pi (k - 1)}{k}}</math>
 
  
W drugiej sumie zmieniamy zmienną sumowania. Niech <math>j = k - 1</math>. Sumowanie po <math>k</math> przebiegało od <math>2</math> do <math>n</math>, zatem sumowanie po <math>j</math> będzie przebiegało od <math>1</math> do <math>n - 1</math>. Otrzymujemy
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{j = 1}^{n - 1} {\small\frac{\pi (j)}{j + 1}}</math>
+
<span id="D45" style="font-size: 110%; font-weight: bold;">Definicja D45</span><br/>
 +
Powiemy, że liczby pierwsze <math>p, q</math> są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli <math>\left | p - q \right | = 2</math>
  
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{j = 2}^{n - 1} {\small\frac{\pi (j)}{j + 1}}</math>
 
  
Ponieważ <math>\pi (1) = 0</math>. Zmieniając jedynie oznaczenie zmiennej sumowania, mamy
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k + 1}}</math>
+
<span id="D46" style="font-size: 110%; font-weight: bold;">Twierdzenie D46* (Viggo Brun, 1919)</span><br/>
 +
Suma odwrotności par liczb pierwszych <math>p</math> i <math>p + 2</math>, takich że liczba <math>p + 2</math> jest również pierwsza, jest skończona
  
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^n \pi (k) \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right)</math>
+
::<math>\underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}}
 +
\right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2</math>
  
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
+
gdzie <math>B_2 = 1.90216058 \ldots</math> jest stałą Bruna<ref name="Wiki1"/><ref name="A065421"/>.
  
Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
  
 
+
<span id="D47" style="font-size: 110%; font-weight: bold;">Zadanie D47</span><br/>
<span id="D50" style="font-size: 110%; font-weight: bold;">Zadanie D50</span><br/>
+
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia [[#D49|D49]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
+
Niech <math>p</math> i <math>q = p + 4</math> będą liczbami pierwszymi i <math>n \geqslant 1</math>. Ponieważ liczby <math>p q</math> i <math>p + 2</math> są względnie pierwsze, to z&nbsp;twierdzenia Dirichleta wiemy, że wśród liczb <math>a_n = p q n + (p + 2)</math> jest nieskończenie wiele liczb pierwszych, a&nbsp;jednocześnie żadna z&nbsp;liczb <math>a_n</math> nie tworzy pary liczb bliźniaczych, bo
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
+
::<math>a_n - 2 = p q n + p = p (q n + 1)</math>
  
Z twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Zatem dla <math>n \geqslant 4</math> jest
+
::<math>a_n + 2 = p q n + (p + 4) = q (p n + 1)</math>
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
+
są liczbami złożonymi. Najprostsze przykłady to <math>a_n = 21 n + 5</math> i <math>b_n = 77 n + 9</math>
  
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + {\small\frac{1}{3}} + \sum_{k = 4}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
+
Najłatwiej wszystkie przypadki takich ciągów wyszukać w&nbsp;programie PARI/GP. Polecenie
  
:::<math>\quad \; > {\small\frac{2}{3}} \cdot {\small\frac{1}{\log n}} + {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{k}{\log k \cdot k (k + 1)}}</math>
+
for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, "  b= ",b) )))
  
:::<math>\quad \; > {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log k}}</math>
+
wyszukuje wszystkie liczby dodatnie <math>a, b</math>, gdzie <math>b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor</math>, które tworzą ciągi <math>a k + b</math> o&nbsp;poszukiwanych właściwościach. Oczywiście ciągi <math>a k + (a - b)</math> również są odpowiednie. Przykładowo dla <math>a \leqslant 50</math> mamy
  
:::<math>\quad \; > {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log (k + 1)}}</math>
+
::<math>15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
 
  
Korzystając z&nbsp;twierdzenia [[#D16|D16]], otrzymujemy
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
 
  
:::<math>\quad \; = {\small\frac{2}{3}} \cdot \log \log x \biggr\rvert_{5}^{n + 1} + {\small\frac{1}{3}}</math>
 
  
:::<math>\quad \; = {\small\frac{2}{3}} \cdot \log \log (n + 1) - {\small\frac{2}{3}} \cdot \log \log 5 + {\small\frac{1}{3}}</math>
+
== Dowód z&nbsp;Księgi. Rozbieżność sumy <math>\textstyle \sum {\small\frac{1}{p}}</math> ==
  
:::<math>\quad \; > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>
+
<span id="D48" style="font-size: 110%; font-weight: bold;">Twierdzenie D48</span><br/>
 +
Suma odwrotności liczb pierwszych jest rozbieżna.
  
Zauważmy, że znacznie mniejszym nakładem pracy otrzymaliśmy lepsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> (porównaj [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]]).<br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
&#9633;
+
Poniższy dowód został przedstawiony przez Erdősa w&nbsp;pracy<ref name="Erdos1"/> z 1938 roku. Jest to bardzo elegancki i&nbsp;chyba najprostszy dowód tego twierdzenia.
{{\Spoiler}}
 
  
 +
Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli <math>\sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C</math>, gdzie <math>C</math> jest pewną stałą. Zbieżność szeregu o&nbsp;wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i&nbsp;sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby <math>r</math> takiej, że <math>\sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} < {\small\frac{1}{2}}</math>.
  
 +
Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory <math>P = \{ p_1, p_2, \ldots, p_r \} \;</math> i <math>\; Q = \{ p_{r + 1}, p_{r + 2,} \ldots \}</math>.
  
<span id="D51" style="font-size: 110%; font-weight: bold;">Zadanie D51</span><br/>
+
Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór <math>\mathbb{Z}_Q</math> liczb podzielnych przez dowolną liczbę pierwszą ze zbioru <math>Q</math> i&nbsp;zbiór <math>\mathbb{Z}_P</math> liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru <math>Q</math>. Czyli liczby ze zbioru <math>\mathbb{Z}_P</math> muszą być iloczynami potęg liczb pierwszych ze zbioru <math>P</math>.
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D49|D49]])
 
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
+
Niech <math>M</math> będzie dostatecznie dużą liczbą całkowitą.
  
dla liczby <math>n > n_0</math> otrzymujemy oszacowanie
+
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_Q</math> takich, że <math>k \leqslant M</math></span><br/>
  
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} < {\small\frac{n^{1 - \varepsilon}}{n}} + \sum_{k = 2}^{n_0 - 1} {\small\frac{\pi (k)}{k (k + 1)}} + \sum_{k = n_0}^{n - 1} {\small\frac{k^{1 - \varepsilon}}{k (k + 1)}}</math>
+
Zauważmy, że liczb nie większych od <math>M</math> i&nbsp;podzielnych przez liczbę pierwszą <math>p</math> jest dokładnie <math>\left\lfloor {\small\frac{M}{p}} \right\rfloor</math> (zobacz [[Twierdzenie Czebyszewa o funkcji π(n)#A20|A20]]). Łatwo otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
  
:::<math>\quad \; = {\small\frac{1}{n^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n - 1} {\small\frac{1}{k^{\varepsilon} (k + 1)}}</math>
+
::<math>\sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor < M \cdot \sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}} M</math>
  
:::<math>\quad \; < {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n} {\small\frac{1}{k^{1 + \varepsilon}}}</math>
+
bo z&nbsp;założenia <math>\sum_{p \in Q} {\small\frac{1}{p}} < {\small\frac{1}{2}}</math>. Zatem liczb takich, że <math>k \in \mathbb{Z}_Q \,</math> i <math>\, k \leqslant M</math> jest mniej niż <math>{\small\frac{M}{2}}</math>.
  
:::<math>\quad \; \leqslant {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + {\small\frac{1}{(n_0)^{1 + \varepsilon}}} + \int^n_{n_0} {\small\frac{d x}{x^{1 + \varepsilon}}}</math>
+
<span style="border-bottom-style: double;">Oszacowanie od góry ilości liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math></span><br/>
  
:::<math>\quad \; = C_2 + \left[ - {\small\frac{1}{\varepsilon \cdot x^{\varepsilon}}} \biggr\rvert_{n_0}^{n} \right]</math>
+
Każdą liczbę ze zbioru <math>\mathbb{Z}_P</math> możemy zapisać w&nbsp;postaci <math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r</math>. Niech <math>\alpha_i = 2 \beta_i + \delta_i</math>, gdzie <math>\delta_i</math> jest resztą z&nbsp;dzielenia liczby <math>\alpha_i</math> przez <math>2</math>. Zatem
  
:::<math>\quad \; = C_2 - {\small\frac{1}{\varepsilon n^{\varepsilon}}} + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}}</math>
+
::<math>k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r)</math>
  
:::<math>\quad \; < C_2 + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}}</math>
+
Ponieważ <math>\delta_i</math> może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci <math>p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r</math> jest dokładnie <math>2^r</math>, a&nbsp;kwadratów liczb całkowitych nie większych od <math>M</math> jest dokładnie <math>\left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M}</math>. Zatem liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math> jest nie więcej niż <math>2^r \sqrt{M} \,</math><span style="color: Green"><sup>[b]</sup></span>.
  
:::<math>\quad \; = C_3</math>
 
  
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D47|D47]], [[#D50|D50]]).<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
Ponieważ <math>\mathbb{Z}_P \cup \mathbb{Z}_Q =\mathbb{Z}_+</math> i&nbsp;liczb <math>k \in \mathbb{Z}_+</math> takich, że <math>k \leqslant M</math> jest po prostu <math>M</math>, to musi być prawdziwe oszacowanie
  
 +
::<math>M < 2^r \sqrt{M} + {\small\frac{M}{2}}</math>
  
<span id="D52" style="font-size: 110%; font-weight: bold;">Twierdzenie D52 (sumowanie przez części)</span><br/>
+
Czyli
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
 
  
::<math>\sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
+
::<math>2^{r + 1} > \sqrt{M}</math>
  
gdzie <math>B(k) = \sum_{j = s}^{k} b_j</math>. Wzór ten nazywamy wzorem na sumowanie przez części.
+
Co jest niemożliwe, bo <math>r</math> jest ustalone, a <math>M</math> może być dowolnie duże. Wystarczy przyjąć <math>M \geqslant 2^{2 r + 2}</math>.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Jeżeli potrafimy wyliczyć lub oszacować sumę liczoną dla jednego z&nbsp;czynników (powiedzmy, że dla <math>b_j</math>), to do wyliczenia lub oszacowania sumy <math>\sum_{j = s}^{n} a_j b_j</math> może być pomocny dowodzony wzór
 
  
::<math>\sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
+
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb <math>k</math>. Dla przykładu: gdy <math>M > p_{r + 1} p_{r + 2}</math>, to liczba <math>p_{r + 1} p_{r + 2}</math> zostanie policzona dwukrotnie: raz jako podzielna przez <math>p_{r + 1}</math> i&nbsp;drugi raz jako podzielna przez <math>p_{r + 2}</math>. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.
  
gdzie <math>B(k) = \sum_{j = s}^{k} b_j</math>. Nim przejdziemy do dowodu, zauważmy, że wprost z&nbsp;definicji funkcji <math>B(k)</math> otrzymujemy
+
<span style="color: Green">[b]</span> Zauważmy, że dla <math>M > 8</math> liczba <math>a^2</math> taka, że <math>a^2 \leqslant M < (a + 1)^2</math> wystąpi dokładnie jeden raz (jako <math>a^2 \cdot 1</math>), ale my oszacujemy, że pojawiła się <math>2^r</math> razy. Można pokazać, że dla dowolnych <math>r \geqslant 1 \;</math> i <math>\; M \geqslant 1</math>, liczb <math>k \in \mathbb{Z}_P</math> takich, że <math>k \leqslant M</math>, jest mniej niż <math>2^r \sqrt{M}</math>. Jest ich nawet mniej niż <math>2^r \left\lfloor \sqrt{M} \right\rfloor</math>, poza przypadkami <math>r = 1 \;</math> i <math>\; M = 2, 3, 8</math>, kiedy to ilość takich liczb jest równa <math>2^r \left\lfloor \sqrt{M} \right\rfloor < 2^r \sqrt{M}</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>B(s) = \sum_{j = s}^{s} b_j = b_s</math>
 
  
oraz
 
  
::<math>B(k) - B (k - 1) = \sum_{j = s}^{k} b_j - \sum^{k - 1}_{j = s} b_j = b_k + \sum_{j = s}^{k - 1} b_j - \sum_{j = s}^{k - 1} b_j = b_k</math>
 
  
  
Przekształcając prawą stronę dowodzonego wzoru, pokażemy, że obie strony są równe.
+
== Sumowanie przez części ==
  
::<math>\sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
+
<span id="D49" style="font-size: 110%; font-weight: bold;">Uwaga D49</span><br/>
 +
Omawianie metody sumowania przez części<ref name="sumowanie1"/> rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i&nbsp;ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja
  
::::<math>\;\;\,\, = a_n B (n) - \sum^{n - 1}_{k = s} a_{k + 1} B (k) + \sum_{k = s}^{n - 1} a_k B (k)</math>
+
::<math>D(k) =
 +
\begin{cases}
 +
1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\
 +
0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\
 +
\end{cases}</math>
  
W pierwszej sumie po prawej stronie zmieniamy wskaźnik sumowania na <math>j = k + 1</math>, a&nbsp;w&nbsp;drugiej sumie zmieniamy tylko nazwę wskaźnika
 
  
::<math>\sum_{k = s}^{n} a_k b_k = a_n B (n) - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n - 1} a_j B (j)</math>
+
Łatwo znajdujemy związek funkcji <math>D(k)</math> z&nbsp;funkcją <math>\pi (k)</math>
  
::::<math>\;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n} a_j B (j)</math>
+
::<math>\pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1</math>
  
::::<math>\;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s + 1}^{n} a_j B (j) + a_s B (s)</math>
+
:::::::<math>\; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i)</math>
  
::::<math>\;\;\,\, = \sum_{j = s + 1}^{n} a_j [B (j) - B (j - 1)] + a_s b_s</math>
+
:::::::<math>\; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i)</math>
  
::::<math>\;\;\,\, = \sum_{j = s + 1}^{n} a_j b_j + a_s b_s</math>
+
:::::::<math>\; = D (k)</math>
  
::::<math>\;\;\,\, = \sum_{j = s}^{n} a_j b_j</math>
 
  
Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
<span id="D50" style="font-size: 110%; font-weight: bold;">Twierdzenie D50</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+</math> i&nbsp;niech <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od <math>n</math>. Prawdziwy jest następujący związek
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
  
<span id="D53" style="font-size: 110%; font-weight: bold;">Zadanie D53</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech <math>r \neq 1</math>. Pokazać, że <math>\sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>.
+
Rozpatrywaną sumę możemy zapisać w&nbsp;postaci
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{D (k)}{k}}</math>
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k \;</math> i <math>\; b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
 
  
::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
+
:::<math>\quad \; = \sum_{k = 2}^n {\small\frac{\pi (k) - \pi (k - 1)}{k}}</math>
  
gdzie
+
:::<math>\quad \; = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^n {\small\frac{\pi (k - 1)}{k}}</math>
  
::<math>B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
+
W drugiej sumie zmieniamy zmienną sumowania. Niech <math>j = k - 1</math>. Sumowanie po <math>k</math> przebiegało od <math>2</math> do <math>n</math>, zatem sumowanie po <math>j</math> będzie przebiegało od <math>1</math> do <math>n - 1</math>. Otrzymujemy
  
Zatem
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{j = 1}^{n - 1} {\small\frac{\pi (j)}{j + 1}}</math>
  
::<math>\sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
+
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{j = 2}^{n - 1} {\small\frac{\pi (j)}{j + 1}}</math>
  
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right)</math>
+
Ponieważ <math>\pi (1) = 0</math>. Zmieniając jedynie oznaczenie zmiennej sumowania, mamy
  
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right)</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k + 1}}</math>
  
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right)</math>
+
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^n \pi (k) \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right)</math>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
::::<math>\;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r)</math>
 
</div>
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
::::<math>\;\, = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>
 
</div>
 
  
 
Co należało pokazać.<br/>
 
Co należało pokazać.<br/>
Linia 1812: Linia 1789:
  
  
<span id="D54" style="font-size: 110%; font-weight: bold;">Twierdzenie D54 (kryterium Dirichleta)</span><br/>
+
<span id="D51" style="font-size: 110%; font-weight: bold;">Zadanie D51</span><br/>
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
+
Pokazać, że dla <math>n \geqslant 1</math> prawdziwe jest oszacowanie <math>\sum_{p \leqslant n} {\small\frac{1}{p}} > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>.
  
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest monotoniczny<br/><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z twierdzenia [[#D50|D50]] wiemy, że dla <math>n \geqslant 1</math> prawdziwy jest wzór
  
:*&nbsp;&nbsp;&nbsp;<math>\lim_{k \rightarrow \infty} a_k = 0</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
  
:*&nbsp;&nbsp;&nbsp;istnieje taka stała <math>M</math>, że <math>\left| \sum_{j = 1}^{k} b_j \right| \leqslant M</math> dla dowolnej liczby <math>k</math>
+
Z twierdzenia [[Twierdzenie Czebyszewa o funkcji π(n)#A1|A1]] wiemy, że dla <math>n \geqslant 3</math> prawdziwe jest oszacowanie <math>\pi (n) > {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}}</math>. Zatem dla <math>n \geqslant 4</math> jest
  
to szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> jest zbieżny.
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:::<math>\quad \; = {\small\frac{\pi (n)}{n}} + {\small\frac{1}{3}} + \sum_{k = 4}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
Korzystając ze wzoru na sumowanie przez części, możemy napisać
 
  
::<math>\sum_{k = 1}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = 1}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
+
:::<math>\quad \; > {\small\frac{2}{3}} \cdot {\small\frac{1}{\log n}} + {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{k}{\log k \cdot k (k + 1)}}</math>
  
::::<math>\;\;\,\, = a_n \cdot B (n) + \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) B (k)</math>
+
:::<math>\quad \; > {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log k}}</math>
  
gdzie <math>B(k) = \sum_{j = 1}^{k} b_j</math>. Z&nbsp;założenia ciąg <math>B(n)</math> jest ograniczony i <math>\lim_{n \rightarrow \infty} a_n = 0</math>, zatem (zobacz [[Ciągi liczbowe#C13|C13]])
+
:::<math>\quad \; > {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log (k + 1)}}</math>
  
::<math>\lim_{n \rightarrow \infty} a_n \cdot B (n) = 0</math>
+
:::<math>\quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}}</math>
  
Z założenia ciąg <math>(a_k)</math> jest monotoniczny. Jeżeli jest malejący, to
+
Korzystając z&nbsp;twierdzenia [[#D17|D17]], otrzymujemy
  
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_k - a_{k + 1})</math>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}}</math>
  
::::::::<math>\;\;\; = M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1})</math>
+
:::<math>\quad \; = {\small\frac{2}{3}} \cdot \log \log x \biggr\rvert_{5}^{n + 1} + {\small\frac{1}{3}}</math>
  
::::::::<math>\;\;\; = M (a_1 - a_n)</math>
+
:::<math>\quad \; = {\small\frac{2}{3}} \cdot \log \log (n + 1) - {\small\frac{2}{3}} \cdot \log \log 5 + {\small\frac{1}{3}}</math>
  
(zobacz [[#D12|D12]]). Jeżeli ciąg <math>(a_k)</math> jest rosnący, to
+
:::<math>\quad \; > {\small\frac{2}{3}} \cdot \log \log (n + 1)</math>
  
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math>
+
Zauważmy, że znacznie mniejszym nakładem pracy otrzymaliśmy lepsze oszacowanie sumy <math>\sum_{p \leqslant n} {\small\frac{1}{p}}</math> (porównaj [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]]).<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::::::<math>\;\;\; = - M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1})</math>
 
  
::::::::<math>\;\;\; = - M (a_1 - a_n)</math>
 
  
Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg <math>(a_n)</math> jest ograniczony, bo jest zbieżny (zobacz [[Ciągi liczbowe#C9|C9]]), możemy napisać
+
<span id="D52" style="font-size: 110%; font-weight: bold;">Zadanie D52</span><br/>
 +
Pokazać, że oszacowanie <math>\pi (n) < n^{1 - \varepsilon}</math>, gdzie <math>\varepsilon \in (0, 1)</math>, nie może być prawdziwe dla prawie wszystkich liczb naturalnych.
  
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Zatem istnieje taka liczba <math>n_0</math>, że dla wszystkich <math>n \geqslant n_0</math> jest <math>\pi (n) < n^{1 - \varepsilon}</math>. Korzystając ze wzoru (zobacz [[#D50|D50]])
  
Ponieważ sumy częściowe szeregu <math>\sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) |</math> tworzą ciąg rosnący i&nbsp;ograniczony od góry, to szereg ten jest zbieżny (zobacz [[Ciągi liczbowe#C10|C10]]). Wynika stąd zbieżność szeregu <math>\sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k)</math> (zobacz [[#D10|D10]]). Zatem szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> musi być zbieżny. Co należało pokazać.<br/>
+
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
dla liczby <math>n > n_0</math> otrzymujemy oszacowanie
  
 +
::<math>\sum_{p \leqslant n} {\small\frac{1}{p}} < {\small\frac{n^{1 - \varepsilon}}{n}} + \sum_{k = 2}^{n_0 - 1} {\small\frac{\pi (k)}{k (k + 1)}} + \sum_{k = n_0}^{n - 1} {\small\frac{k^{1 - \varepsilon}}{k (k + 1)}}</math>
  
<span id="D55" style="font-size: 110%; font-weight: bold;">Zadanie D55</span><br/>
+
:::<math>\quad \; = {\small\frac{1}{n^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n - 1} {\small\frac{1}{k^{\varepsilon} (k + 1)}}</math>
Udowodnić następujące wzory
 
  
::{| class="wikitable"
+
:::<math>\quad \; < {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n} {\small\frac{1}{k^{1 + \varepsilon}}}</math>
|
 
  
<math>\quad \sum_{j = 1}^{k} \sin j =
+
:::<math>\quad \; \leqslant {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + {\small\frac{1}{(n_0)^{1 + \varepsilon}}} + \int^n_{n_0} {\small\frac{d x}{x^{1 + \varepsilon}}}</math>
{\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} =
 
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad</math>
 
  
|}
+
:::<math>\quad \; = C_2 + \left[ - {\small\frac{1}{\varepsilon \cdot x^{\varepsilon}}} \biggr\rvert_{n_0}^{n} \right]</math>
  
::{| class="wikitable"
+
:::<math>\quad \; = C_2 - {\small\frac{1}{\varepsilon n^{\varepsilon}}} + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}}</math>
|
 
  
<math>\quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) =
+
:::<math>\quad \; < C_2 + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}}</math>
{\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} =
 
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad</math>
 
  
|}
+
:::<math>\quad \; = C_3</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem <math>n</math> (zobacz [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B37|B37]], [[#D48|D48]], [[#D51|D51]]).<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
'''Punkt 1.'''
 
  
Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór
 
  
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)</math>
+
<span id="D53" style="font-size: 110%; font-weight: bold;">Twierdzenie D53 (sumowanie przez części)</span><br/>
 +
Niech <math>a_j</math>, <math>b_j</math> będą ciągami określonymi przynajmniej dla <math>s \leqslant j \leqslant n</math>. Prawdziwy jest następujący wzór
  
Ponieważ
+
::<math>\sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
  
::<math>2 \sin x \cdot \sin y = \cos (x - y) - \cos (x + y)</math>
+
gdzie <math>B(k) = \sum_{j = s}^{k} b_j</math>. Wzór ten nazywamy wzorem na sumowanie przez części.
  
to wzór jest prawdziwy dla <math>k = 1</math>. Zakładając, że wzór jest prawdziwy dla <math>k</math>, otrzymujemy dla <math>k + 1</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Jeżeli potrafimy wyliczyć lub oszacować sumę liczoną dla jednego z&nbsp;czynników (powiedzmy, że dla <math>b_j</math>), to do wyliczenia lub oszacowania sumy <math>\sum_{j = s}^{n} a_j b_j</math> może być pomocny dowodzony wzór
  
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \sin j = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j + 2 \sin \left( \tfrac{1}{2} \right) \sin (k + 1)</math>
+
::<math>\sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
  
:::::::<math>\;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) + \cos \left( k + \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right)</math>
+
gdzie <math>B(k) = \sum_{j = s}^{k} b_j</math>. Nim przejdziemy do dowodu, zauważmy, że wprost z&nbsp;definicji funkcji <math>B(k)</math> otrzymujemy
  
:::::::<math>\;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right)</math>
+
::<math>B(s) = \sum_{j = s}^{s} b_j = b_s</math>
  
Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.
+
oraz
  
 +
::<math>B(k) - B (k - 1) = \sum_{j = s}^{k} b_j - \sum^{k - 1}_{j = s} b_j = b_k + \sum_{j = s}^{k - 1} b_j - \sum_{j = s}^{k - 1} b_j = b_k</math>
  
'''Punkt 2.'''
 
  
Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór
+
Przekształcając prawą stronę dowodzonego wzoru, pokażemy, że obie strony są równe.
  
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = \sin (k + 1) - \sin (1)</math>
+
::<math>\sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
  
Ponieważ
+
::::<math>\;\;\,\, = a_n B (n) - \sum^{n - 1}_{k = s} a_{k + 1} B (k) + \sum_{k = s}^{n - 1} a_k B (k)</math>
  
::<math>2 \sin x \cos y = \sin (x - y) + \sin (x + y)</math>
+
W pierwszej sumie po prawej stronie zmieniamy wskaźnik sumowania na <math>j = k + 1</math>, a&nbsp;w&nbsp;drugiej sumie zmieniamy tylko nazwę wskaźnika
  
to wzór jest prawdziwy dla <math>k = 1</math>. Zakładając, że wzór jest prawdziwy dla <math>k</math>, otrzymujemy dla <math>k + 1</math>
+
::<math>\sum_{k = s}^{n} a_k b_k = a_n B (n) - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n - 1} a_j B (j)</math>
  
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \cos \left( j + \tfrac{1}{2} \right) = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) + 2 \sin \left( \tfrac{1}{2} \right) \cdot \cos \left( k + 1 + \tfrac{1}{2} \right)</math>
+
::::<math>\;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n} a_j B (j)</math>
  
:::::::::<math>\quad \,\, = \sin (k + 1) - \sin (1) - \sin (k + 1) + \sin (k + 2)</math>
+
::::<math>\;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s + 1}^{n} a_j B (j) + a_s B (s)</math>
  
:::::::::<math>\quad \,\, = \sin (k + 2) - \sin (1)</math>
+
::::<math>\;\;\,\, = \sum_{j = s + 1}^{n} a_j [B (j) - B (j - 1)] + a_s b_s</math>
  
Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.<br/>
+
::::<math>\;\;\,\, = \sum_{j = s + 1}^{n} a_j b_j + a_s b_s</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::::<math>\;\;\,\, = \sum_{j = s}^{n} a_j b_j</math>
 +
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span id="D56" style="font-size: 110%; font-weight: bold;">Zadanie D56</span><br/>
+
 
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
+
<span id="D54" style="font-size: 110%; font-weight: bold;">Zadanie D54</span><br/>
 +
Niech <math>r \neq 1</math>. Pokazać, że <math>\sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>.
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W zadaniu [[#D55|D55]] p.1 pokazaliśmy, że prawdziwy jest wzór
+
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 0</math>, <math>a_k = k \;</math> i <math>\; b_k = r^k</math>. Zauważmy, że sumowanie od <math>k = 0</math> nic nie zmienia, a&nbsp;nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy
  
::<math>\sum_{j = 1}^{k} \sin j =  
+
::<math>\sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k)</math>
{\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} =  
+
 
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}}</math>
+
gdzie
 +
 
 +
::<math>B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
 +
 
 +
Zatem
 +
 
 +
::<math>\sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}}</math>
  
Skąd natychmiast otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
+
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right)</math>
  
::<math>\left| \sum_{j = 1}^{k} \sin j \right| =
+
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right)</math>
\left| {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \right| \leqslant
 
{\small\frac{1}{\sin \left( \tfrac{1}{2} \right)}}</math><br/>
 
  
Ponieważ spełnione są założenia kryterium Dirichleta, to szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny. Wiemy, że <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} = \tfrac{1}{2} (\pi - 1) = 1.070796 \ldots</math> ([https://www.wolframalpha.com/input?i=sum+sin%28k%29%2Fk%2C+k%3D1+to+infinity WolframAlpha]).
+
::::<math>\;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right)</math>
  
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::::<math>\;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r)</math>
 +
</div>
  
<hr style="width: 25%; height: 2px; " />
+
<div style="margin-top: 1em; margin-bottom: 1em;">
<span style="color: Green">[a]</span> Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie
+
::::<math>\;\, = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2}</math>
 +
</div>
  
::<math>- 0.127671 < {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} < 1.958159</math><br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1956: Linia 1942:
  
  
<span id="D57" style="font-size: 110%; font-weight: bold;">Zadanie D57</span><br/>
+
<span id="D55" style="font-size: 110%; font-weight: bold;">Twierdzenie D55 (kryterium Dirichleta)</span><br/>
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
+
Niech <math>(a_k) \;</math> i <math>\; (b_k)</math> będą ciągami liczb rzeczywistych. Jeżeli
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest monotoniczny<br/><br/>
Zbieżność szeregu wynika z&nbsp;kryterium Dirichleta, co pokazujemy tak samo jak w&nbsp;zadaniu poprzednim. Oszacowanie sumy szeregu jest znacznie trudniejsze, bo ciąg sum częściowych <math>S_n = \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}}</math> silnie oscyluje i&nbsp;dopiero dla bardzo dużych <math>n</math> wynik sumowania mógłby być znaczący. Przykładowo:
 
  
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
+
:*&nbsp;&nbsp;&nbsp;<math>\lim_{k \rightarrow \infty} a_k = 0</math>
  
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D55|D55]] p.1, otrzymujemy
+
:*&nbsp;&nbsp;&nbsp;istnieje taka stała <math>M</math>, że <math>\left| \sum_{j = 1}^{k} b_j \right| \leqslant M</math> dla dowolnej liczby <math>k</math>
  
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
+
to szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> jest zbieżny.
  
gdzie
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Korzystając ze wzoru na sumowanie przez części, możemy napisać
  
::<math>C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
+
::<math>\sum_{k = 1}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = 1}^{n - 1} (a_{k + 1} - a_k) B (k)</math>
  
Sumując przez części, dostajemy
+
::::<math>\;\;\,\, = a_n \cdot B (n) + \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) B (k)</math>
  
::<math>\sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k)}} \right) B (k)</math>
+
gdzie <math>B(k) = \sum_{j = 1}^{k} b_j</math>. Z&nbsp;założenia ciąg <math>B(n)</math> jest ograniczony i <math>\lim_{n \rightarrow \infty} a_n = 0</math>, zatem (zobacz [[Ciągi liczbowe#C14|C14]])
  
::::<math>\;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + \sum^{n - 1}_{k = 2} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \left( C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) \right)</math>
+
::<math>\lim_{n \rightarrow \infty} a_n \cdot B (n) = 0</math>
  
::::<math>\;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
+
Z założenia ciąg <math>(a_k)</math> jest monotoniczny. Jeżeli jest malejący, to
  
::::<math>\;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
+
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_k - a_{k + 1})</math>
  
Przechodząc z <math>n</math> do nieskończoności, mamy
+
::::::::<math>\;\;\; = M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1})</math>
  
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
+
::::::::<math>\;\;\; = M (a_1 - a_n)</math>
  
Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[#D12|D12]]). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum
+
(zobacz [[#D13|D13]]). Jeżeli ciąg <math>(a_k)</math> jest rosnący, to
  
::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
+
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k)</math>
  
otrzymujemy
+
::::::::<math>\;\;\; = - M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1})</math>
  
::<math>S_{10^6} = 0.683913783004 \qquad S_{10^7} = 0.683913786642 \qquad S_{10^8} = 0.683913786411 \qquad S_{10^9} = 0.683913786415</math>
+
::::::::<math>\;\;\; = - M (a_1 - a_n)</math>
  
Jest to przybliżona wartość sumy szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math>.<br/>
+
Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg <math>(a_n)</math> jest ograniczony, bo jest zbieżny (zobacz [[Ciągi liczbowe#C10|C10]]), możemy napisać
  
 +
::<math>\sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U</math>
  
<span style="border-bottom-style: double;">Oszacowanie błędu z&nbsp;jakim wyznaczona została wartość sumy</span><br/>
+
Ponieważ sumy częściowe szeregu <math>\sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) |</math> tworzą ciąg rosnący i&nbsp;ograniczony od góry, to szereg ten jest zbieżny (zobacz [[Ciągi liczbowe#C11|C11]]). Wynika stąd zbieżność szeregu <math>\sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k)</math> (zobacz [[#D11|D11]]). Zatem szereg <math>\sum_{k = 1}^{\infty} a_k b_k</math> musi być zbieżny. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Kolejne sumowanie przez części pozwoli określić błąd z&nbsp;jakim wyznaczona została wartość sumy <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math>. Rozważmy sumę
 
  
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
 
  
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D55|D55]] p.2, otrzymujemy
+
<span id="D56" style="font-size: 110%; font-weight: bold;">Zadanie D56</span><br/>
 +
Udowodnić następujące wzory
  
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
+
::{| class="wikitable"
 +
|
  
gdzie
+
<math>\quad \sum_{j = 1}^{k} \sin j =
 +
{\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} =
 +
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad</math>
  
::<math>C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
+
|}
  
Wzór na sumowanie przez części ma teraz postać
+
::{| class="wikitable"
 +
|
  
::<math>\sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} - {\small\frac{1}{\log (k)}} + {\small\frac{1}{\log (k + 1)}} \right) B (k)</math>
+
<math>\quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) =
 +
{\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} =  
 +
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad</math>
  
:::::::::::::<math>\;\;\, = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) + \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) (C_3 + C_4 \cdot \sin (k + 1))</math>
+
|}
  
Zauważmy, że
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
::<math>C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) = C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right)</math>
+
'''Punkt 1.'''
  
::::::::::::::::::<math>\:\, = C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) - C_3 \left( {\small\frac{1}{\log (3)}} - {\small\frac{1}{\log (n + 1)}} \right)</math>
+
Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór
  
bo szeregi po prawej stronie są szeregami teleskopowymi.
+
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)</math>
  
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy
+
Ponieważ
  
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = {\small\frac{C_3}{\log (2)}} - {\small\frac{C_3}{\log (3)}} + C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1)</math>
+
::<math>2 \sin x \cdot \sin y = \cos (x - y) - \cos (x + y)</math>
  
 +
to wzór jest prawdziwy dla <math>k = 1</math>. Zakładając, że wzór jest prawdziwy dla <math>k</math>, otrzymujemy dla <math>k + 1</math>
  
Zbierając, otrzymaliśmy wzór
+
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \sin j = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j + 2 \sin \left( \tfrac{1}{2} \right) \sin (k + 1)</math>
  
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1)</math>
+
:::::::<math>\;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) + \cos \left( k + \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right)</math>
  
gdzie
+
:::::::<math>\;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right)</math>
  
::<math>C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad \quad \: C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
+
Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.
  
::<math>C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
 
  
Dla sum
+
'''Punkt 2.'''
  
::<math>S_n = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1)</math>
+
Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór
  
dostajemy
+
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = \sin (k + 1) - \sin (1)</math>
  
::<math>S_{10^7} = 0.68391378641827479894 \qquad S_{10^8} = 0.68391378641827482233 \qquad S_{10^9} = 0.68391378641827482268</math>
+
Ponieważ
  
Łatwo oszacujemy błąd z&nbsp;jakim wyliczyliśmy wartość sumy szeregu <math>S</math>
+
::<math>2 \sin x \cos y = \sin (x - y) + \sin (x + y)</math>
  
::<math>| S - S_n | = \left| C_2 C_4 \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right|</math>
+
to wzór jest prawdziwy dla <math>k = 1</math>. Zakładając, że wzór jest prawdziwy dla <math>k</math>, otrzymujemy dla <math>k + 1</math>
  
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \left| \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right|</math>
+
::<math>2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \cos \left( j + \tfrac{1}{2} \right) = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) + 2 \sin \left( \tfrac{1}{2} \right) \cdot \cos \left( k + 1 + \tfrac{1}{2} \right)</math>
  
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) |</math>
+
:::::::::<math>\quad \,\, = \sin (k + 1) - \sin (1) - \sin (k + 1) + \sin (k + 2)</math>
  
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right|</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz przypis <span style="color: Green">[a]</span>)
+
:::::::::<math>\quad \,\, = \sin (k + 2) - \sin (1)</math>
  
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right]</math>
+
Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log (n + 2)}} \right)</math>
 
  
Dla <math>n = 10^9</math> otrzymujemy
 
  
::<math>| S - S_n | < 2.533 \cdot 10^{- 12}</math>
+
<span id="D57" style="font-size: 110%; font-weight: bold;">Zadanie D57</span><br/>
 +
Pokazać, że szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny.
  
Zatem <math>S = 0.6839137864 \ldots </math>, gdzie wszystkie wypisane cyfry są prawidłowe.
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
W zadaniu [[#D56|D56]] p.1 pokazaliśmy, że prawdziwy jest wzór
  
 +
::<math>\sum_{j = 1}^{k} \sin j =
 +
{\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} =
 +
{\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}}</math>
  
<hr style="width: 25%; height: 2px; " />
+
Skąd natychmiast otrzymujemy oszacowanie<span style="color: Green"><sup>[a]</sup></span>
<span style="color: Green">[a]</span> Z&nbsp;łatwego do sprawdzenia wzoru
 
  
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}}</math>
+
::<math>\left| \sum_{j = 1}^{k} \sin j \right| =
 +
\left| {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \right| \leqslant
 +
{\small\frac{1}{\sin \left( \tfrac{1}{2} \right)}}</math><br/>
  
wynika, że wyrażenie <math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}}</math> maleje ze wzrostem <math>k</math>, czyli ciąg <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}}</math> jest ciągiem malejącym, zatem
+
Ponieważ spełnione są założenia kryterium Dirichleta, to szereg <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}}</math> jest zbieżny. Wiemy, że <math>\sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} = \tfrac{1}{2} (\pi - 1) = 1.070796 \ldots</math> ([https://www.wolframalpha.com/input?i=sum+sin%28k%29%2Fk%2C+k%3D1+to+infinity WolframAlpha]).
  
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} > {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}}</math>
 
  
Ciągi <math>(a_k)_{k = 1}^n</math> liczb rzeczywistych takie, że <math>2 a_k \leqslant a_{k - 1} + a_{k + 1}</math> dla <math>k = 2, \ldots, n - 1</math> nazywamy ciągami wypukłymi<ref name="convexseq1"/>. Wprost z&nbsp;definicji funkcji wypukłej wynika, że jeżeli <math>f(x)</math> jest funkcją wypukłą i <math>a_k = f (k)</math>, to ciąg <math>(a_k)</math> jest ciągiem wypukłym.<br/>
+
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie
 +
 
 +
::<math>- 0.127671 < {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} < 1.958159</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2085: Linia 2087:
  
 
<span id="D58" style="font-size: 110%; font-weight: bold;">Zadanie D58</span><br/>
 
<span id="D58" style="font-size: 110%; font-weight: bold;">Zadanie D58</span><br/>
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
+
Pokazać, że szereg <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math> jest zbieżny, a&nbsp;suma tego szeregu jest w&nbsp;przybliżeniu równa <math>0.6839137864 \ldots</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zbieżność szeregu wynika z&nbsp;kryterium Dirichleta, co pokazujemy tak samo jak w&nbsp;zadaniu poprzednim. Oszacowanie sumy szeregu jest znacznie trudniejsze, bo ciąg sum częściowych <math>S_n = \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}}</math> silnie oscyluje i&nbsp;dopiero dla bardzo dużych <math>n</math> wynik sumowania mógłby być znaczący. Przykładowo:
  
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
+
::<math>S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = \sin k</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D56|D56]] p.1, otrzymujemy
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 2</math>, <math>a_k = \log k \;</math> i <math>\; b_k = D (k)</math>. Otrzymujemy
 
  
::<math>\sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k)</math>
+
::<math>B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right)</math>
  
 
gdzie
 
gdzie
  
::<math>B(k) = \sum_{j = 2}^{k} D (k) = \pi (k)</math>
+
::<math>C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
  
::<math>\sum_{k = 2}^{n} \log k \cdot D (k) = \sum_{p \leqslant n} \log p = \theta (n)</math>
+
Sumując przez części, dostajemy
  
Zatem
+
::<math>\sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k)}} \right) B (k)</math>
  
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
+
::::<math>\;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + \sum^{n - 1}_{k = 2} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \left( C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) \right)</math>
  
Co należało pokazać.<br/>
+
::::<math>\;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
::::<math>\;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
  
 +
Przechodząc z <math>n</math> do nieskończoności, mamy
  
<span id="D59" style="font-size: 110%; font-weight: bold;">Twierdzenie D59</span><br/>
+
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
 
  
::<math>\lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1</math>
+
Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika <math>\cos \left( k + \tfrac{1}{2} \right)</math>, bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz [[#D13|D13]]). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
Z definicji funkcji <math>\theta (n)</math> łatwo otrzymujemy
 
  
::<math>\theta (n) = \sum_{p \leqslant n} \log p < \sum_{p \leqslant n} \log n = \log n \cdot \pi (n)</math>
+
otrzymujemy
  
Skąd wynika, że
+
::<math>S_{10^6} = 0.683913783004 \qquad S_{10^7} = 0.683913786642 \qquad S_{10^8} = 0.683913786411 \qquad S_{10^9} = 0.683913786415</math>
  
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} < 1</math>
+
Jest to przybliżona wartość sumy szeregu <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math>.<br/>
  
Oszacowanie wyrażenia <math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}}</math> od dołu będzie wymagało więcej pracy. Ze wzoru
 
  
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
+
<span style="border-bottom-style: double;">Oszacowanie błędu z&nbsp;jakim wyznaczona została wartość sumy</span><br/>
  
(zobacz [[#D58|D58]]) otrzymujemy
+
Kolejne sumowanie przez części pozwoli określić błąd z&nbsp;jakim wyznaczona została wartość sumy <math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}}</math>. Rozważmy sumę
  
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
+
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right)</math>
  
Z twierdzenia [[Ciągi liczbowe#C18|C18]] i&nbsp;założonego oszacowania funkcji <math>\pi (n)</math>
+
We wzorze na sumowanie przez części połóżmy <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \;</math> i <math>\; b_k = \cos \left( k + \tfrac{1}{2} \right)</math>. Korzystając ze wzoru pokazanego w&nbsp;zadaniu [[#D56|D56]] p.2, otrzymujemy
  
::<math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>
+
::<math>B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1)</math>
  
dostajemy
+
gdzie
  
::<math>{\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) < {\small\frac{\log n}{\log n \cdot A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{k}} \cdot {\small\frac{B \cdot k}{\log k}}</math>
+
::<math>C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
  
:::::::::::<math>\quad \; < {\small\frac{B}{A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}}</math>
+
Wzór na sumowanie przez części ma teraz postać
  
Nie możemy oszacować sumy całką, bo całka <math>\int {\small\frac{d x}{\log x}}</math> jest funkcją nieelementarną. Nie możemy też pozwolić sobie na zbyt niedokładne oszacowanie sumy i&nbsp;nie możemy napisać
+
::<math>\sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} - {\small\frac{1}{\log (k)}} + {\small\frac{1}{\log (k + 1)}} \right) B (k)</math>
  
::<math>\sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} < {\small\frac{n - 2}{\log 2}} < {\small\frac{n}{\log 2}}</math>
+
:::::::::::::<math>\;\;\, = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) + \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) (C_3 + C_4 \cdot \sin (k + 1))</math>
  
Wyjściem z&nbsp;tej sytuacji jest odpowiedni podział przedziału sumowania i&nbsp;szacowanie w&nbsp;każdym przedziale osobno. Niech punkt podziału <math>M</math> spełnia warunek <math>\sqrt{n} \leqslant M < \sqrt{n} + 1</math>. Mamy
+
Zauważmy, że
  
::<math>\sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} = \sum_{k = 2}^{M - 1} {\small\frac{1}{\log k}} + \sum^{n - 1}_{k = M} {\small\frac{1}{\log k}}</math>
+
::<math>C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) = C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right)</math>
  
::::<math>\;\;\;\; < {\small\frac{M - 2}{\log 2}} + {\small\frac{n - M}{\log M}}</math>
+
::::::::::::::::::<math>\:\, = C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) - C_3 \left( {\small\frac{1}{\log (3)}} - {\small\frac{1}{\log (n + 1)}} \right)</math>
  
::::<math>\;\;\;\; < {\small\frac{M}{\log 2}} + {\small\frac{n}{\log M}}</math>
+
bo szeregi po prawej stronie są szeregami teleskopowymi.
  
::::<math>\;\;\;\; < {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{n}{\log \sqrt{n}}}</math>
+
Przechodząc z <math>n</math> do nieskończoności, otrzymujemy
  
::::<math>\;\;\;\; < {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}}</math>
+
::<math>\sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = {\small\frac{C_3}{\log (2)}} - {\small\frac{C_3}{\log (3)}} + C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1)</math>
  
Zatem
 
  
::<math>{\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) < {\small\frac{B}{A \cdot n}} \cdot \left( {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} \right)</math>
+
Zbierając, otrzymaliśmy wzór
  
:::::::::::<math>\quad \; < {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right)</math>
+
::<math>\sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1)</math>
  
Łącząc otrzymane rezultaty, otrzymujemy
+
gdzie
  
::<math>1 - {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) < {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} < 1</math>
+
::<math>C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad \quad \: C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
  
Na mocy twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C9|C9]]) mamy
+
::<math>C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}}</math>
  
::<math>\lim_{n \to \infty}  {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1</math>
+
Dla sum
  
Co należało pokazać.<br/>
+
::<math>S_n = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
dostajemy
  
 +
::<math>S_{10^7} = 0.68391378641827479894 \qquad S_{10^8} = 0.68391378641827482233 \qquad S_{10^9} = 0.68391378641827482268</math>
  
<span id="D60" style="font-size: 110%; font-weight: bold;">Uwaga D60</span><br/>
+
Łatwo oszacujemy błąd z&nbsp;jakim wyliczyliśmy wartość sumy szeregu <math>S</math>
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
 
  
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
+
::<math>| S - S_n | = \left| C_2 C_4 \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right|</math>
  
Z twierdzenia [[#D59|D59]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C12|C12]] p.3).
+
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \left| \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right|</math>
  
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
+
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) |</math>
  
::<math>\left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}}</math>
+
::::<math>\;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right|</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz przypis <span style="color: Green">[a]</span>)
  
 +
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right]</math>
  
 +
::::<math>\;\;\;\, = | C_2 C_4 | \cdot \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log (n + 2)}} \right)</math>
  
<span id="D61" style="font-size: 110%; font-weight: bold;">Zadanie D61</span><br/>
+
Dla <math>n = 10^9</math> otrzymujemy
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
 
  
::<math>\pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k)</math>
+
::<math>| S - S_n | < 2.533 \cdot 10^{- 12}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Zatem <math>S = 0.6839137864 \ldots </math>, gdzie wszystkie wypisane cyfry są prawidłowe.
Kładąc we wzorze na sumowanie przez części (zobacz [[#D52|D52]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
 
  
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
 
  
gdzie
+
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> Z&nbsp;łatwego do sprawdzenia wzoru
  
::<math>B(k) = \sum_{j = 2}^{k} D (k) \cdot \log k = \sum_{p \leqslant k} \log p = \theta (k)</math>
+
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}}</math>
  
::<math>\sum_{k = 2}^{n} D (k) = \sum_{p \leqslant n} 1 = \pi (n)</math>
+
wynika, że wyrażenie <math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}}</math> maleje ze wzrostem <math>k</math>, czyli ciąg <math>a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}}</math> jest ciągiem malejącym, zatem
  
Zatem
+
::<math>{\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} > {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}}</math>
  
::<math>\pi (n) = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) \theta (k)</math>
+
Ciągi <math>(a_k)_{k = 1}^n</math> liczb rzeczywistych takie, że <math>2 a_k \leqslant a_{k - 1} + a_{k + 1}</math> dla <math>k = 2, \ldots, n - 1</math> nazywamy ciągami wypukłymi<ref name="convexseq1"/>. Wprost z&nbsp;definicji funkcji wypukłej wynika, że jeżeli <math>f(x)</math> jest funkcją wypukłą i <math>a_k = f (k)</math>, to ciąg <math>(a_k)</math> jest ciągiem wypukłym.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
:::<math>\;\;\; = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} {\small\frac{\log k - \log (k + 1)}{\log k \cdot \log (k + 1)}} \cdot \theta (k)</math>
 
  
:::<math>\;\;\; = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k)</math>
 
  
Co należało pokazać.<br/>
+
<span id="D59" style="font-size: 110%; font-weight: bold;">Zadanie D59</span><br/>
&#9633;
+
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
{{\Spoiler}}
 
  
 +
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Korzystając ze wzoru na sumowanie przez części, połóżmy <math>s = 2</math>, <math>a_k = \log k \;</math> i <math>\; b_k = D (k)</math>. Otrzymujemy
  
 +
::<math>\sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k)</math>
  
 +
gdzie
  
== Iloczyn Cauchy'ego szeregów ==
+
::<math>B(k) = \sum_{j = 2}^{k} D (k) = \pi (k)</math>
  
<span id="D62" style="font-size: 110%; font-weight: bold;">Twierdzenie D62 (kryterium d'Alemberta)</span><br/>
+
::<math>\sum_{k = 2}^{n} \log k \cdot D (k) = \sum_{p \leqslant n} \log p = \theta (n)</math>
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i&nbsp;istnieje granica
 
  
::<math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right|</math>
+
Zatem
  
Jeżeli
+
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
:*&nbsp;&nbsp;&nbsp;<math>g < 1</math>, to szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest bezwzględnie zbieżny
 
  
:*&nbsp;&nbsp;&nbsp;<math>g > 1</math>, to szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest rozbieżny
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
Rozważmy najpierw przypadek, gdy <math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| < 1</math>. Niech <math>r</math> będzie dowolną liczbą rzeczywistą taką, że <math>g < r < 1</math> i&nbsp;przyjmijmy <math>\varepsilon = r - g</math>. Z&nbsp;definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu <math>\left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right)</math> spełniają warunek
 
  
::<math>- \varepsilon < \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g < \varepsilon</math>
 
  
Możemy przyjąć, że są to wszystkie wyrazy, poczynając od <math>N</math>. Z&nbsp;prawej nierówności otrzymujemy, że dla <math>n \geqslant N</math> jest
+
<span id="D60" style="font-size: 110%; font-weight: bold;">Twierdzenie D60</span><br/>
 +
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Jeżeli prawdziwe jest oszacowanie <math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>, gdzie <math>A, B \in \mathbb{R}_+</math>, to istnieje granica
  
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| < r</math>
+
::<math>\lim_{n \to \infty}  {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1</math>
  
::<math>| a_{n + 1} | < r | a_n |</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z definicji funkcji <math>\theta (n)</math> łatwo otrzymujemy
  
::<math>| a_{n + k} | < r^k | a_n |</math>
+
::<math>\theta (n) = \sum_{p \leqslant n} \log p < \sum_{p \leqslant n} \log n = \log n \cdot \pi (n)</math>
  
Ostatnią nierówność można łatwo udowodnić metodą indukcji matematycznej względem <math>k</math>. Korzystając ze wzoru na sumę szeregu geometrycznego<ref name="GeometricSeries1"/>, otrzymujemy
+
Skąd wynika, że
  
::<math>\sum_{k = N + 1}^{\infty} | a_k | = \sum_{k = 1}^{\infty} | a_{N + k} | < \sum_{k = 1}^{\infty} r^k | a_n | = r | a_n | \sum_{k = 1}^{\infty} r^{k - 1} = | a_n | \cdot {\small\frac{r}{1 - r}}</math>
+
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} < 1</math>
  
Zatem szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest bezwzględnie zbieżny.
+
Oszacowanie wyrażenia <math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}}</math> od dołu będzie wymagało więcej pracy. Ze wzoru
  
 +
::<math>\theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
  
W przypadku, gdy <math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| > 1</math> wybieramy liczbę <math>r</math> tak, aby spełniała warunek <math>1 < r < g</math> i&nbsp;przyjmujemy <math>\varepsilon = g - r</math>. Z&nbsp;definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu <math>\left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right)</math> spełniają warunek
+
(zobacz [[#D59|D59]]) otrzymujemy
 +
 
 +
::<math>{\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k)</math>
  
::<math>- \varepsilon < \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g < \varepsilon</math>
+
Z twierdzenia [[Ciągi liczbowe#C19|C19]] i&nbsp;założonego oszacowania funkcji <math>\pi (n)</math>
  
Przyjmując, że są to wszystkie wyrazy, poczynając od <math>N</math>, z&nbsp;lewej nierówności otrzymujemy dla <math>n \geqslant N</math>
+
::<math>{\small\frac{A \cdot n}{\log n}} < \pi (n) < {\small\frac{B \cdot n}{\log n}}</math>
  
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| > r > 1</math>
+
dostajemy
  
Czyli <math>| a_{n + 1} | > | a_n |</math>, zatem dla wszystkich <math>k > N</math> jest <math>| a_k | > | a_N | > 0</math> i&nbsp;nie może być spełniony podstawowy warunek zbieżności szeregu (zobacz [[#D4|D4]]). Zatem szereg jest rozbieżny. Co kończy dowód.<br/>
+
::<math>{\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) < {\small\frac{\log n}{\log n \cdot A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{k}} \cdot {\small\frac{B \cdot k}{\log k}}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
:::::::::::<math>\quad \; < {\small\frac{B}{A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}}</math>
  
 +
Nie możemy oszacować sumy całką, bo całka <math>\int {\small\frac{d x}{\log x}}</math> jest funkcją nieelementarną. Nie możemy też pozwolić sobie na zbyt niedokładne oszacowanie sumy i&nbsp;nie możemy napisać
  
<span id="C62" style="font-size: 110%; font-weight: bold;">Uwaga C62</span><br/>
+
::<math>\sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} < {\small\frac{n - 2}{\log 2}} < {\small\frac{n}{\log 2}}</math>
W przypadku, gdy <math>\lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1</math> kryterium d'Alemberta nie rozstrzyga o&nbsp;zbieżności lub rozbieżności szeregu <math>\sum_{n = 0}^{\infty} a_n</math>. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
 
  
::<math>\sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}}</math>
+
Wyjściem z&nbsp;tej sytuacji jest odpowiedni podział przedziału sumowania i&nbsp;szacowanie w&nbsp;każdym przedziale osobno. Niech punkt podziału <math>M</math> spełnia warunek <math>\sqrt{n} \leqslant M < \sqrt{n} + 1</math>. Mamy
  
 +
::<math>\sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} = \sum_{k = 2}^{M - 1} {\small\frac{1}{\log k}} + \sum^{n - 1}_{k = M} {\small\frac{1}{\log k}}</math>
  
 +
::::<math>\;\;\;\; < {\small\frac{M - 2}{\log 2}} + {\small\frac{n - M}{\log M}}</math>
  
<span id="D64" style="font-size: 110%; font-weight: bold;">Przykład D64</span><br/>
+
::::<math>\;\;\;\; < {\small\frac{M}{\log 2}} + {\small\frac{n}{\log M}}</math>
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu
 
  
::<math>e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
+
::::<math>\;\;\;\; < {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{n}{\log \sqrt{n}}}</math>
  
Ponieważ
+
::::<math>\;\;\;\; < {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}}</math>
  
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0</math>
+
Zatem
  
to z&nbsp;kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.
+
::<math>{\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) < {\small\frac{B}{A \cdot n}} \cdot \left( {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} \right)</math>
  
 +
:::::::::::<math>\quad \; < {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right)</math>
  
 +
Łącząc otrzymane rezultaty, otrzymujemy
  
<span id="D65" style="font-size: 110%; font-weight: bold;">Zadanie D65</span><br/>
+
::<math>1 - {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) < {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} < 1</math>
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Na mocy twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) mamy
Łatwo znajdujemy, że
 
  
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| = {\small\frac{(n + 1)^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{n^n}} = {\small\frac{(n + 1) (n + 1)^n}{(n + 1) n!}} \cdot {\small\frac{n!}{n^n}} = \left( 1 + {\small\frac{1}{n}} \right)^n \xrightarrow{\; n \rightarrow \infty \;} e > 1</math>
+
::<math>\lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1</math>
  
Z kryterium d'Alemberta wynika, że szereg jest rozbieżny.<br/>
+
Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2303: Linia 2308:
  
  
<span id="D66" style="font-size: 110%; font-weight: bold;">Uwaga D66</span><br/>
+
<span id="D61" style="font-size: 110%; font-weight: bold;">Uwaga D61</span><br/>
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A37|A37]], korzystając z&nbsp;następującej definicji funkcji <math>e^x</math>
+
Funkcja <math>\theta (n)</math> jest ściśle związana z&nbsp;dobrze nam znaną funkcją <math>P (n)</math>. Ponieważ <math>P(n) = \prod_{p \leqslant n} p</math>, to
 +
 
 +
::<math>\log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n)</math>.
 +
 
 +
Z twierdzenia [[#D60|D60]] wynika, że jeżeli istnieje granica <math>{\small\frac{\theta (n)}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>. Jeżeli istnieje granica <math>{\small\frac{\pi (n) \cdot \log n}{n}}</math>, to będzie istniała granica dla <math>{\small\frac{\theta (n)}{n}}</math> (zobacz [[Ciągi liczbowe#C13|C13]] p.3).
 +
 
 +
Wiemy, że dla funkcji <math>\theta (n)</math>, gdzie <math>n \geqslant 2</math>, prawdziwe jest oszacowanie<ref name="Dusart18"/>
 +
 
 +
::<math>\left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}}</math>
  
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
 
  
pominęliśmy dowód własności <math>e^x e^{- x} = 1</math>. Spróbujemy teraz pokazać, że <math>e^x e^y = e^{x + y}</math>.
 
  
::<math>e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}</math>
+
<span id="D62" style="font-size: 110%; font-weight: bold;">Zadanie D62</span><br/>
 +
Niech <math>\theta (n) = \sum_{p \leqslant n} \log p</math>. Pokazać, że
  
Oznaczmy <math>a_i = {\small\frac{x^i}{i!}}</math> oraz <math>b_j = {\small\frac{y^j}{j!}}</math> i&nbsp;przyjrzyjmy się sumowaniu po <math>i, j</math>. W&nbsp;podwójnej sumie po prawej stronie <math>\sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j</math> sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku
+
::<math>\pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k)</math>
  
::{| class="wikitable"  style="text-align:center;"
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
|- style="background-color: LightGray"
+
Kładąc we wzorze na sumowanie przez części (zobacz [[#D53|D53]]) <math>s = 2</math>, <math>a_k = {\small\frac{1}{\log k}}</math> i <math>b_k = D (k) \cdot \log k</math>. Otrzymujemy
| <math> a_6 b_0 </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math> \cdots </math>
 
|- style="background-color: Violet"
 
| <math> a_5 b_0 </math> || <math> a_5 b_1 </math> || <math> a_5 b_2 </math> || <math> a_5 b_3 </math> || <math> a_5 b_4 </math> || <math> a_5 b_5 </math> || <math> \cdots </math>
 
|- style="background-color: Cyan"
 
| <math> a_4 b_0 </math> || <math> a_4 b_1 </math> || <math> a_4 b_2 </math> || <math> a_4 b_3 </math> || <math> a_4 b_4 </math> || <math> a_4 b_5 </math> || <math> \cdots </math>
 
|- style="background-color: Green"
 
| <math> a_3 b_0 </math> || <math> a_3 b_1 </math> || <math> a_3 b_2 </math> || <math> a_3 b_3 </math> || <math> a_3 b_4 </math> || <math> a_3 b_5 </math> || <math> \cdots </math>
 
|- style="background-color: Yellow"
 
| <math> a_2 b_0 </math> || <math> a_2 b_1 </math> || <math> a_2 b_2 </math> || <math> a_2 b_3 </math> || <math> a_2 b_4 </math> || <math> a_2 b_5 </math> || <math> \cdots </math>
 
|- style="background-color: Orange"
 
| <math> a_1 b_0 </math> || <math> a_1 b_1 </math> || <math> a_1 b_2 </math> || <math> a_1 b_3 </math> || <math> a_1 b_4 </math> || <math> a_1 b_5 </math> || <math> \cdots </math>
 
|- style="background-color: Red"
 
| <math> a_0 b_0 </math> || <math> a_0 b_1 </math> || <math> a_0 b_2 </math> || <math> a_0 b_3 </math> || <math> a_0 b_4 </math> || <math> a_0 b_5 </math> || <math> \; \cdots \; </math>  
 
|}
 
  
Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek
+
::<math>\sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k)</math>
  
::{| class="wikitable"  style="text-align:center;"
+
gdzie
|-
 
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||
 
|-
 
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||
 
|-
 
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||
 
|-
 
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||
 
|-
 
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> ||  ||
 
|-
 
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||
 
|-
 
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math>  || bgcolor="LightGray" | <math> a_0 b_6 </math>
 
|}
 
  
Co odpowiada sumie <math>\sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k}  b_{n - k}</math>, gdzie <math>n</math> numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru
+
::<math>B(k) = \sum_{j = 2}^{k} D (k) \cdot \log k = \sum_{p \leqslant k} \log p = \theta (k)</math>
  
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}</math>
+
::<math>\sum_{k = 2}^{n} D (k) = \sum_{p \leqslant n} 1 = \pi (n)</math>
  
Ponieważ
+
Zatem
  
::<math>{\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}}</math>
+
::<math>\pi (n) = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) \theta (k)</math>
  
to otrzymujemy
+
:::<math>\;\;\; = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} {\small\frac{\log k - \log (k + 1)}{\log k \cdot \log (k + 1)}} \cdot \theta (k)</math>
  
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}
+
:::<math>\;\;\; = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k)</math>
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}
 
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k}
 
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k}  
 
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y}</math>
 
  
Pokazaliśmy tym samym, że z&nbsp;definicji
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
 
  
wynika podstawowa własność funkcji wykładniczej <math>e^x e^y = e^{x + y}</math>.
 
  
Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i&nbsp;w&nbsp;związku z&nbsp;tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i&nbsp;zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.
 
  
  
 +
== Iloczyn Cauchy'ego szeregów ==
  
<span id="D67" style="font-size: 110%; font-weight: bold;">Definicja D67</span><br/>
+
<span id="D63" style="font-size: 110%; font-weight: bold;">Twierdzenie D63 (kryterium d'Alemberta)</span><br/>
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
+
Niech <math>(a_n)</math> będzie ciągiem liczb rzeczywistych i&nbsp;istnieje granica
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0</math>
+
::<math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right|</math>
  
W przypadku szeregów, których wyrazy są numerowane od liczby <math>1</math>, iloczynem Cauchy'ego szeregów <math>\sum_{i = 1}^{\infty} a_i</math> oraz <math>\sum_{j = 1}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 1}^{\infty} c_n</math>, gdzie
+
Jeżeli
 +
:*&nbsp;&nbsp;&nbsp;<math>g < 1</math>, to szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest bezwzględnie zbieżny
  
::<math>c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1</math>
+
:*&nbsp;&nbsp;&nbsp;<math>g > 1</math>, to szereg <math>\sum_{n = 0}^{\infty} a_n</math> jest rozbieżny
  
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Rozważmy najpierw przypadek, gdy <math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| < 1</math>. Niech <math>r</math> będzie dowolną liczbą rzeczywistą taką, że <math>g < r < 1</math> i&nbsp;przyjmijmy <math>\varepsilon = r - g</math>. Z&nbsp;definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu <math>\left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right)</math> spełniają warunek
  
 +
::<math>- \varepsilon < \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g < \varepsilon</math>
  
<span id="D68" style="font-size: 110%; font-weight: bold;">Zadanie D68</span><br/>
+
Możemy przyjąć, że są to wszystkie wyrazy, poczynając od <math>N</math>. Z&nbsp;prawej nierówności otrzymujemy, że dla <math>n \geqslant N</math> jest
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że
 
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 0, 0, 0, 0, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = b_n</math>
+
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| < r</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = \sum_{k = 0}^{n} b_k = B_n</math>
+
::<math>| a_{n + 1} | < r | a_n |</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = b_n = {\small\frac{r^n}{n!}}</math>, to <math>c_n = {\small\frac{(2 r)^n}{n!}}</math>
+
::<math>| a_{n + k} | < r^k | a_n |</math>
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, r, r^2, r^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, to <math>c_n =
+
Ostatnią nierówność można łatwo udowodnić metodą indukcji matematycznej względem <math>k</math>. Korzystając ze wzoru na sumę szeregu geometrycznego<ref name="GeometricSeries1"/>, otrzymujemy
\begin{cases}
 
\qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
 
(a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\
 
\end{cases}</math>
 
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, gdzie <math>q \neq r</math>, to <math>c_n =
+
::<math>\sum_{k = N + 1}^{\infty} | a_k | = \sum_{k = 1}^{\infty} | a_{N + k} | < \sum_{k = 1}^{\infty} r^k | a_n | = r | a_n | \sum_{k = 1}^{\infty} r^{k - 1} = | a_n | \cdot {\small\frac{r}{1 - r}}</math>
\begin{cases}
 
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 
\end{cases}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Zatem szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest bezwzględnie zbieżny.
  
'''Punkt 1.'''
 
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n = b_n</math>
+
W przypadku, gdy <math>g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| > 1</math> wybieramy liczbę <math>r</math> tak, aby spełniała warunek <math>1 < r < g</math> i&nbsp;przyjmujemy <math>\varepsilon = g - r</math>. Z&nbsp;definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu <math>\left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right)</math> spełniają warunek
  
'''Punkt 2.'''
+
::<math>- \varepsilon < \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g < \varepsilon</math>
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_{n - k} = \sum^n_{j = 0} b_j = B_n</math>
+
Przyjmując, że są to wszystkie wyrazy, poczynając od <math>N</math>, z&nbsp;lewej nierówności otrzymujemy dla <math>n \geqslant N</math>
  
'''Punkt 3.'''
+
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| > r > 1</math>
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} {\small\frac{r^k r^{n - k}}{k!(n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\frac{n!}{k! (n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} = {\small\frac{(2 r)^n}{n!}}</math>
+
Czyli <math>| a_{n + 1} | > | a_n |</math>, zatem dla wszystkich <math>k > N</math> jest <math>| a_k | > | a_N | > 0</math> i&nbsp;nie może być spełniony podstawowy warunek zbieżności szeregu (zobacz [[#D4|D4]]). Zatem szereg jest rozbieżny. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
'''Punkt 4.'''
 
  
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
 
  
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a \cdot r + r \cdot b = (a + b) r</math>
+
<span id="D64" style="font-size: 110%; font-weight: bold;">Uwaga D64</span><br/>
 +
W przypadku, gdy <math>\lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1</math> kryterium d'Alemberta nie rozstrzyga o&nbsp;zbieżności lub rozbieżności szeregu <math>\sum_{n = 0}^{\infty} a_n</math>. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów
  
Dla <math>n \geqslant 2</math> jest
+
::<math>\sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}}</math>
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
 
  
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
 
  
::<math>\;\;\;\:\, = a \cdot r^n + r^n \cdot b + \sum_{k = 1}^{n - 1} r^k r^{n - k}</math>
+
<span id="D65" style="font-size: 110%; font-weight: bold;">Przykład D65</span><br/>
 +
Niech <math>x \in \mathbb{R}</math>. Zbadamy zbieżność szeregu
  
::<math>\;\;\;\:\, = (a + b) r^n + \sum_{k = 1}^{n - 1} r^n</math>
+
::<math>e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
  
::<math>\;\;\;\:\, = (a + b + n - 1) r^n</math>
+
Ponieważ
  
Zbierając, otrzymujemy
+
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0</math>
  
::<math>c_n =
+
to z&nbsp;kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.
\begin{cases}
 
\qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
 
(a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\
 
\end{cases}</math>
 
  
'''Punkt 5.'''
 
  
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
 
  
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a r + b q</math>
+
<span id="D66" style="font-size: 110%; font-weight: bold;">Zadanie D66</span><br/>
 +
Pokazać, że szereg <math>\sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}}</math> jest rozbieżny.
  
Dla <math>n \geqslant 2</math> jest
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Łatwo znajdujemy, że
  
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
+
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| = {\small\frac{(n + 1)^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{n^n}} = {\small\frac{(n + 1) (n + 1)^n}{(n + 1) n!}} \cdot {\small\frac{n!}{n^n}} = \left( 1 + {\small\frac{1}{n}} \right)^n \xrightarrow{\; n \rightarrow \infty \;} e > 1</math>
  
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
+
Z kryterium d'Alemberta wynika, że szereg jest rozbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k}</math>
 
  
Jeżeli <math>r = 0</math>, to <math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = 0</math>. Jeżeli <math>r \neq 0</math>, to
 
  
::<math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot {\small\frac{\left( {\normalsize\frac{q}{r}} \right)^n - {\normalsize\frac{q}{r}}}{{\normalsize\frac{q}{r}} - 1}} = {\small\frac{r q^n - q r^n}{q - r}}</math>
+
<span id="D67" style="font-size: 110%; font-weight: bold;">Uwaga D67</span><br/>
 +
W twierdzeniu [[Twierdzenie Czebyszewa o funkcji π(n)#A40|A40]], korzystając z&nbsp;następującej definicji funkcji <math>e^x</math>
  
Zauważmy, że znaleziony wzór obejmuje również przypadek <math>r = 0</math>. Zatem
+
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
  
::<math>c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}}</math>
+
pominęliśmy dowód własności <math>e^x e^{- x} = 1</math>. Spróbujemy teraz pokazać, że <math>e^x e^y = e^{x + y}</math>.
  
::<math>\;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right)</math>
+
::<math>e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}</math>
  
Zbierając, otrzymujemy
+
Oznaczmy <math>a_i = {\small\frac{x^i}{i!}}</math> oraz <math>b_j = {\small\frac{y^j}{j!}}</math> i&nbsp;przyjrzyjmy się sumowaniu po <math>i, j</math>. W&nbsp;podwójnej sumie po prawej stronie <math>\sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j</math> sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku
  
::<math>c_n =
+
::{| class="wikitable"  style="text-align:center;"
\begin{cases}
+
|- style="background-color: LightGray"
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
+
| <math> a_6 b_0 </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math>  </math> || <math> \cdots </math>
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
+
|- style="background-color: Violet"
\end{cases}</math><br/>
+
| <math> a_5 b_0 </math> || <math> a_5 b_1 </math> || <math> a_5 b_2 </math> || <math> a_5 b_3 </math> || <math> a_5 b_4 </math> || <math> a_5 b_5 </math> || <math> \cdots </math>
&#9633;
+
|- style="background-color: Cyan"
{{\Spoiler}}
+
| <math> a_4 b_0 </math> || <math> a_4 b_1 </math> || <math> a_4 b_2 </math> || <math> a_4 b_3 </math> || <math> a_4 b_4 </math> || <math> a_4 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Green"
 +
| <math> a_3 b_0 </math> || <math> a_3 b_1 </math> || <math> a_3 b_2 </math> || <math> a_3 b_3 </math> || <math> a_3 b_4 </math> || <math> a_3 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Yellow"
 +
| <math> a_2 b_0 </math> || <math> a_2 b_1 </math> || <math> a_2 b_2 </math> || <math> a_2 b_3 </math> || <math> a_2 b_4 </math> || <math> a_2 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Orange"
 +
| <math> a_1 b_0 </math> || <math> a_1 b_1 </math> || <math> a_1 b_2 </math> || <math> a_1 b_3 </math> || <math> a_1 b_4 </math> || <math> a_1 b_5 </math> || <math> \cdots </math>
 +
|- style="background-color: Red"
 +
| <math> a_0 b_0 </math> || <math> a_0 b_1 </math> || <math> a_0 b_2 </math> || <math> a_0 b_3 </math> || <math> a_0 b_4 </math> || <math> a_0 b_5 </math> || <math> \; \cdots \; </math>
 +
|}
  
 +
Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek
  
 
+
::{| class="wikitable" style="text-align:center;"
<span id="D69" style="font-size: 110%; font-weight: bold;">Przykład D69</span><br/>
+
|-
Ostatni punkt zadania [[#D68|D68]] pozwala stworzyć wiele przykładowych szeregów i&nbsp;ich iloczynów Cauchy'ego. Przypomnijmy, że
+
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||
 
+
|-
::<math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\quad (b_n) = (b, r, r^2, r^3, \ldots)</math>, &nbsp;gdzie <math>\, q \neq r</math>
+
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||
 
+
|-
::<math>c_n =
+
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||
\begin{cases}
 
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 
\end{cases}</math>
 
 
 
 
 
Przykłady zebraliśmy w&nbsp;tabeli.
 
 
 
::{| class="wikitable plainlinks" style="font-size: 90%; text-align: center; margin-right: auto;"
 
 
|-
 
|-
! <math>\boldsymbol{a}</math> || <math>\boldsymbol{q}</math> || <math>\boldsymbol{b}</math> || <math>\boldsymbol{r}</math> || <math>\boldsymbol{(c_n)}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} a_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} b_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} c_n}</math>
+
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> || || ||  
 
|-
 
|-
|<math>3</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math>|| <math>{\small\frac{1}{3}}</math> || <math>(-6,0,0,0,0,0,…)</math> || zbieżny || zbieżny || zbieżny
+
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> || ||  
 
|-
 
|-
|<math>-2</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-6,0,0,0,0,0,…)</math> || rozbieżny || rozbieżny || zbieżny
+
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||  
 
|-
 
|-
| <math>{\small\frac{r - 2q}{r - q}}</math> || <math>q</math> || <math>{\small\frac{r}{r - q}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2q )}{(r - q)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || zbieżny / rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
+
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math> || bgcolor="LightGray" | <math> a_0 b_6 </math>
|-
 
| <math>4</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math> || <math>{\small\frac{1}{3}}</math> || <math>\left( -8,{\small\frac{1}{3}}, {\small\frac{1}{3^2}}, {\small\frac{1}{3^3}}, {\small\frac{1}{3^4}}, {\small\frac{1}{3^5}}, \ldots \right)</math> || zbieżny || zbieżny || zbieżny
 
|-
 
| <math>{\small\frac{7}{3}}</math> || <math>2</math> || <math>- {\small\frac{1}{3}}</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - {\small\frac{7}{9}}, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 
|-
 
| <math>-1</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-3,3,3^2,3^3,3^4,3^5,…)</math> || rozbieżny || rozbieżny || rozbieżny
 
|-
 
| <math>{\small\frac{1}{2}}</math> || <math>1</math> || <math>{\small\frac{1}{2}}</math> || <math>-1</math> || <math>\left( {\small\frac{1}{4}}, 0, 0, 0, 0, 0, \ldots \right)</math> || rozbieżny || rozbieżny || zbieżny
 
|-
 
| <math>-1</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(-2, 0, 0, 0, 0, 0, \ldots )</math> || rozbieżny || rozbieżny || zbieżny
 
|-
 
| <math>-1</math> || <math>1</math> || <math>3</math> || <math>2</math> || <math>(-3, 1, 1, 1, 1, 1,\ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 
|-
 
| <math>2</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>(-2,0,0,0,0,0,…)</math> || rozbieżny || zbieżny || zbieżny
 
|-
 
| <math>2</math> || <math>1</math> || <math>0</math> || <math>{\small\frac{1}{2}}</math> || <math>(0, 1, 1, 1, 1, 1, \ldots )</math> || rozbieżny || zbieżny || rozbieżny
 
|-
 
| <math>{\small\frac{r - 2}{r - 1}}</math> || <math>1</math> || <math>{\small\frac{r}{r - 1}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2 )}{(r - 1)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
 
|-
 
| <math>0</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(0, 2, 2^2, 2^3, 2^4, 2^5, \ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 
|-
 
| <math>3</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - 3, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 
 
|}
 
|}
  
 +
Co odpowiada sumie <math>\sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k}  b_{n - k}</math>, gdzie <math>n</math> numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru
  
 +
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}</math>
  
<span id="D70" style="font-size: 110%; font-weight: bold;">Przykład D70</span><br/>
+
Ponieważ
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz [[#D5|D5]])
 
  
::<math>\sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=Sum%5B+%28-1%29%5Ek%2Fsqrt%28k%2B1%29%2C+%7Bk%2C+0%2C+infinity%7D+%5D WolframAlpha])
+
::<math>{\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}}</math>
  
Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy
+
to otrzymujemy
  
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}}
+
::<math>e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}}
= (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math>
+
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}}
 +
= \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k}  
 +
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k}
 +
= \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y}</math>
  
Ale <math>k \leqslant n \;</math> i <math>\; n - k \leqslant n</math>, zatem
+
Pokazaliśmy tym samym, że z&nbsp;definicji
  
::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math>
+
::<math>e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots</math>
  
Czyli
+
wynika podstawowa własność funkcji wykładniczej <math>e^x e^y = e^{x + y}</math>.
  
::<math>| c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1</math>
+
Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i&nbsp;w&nbsp;związku z&nbsp;tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i&nbsp;zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.
  
Ponieważ <math>\lim_{n \rightarrow \infty} c_n \neq 0</math>, to iloczyn Cauchy'ego jest rozbieżny (zobacz [[#D4|D4]]).
 
  
  
 +
<span id="D68" style="font-size: 110%; font-weight: bold;">Definicja D68</span><br/>
 +
Iloczynem Cauchy'ego szeregów <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
<span id="D71" style="font-size: 110%; font-weight: bold;">Zadanie D71</span><br/>
+
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0</math>
Pokazać, że jeżeli <math>a_n = b_n = r^n \;</math> i <math>\; c_n = (n + 1) r^n</math> (zobacz [[#D68|D68]] p.3), to szeregi <math>\sum_{n = 0}^{\infty} a_n</math> oraz <math>\sum_{n = 0}^{\infty} c_n</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w&nbsp;przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór
 
  
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
+
W przypadku szeregów, których wyrazy są numerowane od liczby <math>1</math>, iloczynem Cauchy'ego szeregów <math>\sum_{i = 1}^{\infty} a_i</math> oraz <math>\sum_{j = 1}^{\infty} b_j</math> nazywamy szereg <math>\sum_{n = 1}^{\infty} c_n</math>, gdzie
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1</math>
Zbieżność szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> łatwo zbadamy, stosując kryterium d'Alemberta.
 
  
::<math>\left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r |</math>
 
  
Zatem szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math> i&nbsp;rozbieżny, gdy <math>| r | > 1</math>, tak samo, jak szereg <math>\sum_{n = 0}^{\infty} r^n</math>. W&nbsp;przypadku, gdy <math>r = \pm 1</math> szereg <math>\sum_{n = 0}^{\infty} r^n</math> jest rozbieżny, a&nbsp;odpowiednie sumy częściowe szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> są równe
 
  
:*&nbsp;&nbsp;&nbsp; gdy <math>r = 1</math>, <math>c_n = n + 1</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad</math> (zobacz <span style="color: Green">[a]</span>, [https://www.wolframalpha.com/input?i=Sum%5B+n%2B1%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
+
<span id="D69" style="font-size: 110%; font-weight: bold;">Zadanie D69</span><br/>
 +
Niech <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>. Pokazać, że
  
:*&nbsp;&nbsp;&nbsp; gdy <math>r = - 1</math>, <math>c_n = (n + 1) (- 1)^n</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad</math> (zobacz [[#D53|D53]], [https://www.wolframalpha.com/input?i=Sum%5B+%28n%2B1%29*%28-1%29%5En%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 0, 0, 0, 0, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = b_n</math>
  
W przypadku, gdy <math>| r | < 1</math> wiemy<ref name="GeometricSeries1"/>, że <math>\sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}}</math>. Korzystając z&nbsp;zadania [[#D53|D53]], otrzymujemy
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (1, 1, 1, 1, 1, \ldots)</math>, <math>\; (b_n)</math> jest dowolnym ciągiem, to <math>c_n = \sum_{k = 0}^{n} b_k = B_n</math>
  
::<math>\sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}}</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = b_n = {\small\frac{r^n}{n!}}</math>, to <math>c_n = {\small\frac{(2 r)^n}{n!}}</math>
  
 +
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, r, r^2, r^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, to <math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
 +
(a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
  
Ponieważ szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math>, to musi być <math>\lim_{n \rightarrow \infty} (n + 1) r^n = 0</math> (zobacz [[#D4|D4]]). Pokazaliśmy, że w&nbsp;rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów.
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\; (b_n) = (b, r, r^2, r^3, \ldots)</math>, gdzie <math>q \neq r</math>, to <math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 +
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
 
 +
'''Punkt 1.'''
  
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n = b_n</math>
  
<hr style="width: 25%; height: 2px; " />
+
'''Punkt 2.'''
<span style="color: Green">[a]</span> Zauważmy, że
 
  
::<math>\sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}}</math><br/>
+
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_{n - k} = \sum^n_{j = 0} b_j = B_n</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
'''Punkt 3.'''
  
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} {\small\frac{r^k r^{n - k}}{k!(n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\frac{n!}{k! (n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} = {\small\frac{(2 r)^n}{n!}}</math>
  
<span id="D72" style="font-size: 110%; font-weight: bold;">Uwaga D72</span><br/>
+
'''Punkt 4.'''
Przykłady [[#D69|D69]] i [[#D70|D70]] pokazują, że w&nbsp;ogólności nie jest prawdziwy wzór
 
  
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
+
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
 +
 
 +
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a \cdot r + r \cdot b = (a + b) r</math>
  
Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
+
Dla <math>n \geqslant 2</math> jest
  
 +
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
 +
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
  
<span id="D73" style="font-size: 110%; font-weight: bold;">Uwaga D73</span><br/>
+
::<math>\;\;\;\:\, = a \cdot r^n + r^n \cdot b + \sum_{k = 1}^{n - 1} r^k r^{n - k}</math>
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych
 
  
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
+
::<math>\;\;\;\:\, = (a + b) r^n + \sum_{k = 1}^{n - 1} r^n</math>
  
możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy <math>m = 5</math>.
+
::<math>\;\;\;\:\, = (a + b + n - 1) r^n</math>
  
::{| class="wikitable"  style="text-align:center;"
+
Zbierając, otrzymujemy
|-
 
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||
 
|-
 
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||
 
|-
 
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||
 
|-
 
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||
 
|-
 
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> ||  ||
 
|-
 
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||
 
|-
 
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math>  || bgcolor="LightGray" | <math> a_0 b_6 </math>
 
|}
 
  
Przejście do sumowania po liniach poziomych
+
::<math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\
 +
(a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
  
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
+
'''Punkt 5.'''
  
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a&nbsp;druga po kolejnych elementach w <math>i</math>-tej linii poziomej.
+
Dla <math>n = 0</math> mamy <math>c_0 = a_0 b_0 = a b</math>
  
 +
Dla <math>n = 1</math> mamy <math>c_1 = a_0 b_1 + a_1 b_0 = a r + b q</math>
  
Przejście do sumowania po liniach pionowych
+
Dla <math>n \geqslant 2</math> jest
  
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i</math>
+
::<math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a&nbsp;druga po kolejnych elementach w <math>i</math>-tej linii pionowej.
+
::<math>\;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k}</math>
  
 +
::<math>\;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k}</math>
  
 +
Jeżeli <math>r = 0</math>, to <math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = 0</math>. Jeżeli <math>r \neq 0</math>, to
  
<span id="D74" style="font-size: 110%; font-weight: bold;">Twierdzenie D74 (Franciszek Mertens)</span><br/>
+
::<math>\sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot {\small\frac{\left( {\normalsize\frac{q}{r}} \right)^n - {\normalsize\frac{q}{r}}}{{\normalsize\frac{q}{r}} - 1}} = {\small\frac{r q^n - q r^n}{q - r}}</math>
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Zauważmy, że znaleziony wzór obejmuje również przypadek <math>r = 0</math>. Zatem
Z założenia szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest zbieżny bezwzględnie, oznaczmy <math>\sum_{i = 0}^{\infty} | a_i | = A'</math>. Niech
 
  
::<math>A_n = \sum_{i = 0}^{n} a_i \qquad \qquad B_n = \sum_{j = 0}^{n} b_j \qquad \qquad C_n = \sum_{k = 0}^{n} c_k \qquad \qquad \beta_n = B_n - B</math>
+
::<math>c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}}</math>
  
Przekształcając sumę <math>C_m</math>, otrzymujemy
+
::<math>\;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right)</math>
  
::<math>C_m = \sum_{n = 0}^{m} c_n</math>
+
Zbierając, otrzymujemy
  
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
+
::<math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 +
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
 
  
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 
  
:::<math>\; = \sum_{i = 0}^{m} a_i \sum_{j = 0}^{m - i} b_j</math>
+
<span id="D70" style="font-size: 110%; font-weight: bold;">Przykład D70</span><br/>
 +
Ostatni punkt zadania [[#D69|D69]] pozwala stworzyć wiele przykładowych szeregów i&nbsp;ich iloczynów Cauchy'ego. Przypomnijmy, że
  
:::<math>\; = \sum_{i = 0}^{m} a_i B_{m - i}</math>
+
::<math>(a_n) = (a, q, q^2, q^3, \ldots)</math>, <math>\quad (b_n) = (b, r, r^2, r^3, \ldots)</math>, &nbsp;gdzie <math>\, q \neq r</math>
  
:::<math>\; = \sum_{i = 0}^{m} a_i \left( {B + \beta_{m - i}} \right)</math>
+
::<math>c_n =
 +
\begin{cases}
 +
\qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\
 +
q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\
 +
\end{cases}</math>
  
:::<math>\; = \sum_{i = 0}^{m} a_i B + \sum_{i = 0}^{m} a_i \beta_{m - i}</math>
 
  
:::<math>\; = B \sum_{i = 0}^{m} a_i + \sum_{i = 0}^{m} a_i \beta_{m - i}</math>
+
Przykłady zebraliśmy w&nbsp;tabeli.
  
:::<math>\; = A_m B + \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
+
::{| class="wikitable plainlinks" style="font-size: 90%; text-align: center; margin-right: auto;"
 
+
|-
Zatem
+
! <math>\boldsymbol{a}</math> || <math>\boldsymbol{q}</math> || <math>\boldsymbol{b}</math> || <math>\boldsymbol{r}</math> || <math>\boldsymbol{(c_n)}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} a_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} b_n}</math> || <math>\boldsymbol{\sum_{n=0}^{\infty} c_n}</math>
 
+
|-
::<math>C_m - A_m B = \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
+
|<math>3</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math>|| <math>{\small\frac{1}{3}}</math> || <math>(-6,0,0,0,0,0,…)</math> || zbieżny || zbieżny || zbieżny
 
+
|-
Niech
+
|<math>-2</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-6,0,0,0,0,0,…)</math> || rozbieżny || rozbieżny || zbieżny
 
+
|-
::<math>\delta_m = \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
+
| <math>{\small\frac{r - 2q}{r - q}}</math> || <math>q</math> || <math>{\small\frac{r}{r - q}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2q )}{(r - q)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || zbieżny / rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
 +
|-
 +
| <math>4</math> || <math>{\small\frac{1}{2}}</math> || <math>-2</math> || <math>{\small\frac{1}{3}}</math> || <math>\left( -8,{\small\frac{1}{3}}, {\small\frac{1}{3^2}}, {\small\frac{1}{3^3}}, {\small\frac{1}{3^4}}, {\small\frac{1}{3^5}}, \ldots \right)</math> || zbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>{\small\frac{7}{3}}</math> || <math>2</math> || <math>- {\small\frac{1}{3}}</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - {\small\frac{7}{9}}, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>2</math> || <math>3</math> || <math>3</math> || <math>(-3,3,3^2,3^3,3^4,3^5,…)</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>{\small\frac{1}{2}}</math> || <math>1</math> || <math>{\small\frac{1}{2}}</math> || <math>-1</math> || <math>\left( {\small\frac{1}{4}}, 0, 0, 0, 0, 0, \ldots \right)</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(-2, 0, 0, 0, 0, 0, \ldots )</math> || rozbieżny || rozbieżny || zbieżny
 +
|-
 +
| <math>-1</math> || <math>1</math> || <math>3</math> || <math>2</math> || <math>(-3, 1, 1, 1, 1, 1,\ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>2</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>(-2,0,0,0,0,0,…)</math> || rozbieżny || zbieżny || zbieżny
 +
|-
 +
| <math>2</math> || <math>1</math> || <math>0</math> || <math>{\small\frac{1}{2}}</math> || <math>(0, 1, 1, 1, 1, 1, \ldots )</math> || rozbieżny || zbieżny || rozbieżny
 +
|-
 +
| <math>{\small\frac{r - 2}{r - 1}}</math> || <math>1</math> || <math>{\small\frac{r}{r - 1}}</math> || <math>r</math> || <math>\left( {\small\frac{r ( r - 2 )}{(r - 1)^2}}, r, r^2, r^3, r^4, r^5, \ldots \right)</math> || rozbieżny || zbieżny / rozbieżny || zbieżny / rozbieżny
 +
|-
 +
| <math>0</math> || <math>1</math> || <math>2</math> || <math>2</math> || <math>(0, 2, 2^2, 2^3, 2^4, 2^5, \ldots )</math> || rozbieżny || rozbieżny || rozbieżny
 +
|-
 +
| <math>3</math> || <math>1</math> || <math>-1</math> || <math>{\small\frac{1}{2}}</math> || <math>\left( - 3, {\small\frac{1}{2}}, {\small\frac{1}{2^2}}, {\small\frac{1}{2^3}}, {\small\frac{1}{2^4}}, {\small\frac{1}{2^5}}, \ldots \right)</math> || rozbieżny || zbieżny || zbieżny
 +
|}
  
Oczywiście chcemy pokazać, że <math>C_m \longrightarrow A B</math>. Ponieważ <math>A_m B \longrightarrow A B</math>, to wystarczy pokazać, że <math>\delta_m \longrightarrow 0</math>.
 
  
Z założenia <math>B_m \longrightarrow B</math>, zatem <math>\beta_m \longrightarrow 0</math>. Ze zbieżności ciągu <math>(\beta_k)</math> wynika, że
 
  
:*&nbsp;&nbsp;&nbsp;ciąg <math>(\beta_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| \beta_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C9|C9]])
+
<span id="D71" style="font-size: 110%; font-weight: bold;">Przykład D71</span><br/>
 +
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz [[#D5|D5]])
  
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon_1 > 0</math> prawie wszystkie wyrazy ciągu <math>(\beta_k)</math> spełniają warunek <math>| \beta_k | < \varepsilon_1</math> (zobacz [[Ciągi liczbowe#C4|C4]], [[Ciągi liczbowe#C6|C6]])
+
::<math>\sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=Sum%5B+%28-1%29%5Ek%2Fsqrt%28k%2B1%29%2C+%7Bk%2C+0%2C+infinity%7D+%5D WolframAlpha])
  
Możemy przyjąć, że warunek <math>| \beta_k | < \varepsilon_1</math> spełniają wszystkie wyrazy, poczynając od <math>M = M (\varepsilon_1)</math>. Zatem dla <math>m > M</math> dostajemy
+
Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy
  
::<math>| \delta_m | \leqslant \sum_{k = 0}^{M} | \beta_k | | a_{m - k} | + \sum_{k = M + 1}^{m} | \beta_k | | a_{m - k} |</math>
+
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}}
 +
= (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}}</math>
  
:::<math>\;\; < U (| a_m | + \ldots + | a_{m - M} |) + \varepsilon_1 \sum_{k = M + 1}^{m} | a_{m - k} |</math>
+
Ale <math>k \leqslant n \;</math> i <math>\; n - k \leqslant n</math>, zatem
  
:::<math>\;\; < U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A'</math>
+
::<math>{\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}}</math>
  
Z założenia szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest zbieżny, zatem musi być <math>\lim_{m \rightarrow \infty} a_m = 0</math> (zobacz [[#D4|D4]]). Czyli dla dowolnego <math>\varepsilon_2 > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon_2</math>. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od <math>N = N (\varepsilon_2)</math>. Zatem dla <math>m > M + N</math> otrzymujemy
+
Czyli
  
::<math>| \delta_m | < U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A'</math>
+
::<math>| c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1</math>
  
:::<math>\;\; < \varepsilon_2 (M + 1) U + \varepsilon_1 A'</math>
+
Ponieważ <math>\lim_{n \rightarrow \infty} c_n \neq 0</math>, to iloczyn Cauchy'ego jest rozbieżny (zobacz [[#D4|D4]]).
  
  
Prawa strona nierówności jest dowolnie mała. Przykładowo dla dowolnego <math>\varepsilon > 0</math> wystarczy wybrać <math>\varepsilon_1 = {\small\frac{\varepsilon / 2}{A'}}</math> i <math>\varepsilon_2 = {\small\frac{\varepsilon / 2}{(M + 1) U}}</math>, aby otrzymać <math>| \delta_m | < \varepsilon</math> dla wszystkich <math>m > M + N</math>. Ponieważ prawie wszystkie wyrazy ciągu <math>\delta_m</math> spełniają warunek <math>| \delta_m | < \varepsilon</math>, to <math>\lim_{m \rightarrow \infty} \delta_m = 0</math>. Co należało pokazać.<br/>
 
&#9633;
 
{{\Spoiler}}
 
  
 +
<span id="D72" style="font-size: 110%; font-weight: bold;">Zadanie D72</span><br/>
 +
Pokazać, że jeżeli <math>a_n = b_n = r^n \;</math> i <math>\; c_n = (n + 1) r^n</math> (zobacz [[#D69|D69]] p.3), to szeregi <math>\sum_{n = 0}^{\infty} a_n</math> oraz <math>\sum_{n = 0}^{\infty} c_n</math> są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w&nbsp;przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór
  
 +
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
  
<span id="D75" style="font-size: 110%; font-weight: bold;">Zadanie D75</span><br/>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
+
Zbieżność szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> łatwo zbadamy, stosując kryterium d'Alemberta.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>\left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r |</math>
Z założenia szeregi <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> są bezwzględnie zbieżne, zatem możemy napisać
 
  
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math>
+
Zatem szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math> i&nbsp;rozbieżny, gdy <math>| r | > 1</math>, tak samo, jak szereg <math>\sum_{n = 0}^{\infty} r^n</math>. W&nbsp;przypadku, gdy <math>r = \pm 1</math> szereg <math>\sum_{n = 0}^{\infty} r^n</math> jest rozbieżny, a&nbsp;odpowiednie sumy częściowe szeregu <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> są równe
  
Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
+
:*&nbsp;&nbsp;&nbsp; gdy <math>r = 1</math>, <math>c_n = n + 1</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad</math> (zobacz <span style="color: Green">[a]</span>, [https://www.wolframalpha.com/input?i=Sum%5B+n%2B1%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
  
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math>
+
:*&nbsp;&nbsp;&nbsp; gdy <math>r = - 1</math>, <math>c_n = (n + 1) (- 1)^n</math>, <math>\quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad</math> (zobacz [[#D54|D54]], [https://www.wolframalpha.com/input?i=Sum%5B+%28n%2B1%29*%28-1%29%5En%2C+%7Bn%2C+0%2C+L%7D+%5D WolframAlpha])
  
:::<math>\; = \sum_{n = 0}^{m} \left| \sum_{k = 0}^{n} a_k b_{n - k} \right|</math>
+
W przypadku, gdy <math>| r | < 1</math> wiemy<ref name="GeometricSeries1"/>, że <math>\sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}}</math>. Korzystając z&nbsp;zadania [[#D54|D54]], otrzymujemy
  
:::<math>\; \leqslant \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k b_{n - k} |</math>
+
::<math>\sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}}</math>
  
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math>
 
  
:::<math>\; = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} | a_i | | b_j | \qquad \qquad</math> (zmieniliśmy sposób sumowania)
+
Ponieważ szereg <math>\sum_{n = 0}^{\infty} (n + 1) r^n</math> jest zbieżny, gdy <math>| r | < 1</math>, to musi być <math>\lim_{n \rightarrow \infty} (n + 1) r^n = 0</math> (zobacz [[#D4|D4]]). Pokazaliśmy, że w&nbsp;rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów.
  
:::<math>\; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j |</math>
 
  
:::<math>\; \leqslant A' B'</math>
+
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> Zauważmy, że
  
Ponieważ ciąg sum częściowych <math>C'_m</math> jest rosnący (bo sumujemy wartości nieujemne) i&nbsp;ograniczony od góry, to jest zbieżny.<br/>
+
::<math>\sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}}</math><br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 2733: Linia 2718:
  
  
<span id="D76" style="font-size: 110%; font-weight: bold;">Zadanie D76</span><br/>
+
<span id="D73" style="font-size: 110%; font-weight: bold;">Uwaga D73</span><br/>
Podać przykład szeregów zbieżnych, z&nbsp;których tylko jeden jest bezwzględnie zbieżny i&nbsp;których iloczyn Cauchy'ego jest warunkowo zbieżny.
+
Przykłady [[#D70|D70]] i [[#D71|D71]] pokazują, że w&nbsp;ogólności nie jest prawdziwy wzór
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>\left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right)</math>
Zauważmy, że szereg <math>\sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}}</math> jest bezwzględnie zbieżny, bo <math>\sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2</math> jest zbieżny. Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest zbieżny na mocy kryterium Leibniza (zobacz [[#D5|D5]]), ale nie jest bezwzględnie zbieżny (zobacz [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]).
 
  
Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
+
Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.
  
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
 
  
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
 
  
jest zbieżny. Łatwo widzimy, że
+
<span id="D74" style="font-size: 110%; font-weight: bold;">Uwaga D74</span><br/>
 +
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po <math>m + 1</math> kolejnych przekątnych
  
::<math>| c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
+
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
:::<math>\; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
+
możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy <math>m = 5</math>.
  
:::<math>\; \geqslant {\small\frac{1}{n + 1}}</math>
+
::{| class="wikitable"  style="text-align:center;"
 +
|-
 +
| bgcolor="LightGray" | <math> a_6 b_0 </math> || <math> </math> ||  ||  ||  ||  ||
 +
|-
 +
| bgcolor="Violet" | <math> a_5 b_0 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||  ||
 +
|-
 +
| bgcolor="Cyan" | <math> a_4 b_0 </math> || bgcolor="Violet" | <math> a_4 b_1 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||  ||
 +
|-
 +
| bgcolor="Green" | <math> a_3 b_0 </math> || bgcolor="Cyan" | <math> a_3 b_1 </math> || bgcolor="Violet" | <math> a_3 b_2 </math> || bgcolor="LightGray" | <math> </math> ||  ||  ||
 +
|-
 +
| bgcolor="Yellow" | <math> a_2 b_0 </math> || bgcolor="Green" | <math> a_2 b_1 </math> || bgcolor="Cyan" | <math> a_2 b_2 </math> || bgcolor="Violet" | <math> a_2 b_3 </math> || bgcolor="LightGray" | <math> </math> ||  ||
 +
|-
 +
| bgcolor="Orange" | <math> a_1 b_0 </math> || bgcolor="Yellow" | <math> a_1 b_1 </math> || bgcolor="Green" | <math> a_1 b_2 </math> || bgcolor="Cyan" | <math> a_1 b_3 </math> || bgcolor="Violet" | <math> a_1 b_4 </math> || bgcolor="LightGray" | <math> </math>  ||
 +
|-
 +
| bgcolor="Red" | <math> a_0 b_0 </math> || bgcolor="Orange" | <math> a_0 b_1 </math> || bgcolor="Yellow" | <math> a_0 b_2 </math> || bgcolor="Green" | <math> a_0 b_3 </math> || bgcolor="Cyan" | <math> a_0 b_4 </math> || bgcolor="Violet" | <math> a_0 b_5 </math>  || bgcolor="LightGray" | <math> a_0 b_6 </math>
 +
|}
  
Ponieważ szereg <math>\sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}}</math> jest rozbieżny i
+
Przejście do sumowania po liniach poziomych
  
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n |</math>
+
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
  
to na mocy kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny. Co należało pokazać.<br/>
+
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a&nbsp;druga po kolejnych elementach w <math>i</math>-tej linii poziomej.
&#9633;
 
{{\Spoiler}}
 
  
  
 +
Przejście do sumowania po liniach pionowych
  
<span id="D77" style="font-size: 110%; font-weight: bold;">Zadanie D77</span><br/>
+
::<math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i</math>
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a&nbsp;druga po kolejnych elementach w <math>i</math>-tej linii pionowej.
Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest warunkowo zbieżny (zobacz [[#D5|D5]], [[#D17|D17]], [[#D19|D19]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). Iloczyn Cauchy'ego dwóch takich szeregów jest równy <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
 
  
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
 
  
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}}</math>
 
  
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}}</math>
+
<span id="D75" style="font-size: 110%; font-weight: bold;">Twierdzenie D75 (Franciszek Mertens)</span><br/>
 +
Jeżeli szereg <math>\sum_{i = 0}^{\infty} a_i = A</math> jest zbieżny bezwzględnie, szereg <math>\sum_{j = 0}^{\infty} b_j = B</math> jest zbieżny, to ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny i <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
  
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest zbieżny bezwzględnie, oznaczmy <math>\sum_{i = 0}^{\infty} | a_i | = A'</math>. Niech
  
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right)</math>
+
::<math>A_n = \sum_{i = 0}^{n} a_i \qquad \qquad B_n = \sum_{j = 0}^{n} b_j \qquad \qquad C_n = \sum_{k = 0}^{n} c_k \qquad \qquad \beta_n = B_n - B</math>
  
::<math>\;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}}</math>
+
Przekształcając sumę <math>C_m</math>, otrzymujemy
  
 +
::<math>C_m = \sum_{n = 0}^{m} c_n</math>
  
Ponieważ (zobacz [[#D17|D17]])
+
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
+
Przechodzimy od sumowania po <math>m + 1</math> kolejnych przekątnych do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D74|D74]]).
  
to
+
::<math>C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
  
::<math>{\small\frac{2}{n + 2}} \cdot \log (n + 2) < | c_n | < {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1))</math>
+
:::<math>\; = \sum_{i = 0}^{m} a_i \sum_{j = 0}^{m - i} b_j</math>
  
Z twierdzenia o&nbsp;trzech ciągach wynika natychmiast, że <math>\lim_{n \rightarrow \infty} | c_n | = 0</math>. Pokażemy teraz, że ciąg <math>(| c_n |)</math> jest ciągiem malejącym.
+
:::<math>\; = \sum_{i = 0}^{m} a_i B_{m - i}</math>
  
::<math>| c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
+
:::<math>\; = \sum_{i = 0}^{m} a_i \left( {B + \beta_{m - i}} \right)</math>
  
:::::<math>\;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
+
:::<math>\; = \sum_{i = 0}^{m} a_i B + \sum_{i = 0}^{m} a_i \beta_{m - i}</math>
  
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
+
:::<math>\; = B \sum_{i = 0}^{m} a_i + \sum_{i = 0}^{m} a_i \beta_{m - i}</math>
  
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
+
:::<math>\; = A_m B + \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
  
:::::<math>\;\;\;\; \leqslant 0</math>
+
Zatem
  
Bo <math>\; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1</math>. Ponieważ ciąg <math>(| c_n |)</math> jest malejący i&nbsp;zbieżny do zera, to z&nbsp;kryterium Leibniza (zobacz [[#D5|D5]]) szereg <math>\sum_{n = 0}^{\infty} (- 1)^n | c_n |</math> jest zbieżny. Zauważmy jeszcze, że dla <math>n \geqslant 1</math> mamy
+
::<math>C_m - A_m B = \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
  
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} < | c_n |</math>
+
Niech
  
Zatem na podstawie kryterium porównawczego (zobacz [[#D9|D9]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny.<br/>
+
::<math>\delta_m = \sum_{k = 0}^{m} \beta_k a_{m - k}</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
Oczywiście chcemy pokazać, że <math>C_m \longrightarrow A B</math>. Ponieważ <math>A_m B \longrightarrow A B</math>, to wystarczy pokazać, że <math>\delta_m \longrightarrow 0</math>.
  
 +
Z założenia <math>B_m \longrightarrow B</math>, zatem <math>\beta_m \longrightarrow 0</math>. Ze zbieżności ciągu <math>(\beta_k)</math> wynika, że
  
<span id="D78" style="font-size: 110%; font-weight: bold;">Uwaga D78</span><br/>
+
:*&nbsp;&nbsp;&nbsp;ciąg <math>(\beta_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| \beta_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C10|C10]])
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D80|D80]] pozwala przypisać wartość sumy do szeregów, których suma w&nbsp;zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w&nbsp;sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
 
  
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i&nbsp;tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy
+
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon_1 > 0</math> prawie wszystkie wyrazy ciągu <math>(\beta_k)</math> spełniają warunek <math>| \beta_k | < \varepsilon_1</math> (zobacz [[Ciągi liczbowe#C5|C5]], [[Ciągi liczbowe#C7|C7]])
  
::<math>x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}}
+
Możemy przyjąć, że warunek <math>| \beta_k | < \varepsilon_1</math> spełniają wszystkie wyrazy, poczynając od <math>M = M (\varepsilon_1)</math>. Zatem dla <math>m > M</math> dostajemy
= {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}}
 
= {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa])
 
  
Zatem szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math> jest sumowalny w&nbsp;sensie Cesàro i&nbsp;jego suma jest równa <math>{\small\frac{1}{2}}</math>.
+
::<math>| \delta_m | \leqslant \sum_{k = 0}^{M} | \beta_k | | a_{m - k} | + \sum_{k = M + 1}^{m} | \beta_k | | a_{m - k} |</math>
  
 +
:::<math>\;\; < U (| a_m | + \ldots + | a_{m - M} |) + \varepsilon_1 \sum_{k = M + 1}^{m} | a_{m - k} |</math>
  
 +
:::<math>\;\; < U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A'</math>
  
<span id="D79" style="font-size: 110%; font-weight: bold;">Twierdzenie D79</span><br/>
+
Z założenia szereg <math>\sum_{i = 0}^{\infty} a_i</math> jest zbieżny, zatem musi być <math>\lim_{m \rightarrow \infty} a_m = 0</math> (zobacz [[#D4|D4]]). Czyli dla dowolnego <math>\varepsilon_2 > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon_2</math>. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od <math>N = N (\varepsilon_2)</math>. Zatem dla <math>m > M + N</math> otrzymujemy
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>| \delta_m | < U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A'</math>
Z założenia <math>\lim_{n \rightarrow \infty} a_n = 0</math>. Ze zbieżności ciągu <math>(a_k)</math> wynika, że
 
  
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| a_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C9|C9]])
+
:::<math>\;\; < \varepsilon_2 (M + 1) U + \varepsilon_1 A'</math>
 +
 
 +
 
 +
Prawa strona nierówności jest dowolnie mała. Przykładowo dla dowolnego <math>\varepsilon > 0</math> wystarczy wybrać <math>\varepsilon_1 = {\small\frac{\varepsilon / 2}{A'}}</math> i <math>\varepsilon_2 = {\small\frac{\varepsilon / 2}{(M + 1) U}}</math>, aby otrzymać <math>| \delta_m | < \varepsilon</math> dla wszystkich <math>m > M + N</math>. Ponieważ prawie wszystkie wyrazy ciągu <math>\delta_m</math> spełniają warunek <math>| \delta_m | < \varepsilon</math>, to <math>\lim_{m \rightarrow \infty} \delta_m = 0</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon</math> (zobacz [[Ciągi liczbowe#C4|C4]], [[Ciągi liczbowe#C6|C6]])
 
  
Możemy przyjąć, że warunek <math>| a_k | < \varepsilon</math> spełniają wszystkie wyrazy, poczynając od <math>N = N (\varepsilon)</math>. Zatem dla <math>n > N</math> możemy napisać
 
  
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}}</math>
+
<span id="D76" style="font-size: 110%; font-weight: bold;">Zadanie D76</span><br/>
 +
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.
  
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Z założenia szeregi <math>\sum_{i = 0}^{\infty} a_i</math> oraz <math>\sum_{j = 0}^{\infty} b_j</math> są bezwzględnie zbieżne, zatem możemy napisać
  
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + \varepsilon</math>
+
::<math>\sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B'</math>
  
Ponieważ liczba <math>n</math> może być dowolnie duża, to wyrażenie <math>{\small\frac{U (N + 1)}{n + 1}}</math> może być dowolnie małe. W&nbsp;szczególności warunek
+
Zauważmy, że suma <math>\sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math> obejmuje <math>m + 1</math> przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D74|D74]]).
  
::<math>{\small\frac{U (N + 1)}{n + 1}} < \varepsilon</math>
+
::<math>C'_m = \sum_{n = 0}^{m} | c_n |</math>
  
jest spełniony dla <math>n > {\small\frac{U (N + 1)}{\varepsilon}} - 1</math> i&nbsp;otrzymujemy, że
+
:::<math>\; = \sum_{n = 0}^{m} \left| \sum_{k = 0}^{n} a_k b_{n - k} \right|</math>
  
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | < 2 \varepsilon</math>
+
:::<math>\; \leqslant \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k b_{n - k} |</math>
  
dla wszystkich <math>n > \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right)</math>. Zatem <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. Co należało pokazać.<br/>
+
:::<math>\; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} |</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
:::<math>\; = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} | a_i | | b_j | \qquad \qquad</math> (zmieniliśmy sposób sumowania)
  
 +
:::<math>\; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j |</math>
  
<span id="D80" style="font-size: 110%; font-weight: bold;">Twierdzenie D80</span><br/>
+
:::<math>\; \leqslant A' B'</math>
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ ciąg sum częściowych <math>C'_m</math> jest rosnący (bo sumujemy wartości nieujemne) i&nbsp;ograniczony od góry, to jest zbieżny.<br/>
Z założenia ciąg <math>(a_k)</math> jest zbieżny, zatem możemy napisać
+
&#9633;
 +
{{\Spoiler}}
  
::<math>\lim_{k \rightarrow \infty} a_k = g</math>
 
  
Z definicji ciągu <math>(x_n)</math> dostajemy
 
  
::<math>x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g
+
<span id="D77" style="font-size: 110%; font-weight: bold;">Zadanie D77</span><br/>
= {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}}
+
Podać przykład szeregów zbieżnych, z&nbsp;których tylko jeden jest bezwzględnie zbieżny i&nbsp;których iloczyn Cauchy'ego jest warunkowo zbieżny.
= {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}}
 
= {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}}</math>
 
  
Wynika stąd, że
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że szereg <math>\sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}}</math> jest bezwzględnie zbieżny, bo <math>\sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2</math> jest zbieżny. Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest zbieżny na mocy kryterium Leibniza (zobacz [[#D5|D5]]), ale nie jest bezwzględnie zbieżny (zobacz [[#D18|D18]], [[#D20|D20]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]).
  
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math>
+
Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D79|D79]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
+
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
  
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math>
+
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
  
Czyli <math>\lim_{n \rightarrow \infty} x_n = g</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2). Co należało pokazać.<br/>
+
jest zbieżny. Łatwo widzimy, że
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>| c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
  
 +
:::<math>\; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}}</math>
  
<span id="D81" style="font-size: 110%; font-weight: bold;">Twierdzenie D81</span><br/>
+
:::<math>\; \geqslant {\small\frac{1}{n + 1}}</math>
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
Ponieważ szereg <math>\sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}}</math> jest rozbieżny i
  
'''1. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n = 0}</math>
+
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n |</math>
  
Ponieważ ciąg <math>(b_n)</math> jest zbieżny, to jest ograniczony (zobacz [[Ciągi liczbowe#C9|C9]]), czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| b_k | \leqslant U</math>. Zatem
+
to na mocy kryterium porównawczego (zobacz [[#D10|D10]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math>
 
  
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D79|D79]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C10|C10]]) otrzymujemy
 
  
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math>
+
<span id="D78" style="font-size: 110%; font-weight: bold;">Zadanie D78</span><br/>
 +
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.
  
Czyli <math>\lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0</math> (zobacz [[Ciągi liczbowe#C8|C8]] p.2).
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Szereg <math>\sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2</math> jest warunkowo zbieżny (zobacz [[#D5|D5]], [[#D18|D18]], [[#D20|D20]] p.1, [[Twierdzenie Czebyszewa o liczbie pierwszej między n i 2n#B34|B34]]). Iloczyn Cauchy'ego dwóch takich szeregów jest równy <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie
  
 +
::<math>c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}}</math>
  
'''2. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0}</math>
+
::<math>\;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}}</math>
  
Niech <math>x_n = a_n - a</math>. Oczywiście <math>\lim_{n \rightarrow \infty} x_n = 0</math>. Podstawiając, otrzymujemy
+
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}}</math>
  
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k}</math>
+
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right)</math>
  
:::::::<math>\, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
+
::<math>\;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right)</math>
  
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
+
::<math>\;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}}</math>
  
W granicy, gdy <math>n \longrightarrow \infty</math>, z&nbsp;twierdzenia [[#D80|D80]] i&nbsp;udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy
 
  
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>
+
Ponieważ (zobacz [[#D18|D18]])
  
Co kończy dowód.<br/>
+
::<math>\log (n + 1) < \sum_{k = 1}^{n} {\small\frac{1}{k}} < 1 + \log n</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
to
  
 +
::<math>{\small\frac{2}{n + 2}} \cdot \log (n + 2) < | c_n | < {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1))</math>
  
 +
Z twierdzenia o&nbsp;trzech ciągach wynika natychmiast, że <math>\lim_{n \rightarrow \infty} | c_n | = 0</math>. Pokażemy teraz, że ciąg <math>(| c_n |)</math> jest ciągiem malejącym.
  
<span id="D82" style="font-size: 110%; font-weight: bold;">Twierdzenie D82 (Niels Henrik Abel)</span><br/>
+
::<math>| c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i&nbsp;ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:::::<math>\;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
Będziemy stosowali następujące oznaczenia
 
  
::<math>A_n = \sum_{i = 0}^{n} a_i \qquad \qquad \;\, B_n = \sum_{i = 0}^{n} b_i \qquad \qquad \;\; C_n = \sum_{i = 0}^{n} c_i</math>
+
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
  
Z założenia szeregi są zbieżne, zatem możemy napisać
+
:::::<math>\;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}}</math>
  
::<math>\lim_{n \rightarrow \infty} A_n = A \qquad \qquad \lim_{n \rightarrow \infty} B_n = B \qquad \qquad \lim_{n \rightarrow \infty} C_n = C</math>
+
:::::<math>\;\;\;\; \leqslant 0</math>
  
Rozważmy sumę
+
Bo <math>\; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1</math>. Ponieważ ciąg <math>(| c_n |)</math> jest malejący i&nbsp;zbieżny do zera, to z&nbsp;kryterium Leibniza (zobacz [[#D5|D5]]) szereg <math>\sum_{n = 0}^{\infty} (- 1)^n | c_n |</math> jest zbieżny. Zauważmy jeszcze, że dla <math>n \geqslant 1</math> mamy
  
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{n = 0}^{m} c_n</math>
+
::<math>0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} < | c_n |</math>
  
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
+
Zatem na podstawie kryterium porównawczego (zobacz [[#D10|D10]]) szereg <math>\sum_{n = 0}^{\infty} | c_n |</math> jest rozbieżny.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Od sumowania wyrazów <math>a_k b_{n - k}</math> po <math>m + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D73|D73]]).
 
  
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
 
  
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i \sum^{m - i}_{j = 0} b_j</math>
+
<span id="D79" style="font-size: 110%; font-weight: bold;">Uwaga D79</span><br/>
 +
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie [[#D81|D81]] pozwala przypisać wartość sumy do szeregów, których suma w&nbsp;zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w&nbsp;sensie Cesàro<ref name="CesaroSum1"/>. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.
  
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i B_{m - i}</math>
+
Rozważmy szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math>. Sumy częściowe tego szeregu wynoszą <math>S_k = {\small\frac{1 + (- 1)^k}{2}}</math> i&nbsp;tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu <math>(S_k)</math> jest równy
  
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k}</math>
+
::<math>x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}}
 +
= {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}}
 +
= {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad</math> ([https://www.wolframalpha.com/input?i=1%2F%28n%2B1%29+*+Sum%5B+%281+%2B+%28-1%29%5Ek+%29%2F2%2C+%7Bk%2C+0%2C+n%7D+%5D WolframAlfa])
  
Od sumowania wyrazów <math>a_k B_{m - k}</math> po <math>L + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>L + 1</math> kolejnych liniach pionowych (zobacz [[#D73|D73]]).
+
Zatem szereg <math>\sum_{i = 0}^{\infty} (- 1)^i</math> jest sumowalny w&nbsp;sensie Cesàro i&nbsp;jego suma jest równa <math>{\small\frac{1}{2}}</math>.
  
::<math>\sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i</math>
 
  
::::<math>\;\; = \sum_{i = 0}^{L} B_i \sum_{j = 0}^{L - i} a_j</math>
 
  
::::<math>\;\; = \sum_{i = 0}^{L} B_i A_{L - i}</math>
+
<span id="D80" style="font-size: 110%; font-weight: bold;">Twierdzenie D80</span><br/>
 +
Jeżeli <math>\lim_{n \rightarrow \infty} a_n = 0</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>.
  
Zatem
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>\lim_{n \rightarrow \infty} a_n = 0</math>. Ze zbieżności ciągu <math>(a_k)</math> wynika, że
  
::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math>
+
:*&nbsp;&nbsp;&nbsp;ciąg <math>(a_k)</math> jest ograniczony, czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| a_k | \leqslant U</math> (zobacz [[Ciągi liczbowe#C10|C10]])
  
W&nbsp;granicy, gdy <math>L \longrightarrow \infty</math>, z&nbsp;twierdzeń [[#D80|D80]] i [[#D81|D81]] otrzymujemy <math>C = A B</math>. Co należało pokazać.<br/>
+
:*&nbsp;&nbsp;&nbsp;dla dowolnego <math>\varepsilon > 0</math> prawie wszystkie wyrazy ciągu <math>(a_k)</math> spełniają warunek <math>| a_k | < \varepsilon</math> (zobacz [[Ciągi liczbowe#C5|C5]], [[Ciągi liczbowe#C7|C7]])
&#9633;
 
{{\Spoiler}}
 
  
 +
Możemy przyjąć, że warunek <math>| a_k | < \varepsilon</math> spełniają wszystkie wyrazy, poczynając od <math>N = N (\varepsilon)</math>. Zatem dla <math>n > N</math> możemy napisać
  
 +
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}}</math>
  
 +
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}}</math>
  
 +
::::::<math>\,\, < {\small\frac{U (N + 1)}{n + 1}} + \varepsilon</math>
  
== Liczby Catalana ==
+
Ponieważ liczba <math>n</math> może być dowolnie duża, to wyrażenie <math>{\small\frac{U (N + 1)}{n + 1}}</math> może być dowolnie małe. W&nbsp;szczególności warunek
  
<span id="D83" style="font-size: 110%; font-weight: bold;">Definicja D83</span><br/>
+
::<math>{\small\frac{U (N + 1)}{n + 1}} < \varepsilon</math>
Liczby Catalana <math>C_n</math> definiujemy wzorem
 
  
::<math>C_n = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}}</math>
+
jest spełniony dla <math>n > {\small\frac{U (N + 1)}{\varepsilon}} - 1</math> i&nbsp;otrzymujemy, że
  
gdzie <math>n \geqslant 0</math>.
+
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | < 2 \varepsilon</math>
  
 +
dla wszystkich <math>n > \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right)</math>. Zatem <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
  
<span id="D84" style="font-size: 110%; font-weight: bold;">Twierdzenie D84</span><br/>
 
Liczby Catalana <math>C_n</math> mają następujące własności
 
  
:*&nbsp;&nbsp;&nbsp;<math>C_n</math> są liczbami całkowitymi dodatnimi
+
<span id="D81" style="font-size: 110%; font-weight: bold;">Twierdzenie D81</span><br/>
 
+
Jeżeli ciąg <math>(a_k)</math> jest zbieżny, to ciąg kolejnych średnich arytmetycznych <math>x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}}</math> jest zbieżny do tej samej granicy.
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 
:*&nbsp;&nbsp;&nbsp;<math>C_n = {\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{n}} {\small\binom{2 n}{n - 1}}</math>
 
</div>
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
:*&nbsp;&nbsp;&nbsp;<math>C_{n + 1} = {\small\frac{2 (2 n + 1)}{n + 2}} C_n</math>
 
</div>
 
 
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
:*&nbsp;&nbsp;&nbsp;<math>C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k}</math>
 
</div>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia ciąg <math>(a_k)</math> jest zbieżny, zatem możemy napisać
  
'''Punkt 1.'''
+
::<math>\lim_{k \rightarrow \infty} a_k = g</math>
  
Twierdzenie jest prawdziwe dla początkowych wartości <math>n \geqslant 0</math>, bo <math>(C_n) = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, \ldots)</math>. W&nbsp;ogólności wystarczy zauważyć, że dla <math>n \geqslant 0</math> mamy
+
Z definicji ciągu <math>(x_n)</math> dostajemy
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::<math>x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g
::<math>{\small\binom{2 n}{n + 1}} = {\small\frac{(2 n) !}{(n + 1) ! (n - 1) !}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} < {\small\binom{2 n}{n}}</math>
+
= {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}}  
</div>
+
= {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}}  
 +
= {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}}</math>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Wynika stąd, że
::<math>{\small\binom{2 n}{n}} - {\small\binom{2 n}{n + 1}} = {\small\binom{2 n}{n}} - {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n</math>
 
</div>
 
  
Zatem <math>C_n</math> jest liczbą całkowitą większą od zera.
+
::<math>0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g |</math>
  
'''Punkt 2.'''
+
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D80|D80]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C11|C11]]) otrzymujemy
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::<math>\lim_{n \rightarrow \infty} | x_n - g | = 0</math>
::<math>{\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{(2 n + 1) !}{n! (n + 1) !}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Czyli <math>\lim_{n \rightarrow \infty} x_n = g</math> (zobacz [[Ciągi liczbowe#C9|C9]] p.2). Co należało pokazać.<br/>
::<math>{\small\frac{1}{n}} {\small\binom{2 n}{n - 1}} = {\small\frac{1}{n}} \cdot {\small\frac{(2 n) !}{(n - 1) ! (n + 1) !}} = {\small\frac{1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n</math>
+
&#9633;
</div>
+
{{\Spoiler}}
  
'''Punkt 3.'''
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
 
::<math>{\small\frac{C_{n + 1}}{C_n}} = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) !}{(n + 1) ! (n + 1) !}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
<span id="D82" style="font-size: 110%; font-weight: bold;">Twierdzenie D82</span><br/>
:::<math>\;\;\;\: = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1)^2}} \cdot {\small\frac{(2 n) !}{n!n!}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}} =</math>
+
Niech <math>(a_n)</math> i <math>(b_n)</math> będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli <math>\lim_{n \rightarrow \infty} a_n = a</math> i <math>\lim_{n \rightarrow \infty} b_n = b</math>, to <math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>.
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
:::<math>\;\;\;\: = {\small\frac{2 (2 n + 1)}{n + 2}}</math>
 
</div>
 
  
'''Punkt 4.'''
+
'''1. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n = 0}</math>
  
Dowód tego punktu został umieszczony w&nbsp;Uzupełnieniu (zobacz [[#D90|D90]]).<br/>
+
Ponieważ ciąg <math>(b_n)</math> jest zbieżny, to jest ograniczony (zobacz [[Ciągi liczbowe#C10|C10]]), czyli istnieje taka liczba <math>U > 0</math>, że dla każdego <math>k \geqslant 0</math> jest <math>| b_k | \leqslant U</math>. Zatem
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k |</math>
  
 +
W granicy, gdy <math>n \rightarrow \infty</math>, z&nbsp;twierdzenia [[#D80|D80]] i&nbsp;twierdzenia o&nbsp;trzech ciągach (zobacz [[Ciągi liczbowe#C11|C11]]) otrzymujemy
  
<span id="D85" style="font-size: 110%; font-weight: bold;">Zadanie D85</span><br/>
+
::<math>\lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0</math>
Niech <math>C_n</math> oznacza <math>n</math>-tą liczbę Catalana i&nbsp;niech <math>\sum_{n = 0}^{\infty} x_n</math> oznacza szereg, który otrzymujemy, mnożąc szereg <math>\sum_{n = 0}^{\infty} a_n</math> przez siebie według reguły Cauchy'ego. Pokazać, że
 
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = C_n</math>, &nbsp;to&nbsp; <math>x_n = C_{n + 1}</math>
+
Czyli <math>\lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0</math> (zobacz [[Ciągi liczbowe#C9|C9]] p.2).
  
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_0 = \alpha \;</math> i <math>\; a_n = r^{n - 1} C_{n - 1}</math> dla <math>n \geqslant 1</math>, &nbsp;to&nbsp; <math>x_0 = \alpha^2</math>, <math>\; x_1 = 2 \alpha C_0 \;</math> i <math>\; x_n = (1 + 2 \alpha r) r^{n - 2} C_{n - 1}</math> dla <math>n \geqslant 2</math>
 
  
Dla jakich wartości <math>\alpha, r</math> szereg <math>\sum_{n = 0}^{\infty} x_n</math> jest zbieżny?
+
'''2. Przypadek, gdy''' <math>\boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Niech <math>x_n = a_n - a</math>. Oczywiście <math>\lim_{n \rightarrow \infty} x_n = 0</math>. Podstawiając, otrzymujemy
  
'''Punkt 2.'''
+
::<math>{\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k}</math>
  
Dla <math>n = 0</math> mamy <math>x_0 = a_0 a_0 = \alpha^2</math>
+
:::::::<math>\, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
  
Dla <math>n = 1</math> mamy <math>x_1 = a_0 a_1 + a_1 a_0 = 2 a_0 a_1 = 2 \alpha C_0</math>
+
:::::::<math>\, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k}</math>
  
Dla <math>n \geqslant 2</math> jest
+
W granicy, gdy <math>n \longrightarrow \infty</math>, z&nbsp;twierdzenia [[#D81|D81]] i&nbsp;udowodnionego wyżej przypadku, gdy <math>\lim_{n \rightarrow \infty} a_n = 0</math>, dostajemy
  
::<math>x_n = \sum_{k = 0}^{n} a_k a_{n - k}</math>
+
::<math>\lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b</math>
  
::<math>\;\;\;\;\: = a_0 a_n + a_n a_0 + \sum_{k = 1}^{n - 1} a_k a_{n - k}</math>
+
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>\;\;\;\;\: = 2 a_0 a_n + \sum_{k = 1}^{n - 1} r^{k - 1} C_{k - 1} \cdot r^{n - k - 1} C_{n - k - 1}</math>
 
  
::<math>\;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{k = 1}^{n - 1} C_{k - 1} C_{n - k - 1}</math>
 
  
::<math>\;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{j = 0}^{n - 2} C_j C_{n - 2 - j}</math>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
<span id="D83" style="font-size: 110%; font-weight: bold;">Twierdzenie D83 (Niels Henrik Abel)</span><br/>
::<math>\;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} C_{n - 1}</math>
+
Jeżeli szeregi <math>\sum_{i = 0}^{\infty} a_i = A</math> oraz <math>\sum_{j = 0}^{\infty} b_j = B</math> są zbieżne i&nbsp;ich iloczyn Cauchy'ego <math>\sum_{n = 0}^{\infty} c_n</math>, gdzie <math>c_n = \sum_{k = 0}^{n} a_k b_{n - k}</math>, jest zbieżny, to <math>\sum_{n = 0}^{\infty} c_n = A B</math>.
</div>
 
  
<div style="margin-top: 2em; margin-bottom: 1em;">
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
::<math>\;\;\;\;\: = r^{n - 2} C_{n - 1} (1 + 2 \alpha r)</math>
+
Będziemy stosowali następujące oznaczenia
</div>
 
  
Zauważmy, że
+
::<math>A_n = \sum_{i = 0}^{n} a_i \qquad \qquad \;\, B_n = \sum_{i = 0}^{n} b_i \qquad \qquad \;\; C_n = \sum_{i = 0}^{n} c_i</math>
  
::<math>{\small\frac{C_n}{C_{n - 1}}} = \frac{{\normalsize\frac{1}{n + 1}} {\normalsize\binom{2 n}{n}}}{{\normalsize\frac{1}{n}} {\normalsize\binom{2 n - 2}{n - 1}}}
+
Z założenia szeregi są zbieżne, zatem możemy napisać
= {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1) (2 n - 2) !}{n^2 [(n - 1) !]^2}} \cdot {\small\frac{[(n - 1) !]^2}{(2 n - 2) !}}
 
= {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1)}{n^2}}
 
= {\small\frac{2 (2 n - 1)}{n + 1}}</math>
 
  
Z kryterium d'Alemberta dla szeregu <math>\sum_{n = 0}^{\infty} a_n</math> i&nbsp;szeregu <math>\sum_{n = 0}^{\infty} x_n</math> otrzymujemy
+
::<math>\lim_{n \rightarrow \infty} A_n = A \qquad \qquad \lim_{n \rightarrow \infty} B_n = B \qquad \qquad \lim_{n \rightarrow \infty} C_n = C</math>
  
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| = \left| {\small\frac{r^n C_n}{r^{n - 1} C_{n - 1}}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} = | r | \cdot {\small\frac{2 (2 n - 1)}{n + 1}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r |</math>
+
Rozważmy sumę
  
 +
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{n = 0}^{m} c_n</math>
  
::<math>\left| {\small\frac{x_{n + 1}}{x_n}} \right| = \left| {\small\frac{r^{n - 1} C_n (1 + 2 \alpha r)}{r^{n - 2} C_{n - 1} (1 + 2 \alpha r)}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r |</math>
+
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k}</math>
  
Zatem szeregi te są bezwzględnie zbieżne w&nbsp;przypadku, gdy <math>| r | < {\small\frac{1}{4}}</math>. W&nbsp;szczególności dla <math>\alpha = - {\small\frac{1}{2 r}}</math> szereg <math>\sum_{n = 0}^{\infty} x_n</math> zawsze będzie zbieżny, bo od trzeciego wyrazu będzie się składał z&nbsp;samych zer. Wiemy, że w&nbsp;przypadku, gdy <math>r = {\small\frac{1}{4}}</math> szereg <math>\sum_{n = 0}^{\infty} {\small\frac{C_n}{4^n}} = 2</math> jest zbieżny.<br/>
+
Od sumowania wyrazów <math>a_k b_{n - k}</math> po <math>m + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>m + 1</math> kolejnych liniach poziomych (zobacz [[#D74|D74]]).
&#9633;
 
{{\Spoiler}}
 
  
 +
::<math>\sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j</math>
  
 +
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i \sum^{m - i}_{j = 0} b_j</math>
  
 +
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i B_{m - i}</math>
  
 +
::::<math>\;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k}</math>
  
== Uzupełnienie ==
+
Od sumowania wyrazów <math>a_k B_{m - k}</math> po <math>L + 1</math> kolejnych przekątnych przechodzimy do sumowania po <math>L + 1</math> kolejnych liniach pionowych (zobacz [[#D74|D74]]).
  
&nbsp;
+
::<math>\sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i</math>
  
=== <span style="border-bottom:2px solid #000; padding-bottom: 0.21em">Dowód własności liczb Catalana <math>{\small C_{n + 1} = \textstyle\sum_{k = 0}^{n} C_k C_{n - k}}</math></span> ===
+
::::<math>\;\; = \sum_{i = 0}^{L} B_i \sum_{j = 0}^{L - i} a_j</math>
  
<span id="D86" style="font-size: 110%; font-weight: bold;">Uwaga D86</span><br/>
+
::::<math>\;\; = \sum_{i = 0}^{L} B_i A_{L - i}</math>
Przedstawiony poniżej dowód czwartego punktu twierdzenia [[#D84|D84]] został oparty na pracy Jovana Mikicia<ref name="JovanMikic1"/>.
 
  
 +
Zatem
  
 +
::<math>{\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i}</math>
  
<span id="D87" style="font-size: 110%; font-weight: bold;">Twierdzenie D87</span><br/>
+
W&nbsp;granicy, gdy <math>L \longrightarrow \infty</math>, z&nbsp;twierdzeń [[#D81|D81]] i [[#D82|D82]] otrzymujemy <math>C = A B</math>. Co należało pokazać.<br/>
Jeżeli funkcja <math>f(k)</math> nie zależy od <math>n</math> i&nbsp;dane są sumy
+
&#9633;
 +
{{\Spoiler}}
  
::<math>S(n) = \sum_{k = 0}^{n} f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 
  
::<math>T(n) = \sum_{k = 0}^{n} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 
  
to
 
  
::<math>T(n) = 4 T (n - 1) + 2 S (n - 1)</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
== Liczby Catalana ==
Z definicji sumy <math>T(n)</math> ostatni wyraz tej sumy jest równy zero, zatem dla <math>n \geqslant 1</math> mamy
 
  
::<math>T(n) = \sum_{k = 0}^{n - 1} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
<span id="D84" style="font-size: 110%; font-weight: bold;">Definicja D84</span><br/>
 +
Liczby Catalana <math>C_n</math> definiujemy wzorem
  
:::<math>\;\;\:\, = \sum_{k = 0}^{n - 1} (n - k) f (k) \cdot {\small\frac{(2 n - 2 k) (2 n - 2 k - 1)}{(n - k)^2}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}}</math>
+
::<math>C_n = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}}</math>
  
:::<math>\;\;\:\, = \sum_{k = 0}^{n - 1} 2 (2 n - 2 k - 1) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}}</math>
+
gdzie <math>n \geqslant 0</math>.
  
:::<math>\;\;\:\, = \sum_{k = 0}^{n - 1} [4 (n - 1 - k) + 2] f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}}</math>
 
  
Czyli
 
  
::<math>T(n) = 4 T (n - 1) + 2 S (n - 1)</math>
+
<span id="D85" style="font-size: 110%; font-weight: bold;">Twierdzenie D85</span><br/>
 +
Liczby Catalana <math>C_n</math> mają następujące własności
  
Co kończy dowód.<br/>
+
:*&nbsp;&nbsp;&nbsp;<math>C_n</math> są liczbami całkowitymi dodatnimi
&#9633;
 
{{\Spoiler}}
 
  
 +
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>C_n = {\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{n}} {\small\binom{2 n}{n - 1}}</math>
 +
</div>
  
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>C_{n + 1} = {\small\frac{2 (2 n + 1)}{n + 2}} C_n</math>
 +
</div>
  
<span id="D88" style="font-size: 110%; font-weight: bold;">Twierdzenie D88</span><br/>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
+
:*&nbsp;&nbsp;&nbsp;<math>C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k}</math>
 
+
</div>
::<math>\sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n</math>
 
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Niech
 
  
::<math>S(n) = \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
'''Punkt 1.'''
  
::<math>T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
Twierdzenie jest prawdziwe dla początkowych wartości <math>n \geqslant 0</math>, bo <math>(C_n) = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, \ldots)</math>. W&nbsp;ogólności wystarczy zauważyć, że dla <math>n \geqslant 0</math> mamy
  
Zauważmy, że
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>{\small\binom{2 n}{n + 1}} = {\small\frac{(2 n) !}{(n + 1) ! (n - 1) !}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} < {\small\binom{2 n}{n}}</math>
 +
</div>
  
::<math>T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>{\small\binom{2 n}{n}} - {\small\binom{2 n}{n + 1}} = {\small\binom{2 n}{n}} - {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n</math>
 +
</div>
  
:::<math>\;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right]</math>
+
Zatem <math>C_n</math> jest liczbą całkowitą większą od zera.
  
:::<math>\;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} j {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right]</math>
+
'''Punkt 2.'''
  
:::<math>\;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} k {\small\binom{2 n - 2 k}{n - k}} {\small\binom{2 k}{k}} \right]</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>{\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{(2 n + 1) !}{n! (n + 1) !}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n</math>
 +
</div>
  
:::<math>\;\;\:\, = {\small\frac{1}{2}} \sum_{k = 0}^{n} (n - k + k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>{\small\frac{1}{n}} {\small\binom{2 n}{n - 1}} = {\small\frac{1}{n}} \cdot {\small\frac{(2 n) !}{(n - 1) ! (n + 1) !}} = {\small\frac{1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n</math>
 +
</div>
  
:::<math>\;\;\:\, = {\small\frac{n}{2}} \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
'''Punkt 3.'''
  
:::<math>\;\;\:\, = {\small\frac{n S (n)}{2}}</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>{\small\frac{C_{n + 1}}{C_n}} = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) !}{(n + 1) ! (n + 1) !}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}}</math>
 +
</div>
  
Ponieważ <math>T(n) = {\small\frac{n S (n)}{2}} \;</math> i <math>\; T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D87|D87]]), to otrzymujemy
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\;\: = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1)^2}} \cdot {\small\frac{(2 n) !}{n!n!}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}} =</math>
 +
</div>
  
::<math>{\small\frac{n S (n)}{2}} = 4 \cdot {\small\frac{(n - 1) S (n - 1)}{2}} + 2 S (n - 1)</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\;\: = {\small\frac{2 (2 n + 1)}{n + 2}}</math>
 +
</div>
  
Czyli
+
'''Punkt 4.'''
 
 
::<math>n S (n) = 4 n S (n - 1) - 4 S (n - 1) + 4 S (n - 1)</math>
 
  
::<math>S(n) = 4 S (n - 1)</math>
+
Dowód tego punktu został umieszczony w&nbsp;Uzupełnieniu (zobacz [[#D110|D110]]).<br/>
 
 
Metodą indukcji matematycznej łatwo dowodzimy, że <math>S(n) = 4^n</math>. Co należało pokazać.<br/>
 
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 3195: Linia 3179:
  
  
<span id="D89" style="font-size: 110%; font-weight: bold;">Twierdzenie D89</span><br/>
+
<span id="D86" style="font-size: 110%; font-weight: bold;">Zadanie D86</span><br/>
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
+
Niech <math>C_n</math> oznacza <math>n</math>-tą liczbę Catalana i&nbsp;niech <math>\sum_{n = 0}^{\infty} x_n</math> oznacza szereg, który otrzymujemy, mnożąc szereg <math>\sum_{n = 0}^{\infty} a_n</math> przez siebie według reguły Cauchy'ego. Pokazać, że
  
::<math>\sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_n = C_n</math>, &nbsp;to&nbsp; <math>x_n = C_{n + 1}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
:*&nbsp;&nbsp;&nbsp;jeżeli <math>a_0 = \alpha \;</math> i <math>\; a_n = r^{n - 1} C_{n - 1}</math> dla <math>n \geqslant 1</math>, &nbsp;to&nbsp; <math>x_0 = \alpha^2</math>, <math>\; x_1 = 2 \alpha C_0 \;</math> i <math>\; x_n = (1 + 2 \alpha r) r^{n - 2} C_{n - 1}</math> dla <math>n \geqslant 2</math>
Oznaczmy
 
  
::<math>S(n) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
Dla jakich wartości <math>\alpha, r</math> szereg <math>\sum_{n = 0}^{\infty} x_n</math> jest zbieżny?
  
::<math>T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
  
Zauważmy, że
+
'''Punkt 2.'''
  
::<math>T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
Dla <math>n = 0</math> mamy <math>x_0 = a_0 a_0 = \alpha^2</math>
  
:::<math>\;\;\:\, = \sum_{k = 0}^{n} {\small\frac{n + 1 - (k + 1)}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
Dla <math>n = 1</math> mamy <math>x_1 = a_0 a_1 + a_1 a_0 = 2 a_0 a_1 = 2 \alpha C_0</math>
  
:::<math>\;\;\:\, = (n + 1) \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} - \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
Dla <math>n \geqslant 2</math> jest
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::<math>x_n = \sum_{k = 0}^{n} a_k a_{n - k}</math>
:::<math>\;\;\:\, = (n + 1) S (n) - 4^n</math>
+
 
</div>
+
::<math>\;\;\;\;\: = a_0 a_n + a_n a_0 + \sum_{k = 1}^{n - 1} a_k a_{n - k}</math>
 +
 
 +
::<math>\;\;\;\;\: = 2 a_0 a_n + \sum_{k = 1}^{n - 1} r^{k - 1} C_{k - 1} \cdot r^{n - k - 1} C_{n - k - 1}</math>
 +
 
 +
::<math>\;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{k = 1}^{n - 1} C_{k - 1} C_{n - k - 1}</math>
  
Ponieważ <math>T(n) = (n + 1) S (n) - 4^n \;</math> i <math>\; T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D87|D87]]), to otrzymujemy
+
::<math>\;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{j = 0}^{n - 2} C_j C_{n - 2 - j}</math>
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
::<math>(n + 1) S (n) - 4^n = 4 \cdot (n S (n - 1) - 4^{n - 1}) + 2 S (n - 1)</math>
+
::<math>\;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} C_{n - 1}</math>
 
</div>
 
</div>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
<div style="margin-top: 2em; margin-bottom: 1em;">
::<math>(n + 1) S (n) - 4^n = 4 n S (n - 1) - 4^n + 2 S (n - 1)</math>
+
::<math>\;\;\;\;\: = r^{n - 2} C_{n - 1} (1 + 2 \alpha r)</math>
 
</div>
 
</div>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Zauważmy, że
::<math>S(n) = {\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1)</math>
 
</div>
 
  
Metodą indukcji matematycznej dowodzimy, że <math>S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>. Dla <math>n = 0</math> mamy <math>S(0) = 1 \;</math> i <math>\; {\small\frac{1}{2}} {\small\binom{2}{1}} = 1</math>. Zatem wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że wzór jest prawdziwy dla <math>n - 1</math>, otrzymujemy dla <math>n</math>
+
::<math>{\small\frac{C_n}{C_{n - 1}}} = \frac{{\normalsize\frac{1}{n + 1}} {\normalsize\binom{2 n}{n}}}{{\normalsize\frac{1}{n}} {\normalsize\binom{2 n - 2}{n - 1}}}
 +
= {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1) (2 n - 2) !}{n^2 [(n - 1) !]^2}} \cdot {\small\frac{[(n - 1) !]^2}{(2 n - 2) !}}
 +
= {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1)}{n^2}}
 +
= {\small\frac{2 (2 n - 1)}{n + 1}}</math>
  
::<math>{\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\binom{2 n}{n}}</math>
+
Z kryterium d'Alemberta dla szeregu <math>\sum_{n = 0}^{\infty} a_n</math> i&nbsp;szeregu <math>\sum_{n = 0}^{\infty} x_n</math> otrzymujemy
  
:::::::<math>\;\;\; = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(n + 1)^2}{(2 n + 1) (2 n + 2)}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{(n + 1)^2}} \cdot {\small\binom{2 n}{n}}</math>
+
::<math>\left| {\small\frac{a_{n + 1}}{a_n}} \right| = \left| {\small\frac{r^n C_n}{r^{n - 1} C_{n - 1}}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} = | r | \cdot {\small\frac{2 (2 n - 1)}{n + 1}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r |</math>
  
:::::::<math>\;\;\; = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
 
  
:::::::<math>\;\;\; = S (n)</math>
+
::<math>\left| {\small\frac{x_{n + 1}}{x_n}} \right| = \left| {\small\frac{r^{n - 1} C_n (1 + 2 \alpha r)}{r^{n - 2} C_{n - 1} (1 + 2 \alpha r)}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r |</math>
  
Co kończy dowód.<br/>
+
Zatem szeregi te są bezwzględnie zbieżne w&nbsp;przypadku, gdy <math>| r | < {\small\frac{1}{4}}</math>. W&nbsp;szczególności dla <math>\alpha = - {\small\frac{1}{2 r}}</math> szereg <math>\sum_{n = 0}^{\infty} x_n</math> zawsze będzie zbieżny, bo od trzeciego wyrazu będzie się składał z&nbsp;samych zer. Wiemy, że w&nbsp;przypadku, gdy <math>r = {\small\frac{1}{4}}</math> szereg <math>\sum_{n = 0}^{\infty} {\small\frac{C_n}{4^n}} = 2</math> jest zbieżny.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 3249: Linia 3236:
  
  
<span id="D90" style="font-size: 110%; font-weight: bold;">Twierdzenie D90</span><br/>
 
Jeżeli <math>C_n</math> są liczbami Catalana, to
 
  
::<math>C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k}</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
== Sumy współczynników dwumianowych ==
Zauważmy, że
 
  
::<math>\sum_{k = 0}^{n} C_k C_{n - k} = \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
<span id="D87" style="font-size: 110%; font-weight: bold;">Twierdzenie D87</span><br/>
 +
Dla <math>n \geqslant 0 \;</math> i <math>\; r \in \mathbb{R}</math> prawdziwe są wzory
  
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
::<math>\sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n</math>
  
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} {\small\frac{1}{n - k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right]</math>
+
::<math>\sum_{k = 0}^{n} {\small\frac{r^{k + 1}}{k + 1}} {\small\binom{n}{k}} = {\small\frac{(r + 1)^{n + 1} - 1}{n + 1}}</math>
  
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right]</math>
+
::<math>\sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1}</math>
 +
 
 +
::<math>\sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2}</math>
  
:::::<math>\;\;\:\, = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
  
:::::<math>\;\;\:\, = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
+
'''Punkt 1.'''
  
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} {\small\binom{2 n + 2}{n + 1}}</math>
+
Ze wzoru dwumianowego natychmiast otrzymujemy
  
:::::<math>\;\;\:\, = C_{n + 1}</math>
+
::<math>(1 + r)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} r^k</math>
  
Co należało pokazać.<br/>
+
'''Punkt 2.'''
&#9633;
 
{{\Spoiler}}
 
  
 +
Całkując obie strony wzoru dwumianowego
  
 +
::<math>(1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k</math>
  
 +
otrzymujemy
  
 +
::<math>\int^r_0 (1 + x)^n d x = \sum_{k = 0}^{n} {\small\binom{n}{k}} \int^r_0 x^k d x</math>
  
 +
::<math>{\small\frac{(r + 1)^{n + 1} - 1}{n + 1}} = \sum_{k = 0}^{n} {\small\frac{r^{k + 1}}{k + 1}} {\small\binom{n}{k}}</math>
  
=== <span style="border-bottom:2px solid #000;">Funkcja gamma</span> ===
+
'''Punkt 3.'''
  
&nbsp;
+
Obliczając pochodną każdej ze stron wzoru dwumianowego
  
<span id="D91" style="font-size: 110%; font-weight: bold;">Definicja D91</span><br/>
+
::<math>(1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k</math>
Funkcja <math>\Gamma (z)</math><ref name="gamma1"/> jest zdefiniowana równoważnymi wzorami
 
  
::<math>\Gamma (z) = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t \qquad \operatorname{Re}(z) > 0 \qquad \qquad</math> (definicja całkowa Eulera)
+
otrzymujemy
  
::<math>\Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad</math> (definicja Gaussa)
+
::<math>n (1 + x)^{n - 1} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k x^{k - 1}</math>
  
::<math>\Gamma (z) = {\small\frac{1}{z}} \prod_{n = 1}^{\infty} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad</math> (definicja iloczynowa Eulera)
+
Kładąc <math>x = 1</math>, dostajemy dowodzony wzór.
  
::<math>\Gamma (z) = {\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad</math> (definicja iloczynowa Weierstrassa)
+
'''Punkt 4.'''
  
Trzy ostatnie wzory możemy wykorzystać do zdefiniowania funkcji <math>{\small\frac{1}{\Gamma (z)}}</math>, która jest określona dla dowolnych <math>z \in \mathbb{C}</math>
+
Obliczając drugą pochodną każdej ze stron wzoru dwumianowego
  
::<math>{\small\frac{1}{\Gamma (z)}} = \lim_{n \rightarrow \infty} {\small\frac{z (z + 1) \cdot \ldots \cdot (z + n)}{n^z n!}}</math>
+
::<math>(1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k</math>
  
::<math>{\small\frac{1}{\Gamma (z)}} = z \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right)</math>
+
otrzymujemy
  
::<math>{\small\frac{1}{\Gamma (z)}} = z e^{\gamma z} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right) e^{- \tfrac{z}{n}}</math>
+
::<math>n(n - 1) (1 + x)^{n - 2} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k (k - 1) x^{k - 1}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż wykres|Hide=Ukryj wykres}}
+
Kładąc <math>x = 1</math>, dostajemy
  
Poniżej przedstawiamy wykresy funkcji <math>\Gamma (x)</math> (kolor niebieski) i <math>\, {\small\frac{1}{\Gamma (x)}}</math> (kolor czerwony).
+
::<math>n(n - 1) 2^{n - 2} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k (k - 1) = \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} - \sum_{k = 0}^{n} k {\small\binom{n}{k}} = \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} - n 2^{n - 1}</math>
  
::[[File: gamma1.png|700px|none]]
+
Skąd natychmiast wynika dowodzony wzór.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż równoważność definicji|Hide=Ukryj równoważność definicji}}
 
  
'''Równoważność definicji Gaussa i&nbsp;definicji całkowej Eulera'''
 
  
Niech <math>n \in \mathbb{Z}_+ \,</math> i <math>\; \operatorname{Re}(z) > 0</math>. Rozważmy całki
 
  
::<math>I_k = \int^n_0 t^{z - 1 + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k} d t</math>
+
<span id="D88" style="font-size: 110%; font-weight: bold;">Twierdzenie D88</span><br/>
 +
Dla <math>n, m \geqslant 0</math> prawdziwy jest wzór
  
gdzie <math>k = 0, \ldots, n</math>. Całkując przez części
+
::<math>\sum_{k = 0}^{m} {\small\binom{n + k}{n}} = {\small\binom{n + m + 1}{n}}</math>
  
::<math>d u = t^{z - 1 + k} \, d t \qquad \qquad \qquad v = \left( 1 - {\small\frac{t}{n}} \right)^{n - k}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ze wzoru Pascala
  
::<math>u = {\small\frac{t^{z + k}}{z + k}} \qquad \qquad \qquad \quad \; d v = - {\small\frac{n - k}{n}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t</math>
+
::<math>{\small\binom{a}{k}} = {\small\binom{a - 1}{k}} + {\small\binom{a - 1}{k - 1}}</math>
  
 
otrzymujemy
 
otrzymujemy
  
::<math>I_k = {\small\frac{t^{z + k}}{z + k}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k} \, \biggr\rvert_{0}^{n} \; + \; {\small\frac{n - k}{n (z + k)}} \int^n_0 t^{z + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t</math>
+
::<math>{\small\binom{a - 1}{k}} = {\small\binom{a}{k}} - {\small\binom{a - 1}{k - 1}}</math>
  
::<math>\;\;\;\,\, = {\small\frac{n - k}{n (z + k)}} \cdot I_{k + 1}</math>
+
Kładąc <math>a = n + k + 1</math>, mamy
 +
 
 +
::<math>{\small\binom{n + k}{k}} = {\small\binom{n + k + 1}{k}} - {\small\binom{n + k}{k - 1}}</math>
 +
 
 +
Czyli
 +
 
 +
::<math>{\small\binom{n + k}{n}} = {\small\binom{n + k + 1}{n + 1}} - {\small\binom{n + k}{n + 1}}</math>
  
Zatem całkując <math>n</math>-krotnie przez części, mamy
+
Wykorzystując powyższy wzór, łatwo pokazujemy, że (zobacz [[#D13|D13]])
  
::<math>I_0 = {\small\frac{n}{n z}} \cdot I_1</math>
+
::<math>\sum_{k = 0}^{m} {\small\binom{n + k}{n}} = 1 + \sum_{k = 1}^{m} {\small\binom{n + k}{n}}</math>
  
::<math>\;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot I_2</math>
+
:::::<math>\;\;\,\, = 1 + \sum_{k = 1}^{m} \left[ {\small\binom{n + k + 1}{n + 1}} - {\small\binom{n + k}{n + 1}} \right]</math>
  
::<math>\;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot I_3</math>
+
:::::<math>\;\;\,\, = 1 - \sum_{k = 1}^{m} \left[ {\small\binom{n + k}{n + 1}} - {\small\binom{n + k + 1}{n + 1}} \right]</math>
  
::<math>\;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot I_n</math>
+
:::::<math>\;\;\,\, = 1 - \left[ 1 - {\small\binom{n + m + 1}{n + 1}} \right]</math>
  
Ponieważ
+
:::::<math>\;\;\,\, = {\small\binom{n + m + 1}{n}}</math>
  
::<math>I_n = \int^n_0 t^{z + n - 1} \, d t = {\small\frac{n^{z + n}}{z + n}}</math>
+
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
to
 
  
::<math>I_0 = \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot {\small\frac{n^{z + n}}{z + n}}</math>
 
  
:::::::::<math>\;\;\;\; = {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
+
=== <span style="border-bottom:2px solid #000;">Suma nieoznaczona</span> ===
  
Przechodząc z <math>n</math> do nieskończoności, dostajemy
+
<span id="D89" style="font-size: 110%; font-weight: bold;">Uwaga D89</span><br/>
 +
Sumą nieoznaczoną<ref name="IndefiniteSum1"/> (lub antyróżnicą) funkcji <math>f(k)</math>, będziemy nazywali dowolną funkcję <math>F(k)</math> taką, że
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
::<math>\lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} = \lim_{n \rightarrow \infty} \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t</math>
+
::<math>F(k + 1) - F (k) = f (k)</math>
 
</div>
 
</div>
  
Co należało pokazać.
+
Łatwo zauważamy, że istnieje cała rodzina funkcji <math>F(k)</math>, bo jeżeli <math>F (k)</math> jest sumą nieoznaczoną, to <math>F (k) + C</math>, gdzie <math>C</math> jest stałą, również jest sumą nieoznaczoną. W&nbsp;szczególności
  
 +
::<math>\sum_{k = a}^{b} f (k) = \sum_{k = a}^{b} (F (k + 1) - F (k))</math>
  
'''Równoważność definicji iloczynowej Eulera i&nbsp;definicji Gaussa'''
+
::::<math>\;\;\;\: = - \sum_{k = a}^{b} (F (k) - F (k + 1))</math>
  
::<math>{\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \left( 1 + {\small\frac{1}{k}} \right)^z \left( 1 + {\small\frac{z}{k}} \right)^{- 1}</math>
+
<div style="margin-top: 1.1em; margin-bottom: 1em;">
 +
::::<math>\;\;\;\: = - ( F (a) - F (b + 1) )</math>
 +
</div>
  
::::::::::<math>\:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{\left( 1 + {\small\frac{1}{k}} \right)^z}{1 + {\small\frac{z}{k}}}</math>
+
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
::::<math>\;\;\;\: = F (b + 1) - F (a)</math>
 +
</div>
  
::::::::::<math>\:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} {\small\frac{k (k + 1)^z}{(k + z) k^z}}</math>
+
Co przez analogię do całki nieoznaczonej możemy zapisać jako
  
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( {\small\frac{(n + 1) !}{n!}} \right)^z</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\sum_{k = a}^{b} f (k) = F (k) \biggr\rvert_{a}^{b + 1} \qquad \qquad \qquad ( 1 )</math>
 +
</div>
  
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{(n + 1)^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 
  
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( 1 + {\small\frac{1}{n}} \right)^z</math>
+
Należy podkreślić różnicę między sumą oznaczoną <math>S(n)</math> a&nbsp;sumą nieoznaczoną <math>F(k)</math>. Niech <math>f(k) = k^2</math>. Oczywiście
  
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
+
::<math>S(n) = \sum_{k = 0}^{n} k^2 = {\small\frac{1}{6}} n (n + 1) (2 n + 1)</math>
  
Co należało pokazać.
+
::<math>F(k) = {\small\frac{1}{6}} (k - 1) k (2 k - 1)</math>
  
 +
Ponieważ dla sumy <math>S(n)</math> prawdziwy jest związek <math>S(n + 1) - S (n) = f (n + 1)</math>, to otrzymujemy <math>F(k) = S (k - 1)</math>. Weźmy kolejny przykład, niech <math>f(k) = r^k</math>, gdzie <math>r</math> jest stałą. Mamy
  
'''Równoważność definicji iloczynowej Weierstrassa i&nbsp;definicji Gaussa'''
+
::<math>S(n) = \sum_{k = 0}^{n} r^k = {\small\frac{r^{n + 1} - 1}{r - 1}}</math>
  
Stała <math>\gamma</math> jest równa
+
ale
  
::<math>\gamma = \lim_{n \rightarrow \infty} \left( - \log n + \sum_{k = 1}^{n} {\small\frac{1}{k}} \right)</math>
+
::<math>F(k) = {\small\frac{r^k}{r - 1}}</math>
  
Zatem
+
i nie jest prawdą, że <math>F(k) = S (k - 1)</math>, bo pominięty został wyraz <math>{\small\frac{- 1}{r - 1}}</math>, który jest stałą, ale jest to zrozumiałe.
  
::<math>{\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} = z^{- 1} \cdot e^{- \gamma z} \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{e^{\tfrac{z}{k}}}{1 + \tfrac{z}{k}} \right)</math>
+
Niech teraz <math>f(n, k) = {\small\binom{n + k}{n}}</math>. Wiemy, że (zobacz [[#D88|D88]])
  
:::::::::<math>\, = z^{- 1} \cdot \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{k e^{\tfrac{z}{k}}}{z + k} \right)</math>
+
::<math>S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}}</math>
 +
 
 +
::<math>F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}}</math>
 +
 
 +
Tym razem otrzymujemy zupełnie inne wyniki: suma <math>S(n)</math> nie zależy od dwóch zmiennych, bo jest to niemożliwe, a&nbsp;suma nieoznaczona nadal zależy od <math>k</math>, bo dla <math>F(n, k)</math> musi być prawdziwy wzór <math>(1)</math>. Łatwo widzimy, że
 +
 
 +
::<math>S (n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1}</math>
  
:::::::::<math>\, = \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot e^{\left( 1 + \tfrac{1}{2} + \ldots + \tfrac{1}{n} \right) z} \right)</math>
 
  
:::::::::<math>\, = \lim_{n \rightarrow \infty} e^{z \log n} \cdot {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 
  
:::::::::<math>\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
+
<span id="D90" style="font-size: 110%; font-weight: bold;">Uwaga D90</span><br/>
 +
Powiedzmy, że dysponujemy wzorem <math>S(b) = \sum_{k = a}^{b} f (k)</math> i&nbsp;chcemy udowodnić jego poprawność. W&nbsp;prostych przypadkach możemy wykorzystać indukcję matematyczną: wystarczy pokazać, że
  
Co należało pokazać.<br/>
+
::<math>S(k + 1) = S (k) + f (k + 1)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
Jeżeli już udało nam się pokazać związek <math>f(k) = S (k) - S (k - 1)</math>, to równie dobrze możemy zamienić sumę na sumę teleskopową (zobacz [[#D13|D13]]), aby otrzymać, że
  
 +
::<math>\sum_{k = a + 1}^{b} f (k) = \sum_{k = a + 1}^{b} ( S (k) - S (k - 1) )</math>
  
<span id="D92" style="font-size: 110%; font-weight: bold;">Twierdzenie D92</span><br/>
+
:::::<math>\;\, = - \sum_{k = a + 1}^{b} ( S (k - 1) - S (k) )</math>
Dla funkcji <math>\Gamma (z)</math> prawdziwe są następujące wzory
 
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (1) = 1</math>
+
:::::<math>\;\, = - ( S (a) - S (b) )</math>
 
</div>
 
</div>
  
<div style="margin-top: 1.5em; margin-bottom: 1em;">
+
<div style="margin-top: 2em; margin-bottom: 1em;">
:*&nbsp;&nbsp;&nbsp;<math>z \Gamma (z) = \Gamma (z + 1) \qquad z \notin \mathbb{Z}_- \cup \{ 0 \}</math>
+
:::::<math>\;\, = S (b) - S (a)</math>
 
</div>
 
</div>
  
<div style="margin-top: 1.5em; margin-bottom: 1em;">
+
Czyli
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}} \qquad z \notin \mathbb{Z}</math>
 
</div>
 
  
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) = 2^{1 - 2 z} \sqrt{\pi} \cdot \Gamma (2 z) \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad </math> (wzór Legendre'a o&nbsp;podwajaniu)
+
::<math>S(b) = \sum_{k = a + 1}^{b} f (k) + S (a) = \sum_{k = a}^{b} f (k)</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
bo <math>S(a) = f (a)</math>.
  
'''Punkt 1.'''
 
  
::<math>\Gamma (1) = \int_{0}^{\infty} t^{1 - 1} e^{- t} d t = \int_{0}^{\infty} e^{- t} d t = - e^{- t} \biggr\rvert_{0}^{\infty} = 0 - (- 1) = 1</math>
+
W przypadkach bardziej skomplikowanych nie możemy tak postąpić. W&nbsp;poprzedniej uwadze rozważaliśmy sumę
  
'''Punkt 2.'''
+
::<math>S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}}</math>
  
Z definicji Gaussa otrzymujemy
+
ale
  
::<math>\Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
+
::<math>S(n) - S (n - 1) = {\small\frac{3 n + 1}{2 (n + 1)}} {\small\binom{2 n}{n}}</math>
  
::<math>\Gamma (z + 1) = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) (z + 2) \cdot \ldots \cdot (z + n + 1)}}</math>
+
I nie da się pokazać związku <math>S(k) - S (k - 1) = f (n, k)</math>, bo różnica <math>S(k) - S (k - 1)</math> nie zależy od <math>n</math>.
  
Zatem
+
Tutaj z&nbsp;pomocą przychodzi nam suma nieoznaczona. W&nbsp;programie Maxima możemy ją policzyć, wpisując polecenia
  
::<math>{\small\frac{\Gamma (z + 1)}{\Gamma (z)}} = \lim_{n \rightarrow \infty} \left[ {\small\frac{n^{z + 1} n!}{(z + 1) (z + 2) \cdot \ldots \cdot (z + n + 1)}} \cdot {\small\frac{z (z + 1) \cdot \ldots \cdot (z + n)}{n^z n!}} \right]</math>
+
<span style="font-size: 90%; color:black;">'''load''' ("zeilberger");
 +
'''AntiDifference'''('''binomial'''(n+k, n), k);</span>
  
::::<math>\;\;\,\, = \lim_{n \rightarrow \infty} {\small\frac{z n}{z + n + 1}}</math>
+
Otrzymujemy
  
::::<math>\;\;\,\, = \lim_{n \rightarrow \infty} \frac{z}{1 + \tfrac{z + 1}{n}}</math>
+
::<math>F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}}</math>
  
::::<math>\;\;\,\, = z</math>
+
Oczywiście
  
'''Punkt 3.'''
+
::<math>F(n, k + 1) - F (n, k) = {\small\binom{n + k}{n}}</math>
  
Z definicji iloczynowej Eulera mamy
+
i
  
::<math>\Gamma (z) = {\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1}</math>
+
::<math>S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} = {\small\binom{2 n + 1}{n}}</math>
  
Zatem
+
Podsumujmy. Jakkolwiek znalezienie ogólnego wzoru na sumę <math>S (n) = \sum_{k = 0}^{n} f (k)</math> może być bardzo trudne, to udowodnienie poprawności tego wzoru może być znacznie łatwiejsze (metodą indukcji matematycznej lub obliczając sumę teleskopową). Podobnie jest w&nbsp;bardziej skomplikowanym przypadku, gdy szukamy ogólnego wzoru na sumę <math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>. Tutaj wymienionych przed chwilą metod zastosować nie można, a&nbsp;znalezienie wzoru na sumę nieoznaczoną <math>F(n, k)</math> może być jeszcze trudniejsze, ale gdy już taki wzór mamy, to sprawdzenie jego poprawności, czyli związku <math>F(n, k + 1) - F (n, k) = f (n, k)</math>, może być bardzo łatwe, a&nbsp;wtedy otrzymujemy natychmiast
  
::<math>{\small\frac{1}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{1}{- z \Gamma (z) \Gamma (- z)}}</math>
+
::<math>S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1}</math>
  
::::::<math>\; = {\small\frac{z \cdot (- z)}{- z}} \cdot \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right) \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 - {\small\frac{z}{n}} \right)</math>
 
  
::::::<math>\; = z \cdot \prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right)</math>
 
  
::::::<math>\; = {\small\frac{\sin (\pi z)}{\pi}}</math>
+
<span id="D91" style="font-size: 110%; font-weight: bold;">Zadanie D91</span><br/>
 +
Korzystając z&nbsp;programu Maxima znaleźć sumę nieoznaczoną <math>F(n, k)</math> dla funkcji
  
gdzie wykorzystaliśmy wzór Eulera
+
::<math>f(n, k) = {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
  
::<math>\prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right) = {\small\frac{\sin (\pi z)}{\pi z}}</math>
+
i pokazać, że prawdziwy jest wzór <math>C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k}</math>, gdzie <math>C_n</math> są liczbami Catalana.
  
Dowód wzoru Eulera jest trudny. Elegancki dowód, ale tylko dla liczb rzeczywistych, Czytelnik znajdzie na stronie [https://proofwiki.org/wiki/Euler_Formula_for_Sine_Function/Real_Numbers#Proof_1 ProofWiki].
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Wpisując w&nbsp;programie Maxima polecenia
  
 +
<span style="font-size: 90%; color:black;">'''load''' ("zeilberger");
 +
'''AntiDifference'''( 1/(k+1) * 1/(n-k+1) * '''binomial'''(2*k, k) * '''binomial'''(2*n-2*k, n-k), k);</span>
  
'''Punkt 4.'''
+
otrzymujemy
  
Z definicji Gaussa funkcji gamma
+
::<math>F(n, k) = - {\small\frac{(n - 2 k + 1) (2 n - 2 k + 1)}{(n + 1) (n + 2) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 (n - k)}{n - k}}</math>
  
::<math>\Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
+
Czytelnik bez trudu pokaże, że
  
otrzymujemy
+
::<math>F(n, k + 1) = - {\small\frac{(2 k + 1) (n - 2 k - 1)}{(n + 1) (n + 2) (k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
  
::<math>\Gamma \left( z + {\small\frac{1}{2}} \right) = \lim_{n \rightarrow \infty} \frac{n^{z + 1 / 2} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)}</math>
+
oraz łatwo sprawdzi związek <math>F(n, k + 1) - F (n, k) = f (n, k)</math> i&nbsp;wyliczy sumę oznaczoną.
  
oraz
+
Chcemy zwrócić uwagę na występującą tutaj trudność. Oczywiście
 +
 
 +
::<math>S (n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1}</math>
  
<div style="margin-top: 0em; margin-bottom: 1em;">
+
ale funkcja <math>F(n, k)</math> nie jest określona dla <math>k = n + 1</math>. Żeby ominąć ten problem, możemy przekształcić funkcję <math>F(n, k)</math> tak, aby możliwe było obliczenie jej wartości dla <math>k = n + 1</math>
::<math>\Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{n^{2 z} n!}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + n)}}</math>
 
</div>
 
  
Jeżeli w&nbsp;powyższym wzorze położymy <math>2 n</math> zamiast <math>n</math>, to dostaniemy
+
::<math>F(n, k) = - {\small\frac{n - 2 k + 1}{2 (n + 1) (n + 2)}} {\small\binom{2 k}{k}} {\small\binom{2 (n - k + 1)}{n - k + 1}}</math>
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
lub zapisać sumę w&nbsp;postaci
::<math>\Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}}</math>
 
</div>
 
  
Zauważmy teraz, że
+
::<math>\sum_{k = 0}^{n} f (n, k) = \sum_{k = 0}^{n - 1} f (n, k) + f (n, n) = F (n, k) \biggr\rvert_{k = 0}^{k = n} + f (n, n)</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
  
::<math>2^{2 n + 2} [z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right] = [2 z (2 z + 2) \cdot \ldots \cdot (2 z + 2 n)] \cdot [(2 z + 1) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n + 1)]</math>
 
  
::::::::::::::::::::::<math>\;\;\;\:\, = 2 z (2 z + 1) (2 z + 2) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n) (2 z + 2 n + 1)</math>
 
  
Czyli
+
=== <span style="border-bottom:2px solid #000;">Znajdowanie równania rekurencyjnego dla sumy <math>\boldsymbol{S(n)}</math></span> ===
  
::<math>\frac{2 z (2 z + 1) (2 z + 2) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n)}{[z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right]} = {\small\frac{2^{2 n + 2}}{2 z + 2 n + 1}}</math>
+
<span id="D92" style="font-size: 110%; font-weight: bold;">Uwaga D92</span><br/>
 +
Rozważmy sumę
  
Zatem
+
::<math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>
  
::<math>\frac{2^{2 z} \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right)}{\Gamma (2 z)} = \lim_{n \rightarrow \infty} \left[ 2^{2 z} \cdot {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \frac{n^{z + (1 / 2)} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)} \cdot {\small\frac{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}{(2 n)^{2 z} (2 n) !}} \right]</math>
+
W twierdzeniach [[#D108|D108]] i [[#D109|D109]] wyliczyliśmy <math>S(n)</math>, znajdując najpierw równanie rekurencyjne dla sumy. Możemy przypuszczać, że równanie rekurencyjne dla sumy <math>S(n)</math> wynika z&nbsp;istnienia odpowiedniego równania rekurencyjnego dla składników sumy <math>f(n, k)</math>. Zagadnieniem tym zajmowała się siostra Mary Celine Fasenmyer, która podała algorytm postępowania<ref name="Fasenmyer1"/><ref name="Fasenmyer2"/>. Prace Zeilbergera oraz Wilfa i&nbsp;Zeilbergera uogólniły ten algorytm<ref name="Zeilberger1"/><ref name="WilfZeilberger1"/>. My przedstawimy jedynie kilka prostych przypadków, które zilustrujemy przykładami. Szersze omówienie tematu Czytelnik znajdzie w&nbsp;książce Petkovšeka, Wilfa i&nbsp;Zeilbergera<ref name="PetkovsekWilfZeilberger1"/>.
  
:::::::<math>\;\;\, = \lim_{n \rightarrow \infty} \left[ 2^{2 z} \cdot {\small\frac{n^{2 z + (1 / 2)} \cdot (n!)^2}{(2 n)^{2 z} (2 n) !}} \cdot {\small\frac{2^{2 n + 2}}{2 z + 2 n + 1}} \right]</math>
 
  
:::::::<math>\;\;\, = \lim_{n \rightarrow \infty} \left[ {\small\frac{n^{1 / 2} \cdot (n!)^2}{(2 n) !}} \cdot {\small\frac{2^{2 n + 2}}{2 n}} \cdot \frac{1}{1 + {\small\frac{2 z + 1}{2 n}}} \right]</math>
 
  
:::::::<math>\;\;\, = \lim_{n \rightarrow \infty} \left[ {\small\frac{(n!)^2}{(2 n) !}} \cdot {\small\frac{2^{2 n + 1}}{n^{1 / 2}}} \right]</math>
+
<span id="D93" style="font-size: 110%; font-weight: bold;">Twierdzenie D93</span><br/>
 +
Niech <math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>. Jeżeli składniki sumy <math>f(n, k)</math> spełniają równanie rekurencyjne
  
 +
::<math>a \cdot f (n + 1, k + 1) + b \cdot f (n + 1, k) + c \cdot f (n, k + 1) + d \cdot f (n, k) = 0</math>
  
Wyrażenie po prawej stronie nie zależy od <math>z</math> i&nbsp;musi mieć wartość skończoną, bo wartość lewej strony jest określona dla <math>z \notin \mathbb{Z}_- \cup \{ 0 \}</math>. Jeżeli po lewej stronie położymy <math>z = {\small\frac{1}{2}}</math>, to otrzymamy
+
gdzie współczynniki <math>a, b, c, d</math> są funkcjami tylko <math>n</math>, to suma <math>S (n)</math> spełnia równanie rekurencyjne
  
::<math>\frac{2 \Gamma \left( {\small\frac{1}{2}} \right) \Gamma (1)}{\Gamma (1)} = 2 \sqrt{\pi}</math>
+
::<math>(a + b) S (n + 1) + (c + d) S (n) - a \cdot f (n + 1, 0) - b \cdot f (n + 1, n + 1) - c [f (n, 0) - f (n, n + 1)] = 0</math>
  
I ostatecznie dostajemy
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Łatwo zauważamy, że
  
::<math>\Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) = 2^{1 - 2 z} \sqrt{\pi} \cdot \Gamma (2 z)</math>
+
::<math>\sum_{k = 0}^{n} f (n + 1, k + 1) = \sum_{j = 1}^{n + 1} f (n + 1, j)</math>
  
Co należało pokazać.<br/>
+
:::::::<math>\;\;\;\,\, = - f (n + 1, 0) + \sum^{n + 1}_{j = 0} f (n + 1, j)</math>
&#9633;
 
{{\Spoiler}}
 
  
 +
:::::::<math>\;\;\;\,\, = - f (n + 1, 0) + S (n + 1)</math>
  
  
Ze wzorów podanych w&nbsp;twierdzeniu [[#D92|D92]] otrzymujemy<br/>
+
::<math>\sum_{k = 0}^{n} f (n + 1, k) = - f (n + 1, n + 1) + \sum_{k = 0}^{n + 1} f (n + 1, k) =</math>
<span id="D93" style="font-size: 110%; font-weight: bold;">Twierdzenie D93</span><br/>
 
Niech <math>k \in \mathbb{Z} \;</math> i <math>\; n \in \mathbb{N}_0</math>
 
  
<div style="margin-top: 1em; margin-bottom: 1.5em;">
+
::::::<math>\;\;\; = - f (n + 1, n + 1) + S (n + 1)</math>
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( {\small\frac{1}{2}} \right) = \sqrt{\pi}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1.5em;">
 
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (n + 1) = n!</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::<math>\sum_{k = 0}^{n} f (n, k + 1) = \sum_{j = 1}^{n + 1} f (n, j)</math>
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( z + {\small\frac{1}{2}} \right) \Gamma \left( - z + {\small\frac{1}{2}} \right) = {\small\frac{\pi}{\cos (\pi z)}} \qquad z \neq k + {\small\frac{1}{2}}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::::::<math>\;\;\; = - f (n, 0) + f (n, n + 1) + \sum_{j = 0}^{n} f (n, j)</math>
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( n + {\small\frac{1}{2}} \right) \Gamma \left( - n + {\small\frac{1}{2}} \right) = \pi \cdot (- 1)^n</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
::::::<math>\;\;\; = - f (n, 0) + f (n, n + 1) + S (n)</math>
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
 
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( - n + {\small\frac{1}{2}} \right) = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}}</math>
 
</div>
 
  
<div style="margin-top: 1em; margin-bottom: 1em;">
+
Zatem sumując założone równanie rekurencyjne
:*&nbsp;&nbsp;&nbsp;<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}}</math>
 
</div>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
::<math>a \cdot f (n + 1, k + 1) + b \cdot f (n + 1, k) + c \cdot f (n, k + 1) + d \cdot f (n, k) = 0</math>
  
'''Punkt 1.'''
+
po <math>k</math> od <math>k = 0</math> do <math>k = n</math>, otrzymujemy
  
Wystarczy położyć <math>z = {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D92|D92]]
+
::<math>a \cdot [- f (n + 1, 0) + S (n + 1)] + b \cdot [- f (n + 1, n + 1) + S (n + 1)] + c \cdot [- f (n, 0) + f (n, n + 1) + S (n)] + d \cdot S (n) = 0</math>
  
'''Punkt 2.'''
+
Czyli
  
Indukcja matematyczna. Wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że jest prawdziwy dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
+
::<math>(a + b) S (n + 1) + (c + d) S (n) - a \cdot f (n + 1, 0) - b \cdot f (n + 1, n + 1) - c [f (n, 0) - f (n, n + 1)] = 0</math>
  
::<math>\Gamma (n + 2) = (n + 1) \Gamma (n + 1) = (n + 1) n! = (n + 1) !</math>
+
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
  
Zauważmy, że funkcja <math>\Gamma (z)</math> jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych / zespolonych.
 
  
'''Punkt 3.'''
 
  
Wystarczy położyć <math>z = z' + {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D92|D92]]
+
<span id="D94" style="font-size: 110%; font-weight: bold;">Uwaga D94</span><br/>
 +
Nie ma sensu stosowanie opisanej powyżej metody do prostych sum postaci <math>\sum_{k = 0}^{n} f (k)</math>, bo równanie rekurencyjne otrzymujemy w&nbsp;takim przypadku natychmiast: <math>S(n + 1) - S (n) = f (n + 1)</math>.
  
'''Punkt 4.'''
 
  
Wystarczy położyć <math>z = n</math> we wzorze 3. tego twierdzenia
 
  
'''Punkt 5.'''
+
<span id="D95" style="font-size: 110%; font-weight: bold;">Zadanie D95</span><br/>
 +
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D88|D88]])
  
Indukcja matematyczna. Wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że jest prawdziwy dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
+
::<math>\sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}}</math>
  
::<math>\Gamma \left( n + 1 + {\small\frac{1}{2}} \right) = \left( n + {\small\frac{1}{2}} \right) \Gamma \left( n + {\small\frac{1}{2}} \right)</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
W tym przypadku nie otrzymamy równania rekurencyjnego, ale od razu wzór ogólny na sumę <math>S(n)</math>.
  
::::::<math>\;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}}</math>
+
Oczywiście <math>f(n, k) = {\small\binom{n + k}{n}}</math>. Po podstawieniu do równania (zobacz [[#D93|D93]])
  
::::::<math>\;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} \cdot 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}}</math>
+
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
  
::::::<math>\;\;\:\, = 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}}</math>
+
i zredukowaniu silni, otrzymujemy
  
bo
+
::<math>a \cdot {\small\frac{(n + k + 1) (n + k + 2)}{(k + 1) (n + 1)}} + b \cdot {\small\frac{n + k + 1}{n + 1}} + c \cdot {\small\frac{n + k + 1}{k + 1}} + d = 0</math>
  
::<math>\left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} = 1</math>
+
Sprowadzając do wspólnego mianownika, mamy
  
'''Punkt 6.'''
+
::<math>(a + b) k^2 + ((2 a + b + c + d) n + 3 a + 2 b + c + d) k + (a + c) n^2 + (3 a + b + 2 c + d) n + 2 a + b + c + d = 0</math>
  
Ze wzoru 3. i 4. tego twierdzenia dostajemy
+
Ponieważ powyższe równanie musi być prawdziwe dla każdego <math>k</math>, to współczynniki przy potęgach <math>k</math> muszą być równe zero. Zatem dostajemy układ równań
  
::<math>\Gamma \left( - n + {\small\frac{1}{2}} \right) = \frac{\pi \cdot (- 1)^n}{\Gamma \left( n + {\small\frac{1}{2}} \right)} = \frac{\pi \cdot (- 1)^n \cdot n!}{2^{- 2 n} \sqrt{\pi} \cdot (2 n) !} = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}}</math>
+
::<math>
 +
\begin{cases}
 +
  a + b = 0 \\
 +
  (2 a + b + c + d) n + 3 a + 2 b + c + d = 0 \\
 +
  (a + c) n^2 + (3 a + b + 2 c + d) n + 2 a + b + c + d = 0 \\
 +
\end{cases}
 +
</math>
  
'''Punkt 7.'''
 
  
Ze wzoru Legendre'a o&nbsp;podwajaniu otrzymujemy
+
Łatwo znajdujemy rozwiązania: <math>b = - a</math>, <math>c = - a</math>, <math>d = 0</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D93|D93]])
  
::<math>{\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( z + {\small\frac{1}{2}} \right)</math>
+
::<math>- a S (n) = a - a {\small\binom{2 n + 2}{n + 1}} - a \left( 1 - {\small\binom{2 n + 1}{n}} \right)</math>
  
gdzie <math>z \notin \mathbb{Z}_- \cup \{ 0 \}</math>
+
::::<math>\;\;\: = - a \left[ {\small\binom{2 n + 2}{n + 1}} - {\small\binom{2 n + 1}{n}} \right]</math>
  
Dla <math>z = - n</math> po lewej stronie mamy symbol nieoznaczony <math>{\small\frac{\infty}{\infty}}</math>, ale w&nbsp;punktach <math>z = - n</math> istnieje granica funkcji <math>{\small\frac{\Gamma (2 z)}{\Gamma (z)}}</math>
+
::::<math>\;\;\: = - a {\small\binom{2 n + 1}{n}}</math>
  
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( - n + {\small\frac{1}{2}} \right) = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}}</math>
+
I otrzymaliśmy dowodzony wzór.
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż wykres|Hide=Ukryj wykres}}
 
  
Poniżej przedstawiamy wykres funkcji <math>{\small\frac{\Gamma (2 x)}{\Gamma (x)}} \cdot 10^{| x |}</math>. Uwaga: wykres funkcji <math>{\small\frac{\Gamma (2 x)}{\Gamma (x)}}</math> został celowo zniekształcony przez dodanie czynnika <math>10^{| x |}</math>, aby dało się zauważyć, że wartości granic <math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x)}{\Gamma (x)}}</math> są różne od zera dla <math>n \in \mathbb{N}_0</math>.
+
Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.<!-- aby uniknąć formatowania zmiennych F1, S1 wstawiamy znaki \\ -->
  
::[[File: gamma2.png|700px|none]]
+
<span style="font-size: 90%; color:black;">sum1() :=
&#9633;
+
(
{{\Spoiler}}<br/>
+
f(n, k):= '''binomial'''(n+k, n),  /* składnik sumy */
 +
'''print'''("f(n, k) = ", f(n,k) ),
 +
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,  /* równanie rekurencyjne dla składników sumy f(n, k) */<!--\\-->
 +
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),  /* równanie rekurencyjne dla sumy S(n) */<!--\\-->
 +
/*  przekształcamy F1, S1  */<!--\\-->
 +
F2: '''minfactorial'''( '''makefact'''(F1) ),  /* zamień na silnie i uprość silnie */<!--\\-->
 +
'''print'''("równanie: ", F2),<!--\\-->
 +
F3: '''num'''( '''factor'''(F2) ),  /* faktoryzuj i weź licznik */<!--\\-->
 +
'''print'''("licznik = ", '''rat'''(F3, k)),<!--\\-->
 +
deg: '''hipow'''(F3, k),<!--\\-->
 +
'''print'''("stopień = ", deg),
 +
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */<!--\\-->
 +
LE:  ['''subst'''(0, k, F3) = 0],<!--\\-->
 +
'''for''' i: 1 '''thru''' deg '''do''' '''push'''('''coeff'''(F3, k^i) = 0, LE),  /* kolejne równania wpisujemy do listy LE */<!--\\-->
 +
'''print'''("lista równań: ", LE),
 +
sol: '''solve'''( LE, [a, b, c, d] ),  /* lista rozwiązań */
 +
'''print'''("rozwiązanie: ", sol),
 +
S2: '''minfactorial'''( '''makefact'''(S1) ),  /* zamień na silnie i uprość silnie */<!--\\-->
 +
S3: '''subst'''( sol[1], S2 ),  /* pierwszy element listy sol */<!--\\-->
 +
S4: '''num'''( '''factor'''( '''expand'''( S3 ) ) ),<!--\\-->
 +
'''print'''("rekurencja: ", S4 = 0),<!--\\-->
 +
'''solve'''( S4 = 0, S[n] )<!--\\-->
 +
/*    S[n] = (2*n+1)! / (n! * (n+1)!)    */
 +
)$</span>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 3625: Linia 3639:
  
  
<span id="D94" style="font-size: 110%; font-weight: bold;">Twierdzenie D94</span><br/>
+
<span id="D96" style="font-size: 110%; font-weight: bold;">Zadanie D96</span><br/>
Jeżeli <math>n \in \mathbb{N}_0 \,</math> i <math>\; a \in \mathbb{Z}_+</math>, to
+
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D87|D87]] p.1)
  
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}}</math>
+
::<math>\sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Oczywiście <math>f(n, k) = r^k {\small\binom{n}{k}}</math>. Po podstawieniu do równania (zobacz [[#D93|D93]])
 +
 
 +
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
i zredukowaniu silni, otrzymujemy
Wiemy, że jeżeli <math>z</math> nie jest liczbą całkowitą, to prawdziwy jest wzór (zobacz [[#D92|D92]] p.3)
 
  
::<math>\Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}}</math>
+
::<math>a \cdot {\small\frac{(n + 1) r}{k + 1}} + b \cdot {\small\frac{n + 1}{n - k + 1}} + c \cdot {\small\frac{(n - k) r}{k + 1}} + d = 0</math>
  
Zatem
+
Sprowadzając do wspólnego mianownika, mamy
  
::<math>\Gamma (a z) \Gamma (- a z + 1) = {\small\frac{\pi}{\sin (\pi a z)}}</math>
+
::<math>(c r - d) k^2 + (- ((a + 2 c) n + a + c) r + (b + d) n + b) k + ((a + c) n^2 + (2 a + c) n + a) r + (b + d) n + b + d = 0</math>
  
Dzieląc powyższe równania przez siebie, otrzymujemy
+
Ponieważ powyższe równanie musi być prawdziwe dla każdego <math>k</math>, to współczynniki przy potęgach <math>k</math> muszą być równe zero. Zatem dostajemy układ równań
  
::<math>{\small\frac{\Gamma (a z) \Gamma (- a z + 1)}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{\pi}{\sin (\pi a z)}} \cdot {\small\frac{\sin (\pi z)}{\pi}} = {\small\frac{\sin (\pi z)}{\sin (\pi a z)}}</math>
+
::<math>
 +
\begin{cases}
 +
  c r - d = 0 \\
 +
  - ((a + 2 c) n + a + c) r + (b + d) n + b = 0 \\
 +
  ((a + c) n^2 + (2 a + c) n + a) r + (b + d) n + b + d = 0 \\
 +
\end{cases}
 +
</math>
  
Skąd dostajemy
 
  
::<math>{\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (- z + 1)}{\Gamma (- a z + 1)}} \cdot {\small\frac{\sin (\pi z)}{\sin (\pi a z)}}</math>
+
Łatwo znajdujemy rozwiązania: <math>b = 0</math>, <math>c = - a</math>, <math>d = - a \cdot r</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D93|D93]])
  
Niech <math>k</math> oznacza dowolną liczbę całkowitą. W&nbsp;granicy, gdy <math>z \rightarrow k</math>, mamy
+
::<math>S(n + 1) = (r + 1) S (n)</math>
  
::<math>\lim_{z \rightarrow k} {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} = {\small\frac{\pi \cdot \cos (\pi k)}{a \pi \cdot \cos (\pi a k)}} = {\small\frac{1}{a}} \cdot {\small\frac{(- 1)^k}{(- 1)^{a k}}} = {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) k}</math>
+
Metodą indukcji matematycznej dowodzimy, że <math>S(n) = (r + 1)^n</math>.
  
gdzie skorzystaliśmy z&nbsp;reguły de l'Hospitala. Wynika stąd, że
 
  
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (n + 1)}{\Gamma (a n + 1)}} \cdot {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) n} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}}</math>
+
Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.<!-- aby uniknąć formatowania zmiennych F1, S1 wstawiamy znaki \\ -->
  
Co należało pokazać.<br/>
+
<span style="font-size: 90%; color:black;">sum2() :=
 +
(
 +
f(n, k):= r^k * '''binomial'''(n, k),  /* składnik sumy */
 +
'''print'''("f(n, k) = ", f(n,k) ),
 +
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,  /* równanie rekurencyjne dla składników sumy f(n, k) */<!--\\-->
 +
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),  /* równanie rekurencyjne dla sumy S(n) */<!--\\-->
 +
/*  przekształcamy F1, S1  */<!--\\-->
 +
F2: '''minfactorial'''( '''makefact'''(F1) ),  /* zamień na silnie i uprość silnie */<!--\\-->
 +
'''print'''("równanie: ", F2),<!--\\-->
 +
F3: '''num'''( '''factor'''(F2) ),  /* faktoryzuj i weź licznik */<!--\\-->
 +
'''print'''("licznik = ", '''rat'''(F3, k)),<!--\\-->
 +
deg: '''hipow'''(F3, k),<!--\\-->
 +
'''print'''("stopień = ", deg),
 +
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */<!--\\-->
 +
LE:  ['''subst'''(0, k, F3) = 0],<!--\\-->
 +
'''for''' i: 1 '''thru''' deg '''do''' '''push'''('''coeff'''(F3, k^i) = 0, LE),  /* kolejne równania wpisujemy do listy LE */<!--\\-->
 +
'''print'''("lista równań: ", LE),
 +
sol: '''solve'''( LE, [a, b, c, d] ),  /* lista rozwiązań */
 +
'''print'''("rozwiązanie: ", sol),
 +
S2: '''minfactorial'''( '''makefact'''(S1) ),  /* zamień na silnie i uprość silnie */<!--\\-->
 +
S3: '''subst'''( sol[1], S2),  /* pierwszy element listy sol */<!--\\-->
 +
S4: '''num'''( '''factor'''( '''expand'''( S3 ) ) ),<!--\\-->
 +
'''print'''("rekurencja: ", S4 = 0),<!--\\-->
 +
/*    S[n+1] = (r+1)*S[n]    */
 +
'''load'''("solve_rec"),
 +
'''solve_rec'''( S4 = 0, S[n] )        /*  S[n] = C*(r+1)^n  */<!--\\-->
 +
)$</span>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 3661: Linia 3709:
  
  
<span id="D95" style="font-size: 110%; font-weight: bold;">Twierdzenie D95</span><br/>
+
<span id="D97" style="font-size: 110%; font-weight: bold;">Zadanie D97</span><br/>
Jeżeli <math>n \in \mathbb{N}_0 \,</math> i <math>\; a \in \mathbb{Z}_+</math>, to
+
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D87|D87]] p.2)
  
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}}</math>
+
::<math>\sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{2^{n + 1} - 1}{n + 1}}</math>
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
Z twierdzenia [[#D92|D92]] p.2 wynika, że
+
Oczywiście <math>f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math>. Po podstawieniu do równania (zobacz [[#D93|D93]])
  
::<math>\Gamma (a z + a n + 1) = \Gamma (a z + 1) \cdot \prod^{a n}_{j = 1} (a z + j)</math>
+
::<math>a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0</math>
  
::<math>\Gamma (b z + b n + 1) = \Gamma (b z + 1) \cdot \prod^{b n}_{j = 1} (b z + j)</math>
+
i zredukowaniu silni, otrzymujemy
  
Dzieląc równania przez siebie, otrzymujemy
+
::<math>a \cdot {\small\frac{n + 1}{k + 2}} + b \cdot {\small\frac{n + 1}{n - k + 1}} + c \cdot {\small\frac{n - k}{k + 2}} + d = 0</math>
  
::<math>{\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (b z + b n + 1)}} \cdot \frac{\displaystyle\prod^{b n}_{j = 1} (b z + j)}{\displaystyle\prod^{a n}_{j = 1} (a z + j)} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (z + n + 1)}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (b z + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (a z + j)} \cdot {\small\frac{b}{a}}</math>
+
Sprowadzając do wspólnego mianownika, mamy
  
Zatem
+
::<math>(c - d) k^2 + ((- a + b - 2 c + d) n - a + b - c - d) k + (a + c) n^2 + (2 a + 2 b + c + 2 d) n + a + 2 b + 2 d = 0</math>
  
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = {\small\frac{b}{a}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (- b n + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (- a n + j)} \cdot {\small\frac{\Gamma (1)}{\Gamma (1)}} = {\small\frac{b}{a}} \cdot \frac{(- 1)^{b n - 1} \cdot \displaystyle\prod^{b n - 1}_{j = 1} (- b n + j)}{(- 1)^{a n - 1} \cdot \displaystyle\prod^{2 n - 1}_{j = 1} (a n - j)} = {\small\frac{b}{a}} \cdot (- 1)^{(a - b) n} \cdot {\small\frac{(b n - 1) !}{(a n - 1) !}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}}</math>
+
Ponieważ powyższe równanie musi być prawdziwe dla każdego <math>k</math>, to współczynniki przy potęgach <math>k</math> muszą być równe zero. Zatem dostajemy układ równań
  
Co należało pokazać.<br/>
+
::<math>
&#9633;
+
\begin{cases}
{{\Spoiler}}
+
  c - d = 0 \\
 +
  (- a + b - 2 c + d) n - a + b - c - d = 0 \\
 +
  (a + c) n^2 + (2 a + 2 b + c + 2 d) n + a + 2 b + 2 d = 0 \\
 +
\end{cases}
 +
</math>
  
  
 +
Łatwo znajdujemy rozwiązania: <math>b = 0</math>, <math>c = - a \cdot {\small\frac{n + 1}{n + 2}}</math>, <math>d = - a \cdot {\small\frac{n + 1}{n + 2}}</math>. Skąd wynika związek dla <math>S(n)</math> (zobacz [[#D93|D93]])
  
<span id="D96" style="font-size: 110%; font-weight: bold;">Zadanie D96</span><br/>
+
::<math>(n + 2) S (n + 1) = 2 (n + 1) S (n) + 1</math>
Niech <math>n \in \mathbb{N}_0 \,</math> i <math>\; g(n) = {\small\binom{2 n}{n}}</math>. Pokazać, że
 
  
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
+
Metodą indukcji matematycznej łatwo dowodzimy, że <math>S(n) = {\small\frac{2^{n + 1} - 1}{n + 1}}</math>.
  
:*&nbsp;&nbsp;&nbsp;<math>\lim_{x \rightarrow - n} g (x) = 0</math>
 
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.<!-- aby uniknąć formatowania zmiennych F1, S1 wstawiamy znaki \\ -->
Zapiszmy funkcję <math>g(n) = {\small\binom{2 n}{n}}</math> w&nbsp;postaci
 
  
::<math>g(n) = {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{\Gamma (2 n + 1)}{\Gamma (n + 1)^2}}</math>
+
<span style="font-size: 90%; color:black;">sum3() :=
 +
(
 +
f(n, k):= 1/(k+1) * '''binomial'''(n, k),  /* składnik sumy */
 +
'''print'''("f(n, k) = ", f(n,k) ),
 +
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,  /* równanie rekurencyjne dla składników sumy f(n, k) */<!--\\-->
 +
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),  /* równanie rekurencyjne dla sumy S(n) */<!--\\-->
 +
/*  przekształcamy F1, S1  */<!--\\-->
 +
F2: '''minfactorial'''( '''makefact'''(F1) ),  /* zamień na silnie i uprość silnie */<!--\\-->
 +
'''print'''("równanie: ", F2),<!--\\-->
 +
F3: '''num'''( '''factor'''(F2) ),  /* faktoryzuj i weź licznik */<!--\\-->
 +
'''print'''("licznik = ", '''rat'''(F3, k)),<!--\\-->
 +
deg: '''hipow'''(F3, k),<!--\\-->
 +
'''print'''("stopień = ", deg),
 +
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */<!--\\-->
 +
LE:  ['''subst'''(0, k, F3) = 0],<!--\\-->
 +
'''for''' i: 1 '''thru''' deg '''do''' '''push'''('''coeff'''(F3, k^i)=0, LE),  /* kolejne równania wpisujemy do listy LE */<!--\\-->
 +
'''print'''("lista równań: ", LE),
 +
sol: '''solve'''( LE, [a, b, c, d] ),  /* lista rozwiązań */
 +
'''print'''("rozwiązanie: ", sol),
 +
S2: '''minfactorial'''( '''makefact'''(S1) ),  /* zamień na silnie i uprość silnie */<!--\\-->
 +
S3: '''subst'''( sol[1], S2),  /* pierwszy element listy sol */<!--\\-->
 +
S4: '''num'''( '''factor'''( '''expand'''( S3 ) ) ),<!--\\-->
 +
'''print'''("rekurencja: ", S4 = 0),<!--\\-->
 +
/*      (n+2)*S[n+1] = 2*(n+1)*S[n] + 1    */
 +
'''load'''("solve_rec"),
 +
'''solve_rec'''( S4 = 0, S[n] )        /*  S[n] = ( (C+1) * 2^n - 1 )/(n + 1)  */<!--\\-->
 +
)$</span>
 +
&#9633;
 +
{{\Spoiler}}
  
Możemy teraz przejść do zmiennej rzeczywistej
 
  
::<math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
 
  
bo funkcja <math>\Gamma (x)</math> jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych.
+
<span id="D98" style="font-size: 110%; font-weight: bold;">Zadanie D98</span><br/>
 +
Niech <math>n \in \mathbb{N}_0 \;</math> i <math>\; k \in \mathbb{Z}</math>. Uzasadnić, dlaczego przyjmujemy, że <math>{\small\binom{n}{k}} = 0</math>, gdy <math>k < 0 \;</math> lub <math>\; k > n</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Jeżeli zapiszmy <math>{\small\binom{n}{k}}</math> w&nbsp;postaci
 +
 
 +
::<math>{\small\binom{n}{k}} = {\small\frac{n!}{k! (n - k) !}} = {\small\frac{n \cdot (n - 1) \cdot \ldots \cdot (n - k + 1)}{k!}}</math>
 +
 
 +
to natychmiast widzimy, że prawa strona musi być równa zero dla <math>k > n</math>.
 +
 
 +
Jeżeli we wzorze Pascala
 +
 
 +
::<math>{\small\binom{n}{k}} = {\small\binom{n - 1}{k}} + {\small\binom{n - 1}{k - 1}}</math>
 +
 
 +
położymy <math>n = m + 1 \;</math> i <math>\; k = 0</math>, to otrzymamy
 +
 
 +
::<math>1 = 1 + {\small\binom{m}{- 1}}</math>
 +
 
 +
czyli <math>{\small\binom{m}{- 1}} = 0</math>
 +
 
 +
I tak samo dla wszystkich <math>k < 0</math>.
 +
 
 +
 
 +
Znacznie mocniejszego uzasadnienia dostarczy nam funkcja gamma (zobacz [[#D111|D111]]), która jest uogólnieniem silni na liczby rzeczywiste. Rozważmy funkcję
 +
 
 +
::<math>g(n, x) = {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}}</math>
 +
 
 +
Jeżeli <math>k \in \mathbb{Z} \;</math> i <math>\; 0 \leqslant k \leqslant n</math>, to funkcja <math>g(n, k)</math> jest równa współczynnikowi dwumianowemu <math>{\small\binom{n}{k}}</math>.
 +
 
 +
::<math>g(n, k) = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1) \Gamma (n - k + 1)}} = {\small\frac{n!}{k! (n - k) !}} = {\small\binom{n}{k}}</math>
  
Korzystając z&nbsp;twierdzenia [[#D95|D95]], otrzymujemy
 
  
::<math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1)^n \cdot {\small\frac{n!}{(2 n) !}}</math>
+
W przypadku, gdy <math>k < 0</math>, mamy
  
Ale wiemy, że (zobacz [[#D91|D91]])
+
::<math>\lim_{x \rightarrow k} g (n, x) = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} = \lim_{x \rightarrow k} {\small\frac{1}{\Gamma (x + 1)}} \cdot \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (n - x + 1)}} = 0 \cdot {\small\frac{\Gamma (n + 1)}{\Gamma (n - k + 1)}} = 0</math>
  
::<math>\lim_{x \rightarrow - n} {\small\frac{1}{\Gamma (x + 1)}} = 0</math>
 
  
Zatem
+
W przypadku, gdy <math>k > n</math>, dostajemy
  
::<math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} = 0</math>
+
::<math>\lim_{x \rightarrow k} g (n, x) = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1)}} \cdot \lim_{x \rightarrow k} {\small\frac{1}{\Gamma (n - x + 1)}} = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1)}} \cdot 0 = 0</math>
  
Co należało pokazać i&nbsp;co jest dobrze widoczne na wykresie funkcji <math>{\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
 
  
::[[File: gamma3.png|600px|none]]
+
Co najlepiej wyjaśnia, dlaczego przyjmujemy, że <math>{\small\binom{n}{k}} = 0</math>, gdy <math>k < 0 \;</math> lub <math>\; k > n</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 3725: Linia 3827:
  
  
<span id="D97" style="font-size: 110%; font-weight: bold;">Zadanie D97</span><br/>
+
<span id="D99" style="font-size: 110%; font-weight: bold;">Twierdzenie D99</span><br/>
Niech <math>n \in \mathbb{N}_0</math> i <math>g(n) = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}}</math>. Pokazać, że
+
Niech <math>n, I, J \in \mathbb{N}_0 \;</math> i <math>\; k \in \mathbb{Z}</math>. Jeżeli <math>f(n, k) = 0</math>
 +
dla <math>k \notin [0, n] \,</math> i&nbsp;składniki sumy <math>f(n, k)</math> spełniają równanie rekurencyjne
  
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
+
::<math>\sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0</math>
  
:*&nbsp;&nbsp;&nbsp;<math>\lim_{x \rightarrow - 1} g (x) = - {\small\frac{1}{2}}</math>
+
gdzie współczynniki <math>a_{i j}</math> są funkcjami tylko <math>n</math>, to suma
  
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
+
::<math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>
Oczywiście funkcja <math>g(k)</math> nie jest określona w&nbsp;punkcie <math>k = - 1</math>
 
  
::<math>g(k) = {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{(2 k) !}{(k!)^2}} = {\small\frac{(2 k) !}{(k + 1) !k!}} = {\small\frac{\Gamma (2 k + 1)}{\Gamma (k + 2) \Gamma (k + 1)}}</math>
+
spełnia następujące równanie rekurencyjne
  
Jeżeli przejdziemy do zmiennej rzeczywistej
+
::<math>\sum_{i = 0}^{I} S (n + i) \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0</math>
  
::<math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z założenia <math>f(n, k) = 0</math> dla <math>k \notin [0, n]</math>, zatem sumę <math>S(n)</math> możemy zapisać w&nbsp;postaci
  
to łatwo pokażemy, że granica funkcji <math>g(x)</math> w&nbsp;punkcje <math>x = - 1</math> istnieje i&nbsp;jest równa <math>- {\small\frac{1}{2}}</math>.
+
::<math>S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k = - \infty}^{+ \infty} f (n, k)</math>
  
Z twierdzenia [[#D95|D95]] dostajemy
+
Niech <math>0 \leqslant i \leqslant I</math> oraz <math>0 \leqslant j \leqslant J</math>. Rozważmy sumę
  
::<math>\lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1) \cdot {\small\frac{1}{2}} = - {\small\frac{1}{2}}</math>
+
::<math>\sum_{k = - J}^{n + I} f (n + i, k + j)</math>
  
Czyli
+
Zauważmy, że <math>f(n + i, k + j) = 0</math> dla <math>k \notin [- J, n + I]</math>, bo
  
::<math>\lim_{x \rightarrow - 1} g (x) = \lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} = - {\small\frac{1}{2}} \cdot {\small\frac{1}{\Gamma (1)}} = - {\small\frac{1}{2}}</math>
+
:*&nbsp;&nbsp;&nbsp;dla <math>k < - J</math> mamy <math>k + j < - J + j \leqslant 0</math>
 +
:*&nbsp;&nbsp;&nbsp;dla <math>k > n + I</math> mamy <math>k + j > n + I + j \geqslant n + I \geqslant n + i</math>
  
 +
Wynika stąd, że rozszerzając rozpatrywaną sumę na cały zbiór liczb całkowitych, nie zmienimy wartości sumy. Czyli, że
  
Co dobrze widać na wykresie funkcji <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
+
::<math>\sum_{k = - J}^{n + I} f (n + i, k + j) = \sum_{k = - \infty}^{+ \infty} f (n + i, k + j)</math>
 
 
::[[File: gamma4.png|600px|none]]
 
&#9633;
 
{{\Spoiler}}
 
  
  
 +
Teraz już łatwo otrzymujemy równanie rekurencyjne dla sumy <math>S(n)</math>
  
 +
::<math>0 = \sum_{k = - J}^{n + I} \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k = - J}^{n + I} f (n + i, k + j) \,</math><span style="color: Green"><sup>[a]</sup></span>
  
 +
::::::::::::<math>\;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k = - \infty}^{+ \infty} f (n + i, k + j)</math>
  
 +
::::::::::::<math>\;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum^{+ \infty}_{l = - \infty} f (n + i, l)</math>
  
 +
::::::::::::<math>\;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot S (n + i)</math>
  
 +
::::::::::::<math>\;\;\;\:\, = \sum_{i = 0}^{I} S (n + i) \left[ \sum_{j = 0}^{J} a_{i j} \right]</math>
  
 +
Co należało pokazać.
  
  
 +
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> W&nbsp;przypadku wielokrotnych sum skończonych możemy dowolnie zmieniać ich kolejność ze względu na łączność dodawania.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D100" style="font-size: 110%; font-weight: bold;">Uwaga D100</span><br/>
 +
Z zadania [[#D98|D98]] wynika, że jeżeli funkcja <math>f(n, k)</math> zawiera czynnik <math>{\small\binom{n}{k}}</math>, to może spełniać warunek <math>f(n, k) = 0</math> dla <math>k \notin [0, n]</math>. Oczywiście nie jest to warunek wystarczający, bo funkcja <math>f (n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math> jest różna od zera dla <math>k = - 1</math>.
 +
 +
 +
 +
<span id="D101" style="font-size: 110%; font-weight: bold;">Zadanie D101</span><br/>
 +
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór (zobacz [[#D87|D87]] p.3)
 +
 +
::<math>\sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Oczywiście <math>f(n, k) = k {\small\binom{n}{k}}</math>. Do rozwiązania problemu wykorzystamy oprogramowanie Maxima i&nbsp;procedurę<!-- aby uniknąć formatowania zmiennych F1, S1 wstawiamy znaki \\ -->
 +
 +
<span style="font-size: 90%; color:black;">sum5(I, J) :=
 +
(
 +
'''read'''("podaj definicję f(n, k)"),  /* składnik sumy */
 +
'''print'''("f(n, k) = ", f(n, k) ),
 +
F1: '''sum'''( '''sum'''( a[i,j] * f(n+i, k+j), i, 0, I), j, 0, J) / f(n, k),<!--\\-->
 +
F2: '''num'''( '''factor'''( '''minfactorial'''( '''makefact'''( '''expand'''( F1 ) ) ) ) ),<!--\\-->
 +
deg: '''hipow'''(F2, k),<!--\\-->
 +
LE:  ['''subst'''(0, k, F2) = 0],<!--\\-->
 +
'''for''' i: 1 '''thru''' deg '''do''' '''push'''('''coeff'''(F2, k^i) = 0, LE),  /* kolejne równania wpisujemy do listy LE */<!--\\-->
 +
LV: '''create_list'''(a[i, j], i, 0, I , j, 0, J),  /* lista zmiennych */
 +
sol: '''solve'''( LE, LV ),  /* lista rozwiązań */
 +
S1: '''sum'''( S[n+i] * '''sum'''(a[i,j], j, 0, J), i, 0, I),<!--\\-->
 +
S2: '''subst'''( sol[1], S1 ),  /* pierwszy element listy sol */<!--\\-->
 +
S3: '''num'''( '''factor'''( '''expand'''( S2 ) ) ),<!--\\-->
 +
'''print'''("rekurencja: ", S3 = 0),<!--\\-->
 +
'''load'''("solve_rec"),
 +
'''solve_rec'''( S3 = 0,  S[n] )<!--\\-->
 +
)$</span>
 +
 +
 +
Wywołujemy procedurę <span style="font-size: 90%; color:black;"><code>sum5(1, 2)</code></span> i&nbsp;wpisujemy funkcję
 +
 +
<span style="font-size: 90%; color:black;">f(n, k):= k * '''binomial'''(n, k)</span>
 +
 +
W wyniku otrzymujemy równanie rekurencyjne
 +
 +
<span style="font-size: 90%; color:black;">n * S[n+1] = 2 * (n+1) * S[n]</span>
 +
 +
którego rozwiązanie jest postaci
 +
 +
<span style="font-size: 90%; color:black;">S[n] = C * n * 2^(n-1)</span>
 +
 +
Łatwo sprawdzamy, że <span style="font-size: 90%; color:black;"><code>C = 1</code></span>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D102" style="font-size: 110%; font-weight: bold;">Zadanie D102</span><br/>
 +
Pokazać, że dla <math>n \geqslant 0</math> prawdziwe są wzory
 +
 +
::<math>\sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2}</math>
 +
 +
::<math>\sum_{k = 0}^{n} k^3 {\small\binom{n}{k}} = n^2 (n + 3) 2^{n - 3}</math>
 +
 +
::<math>\sum_{k = 0}^{n} {\small\binom{n}{k}}^2 = {\small\binom{2 n}{n}}</math>
 +
 +
::<math>\sum_{k = 0}^{n} k {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n {\small\binom{2 n}{n}}</math>
 +
 +
::<math>\sum_{k = 0}^{n} k^2 {\small\binom{n}{k}}^2 = n^2 {\small\binom{2 n - 2}{n - 1}}</math>
 +
 +
::<math>\sum_{k = 0}^{n} k^3 {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n^2 (n + 1) {\small\binom{2 n - 2}{n - 1}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Wskazówki:
 +
 +
Korzystamy z&nbsp;procedury <span style="font-size: 90%; color:black;"><code>sum5()</code></span>, której kod został podany w&nbsp;zadaniu [[#D101|D101]].
 +
 +
Zawsze próbujemy znaleźć rozwiązanie dla najmniejszych wartości parametrów <span style="font-size: 90%; color:black;"><code>I, J</code></span>.
 +
 +
::<math>\Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} = 2^{- 2 n} \sqrt{\pi} \cdot n! \cdot {\small\binom{2 n}{n}}</math>
 +
 +
'''Punkt 1.''' <span style="font-size: 90%; color:black;"><code>sum5(1, 2)</code></span>, zobacz też <span style="font-size: 90%; color:black;"><code>sum5(2, 1)</code></span>
 +
 +
'''Punkt 2.''' <span style="font-size: 90%; color:black;"><code>sum5(1, 3)</code></span>, zobacz też <span style="font-size: 90%; color:black;"><code>sum5(2, 2)</code></span>
 +
 +
'''Punkt 3.''' <span style="font-size: 90%; color:black;"><code>sum5(2, 2)</code></span>
 +
 +
'''Punkt 4.''' <span style="font-size: 90%; color:black;"><code>sum5(2, 2)</code></span>
 +
 +
'''Punkt 5.''' <span style="font-size: 90%; color:black;"><code>sum5(2, 2)</code></span>
 +
 +
'''Punkt 6.''' <span style="font-size: 90%; color:black;"><code>sum5(2, 3)</code></span>, zobacz też <span style="font-size: 90%; color:black;"><code>sum5(3, 2)</code></span><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D103" style="font-size: 110%; font-weight: bold;">Uwaga D103</span><br/>
 +
Niech <math>S(n) = \sum_{k = 0}^{n} f (n, k)</math>. Wiemy (zobacz [[#D99|D99]]), że jeżeli dla dowolnego <math>n</math> wartość funkcji <math>f(n, k)</math> jest określona dla wszystkich <math>k \in \mathbb{Z} \;</math> i <math>\; f(n, k) = 0</math> dla <math>k \notin [0, n]</math>, to sumę <math>S(n)</math> możemy zapisać w&nbsp;równoważnej postaci
 +
<math>S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k \in \mathbb{Z}} f (n, k)</math>
 +
 +
 +
Rozważmy teraz funkcję <math>f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math>, która powyższego warunku nie spełnia, bo jest różna od zera dla <math>k = - 1</math>. Jeżeli zapiszemy <math>f(n, k)</math> w&nbsp;postaci
 +
 +
::<math>f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{n!}{k! (n - k) !}} = {\small\frac{n!}{(k + 1) ! (n - k) !}}</math>
 +
 +
to natychmiast widzimy, że
 +
 +
::<math>f(n, - 1) = {\small\frac{n!}{0! (n + 1) !}} = {\small\frac{1}{n + 1}}</math>
 +
 +
Zatem w&nbsp;przypadku tej funkcji mamy
 +
 +
::<math>\sum_{k \in \mathbb{Z}} f (n, k) = \sum_{k = 0}^{n} f (n, k) + f (n, - 1) = S (n) + {\small\frac{1}{n + 1}}</math>
 +
 +
 +
'''Zakładając''', że spełnione jest równanie
 +
 +
::<math>\sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0</math>
 +
 +
otrzymujemy następujące równanie rekurencyjne dla sumy <math>S(n) = \sum_{k \in \mathbb{Z}} f (n, k)</math>
 +
 +
::<math>\sum_{k \in \mathbb{Z}} \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k \in \mathbb{Z}} f (n + i, k + j)</math>
 +
 +
:::::::::::<math>\;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{l \in \mathbb{Z}} f (n + i, l)</math>
 +
 +
:::::::::::<math>\;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right]</math>
 +
 +
:::::::::::<math>\;\;\;\, = \sum_{i = 0}^{I} \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0</math>
 +
 +
 +
Jeżeli mamy skończoną liczbę punktów <math>k_r \notin [0, n]</math>, w&nbsp;których funkcja <math>f(n, k)</math> jest określona i&nbsp;różna od zera, to możemy zdefiniować funkcję
 +
 +
::<math>T(n) = f (n, k_1) + f (n, k_2) + f (n, k_3) + \ldots = \sum_r f (n, k_r)</math>
 +
 +
W takim przypadku otrzymamy następujące równanie rekurencyjne dla sumy <math>S (n) = \sum_{k = 0}^{n} f (n, k)</math>
 +
 +
::<math>\sum_{i = 0}^{I} [S (n + i) + T (n + i)] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0</math>
 +
 +
 +
Wystarczy drobna modyfikacja procedury <span style="font-size: 90%; color:black;"><code>sum5()</code></span>, aby obejmowała ona również takie przypadki<!-- aby uniknąć formatowania zmiennych F1, S1 wstawiamy znaki \\ -->
 +
 +
<span style="font-size: 90%; color:black;">sum6(I, J):=
 +
(
 +
'''read'''("podaj definicję f(n, k)"),  /* składnik sumy */
 +
'''print'''("f(n, k) = ", f(n, k) ),
 +
'''read'''("podaj definicję T(n)"),  /* suma skończonych wartości funkcji f(n, k), gdzie k<0 lub k>n */
 +
'''print'''("T(n) = ", T(n) ),
 +
F1: '''sum'''( '''sum'''( a[i,j] * f(n+i, k+j), i, 0, I), j, 0, J) / f(n, k),<!--\\-->
 +
F2: '''num'''( '''factor'''( '''minfactorial'''( '''makefact'''( '''expand'''( F1 ) ) ) ) ),<!--\\-->
 +
deg: '''hipow'''(F2, k),<!--\\-->
 +
LE:  ['''subst'''(0, k, F2) = 0],<!--\\-->
 +
'''for''' i: 1 '''thru''' deg '''do''' '''push'''('''coeff'''(F2, k^i) = 0, LE),  /* kolejne równania wpisujemy do listy LE */<!--\\-->
 +
LV: '''create_list'''(a[i, j], i, 0, I , j, 0, J),  /* lista zmiennych */
 +
sol: '''solve'''( LE, LV ),  /* lista rozwiązań */
 +
S1: '''sum'''( ( S[n+i] + T(n+i) ) * '''sum'''( a[i,j], j, 0, J ), i, 0, I ),<!--\\-->
 +
S2: '''num'''( '''factor'''( '''minfactorial'''( '''makefact'''( '''expand'''( S1 ) ) ) ) ),<!--\\-->
 +
S3: '''subst'''( sol[1], S2 ),  /* pierwszy element listy sol */<!--\\-->
 +
S4: '''num'''( '''factor'''( '''expand'''( S3 ) ) ),<!--\\-->
 +
'''print'''("rekurencja: ", S4 = 0),<!--\\-->
 +
'''load'''("solve_rec"),
 +
'''solve_rec'''( S4 = 0,  S[n] )<!--\\-->
 +
)$</span>
 +
 +
 +
Korzystając z&nbsp;powyższej procedury, Czytelnik może łatwo policzyć wypisane poniżej sumy.
 +
 +
::{| class="wikitable plainlinks"  style="font-size: 90%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>\boldsymbol{f(n,k)}</math> || <math>\boldsymbol{f(n,-1)}</math> || <math>\boldsymbol{f(n,-2)}</math> || <math>\boldsymbol{\sum_{k = 0}^n f(n,k)}</math> || WolframAlpha
 +
|-
 +
| <math>{\small\frac{1}{k + 1}} {\small\binom{n}{k}}</math> || <math>{\small\frac{1}{n + 1}}</math> || <math>0</math> || <math>{\small\frac{2^{n + 1} - 1}{n + 1}}</math> || [https://www.wolframalpha.com/input?i=Sum%5B1%2F%28k%2B1%29+*+binomial%28n%2Ck%29%2C+%7Bk%2C+0%2C+n%7D%5D LINK1]
 +
|-
 +
| <math>{\small\frac{1}{k + 2}} {\small\binom{n}{k}}</math> || <math>0</math> || <math>- {\small\frac{1}{(n + 1) (n + 2)}}</math> || <math>{\small\frac{n 2^{n + 1} + 1}{(n + 1) (n + 2)}}</math> || [https://www.wolframalpha.com/input?i=Sum%5B1%2F%28k%2B2%29+*+binomial%28n%2C+k%29%2C+%7Bk%2C+0%2C+n%7D%5D LINK2]
 +
|-
 +
| <math>{\small\frac{1}{(k + 1) (k + 2)}} {\small\binom{n}{k}}</math> || <math>{\small\frac{1}{n + 1}}</math> || <math>{\small\frac{1}{(n + 1) (n + 2)}}</math> || <math>{\small\frac{2^{n + 2} - n - 3}{(n + 1) (n + 2)}}</math> || [https://www.wolframalpha.com/input?i=Sum%5B1%2F%28k%2B1%29+*+1%2F%28k%2B2%29+*+binomial%28n%2C+k%29%2C+%7Bk%2C+0%2C+n%7D%5D LINK3]
 +
|}
 +
 +
 +
 +
<span id="D104" style="font-size: 110%; font-weight: bold;">Zadanie D104</span><br/>
 +
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór
 +
 +
::<math>\sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że składniki sumy są równe zero dla <math>k \notin [0, n]</math> (zobacz zadanie [[#D116|D116]]). Zatem korzystając z&nbsp;procedury <span style="font-size: 90%; color:black;"><code>sum6(2, 1)</code></span>, otrzymujemy równanie rekurencyjne
 +
 +
::<math>(n + 2) S (n + 2) - 4 (2 n + 3) S (n + 1) + 16 (n + 1) S (n) = 0</math>
 +
 +
i rozwiązanie
 +
 +
::<math>S(n) = C \cdot 4^n</math>
 +
 +
Łatwo sprawdzamy, że <math>C = 1</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D105" style="font-size: 110%; font-weight: bold;">Zadanie D105</span><br/>
 +
Pokazać, że dla <math>n \geqslant 0</math> prawdziwy jest wzór
 +
 +
::<math>\sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zauważmy, że składniki sumy są równe zero dla <math>k \notin [0, n]</math> (zobacz [[#D116|D116]]) poza punktem <math>k = - 1</math>. Wiemy, że (zobacz [[#D117|D117]])
 +
 +
::<math>\lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = - {\small\frac{1}{2}}</math>
 +
 +
Zatem
 +
 +
::<math>\lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = - {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
 +
 +
Czyli
 +
 +
::<math>f(n, - 1) = - {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
 +
 +
 +
Korzystając z&nbsp;procedury <span style="font-size: 90%; color:black;"><code>sum6(2, 1)</code></span>, otrzymujemy równanie rekurencyjne
 +
 +
::<math>(n^2 + 5 n + 6) S (n + 2) - 8 (n^2 + 4 n + 4) S (n + 1) + 16 (n^2 + 3 n + 2) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{[(n + 1) !]^2}} = 0</math>
 +
 +
::<math>(n + 2) (n + 3) S (n + 2) - 8 (n + 2)^2 S (n + 1) + 16 (n + 1) (n + 2) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{[(n + 1) !]^2}} = 0</math>
 +
 +
::<math>(n + 3) S (n + 2) - 8 (n + 2) S (n + 1) + 16 (n + 1) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{(n + 1) ! (n + 2) !}} = 0</math>
 +
 +
Maxima nie potrafi rozwiązać tego równania rekurencyjnego, ale można sprawdzić, że <math>S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math> jest jego rozwiązaniem.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
== Uzupełnienie ==
 +
 +
&nbsp;
 +
 +
=== <span style="border-bottom:2px solid #000; padding-bottom: 0.2em">Dowód własności liczb Catalana <math>{\small C_{n + 1} = \textstyle\sum_{k = 0}^{n} C_k C_{n - k}}</math></span> ===
 +
 +
<span id="D106" style="font-size: 110%; font-weight: bold;">Uwaga D106</span><br/>
 +
Przedstawiony poniżej dowód czwartego punktu twierdzenia [[#D85|D85]] został oparty na pracy Jovana Mikicia<ref name="JovanMikic1"/>.
 +
 +
 +
 +
<span id="D107" style="font-size: 110%; font-weight: bold;">Twierdzenie D107</span><br/>
 +
Jeżeli funkcja <math>f(k)</math> nie zależy od <math>n</math> i&nbsp;dane są sumy
 +
 +
::<math>S(n) = \sum_{k = 0}^{n} f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
::<math>T(n) = \sum_{k = 0}^{n} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
to
 +
 +
::<math>T(n) = 4 T (n - 1) + 2 S (n - 1)</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z definicji sumy <math>T(n)</math> ostatni wyraz tej sumy jest równy zero, zatem dla <math>n \geqslant 1</math> mamy
 +
 +
::<math>T(n) = \sum_{k = 0}^{n - 1} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::<math>\;\;\:\, = \sum_{k = 0}^{n - 1} (n - k) f (k) \cdot {\small\frac{(2 n - 2 k) (2 n - 2 k - 1)}{(n - k)^2}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}}</math>
 +
 +
:::<math>\;\;\:\, = \sum_{k = 0}^{n - 1} 2 (2 n - 2 k - 1) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}}</math>
 +
 +
:::<math>\;\;\:\, = \sum_{k = 0}^{n - 1} [4 (n - 1 - k) + 2] f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}}</math>
 +
 +
Czyli
 +
 +
::<math>T(n) = 4 T (n - 1) + 2 S (n - 1)</math>
 +
 +
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D108" style="font-size: 110%; font-weight: bold;">Twierdzenie D108</span><br/>
 +
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
 +
 +
::<math>\sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech
 +
 +
::<math>S(n) = \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
::<math>T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
Zauważmy, że
 +
 +
::<math>T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::<math>\;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right]</math>
 +
 +
:::<math>\;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} j {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right]</math>
 +
 +
:::<math>\;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} k {\small\binom{2 n - 2 k}{n - k}} {\small\binom{2 k}{k}} \right]</math>
 +
 +
:::<math>\;\;\:\, = {\small\frac{1}{2}} \sum_{k = 0}^{n} (n - k + k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::<math>\;\;\:\, = {\small\frac{n}{2}} \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::<math>\;\;\:\, = {\small\frac{n S (n)}{2}}</math>
 +
 +
Ponieważ <math>T(n) = {\small\frac{n S (n)}{2}} \;</math> i <math>\; T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D107|D107]]), to otrzymujemy
 +
 +
::<math>{\small\frac{n S (n)}{2}} = 4 \cdot {\small\frac{(n - 1) S (n - 1)}{2}} + 2 S (n - 1)</math>
 +
 +
Czyli
 +
 +
::<math>n S (n) = 4 n S (n - 1) - 4 S (n - 1) + 4 S (n - 1)</math>
 +
 +
::<math>S(n) = 4 S (n - 1)</math>
 +
 +
Metodą indukcji matematycznej łatwo dowodzimy, że <math>S(n) = 4^n</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D109" style="font-size: 110%; font-weight: bold;">Twierdzenie D109</span><br/>
 +
Dla <math>n \geqslant 0</math> prawdziwy jest wzór
 +
 +
::<math>\sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Oznaczmy
 +
 +
::<math>S(n) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
::<math>T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
Zauważmy, że
 +
 +
::<math>T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::<math>\;\;\:\, = \sum_{k = 0}^{n} {\small\frac{n + 1 - (k + 1)}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::<math>\;\;\:\, = (n + 1) \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} - \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\:\, = (n + 1) S (n) - 4^n</math>
 +
</div>
 +
 +
Ponieważ <math>T(n) = (n + 1) S (n) - 4^n \;</math> i <math>\; T(n) = 4 T (n - 1) + 2 S (n - 1)</math> (zobacz [[#D107|D107]]), to otrzymujemy
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>(n + 1) S (n) - 4^n = 4 \cdot (n S (n - 1) - 4^{n - 1}) + 2 S (n - 1)</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>(n + 1) S (n) - 4^n = 4 n S (n - 1) - 4^n + 2 S (n - 1)</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>S(n) = {\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1)</math>
 +
</div>
 +
 +
Metodą indukcji matematycznej dowodzimy, że <math>S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>. Dla <math>n = 0</math> mamy <math>S(0) = 1 \;</math> i <math>\; {\small\frac{1}{2}} {\small\binom{2}{1}} = 1</math>. Zatem wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że wzór jest prawdziwy dla <math>n - 1</math>, otrzymujemy dla <math>n</math>
 +
 +
::<math>{\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\binom{2 n}{n}}</math>
 +
 +
:::::::<math>\;\;\; = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(n + 1)^2}{(2 n + 1) (2 n + 2)}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{(n + 1)^2}} \cdot {\small\binom{2 n}{n}}</math>
 +
 +
:::::::<math>\;\;\; = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
 +
 +
:::::::<math>\;\;\; = S (n)</math>
 +
 +
Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D110" style="font-size: 110%; font-weight: bold;">Twierdzenie D110</span><br/>
 +
Jeżeli <math>C_n</math> są liczbami Catalana, to
 +
 +
::<math>C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Zauważmy, że
 +
 +
::<math>\sum_{k = 0}^{n} C_k C_{n - k} = \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} {\small\frac{1}{n - k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right]</math>
 +
 +
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right]</math>
 +
 +
:::::<math>\;\;\:\, = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}}</math>
 +
 +
:::::<math>\;\;\:\, = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}}</math>
 +
 +
:::::<math>\;\;\:\, = {\small\frac{1}{n + 2}} {\small\binom{2 n + 2}{n + 1}}</math>
 +
 +
:::::<math>\;\;\:\, = C_{n + 1}</math>
 +
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
 +
=== <span style="border-bottom:2px solid #000;">Funkcja gamma</span> ===
 +
 +
&nbsp;
 +
 +
<span id="D111" style="font-size: 110%; font-weight: bold;">Definicja D111</span><br/>
 +
Funkcja <math>\Gamma (z)</math><ref name="gamma1"/> jest zdefiniowana równoważnymi wzorami
 +
 +
::<math>\Gamma (z) = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t \qquad \operatorname{Re}(z) > 0 \qquad \qquad</math> (definicja całkowa Eulera)
 +
 +
::<math>\Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad</math> (definicja Gaussa)
 +
 +
::<math>\Gamma (z) = {\small\frac{1}{z}} \prod_{n = 1}^{\infty} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad</math> (definicja iloczynowa Eulera)
 +
 +
::<math>\Gamma (z) = {\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad</math> (definicja iloczynowa Weierstrassa)
 +
 +
Trzy ostatnie wzory możemy wykorzystać do zdefiniowania funkcji <math>{\small\frac{1}{\Gamma (z)}}</math>, która jest określona dla dowolnych <math>z \in \mathbb{C}</math>
 +
 +
::<math>{\small\frac{1}{\Gamma (z)}} = \lim_{n \rightarrow \infty} {\small\frac{z (z + 1) \cdot \ldots \cdot (z + n)}{n^z n!}}</math>
 +
 +
::<math>{\small\frac{1}{\Gamma (z)}} = z \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right)</math>
 +
 +
::<math>{\small\frac{1}{\Gamma (z)}} = z e^{\gamma z} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right) e^{- \tfrac{z}{n}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż wykres|Hide=Ukryj wykres}}
 +
 +
Poniżej przedstawiamy wykresy funkcji <math>\Gamma (x)</math> (kolor niebieski) i <math>\, {\small\frac{1}{\Gamma (x)}}</math> (kolor czerwony).
 +
 +
::[[File: gamma1.png|700px|none]]
 +
&#9633;
 +
{{\Spoiler}}
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż równoważność definicji|Hide=Ukryj równoważność definicji}}
 +
 +
'''Równoważność definicji Gaussa i&nbsp;definicji całkowej Eulera'''
 +
 +
Niech <math>n \in \mathbb{Z}_+ \,</math> i <math>\; \operatorname{Re}(z) > 0</math>. Rozważmy całki
 +
 +
::<math>I_k = \int^n_0 t^{z - 1 + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k} d t</math>
 +
 +
gdzie <math>k = 0, \ldots, n</math>. Całkując przez części
 +
 +
::<math>d u = t^{z - 1 + k} \, d t \qquad \qquad \qquad v = \left( 1 - {\small\frac{t}{n}} \right)^{n - k}</math>
 +
 +
::<math>u = {\small\frac{t^{z + k}}{z + k}} \qquad \qquad \qquad \quad \; d v = - {\small\frac{n - k}{n}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t</math>
 +
 +
otrzymujemy
 +
 +
::<math>I_k = {\small\frac{t^{z + k}}{z + k}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k} \, \biggr\rvert_{0}^{n} \; + \; {\small\frac{n - k}{n (z + k)}} \int^n_0 t^{z + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t</math>
 +
 +
::<math>\;\;\;\,\, = {\small\frac{n - k}{n (z + k)}} \cdot I_{k + 1}</math>
 +
 +
Zatem całkując <math>n</math>-krotnie przez części, mamy
 +
 +
::<math>I_0 = {\small\frac{n}{n z}} \cdot I_1</math>
 +
 +
::<math>\;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot I_2</math>
 +
 +
::<math>\;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot I_3</math>
 +
 +
::<math>\;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot I_n</math>
 +
 +
Ponieważ
 +
 +
::<math>I_n = \int^n_0 t^{z + n - 1} \, d t = {\small\frac{n^{z + n}}{z + n}}</math>
 +
 +
to
 +
 +
::<math>I_0 = \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot {\small\frac{n^{z + n}}{z + n}}</math>
 +
 +
:::::::::<math>\;\;\;\; = {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 +
 +
Przechodząc z <math>n</math> do nieskończoności, dostajemy
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>\lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} = \lim_{n \rightarrow \infty} \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t</math>
 +
</div>
 +
 +
Co należało pokazać.
 +
 +
 +
'''Równoważność definicji iloczynowej Eulera i&nbsp;definicji Gaussa'''
 +
 +
::<math>{\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \left( 1 + {\small\frac{1}{k}} \right)^z \left( 1 + {\small\frac{z}{k}} \right)^{- 1}</math>
 +
 +
::::::::::<math>\:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{\left( 1 + {\small\frac{1}{k}} \right)^z}{1 + {\small\frac{z}{k}}}</math>
 +
 +
::::::::::<math>\:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} {\small\frac{k (k + 1)^z}{(k + z) k^z}}</math>
 +
 +
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( {\small\frac{(n + 1) !}{n!}} \right)^z</math>
 +
 +
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{(n + 1)^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 +
 +
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( 1 + {\small\frac{1}{n}} \right)^z</math>
 +
 +
::::::::::<math>\:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 +
 +
Co należało pokazać.
 +
 +
 +
'''Równoważność definicji iloczynowej Weierstrassa i&nbsp;definicji Gaussa'''
 +
 +
Stała <math>\gamma</math> jest równa
 +
 +
::<math>\gamma = \lim_{n \rightarrow \infty} \left( - \log n + \sum_{k = 1}^{n} {\small\frac{1}{k}} \right)</math>
 +
 +
Zatem
 +
 +
::<math>{\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} = z^{- 1} \cdot e^{- \gamma z} \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{e^{\tfrac{z}{k}}}{1 + \tfrac{z}{k}} \right)</math>
 +
 +
:::::::::<math>\, = z^{- 1} \cdot \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{k e^{\tfrac{z}{k}}}{z + k} \right)</math>
 +
 +
:::::::::<math>\, = \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot e^{\left( 1 + \tfrac{1}{2} + \ldots + \tfrac{1}{n} \right) z} \right)</math>
 +
 +
:::::::::<math>\, = \lim_{n \rightarrow \infty} e^{z \log n} \cdot {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 +
 +
:::::::::<math>\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 +
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D112" style="font-size: 110%; font-weight: bold;">Twierdzenie D112</span><br/>
 +
Dla funkcji <math>\Gamma (z)</math> prawdziwe są następujące wzory
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (1) = 1</math>
 +
</div>
 +
 +
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>z \Gamma (z) = \Gamma (z + 1) \qquad z \notin \mathbb{Z}_- \cup \{ 0 \}</math>
 +
</div>
 +
 +
<div style="margin-top: 1.5em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}} \qquad z \notin \mathbb{Z}</math>
 +
</div>
 +
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) \qquad 2 z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad </math> (wzór Legendre'a o&nbsp;podwajaniu)
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 +
'''Punkt 1.'''
 +
 +
::<math>\Gamma (1) = \int_{0}^{\infty} t^{1 - 1} e^{- t} d t = \int_{0}^{\infty} e^{- t} d t = - e^{- t} \biggr\rvert_{0}^{\infty} = 0 - (- 1) = 1</math>
 +
 +
'''Punkt 2.'''
 +
 +
Z definicji Gaussa funkcji <math>\Gamma (z)</math> otrzymujemy
 +
 +
::<math>\Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 +
 +
::<math>\Gamma (z + 1) = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) (z + 2) \cdot \ldots \cdot (z + n + 1)}}</math>
 +
 +
Zatem
 +
 +
::<math>z \Gamma (z) = z \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}}</math>
 +
 +
:::<math>\;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{(z + 1) \cdot \ldots \cdot (z + n)}} \cdot {\small\frac{n}{z + n + 1}} \cdot {\small\frac{z + n + 1}{n}}</math>
 +
 +
:::<math>\;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) \cdot \ldots \cdot (z + n) (z + n + 1)}} \cdot \left( 1 + {\small\frac{z + 1}{n}} \right)</math>
 +
 +
:::<math>\;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) \cdot \ldots \cdot (z + n) (z + n + 1)}} \cdot \lim_{n \rightarrow \infty} \left( 1 + {\small\frac{z + 1}{n}} \right)</math>
 +
 +
:::<math>\;\;\;\;\, = \Gamma (z + 1)</math>
 +
 +
'''Punkt 3.'''
 +
 +
Z definicji iloczynowej Eulera mamy
 +
 +
::<math>\Gamma (z) = {\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1}</math>
 +
 +
Zatem
 +
 +
::<math>{\small\frac{1}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{1}{- z \Gamma (z) \Gamma (- z)}}</math>
 +
 +
::::::<math>\; = {\small\frac{z \cdot (- z)}{- z}} \cdot \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right) \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 - {\small\frac{z}{n}} \right)</math>
 +
 +
::::::<math>\; = z \cdot \prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right)</math>
 +
 +
::::::<math>\; = {\small\frac{\sin (\pi z)}{\pi}}</math>
 +
 +
gdzie wykorzystaliśmy wzór Eulera
 +
 +
::<math>\prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right) = {\small\frac{\sin (\pi z)}{\pi z}}</math>
 +
 +
Dowód wzoru Eulera jest trudny. Elegancki dowód, ale tylko dla liczb rzeczywistych, Czytelnik znajdzie na stronie [https://proofwiki.org/wiki/Euler_Formula_for_Sine_Function/Real_Numbers#Proof_1 ProofWiki].
 +
 +
 +
'''Punkt 4.'''
 +
 +
Z definicji Gaussa funkcji gamma mamy
 +
 +
::<math>\Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{n^{2 z} n!}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + n)}}</math>
 +
 +
Jeżeli w&nbsp;powyższym równaniu położymy <math>2 n</math> zamiast <math>n</math>, to dostaniemy
 +
 +
::<math>\Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}}</math>
 +
 +
 +
Zauważmy teraz, że
 +
 +
::<math>2^{2 n + 2} [z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right] = [2 z (2 z + 2) \cdot \ldots \cdot (2 z + 2 n)] \cdot [(2 z + 1) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n + 1)]</math>
 +
 +
::::::::::::::::::::::<math>\;\;\;\,\, = 2 z (2 z + 1) (2 z + 2) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n) (2 z + 2 n + 1)</math>
 +
 +
Czyli
 +
 +
::<math>\Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}}</math>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\;\:\, = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n) (2 z + 2 n + 1)}} \cdot (2 z + 2 n + 1)</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\;\:\, = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2^{2 n + 2} [z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right]}} \cdot 2 n \left( 1 + {\small\frac{2 z + 1}{2 n}} \right)</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\;\:\, = 2^{2 z} \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot {\small\frac{n^{z + (1 / 2)} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)}} \cdot {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} \cdot \left( 1 + {\small\frac{2 z + 1}{2 n}} \right)</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:::<math>\;\;\;\:\, = 2^{2 z} \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \lim_{n \rightarrow \infty}{\small\frac{n^{z + (1 / 2)} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)}} \cdot \lim_{n \rightarrow \infty} {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} \cdot \lim_{n \rightarrow \infty} \left( 1 + {\small\frac{2 z + 1}{2 n}} \right)</math>
 +
</div>
 +
 +
:::<math>\;\;\;\:\, = 2^{2 z} \cdot \Gamma (z) \cdot \Gamma \left( z + {\small\frac{1}{2}} \right) \cdot C \cdot 1</math>
 +
 +
 +
Ponieważ wyrażenie
 +
 +
::<math>\lim_{n \rightarrow \infty} {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}}</math>
 +
 +
nie zależy od <math>z</math>, a&nbsp;wartości funkcji <math>\Gamma (2 z)</math>, <math>\Gamma (z)</math> i <math>\Gamma \left( z + {\small\frac{1}{2}} \right)</math> są określone dla <math>2 z \notin \mathbb{Z}_- \cup \{ 0 \}</math>, to powyższa granica musi być pewną stałą. Jeżeli po lewej stronie położymy <math>z = {\small\frac{1}{2}}</math>, to otrzymamy
 +
 +
::<math>\Gamma (1) = 2 \cdot \Gamma \left( {\small\frac{1}{2}} \right) \Gamma (1) \cdot C</math>
 +
 +
Czyli
 +
 +
::<math>C = {\small\frac{1}{2 \sqrt{\pi}}}</math>
 +
 +
I ostatecznie dostajemy
 +
 +
::<math>\Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right)</math>
 +
 +
 +
Przy okazji pokazaliśmy asymptotykę: <math>{\small\binom{2 n}{n}} \sim {\small\frac{2^{2 n}}{\sqrt{\pi \, n}}}</math>
 +
 +
 +
Zauważmy jeszcze, że gdy położymy <math>2 n + 1</math> zamiast <math>n</math>, to otrzymamy taki sam rezultat, bo
 +
 +
::<math>\Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n + 1)^{2 z} (2 n + 1) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n + 1)}} = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}} \cdot \left( 1 + {\small\frac{1}{2 n}} \right)^{\! 2 z} \cdot \left( {\small\frac{1}{1 + {\normalsize\frac{2 z}{2 n + 1}}}} \right)</math><br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
Ze wzorów podanych w&nbsp;twierdzeniu [[#D112|D112]] otrzymujemy<br/>
 +
<span id="D113" style="font-size: 110%; font-weight: bold;">Twierdzenie D113</span><br/>
 +
Niech <math>k \in \mathbb{Z} \;</math> i <math>\; n \in \mathbb{N}_0</math>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1.5em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( {\small\frac{1}{2}} \right) = \sqrt{\pi}</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1.5em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma (n + 1) = n!</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( z + {\small\frac{1}{2}} \right) \Gamma \left( - z + {\small\frac{1}{2}} \right) = {\small\frac{\pi}{\cos (\pi z)}} \qquad z \neq k + {\small\frac{1}{2}}</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( n + {\small\frac{1}{2}} \right) \Gamma \left( - n + {\small\frac{1}{2}} \right) = \pi \cdot (- 1)^n</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}}</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\Gamma \left( - n + {\small\frac{1}{2}} \right) = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}}</math>
 +
</div>
 +
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
:*&nbsp;&nbsp;&nbsp;<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}}</math>
 +
</div>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
 +
'''Punkt 1.'''
 +
 +
Wystarczy położyć <math>z = {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D112|D112]]
 +
 +
'''Punkt 2.'''
 +
 +
Indukcja matematyczna. Wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że jest prawdziwy dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 +
 +
::<math>\Gamma (n + 2) = (n + 1) \Gamma (n + 1) = (n + 1) n! = (n + 1) !</math>
 +
 +
Zauważmy, że funkcja <math>\Gamma (z)</math> jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych / zespolonych.
 +
 +
'''Punkt 3.'''
 +
 +
Wystarczy położyć <math>z = z' + {\small\frac{1}{2}}</math> we wzorze 3. twierdzenia [[#D112|D112]]
 +
 +
'''Punkt 4.'''
 +
 +
Wystarczy położyć <math>z = n</math> we wzorze 3. tego twierdzenia
 +
 +
'''Punkt 5.'''
 +
 +
Indukcja matematyczna. Wzór jest prawdziwy dla <math>n = 0</math>. Zakładając, że jest prawdziwy dla <math>n</math>, otrzymujemy dla <math>n + 1</math>
 +
 +
::<math>\Gamma \left( n + 1 + {\small\frac{1}{2}} \right) = \left( n + {\small\frac{1}{2}} \right) \Gamma \left( n + {\small\frac{1}{2}} \right)</math>
 +
 +
::::::<math>\;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}}</math>
 +
 +
::::::<math>\;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} \cdot 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}}</math>
 +
 +
::::::<math>\;\;\:\, = 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}}</math>
 +
 +
bo
 +
 +
::<math>\left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} = 1</math>
 +
 +
'''Punkt 6.'''
 +
 +
Ze wzoru 3. i 4. tego twierdzenia dostajemy
 +
 +
::<math>\Gamma \left( - n + {\small\frac{1}{2}} \right) = \frac{\pi \cdot (- 1)^n}{\Gamma \left( n + {\small\frac{1}{2}} \right)} = \frac{\pi \cdot (- 1)^n \cdot n!}{2^{- 2 n} \sqrt{\pi} \cdot (2 n) !} = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}}</math>
 +
 +
'''Punkt 7.'''
 +
 +
Ze wzoru Legendre'a o&nbsp;podwajaniu otrzymujemy
 +
 +
::<math>{\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( z + {\small\frac{1}{2}} \right)</math>
 +
 +
gdzie <math>z \notin \mathbb{Z}_- \cup \{ 0 \}</math>
 +
 +
Dla <math>z = - n</math> po lewej stronie mamy symbol nieoznaczony <math>{\small\frac{\infty}{\infty}}</math>, ale w&nbsp;punktach <math>z = - n</math> istnieje granica funkcji <math>{\small\frac{\Gamma (2 z)}{\Gamma (z)}}</math>
 +
 +
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( - n + {\small\frac{1}{2}} \right) = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Pokaż wykres|Hide=Ukryj wykres}}
 +
 +
Poniżej przedstawiamy wykres funkcji <math>{\small\frac{\Gamma (2 x)}{\Gamma (x)}} \cdot 10^{| x |}</math>. Uwaga: wykres funkcji <math>{\small\frac{\Gamma (2 x)}{\Gamma (x)}}</math> został celowo zniekształcony przez dodanie czynnika <math>10^{| x |}</math>, aby dało się zauważyć, że wartości granic <math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x)}{\Gamma (x)}}</math> są różne od zera dla <math>n \in \mathbb{N}_0</math>.
 +
 +
::[[File: gamma2.png|700px|none]]
 +
&#9633;
 +
{{\Spoiler}}<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D114" style="font-size: 110%; font-weight: bold;">Twierdzenie D114</span><br/>
 +
Jeżeli <math>n \in \mathbb{N}_0 \,</math> i <math>\; a \in \mathbb{Z}_+</math>, to
 +
 +
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Wiemy, że jeżeli <math>z</math> nie jest liczbą całkowitą, to prawdziwy jest wzór (zobacz [[#D112|D112]] p.3)
 +
 +
::<math>\Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}}</math>
 +
 +
Zatem
 +
 +
::<math>\Gamma (a z) \Gamma (- a z + 1) = {\small\frac{\pi}{\sin (\pi a z)}}</math>
 +
 +
Dzieląc powyższe równania przez siebie, otrzymujemy
 +
 +
::<math>{\small\frac{\Gamma (a z) \Gamma (- a z + 1)}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{\pi}{\sin (\pi a z)}} \cdot {\small\frac{\sin (\pi z)}{\pi}} = {\small\frac{\sin (\pi z)}{\sin (\pi a z)}}</math>
 +
 +
Skąd dostajemy
 +
 +
::<math>{\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (- z + 1)}{\Gamma (- a z + 1)}} \cdot {\small\frac{\sin (\pi z)}{\sin (\pi a z)}}</math>
 +
 +
Niech <math>k</math> oznacza dowolną liczbę całkowitą. W&nbsp;granicy, gdy <math>z \rightarrow k</math>, mamy
 +
 +
::<math>\lim_{z \rightarrow k} {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} = {\small\frac{\pi \cdot \cos (\pi k)}{a \pi \cdot \cos (\pi a k)}} = {\small\frac{1}{a}} \cdot {\small\frac{(- 1)^k}{(- 1)^{a k}}} = {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) k}</math>
 +
 +
gdzie skorzystaliśmy z&nbsp;reguły de l'Hospitala. Wynika stąd, że
 +
 +
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (n + 1)}{\Gamma (a n + 1)}} \cdot {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) n} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}}</math>
 +
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D115" style="font-size: 110%; font-weight: bold;">Twierdzenie D115</span><br/>
 +
Jeżeli <math>n \in \mathbb{N}_0 \,</math> i <math>\; a \in \mathbb{Z}_+</math>, to
 +
 +
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Z twierdzenia [[#D112|D112]] p.2 wynika, że
 +
 +
::<math>\Gamma (a z + a n + 1) = \Gamma (a z + 1) \cdot \prod^{a n}_{j = 1} (a z + j)</math>
 +
 +
::<math>\Gamma (b z + b n + 1) = \Gamma (b z + 1) \cdot \prod^{b n}_{j = 1} (b z + j)</math>
 +
 +
Dzieląc równania przez siebie, otrzymujemy
 +
 +
::<math>{\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (b z + b n + 1)}} \cdot \frac{\displaystyle\prod^{b n}_{j = 1} (b z + j)}{\displaystyle\prod^{a n}_{j = 1} (a z + j)} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (z + n + 1)}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (b z + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (a z + j)} \cdot {\small\frac{b}{a}}</math>
 +
 +
Zatem
 +
 +
::<math>\lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} =
 +
{\small\frac{b}{a}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (- b n + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (- a n + j)} \cdot {\small\frac{\Gamma (1)}{\Gamma (1)}} =
 +
{\small\frac{b}{a}} \cdot \frac{(- 1)^{b n - 1} \cdot \displaystyle\prod^{b n - 1}_{j = 1} (b n - j)}{(- 1)^{a n - 1} \cdot \displaystyle\prod^{a n - 1}_{j = 1} (a n - j)} =
 +
{\small\frac{b}{a}} \cdot (- 1)^{(a - b) n} \cdot {\small\frac{(b n - 1) !}{(a n - 1) !}} =
 +
(- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}}</math>
 +
 +
Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D116" style="font-size: 110%; font-weight: bold;">Zadanie D116</span><br/>
 +
Niech <math>n \in \mathbb{Z}_+ \,</math> i <math>\; g(n) = {\small\binom{2 n}{n}}</math>. Pokazać, że
 +
 +
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
 +
 +
:*&nbsp;&nbsp;&nbsp;<math>\lim_{x \rightarrow - n} g (x) = 0</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Zapiszmy funkcję <math>g(n) = {\small\binom{2 n}{n}}</math> w&nbsp;postaci
 +
 +
::<math>g(n) = {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{\Gamma (2 n + 1)}{\Gamma (n + 1)^2}}</math>
 +
 +
Możemy teraz przejść do zmiennej rzeczywistej
 +
 +
::<math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
 +
 +
bo funkcja <math>\Gamma (x)</math> jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych.
 +
 +
Korzystając z&nbsp;twierdzenia [[#D115|D115]], otrzymujemy
 +
 +
::<math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1)^n \cdot {\small\frac{n!}{(2 n) !}}</math>
 +
 +
Ale wiemy, że (zobacz [[#D111|D111]])
 +
 +
::<math>\lim_{x \rightarrow - n} {\small\frac{1}{\Gamma (x + 1)}} = 0</math>
 +
 +
Zatem
 +
 +
::<math>\lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} = 0</math>
 +
 +
Co należało pokazać i&nbsp;co jest dobrze widoczne na wykresie funkcji <math>{\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}}</math>
 +
 +
::[[File: gamma3.png|600px|none]]
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
<span id="D117" style="font-size: 110%; font-weight: bold;">Zadanie D117</span><br/>
 +
Niech <math>n \in \mathbb{N}_0 \,</math> i <math>\; g(n) = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}}</math>. Pokazać, że
 +
 +
:*&nbsp;&nbsp;&nbsp;rozszerzając funkcję <math>g(n)</math> na zbiór liczb rzeczywistych, otrzymujemy <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
 +
 +
:*&nbsp;&nbsp;&nbsp;<math>\lim_{x \rightarrow - 1} g (x) = - {\small\frac{1}{2}}</math>
 +
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Oczywiście funkcja <math>g(k)</math> nie jest określona w&nbsp;punkcie <math>k = - 1</math>
 +
 +
::<math>g(k) = {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{(2 k) !}{(k!)^2}} = {\small\frac{(2 k) !}{(k + 1) !k!}} = {\small\frac{\Gamma (2 k + 1)}{\Gamma (k + 2) \Gamma (k + 1)}}</math>
 +
 +
Jeżeli przejdziemy do zmiennej rzeczywistej
 +
 +
::<math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
 +
 +
to łatwo pokażemy, że granica funkcji <math>g(x)</math> w&nbsp;punkcje <math>x = - 1</math> istnieje i&nbsp;jest równa <math>- {\small\frac{1}{2}}</math>.
 +
 +
Z twierdzenia [[#D115|D115]] dostajemy
 +
 +
::<math>\lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1) \cdot {\small\frac{1}{2}} = - {\small\frac{1}{2}}</math>
 +
 +
Czyli
 +
 +
::<math>\lim_{x \rightarrow - 1} g (x) = \lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} = - {\small\frac{1}{2}} \cdot {\small\frac{1}{\Gamma (1)}} = - {\small\frac{1}{2}}</math>
 +
 +
 +
Co dobrze widać na wykresie funkcji <math>g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}}</math>
 +
 +
::[[File: gamma4.png|600px|none]]
 +
&#9633;
 +
{{\Spoiler}}
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
== Przypisy ==
 +
<references>
 +
 +
<ref name="DirichletEta">Wikipedia, ''Funkcja η'', ([https://pl.wikipedia.org/wiki/Funkcja_%CE%B7 Wiki-pl]), ([https://en.wikipedia.org/wiki/Dirichlet_eta_function Wiki-en])</ref>
 +
 +
<ref name="RiemannZeta">Wikipedia, ''Funkcja dzeta Riemanna'', ([https://pl.wikipedia.org/wiki/Funkcja_dzeta_Riemanna Wiki-pl]), ([https://en.wikipedia.org/wiki/Riemann_zeta_function Wiki-en])</ref>
 +
 +
<ref name="calkowalnosc1">Twierdzenie: funkcja ciągła w&nbsp;przedziale domkniętym jest całkowalna w&nbsp;tym przedziale.</ref>
 +
 +
<ref name="calkowalnosc2">W szczególności: funkcja ograniczona i&nbsp;mająca skończoną liczbę punktów nieciągłości w&nbsp;przedziale domkniętym jest w&nbsp;tym przedziale całkowalna.</ref>
 +
 +
<ref name="Mertens1">Wikipedia, ''Twierdzenia Mertensa'', ([https://pl.wikipedia.org/wiki/Twierdzenia_Mertensa Wiki-pl]), ([https://en.wikipedia.org/wiki/Mertens%27_theorems Wiki-en])</ref>
 +
 +
<ref name="Mertens2">Wikipedia, ''Franciszek Mertens'', ([https://pl.wikipedia.org/wiki/Franciszek_Mertens Wiki-pl])</ref>
 +
 +
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
 +
 +
<ref name="twierdzenie">Zobacz twierdzenie [[#D43|D43]].</ref>
 +
 +
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>
 +
 +
<ref name="A083343">The On-Line Encyclopedia of Integer Sequences, ''A083343 - Decimal expansion of constant&#32;B3 (or B_3) related to the Mertens constant'', ([https://oeis.org/A083343 A083343])</ref>
 +
 +
<ref name="A138312">The On-Line Encyclopedia of Integer Sequences, ''A138312 - Decimal expansion of Mertens's constant minus Euler's constant'', ([https://oeis.org/A138312 A138312])</ref>
 +
 +
<ref name="Dusart10">Pierre Dusart, ''Estimates of Some Functions Over Primes without R.H.'', 2010, ([https://arxiv.org/abs/1002.0442 LINK])</ref>
 +
 +
<ref name="Wiki1">Wikipedia, ''Stałe Bruna'', ([https://pl.wikipedia.org/wiki/Sta%C5%82e_Bruna Wiki-pl]), ([https://en.wikipedia.org/wiki/Brun%27s_theorem Wiki-en])</ref>
 +
 +
<ref name="A065421">The On-Line Encyclopedia of Integer Sequences, ''A065421 - Decimal expansion of Viggo Brun's constant B'', ([https://oeis.org/A065421 A065421])</ref>
 +
 +
<ref name="Erdos1">Paul Erdős, ''Über die Reihe'' <math>\textstyle \sum {\small\frac{1}{p}}</math>, Mathematica, Zutphen B 7, 1938, 1-2.</ref>
 +
 +
<ref name="sumowanie1">sumowanie przez części (ang. ''summation by parts'')</ref>
 +
 +
<ref name="convexseq1">ciąg wypukły (ang. ''convex sequence'')</ref>
 +
 +
<ref name="Dusart18">Pierre Dusart, ''Explicit estimates of some functions over primes'', The Ramanujan Journal, vol. 45(1), 2018, 227-251.</ref>
 +
 +
<ref name="GeometricSeries1">Wikipedia, ''Szereg geometryczny'', ([https://pl.wikipedia.org/wiki/Szereg_geometryczny Wiki-pl]), ([https://en.wikipedia.org/wiki/Geometric_series Wiki-en])</ref>
 +
 +
<ref name="CesaroSum1">Wikipedia, ''Sumowalność metodą Cesàro'', ([https://pl.wikipedia.org/wiki/Sumowalno%C5%9B%C4%87_metod%C4%85_Ces%C3%A0ro Wiki-pl]), ([https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation Wiki-en])</ref>
 +
 +
<ref name="IndefiniteSum1">Wikipedia, ''Indefinite sum'', ([https://en.wikipedia.org/wiki/Indefinite_sum Wiki-en])</ref>
  
 +
<ref name="Fasenmyer1">Sister Mary Celine Fasenmyer, ''Some Generalized Hypergeometric Polynomials'', Bull. Amer. Math. Soc. 53 (1947), 806-812</ref>
  
 +
<ref name="Fasenmyer2">Sister Mary Celine Fasenmyer, ''A Note on Pure Recurrence Relations'', Amer. Math. Monthly 56 (1949), 14-17</ref>
  
 +
<ref name="Zeilberger1">Doron Zeilberger, ''Sister Celine's technique and its generalizations'', Journal of Mathematical Analysis and Applications, 85 (1982), 114-145</ref>
  
== Przypisy ==
+
<ref name="WilfZeilberger1">Herbert Wilf and Doron Zeilberger, ''Rational Functions Certify Combinatorial Identities'', J. Amer. Math. Soc. 3 (1990), 147-158</ref>
<references>
 
 
 
<ref name="DirichletEta">Wikipedia, ''Funkcja η'', ([https://pl.wikipedia.org/wiki/Funkcja_%CE%B7 Wiki-pl]), ([https://en.wikipedia.org/wiki/Dirichlet_eta_function Wiki-en])</ref>
 
  
<ref name="RiemannZeta">Wikipedia, ''Funkcja dzeta Riemanna'', ([https://pl.wikipedia.org/wiki/Funkcja_dzeta_Riemanna Wiki-pl]), ([https://en.wikipedia.org/wiki/Riemann_zeta_function Wiki-en])</ref>
+
<ref name="PetkovsekWilfZeilberger1">Marko Petkovšek, Herbert Wilf and Doron Zeilberger, ''A = B'', AK Peters, Ltd., 1996</ref>
 
 
<ref name="calkowalnosc1">Twierdzenie: funkcja ciągła w&nbsp;przedziale domkniętym jest całkowalna w&nbsp;tym przedziale.</ref>
 
 
 
<ref name="calkowalnosc2">W szczególności: funkcja ograniczona i&nbsp;mająca skończoną liczbę punktów nieciągłości w&nbsp;przedziale domkniętym jest w&nbsp;tym przedziale całkowalna.</ref>
 
 
 
<ref name="Mertens1">Wikipedia, ''Twierdzenia Mertensa'', ([https://pl.wikipedia.org/wiki/Twierdzenia_Mertensa Wiki-pl]), ([https://en.wikipedia.org/wiki/Mertens%27_theorems Wiki-en])</ref>
 
 
 
<ref name="Mertens2">Wikipedia, ''Franciszek Mertens'', ([https://pl.wikipedia.org/wiki/Franciszek_Mertens Wiki-pl])</ref>
 
 
 
<ref name="Rosser1">J. B. Rosser and L. Schoenfeld, ''Approximate formulas for some functions of prime numbers'', Illinois J. Math. 6 (1962), 64-94, ([https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full LINK])</ref>
 
 
 
<ref name="twierdzenie">Zobacz twierdzenie [[#D42|D42]].</ref>
 
 
 
<ref name="A001620">The On-Line Encyclopedia of Integer Sequences, ''A001620 - Decimal expansion of Euler's constant'', ([https://oeis.org/A001620 A001620])</ref>
 
 
 
<ref name="A083343">The On-Line Encyclopedia of Integer Sequences, ''A083343 - Decimal expansion of constant&#32;B3 (or B_3) related to the Mertens constant'', ([https://oeis.org/A083343 A083343])</ref>
 
 
 
<ref name="A138312">The On-Line Encyclopedia of Integer Sequences, ''A138312 - Decimal expansion of Mertens's constant minus Euler's constant'', ([https://oeis.org/A138312 A138312])</ref>
 
 
 
<ref name="Dusart10">Pierre Dusart, ''Estimates of Some Functions Over Primes without R.H.'', 2010, ([https://arxiv.org/abs/1002.0442 LINK])</ref>
 
 
 
<ref name="Wiki1">Wikipedia, ''Stałe Bruna'', ([https://pl.wikipedia.org/wiki/Sta%C5%82e_Bruna Wiki-pl]), ([https://en.wikipedia.org/wiki/Brun%27s_theorem Wiki-en])</ref>
 
 
 
<ref name="A065421">The On-Line Encyclopedia of Integer Sequences, ''A065421 - Decimal expansion of Viggo Brun's constant B'', ([https://oeis.org/A065421 A065421])</ref>
 
 
 
<ref name="Erdos1">Paul Erdős, ''Über die Reihe'' <math>\textstyle \sum {\small\frac{1}{p}}</math>, Mathematica, Zutphen B 7, 1938, 1-2.</ref>
 
 
 
<ref name="sumowanie1">sumowanie przez części (ang. ''summation by parts'')</ref>
 
 
 
<ref name="convexseq1">ciąg wypukły (ang. ''convex sequence'')</ref>
 
 
 
<ref name="Dusart18">Pierre Dusart, ''Explicit estimates of some functions over primes'', The Ramanujan Journal, vol. 45(1), 2018, 227-251.</ref>
 
 
 
<ref name="GeometricSeries1">Wikipedia, ''Szereg geometryczny'', ([https://pl.wikipedia.org/wiki/Szereg_geometryczny Wiki-pl]), ([https://en.wikipedia.org/wiki/Geometric_series Wiki-en])</ref>
 
 
 
<ref name="CesaroSum1">Wikipedia, ''Sumowalność metodą Cesàro'', ([https://pl.wikipedia.org/wiki/Sumowalno%C5%9B%C4%87_metod%C4%85_Ces%C3%A0ro Wiki-pl]), ([https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation Wiki-en])</ref>
 
  
 
<ref name="JovanMikic1">Jovan Mikić, ''A Proof of a&nbsp;Famous Identity Concerning the Convolution of the Central Binomial Coefficients'', Journal of Integer Sequences, Vol. 19, No. 6 (2016), pp. 1 - 10, ([https://cs.uwaterloo.ca/journals/JIS/VOL19/Mikic2/mikic15.html LINK])</ref>
 
<ref name="JovanMikic1">Jovan Mikić, ''A Proof of a&nbsp;Famous Identity Concerning the Convolution of the Central Binomial Coefficients'', Journal of Integer Sequences, Vol. 19, No. 6 (2016), pp. 1 - 10, ([https://cs.uwaterloo.ca/journals/JIS/VOL19/Mikic2/mikic15.html LINK])</ref>

Aktualna wersja na dzień 13:05, 10 gru 2025

07.04.2022



Szeregi nieskończone

Definicja D1
Sumę wszystkich wyrazów ciągu nieskończonego [math]\displaystyle{ (a_n) }[/math]

[math]\displaystyle{ a_1 + a_2 + a_3 + \ldots + a_n + \ldots = \sum_{k = 1}^{\infty} a_k }[/math]

nazywamy szeregiem nieskończonym o wyrazach [math]\displaystyle{ a_n }[/math].


Definicja D2
Ciąg [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] nazywamy ciągiem sum częściowych szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math].


Definicja D3
Szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] będziemy nazywali zbieżnym, jeżeli ciąg sum częściowych [math]\displaystyle{ \left ( S_n \right ) }[/math] jest zbieżny.


Twierdzenie D4 (warunek konieczny zbieżności szeregu)
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest zbieżny, to [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math].

Dowód

Niech [math]\displaystyle{ S_n = \sum_{k = 1}^{n} a_k }[/math] będzie ciągiem sum częściowych, wtedy [math]\displaystyle{ a_{n + 1} = S_{n + 1} - S_n }[/math]. Z założenia ciąg [math]\displaystyle{ (S_n) }[/math] jest zbieżny, zatem

[math]\displaystyle{ \lim_{n \to \infty} a_{n + 1} = \lim_{n \to \infty} \left ( S_{n+1} - S_{n} \right ) = \lim_{n \to \infty} S_{n + 1} - \lim_{n \to \infty} S_n = 0 }[/math]


Okazuje się, że bardzo łatwo podać przykład szeregów, dla których warunek [math]\displaystyle{ \lim_{n \to \infty} a_n = 0 }[/math] jest warunkiem wystarczającym. Opisany w poniższym twierdzeniu rodzaj szeregów nazywamy szeregami naprzemiennymi.
Twierdzenie D5 (kryterium Leibniza)
Niech ciąg [math]\displaystyle{ (a_n) }[/math] będzie ciągiem malejącym o wyrazach nieujemnych. Jeżeli

[math]\displaystyle{ \underset{n \rightarrow \infty}{\lim} a_n = 0 }[/math]

to szereg [math]\displaystyle{ \underset{k = 1}{\overset{\infty}{\sum}} (- 1)^{k + 1} \cdot a_k }[/math] jest zbieżny.

Dowód

Grupując wyrazy szeregu po dwa, otrzymujemy sumę częściową postaci

[math]\displaystyle{ S_{2 m} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2 m - 1} - a_{2 m}) }[/math]

Ponieważ ciąg [math]\displaystyle{ (a_n) }[/math] jest ciągiem malejącym, to każde wyrażenie w nawiasie jest liczbą nieujemną. Z drugiej strony

[math]\displaystyle{ S_{2 m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \ldots - (a_{2 m - 2} - a_{2 m - 1}) {- a_{2 m}} \lt a_1 }[/math]

Zatem dla każdego [math]\displaystyle{ m }[/math] ciąg sum częściowych [math]\displaystyle{ S_{2 m} }[/math] jest rosnący i ograniczony od góry, skąd na mocy twierdzenia C12 jest zbieżny, czyli

[math]\displaystyle{ \lim_{m \to \infty} S_{2 m} = g }[/math]

Pozostaje zbadać sumy częściowe [math]\displaystyle{ S_{2 m + 1} }[/math]. Rezultat jest natychmiastowy

[math]\displaystyle{ \lim_{m \to \infty} S_{2 m + 1} = \lim_{m \to \infty} (S_{2 m} + a_{2 m + 1}) = \lim_{m \to \infty} S_{2 m} + \lim_{m \to \infty} a_{2 m + 1} = g + 0 = g }[/math]

Co kończy dowód.


Twierdzenie D6
Szereg harmoniczny naprzemienny [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} }[/math] jest zbieżny i

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 }[/math]
Dowód

Zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} }[/math] wynika natychmiast z kryterium Leibniza (D5). Sumę szeregu trudniej policzyć – przedstawiony niżej sposób korzysta z własności całek

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt }[/math]

gdzie [math]\displaystyle{ n \geqslant 0 }[/math]. Przykładowo

[math]\displaystyle{ I_0 = \int_0^1 {\small\frac{1}{1 + t^2}} dt = \operatorname{arctg}(t) \biggr\rvert_{0}^{1} = {\small\frac{\pi}{4}} \approx 0.785398 \ldots }[/math]
[math]\displaystyle{ I_1 = \int_0^1 {\small\frac{t}{1 + t^2}} dt = {\small\frac{1}{2}} \int_0^1 {\small\frac{2 t}{1 + t^2}} d t = {\small\frac{1}{2}} \int_0^1 {\small\frac{du}{1 + u}} = {\small\frac{1}{2}} \biggr[ \log (1 + u) \biggr\rvert_{0}^{1} \biggr] = {\small\frac{1}{2}} \cdot \log 2 \approx 0.34657 \ldots }[/math]
[math]\displaystyle{ I_2 = \int_0^1 {\small\frac{t^2}{1 + t^2}} dt = \int_0^1 {\small\frac{1 + t^2 - 1}{1 + t^2}} dt = \int_0^1 dt - \int_0^1 {\small\frac{1}{1 + t^2}} dt = 1 - {\small\frac{\pi}{4}} \approx 0.21460 \ldots }[/math]


Udowodnimy kolejno, że

1. [math]\displaystyle{ \qquad {\small\frac{1}{2 n + 2}} \leqslant I_n \leqslant {\small\frac{1}{n + 1}} \qquad \qquad \;\; \text{dla} \;\; n \geqslant 0 }[/math]
2. [math]\displaystyle{ \qquad I_n = {\small\frac{1}{n - 1}} - I_{n - 2} \qquad \qquad \qquad \text{dla} \;\; n \geqslant 2 }[/math]
3. [math]\displaystyle{ \qquad I_{2 n + 1} = (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) \qquad \qquad \text{dla} \;\; n \geqslant 0 }[/math]
4. [math]\displaystyle{ \qquad \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k}} = \log 2 }[/math]


Punkt 1.

Zauważmy, że w przedziale [math]\displaystyle{ [0, 1] }[/math] mamy [math]\displaystyle{ 1 \leqslant 1 + t^2 \leqslant 2 }[/math], zatem [math]\displaystyle{ {\small\frac{1}{2}} \leqslant {\small\frac{1}{1 + t^2}} \leqslant 1 }[/math]. Wynika stąd oszacowanie od góry

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt \leqslant \int_0^1 t^n dt = {\small\frac{1}{n + 1}} }[/math]

I oszacowanie od dołu

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt \geqslant \int_0^1 {\small\frac{t^n}{2}} dt = {\small\frac{1}{2}} \int_0^1 t^n dt = {\small\frac{1}{2 n + 2}} }[/math]

Co kończy dowód punktu 1.


Punkt 2.

Mamy

[math]\displaystyle{ I_n = \int_0^1 {\small\frac{t^n}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = \int_0^1 {\small\frac{t^{n - 2} \cdot t^2}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = \int_0^1 {\small\frac{t^{n - 2} \cdot [(1 + t^2) - 1]}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = \int_0^1 t^{n - 2} dt- \int_0^1 {\small\frac{t^{n - 2}}{1 + t^2}} dt }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{1}{n - 1}} - I_{n - 2} }[/math]

Otrzymaliśmy wzór rekurencyjny prawdziwy dla [math]\displaystyle{ n \geqslant 2 }[/math]

[math]\displaystyle{ I_n = {\small\frac{1}{n - 1}} - I_{n - 2} }[/math]


Punkt 3.

Korzystając ze znalezionego wzoru rekurencyjnego oraz indukcji matematycznej udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ I_{2 n + 1} = (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]

Sprawdzamy poprawność wzoru dla [math]\displaystyle{ n = 1 }[/math]. Z dowodzonego wzoru otrzymujemy

[math]\displaystyle{ I_3 = \sum_{k = 1}^1 {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 = {\small\frac{1}{2}} - I_1 }[/math]

A ze wzoru rekurencyjnego dostajemy identyczny wzór

[math]\displaystyle{ I_3 = {\small\frac{1}{2}} - I_1 }[/math]


Załóżmy (złożenie indukcyjne), że dowodzony wzór jest prawdziwy dla [math]\displaystyle{ n }[/math], dla [math]\displaystyle{ n + 1 }[/math] mamy

[math]\displaystyle{ I_{2 n + 3} = (- 1)^{n + 2} \left( \sum_{k = 1}^{n + 1} {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]
[math]\displaystyle{ \;\;\;\: = (- 1)^{n + 2} \left( {\small\frac{(- 1)^{n + 2}}{2 n + 2}} + \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{2 n + 2}} - (- 1)^{n + 1} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{(2 n + 3) - 1}} - I_{2 n + 1} }[/math]

Ostatnia równość wynika z założenia indukcyjnego. Pokazaliśmy, że dowodzony wzór jest prawdziwy dla [math]\displaystyle{ n + 1 }[/math], co kończy dowód indukcyjny.


Punkt 4.

Z punktu 1. wynika ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{4 (n + 1)}} \leqslant I_{2 n + 1} \leqslant {\small\frac{1}{2 (n + 1)}} }[/math]

Z twierdzenia o trzech ciągach i twierdzenia C9 wynika natychmiast

[math]\displaystyle{ \lim_{n \rightarrow \infty} I_{2 n + 1} = 0 = \lim_{n \rightarrow \infty} | I_{2 n + 1} | }[/math]

Zatem z punktu 3. mamy

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right| = 0 }[/math]

Czyli

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left( \sum_{k = 1}^n {\small\frac{(- 1)^{k + 1}}{2 k}} - I_1 \right) = 0 }[/math]

Skąd natychmiast dostajemy, że

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{2 k}} = I_1 = {\small\frac{\log 2}{2}} }[/math]

Mnożąc obie strony przez [math]\displaystyle{ 2 }[/math], otrzymujemy dowodzony wzór. Co należało pokazać.


Twierdzenie D7
Dla [math]\displaystyle{ s \gt 1 }[/math] prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
Dowód

Zauważmy, że założenie [math]\displaystyle{ s \gt 1 }[/math] zapewnia zbieżność szeregu po prawej stronie. Zapiszmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math] w postaci sumy dla [math]\displaystyle{ k }[/math] parzystych i nieparzystych

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} = 1 + {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} + {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} + \ldots }[/math]
[math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
[math]\displaystyle{ \: = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} + {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

Otrzymujemy wzór

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]


Podobnie rozpiszmy szereg naprzemienny

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} = 1 - {\small\frac{1}{2^s}} + {\small\frac{1}{3^s}} - {\small\frac{1}{4^s}} + {\small\frac{1}{5^s}} - \ldots }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} - \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k)^s}} }[/math]
[math]\displaystyle{ \;\;\,\, = (1 - 2^{- s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} - {\small\frac{1}{2^s}} \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
[math]\displaystyle{ \;\;\,\, = (1 - 2^{1 - s}) \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

gdzie skorzystaliśmy ze znalezionego wyżej wzoru dla sumy szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(2 k - 1)^s}} }[/math]


Przykład D8
Szeregi niekończone często definiują ważne funkcje. Dobrym przykładem może być funkcja eta Dirichleta[1], którą definiuje szereg naprzemienny

[math]\displaystyle{ \eta (s) = \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math]

lub funkcja dzeta Riemanna[2], którą definiuje inny szereg

[math]\displaystyle{ \zeta (s) = \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]

Na podstawie twierdzenia D7 funkcje te są związane wzorem

[math]\displaystyle{ \eta (s) = (1 - 2^{1 - s}) \zeta (s) }[/math]

Dla [math]\displaystyle{ s \in \mathbb{R}_+ }[/math] funkcja eta Dirichleta jest zbieżna. Możemy ją wykorzystać do znajdowania sumy szeregu naprzemiennego [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{(- 1)^{k + 1}}{k^s}} }[/math].


Twierdzenie D9
Niech [math]\displaystyle{ N \in \mathbb{Z}_+ }[/math]. Szeregi [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N}^{\infty} a_k }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. W przypadku zbieżności zachodzi związek

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \left ( a_1 + a_2 + \ldots + a_{N - 1} \right ) + \sum_{k = N}^{\infty} a_k }[/math]
Dowód

Niech [math]\displaystyle{ S(n) =\sum_{k = 1}^{n} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant 1 }[/math]) oznacza sumę częściową pierwszego szeregu, a [math]\displaystyle{ T(n) = \sum_{k = N}^{\infty} a_k }[/math] (gdzie [math]\displaystyle{ n \geqslant N }[/math]) oznacza sumę częściową drugiego szeregu. Dla [math]\displaystyle{ n \geqslant N }[/math] mamy

[math]\displaystyle{ S(n) = (a_1 + a_2 + \ldots + a_{N - 1}) + T (n) }[/math]

Widzimy, że dla [math]\displaystyle{ n }[/math] dążącego do nieskończoności zbieżność (rozbieżność) jednego ciągu implikuje zbieżność (rozbieżność) drugiego.


Twierdzenie D10 (kryterium porównawcze)
Jeżeli istnieje taka liczba całkowita [math]\displaystyle{ N_0 }[/math], że dla każdego [math]\displaystyle{ k \gt N_0 }[/math] jest spełniony warunek

[math]\displaystyle{ 0 \leqslant a_k \leqslant b_k }[/math]

to

  1.    zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] pociąga za sobą zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]
  2.    rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] pociąga za sobą rozbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math]
Dowód

Dowód przeprowadzimy dla szeregów [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math], które są (odpowiednio) jednocześnie zbieżne lub jednocześnie rozbieżne z szeregami [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math].

Punkt 1.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest zbieżny. Niech [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k = b }[/math], zatem z założonych w twierdzeniu nierówności dostajemy

[math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k \leqslant b }[/math]

Zauważmy, że ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] jest ciągiem rosnącym (bo [math]\displaystyle{ a_k \geqslant 0 }[/math]) i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ \left ( A_n \right ) }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest zbieżny.

Punkt 2.
Z założenia szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny, a z założonych w twierdzeniu nierówności dostajemy

[math]\displaystyle{ 0 \leqslant \sum_{k = N_0}^{n} a_k \leqslant \sum_{k = N_0}^{n} b_k }[/math]

Rosnący ciąg sum częściowych [math]\displaystyle{ A_n = \sum_{k = N_0}^{n} a_k }[/math] nie może być ograniczony od góry, bo przeczyłoby to założeniu, że szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} a_k }[/math] jest rozbieżny. Wynika stąd i z wypisanych wyżej nierówności, że również ciąg sum częściowych [math]\displaystyle{ B_n = \sum_{k = N_0}^{n} b_k }[/math] nie może być ograniczony od góry, zatem szereg [math]\displaystyle{ \sum_{k = N_0}^{\infty} b_k }[/math] jest rozbieżny.


Twierdzenie D11
Jeżeli szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} \left | a_k \right | }[/math] jest zbieżny, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math] jest również zbieżny.

Dowód

Niech [math]\displaystyle{ b_k = a_k + | a_k | }[/math]. Z definicji prawdziwe jest następujące kryterium porównawcze

[math]\displaystyle{ 0 \leqslant b_k \leqslant 2 | a_k | }[/math]

Zatem z punktu 1. twierdzenia D10 wynika, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} b_k }[/math] jest zbieżny. Z definicji wyrazów ciągu [math]\displaystyle{ \left ( b_k \right ) }[/math] mamy [math]\displaystyle{ a_k = b_k - | a_k | }[/math] i możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{\infty} a_k = \sum_{k = 1}^{\infty} b_k - \sum_{k = 1}^{\infty} | a_k | }[/math]

Ponieważ szeregi po prawej stronie są zbieżne, to zbieżny jest też szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math]. Zauważmy, że jedynie w przypadku, gdyby obydwa szeregi po prawej stronie były rozbieżne, nie moglibyśmy wnioskować o zbieżności / rozbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k }[/math], bo suma szeregów rozbieżnych może być zbieżna.


Definicja D12
Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest zbieżny.

Powiemy, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest warunkowo zbieżny, jeżeli szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest zbieżny, ale szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | a_n | }[/math] jest rozbieżny.


Twierdzenie D13
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Jeżeli wyrazy ciągu [math]\displaystyle{ (a_n) }[/math] można zapisać w jednej z postaci

  1. [math]\displaystyle{ \quad a_k = f_k - f_{k + 1} }[/math]
  2. [math]\displaystyle{ \quad a_k = f_{k - 1} - f_k }[/math]

to odpowiadający temu ciągowi szereg nazywamy szeregiem teleskopowym. Suma częściowa szeregu teleskopowego jest odpowiednio równa

  1. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_m - f_{n + 1} }[/math]
  2. [math]\displaystyle{ \quad \sum_{k = m}^{n} a_k = f_{m - 1} - f_n }[/math]
Dowód
[math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_k - f_{k + 1}) = }[/math]
[math]\displaystyle{ = (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + (f_{m + 2} - f_{m + 3}) + \ldots + (f_{n - 1} - f_n) + (f_n - f_{n + 1}) }[/math]
[math]\displaystyle{ = f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + f_{m + 2} - f_{m + 3} + \ldots + f_{n - 1} - f_n + f_n - f_{n + 1} }[/math]
[math]\displaystyle{ = f_m + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + f_{m + 2}) + (- f_{m + 3} + \ldots + f_{n - 1}) + (- f_n + f_n) - f_{n + 1} }[/math]
[math]\displaystyle{ = f_m - f_{n + 1} }[/math]


[math]\displaystyle{ \sum_{k = m}^{n} a_k = \sum_{k = m}^{n} (f_{k - 1} - f_k) = }[/math]
[math]\displaystyle{ = (f_{m - 1} - f_m) + (f_m - f_{m + 1}) + (f_{m + 1} - f_{m + 2}) + \ldots + (f_{n - 2} - f_{n - 1}) + (f_{n - 1} - f_n) }[/math]
[math]\displaystyle{ = f_{m - 1} - f_m + f_m - f_{m + 1} + f_{m + 1} - f_{m + 2} + \ldots + f_{n - 2} - f_{n - 1} + f_{n - 1} - f_n }[/math]
[math]\displaystyle{ = f_{m - 1} + (- f_m + f_m) + (- f_{m + 1} + f_{m + 1}) + (- f_{m + 2} + \ldots + f_{n - 2}) + (- f_{n - 1} + f_{n - 1}) - f_n }[/math]
[math]\displaystyle{ = f_{m - 1} - f_n }[/math]


Twierdzenie D14
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Dla dowodu wykorzystamy fakt, że rozpatrywany szereg jest szeregiem teleskopowym

[math]\displaystyle{ {\small\frac{1}{k (k + 1)}} = {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} }[/math]

Zatem

[math]\displaystyle{ \sum^n_{k = 1} {\small\frac{1}{k (k + 1)}} = \sum^n_{k = 1} \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) = 1 - {\small\frac{1}{n + 1}} }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \sum^{\infty}_{k = 1} {\small\frac{1}{k (k + 1)}} = 1 }[/math]

Punkt 2.
Szereg jest identyczny z szeregiem z punktu 1., co łatwo zauważyć zmieniając zmienną sumowania [math]\displaystyle{ k = s + 1 }[/math] i odpowiednio granice sumowania.

Punkt 3.
Należy skorzystać z tożsamości

[math]\displaystyle{ {\small\frac{1}{k^2 - 1}} = {\small\frac{1}{2}} \left[ \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) + \left( {\small\frac{1}{k - 1}} - {\small\frac{1}{k}} \right) \right] }[/math]

Punkt 4.
Ponieważ dla [math]\displaystyle{ k \geqslant 2 }[/math] prawdziwa jest nierówność

[math]\displaystyle{ 0 \lt {\small\frac{1}{k^2}} \lt {\small\frac{1}{k^2 - 1}} }[/math]

to na mocy kryterium porównawczego (twierdzenie D10) ze zbieżności szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{1}{k^2 - 1}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]


Twierdzenie D15
Następujące szeregi są zbieżne

Dowód

Punkt 1.

Wystarczy zauważyć, że

[math]\displaystyle{ {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} = {\small\frac{\sqrt{k + 1} - \sqrt{k}}{\sqrt{k} \cdot \sqrt{k + 1}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot \left( \sqrt{k + 1} + \sqrt{k} \right)}} }[/math]
[math]\displaystyle{ \:\, \gt {\small\frac{1}{\sqrt{k} \cdot \sqrt{k + 1} \cdot 2 \sqrt{k + 1}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^n {\small\frac{1}{(k + 1) \sqrt{k}}} = 2 \sum_{k = 1}^n {\small\frac{1}{2 (k + 1) \sqrt{k}}} }[/math]
[math]\displaystyle{ \:\, \lt 2 \sum_{k = 1}^n \left( {\small\frac{1}{\sqrt{k}}} - {\small\frac{1}{\sqrt{k + 1}}} \right) }[/math]
[math]\displaystyle{ \:\, = 2 \left( 1 - {\small\frac{1}{\sqrt{n + 1}}} \right) }[/math]
[math]\displaystyle{ \:\, \lt 2 }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.

Punkt 2.
Korzystając z twierdzenia A40 p.4, możemy napisać oszacowanie

[math]\displaystyle{ 0 \lt {\small\frac{\log k}{k (k + 1)}} \lt {\small\frac{\sqrt{k}}{k (k + 1)}} = {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]

Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math] wynika zbieżność szeregu [math]\displaystyle{ \sum^{\infty}_{k = 2} {\small\frac{\log k}{k (k + 1)}} }[/math]

Punkt 3.
Zauważmy, że

[math]\displaystyle{ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} = {\small\frac{k \log (k - 1) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{k \log \left( k \left( 1 - {\normalsize\frac{1}{k}} \right) \right) - (k - 1) \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{k \log (k) + k \log \left( 1 - {\normalsize\frac{1}{k}} \right) - k \log (k) + \log (k)}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{\log (k) - k \cdot {\normalsize\frac{1}{k - 1}}}{k (k - 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log (k)}{k (k - 1)}} - {\small\frac{1}{(k - 1)^2}} }[/math]

Czyli prawdziwe jest oszacowanie

[math]\displaystyle{ {\small\frac{\log (k)}{k (k - 1)}} \lt \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + {\small\frac{1}{(k - 1)^2}} }[/math]

Zatem możemy napisać

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\log (k)}{k (k - 1)}} \lt \sum_{k = 2}^{n} \left[ {\small\frac{\log (k - 1)}{k - 1}} - {\small\frac{\log (k)}{k}} \right] + \sum_{k = 2}^{n} {\small\frac{1}{(k - 1)^2}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt - {\small\frac{\log (n)}{n}} + \sum_{j = 1}^{n - 1} {\small\frac{1}{j^2}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt \sum_{j = 1}^{\infty} {\small\frac{1}{j^2}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\pi^2}{6}} }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.

Punkt 4.
Zauważmy, że

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log (k + 1) - \log (k)}{\log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log (k) \log (k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]

Z drugiej strony mamy

[math]\displaystyle{ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} = {\small\frac{\log (k) - \log (k - 1)}{\log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k - 1}} \right)}{\log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log (k - 1) \log (k)}} }[/math]
[math]\displaystyle{ \;\;\;\, \gt {\small\frac{1}{k \cdot \log^2 \! k}} }[/math]

Wynika stąd następujący ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 \! k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]


Rezultat ten wykorzystamy w pełni w przykładzie D16, a do pokazania zbieżności szeregu wystarczy nam prawa nierówność. Mamy

[math]\displaystyle{ \sum_{k = 3}^{n} {\small\frac{1}{k \cdot \log^2 \! k}} \lt \sum_{k = 3}^{n} \left[ {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right] }[/math]
[math]\displaystyle{ \;\;\;\, = {\small\frac{1}{\log 2}} - {\small\frac{1}{\log (n)}} }[/math]
[math]\displaystyle{ \;\;\;\, \lt {\small\frac{1}{\log 2}} }[/math]

Ponieważ ciąg sum częściowych szeregu jest rosnący i ograniczony, to szereg jest zbieżny.


Przykład D16
Na przykładzie szeregu [math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math] pokażemy, jak należy obliczać przybliżoną wartość sumy szeregu.

Ponieważ nie jesteśmy w stanie zsumować nieskończenie wielu wyrazów, zatem najlepiej będzie podzielić szereg na dwie części

[math]\displaystyle{ \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} = \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} + \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Wartość pierwszej części możemy policzyć bezpośrednio, a dla drugiej części powinniśmy znaleźć jak najlepsze oszacowanie.

Dowodząc twierdzenie D15, w punkcie 4. pokazaliśmy, że prawdziwy jest ciąg nierówności

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \lt {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} }[/math]


Wykorzystamy powyższy wzór do znalezienia potrzebnego nam oszacowania. Sumując strony nierówności, dostajemy

[math]\displaystyle{ \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = m + 1}^{n} \left( {\small\frac{1}{\log (k - 1)}} - {\small\frac{1}{\log (k)}} \right) }[/math]


Ponieważ szeregi po lewej i po prawej stronie są szeregami teleskopowymi, to łatwo znajdujemy, że

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} - {\small\frac{1}{\log (n + 1)}} \lt \sum_{k = m + 1}^{n} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} - {\small\frac{1}{\log n}} }[/math]


Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy oszacowanie

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} \lt \sum_{k = m + 1}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} }[/math]


Teraz pozostaje dodać sumę wyrazów szeregu od [math]\displaystyle{ k = 3 }[/math] do [math]\displaystyle{ k = m }[/math]

[math]\displaystyle{ {\small\frac{1}{\log (m + 1)}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} \lt \sum_{k = 3}^{\infty} {\small\frac{1}{k \cdot \log^2 k}} \lt {\small\frac{1}{\log m}} + \sum_{k = 3}^{m} {\small\frac{1}{k \cdot \log^2 k}} }[/math]


Poniżej przedstawiamy wartości oszacowania sumy szeregu znalezione przy pomocy programu PARI/GP dla kolejnych wartości [math]\displaystyle{ m }[/math]. Wystarczy proste polecenie

for(n = 1, 8, s = sum( k = 3, 10^n, 1/k/(log(k))^2 ); print( "n= ", n, "   a= ", s + 1/log(10^n+1), "   b= ", s + 1/log(10^n) ))

Dysponując oszacowaniem reszty szeregu, znaleźliśmy wartość sumy szeregu z dokładnością 10 miejsc po przecinku.

Natomiast samo zsumowanie [math]\displaystyle{ 10^8 }[/math] wyrazów szeregu daje wynik

[math]\displaystyle{ \sum_{k = 3}^{10^8} {\small\frac{1}{k \cdot \log^2 k}} = 1.014 771 500 510 916 \ldots }[/math]

Zatem mimo zsumowania stu milionów(!) wyrazów szeregu otrzymaliśmy rezultat z dokładnością jednego(!) miejsca po przecinku. Co więcej, nie wiemy, jaka jest dokładność uzyskanego rezultatu. Znając oszacowanie od dołu i od góry, dokładność jednego miejsca po przecinku uzyskaliśmy po zsumowaniu dziesięciu(!) wyrazów szeregu.

Rozpatrywana wyżej sytuacja pokazuje, że w przypadku znajdowania przybliżonej wartości sumy szeregu ważniejsze od sumowania ogromnej ilości wyrazów jest posiadanie oszacowania nieskończonej reszty szeregu. Ponieważ wyznaczenie tego oszacowania na ogół nie jest proste, pokażemy jak ten problem rozwiązać przy pomocy całki oznaczonej.



Szeregi nieskończone i całka oznaczona

Twierdzenie D17
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, n + 1] }[/math], to prawdziwy jest następujący ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f(x) d x \leqslant \sum_{k = m}^{n} f(k) \leqslant f (m) + \int_{m}^{n} f(x) d x }[/math]
Dowód

Ponieważ funkcja [math]\displaystyle{ f(x) }[/math] jest z założenia ciągła, dodatnia i malejąca, to zamieszczony niżej rysunek dobrze prezentuje problem.

D Szereg-i-calka-1.png

Przedstawiona na rysunku krzywa odpowiada funkcji [math]\displaystyle{ f(x) }[/math]. Dla współrzędnej [math]\displaystyle{ x = k }[/math] zaznaczyliśmy wartość funkcji [math]\displaystyle{ f(k) }[/math], a po lewej i prawej stronie tych punktów zaznaczyliśmy pasy o jednostkowej szerokości. Łatwo zauważamy, że

  • po lewej stronie pole pod krzywą (zaznaczone kolorem zielonym) jest większe od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości
  • po prawej stronie pole pod krzywą (zaznaczone kolorem niebieskim) jest mniejsze od pola prostokąta o wysokości [math]\displaystyle{ f(k) }[/math] i jednostkowej szerokości

Korzystając z własności całki oznaczonej, otrzymujemy ciąg nierówności

[math]\displaystyle{ \int_{k}^{k + 1} f(x) d x \leqslant f(k) \leqslant \int_{k - 1}^{k} f(x) d x }[/math]

W powyższym wzorze występują nierówności nieostre, bo rysunek przedstawia funkcję silnie malejącą, ale zgodnie z uczynionym założeniem funkcja [math]\displaystyle{ f(x) }[/math] może być funkcją słabo malejącą.

Sumując lewą nierówność od [math]\displaystyle{ k = m }[/math] do [math]\displaystyle{ k = n }[/math], a prawą od [math]\displaystyle{ k = m + 1 }[/math] do [math]\displaystyle{ k = n }[/math], dostajemy

[math]\displaystyle{ \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) }[/math]
[math]\displaystyle{ \sum_{k = m + 1}^{n} f (k) \leqslant \int_{m}^{n} f (x) d x }[/math]

Dodając [math]\displaystyle{ f(m) }[/math] do obydwu stron drugiej z powyższych nierówności i łącząc je ze sobą, otrzymujemy kolejny i docelowy ciąg nierówności

[math]\displaystyle{ 0 \leqslant \int_{m}^{n + 1} f (x) d x \leqslant \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]


Przykład D18
Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math].

Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math] jest ciągła, dodatnia i silnie malejąca w przedziale [math]\displaystyle{ (0, + \infty) }[/math], zatem dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \int_{1}^{n + 1} {\small\frac{d x}{x}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \int_{1}^{n} {\small\frac{d x}{x}} }[/math]

Przy obliczaniu całek oznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

[math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]

Ponieważ

[math]\displaystyle{ \log (n + 1) = \log \left( n \left( 1 + {\small\frac{1}{n}} \right) \right) = \log n + \log \left( 1 + {\small\frac{1}{n}} \right) \gt \log n + {\small\frac{1}{n + 1}} }[/math]

to dostajemy

[math]\displaystyle{ {\small\frac{1}{n + 1}} \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \lt 1 }[/math]

Zauważmy: nie tylko wiemy, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k}} }[/math] jest rozbieżny, ale jeszcze potrafimy określić, jaka funkcja tę rozbieżność opisuje! Mamy zatem podstawy, by przypuszczać, że całki umożliwią opracowanie metody, która pozwoli rozstrzygać o zbieżności szeregów.



Twierdzenie D19 (kryterium całkowe zbieżności szeregów)
Załóżmy, że funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny lub rozbieżny w zależności od tego, czy funkcja pierwotna [math]\displaystyle{ F(x) = \int f (x) d x }[/math] ma dla [math]\displaystyle{ x \rightarrow \infty }[/math] granicę skończoną, czy nie.

Dowód

Nim przejdziemy do dowodu, wyjaśnimy uczynione założenia. Założenie, że funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, będzie wykorzystane w czasie dowodu twierdzenia, ale rozważanie przypadku, gdy [math]\displaystyle{ f(x) }[/math] jest rosnąca, nie ma sensu, bo wtedy nie mógłby być spełniony warunek konieczny zbieżności szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] (zobacz twierdzenie D4).

Moglibyśmy założyć bardziej ogólnie, że funkcja jest nieujemna, ale wtedy twierdzenie obejmowałoby przypadki funkcji takich, że dla pewnego [math]\displaystyle{ x_0 }[/math] byłoby [math]\displaystyle{ f(x_0) = 0 }[/math]. Ponieważ z założenia funkcja [math]\displaystyle{ f(x) }[/math] jest malejąca, zatem mielibyśmy [math]\displaystyle{ f(x) = 0 }[/math] dla [math]\displaystyle{ x \geqslant x_0 }[/math]. Odpowiadający tej funkcji szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] miałby dla [math]\displaystyle{ k \geqslant x_0 }[/math] tylko wyrazy zerowe i byłby w sposób oczywisty zbieżny.

Założenie ciągłości funkcji [math]\displaystyle{ f(x) }[/math] ma zapewnić całkowalność funkcji [math]\displaystyle{ f(x) }[/math][3]. Założenie to można osłabić[4], tutaj ograniczymy się tylko do podania przykładów. Niech [math]\displaystyle{ a, b \in \mathbb{R} }[/math], mamy

[math]\displaystyle{ \int_a^b \text{sgn}(x) d x = | b | - | a | }[/math] [math]\displaystyle{ \qquad \qquad \int_0^a \lfloor x \rfloor d x = {\small\frac{1}{2}} \lfloor a \rfloor (2 a - \lfloor a \rfloor - 1) }[/math] [math]\displaystyle{ \qquad \qquad \int_{-a}^a \lfloor x \rfloor d x = - a }[/math]


Po tych uwagach dotyczących założeń możemy przejść do właściwego dowodu. Korzystając ze wzoru udowodnionego w twierdzeniu D17 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ 0 \leqslant \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f (m) + \int_{m}^{\infty} f(x) d x }[/math]


Z drugiej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest rozbieżna, to rosnący ciąg kolejnych całek oznaczonych [math]\displaystyle{ C_j = \int_{m}^{j} f (x) d x }[/math] nie może być ograniczony od góry (w przeciwnym wypadku całka [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math] byłby zbieżna), zatem również rosnący ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f(k) }[/math] nie może być ograniczony od góry, co oznacza, że szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest rozbieżny.

Z trzeciej nierówności wynika, że jeżeli całka [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] jest zbieżna, to ciąg sum częściowych [math]\displaystyle{ F_j = \sum_{k = m}^{j} f (k) }[/math] jest ciągiem rosnącym i ograniczonym od góry. Wynika stąd, że ciąg [math]\displaystyle{ F_j }[/math] jest zbieżny, zatem szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math] jest zbieżny.

Ponieważ zbieżność (rozbieżność) całki [math]\displaystyle{ \int_{m}^{\infty} f(x) d x }[/math] nie zależy od wyboru dolnej granicy całkowania, to wystarczy badać granicę [math]\displaystyle{ \lim_{x \to \infty} F (x) }[/math], gdzie [math]\displaystyle{ F(x) = \int f (x) d x }[/math] jest dowolną funkcją pierwotną.


Przykład D20
Przykłady zebraliśmy w tabeli. Przy obliczaniu całek nieoznaczonych Czytelnik może skorzystać ze strony WolframAlpha.

Stosując kryterium całkowe, można łatwo pokazać, że szeregi

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^s}} }[/math]
[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \log^s \! k}} }[/math]

są zbieżne dla [math]\displaystyle{ s \gt 1 }[/math] i rozbieżne dla [math]\displaystyle{ s \leqslant 1 }[/math].



Twierdzenie D21
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła, dodatnia i malejąca w przedziale [math]\displaystyle{ [m, \infty) }[/math] oraz

[math]\displaystyle{ R(m) = \int_{m}^{\infty} f(x) d x }[/math]
[math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math]

gdzie [math]\displaystyle{ a \lt m }[/math], to prawdziwe jest następujące oszacowanie sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math]

[math]\displaystyle{ S(m) + R(m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R(m) }[/math]
Dowód

Korzystając ze wzoru udowodnionego w twierdzeniu D17 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]

Czyli

[math]\displaystyle{ R(m) \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + R (m) }[/math]

Odejmując od każdej ze stron nierówności liczbę [math]\displaystyle{ f(m) }[/math] i dodając do każdej ze stron nierówności sumę skończoną [math]\displaystyle{ S(m) = \sum_{k = a}^{m} f(k) }[/math], otrzymujemy

[math]\displaystyle{ S(m) + R (m) - f(m) \leqslant \sum_{k = a}^{\infty} f(k) \leqslant S(m) + R (m) }[/math]

Co należało pokazać.


Przykład D22
Twierdzenie D21 umożliwia określenie, z jaką dokładnością została wyznaczona suma szeregu. Wyznaczmy sumę szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]. Mamy

[math]\displaystyle{ S(m) = \sum_{k = 1}^{m} {\small\frac{1}{(k + 1) \sqrt{k}}} }[/math]
[math]\displaystyle{ \int {\small\frac{d x}{(x + 1) \sqrt{x}}} = 2 \text{arctg} \left( \sqrt{x} \right) }[/math]
[math]\displaystyle{ R(m) = \int_{m}^{\infty} {\small\frac{d x}{(x + 1) \sqrt{x}}} = \pi - 2 \text{arctg} \left( \sqrt{m} \right) }[/math]

Zatem

[math]\displaystyle{ S(m) + R (m) - f (m) \leqslant \sum_{k = 1}^{\infty} {\small\frac{1}{(k + 1) \sqrt{k}}} \leqslant S (m) + R (m) }[/math]

Dla kolejnych wartości [math]\displaystyle{ m }[/math] otrzymujemy


W programie PARI/GP wystarczy napisać:

f(k) = 1.0 / (k+1) / sqrt(k)
S(m) = sum( k = 1, m, f(k) )
R(m) = Pi - 2*atan( sqrt(m) )
for(j = 1, 9, m = 10^j; suma = S(m); reszta = R(m); print( "j= ", j, "   a= ", suma + reszta - f(m), "   b= ", suma + reszta ))



Prostym wnioskiem z twierdzenia D17 jest następujące
Twierdzenie D23
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli przy wyliczaniu sumy szeregu nieskończonego [math]\displaystyle{ \sum_{k = a}^{\infty} f (k) }[/math] (gdzie [math]\displaystyle{ a \lt m }[/math]) zastąpimy sumę [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] całką [math]\displaystyle{ \int_{m}^{\infty} f (x) d x }[/math], to błąd wyznaczenia sumy szeregu nie przekroczy [math]\displaystyle{ f(m) }[/math].

Dowód

Korzystając ze wzoru z twierdzenia D17 i przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = m}^{\infty} f(k) \leqslant f(m) + \int_{m}^{\infty} f(x) d x }[/math]

Dodając do każdej ze stron nierówności wyrażenie [math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) }[/math], dostajemy

[math]\displaystyle{ - f(m) + \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \leqslant \sum_{k = a}^{\infty} f(k) \leqslant \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x }[/math]

Skąd wynika natychmiast

[math]\displaystyle{ - f(m) \leqslant \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \leqslant 0 \lt f(m) }[/math]

Czyli

[math]\displaystyle{ \left| \sum_{k = a}^{\infty} f(k) - \left( \sum_{k = a}^{m} f(k) + \int_{m}^{\infty} f(x) d x \right) \right| \leqslant f(m) }[/math]

Co kończy dowód.


Twierdzenie D24
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, + \infty) }[/math]. Jeżeli szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny, to dla każdego [math]\displaystyle{ n \geqslant m }[/math] prawdziwe jest następujące oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) }[/math]

[math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]

gdzie [math]\displaystyle{ B }[/math] oraz [math]\displaystyle{ C }[/math] są dowolnymi stałymi spełniającymi nierówności

[math]\displaystyle{ B \geqslant 1 }[/math]
[math]\displaystyle{ C \geqslant f (m) + B \int_{m}^{\infty} f (x) d x }[/math]
Dowód

Z twierdzenia D17 mamy

[math]\displaystyle{ S(n) = \sum_{k = m}^{n} f (k) \leqslant f (m) + \int_{m}^{n} f (x) d x }[/math]
[math]\displaystyle{ \;\! \leqslant f (m) + B \int_{m}^{n} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int_{m}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) + B \int_{m}^{n} f (x) d x - B \int^n_m f (x) d x - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = f (m) - B \int_{n}^{\infty} f (x) d x + B \int_{m}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! = \left[ f (m) + B \int_{m}^{\infty} f (x) d x \right] - B \int_{n}^{\infty} f (x) d x }[/math]
[math]\displaystyle{ \;\! \leqslant C - B \int_{n}^{\infty} f (x) d x }[/math]


Uwaga D25
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ [m, \infty) }[/math]. Rozważmy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math]. Zauważmy, że:

  • korzystając z całkowego kryterium zbieżności, możemy łatwo zbadać, czy szereg [math]\displaystyle{ \sum_{k = m}^{\infty} f (k) }[/math] jest zbieżny
  • jeżeli szereg jest zbieżny, to ponownie wykorzystując całki (twierdzenie D24), możemy znaleźć oszacowanie sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math]

Jednak dysponując już oszacowaniem sumy częściowej szeregu [math]\displaystyle{ S(n) = \sum_{k = m}^{n} f(k) }[/math], możemy udowodnić jego poprawność przy pomocy indukcji matematycznej, a stąd łatwo pokazać zbieżność szeregu [math]\displaystyle{ \sum_{k = m}^{\infty} f(k) }[/math]. Zauważmy, że wybór większego [math]\displaystyle{ B }[/math] ułatwia dowód indukcyjny. Stałą [math]\displaystyle{ C }[/math] najlepiej zaokrąglić w górę do wygodnej dla nas wartości.


Czasami potrzebujemy takiego uproszczenia problemu, aby udowodnić zbieżność szeregów bez odwoływania się do całek. Zauważmy, że Czytelnik nawet nie musi znać całek – wystarczy, że policzy je przy pomocy programów, które potrafią to robić (np. WolframAlpha). Kiedy już znajdziemy oszacowanie sumy częściowej szeregu, nie musimy wyjaśniać, w jaki sposób je znaleźliśmy – wystarczy udowodnić, że jest ono poprawne, a do tego wystarczy indukcja matematyczna.

Zamieszczonej niżej zadania pokazują, jak wykorzystać w tym celu twierdzenie D24.


Zadanie D26
Korzystając z twierdzenia D24, znaleźć oszacowania sumy częściowej szeregów

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} \qquad }[/math] oraz [math]\displaystyle{ \qquad \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]
Rozwiązanie

Rozważmy szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (0, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 0 }[/math] jest

[math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x^2}} = {\small\frac{1}{n}} \qquad }[/math] (zobacz: WolframAlpha)
[math]\displaystyle{ C \geqslant 1 + \int_{1}^{\infty} {\small\frac{d x}{x^2}} = 2 }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math]


Rozważmy szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math]. Funkcja [math]\displaystyle{ f(x) = {\small\frac{1}{x (\log x)^2}} }[/math] jest funkcją ciągłą, dodatnią i malejącą w przedziale [math]\displaystyle{ (1, + \infty) }[/math]. Dla [math]\displaystyle{ n \gt 1 }[/math] jest

[math]\displaystyle{ \int_{n}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{\log n}} \qquad }[/math] (zobacz: WolframAlpha)
[math]\displaystyle{ C \geqslant {\small\frac{1}{2 \cdot (\log 2)^2}} + \int_{2}^{\infty} {\small\frac{d x}{x (\log x)^2}} = {\small\frac{1}{2 \cdot (\log 2)^2}} + {\small\frac{1}{\log 2}} = 2.483379 \ldots }[/math]

Przyjmijmy [math]\displaystyle{ C = 2.5 }[/math], zatem

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math]


Zadanie D27
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest zbieżny.

Rozwiązanie

Indukcja matematyczna. Łatwo zauważamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 1 }[/math]. Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \sum_{k = 1}^{n + 1} {\small\frac{1}{k^2}} = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} + {\small\frac{1}{(n + 1)^2}} }[/math]
[math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} }[/math]
[math]\displaystyle{ \: \leqslant 2 - {\small\frac{1}{n + 1}} + \left( {\small\frac{1}{n + 1}} - {\small\frac{1}{n}} + {\small\frac{1}{(n + 1)^2}} \right) }[/math]
[math]\displaystyle{ \: = 2 - {\small\frac{1}{n + 1}} - {\small\frac{1}{n (n + 1)^2}} }[/math]
[math]\displaystyle{ \: \lt 2 - {\small\frac{1}{n + 1}} }[/math]

Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant 2 - {\small\frac{1}{n}} \lt 2 }[/math]

Czyli ciąg sum częściowych [math]\displaystyle{ S(n) = \sum_{k = 1}^{n} {\small\frac{1}{k^2}} }[/math] szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.


Zadanie D28
Stosując indukcję matematyczną, udowodnić prawdziwość oszacowania [math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} }[/math] i udowodnić, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest zbieżny.

Rozwiązanie

Indukcja matematyczna. Łatwo sprawdzamy, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n = 2 }[/math]

[math]\displaystyle{ \sum_{k = 2}^{2} {\small\frac{1}{k (\log k)^2}} \approx 1.040684 \lt 2.5 - {\small\frac{1}{\log 2}} \approx 1.05730 }[/math]

Zakładając, że oszacowanie jest prawdziwe dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \sum_{k = m}^{n + 1} {\small\frac{1}{k (\log k)^2}} = \sum_{k = m}^{n} {\small\frac{1}{k (\log k)^2}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log n}} + {\small\frac{1}{(n + 1) \cdot (\log (n + 1))^2}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log (n + 1)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - {\small\frac{\log \left( n \left( 1 + {\normalsize\frac{1}{n}} \right) \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: = 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( 1 - 1 - {\small\frac{\log \left( 1 + {\normalsize\frac{1}{n}} \right)}{\log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} + {\small\frac{1}{\log (n + 1)}} \left( - {\small\frac{1}{(n + 1) \log n}} + {\small\frac{1}{(n + 1) \cdot \log (n + 1)}} \right) }[/math]
[math]\displaystyle{ \quad \: \lt 2.5 - {\small\frac{1}{\log (n + 1)}} }[/math]

Co kończy dowód indukcyjny. Zatem dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy

[math]\displaystyle{ S(n) = \sum_{k = 2}^{n} {\small\frac{1}{k (\log k)^2}} \lt 2.5 - {\small\frac{1}{\log n}} \lt 2.5 }[/math]

Czyli ciąg sum częściowych [math]\displaystyle{ S(n) }[/math] szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k (\log k)^2}} }[/math] jest rosnący i ograniczony od góry, a zatem zbieżny. Co oznacza, że szereg jest zbieżny.



Szeregi nieskończone i liczby pierwsze

Twierdzenie D29
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Szereg jest szeregiem naprzemiennym i jego zbieżność wynika z twierdzenia D5.

Punkt 2.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p^2}} \lt \sum_{k = 2}^{\infty} {\small\frac{1}{k^2}} \lt {\small\frac{\pi^2}{6}} }[/math]

Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{(p - 1)^2}} \lt \sum_{j = 2}^{\infty} {\small\frac{1}{(j - 1)^2}} = \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} }[/math]

Punkt 4.
Zbieżność wzoru wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest

[math]\displaystyle{ 0 \lt {\small\frac{1}{p (p - 1)}} \lt {\small\frac{1}{(p - 1)^2}} }[/math]


Twierdzenie D30
Następujące szeregi są zbieżne

Dowód

Punkt 1.
Zbieżność tego szeregu udowodniliśmy w twierdzeniu B39, ale obecnie potrafimy uzyskać rezultat znacznie łatwiej. Zauważmy, że rozpatrywaną sumę możemy zapisać w postaci

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{1}{p \log p}} = \sum_{k = 1}^{\infty} {\small\frac{1}{p_k \log p_k}} = {\small\frac{1}{2 \log 2}} + \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]

Wyrażenie w mianowniku ułamka możemy łatwo oszacować. Z twierdzenia A1 mamy ([math]\displaystyle{ a = 0.72 }[/math])

[math]\displaystyle{ p_k \log p_k \gt a \cdot k \log k \cdot \log (a \cdot k \log k) = }[/math]
[math]\displaystyle{ \;\;\:\, = a \cdot k \log k \cdot (\log a + \log k + \log \log k) = }[/math]
[math]\displaystyle{ \;\;\:\, = a \cdot k \cdot (\log k)^2 \cdot \left( 1 + {\small\frac{\log a + \log \log k}{\log k}} \right) }[/math]

Ponieważ dla [math]\displaystyle{ k \gt \exp \left( \tfrac{1}{a} \right) = 4.01039 \ldots }[/math] jest

[math]\displaystyle{ \log a + \log \log k \gt 0 }[/math]

to dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ p_k \log p_k \gt a \cdot k \cdot (\log k)^2 }[/math]

Wynika stąd, że dla [math]\displaystyle{ k \geqslant 5 }[/math] prawdziwy jest ciąg nierówności

[math]\displaystyle{ 0 \lt {\small\frac{1}{p_k \log p_k}} \lt {\small\frac{1}{a \cdot k \cdot (\log k)^2}} }[/math]

Zatem na mocy kryterium porównawczego ze zbieżności szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{k \cdot (\log k)^2}} }[/math] (zobacz twierdzenie D15 p. 4 lub przykład D20 p. 5) wynika zbieżność szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{1}{p_k \log p_k}} }[/math]

Punkt 2.
Zbieżność szeregu wynika z kryterium porównawczego (twierdzenie D10), bo

[math]\displaystyle{ 0 \lt {\small\frac{1}{p^2 \log p}} \lt {\small\frac{1}{p \log p}} }[/math]

Punkt 3.
Szereg jest zbieżny, bo sumy częściowe tego szeregu tworzą ciąg rosnący i ograniczony

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} \lt \sum_{k = 2}^{\infty} {\small\frac{\log k}{k (k - 1)}} = 1.2577 \ldots }[/math]

Punkt 4.
Zbieżność szeregu wynika z kryterium porównawczego, bo dla każdego [math]\displaystyle{ p \geqslant 2 }[/math] jest

[math]\displaystyle{ 0 \lt {\small\frac{\log p}{p^2}} \lt {\small\frac{\log p}{p (p - 1)}} }[/math]


Twierdzenie D31
Szereg [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] jest rozbieżny.

Dowód

Dla potrzeb dowodu zapiszmy szereg w innej postaci

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} = \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]

Zauważmy, że dla [math]\displaystyle{ k \geqslant 3 }[/math] wyrazy szeregów [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] oraz [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math] spełniają nierówności

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{p_k}} \leqslant {\small\frac{\log p_k}{p_k}} }[/math]

Ponieważ szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} }[/math] jest rozbieżny (zobacz B37), to na mocy kryterium porównawczego rozbieżny jest również szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\log p_k}{p_k}} }[/math]


Uwaga D32
Moglibyśmy oszacować rozbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p}} }[/math] podobnie, jak to uczyniliśmy w przypadku twierdzenia B37, ale tym razem zastosujemy inną metodę, która pozwoli nam uzyskać bardziej precyzyjny rezultat.


Twierdzenie D33
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Prawdziwe są następujące nierówności

Dowód

Punkt 1. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 1 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \gt }[/math]
[math]\displaystyle{ \;\;\; \gt n^n \cdot e^{- n} \cdot (n + 1) = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot {\small\frac{n^n}{(n + 1)^n}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} \cdot \frac{1}{\left( 1 + {\small\frac{1}{n}} \right)^n} \cdot e^{- n} \gt }[/math]
[math]\displaystyle{ \;\;\; \gt (n + 1)^{n + 1} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 1} e^{- (n + 1)} }[/math]

Ponieważ [math]\displaystyle{ \left( 1 + {\small\frac{1}{n}} \right)^n \lt e }[/math], zatem [math]\displaystyle{ {\small\frac{1}{\left( 1 + {\normalsize\frac{1}{n}} \right)^n}} \gt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 1.


Punkt 2. (indukcja matematyczna)
Łatwo sprawdzić prawdziwość nierówności dla [math]\displaystyle{ n = 7 }[/math]. Zakładając prawdziwość dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ (n + 1) ! = n! \cdot (n + 1) \lt }[/math]
[math]\displaystyle{ \;\;\; \lt n^{n + 1} \cdot e^{- n} \cdot (n + 1) = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot {\small\frac{n^{n + 1}}{(n + 1)^{n + 1}}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( {\small\frac{n}{n + 1}} \right)^{n + 1} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \cdot e^{- n} \lt }[/math]
[math]\displaystyle{ \;\;\; \lt (n + 1)^{n + 2} \cdot {\small\frac{1}{e}} \cdot e^{- n} = }[/math]
[math]\displaystyle{ \;\;\; = (n + 1)^{n + 2} \cdot e^{- (n + 1)} }[/math]

Ostatnia nierówność wynika z faktu, że [math]\displaystyle{ \left( 1 - {\small\frac{1}{n + 1}} \right)^{n + 1} \lt {\small\frac{1}{e}} }[/math]. Co kończy dowód punktu 2.


Twierdzenie D34
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, prawdziwe są oszacowania

Dowód

Punkt 1. (prawa nierówność)

Zauważmy, że

[math]\displaystyle{ W_p (n!) = \left\lfloor {\small\frac{n}{p}} \right\rfloor + \left\lfloor {\small\frac{n}{p^2}} \right\rfloor + \left\lfloor {\small\frac{n}{p^3}} \right\rfloor + \ldots }[/math]
[math]\displaystyle{ \;\, \lt {\small\frac{n}{p}} + {\small\frac{n}{p^2}} + {\small\frac{n}{p^3}} + \ldots + {\small\frac{n}{p^k}} + \ldots }[/math]
[math]\displaystyle{ \;\, = {\small\frac{n}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
[math]\displaystyle{ \;\, = {\small\frac{n}{p - 1}} }[/math]

Punkt 1. (lewa nierówność)

Łatwo znajdujemy, że

[math]\displaystyle{ W_p (n!) = \sum_{k = 1}^{\infty} \left\lfloor {\small\frac{n}{p^k}} \right\rfloor \geqslant \left\lfloor {\small\frac{n}{p}} \right\rfloor \gt {\small\frac{n}{p}} - 1 }[/math]

Punkt 2. (prawa nierówność)

Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ (p - 1) W_p (n!) \lt n }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać

[math]\displaystyle{ (p - 1) W_p (n!) \leqslant n - 1 }[/math]

Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \leqslant {\small\frac{n - 1}{p - 1}} }[/math].

Punkt 2. (lewa nierówność)

Z uzyskanego w punkcie 1. oszacowania wynika, że [math]\displaystyle{ n - p \lt p \cdot W_p (n!) }[/math]. Ponieważ nierówność ta dotyczy liczb całkowitych, to możemy napisać

[math]\displaystyle{ n - p \leqslant p \cdot W_p (n!) - 1 }[/math]

Skąd otrzymujemy natychmiast nierówność nieostrą [math]\displaystyle{ W_p (n!) \geqslant {\small\frac{n + 1}{p}} - 1 }[/math].


Twierdzenie D35
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - 1 }[/math]
Dowód

Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 2 }[/math] mamy

[math]\displaystyle{ n! \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]

Ponieważ dla [math]\displaystyle{ n \geqslant 1 }[/math] jest [math]\displaystyle{ n! \gt n^n e^{- n} }[/math] (zobacz punkt 1. twierdzenia D33), to

[math]\displaystyle{ n^n e^{- n} \lt \prod_{p \leqslant n} p^{n / (p - 1)} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ n \log n - n \lt \sum_{p \leqslant n} {\small\frac{n \log p}{p - 1}} = n \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math]

Dzieląc strony przez [math]\displaystyle{ n }[/math], dostajemy szukaną nierówność.


Twierdzenie D36 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1.755367 }[/math]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} + {\small\frac{1}{p (p - 1)}} }[/math]


to z twierdzenia D35 dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \gt - 1 }[/math]

Czyli

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \gt - 1 - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \quad \;\: \gt - 1 - \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \quad \;\: = - 1 - 0.755366610831 \ldots }[/math]
[math]\displaystyle{ \quad \;\: \gt - 1.755367 }[/math]

Gdzie wykorzystaliśmy zbieżność szeregu [math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math] (twierdzenie D30 p. 3).


Twierdzenie D37 (pierwsze twierdzenie Mertensa[5][6], 1874)
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt 0.386295 }[/math]
Dowód

Z oszacowania wykładnika, z jakim liczba pierwsza [math]\displaystyle{ p }[/math] występuje w rozwinięciu liczby [math]\displaystyle{ n! }[/math] na czynniki pierwsze, wynika natychmiast, że dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ n! \geqslant \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} }[/math]

Ponieważ dla [math]\displaystyle{ n \geqslant 7 }[/math] jest [math]\displaystyle{ n! \lt n^{n + 1} e^{- n} }[/math], to

[math]\displaystyle{ \prod_{p \leqslant n} p^{(n + 1) / p \: - \: 1} \lt n^{n + 1} e^{- n} }[/math]

Logarytmując, otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} \left( {\small\frac{n + 1}{p}} - 1 \right) \cdot \log p \lt (n + 1) \cdot \log n - n }[/math]
[math]\displaystyle{ (n + 1) \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \sum_{p \leqslant n} \log p \lt (n + 1) \cdot \log n - n }[/math]


Skąd natychmiast wynika, że

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n \lt - {\small\frac{n}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log \left( \prod_{p \leqslant n} p \right) }[/math]
[math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + {\small\frac{1}{n + 1}} \cdot \log (P (n)) }[/math]
[math]\displaystyle{ \quad \;\: \lt - 1 + {\small\frac{1}{n + 1}} + {\small\frac{n \cdot \log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = - 1 + {\small\frac{1}{n + 1}} + \log 4 - {\small\frac{\log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = \log 4 - 1 + {\small\frac{1 - \log 4}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: = \log 4 - 1 - {\small\frac{0.386294 \ldots}{n + 1}} }[/math]
[math]\displaystyle{ \quad \;\: \lt \log 4 - 1 }[/math]
[math]\displaystyle{ \quad \;\: = 0.386294361 \ldots }[/math]

Druga nierówność wynika z twierdzenia A10. Bezpośrednio sprawdzamy, że powyższa nierówność jest prawdziwa dla [math]\displaystyle{ n \lt 7 }[/math].


Twierdzenie D38
Dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt 1.141661 }[/math]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]

to z twierdzenia D37 dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n \lt \log 4 - 1 }[/math]

Czyli

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \log 4 - 1 + \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, \lt \log 4 - 1 + \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, = \log 4 - 1 + 0.755366610831 \ldots }[/math]
[math]\displaystyle{ \,\, \lt 1.141661 }[/math]


Uwaga D39

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} = \log n - E + \ldots }[/math]

gdzie [math]\displaystyle{ E = 1.332582275733 \ldots }[/math]

Dla [math]\displaystyle{ n \geqslant 319 }[/math] mamy też[7]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D40

Dokładniejsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} }[/math] jest dane wzorem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} = \log n - \gamma + \ldots }[/math]

gdzie [math]\displaystyle{ \gamma = 0.5772156649 \ldots }[/math] jest stałą Eulera.

Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie[8]

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]


Uwaga D41
Dla [math]\displaystyle{ n \leqslant 10^{10} }[/math] wartości wyrażeń

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E }[/math]
[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma }[/math]

są liczbami dodatnimi.


Twierdzenie D42
Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) = E - \gamma }[/math]

gdzie

  • [math]\displaystyle{ \quad \gamma = 0.577215664901532 \ldots }[/math] jest stałą Eulera[9]
  • [math]\displaystyle{ \quad E = 1.332582275733220 \ldots }[/math][10]
  • [math]\displaystyle{ \quad E - \gamma = 0.755366610831688 \ldots }[/math][11]
Dowód

Ponieważ

[math]\displaystyle{ {\small\frac{1}{p (p - 1)}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p}} }[/math]

zatem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p}} = (\log n - \gamma + \ldots) - (\log n - E + \ldots) }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = E - \gamma }[/math]


Zauważmy teraz, że

[math]\displaystyle{ {\small\frac{1}{p - 1}} = {\small\frac{1}{p}} \cdot {\small\frac{1}{1 - {\normalsize\frac{1}{p}}}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} \cdot \left( 1 + {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots }[/math]

Zatem

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} = \sum_{p \geqslant 2} {\small\frac{\log p}{p}} \cdot \left( {\small\frac{1}{p}} + {\small\frac{1}{p^2}} + {\small\frac{1}{p^3}} + \ldots + {\small\frac{1}{p^k}} + \ldots \right) = \sum_{n = 2}^{\infty} \left( \sum_{p \geqslant 2} {\small\frac{\log p}{p^n}} \right) }[/math]


Twierdzenie D43
Dla [math]\displaystyle{ n \geqslant 318 }[/math] prawdziwe jest oszacowanie

[math]\displaystyle{ \left| \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n + \gamma \right| \lt {\small\frac{1}{2 \log n}} }[/math]
Dowód

Należy zauważyć, że tak dokładnego oszacowania nie można udowodnić metodami elementarnymi, dlatego punktem wyjścia jest oszacowanie podane w pracy Pierre'a Dusarta[12]

[math]\displaystyle{ - \left( {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} \right) \; \underset{n \geqslant 2}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} }[/math]

Ponieważ dla [math]\displaystyle{ x \gt e^2 \approx 7.389 }[/math] jest [math]\displaystyle{ 1 + {\small\frac{1}{\log x}} \lt 1.5 }[/math], to dla [math]\displaystyle{ n \geqslant 8 }[/math] mamy

[math]\displaystyle{ {\small\frac{0.2}{\log n}} + {\small\frac{0.2}{\log^2 n}} = {\small\frac{0.2}{\log n}} \left( 1 + {\small\frac{1}{\log n}} \right) \lt {\small\frac{0.3}{\log n}} }[/math]


Zatem wyjściowy układ nierówności możemy zapisać w postaci

[math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]


Z tożsamości

[math]\displaystyle{ {\small\frac{1}{p}} = {\small\frac{1}{p - 1}} - {\small\frac{1}{p (p - 1)}} }[/math]


wynika natychmiast, że

[math]\displaystyle{ - {\small\frac{0.3}{\log n}} \; \underset{n \geqslant 8}{\lt } \; \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \; \underset{n \geqslant 2974}{\lt } \; {\small\frac{0.3}{\log n}} }[/math]


Prawa nierówność

Rozważmy prawą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 2974 }[/math]

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \lt {\small\frac{0.3}{\log n}} }[/math]


Z twierdzenia D42 wiemy, że

[math]\displaystyle{ \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E = - \gamma }[/math]

Zatem

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, \lt \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - E + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = - \gamma + {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]


Bezpośrednio obliczając, sprawdzamy, że nierówność

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \lt - \gamma + {\small\frac{0.5}{\log n}} }[/math]

jest prawdziwa dla wszystkich liczb [math]\displaystyle{ 318 \leqslant n \leqslant 3000 }[/math]


Lewa nierówność

Rozważmy teraz lewą nierówność prawdziwą dla [math]\displaystyle{ n \geqslant 8 }[/math]

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - \log n + E \gt - {\small\frac{0.3}{\log n}} }[/math]

Mamy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt \sum_{p \leqslant n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = \sum_{p \geqslant 2} {\small\frac{\log p}{p (p - 1)}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} - E - {\small\frac{0.3}{\log n}} }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - \sum_{p \gt n} {\small\frac{\log p}{p (p - 1)}} }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{k (k - 1)}} }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - \sum_{k = n + 1}^{\infty} {\small\frac{\log k}{(k - 1)^2}} }[/math]


Korzystając kolejno z twierdzeń D17C19, dostajemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.3}{\log n}} - \int_{n}^{\infty} {\small\frac{\log x}{(x - 1)^2}} d x }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} + \log \left( 1 - {\small\frac{1}{n}} \right) }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.3}{\log n}} - {\small\frac{\log n}{n - 1}} - {\small\frac{1}{n - 1}} }[/math]
[math]\displaystyle{ \,\, = - \gamma - {\small\frac{0.5}{\log n}} + \left( {\small\frac{0.2}{\log n}} - {\small\frac{\log n + 1}{n - 1}} \right) }[/math]
[math]\displaystyle{ \,\, \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]


Do znalezienia całki oznaczonej Czytelnik może wykorzystać stronę WolframAlpha. Ostatnia nierówność jest prawdziwa dla [math]\displaystyle{ n \geqslant 153 }[/math]. Bezpośrednio obliczając, sprawdzamy, że nierówność

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{\log p}{p - 1}} - \log n \gt - \gamma - {\small\frac{0.5}{\log n}} }[/math]

jest prawdziwa dla wszystkich [math]\displaystyle{ 2 \leqslant n \leqslant 200 }[/math].


Zadanie D44
Niech [math]\displaystyle{ r = 1 - \log (2) \approx 0.30685281944 }[/math]. Pokazać, że z nierówności prawdziwej dla [math]\displaystyle{ x \geqslant 32 }[/math]

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]

wynika twierdzenie Czebyszewa.

Rozwiązanie

Z twierdzenia D43 wiemy, że dla [math]\displaystyle{ x \geqslant 318 }[/math] jest

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} - \log x \lt - \gamma + {\small\frac{1}{2\log x}} \leqslant - \gamma + {\small\frac{1}{2 \log (318)}} = - 0.490441 \ldots \lt - 0.306852 \ldots = - r }[/math]

Zatem postulowane oszacowanie jest prawdziwe dla [math]\displaystyle{ n \geqslant 318 }[/math]. Sprawdzając bezpośrednio dla [math]\displaystyle{ 2 \leqslant x \leqslant 317 }[/math], łatwo potwierdzamy prawdziwość nierówności

[math]\displaystyle{ \sum_{p \leqslant x} {\small\frac{\log p}{p - 1}} \lt \log x - r }[/math]

dla [math]\displaystyle{ x \geqslant 32 }[/math].


Niech [math]\displaystyle{ a \in \mathbb{Z} }[/math] i [math]\displaystyle{ a \geqslant 32 }[/math]. Korzystając z twierdzenia D34, łatwo znajdujemy oszacowanie

[math]\displaystyle{ a! = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_n}_n }[/math]
[math]\displaystyle{ \quad \leqslant p^{(a - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(a - 1) / (p_n - 1)}_n }[/math]
[math]\displaystyle{ \quad = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{a - 1} }[/math]

gdzie [math]\displaystyle{ p_n \leqslant a \lt p_{n + 1} }[/math]. Oznaczając wyrażenie w nawiasie przez [math]\displaystyle{ U }[/math], mamy

[math]\displaystyle{ \log U = {\small\frac{\log p_1}{p_1 - 1}} + \ldots + {\small\frac{\log p_n}{p_n - 1}} = \sum_{p \leqslant a} {\small\frac{\log p}{p - 1}} \lt \log a - r }[/math]

gdzie skorzystaliśmy z oszacowania wskazanego w treści zadania. Zatem [math]\displaystyle{ U \lt a \cdot e^{- r} }[/math].


Przypuśćmy, że mnożymy liczbę [math]\displaystyle{ a! }[/math] przez kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math]. Możemy postawić pytanie: kiedy w rozkładzie na czynniki pierwsze liczby [math]\displaystyle{ b! }[/math] musi pojawić się nowy czynnik pierwszy? Jeżeli takiego nowego czynnika pierwszego nie ma, to

[math]\displaystyle{ a! \cdot (a + 1) \cdot \ldots \cdot b = b! }[/math]
[math]\displaystyle{ \;\;\; = p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_n}_n }[/math]
[math]\displaystyle{ \;\;\; \leqslant p^{(b - 1) / (p_1 - 1)}_1 \cdot \ldots \cdot p^{(b - 1) / (p_n - 1)}_n }[/math]
[math]\displaystyle{ \;\;\; = (p^{1 / (p_1 - 1)}_1 \cdot \ldots \cdot p^{1 / (p_n - 1)}_n)^{b - 1} }[/math]
[math]\displaystyle{ \;\;\; = U^{b - 1} }[/math]
[math]\displaystyle{ \;\;\; \lt (a \cdot e^{- r})^{b - 1} }[/math]


Jednocześnie z twierdzenia D33 wiemy, że prawdziwa jest nierówność [math]\displaystyle{ b! \gt b^b e^{- b} }[/math], zatem

[math]\displaystyle{ b^b e^{- b} \lt b! \lt {\normalsize\frac{(a \cdot e^{- r})^b}{a \cdot e^{-r}}} }[/math]
[math]\displaystyle{ b e^{- 1} \lt \frac{a \cdot e^{- r}}{(a \cdot e^{- r})^{1 / b}} }[/math]
[math]\displaystyle{ b \lt \frac{a \cdot e^{1 - r}}{(a \cdot e^{- r})^{1 / b}} }[/math]


Ponieważ [math]\displaystyle{ e^{1 - r} = e^{\log (2)} = 2 }[/math], to

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt 2 a }[/math]


Z oszacowania [math]\displaystyle{ b \lt 2 a }[/math] wynika, że [math]\displaystyle{ (a \cdot e^{- r})^{1 / b} \gt (a \cdot e^{-r})^{1 / 2 a} }[/math]. Możemy teraz zapisać uzyskane wyżej oszacowanie w postaci, w której prawa strona nierówności nie zależy od [math]\displaystyle{ b }[/math]

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / b}} \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} }[/math]


Ponieważ [math]\displaystyle{ e^{- r} = 0.735758 \ldots }[/math], to [math]\displaystyle{ (a \cdot e^{- r})^{1 / 2 a} \gt (a / 2)^{1 / 2 a} }[/math], co pozwala uprościć uzyskane oszacowanie

[math]\displaystyle{ b \lt \frac{2 a}{(a \cdot e^{- r})^{1 / 2 a}} \lt {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} }[/math]


Pokażemy, że dla [math]\displaystyle{ a \gt 303.05 }[/math]

[math]\displaystyle{ {\normalsize\frac{2 a}{(a / 2)^{1 / 2 a}}} \lt 2 a - 5 }[/math]

Istotnie

[math]\displaystyle{ {\normalsize\frac{1}{(a / 2)^{1 / 2 a}}} \lt 1 - {\small\frac{5}{2 a}} }[/math]
[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} \gt 1 }[/math]
[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left[ \left( 1 - {\small\frac{5}{2 a}} \right)^{\tfrac{2 a}{5}} \right]^5 \gt 1 }[/math]

Wyrażenie w nawiasie kwadratowym jest funkcją rosnącą i ograniczoną (zobacz twierdzenie C18) i dla [math]\displaystyle{ a \geqslant 32 }[/math] przyjmuje wartości z przedziału [math]\displaystyle{ [0.353 \ldots, e^{- 1}) }[/math]. Zatem dla odpowiednio dużego [math]\displaystyle{ a }[/math] powyższa nierówność z pewnością jest prawdziwa. Łatwo sprawdzamy, że dla [math]\displaystyle{ a = 304 }[/math] jest

[math]\displaystyle{ {\small\frac{a}{2}} \cdot \left( 1 - {\small\frac{5}{2 a}} \right)^{2 a} = 1.003213 \ldots }[/math]

Wynika stąd, że wszystkie kolejne liczby naturalne [math]\displaystyle{ a + 1, a + 2, \ldots, b - 1, b }[/math] mogą być liczbami złożonymi co najwyżej do chwili, gdy [math]\displaystyle{ b \lt 2 a - 5 }[/math], czyli [math]\displaystyle{ b \leqslant 2 a - 6 }[/math]. Zatem w przedziale [math]\displaystyle{ (a, 2 a) }[/math] musi znajdować się przynajmniej jedna liczba pierwsza. Dla [math]\displaystyle{ a \leqslant 303 }[/math] prawdziwość twierdzenia sprawdzamy bezpośrednio.


Definicja D45
Powiemy, że liczby pierwsze [math]\displaystyle{ p, q }[/math] są liczbami bliźniaczymi (tworzą parę liczb bliźniaczych), jeżeli [math]\displaystyle{ \left | p - q \right | = 2 }[/math]


Twierdzenie D46* (Viggo Brun, 1919)
Suma odwrotności par liczb pierwszych [math]\displaystyle{ p }[/math] i [math]\displaystyle{ p + 2 }[/math], takich że liczba [math]\displaystyle{ p + 2 }[/math] jest również pierwsza, jest skończona

[math]\displaystyle{ \underset{p + 2 \in \mathbb{P}}{\sum_{p \geqslant 2}} \left( {\small\frac{1}{p}} + {\small\frac{1}{p + 2}} \right) = \left( {\small\frac{1}{3}} + {\small\frac{1}{5}} \right) + \left( {\small\frac{1}{5}} + {\small\frac{1}{7}} \right) + \left( {\small\frac{1}{11}} + {\small\frac{1}{13}} \right) + \left( {\small\frac{1}{17}} + {\small\frac{1}{19}} \right) + \ldots = B_2 }[/math]

gdzie [math]\displaystyle{ B_2 = 1.90216058 \ldots }[/math] jest stałą Bruna[13][14].


Zadanie D47
Pokazać, że istnieje nieskończenie wiele liczb pierwszych nietworzących par liczb bliźniaczych.

Rozwiązanie

Niech [math]\displaystyle{ p }[/math] i [math]\displaystyle{ q = p + 4 }[/math] będą liczbami pierwszymi i [math]\displaystyle{ n \geqslant 1 }[/math]. Ponieważ liczby [math]\displaystyle{ p q }[/math] i [math]\displaystyle{ p + 2 }[/math] są względnie pierwsze, to z twierdzenia Dirichleta wiemy, że wśród liczb [math]\displaystyle{ a_n = p q n + (p + 2) }[/math] jest nieskończenie wiele liczb pierwszych, a jednocześnie żadna z liczb [math]\displaystyle{ a_n }[/math] nie tworzy pary liczb bliźniaczych, bo

[math]\displaystyle{ a_n - 2 = p q n + p = p (q n + 1) }[/math]
[math]\displaystyle{ a_n + 2 = p q n + (p + 4) = q (p n + 1) }[/math]

są liczbami złożonymi. Najprostsze przykłady to [math]\displaystyle{ a_n = 21 n + 5 }[/math] i [math]\displaystyle{ b_n = 77 n + 9 }[/math]

Najłatwiej wszystkie przypadki takich ciągów wyszukać w programie PARI/GP. Polecenie

for(a=1,50, for(b=3,floor(a/2), g=gcd(a,b); g1=gcd(a,b-2); g2=gcd(a,b+2); if( g==1 && g1>1 && g2>1, print("a= ", a, "   b= ",b) )))

wyszukuje wszystkie liczby dodatnie [math]\displaystyle{ a, b }[/math], gdzie [math]\displaystyle{ b \leqslant \left\lfloor {\small\frac{a}{2}} \right\rfloor }[/math], które tworzą ciągi [math]\displaystyle{ a k + b }[/math] o poszukiwanych właściwościach. Oczywiście ciągi [math]\displaystyle{ a k + (a - b) }[/math] również są odpowiednie. Przykładowo dla [math]\displaystyle{ a \leqslant 50 }[/math] mamy

[math]\displaystyle{ 15 k + 7, \quad 21 k + 5, \quad 30 k + 7, \quad 33 k + 13, \quad 35 k + 12, \quad 39 k + 11, \quad 42 k + 5, \quad 45 k + 7, \quad 45 k + 8, \quad 45 k + 22 }[/math]



Dowód z Księgi. Rozbieżność sumy [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math]

Twierdzenie D48
Suma odwrotności liczb pierwszych jest rozbieżna.

Dowód

Poniższy dowód został przedstawiony przez Erdősa w pracy[15] z 1938 roku. Jest to bardzo elegancki i chyba najprostszy dowód tego twierdzenia.

Załóżmy, dla otrzymania sprzeczności, że rozważana suma jest zbieżna, czyli [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{p_k}} = C }[/math], gdzie [math]\displaystyle{ C }[/math] jest pewną stałą. Zbieżność szeregu o wyrazach dodatnich oznacza, że różnica między sumą tego szeregu i sumami częściowymi, które uwzględniają coraz więcej wyrazów ciągu, musi być coraz mniejsza. Wynika stąd istnienie najmniejszej liczby [math]\displaystyle{ r }[/math] takiej, że [math]\displaystyle{ \sum_{k = r + 1}^{\infty} {\small\frac{1}{p_k}} \lt {\small\frac{1}{2}} }[/math].

Oznacza to, że zbiór liczb pierwszych rozpada się na dwa rozłączne podzbiory [math]\displaystyle{ P = \{ p_1, p_2, \ldots, p_r \} \; }[/math] i [math]\displaystyle{ \; Q = \{ p_{r + 1}, p_{r + 2,} \ldots \} }[/math].

Konsekwentnie zbiór liczb całkowitych dodatnich możemy podzielić na dwa rozłączne podzbiory: zbiór [math]\displaystyle{ \mathbb{Z}_Q }[/math] liczb podzielnych przez dowolną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math] i zbiór [math]\displaystyle{ \mathbb{Z}_P }[/math] liczb, które nie są podzielne przez żadną liczbę pierwszą ze zbioru [math]\displaystyle{ Q }[/math]. Czyli liczby ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] muszą być iloczynami potęg liczb pierwszych ze zbioru [math]\displaystyle{ P }[/math].


Niech [math]\displaystyle{ M }[/math] będzie dostatecznie dużą liczbą całkowitą.

Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_Q }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]

Zauważmy, że liczb nie większych od [math]\displaystyle{ M }[/math] i podzielnych przez liczbę pierwszą [math]\displaystyle{ p }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor {\small\frac{M}{p}} \right\rfloor }[/math] (zobacz A20). Łatwo otrzymujemy oszacowanie[a]

[math]\displaystyle{ \sum_{p \in Q} \left\lfloor {\small\frac{M}{p}} \right\rfloor \lt M \cdot \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} M }[/math]

bo z założenia [math]\displaystyle{ \sum_{p \in Q} {\small\frac{1}{p}} \lt {\small\frac{1}{2}} }[/math]. Zatem liczb takich, że [math]\displaystyle{ k \in \mathbb{Z}_Q \, }[/math] i [math]\displaystyle{ \, k \leqslant M }[/math] jest mniej niż [math]\displaystyle{ {\small\frac{M}{2}} }[/math].

Oszacowanie od góry ilości liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math]

Każdą liczbę ze zbioru [math]\displaystyle{ \mathbb{Z}_P }[/math] możemy zapisać w postaci [math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r }[/math]. Niech [math]\displaystyle{ \alpha_i = 2 \beta_i + \delta_i }[/math], gdzie [math]\displaystyle{ \delta_i }[/math] jest resztą z dzielenia liczby [math]\displaystyle{ \alpha_i }[/math] przez [math]\displaystyle{ 2 }[/math]. Zatem

[math]\displaystyle{ k = p^{\alpha_1}_1 \cdot \ldots \cdot p^{\alpha_r}_r = (p^{\beta_1}_1 \cdot \ldots \cdot p^{\beta_r}_r)^2 \cdot (p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r) }[/math]

Ponieważ [math]\displaystyle{ \delta_i }[/math] może przybierać tylko dwie wartości: zero lub jeden, to liczb postaci [math]\displaystyle{ p^{\delta_1}_1 \cdot \ldots \cdot p^{\delta_r}_r }[/math] jest dokładnie [math]\displaystyle{ 2^r }[/math], a kwadratów liczb całkowitych nie większych od [math]\displaystyle{ M }[/math] jest dokładnie [math]\displaystyle{ \left\lfloor \sqrt{M} \right\rfloor \leqslant \sqrt{M} }[/math]. Zatem liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest nie więcej niż [math]\displaystyle{ 2^r \sqrt{M} \, }[/math][b].


Ponieważ [math]\displaystyle{ \mathbb{Z}_P \cup \mathbb{Z}_Q =\mathbb{Z}_+ }[/math] i liczb [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math] jest po prostu [math]\displaystyle{ M }[/math], to musi być prawdziwe oszacowanie

[math]\displaystyle{ M \lt 2^r \sqrt{M} + {\small\frac{M}{2}} }[/math]

Czyli

[math]\displaystyle{ 2^{r + 1} \gt \sqrt{M} }[/math]

Co jest niemożliwe, bo [math]\displaystyle{ r }[/math] jest ustalone, a [math]\displaystyle{ M }[/math] może być dowolnie duże. Wystarczy przyjąć [math]\displaystyle{ M \geqslant 2^{2 r + 2} }[/math].



[a] Zauważmy, że suma po lewej stronie może być większa od rzeczywistej ilości liczb [math]\displaystyle{ k }[/math]. Dla przykładu: gdy [math]\displaystyle{ M \gt p_{r + 1} p_{r + 2} }[/math], to liczba [math]\displaystyle{ p_{r + 1} p_{r + 2} }[/math] zostanie policzona dwukrotnie: raz jako podzielna przez [math]\displaystyle{ p_{r + 1} }[/math] i drugi raz jako podzielna przez [math]\displaystyle{ p_{r + 2} }[/math]. Co oczywiście nie wpływa na poprawność przedstawionego oszacowania.

[b] Zauważmy, że dla [math]\displaystyle{ M \gt 8 }[/math] liczba [math]\displaystyle{ a^2 }[/math] taka, że [math]\displaystyle{ a^2 \leqslant M \lt (a + 1)^2 }[/math] wystąpi dokładnie jeden raz (jako [math]\displaystyle{ a^2 \cdot 1 }[/math]), ale my oszacujemy, że pojawiła się [math]\displaystyle{ 2^r }[/math] razy. Można pokazać, że dla dowolnych [math]\displaystyle{ r \geqslant 1 \; }[/math] i [math]\displaystyle{ \; M \geqslant 1 }[/math], liczb [math]\displaystyle{ k \in \mathbb{Z}_P }[/math] takich, że [math]\displaystyle{ k \leqslant M }[/math], jest mniej niż [math]\displaystyle{ 2^r \sqrt{M} }[/math]. Jest ich nawet mniej niż [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor }[/math], poza przypadkami [math]\displaystyle{ r = 1 \; }[/math] i [math]\displaystyle{ \; M = 2, 3, 8 }[/math], kiedy to ilość takich liczb jest równa [math]\displaystyle{ 2^r \left\lfloor \sqrt{M} \right\rfloor \lt 2^r \sqrt{M} }[/math].



Sumowanie przez części

Uwaga D49
Omawianie metody sumowania przez części[16] rozpoczniemy od udowodnienia prostego twierdzenia, które dobrze ilustruje tę metodę i ułatwi zrozumienie uogólnienia. Potrzebna nam będzie następująca funkcja

[math]\displaystyle{ D(k) = \begin{cases} 1 & \text{gdy } k \, \text{ jest liczbą pierwszą} \\ 0 & \text{gdy } k \, \text{ nie jest liczbą pierwszą} \\ \end{cases} }[/math]


Łatwo znajdujemy związek funkcji [math]\displaystyle{ D(k) }[/math] z funkcją [math]\displaystyle{ \pi (k) }[/math]

[math]\displaystyle{ \pi (k) - \pi (k - 1) = \sum_{p \leqslant k} 1 - \sum_{p \leqslant k - 1} 1 }[/math]
[math]\displaystyle{ \; = \sum_{i = 1}^{k} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) + \sum_{i = 1}^{k - 1} D (i) - \sum_{i = 1}^{k - 1} D (i) }[/math]
[math]\displaystyle{ \; = D (k) }[/math]


Twierdzenie D50
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] i niech [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] oznacza sumę odwrotności wszystkich liczb pierwszych nie większych od [math]\displaystyle{ n }[/math]. Prawdziwy jest następujący związek

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
Dowód

Rozpatrywaną sumę możemy zapisać w postaci

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{D (k)}{k}} }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k) - \pi (k - 1)}{k}} }[/math]
[math]\displaystyle{ \quad \; = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^n {\small\frac{\pi (k - 1)}{k}} }[/math]

W drugiej sumie zmieniamy zmienną sumowania. Niech [math]\displaystyle{ j = k - 1 }[/math]. Sumowanie po [math]\displaystyle{ k }[/math] przebiegało od [math]\displaystyle{ 2 }[/math] do [math]\displaystyle{ n }[/math], zatem sumowanie po [math]\displaystyle{ j }[/math] będzie przebiegało od [math]\displaystyle{ 1 }[/math] do [math]\displaystyle{ n - 1 }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = \sum_{k = 2}^n {\small\frac{\pi (k)}{k}} - \sum_{j = 1}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{j = 2}^{n - 1} {\small\frac{\pi (j)}{j + 1}} }[/math]

Ponieważ [math]\displaystyle{ \pi (1) = 0 }[/math]. Zmieniając jedynie oznaczenie zmiennej sumowania, mamy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k}} - \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k + 1}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^n \pi (k) \left( {\small\frac{1}{k}} - {\small\frac{1}{k + 1}} \right) }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

Co należało pokazać.


Zadanie D51
Pokazać, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math].

Rozwiązanie

Z twierdzenia D50 wiemy, że dla [math]\displaystyle{ n \geqslant 1 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

Z twierdzenia A1 wiemy, że dla [math]\displaystyle{ n \geqslant 3 }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ \pi (n) \gt {\small\frac{2}{3}} \cdot {\small\frac{n}{\log n}} }[/math]. Zatem dla [math]\displaystyle{ n \geqslant 4 }[/math] jest

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{\pi (n)}{n}} + {\small\frac{1}{3}} + \sum_{k = 4}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot {\small\frac{1}{\log n}} + {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{k}{\log k \cdot k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log k}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{k = 4}^{n - 1} {\small\frac{1}{(k + 1) \log (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \sum_{j = 5}^n {\small\frac{1}{j \log j}} }[/math]

Korzystając z twierdzenia D17, otrzymujemy

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \geqslant {\small\frac{1}{3}} + {\small\frac{2}{3}} \cdot \int_{5}^{n + 1} {\small\frac{d x}{x \log x}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log x \biggr\rvert_{5}^{n + 1} + {\small\frac{1}{3}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{2}{3}} \cdot \log \log (n + 1) - {\small\frac{2}{3}} \cdot \log \log 5 + {\small\frac{1}{3}} }[/math]
[math]\displaystyle{ \quad \; \gt {\small\frac{2}{3}} \cdot \log \log (n + 1) }[/math]

Zauważmy, że znacznie mniejszym nakładem pracy otrzymaliśmy lepsze oszacowanie sumy [math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} }[/math] (porównaj B37).


Zadanie D52
Pokazać, że oszacowanie [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math], gdzie [math]\displaystyle{ \varepsilon \in (0, 1) }[/math], nie może być prawdziwe dla prawie wszystkich liczb naturalnych.

Rozwiązanie

Przypuśćmy, że dla prawie wszystkich liczb naturalnych jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Zatem istnieje taka liczba [math]\displaystyle{ n_0 }[/math], że dla wszystkich [math]\displaystyle{ n \geqslant n_0 }[/math] jest [math]\displaystyle{ \pi (n) \lt n^{1 - \varepsilon} }[/math]. Korzystając ze wzoru (zobacz D50)

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} = {\small\frac{\pi (n)}{n}} + \sum_{k = 2}^{n - 1} {\small\frac{\pi (k)}{k (k + 1)}} }[/math]

dla liczby [math]\displaystyle{ n \gt n_0 }[/math] otrzymujemy oszacowanie

[math]\displaystyle{ \sum_{p \leqslant n} {\small\frac{1}{p}} \lt {\small\frac{n^{1 - \varepsilon}}{n}} + \sum_{k = 2}^{n_0 - 1} {\small\frac{\pi (k)}{k (k + 1)}} + \sum_{k = n_0}^{n - 1} {\small\frac{k^{1 - \varepsilon}}{k (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; = {\small\frac{1}{n^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n - 1} {\small\frac{1}{k^{\varepsilon} (k + 1)}} }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + \sum_{k = n_0}^{n} {\small\frac{1}{k^{1 + \varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; \leqslant {\small\frac{1}{(n_0)^{\varepsilon}}} + C_1 + {\small\frac{1}{(n_0)^{1 + \varepsilon}}} + \int^n_{n_0} {\small\frac{d x}{x^{1 + \varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; = C_2 + \left[ - {\small\frac{1}{\varepsilon \cdot x^{\varepsilon}}} \biggr\rvert_{n_0}^{n} \right] }[/math]
[math]\displaystyle{ \quad \; = C_2 - {\small\frac{1}{\varepsilon n^{\varepsilon}}} + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; \lt C_2 + {\small\frac{1}{\varepsilon (n_0)^{\varepsilon}}} }[/math]
[math]\displaystyle{ \quad \; = C_3 }[/math]

Co jest niemożliwe, bo lewa strona rośnie nieograniczenie wraz ze wzrostem [math]\displaystyle{ n }[/math] (zobacz B37, D48, D51).


Twierdzenie D53 (sumowanie przez części)
Niech [math]\displaystyle{ a_j }[/math], [math]\displaystyle{ b_j }[/math] będą ciągami określonymi przynajmniej dla [math]\displaystyle{ s \leqslant j \leqslant n }[/math]. Prawdziwy jest następujący wzór

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Wzór ten nazywamy wzorem na sumowanie przez części.

Dowód

Jeżeli potrafimy wyliczyć lub oszacować sumę liczoną dla jednego z czynników (powiedzmy, że dla [math]\displaystyle{ b_j }[/math]), to do wyliczenia lub oszacowania sumy [math]\displaystyle{ \sum_{j = s}^{n} a_j b_j }[/math] może być pomocny dowodzony wzór

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = s}^{k} b_j }[/math]. Nim przejdziemy do dowodu, zauważmy, że wprost z definicji funkcji [math]\displaystyle{ B(k) }[/math] otrzymujemy

[math]\displaystyle{ B(s) = \sum_{j = s}^{s} b_j = b_s }[/math]

oraz

[math]\displaystyle{ B(k) - B (k - 1) = \sum_{j = s}^{k} b_j - \sum^{k - 1}_{j = s} b_j = b_k + \sum_{j = s}^{k - 1} b_j - \sum_{j = s}^{k - 1} b_j = b_k }[/math]


Przekształcając prawą stronę dowodzonego wzoru, pokażemy, że obie strony są równe.

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = s}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
[math]\displaystyle{ \;\;\,\, = a_n B (n) - \sum^{n - 1}_{k = s} a_{k + 1} B (k) + \sum_{k = s}^{n - 1} a_k B (k) }[/math]

W pierwszej sumie po prawej stronie zmieniamy wskaźnik sumowania na [math]\displaystyle{ j = k + 1 }[/math], a w drugiej sumie zmieniamy tylko nazwę wskaźnika

[math]\displaystyle{ \sum_{k = s}^{n} a_k b_k = a_n B (n) - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n - 1} a_j B (j) }[/math]
[math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s}^{n} a_j B (j) }[/math]
[math]\displaystyle{ \;\;\,\, = - \sum_{j = s + 1}^{n} a_j B (j - 1) + \sum_{j = s + 1}^{n} a_j B (j) + a_s B (s) }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j [B (j) - B (j - 1)] + a_s b_s }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s + 1}^{n} a_j b_j + a_s b_s }[/math]
[math]\displaystyle{ \;\;\,\, = \sum_{j = s}^{n} a_j b_j }[/math]

Co należało pokazać.


Zadanie D54
Niech [math]\displaystyle{ r \neq 1 }[/math]. Pokazać, że [math]\displaystyle{ \sum_{k = 1}^{n} k r^k = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math].

Rozwiązanie

Korzystając ze wzoru na sumowanie przez części, połóżmy [math]\displaystyle{ s = 0 }[/math], [math]\displaystyle{ a_k = k \; }[/math] i [math]\displaystyle{ \; b_k = r^k }[/math]. Zauważmy, że sumowanie od [math]\displaystyle{ k = 0 }[/math] nic nie zmienia, a nieco upraszcza przekształcenia, bo możemy korzystać wprost ze wzoru na sumę częściową szeregu geometrycznego. Otrzymujemy

[math]\displaystyle{ \sum_{k = 0}^{n} k r^k = n \cdot B (n) - \sum_{k = 0}^{n - 1} (k + 1 - k) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 0}^{k} r^j = {\small\frac{r^{k + 1} - 1}{r - 1}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 0}^{n} k r^k = n \cdot {\small\frac{r^{n + 1} - 1}{r - 1}} - \sum_{k = 0}^{n - 1} {\small\frac{r^{k + 1} - 1}{r - 1}} }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - \sum_{k = 0}^{n - 1} r^{k + 1} + \sum_{k = 0}^{n - 1} 1 \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - n - r \sum_{k = 0}^{n - 1} r^k + n \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{r - 1}} \left( n r^{n + 1} - r \cdot {\small\frac{r^n - 1}{r - 1}} \right) }[/math]
[math]\displaystyle{ \;\, = {\small\frac{1}{(r - 1)^2}} (n r^{n + 2} - n r^{n + 1} - r^{n + 1} + r) }[/math]
[math]\displaystyle{ \;\, = \frac{n r^{n + 2} - (n + 1) r^{n + 1} + r}{(r - 1)^2} }[/math]

Co należało pokazać.


Twierdzenie D55 (kryterium Dirichleta)
Niech [math]\displaystyle{ (a_k) \; }[/math] i [math]\displaystyle{ \; (b_k) }[/math] będą ciągami liczb rzeczywistych. Jeżeli

  •    ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny

  •    [math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = 0 }[/math]
  •    istnieje taka stała [math]\displaystyle{ M }[/math], że [math]\displaystyle{ \left| \sum_{j = 1}^{k} b_j \right| \leqslant M }[/math] dla dowolnej liczby [math]\displaystyle{ k }[/math]

to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] jest zbieżny.

Dowód

Korzystając ze wzoru na sumowanie przez części, możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{n} a_k b_k = a_n \cdot B (n) - \sum_{k = 1}^{n - 1} (a_{k + 1} - a_k) B (k) }[/math]
[math]\displaystyle{ \;\;\,\, = a_n \cdot B (n) + \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) B (k) }[/math]

gdzie [math]\displaystyle{ B(k) = \sum_{j = 1}^{k} b_j }[/math]. Z założenia ciąg [math]\displaystyle{ B(n) }[/math] jest ograniczony i [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], zatem (zobacz C14)

[math]\displaystyle{ \lim_{n \rightarrow \infty} a_n \cdot B (n) = 0 }[/math]

Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest monotoniczny. Jeżeli jest malejący, to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = M (a_1 - a_n) }[/math]

(zobacz D13). Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest rosnący, to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant \sum_{k = 1}^{n - 1} M (a_{k + 1} - a_k) }[/math]
[math]\displaystyle{ \;\;\; = - M \sum_{k = 1}^{n - 1} (a_k - a_{k + 1}) }[/math]
[math]\displaystyle{ \;\;\; = - M (a_1 - a_n) }[/math]

Łącząc uzyskane rezultaty oraz uwzględniając fakt, że ciąg [math]\displaystyle{ (a_n) }[/math] jest ograniczony, bo jest zbieżny (zobacz C10), możemy napisać

[math]\displaystyle{ \sum_{k = 1}^{n - 1} | (a_k - a_{k + 1}) B (k) | \leqslant M | a_1 - a_n | \leqslant M (| a_1 | + | a_n |) \leqslant 2 M U }[/math]

Ponieważ sumy częściowe szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} | (a_k - a_{k + 1}) B (k) | }[/math] tworzą ciąg rosnący i ograniczony od góry, to szereg ten jest zbieżny (zobacz C11). Wynika stąd zbieżność szeregu [math]\displaystyle{ \sum_{k = 1}^{\infty} (a_k - a_{k + 1}) B (k) }[/math] (zobacz D11). Zatem szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} a_k b_k }[/math] musi być zbieżny. Co należało pokazać.


Zadanie D56
Udowodnić następujące wzory

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

[math]\displaystyle{ \quad \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cos \left( {\normalsize\frac{k}{2}} + 1 \right)}{\sin \left( \tfrac{1}{2} \right)}} \quad }[/math]

Rozwiązanie

Punkt 1.

Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) }[/math]

Ponieważ

[math]\displaystyle{ 2 \sin x \cdot \sin y = \cos (x - y) - \cos (x + y) }[/math]

to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \sin j = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \sin j + 2 \sin \left( \tfrac{1}{2} \right) \sin (k + 1) }[/math]
[math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right) + \cos \left( k + \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \;\;\;\; = \cos \left( \tfrac{1}{2} \right) - \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]

Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.


Punkt 2.

Stosując metodę indukcji matematycznej, udowodnimy, że prawdziwy jest wzór

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) = \sin (k + 1) - \sin (1) }[/math]

Ponieważ

[math]\displaystyle{ 2 \sin x \cos y = \sin (x - y) + \sin (x + y) }[/math]

to wzór jest prawdziwy dla [math]\displaystyle{ k = 1 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ k }[/math], otrzymujemy dla [math]\displaystyle{ k + 1 }[/math]

[math]\displaystyle{ 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k + 1} \cos \left( j + \tfrac{1}{2} \right) = 2 \sin \left( \tfrac{1}{2} \right) \cdot \sum_{j = 1}^{k} \cos \left( j + \tfrac{1}{2} \right) + 2 \sin \left( \tfrac{1}{2} \right) \cdot \cos \left( k + 1 + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \quad \,\, = \sin (k + 1) - \sin (1) - \sin (k + 1) + \sin (k + 2) }[/math]
[math]\displaystyle{ \quad \,\, = \sin (k + 2) - \sin (1) }[/math]

Na mocy zasady indukcji matematycznej wzór jest prawdziwy dla dowolnej liczby naturalnej.


Zadanie D57
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny.

Rozwiązanie

W zadaniu D56 p.1 pokazaliśmy, że prawdziwy jest wzór

[math]\displaystyle{ \sum_{j = 1}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} = {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} }[/math]

Skąd natychmiast otrzymujemy oszacowanie[a]

[math]\displaystyle{ \left| \sum_{j = 1}^{k} \sin j \right| = \left| {\small\frac{\sin \left( {\normalsize\frac{k}{2}} \right) \cdot \sin \left( {\normalsize\frac{k + 1}{2}} \right)}{\sin \left( \tfrac{1}{2} \right)}} \right| \leqslant {\small\frac{1}{\sin \left( \tfrac{1}{2} \right)}} }[/math]

Ponieważ spełnione są założenia kryterium Dirichleta, to szereg [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} }[/math] jest zbieżny. Wiemy, że [math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{\sin k}{k}} = \tfrac{1}{2} (\pi - 1) = 1.070796 \ldots }[/math] (WolframAlpha).



[a] Zauważmy, że bez trudu możemy otrzymać dokładniejsze oszacowanie

[math]\displaystyle{ - 0.127671 \lt {\small\frac{\cos \left( \tfrac{1}{2} \right) - 1}{2 \sin \left( \tfrac{1}{2} \right)}} \leqslant \sum_{j = 1}^{k} \sin j \leqslant {\small\frac{\cos \left( \tfrac{1}{2} \right) + 1}{2 \sin \left( \tfrac{1}{2} \right)}} \lt 1.958159 }[/math]


Zadanie D58
Pokazać, że szereg [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math] jest zbieżny, a suma tego szeregu jest w przybliżeniu równa [math]\displaystyle{ 0.6839137864 \ldots }[/math]

Rozwiązanie

Zbieżność szeregu wynika z kryterium Dirichleta, co pokazujemy tak samo jak w zadaniu poprzednim. Oszacowanie sumy szeregu jest znacznie trudniejsze, bo ciąg sum częściowych [math]\displaystyle{ S_n = \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} }[/math] silnie oscyluje i dopiero dla bardzo dużych [math]\displaystyle{ n }[/math] wynik sumowania mógłby być znaczący. Przykładowo:

[math]\displaystyle{ S_{10^6} = 0.609189 \qquad S_{10^7} = 0.748477 \qquad S_{10^8} = 0.727256 \qquad S_{10^9} = 0.660078 }[/math]

Okazuje się, że tutaj też będzie pomocne sumowanie przez części. We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = \sin k }[/math]. Korzystając ze wzoru pokazanego w zadaniu D56 p.1, otrzymujemy

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} \sin j = {\small\frac{\cos \left( \tfrac{1}{2} \right) - \cos \left( k + \tfrac{1}{2} \right)}{2 \sin \left( \tfrac{1}{2} \right)}} - \sin (1) = C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) }[/math]

gdzie

[math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Sumując przez części, dostajemy

[math]\displaystyle{ \sum_{k = 2}^{n} {\small\frac{\sin k}{\log k}} = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k)}} \right) B (k) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + \sum^{n - 1}_{k = 2} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \left( C_1 + C_2 \cos \left( k + \tfrac{1}{2} \right) \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{1}{\log n}} \cdot B (n) + C_1 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) + C_2 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, mamy

[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

Zauważmy, że szereg po prawej stronie jest zbieżny nawet bez uzbieżniającego czynnika [math]\displaystyle{ \cos \left( k + \tfrac{1}{2} \right) }[/math], bo bez tego czynnika mielibyśmy szereg teleskopowy (zobacz D13). Pozwala to oczekiwać, że sumy częściowe szeregu po prawej stronie będą znacznie szybciej zbiegały do sumy szeregu. Rzeczywiście, tym razem dla sum

[math]\displaystyle{ S_n = {\small\frac{C_1}{\log 2}} + C_2 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

otrzymujemy

[math]\displaystyle{ S_{10^6} = 0.683913783004 \qquad S_{10^7} = 0.683913786642 \qquad S_{10^8} = 0.683913786411 \qquad S_{10^9} = 0.683913786415 }[/math]

Jest to przybliżona wartość sumy szeregu [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math].


Oszacowanie błędu z jakim wyznaczona została wartość sumy

Kolejne sumowanie przez części pozwoli określić błąd z jakim wyznaczona została wartość sumy [math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} }[/math]. Rozważmy sumę

[math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) }[/math]

We wzorze na sumowanie przez części połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \; }[/math] i [math]\displaystyle{ \; b_k = \cos \left( k + \tfrac{1}{2} \right) }[/math]. Korzystając ze wzoru pokazanego w zadaniu D56 p.2, otrzymujemy

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} b_j = \sum_{j = 2}^{k} \cos \left( j + \tfrac{1}{2} \right) = {\small\frac{\sin (k + 1) - \sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} - \cos \left( \tfrac{3}{2} \right) = C_3 + C_4 \cdot \sin (k + 1) }[/math]

gdzie

[math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Wzór na sumowanie przez części ma teraz postać

[math]\displaystyle{ \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} - {\small\frac{1}{\log (k)}} + {\small\frac{1}{\log (k + 1)}} \right) B (k) }[/math]
[math]\displaystyle{ \;\;\, = \left( {\small\frac{1}{\log (n)}} - {\small\frac{1}{\log (n + 1)}} \right) B (n) + \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) (C_3 + C_4 \cdot \sin (k + 1)) }[/math]

Zauważmy, że

[math]\displaystyle{ C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) = C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - C_3 \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) }[/math]
[math]\displaystyle{ \:\, = C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (n)}} \right) - C_3 \left( {\small\frac{1}{\log (3)}} - {\small\frac{1}{\log (n + 1)}} \right) }[/math]

bo szeregi po prawej stronie są szeregami teleskopowymi.

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) \cos \left( k + \tfrac{1}{2} \right) = {\small\frac{C_3}{\log (2)}} - {\small\frac{C_3}{\log (3)}} + C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]


Zbierając, otrzymaliśmy wzór

[math]\displaystyle{ \sum_{k = 2}^{\infty} {\small\frac{\sin k}{\log k}} = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]

gdzie

[math]\displaystyle{ C_1 = \tfrac{1}{2} \operatorname{ctg}\left( \tfrac{1}{2} \right) - \sin (1) \qquad \qquad \qquad \quad \: C_2 = - {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]
[math]\displaystyle{ C_3 = - \cos \left( \tfrac{3}{2} \right) - {\small\frac{\sin (1)}{2 \sin \left( \tfrac{1}{2} \right)}} \qquad \qquad \qquad C_4 = {\small\frac{1}{2 \sin \left( \tfrac{1}{2} \right)}} }[/math]

Dla sum

[math]\displaystyle{ S_n = {\small\frac{C_1}{\log (2)}} + C_2 C_3 \left( {\small\frac{1}{\log (2)}} - {\small\frac{1}{\log (3)}} \right) + C_2 C_4 \sum_{k = 2}^{n} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) }[/math]

dostajemy

[math]\displaystyle{ S_{10^7} = 0.68391378641827479894 \qquad S_{10^8} = 0.68391378641827482233 \qquad S_{10^9} = 0.68391378641827482268 }[/math]

Łatwo oszacujemy błąd z jakim wyliczyliśmy wartość sumy szeregu [math]\displaystyle{ S }[/math]

[math]\displaystyle{ | S - S_n | = \left| C_2 C_4 \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left| \sum_{k = n + 1}^{\infty} \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right) \sin (k + 1) \right| }[/math]
[math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| | \sin (k + 1) | }[/math]
[math]\displaystyle{ \;\;\;\, \leqslant | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left| {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 1)}} + {\small\frac{1}{\log (k + 2)}} \right| }[/math]                (zobacz przypis [a])
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \sum_{k = n + 1}^{\infty} \left[ \left( {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \right) - \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} \right) \right] }[/math]
[math]\displaystyle{ \;\;\;\, = | C_2 C_4 | \cdot \left( {\small\frac{1}{\log (n + 1)}} - {\small\frac{1}{\log (n + 2)}} \right) }[/math]

Dla [math]\displaystyle{ n = 10^9 }[/math] otrzymujemy

[math]\displaystyle{ | S - S_n | \lt 2.533 \cdot 10^{- 12} }[/math]

Zatem [math]\displaystyle{ S = 0.6839137864 \ldots }[/math], gdzie wszystkie wypisane cyfry są prawidłowe.



[a] Z łatwego do sprawdzenia wzoru

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} = {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log (k) \log (k + 1)}} }[/math]

wynika, że wyrażenie [math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] maleje ze wzrostem [math]\displaystyle{ k }[/math], czyli ciąg [math]\displaystyle{ a_k = {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} }[/math] jest ciągiem malejącym, zatem

[math]\displaystyle{ {\small\frac{1}{\log (k)}} - {\small\frac{1}{\log (k + 1)}} \gt {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log (k + 2)}} }[/math]

Ciągi [math]\displaystyle{ (a_k)_{k = 1}^n }[/math] liczb rzeczywistych takie, że [math]\displaystyle{ 2 a_k \leqslant a_{k - 1} + a_{k + 1} }[/math] dla [math]\displaystyle{ k = 2, \ldots, n - 1 }[/math] nazywamy ciągami wypukłymi[17]. Wprost z definicji funkcji wypukłej wynika, że jeżeli [math]\displaystyle{ f(x) }[/math] jest funkcją wypukłą i [math]\displaystyle{ a_k = f (k) }[/math], to ciąg [math]\displaystyle{ (a_k) }[/math] jest ciągiem wypukłym.


Zadanie D59
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]
Rozwiązanie

Korzystając ze wzoru na sumowanie przez części, połóżmy [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = \log k \; }[/math] i [math]\displaystyle{ \; b_k = D (k) }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \log n \cdot B (n) - \sum_{k = 2}^{n - 1} (\log (k + 1) - \log k) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) = \pi (k) }[/math]
[math]\displaystyle{ \sum_{k = 2}^{n} \log k \cdot D (k) = \sum_{p \leqslant n} \log p = \theta (n) }[/math]

Zatem

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

Co należało pokazać.


Twierdzenie D60
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Jeżeli prawdziwe jest oszacowanie [math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math], gdzie [math]\displaystyle{ A, B \in \mathbb{R}_+ }[/math], to istnieje granica

[math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]
Dowód

Z definicji funkcji [math]\displaystyle{ \theta (n) }[/math] łatwo otrzymujemy

[math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p \lt \sum_{p \leqslant n} \log n = \log n \cdot \pi (n) }[/math]

Skąd wynika, że

[math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]

Oszacowanie wyrażenia [math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} }[/math] od dołu będzie wymagało więcej pracy. Ze wzoru

[math]\displaystyle{ \theta (n) = \log n \cdot \pi (n) - \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

(zobacz D59) otrzymujemy

[math]\displaystyle{ {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} = 1 - {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) }[/math]

Z twierdzenia C19 i założonego oszacowania funkcji [math]\displaystyle{ \pi (n) }[/math]

[math]\displaystyle{ {\small\frac{A \cdot n}{\log n}} \lt \pi (n) \lt {\small\frac{B \cdot n}{\log n}} }[/math]

dostajemy

[math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{\log n}{\log n \cdot A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{k}} \cdot {\small\frac{B \cdot k}{\log k}} }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{B}{A \cdot n}} \cdot \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} }[/math]

Nie możemy oszacować sumy całką, bo całka [math]\displaystyle{ \int {\small\frac{d x}{\log x}} }[/math] jest funkcją nieelementarną. Nie możemy też pozwolić sobie na zbyt niedokładne oszacowanie sumy i nie możemy napisać

[math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} \lt {\small\frac{n - 2}{\log 2}} \lt {\small\frac{n}{\log 2}} }[/math]

Wyjściem z tej sytuacji jest odpowiedni podział przedziału sumowania i szacowanie w każdym przedziale osobno. Niech punkt podziału [math]\displaystyle{ M }[/math] spełnia warunek [math]\displaystyle{ \sqrt{n} \leqslant M \lt \sqrt{n} + 1 }[/math]. Mamy

[math]\displaystyle{ \sum_{k = 2}^{n - 1} {\small\frac{1}{\log k}} = \sum_{k = 2}^{M - 1} {\small\frac{1}{\log k}} + \sum^{n - 1}_{k = M} {\small\frac{1}{\log k}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{M - 2}{\log 2}} + {\small\frac{n - M}{\log M}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{M}{\log 2}} + {\small\frac{n}{\log M}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{n}{\log \sqrt{n}}} }[/math]
[math]\displaystyle{ \;\;\;\; \lt {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{\log n \cdot \pi (n)}} \cdot \sum_{k = 2}^{n - 1} \log \left( 1 + {\small\frac{1}{k}} \right) \pi (k) \lt {\small\frac{B}{A \cdot n}} \cdot \left( {\small\frac{\sqrt{n}}{\log 2}} + {\small\frac{2 n}{\log n}} \right) }[/math]
[math]\displaystyle{ \quad \; \lt {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) }[/math]

Łącząc otrzymane rezultaty, otrzymujemy

[math]\displaystyle{ 1 - {\small\frac{B}{A}} \cdot \left( {\small\frac{1}{\sqrt{n} \cdot \log 2}} + {\small\frac{2}{\log n}} \right) \lt {\small\frac{\theta (n)}{\log n \cdot \pi (n)}} \lt 1 }[/math]

Na mocy twierdzenia o trzech ciągach (zobacz C10) mamy

[math]\displaystyle{ \lim_{n \to \infty} {\small\frac{\theta (n)}{\pi (n) \cdot \log n}} = 1 }[/math]

Co należało pokazać.


Uwaga D61
Funkcja [math]\displaystyle{ \theta (n) }[/math] jest ściśle związana z dobrze nam znaną funkcją [math]\displaystyle{ P (n) }[/math]. Ponieważ [math]\displaystyle{ P(n) = \prod_{p \leqslant n} p }[/math], to

[math]\displaystyle{ \log P (n) = \log \left( \prod_{p \leqslant n} p \right) = \sum_{p \leqslant n} \log p = \theta (n) }[/math].

Z twierdzenia D60 wynika, że jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math]. Jeżeli istnieje granica [math]\displaystyle{ {\small\frac{\pi (n) \cdot \log n}{n}} }[/math], to będzie istniała granica dla [math]\displaystyle{ {\small\frac{\theta (n)}{n}} }[/math] (zobacz C13 p.3).

Wiemy, że dla funkcji [math]\displaystyle{ \theta (n) }[/math], gdzie [math]\displaystyle{ n \geqslant 2 }[/math], prawdziwe jest oszacowanie[18]

[math]\displaystyle{ \left| {\small\frac{\theta (n)}{n}} - 1 \right| \leqslant {\small\frac{151.3}{\log^4 n}} }[/math]


Zadanie D62
Niech [math]\displaystyle{ \theta (n) = \sum_{p \leqslant n} \log p }[/math]. Pokazać, że

[math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
Rozwiązanie

Kładąc we wzorze na sumowanie przez części (zobacz D53) [math]\displaystyle{ s = 2 }[/math], [math]\displaystyle{ a_k = {\small\frac{1}{\log k}} }[/math] i [math]\displaystyle{ b_k = D (k) \cdot \log k }[/math]. Otrzymujemy

[math]\displaystyle{ \sum_{k = 2}^{n} D (k) = {\small\frac{1}{\log n}} \cdot B (n) - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) B (k) }[/math]

gdzie

[math]\displaystyle{ B(k) = \sum_{j = 2}^{k} D (k) \cdot \log k = \sum_{p \leqslant k} \log p = \theta (k) }[/math]
[math]\displaystyle{ \sum_{k = 2}^{n} D (k) = \sum_{p \leqslant n} 1 = \pi (n) }[/math]

Zatem

[math]\displaystyle{ \pi (n) = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} \left( {\small\frac{1}{\log (k + 1)}} - {\small\frac{1}{\log k}} \right) \theta (k) }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} - \sum_{k = 2}^{n - 1} {\small\frac{\log k - \log (k + 1)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{\theta (n)}{\log n}} + \sum_{k = 2}^{n - 1} {\small\frac{\log \left( 1 + {\normalsize\frac{1}{k}} \right)}{\log k \cdot \log (k + 1)}} \cdot \theta (k) }[/math]

Co należało pokazać.



Iloczyn Cauchy'ego szeregów

Twierdzenie D63 (kryterium d'Alemberta)
Niech [math]\displaystyle{ (a_n) }[/math] będzie ciągiem liczb rzeczywistych i istnieje granica

[math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| }[/math]

Jeżeli

  •    [math]\displaystyle{ g \lt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest bezwzględnie zbieżny
  •    [math]\displaystyle{ g \gt 1 }[/math], to szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] jest rozbieżny
Dowód

Rozważmy najpierw przypadek, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt 1 }[/math]. Niech [math]\displaystyle{ r }[/math] będzie dowolną liczbą rzeczywistą taką, że [math]\displaystyle{ g \lt r \lt 1 }[/math] i przyjmijmy [math]\displaystyle{ \varepsilon = r - g }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek

[math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]

Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math]. Z prawej nierówności otrzymujemy, że dla [math]\displaystyle{ n \geqslant N }[/math] jest

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \lt r }[/math]
[math]\displaystyle{ | a_{n + 1} | \lt r | a_n | }[/math]
[math]\displaystyle{ | a_{n + k} | \lt r^k | a_n | }[/math]

Ostatnią nierówność można łatwo udowodnić metodą indukcji matematycznej względem [math]\displaystyle{ k }[/math]. Korzystając ze wzoru na sumę szeregu geometrycznego[19], otrzymujemy

[math]\displaystyle{ \sum_{k = N + 1}^{\infty} | a_k | = \sum_{k = 1}^{\infty} | a_{N + k} | \lt \sum_{k = 1}^{\infty} r^k | a_n | = r | a_n | \sum_{k = 1}^{\infty} r^{k - 1} = | a_n | \cdot {\small\frac{r}{1 - r}} }[/math]

Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest bezwzględnie zbieżny.


W przypadku, gdy [math]\displaystyle{ g = \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt 1 }[/math] wybieramy liczbę [math]\displaystyle{ r }[/math] tak, aby spełniała warunek [math]\displaystyle{ 1 \lt r \lt g }[/math] i przyjmujemy [math]\displaystyle{ \varepsilon = g - r }[/math]. Z definicji granicy ciągu wiemy, że prawie wszystkie wyrazy ciągu [math]\displaystyle{ \left( \left| {\small\frac{a_{n + 1}}{a_n}} \right| \right) }[/math] spełniają warunek

[math]\displaystyle{ - \varepsilon \lt \left| {\small\frac{a_{n + 1}}{a_n}} \right| - g \lt \varepsilon }[/math]

Przyjmując, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N }[/math], z lewej nierówności otrzymujemy dla [math]\displaystyle{ n \geqslant N }[/math]

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| \gt r \gt 1 }[/math]

Czyli [math]\displaystyle{ | a_{n + 1} | \gt | a_n | }[/math], zatem dla wszystkich [math]\displaystyle{ k \gt N }[/math] jest [math]\displaystyle{ | a_k | \gt | a_N | \gt 0 }[/math] i nie może być spełniony podstawowy warunek zbieżności szeregu (zobacz D4). Zatem szereg jest rozbieżny. Co kończy dowód.


Uwaga D64
W przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{a_{n + 1}}{a_n}} \right| = 1 }[/math] kryterium d'Alemberta nie rozstrzyga o zbieżności lub rozbieżności szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math]. Czytelnikowi zostawiamy zastosowanie tego kryterium do szeregów

[math]\displaystyle{ \sum_{n = 1}^{\infty} 1 \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{(- 1)^{n + 1}}{n}} \qquad \qquad \sum_{n = 1}^{\infty} {\small\frac{1}{n^2}} }[/math]


Przykład D65
Niech [math]\displaystyle{ x \in \mathbb{R} }[/math]. Zbadamy zbieżność szeregu

[math]\displaystyle{ e^x = \sum_{n = 0}^{\infty} {\small\frac{x^n}{n!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

Ponieważ

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{x^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{x^n}} \right| = \lim_{n \rightarrow \infty} {\small\frac{| x |}{n + 1}} = 0 }[/math]

to z kryterium d'Alemberta wynika, że szereg jest bezwzględnie zbieżny.


Zadanie D66
Pokazać, że szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{n^n}{n!}} }[/math] jest rozbieżny.

Rozwiązanie

Łatwo znajdujemy, że

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| = {\small\frac{(n + 1)^{n + 1}}{(n + 1) !}} \cdot {\small\frac{n!}{n^n}} = {\small\frac{(n + 1) (n + 1)^n}{(n + 1) n!}} \cdot {\small\frac{n!}{n^n}} = \left( 1 + {\small\frac{1}{n}} \right)^n \xrightarrow{\; n \rightarrow \infty \;} e \gt 1 }[/math]

Z kryterium d'Alemberta wynika, że szereg jest rozbieżny.


Uwaga D67
W twierdzeniu A40, korzystając z następującej definicji funkcji [math]\displaystyle{ e^x }[/math]

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

pominęliśmy dowód własności [math]\displaystyle{ e^x e^{- x} = 1 }[/math]. Spróbujemy teraz pokazać, że [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

[math]\displaystyle{ e^x e^y = \left( \sum_{i = 0}^{\infty} {\small\frac{x^i}{i!}} \right) \left( \sum_{j = 0}^{\infty} {\small\frac{y^j}{j!}} \right) = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} }[/math]

Oznaczmy [math]\displaystyle{ a_i = {\small\frac{x^i}{i!}} }[/math] oraz [math]\displaystyle{ b_j = {\small\frac{y^j}{j!}} }[/math] i przyjrzyjmy się sumowaniu po [math]\displaystyle{ i, j }[/math]. W podwójnej sumie po prawej stronie [math]\displaystyle{ \sum^{\infty}_{i = 0} \sum_{j = 0}^{\infty} a_i b_j }[/math] sumujemy po kolejnych liniach poziomych tak, jak to zostało pokazane na rysunku

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ a_5 b_1 }[/math] [math]\displaystyle{ a_5 b_2 }[/math] [math]\displaystyle{ a_5 b_3 }[/math] [math]\displaystyle{ a_5 b_4 }[/math] [math]\displaystyle{ a_5 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ a_4 b_2 }[/math] [math]\displaystyle{ a_4 b_3 }[/math] [math]\displaystyle{ a_4 b_4 }[/math] [math]\displaystyle{ a_4 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ a_3 b_3 }[/math] [math]\displaystyle{ a_3 b_4 }[/math] [math]\displaystyle{ a_3 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ a_2 b_4 }[/math] [math]\displaystyle{ a_2 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ a_1 b_5 }[/math] [math]\displaystyle{ \cdots }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ \; \cdots \; }[/math]

Zastępując sumowanie po kolejnych liniach poziomych sumowaniem po kolejnych przekątnych, otrzymamy taki rysunek

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Co odpowiada sumie [math]\displaystyle{ \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {a_k} b_{n - k} }[/math], gdzie [math]\displaystyle{ n }[/math] numeruje kolejne przekątne. Taka zmiana sposobu sumowania powoduje następujące przekształcenie wzoru

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} }[/math]

Ponieważ

[math]\displaystyle{ {\small\frac{1}{k! \cdot (n - k) !}} = {\small\frac{1}{n!}} \cdot {\small\frac{n!}{k! \cdot (n - k)!}} = {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} }[/math]

to otrzymujemy

[math]\displaystyle{ e^x e^y = \sum_{i = 0}^{\infty} \sum_{j = 0}^{\infty} {\small\frac{x^i y^j}{i! \cdot j!}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{x^k y^{n - k}}{k! \cdot (n - k) !}} = \sum_{n = 0}^{\infty} \sum_{k = 0}^{n} {\small\frac{1}{n!}} \cdot {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} \cdot x^k y^{n - k} = \sum_{n = 0}^{\infty} {\small\frac{1}{n!}} (x + y)^n = e^{x + y} }[/math]

Pokazaliśmy tym samym, że z definicji

[math]\displaystyle{ e^x = \sum_{k = 0}^{\infty} {\small\frac{x^k}{k!}} = 1 + x + {\small\frac{x^2}{2}} + {\small\frac{x^3}{6}} + {\small\frac{x^4}{24}} + {\small\frac{x^5}{120}} + \ldots }[/math]

wynika podstawowa własność funkcji wykładniczej [math]\displaystyle{ e^x e^y = e^{x + y} }[/math].

Mamy świadomość, że dokonana przez nas zmiana sposobu sumowania była nieformalna i w związku z tym nie wiemy, czy była poprawna. Zatem musimy precyzyjnie zdefiniować takie sumowanie i zbadać, kiedy jest dopuszczalne. Dopiero wtedy będziemy mogli być pewni, że policzony rezultat jest poprawny.


Definicja D68
Iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n + a_1 b_{n - 1} + \ldots + a_{n - 1} b_1 + a_n b_0 }[/math]

W przypadku szeregów, których wyrazy są numerowane od liczby [math]\displaystyle{ 1 }[/math], iloczynem Cauchy'ego szeregów [math]\displaystyle{ \sum_{i = 1}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 1}^{\infty} b_j }[/math] nazywamy szereg [math]\displaystyle{ \sum_{n = 1}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 1}^{n} a_k b_{n - k + 1} = a_1 b_n + a_2 b_{n - 1} + \ldots + a_{n - 1} b_2 + a_n b_1 }[/math]


Zadanie D69
Niech [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]. Pokazać, że

  •    jeżeli [math]\displaystyle{ (a_n) = (1, 0, 0, 0, 0, \ldots) }[/math], [math]\displaystyle{ \; (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = b_n }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (1, 1, 1, 1, 1, \ldots) }[/math], [math]\displaystyle{ \; (b_n) }[/math] jest dowolnym ciągiem, to [math]\displaystyle{ c_n = \sum_{k = 0}^{n} b_k = B_n }[/math]
  •    jeżeli [math]\displaystyle{ a_n = b_n = {\small\frac{r^n}{n!}} }[/math], to [math]\displaystyle{ c_n = {\small\frac{(2 r)^n}{n!}} }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (a, r, r^2, r^3, \ldots) }[/math], [math]\displaystyle{ \; (b_n) = (b, r, r^2, r^3, \ldots) }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\ (a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
  •    jeżeli [math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ \; (b_n) = (b, r, r^2, r^3, \ldots) }[/math], gdzie [math]\displaystyle{ q \neq r }[/math], to [math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]
Rozwiązanie

Punkt 1.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = a_0 b_n = b_n }[/math]

Punkt 2.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} b_{n - k} = \sum^n_{j = 0} b_j = B_n }[/math]

Punkt 3.

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{k = 0}^{n} {\small\frac{r^k r^{n - k}}{k!(n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\frac{n!}{k! (n - k) !}} = {\small\frac{r^n}{n!}} \sum_{k = 0}^{n} {\small\binom{n}{k}} = {\small\frac{(2 r)^n}{n!}} }[/math]

Punkt 4.

Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ c_0 = a_0 b_0 = a b }[/math]

Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ c_1 = a_0 b_1 + a_1 b_0 = a \cdot r + r \cdot b = (a + b) r }[/math]

Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a \cdot r^n + r^n \cdot b + \sum_{k = 1}^{n - 1} r^k r^{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (a + b) r^n + \sum_{k = 1}^{n - 1} r^n }[/math]
[math]\displaystyle{ \;\;\;\:\, = (a + b + n - 1) r^n }[/math]

Zbierając, otrzymujemy

[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \; a b & \text{gdy } \; n = 0 \\ (a + b + n - 1) r^n & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]

Punkt 5.

Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ c_0 = a_0 b_0 = a b }[/math]

Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ c_1 = a_0 b_1 + a_1 b_0 = a r + b q }[/math]

Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a_0 b_n + a_n b_0 + \sum_{k = 1}^{n - 1} a_k b_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\:\, = a r^n + b q^n + \sum_{k = 1}^{n - 1} q^k r^{n - k} }[/math]

Jeżeli [math]\displaystyle{ r = 0 }[/math], to [math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = 0 }[/math]. Jeżeli [math]\displaystyle{ r \neq 0 }[/math], to

[math]\displaystyle{ \sum_{k = 1}^{n - 1} q^k r^{n - k} = r^n \sum_{k = 1}^{n - 1} \left( {\small\frac{q}{r}} \right)^k = r^n \cdot {\small\frac{\left( {\normalsize\frac{q}{r}} \right)^n - {\normalsize\frac{q}{r}}}{{\normalsize\frac{q}{r}} - 1}} = {\small\frac{r q^n - q r^n}{q - r}} }[/math]

Zauważmy, że znaleziony wzór obejmuje również przypadek [math]\displaystyle{ r = 0 }[/math]. Zatem

[math]\displaystyle{ c_n = a r^n + b q^n + {\small\frac{r q^n - q r^n}{q - r}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = q^n \left( b + {\small\frac{r}{q - r}} \right) + r^n \left( a - {\small\frac{q}{q - r}} \right) }[/math]

Zbierając, otrzymujemy

[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]


Przykład D70
Ostatni punkt zadania D69 pozwala stworzyć wiele przykładowych szeregów i ich iloczynów Cauchy'ego. Przypomnijmy, że

[math]\displaystyle{ (a_n) = (a, q, q^2, q^3, \ldots) }[/math], [math]\displaystyle{ \quad (b_n) = (b, r, r^2, r^3, \ldots) }[/math],  gdzie [math]\displaystyle{ \, q \neq r }[/math]
[math]\displaystyle{ c_n = \begin{cases} \qquad \qquad \qquad \qquad \qquad \qquad \, a b & \text{gdy } \; n = 0 \\ q^n \left( b + {\large\frac{r}{q - r}} \right) + r^n \left( a - {\large\frac{q}{q - r}} \right) & \text{gdy } \; n \geqslant 1 \\ \end{cases} }[/math]


Przykłady zebraliśmy w tabeli.


Przykład D71
Podamy przykład szeregów zbieżnych, których iloczyn Cauchy'ego jest rozbieżny. Rozważmy zbieżny szereg (zobacz D5)

[math]\displaystyle{ \sum_{k = 0}^{\infty} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} = 0.604898643 \ldots \qquad \qquad }[/math] (WolframAlpha)

Mnożąc powyższy szereg przez siebie według reguły Cauchy'ego, otrzymujemy

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{\sqrt{k + 1}}} \cdot {\small\frac{(- 1)^{n - k}}{\sqrt{n - k + 1}}} = (- 1)^n \cdot \sum_{k = 0}^{n} {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} }[/math]

Ale [math]\displaystyle{ k \leqslant n \; }[/math] i [math]\displaystyle{ \; n - k \leqslant n }[/math], zatem

[math]\displaystyle{ {\small\frac{1}{\sqrt{(k + 1) (n - k + 1)}}} \geqslant {\small\frac{1}{\sqrt{(n + 1) (n + 1)}}} = {\small\frac{1}{n + 1}} }[/math]

Czyli

[math]\displaystyle{ | c_n | \geqslant \sum_{k = 0}^{n} {\small\frac{1}{n + 1}} = 1 }[/math]

Ponieważ [math]\displaystyle{ \lim_{n \rightarrow \infty} c_n \neq 0 }[/math], to iloczyn Cauchy'ego jest rozbieżny (zobacz D4).


Zadanie D72
Pokazać, że jeżeli [math]\displaystyle{ a_n = b_n = r^n \; }[/math] i [math]\displaystyle{ \; c_n = (n + 1) r^n }[/math] (zobacz D69 p.3), to szeregi [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] oraz [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math] są jednocześnie zbieżne lub jednocześnie rozbieżne. Sprawdzić, że w przypadku, gdy szeregi te są zbieżne, prawdziwy jest wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]
Rozwiązanie

Zbieżność szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] łatwo zbadamy, stosując kryterium d'Alemberta.

[math]\displaystyle{ \left| {\small\frac{c_{n + 1}}{c_n}} \right| = \left| {\small\frac{(n + 2) r^{n + 1}}{(n + 1) r^n}} \right| = {\small\frac{n + 2}{n + 1}} \cdot | r | \xrightarrow{\; n \rightarrow \infty \;} | r | }[/math]

Zatem szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] jest zbieżny, gdy [math]\displaystyle{ | r | \lt 1 }[/math] i rozbieżny, gdy [math]\displaystyle{ | r | \gt 1 }[/math], tak samo, jak szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n }[/math]. W przypadku, gdy [math]\displaystyle{ r = \pm 1 }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n }[/math] jest rozbieżny, a odpowiednie sumy częściowe szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] są równe

  •     gdy [math]\displaystyle{ r = 1 }[/math], [math]\displaystyle{ c_n = n + 1 }[/math], [math]\displaystyle{ \quad C_L = \sum_{n = 0}^{L} (n + 1) = {\small\frac{(L + 1) (L + 2)}{2}} \xrightarrow{\; L \rightarrow \infty \;} \infty \qquad \qquad }[/math] (zobacz [a], WolframAlpha)
  •     gdy [math]\displaystyle{ r = - 1 }[/math], [math]\displaystyle{ c_n = (n + 1) (- 1)^n }[/math], [math]\displaystyle{ \quad C_L = \sum_{n = 0}^{L} (n + 1) (- 1)^n = (- 1)^L \cdot {\small\frac{2 L + 3}{4}} + {\small\frac{1}{4}} \xrightarrow{\; L \rightarrow \infty \;} \pm \infty \qquad \qquad }[/math] (zobacz D54, WolframAlpha)

W przypadku, gdy [math]\displaystyle{ | r | \lt 1 }[/math] wiemy[19], że [math]\displaystyle{ \sum_{n = 0}^{\infty} r^n = {\small\frac{1}{1 - r}} }[/math]. Korzystając z zadania D54, otrzymujemy

[math]\displaystyle{ \sum_{n = 0}^{L} (n + 1) r^n = \sum_{n = 0}^{L} n r^n + \sum_{n = 0}^{L} r^n = {\small\frac{L r^{L + 2} - (L + 1) r^{L + 1} + r}{(r - 1)^2}} + {\small\frac{r^{L + 1} - 1}{r - 1}} = {\small\frac{(L + 1) r^{L + 2} - (L + 2) r^{L + 1} + 1}{(r - 1)^2}} \xrightarrow{\; L \rightarrow \infty \;} {\small\frac{1}{(r - 1)^2}} }[/math]


Ponieważ szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (n + 1) r^n }[/math] jest zbieżny, gdy [math]\displaystyle{ | r | \lt 1 }[/math], to musi być [math]\displaystyle{ \lim_{n \rightarrow \infty} (n + 1) r^n = 0 }[/math] (zobacz D4). Pokazaliśmy, że w rozważanym przypadku iloczyn sum szeregów jest równy sumie iloczynu Cauchy'ego tych szeregów.



[a] Zauważmy, że

[math]\displaystyle{ \sum_{k = 0}^{n} k = {\small\frac{1}{2}} \left( \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} k \right) = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{j = 0}^{n} (n - j) \right] = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} k + \sum_{k = 0}^{n} (n - k) \right] = {\small\frac{1}{2}} \sum_{k = 0}^{n} (k + n - k) = {\small\frac{n}{2}} \sum_{k = 0}^{n} 1 = {\small\frac{n (n + 1)}{2}} }[/math]


Uwaga D73
Przykłady D70 i D71 pokazują, że w ogólności nie jest prawdziwy wzór

[math]\displaystyle{ \left( \sum_{i = 0}^{\infty} a_i \right) \cdot \left( \sum_{j = 0}^{\infty} b_j \right) = \sum_{n = 0}^{\infty} \left( \sum_{k = 0}^{n} a_k b_{n - k} \right) }[/math]

Skoro iloczyn sum szeregów nie zawsze jest równy sumie iloczynu Cauchy'ego tych szeregów, to musimy ustalić, jakie warunki muszą być spełnione, aby tak było.


Uwaga D74
Nim przejdziemy do dowodu twierdzenia Mertensa, zauważmy, że od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

możemy łatwo przejść do sumowania po liniach poziomych lub po liniach pionowych. Rysunek przedstawia sytuację, gdy [math]\displaystyle{ m = 5 }[/math].

[math]\displaystyle{ a_6 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_5 b_0 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_4 b_0 }[/math] [math]\displaystyle{ a_4 b_1 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_3 b_0 }[/math] [math]\displaystyle{ a_3 b_1 }[/math] [math]\displaystyle{ a_3 b_2 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_2 b_0 }[/math] [math]\displaystyle{ a_2 b_1 }[/math] [math]\displaystyle{ a_2 b_2 }[/math] [math]\displaystyle{ a_2 b_3 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_1 b_0 }[/math] [math]\displaystyle{ a_1 b_1 }[/math] [math]\displaystyle{ a_1 b_2 }[/math] [math]\displaystyle{ a_1 b_3 }[/math] [math]\displaystyle{ a_1 b_4 }[/math] [math]\displaystyle{ }[/math]
[math]\displaystyle{ a_0 b_0 }[/math] [math]\displaystyle{ a_0 b_1 }[/math] [math]\displaystyle{ a_0 b_2 }[/math] [math]\displaystyle{ a_0 b_3 }[/math] [math]\displaystyle{ a_0 b_4 }[/math] [math]\displaystyle{ a_0 b_5 }[/math] [math]\displaystyle{ a_0 b_6 }[/math]

Przejście do sumowania po liniach poziomych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach poziomych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii poziomej.


Przejście do sumowania po liniach pionowych

[math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_j b_i }[/math]

Pierwsza suma (po prawej stronie) przebiega po kolejnych liniach pionowych, a druga po kolejnych elementach w [math]\displaystyle{ i }[/math]-tej linii pionowej.


Twierdzenie D75 (Franciszek Mertens)
Jeżeli szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] jest zbieżny bezwzględnie, szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] jest zbieżny, to ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny i [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód

Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny bezwzględnie, oznaczmy [math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' }[/math]. Niech

[math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad B_n = \sum_{j = 0}^{n} b_j \qquad \qquad C_n = \sum_{k = 0}^{n} c_k \qquad \qquad \beta_n = B_n - B }[/math]

Przekształcając sumę [math]\displaystyle{ C_m }[/math], otrzymujemy

[math]\displaystyle{ C_m = \sum_{n = 0}^{m} c_n }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

Przechodzimy od sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D74).

[math]\displaystyle{ C_m = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \sum_{j = 0}^{m - i} b_j }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i \left( {B + \beta_{m - i}} \right) }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} a_i B + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
[math]\displaystyle{ \; = B \sum_{i = 0}^{m} a_i + \sum_{i = 0}^{m} a_i \beta_{m - i} }[/math]
[math]\displaystyle{ \; = A_m B + \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Zatem

[math]\displaystyle{ C_m - A_m B = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Niech

[math]\displaystyle{ \delta_m = \sum_{k = 0}^{m} \beta_k a_{m - k} }[/math]

Oczywiście chcemy pokazać, że [math]\displaystyle{ C_m \longrightarrow A B }[/math]. Ponieważ [math]\displaystyle{ A_m B \longrightarrow A B }[/math], to wystarczy pokazać, że [math]\displaystyle{ \delta_m \longrightarrow 0 }[/math].

Z założenia [math]\displaystyle{ B_m \longrightarrow B }[/math], zatem [math]\displaystyle{ \beta_m \longrightarrow 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (\beta_k) }[/math] wynika, że

  •    ciąg [math]\displaystyle{ (\beta_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | \beta_k | \leqslant U }[/math] (zobacz C10)
  •    dla dowolnego [math]\displaystyle{ \varepsilon_1 \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (\beta_k) }[/math] spełniają warunek [math]\displaystyle{ | \beta_k | \lt \varepsilon_1 }[/math] (zobacz C5, C7)

Możemy przyjąć, że warunek [math]\displaystyle{ | \beta_k | \lt \varepsilon_1 }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ M = M (\varepsilon_1) }[/math]. Zatem dla [math]\displaystyle{ m \gt M }[/math] dostajemy

[math]\displaystyle{ | \delta_m | \leqslant \sum_{k = 0}^{M} | \beta_k | | a_{m - k} | + \sum_{k = M + 1}^{m} | \beta_k | | a_{m - k} | }[/math]
[math]\displaystyle{ \;\; \lt U (| a_m | + \ldots + | a_{m - M} |) + \varepsilon_1 \sum_{k = M + 1}^{m} | a_{m - k} | }[/math]
[math]\displaystyle{ \;\; \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]

Z założenia szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] jest zbieżny, zatem musi być [math]\displaystyle{ \lim_{m \rightarrow \infty} a_m = 0 }[/math] (zobacz D4). Czyli dla dowolnego [math]\displaystyle{ \varepsilon_2 \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_k) }[/math] spełniają warunek [math]\displaystyle{ | a_k | \lt \varepsilon_2 }[/math]. Możemy przyjąć, że są to wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon_2) }[/math]. Zatem dla [math]\displaystyle{ m \gt M + N }[/math] otrzymujemy

[math]\displaystyle{ | \delta_m | \lt U (| a_{m - M} | + \ldots + | a_m |) + \varepsilon_1 A' }[/math]
[math]\displaystyle{ \;\; \lt \varepsilon_2 (M + 1) U + \varepsilon_1 A' }[/math]


Prawa strona nierówności jest dowolnie mała. Przykładowo dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] wystarczy wybrać [math]\displaystyle{ \varepsilon_1 = {\small\frac{\varepsilon / 2}{A'}} }[/math] i [math]\displaystyle{ \varepsilon_2 = {\small\frac{\varepsilon / 2}{(M + 1) U}} }[/math], aby otrzymać [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math] dla wszystkich [math]\displaystyle{ m \gt M + N }[/math]. Ponieważ prawie wszystkie wyrazy ciągu [math]\displaystyle{ \delta_m }[/math] spełniają warunek [math]\displaystyle{ | \delta_m | \lt \varepsilon }[/math], to [math]\displaystyle{ \lim_{m \rightarrow \infty} \delta_m = 0 }[/math]. Co należało pokazać.


Zadanie D76
Pokazać, że iloczyn Cauchy'ego dwóch szeregów bezwzględnie zbieżnych jest bezwzględnie zbieżny.

Rozwiązanie

Z założenia szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j }[/math] są bezwzględnie zbieżne, zatem możemy napisać

[math]\displaystyle{ \sum_{i = 0}^{\infty} | a_i | = A' \qquad \qquad \sum^{\infty}_{j = 0} | b_j | = B' }[/math]

Zauważmy, że suma [math]\displaystyle{ \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math] obejmuje [math]\displaystyle{ m + 1 }[/math] przekątnych. Łatwo możemy przejść od sumowania po kolejnych przekątnych do sumowana po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D74).

[math]\displaystyle{ C'_m = \sum_{n = 0}^{m} | c_n | }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \left| \sum_{k = 0}^{n} a_k b_{n - k} \right| }[/math]
[math]\displaystyle{ \; \leqslant \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k b_{n - k} | }[/math]
[math]\displaystyle{ \; = \sum_{n = 0}^{m} \sum_{k = 0}^{n} | a_k | | b_{n - k} | }[/math]
[math]\displaystyle{ \; = \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} | a_i | | b_j | \qquad \qquad }[/math] (zmieniliśmy sposób sumowania)
[math]\displaystyle{ \; = \sum_{i = 0}^{m} | a_i | \sum_{j = 0}^{m - i} | b_j | }[/math]
[math]\displaystyle{ \; \leqslant A' B' }[/math]

Ponieważ ciąg sum częściowych [math]\displaystyle{ C'_m }[/math] jest rosnący (bo sumujemy wartości nieujemne) i ograniczony od góry, to jest zbieżny.


Zadanie D77
Podać przykład szeregów zbieżnych, z których tylko jeden jest bezwzględnie zbieżny i których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie

Zauważmy, że szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} {\small\frac{(- 1)^i}{2^i}} = {\small\frac{2}{3}} }[/math] jest bezwzględnie zbieżny, bo [math]\displaystyle{ \sum_{i = 0}^{\infty} {\small\frac{1}{2^i}} = 2 }[/math] jest zbieżny. Szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2 }[/math] jest zbieżny na mocy kryterium Leibniza (zobacz D5), ale nie jest bezwzględnie zbieżny (zobacz D18, D20 p.1, B34).

Zatem na podstawie twierdzenia Mertensa iloczyn Cauchy'ego tych szeregów [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{2^k}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]

jest zbieżny. Łatwo widzimy, że

[math]\displaystyle{ | c_n | = \sum_{k = 0}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]
[math]\displaystyle{ \; = {\small\frac{1}{n + 1}} + \sum_{k = 1}^{n} {\small\frac{1}{2^k (n - k + 1)}} }[/math]
[math]\displaystyle{ \; \geqslant {\small\frac{1}{n + 1}} }[/math]

Ponieważ szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{1}{n + 1}} }[/math] jest rozbieżny i

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{n + 1}} \leqslant | c_n | }[/math]

to na mocy kryterium porównawczego (zobacz D10) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | c_n | }[/math] jest rozbieżny. Co należało pokazać.


Zadanie D78
Podać przykład szeregów warunkowo zbieżnych, których iloczyn Cauchy'ego jest warunkowo zbieżny.

Rozwiązanie

Szereg [math]\displaystyle{ \sum_{j = 0}^{\infty} {\small\frac{(- 1)^j}{j + 1}} = \log 2 }[/math] jest warunkowo zbieżny (zobacz D5, D18, D20 p.1, B34). Iloczyn Cauchy'ego dwóch takich szeregów jest równy [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie

[math]\displaystyle{ c_n = \sum_{k = 0}^{n} {\small\frac{(- 1)^k}{k + 1}} \cdot {\small\frac{(- 1)^{n - k}}{n - k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = (- 1)^n \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{(n - k + 1) + (k + 1)}{(k + 1) (n - k + 1)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{(- 1)^n}{n + 2}} \left( \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = {\small\frac{2 (- 1)^n}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} }[/math]


Ponieważ (zobacz D18)

[math]\displaystyle{ \log (n + 1) \lt \sum_{k = 1}^{n} {\small\frac{1}{k}} \lt 1 + \log n }[/math]

to

[math]\displaystyle{ {\small\frac{2}{n + 2}} \cdot \log (n + 2) \lt | c_n | \lt {\small\frac{2}{n + 2}} \cdot (1 + \log (n + 1)) }[/math]

Z twierdzenia o trzech ciągach wynika natychmiast, że [math]\displaystyle{ \lim_{n \rightarrow \infty} | c_n | = 0 }[/math]. Pokażemy teraz, że ciąg [math]\displaystyle{ (| c_n |) }[/math] jest ciągiem malejącym.

[math]\displaystyle{ | c_n | - | c_{n - 1} | = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{n + 1}} + {\small\frac{2}{n + 2}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} - {\small\frac{2}{n + 1}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} + \left( {\small\frac{2}{n + 2}} - {\small\frac{2}{n + 1}} \right) \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{2}{(n + 2) (n + 1)}} - {\small\frac{2}{(n + 2) (n + 1)}} \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} }[/math]
[math]\displaystyle{ \;\;\;\; \leqslant 0 }[/math]

Bo [math]\displaystyle{ \; \sum_{k = 0}^{n - 1} {\small\frac{1}{k + 1}} \geqslant 1 }[/math]. Ponieważ ciąg [math]\displaystyle{ (| c_n |) }[/math] jest malejący i zbieżny do zera, to z kryterium Leibniza (zobacz D5) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} (- 1)^n | c_n | }[/math] jest zbieżny. Zauważmy jeszcze, że dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{n + 1}} \leqslant {\small\frac{2 \log (n + 2)}{n + 2}} \lt | c_n | }[/math]

Zatem na podstawie kryterium porównawczego (zobacz D10) szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} | c_n | }[/math] jest rozbieżny.


Uwaga D79
Nim przejdziemy do dowodu twierdzenia Abela, musimy udowodnić trzy twierdzenia dotyczące pewnych granic. Warto zauważyć, że twierdzenie D81 pozwala przypisać wartość sumy do szeregów, których suma w zwykłym sensie nie istnieje. Uogólnienie to nazywamy sumowalnością w sensie Cesàro[20]. Nie będziemy zajmowali się tym tematem, ale podamy ciekawy przykład.

Rozważmy szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math]. Sumy częściowe tego szeregu wynoszą [math]\displaystyle{ S_k = {\small\frac{1 + (- 1)^k}{2}} }[/math] i tworzą ciąg rozbieżny, ale ciąg kolejnych średnich arytmetycznych dla ciągu [math]\displaystyle{ (S_k) }[/math] jest równy

[math]\displaystyle{ x_n = {\small\frac{S_0 + \ldots + S_n}{n + 1}} = {\small\frac{1}{n + 1}} \cdot \sum_{k = 0}^{n} {\small\frac{1 + (- 1)^k}{2}} = {\small\frac{1}{2}} + {\small\frac{1 + (- 1)^n}{4 (n + 1)}} \xrightarrow{\; n \rightarrow \infty \;} {\small\frac{1}{2}} \qquad \qquad }[/math] (WolframAlfa)

Zatem szereg [math]\displaystyle{ \sum_{i = 0}^{\infty} (- 1)^i }[/math] jest sumowalny w sensie Cesàro i jego suma jest równa [math]\displaystyle{ {\small\frac{1}{2}} }[/math].


Twierdzenie D80
Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math].

Dowód

Z założenia [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math]. Ze zbieżności ciągu [math]\displaystyle{ (a_k) }[/math] wynika, że

  •    ciąg [math]\displaystyle{ (a_k) }[/math] jest ograniczony, czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | a_k | \leqslant U }[/math] (zobacz C10)
  •    dla dowolnego [math]\displaystyle{ \varepsilon \gt 0 }[/math] prawie wszystkie wyrazy ciągu [math]\displaystyle{ (a_k) }[/math] spełniają warunek [math]\displaystyle{ | a_k | \lt \varepsilon }[/math] (zobacz C5, C7)

Możemy przyjąć, że warunek [math]\displaystyle{ | a_k | \lt \varepsilon }[/math] spełniają wszystkie wyrazy, poczynając od [math]\displaystyle{ N = N (\varepsilon) }[/math]. Zatem dla [math]\displaystyle{ n \gt N }[/math] możemy napisać

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = {\small\frac{| a_0 | + \ldots + | a_N | + |a_{N + 1} | + \ldots + | a_n |}{n + 1}} }[/math]
[math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + {\small\frac{\varepsilon (n - N)}{n + 1}} }[/math]
[math]\displaystyle{ \,\, \lt {\small\frac{U (N + 1)}{n + 1}} + \varepsilon }[/math]

Ponieważ liczba [math]\displaystyle{ n }[/math] może być dowolnie duża, to wyrażenie [math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} }[/math] może być dowolnie małe. W szczególności warunek

[math]\displaystyle{ {\small\frac{U (N + 1)}{n + 1}} \lt \varepsilon }[/math]

jest spełniony dla [math]\displaystyle{ n \gt {\small\frac{U (N + 1)}{\varepsilon}} - 1 }[/math] i otrzymujemy, że

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | \lt 2 \varepsilon }[/math]

dla wszystkich [math]\displaystyle{ n \gt \max \left( N, {\small\frac{U (N + 1)}{\varepsilon}} - 1 \right) }[/math]. Zatem [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | = 0 }[/math]. Co należało pokazać.


Twierdzenie D81
Jeżeli ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, to ciąg kolejnych średnich arytmetycznych [math]\displaystyle{ x_n = {\small\frac{a_0 + \ldots + a_n}{n + 1}} }[/math] jest zbieżny do tej samej granicy.

Dowód

Z założenia ciąg [math]\displaystyle{ (a_k) }[/math] jest zbieżny, zatem możemy napisać

[math]\displaystyle{ \lim_{k \rightarrow \infty} a_k = g }[/math]

Z definicji ciągu [math]\displaystyle{ (x_n) }[/math] dostajemy

[math]\displaystyle{ x_n - g = {\small\frac{a_0 + \ldots + a_n}{n + 1}} - g = {\small\frac{a_0 + \ldots + a_n - (n + 1) g}{n + 1}} = {\small\frac{(a_0 - g) + \ldots + (a_n - g)}{n + 1}} = {\small\frac{a_0 - g}{n + 1}} + \ldots + {\small\frac{a_n - g}{n + 1}} }[/math]

Wynika stąd, że

[math]\displaystyle{ 0 \leqslant | x_n - g | \leqslant {\small\frac{| a_0 - g |}{n + 1}} + \ldots + {\small\frac{| a_n - g |}{n + 1}} = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k - g | }[/math]

W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D80 i twierdzenia o trzech ciągach (zobacz C11) otrzymujemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} | x_n - g | = 0 }[/math]

Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = g }[/math] (zobacz C9 p.2). Co należało pokazać.


Twierdzenie D82
Niech [math]\displaystyle{ (a_n) }[/math] i [math]\displaystyle{ (b_n) }[/math] będą zbieżnymi ciągami liczb rzeczywistych. Jeżeli [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = a }[/math] i [math]\displaystyle{ \lim_{n \rightarrow \infty} b_n = b }[/math], to [math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math].

Dowód

1. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n = 0} }[/math]

Ponieważ ciąg [math]\displaystyle{ (b_n) }[/math] jest zbieżny, to jest ograniczony (zobacz C10), czyli istnieje taka liczba [math]\displaystyle{ U \gt 0 }[/math], że dla każdego [math]\displaystyle{ k \geqslant 0 }[/math] jest [math]\displaystyle{ | b_k | \leqslant U }[/math]. Zatem

[math]\displaystyle{ 0 \leqslant \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| \leqslant {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} | a_k | | b_{n - k} | \leqslant {\small\frac{U}{n + 1}} \sum_{k = 0}^{n} | a_k | }[/math]

W granicy, gdy [math]\displaystyle{ n \rightarrow \infty }[/math], z twierdzenia D80 i twierdzenia o trzech ciągach (zobacz C11) otrzymujemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} \left| {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right| = 0 }[/math]

Czyli [math]\displaystyle{ \lim_{n \rightarrow \infty} \left( {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} \right) = 0 }[/math] (zobacz C9 p.2).


2. Przypadek, gdy [math]\displaystyle{ \boldsymbol{\lim_{n \rightarrow \infty} a_n \neq 0} }[/math]

Niech [math]\displaystyle{ x_n = a_n - a }[/math]. Oczywiście [math]\displaystyle{ \lim_{n \rightarrow \infty} x_n = 0 }[/math]. Podstawiając, otrzymujemy

[math]\displaystyle{ {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = {\small\frac{1}{n + 1}} \sum^n_{k = 0} (a + x_k) b_{n - k} }[/math]
[math]\displaystyle{ \, = {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a b_{n - k} + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]
[math]\displaystyle{ \, = a \cdot {\small\frac{1}{n + 1}} \sum_{j = 0}^{n} b_j + {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} x_k b_{n - k} }[/math]

W granicy, gdy [math]\displaystyle{ n \longrightarrow \infty }[/math], z twierdzenia D81 i udowodnionego wyżej przypadku, gdy [math]\displaystyle{ \lim_{n \rightarrow \infty} a_n = 0 }[/math], dostajemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{1}{n + 1}} \sum_{k = 0}^{n} a_k b_{n - k} = a b }[/math]

Co kończy dowód.



Twierdzenie D83 (Niels Henrik Abel)
Jeżeli szeregi [math]\displaystyle{ \sum_{i = 0}^{\infty} a_i = A }[/math] oraz [math]\displaystyle{ \sum_{j = 0}^{\infty} b_j = B }[/math] są zbieżne i ich iloczyn Cauchy'ego [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n }[/math], gdzie [math]\displaystyle{ c_n = \sum_{k = 0}^{n} a_k b_{n - k} }[/math], jest zbieżny, to [math]\displaystyle{ \sum_{n = 0}^{\infty} c_n = A B }[/math].

Dowód

Będziemy stosowali następujące oznaczenia

[math]\displaystyle{ A_n = \sum_{i = 0}^{n} a_i \qquad \qquad \;\, B_n = \sum_{i = 0}^{n} b_i \qquad \qquad \;\; C_n = \sum_{i = 0}^{n} c_i }[/math]

Z założenia szeregi są zbieżne, zatem możemy napisać

[math]\displaystyle{ \lim_{n \rightarrow \infty} A_n = A \qquad \qquad \lim_{n \rightarrow \infty} B_n = B \qquad \qquad \lim_{n \rightarrow \infty} C_n = C }[/math]

Rozważmy sumę

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{n = 0}^{m} c_n }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{n = 0}^{m} \sum_{k = 0}^{n} a_k b_{n - k} }[/math]

Od sumowania wyrazów [math]\displaystyle{ a_k b_{n - k} }[/math] po [math]\displaystyle{ m + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ m + 1 }[/math] kolejnych liniach poziomych (zobacz D74).

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{m = 0}^{L} \sum_{i = 0}^{m} \sum_{j = 0}^{m - i} a_i b_j }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i \sum^{m - i}_{j = 0} b_j }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{i = 0}^{m} a_i B_{m - i} }[/math]
[math]\displaystyle{ \;\; = \sum_{m = 0}^{L} \sum_{k = 0}^{m} a_k B_{m - k} }[/math]

Od sumowania wyrazów [math]\displaystyle{ a_k B_{m - k} }[/math] po [math]\displaystyle{ L + 1 }[/math] kolejnych przekątnych przechodzimy do sumowania po [math]\displaystyle{ L + 1 }[/math] kolejnych liniach pionowych (zobacz D74).

[math]\displaystyle{ \sum_{m = 0}^{L} C_m = \sum_{i = 0}^{L} \sum_{j = 0}^{L - i} a_j B_i }[/math]
[math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i \sum_{j = 0}^{L - i} a_j }[/math]
[math]\displaystyle{ \;\; = \sum_{i = 0}^{L} B_i A_{L - i} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{L + 1}} \sum_{m = 0}^{L} C_m = {\small\frac{1}{L + 1}} \sum_{i = 0}^{L} B_i A_{L - i} }[/math]

W granicy, gdy [math]\displaystyle{ L \longrightarrow \infty }[/math], z twierdzeń D81 i D82 otrzymujemy [math]\displaystyle{ C = A B }[/math]. Co należało pokazać.



Liczby Catalana

Definicja D84
Liczby Catalana [math]\displaystyle{ C_n }[/math] definiujemy wzorem

[math]\displaystyle{ C_n = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} }[/math]

gdzie [math]\displaystyle{ n \geqslant 0 }[/math].


Twierdzenie D85
Liczby Catalana [math]\displaystyle{ C_n }[/math] mają następujące własności

  •    [math]\displaystyle{ C_n }[/math] są liczbami całkowitymi dodatnimi
  •    [math]\displaystyle{ C_n = {\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{n}} {\small\binom{2 n}{n - 1}} }[/math]
  •    [math]\displaystyle{ C_{n + 1} = {\small\frac{2 (2 n + 1)}{n + 2}} C_n }[/math]
  •    [math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math]
Dowód

Punkt 1.

Twierdzenie jest prawdziwe dla początkowych wartości [math]\displaystyle{ n \geqslant 0 }[/math], bo [math]\displaystyle{ (C_n) = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, \ldots) }[/math]. W ogólności wystarczy zauważyć, że dla [math]\displaystyle{ n \geqslant 0 }[/math] mamy

[math]\displaystyle{ {\small\binom{2 n}{n + 1}} = {\small\frac{(2 n) !}{(n + 1) ! (n - 1) !}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} \lt {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ {\small\binom{2 n}{n}} - {\small\binom{2 n}{n + 1}} = {\small\binom{2 n}{n}} - {\small\frac{n}{n + 1}} {\small\binom{2 n}{n}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n }[/math]

Zatem [math]\displaystyle{ C_n }[/math] jest liczbą całkowitą większą od zera.

Punkt 2.

[math]\displaystyle{ {\small\frac{1}{2 n + 1}} {\small\binom{2 n + 1}{n}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{(2 n + 1) !}{n! (n + 1) !}} = {\small\frac{1}{2 n + 1}} \cdot {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n }[/math]
[math]\displaystyle{ {\small\frac{1}{n}} {\small\binom{2 n}{n - 1}} = {\small\frac{1}{n}} \cdot {\small\frac{(2 n) !}{(n - 1) ! (n + 1) !}} = {\small\frac{1}{n + 1}} \cdot {\small\frac{(2 n) !}{n!n!}} = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} = C_n }[/math]

Punkt 3.

[math]\displaystyle{ {\small\frac{C_{n + 1}}{C_n}} = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) !}{(n + 1) ! (n + 1) !}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}} }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{1}{n + 2}} \cdot {\small\frac{(2 n + 2) (2 n + 1)}{(n + 1)^2}} \cdot {\small\frac{(2 n) !}{n!n!}} \cdot (n + 1) \cdot {\small\frac{n!n!}{(2 n) !}} = }[/math]
[math]\displaystyle{ \;\;\;\: = {\small\frac{2 (2 n + 1)}{n + 2}} }[/math]

Punkt 4.

Dowód tego punktu został umieszczony w Uzupełnieniu (zobacz D110).


Zadanie D86
Niech [math]\displaystyle{ C_n }[/math] oznacza [math]\displaystyle{ n }[/math]-tą liczbę Catalana i niech [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] oznacza szereg, który otrzymujemy, mnożąc szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] przez siebie według reguły Cauchy'ego. Pokazać, że

  •    jeżeli [math]\displaystyle{ a_n = C_n }[/math],  to  [math]\displaystyle{ x_n = C_{n + 1} }[/math]
  •    jeżeli [math]\displaystyle{ a_0 = \alpha \; }[/math] i [math]\displaystyle{ \; a_n = r^{n - 1} C_{n - 1} }[/math] dla [math]\displaystyle{ n \geqslant 1 }[/math],  to  [math]\displaystyle{ x_0 = \alpha^2 }[/math], [math]\displaystyle{ \; x_1 = 2 \alpha C_0 \; }[/math] i [math]\displaystyle{ \; x_n = (1 + 2 \alpha r) r^{n - 2} C_{n - 1} }[/math] dla [math]\displaystyle{ n \geqslant 2 }[/math]

Dla jakich wartości [math]\displaystyle{ \alpha, r }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] jest zbieżny?

Rozwiązanie

Punkt 2.

Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ x_0 = a_0 a_0 = \alpha^2 }[/math]

Dla [math]\displaystyle{ n = 1 }[/math] mamy [math]\displaystyle{ x_1 = a_0 a_1 + a_1 a_0 = 2 a_0 a_1 = 2 \alpha C_0 }[/math]

Dla [math]\displaystyle{ n \geqslant 2 }[/math] jest

[math]\displaystyle{ x_n = \sum_{k = 0}^{n} a_k a_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\;\: = a_0 a_n + a_n a_0 + \sum_{k = 1}^{n - 1} a_k a_{n - k} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 a_0 a_n + \sum_{k = 1}^{n - 1} r^{k - 1} C_{k - 1} \cdot r^{n - k - 1} C_{n - k - 1} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{k = 1}^{n - 1} C_{k - 1} C_{n - k - 1} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} \sum_{j = 0}^{n - 2} C_j C_{n - 2 - j} }[/math]
[math]\displaystyle{ \;\;\;\;\: = 2 \alpha r^{n - 1} C_{n - 1} + r^{n - 2} C_{n - 1} }[/math]
[math]\displaystyle{ \;\;\;\;\: = r^{n - 2} C_{n - 1} (1 + 2 \alpha r) }[/math]

Zauważmy, że

[math]\displaystyle{ {\small\frac{C_n}{C_{n - 1}}} = \frac{{\normalsize\frac{1}{n + 1}} {\normalsize\binom{2 n}{n}}}{{\normalsize\frac{1}{n}} {\normalsize\binom{2 n - 2}{n - 1}}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1) (2 n - 2) !}{n^2 [(n - 1) !]^2}} \cdot {\small\frac{[(n - 1) !]^2}{(2 n - 2) !}} = {\small\frac{n}{n + 1}} \cdot {\small\frac{2 n (2 n - 1)}{n^2}} = {\small\frac{2 (2 n - 1)}{n + 1}} }[/math]

Z kryterium d'Alemberta dla szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} a_n }[/math] i szeregu [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] otrzymujemy

[math]\displaystyle{ \left| {\small\frac{a_{n + 1}}{a_n}} \right| = \left| {\small\frac{r^n C_n}{r^{n - 1} C_{n - 1}}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} = | r | \cdot {\small\frac{2 (2 n - 1)}{n + 1}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r | }[/math]


[math]\displaystyle{ \left| {\small\frac{x_{n + 1}}{x_n}} \right| = \left| {\small\frac{r^{n - 1} C_n (1 + 2 \alpha r)}{r^{n - 2} C_{n - 1} (1 + 2 \alpha r)}} \right| = | r | \cdot {\small\frac{C_n}{C_{n - 1}}} \xrightarrow{\; n \rightarrow \infty \;} 4 | r | }[/math]

Zatem szeregi te są bezwzględnie zbieżne w przypadku, gdy [math]\displaystyle{ | r | \lt {\small\frac{1}{4}} }[/math]. W szczególności dla [math]\displaystyle{ \alpha = - {\small\frac{1}{2 r}} }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} x_n }[/math] zawsze będzie zbieżny, bo od trzeciego wyrazu będzie się składał z samych zer. Wiemy, że w przypadku, gdy [math]\displaystyle{ r = {\small\frac{1}{4}} }[/math] szereg [math]\displaystyle{ \sum_{n = 0}^{\infty} {\small\frac{C_n}{4^n}} = 2 }[/math] jest zbieżny.



Sumy współczynników dwumianowych

Twierdzenie D87
Dla [math]\displaystyle{ n \geqslant 0 \; }[/math] i [math]\displaystyle{ \; r \in \mathbb{R} }[/math] prawdziwe są wzory

[math]\displaystyle{ \sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{r^{k + 1}}{k + 1}} {\small\binom{n}{k}} = {\small\frac{(r + 1)^{n + 1} - 1}{n + 1}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2} }[/math]
Dowód

Punkt 1.

Ze wzoru dwumianowego natychmiast otrzymujemy

[math]\displaystyle{ (1 + r)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} r^k }[/math]

Punkt 2.

Całkując obie strony wzoru dwumianowego

[math]\displaystyle{ (1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k }[/math]

otrzymujemy

[math]\displaystyle{ \int^r_0 (1 + x)^n d x = \sum_{k = 0}^{n} {\small\binom{n}{k}} \int^r_0 x^k d x }[/math]
[math]\displaystyle{ {\small\frac{(r + 1)^{n + 1} - 1}{n + 1}} = \sum_{k = 0}^{n} {\small\frac{r^{k + 1}}{k + 1}} {\small\binom{n}{k}} }[/math]

Punkt 3.

Obliczając pochodną każdej ze stron wzoru dwumianowego

[math]\displaystyle{ (1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k }[/math]

otrzymujemy

[math]\displaystyle{ n (1 + x)^{n - 1} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k x^{k - 1} }[/math]

Kładąc [math]\displaystyle{ x = 1 }[/math], dostajemy dowodzony wzór.

Punkt 4.

Obliczając drugą pochodną każdej ze stron wzoru dwumianowego

[math]\displaystyle{ (1 + x)^n = \sum_{k = 0}^{n} {\small\binom{n}{k}} x^k }[/math]

otrzymujemy

[math]\displaystyle{ n(n - 1) (1 + x)^{n - 2} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k (k - 1) x^{k - 1} }[/math]

Kładąc [math]\displaystyle{ x = 1 }[/math], dostajemy

[math]\displaystyle{ n(n - 1) 2^{n - 2} = \sum_{k = 0}^{n} {\small\binom{n}{k}} k (k - 1) = \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} - \sum_{k = 0}^{n} k {\small\binom{n}{k}} = \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} - n 2^{n - 1} }[/math]

Skąd natychmiast wynika dowodzony wzór.


Twierdzenie D88
Dla [math]\displaystyle{ n, m \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{m} {\small\binom{n + k}{n}} = {\small\binom{n + m + 1}{n}} }[/math]
Dowód

Ze wzoru Pascala

[math]\displaystyle{ {\small\binom{a}{k}} = {\small\binom{a - 1}{k}} + {\small\binom{a - 1}{k - 1}} }[/math]

otrzymujemy

[math]\displaystyle{ {\small\binom{a - 1}{k}} = {\small\binom{a}{k}} - {\small\binom{a - 1}{k - 1}} }[/math]

Kładąc [math]\displaystyle{ a = n + k + 1 }[/math], mamy

[math]\displaystyle{ {\small\binom{n + k}{k}} = {\small\binom{n + k + 1}{k}} - {\small\binom{n + k}{k - 1}} }[/math]

Czyli

[math]\displaystyle{ {\small\binom{n + k}{n}} = {\small\binom{n + k + 1}{n + 1}} - {\small\binom{n + k}{n + 1}} }[/math]

Wykorzystując powyższy wzór, łatwo pokazujemy, że (zobacz D13)

[math]\displaystyle{ \sum_{k = 0}^{m} {\small\binom{n + k}{n}} = 1 + \sum_{k = 1}^{m} {\small\binom{n + k}{n}} }[/math]
[math]\displaystyle{ \;\;\,\, = 1 + \sum_{k = 1}^{m} \left[ {\small\binom{n + k + 1}{n + 1}} - {\small\binom{n + k}{n + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\,\, = 1 - \sum_{k = 1}^{m} \left[ {\small\binom{n + k}{n + 1}} - {\small\binom{n + k + 1}{n + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\,\, = 1 - \left[ 1 - {\small\binom{n + m + 1}{n + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\,\, = {\small\binom{n + m + 1}{n}} }[/math]

Co kończy dowód.


Suma nieoznaczona

Uwaga D89
Sumą nieoznaczoną[21] (lub antyróżnicą) funkcji [math]\displaystyle{ f(k) }[/math], będziemy nazywali dowolną funkcję [math]\displaystyle{ F(k) }[/math] taką, że

[math]\displaystyle{ F(k + 1) - F (k) = f (k) }[/math]

Łatwo zauważamy, że istnieje cała rodzina funkcji [math]\displaystyle{ F(k) }[/math], bo jeżeli [math]\displaystyle{ F (k) }[/math] jest sumą nieoznaczoną, to [math]\displaystyle{ F (k) + C }[/math], gdzie [math]\displaystyle{ C }[/math] jest stałą, również jest sumą nieoznaczoną. W szczególności

[math]\displaystyle{ \sum_{k = a}^{b} f (k) = \sum_{k = a}^{b} (F (k + 1) - F (k)) }[/math]
[math]\displaystyle{ \;\;\;\: = - \sum_{k = a}^{b} (F (k) - F (k + 1)) }[/math]
[math]\displaystyle{ \;\;\;\: = - ( F (a) - F (b + 1) ) }[/math]
[math]\displaystyle{ \;\;\;\: = F (b + 1) - F (a) }[/math]

Co przez analogię do całki nieoznaczonej możemy zapisać jako

[math]\displaystyle{ \sum_{k = a}^{b} f (k) = F (k) \biggr\rvert_{a}^{b + 1} \qquad \qquad \qquad ( 1 ) }[/math]


Należy podkreślić różnicę między sumą oznaczoną [math]\displaystyle{ S(n) }[/math] a sumą nieoznaczoną [math]\displaystyle{ F(k) }[/math]. Niech [math]\displaystyle{ f(k) = k^2 }[/math]. Oczywiście

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} k^2 = {\small\frac{1}{6}} n (n + 1) (2 n + 1) }[/math]
[math]\displaystyle{ F(k) = {\small\frac{1}{6}} (k - 1) k (2 k - 1) }[/math]

Ponieważ dla sumy [math]\displaystyle{ S(n) }[/math] prawdziwy jest związek [math]\displaystyle{ S(n + 1) - S (n) = f (n + 1) }[/math], to otrzymujemy [math]\displaystyle{ F(k) = S (k - 1) }[/math]. Weźmy kolejny przykład, niech [math]\displaystyle{ f(k) = r^k }[/math], gdzie [math]\displaystyle{ r }[/math] jest stałą. Mamy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} r^k = {\small\frac{r^{n + 1} - 1}{r - 1}} }[/math]

ale

[math]\displaystyle{ F(k) = {\small\frac{r^k}{r - 1}} }[/math]

i nie jest prawdą, że [math]\displaystyle{ F(k) = S (k - 1) }[/math], bo pominięty został wyraz [math]\displaystyle{ {\small\frac{- 1}{r - 1}} }[/math], który jest stałą, ale jest to zrozumiałe.

Niech teraz [math]\displaystyle{ f(n, k) = {\small\binom{n + k}{n}} }[/math]. Wiemy, że (zobacz D88)

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]
[math]\displaystyle{ F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}} }[/math]

Tym razem otrzymujemy zupełnie inne wyniki: suma [math]\displaystyle{ S(n) }[/math] nie zależy od dwóch zmiennych, bo jest to niemożliwe, a suma nieoznaczona nadal zależy od [math]\displaystyle{ k }[/math], bo dla [math]\displaystyle{ F(n, k) }[/math] musi być prawdziwy wzór [math]\displaystyle{ (1) }[/math]. Łatwo widzimy, że

[math]\displaystyle{ S (n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]


Uwaga D90
Powiedzmy, że dysponujemy wzorem [math]\displaystyle{ S(b) = \sum_{k = a}^{b} f (k) }[/math] i chcemy udowodnić jego poprawność. W prostych przypadkach możemy wykorzystać indukcję matematyczną: wystarczy pokazać, że

[math]\displaystyle{ S(k + 1) = S (k) + f (k + 1) }[/math]

Jeżeli już udało nam się pokazać związek [math]\displaystyle{ f(k) = S (k) - S (k - 1) }[/math], to równie dobrze możemy zamienić sumę na sumę teleskopową (zobacz D13), aby otrzymać, że

[math]\displaystyle{ \sum_{k = a + 1}^{b} f (k) = \sum_{k = a + 1}^{b} ( S (k) - S (k - 1) ) }[/math]
[math]\displaystyle{ \;\, = - \sum_{k = a + 1}^{b} ( S (k - 1) - S (k) ) }[/math]
[math]\displaystyle{ \;\, = - ( S (a) - S (b) ) }[/math]
[math]\displaystyle{ \;\, = S (b) - S (a) }[/math]

Czyli

[math]\displaystyle{ S(b) = \sum_{k = a + 1}^{b} f (k) + S (a) = \sum_{k = a}^{b} f (k) }[/math]

bo [math]\displaystyle{ S(a) = f (a) }[/math].


W przypadkach bardziej skomplikowanych nie możemy tak postąpić. W poprzedniej uwadze rozważaliśmy sumę

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]

ale

[math]\displaystyle{ S(n) - S (n - 1) = {\small\frac{3 n + 1}{2 (n + 1)}} {\small\binom{2 n}{n}} }[/math]

I nie da się pokazać związku [math]\displaystyle{ S(k) - S (k - 1) = f (n, k) }[/math], bo różnica [math]\displaystyle{ S(k) - S (k - 1) }[/math] nie zależy od [math]\displaystyle{ n }[/math].

Tutaj z pomocą przychodzi nam suma nieoznaczona. W programie Maxima możemy ją policzyć, wpisując polecenia

load ("zeilberger");
AntiDifference(binomial(n+k, n), k);

Otrzymujemy

[math]\displaystyle{ F(n, k) = {\small\frac{k}{n + 1}} {\small\binom{n + k}{n}} }[/math]

Oczywiście

[math]\displaystyle{ F(n, k + 1) - F (n, k) = {\small\binom{n + k}{n}} }[/math]

i

[math]\displaystyle{ S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} = {\small\binom{2 n + 1}{n}} }[/math]

Podsumujmy. Jakkolwiek znalezienie ogólnego wzoru na sumę [math]\displaystyle{ S (n) = \sum_{k = 0}^{n} f (k) }[/math] może być bardzo trudne, to udowodnienie poprawności tego wzoru może być znacznie łatwiejsze (metodą indukcji matematycznej lub obliczając sumę teleskopową). Podobnie jest w bardziej skomplikowanym przypadku, gdy szukamy ogólnego wzoru na sumę [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Tutaj wymienionych przed chwilą metod zastosować nie można, a znalezienie wzoru na sumę nieoznaczoną [math]\displaystyle{ F(n, k) }[/math] może być jeszcze trudniejsze, ale gdy już taki wzór mamy, to sprawdzenie jego poprawności, czyli związku [math]\displaystyle{ F(n, k + 1) - F (n, k) = f (n, k) }[/math], może być bardzo łatwe, a wtedy otrzymujemy natychmiast

[math]\displaystyle{ S(n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]


Zadanie D91
Korzystając z programu Maxima znaleźć sumę nieoznaczoną [math]\displaystyle{ F(n, k) }[/math] dla funkcji

[math]\displaystyle{ f(n, k) = {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

i pokazać, że prawdziwy jest wzór [math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math], gdzie [math]\displaystyle{ C_n }[/math] są liczbami Catalana.

Rozwiązanie

Wpisując w programie Maxima polecenia

load ("zeilberger");
AntiDifference( 1/(k+1) * 1/(n-k+1) * binomial(2*k, k) * binomial(2*n-2*k, n-k), k);

otrzymujemy

[math]\displaystyle{ F(n, k) = - {\small\frac{(n - 2 k + 1) (2 n - 2 k + 1)}{(n + 1) (n + 2) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 (n - k)}{n - k}} }[/math]

Czytelnik bez trudu pokaże, że

[math]\displaystyle{ F(n, k + 1) = - {\small\frac{(2 k + 1) (n - 2 k - 1)}{(n + 1) (n + 2) (k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

oraz łatwo sprawdzi związek [math]\displaystyle{ F(n, k + 1) - F (n, k) = f (n, k) }[/math] i wyliczy sumę oznaczoną.

Chcemy zwrócić uwagę na występującą tutaj trudność. Oczywiście

[math]\displaystyle{ S (n) = F (n, k) \biggr\rvert_{k = 0}^{k = n + 1} }[/math]

ale funkcja [math]\displaystyle{ F(n, k) }[/math] nie jest określona dla [math]\displaystyle{ k = n + 1 }[/math]. Żeby ominąć ten problem, możemy przekształcić funkcję [math]\displaystyle{ F(n, k) }[/math] tak, aby możliwe było obliczenie jej wartości dla [math]\displaystyle{ k = n + 1 }[/math]

[math]\displaystyle{ F(n, k) = - {\small\frac{n - 2 k + 1}{2 (n + 1) (n + 2)}} {\small\binom{2 k}{k}} {\small\binom{2 (n - k + 1)}{n - k + 1}} }[/math]

lub zapisać sumę w postaci

[math]\displaystyle{ \sum_{k = 0}^{n} f (n, k) = \sum_{k = 0}^{n - 1} f (n, k) + f (n, n) = F (n, k) \biggr\rvert_{k = 0}^{k = n} + f (n, n) }[/math]


Znajdowanie równania rekurencyjnego dla sumy [math]\displaystyle{ \boldsymbol{S(n)} }[/math]

Uwaga D92
Rozważmy sumę

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]

W twierdzeniach D108 i D109 wyliczyliśmy [math]\displaystyle{ S(n) }[/math], znajdując najpierw równanie rekurencyjne dla sumy. Możemy przypuszczać, że równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) }[/math] wynika z istnienia odpowiedniego równania rekurencyjnego dla składników sumy [math]\displaystyle{ f(n, k) }[/math]. Zagadnieniem tym zajmowała się siostra Mary Celine Fasenmyer, która podała algorytm postępowania[22][23]. Prace Zeilbergera oraz Wilfa i Zeilbergera uogólniły ten algorytm[24][25]. My przedstawimy jedynie kilka prostych przypadków, które zilustrujemy przykładami. Szersze omówienie tematu Czytelnik znajdzie w książce Petkovšeka, Wilfa i Zeilbergera[26].


Twierdzenie D93
Niech [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Jeżeli składniki sumy [math]\displaystyle{ f(n, k) }[/math] spełniają równanie rekurencyjne

[math]\displaystyle{ a \cdot f (n + 1, k + 1) + b \cdot f (n + 1, k) + c \cdot f (n, k + 1) + d \cdot f (n, k) = 0 }[/math]

gdzie współczynniki [math]\displaystyle{ a, b, c, d }[/math] są funkcjami tylko [math]\displaystyle{ n }[/math], to suma [math]\displaystyle{ S (n) }[/math] spełnia równanie rekurencyjne

[math]\displaystyle{ (a + b) S (n + 1) + (c + d) S (n) - a \cdot f (n + 1, 0) - b \cdot f (n + 1, n + 1) - c [f (n, 0) - f (n, n + 1)] = 0 }[/math]
Dowód

Łatwo zauważamy, że

[math]\displaystyle{ \sum_{k = 0}^{n} f (n + 1, k + 1) = \sum_{j = 1}^{n + 1} f (n + 1, j) }[/math]
[math]\displaystyle{ \;\;\;\,\, = - f (n + 1, 0) + \sum^{n + 1}_{j = 0} f (n + 1, j) }[/math]
[math]\displaystyle{ \;\;\;\,\, = - f (n + 1, 0) + S (n + 1) }[/math]


[math]\displaystyle{ \sum_{k = 0}^{n} f (n + 1, k) = - f (n + 1, n + 1) + \sum_{k = 0}^{n + 1} f (n + 1, k) = }[/math]
[math]\displaystyle{ \;\;\; = - f (n + 1, n + 1) + S (n + 1) }[/math]


[math]\displaystyle{ \sum_{k = 0}^{n} f (n, k + 1) = \sum_{j = 1}^{n + 1} f (n, j) }[/math]
[math]\displaystyle{ \;\;\; = - f (n, 0) + f (n, n + 1) + \sum_{j = 0}^{n} f (n, j) }[/math]
[math]\displaystyle{ \;\;\; = - f (n, 0) + f (n, n + 1) + S (n) }[/math]


Zatem sumując założone równanie rekurencyjne

[math]\displaystyle{ a \cdot f (n + 1, k + 1) + b \cdot f (n + 1, k) + c \cdot f (n, k + 1) + d \cdot f (n, k) = 0 }[/math]

po [math]\displaystyle{ k }[/math] od [math]\displaystyle{ k = 0 }[/math] do [math]\displaystyle{ k = n }[/math], otrzymujemy

[math]\displaystyle{ a \cdot [- f (n + 1, 0) + S (n + 1)] + b \cdot [- f (n + 1, n + 1) + S (n + 1)] + c \cdot [- f (n, 0) + f (n, n + 1) + S (n)] + d \cdot S (n) = 0 }[/math]

Czyli

[math]\displaystyle{ (a + b) S (n + 1) + (c + d) S (n) - a \cdot f (n + 1, 0) - b \cdot f (n + 1, n + 1) - c [f (n, 0) - f (n, n + 1)] = 0 }[/math]

Co należało pokazać.


Uwaga D94
Nie ma sensu stosowanie opisanej powyżej metody do prostych sum postaci [math]\displaystyle{ \sum_{k = 0}^{n} f (k) }[/math], bo równanie rekurencyjne otrzymujemy w takim przypadku natychmiast: [math]\displaystyle{ S(n + 1) - S (n) = f (n + 1) }[/math].


Zadanie D95
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D88)

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{n + k}{n}} = {\small\binom{2 n + 1}{n}} }[/math]
Rozwiązanie

W tym przypadku nie otrzymamy równania rekurencyjnego, ale od razu wzór ogólny na sumę [math]\displaystyle{ S(n) }[/math].

Oczywiście [math]\displaystyle{ f(n, k) = {\small\binom{n + k}{n}} }[/math]. Po podstawieniu do równania (zobacz D93)

[math]\displaystyle{ a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0 }[/math]

i zredukowaniu silni, otrzymujemy

[math]\displaystyle{ a \cdot {\small\frac{(n + k + 1) (n + k + 2)}{(k + 1) (n + 1)}} + b \cdot {\small\frac{n + k + 1}{n + 1}} + c \cdot {\small\frac{n + k + 1}{k + 1}} + d = 0 }[/math]

Sprowadzając do wspólnego mianownika, mamy

[math]\displaystyle{ (a + b) k^2 + ((2 a + b + c + d) n + 3 a + 2 b + c + d) k + (a + c) n^2 + (3 a + b + 2 c + d) n + 2 a + b + c + d = 0 }[/math]

Ponieważ powyższe równanie musi być prawdziwe dla każdego [math]\displaystyle{ k }[/math], to współczynniki przy potęgach [math]\displaystyle{ k }[/math] muszą być równe zero. Zatem dostajemy układ równań

[math]\displaystyle{ \begin{cases} a + b = 0 \\ (2 a + b + c + d) n + 3 a + 2 b + c + d = 0 \\ (a + c) n^2 + (3 a + b + 2 c + d) n + 2 a + b + c + d = 0 \\ \end{cases} }[/math]


Łatwo znajdujemy rozwiązania: [math]\displaystyle{ b = - a }[/math], [math]\displaystyle{ c = - a }[/math], [math]\displaystyle{ d = 0 }[/math]. Skąd wynika związek dla [math]\displaystyle{ S(n) }[/math] (zobacz D93)

[math]\displaystyle{ - a S (n) = a - a {\small\binom{2 n + 2}{n + 1}} - a \left( 1 - {\small\binom{2 n + 1}{n}} \right) }[/math]
[math]\displaystyle{ \;\;\: = - a \left[ {\small\binom{2 n + 2}{n + 1}} - {\small\binom{2 n + 1}{n}} \right] }[/math]
[math]\displaystyle{ \;\;\: = - a {\small\binom{2 n + 1}{n}} }[/math]

I otrzymaliśmy dowodzony wzór.


Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.

sum1() := 
(
f(n, k):= binomial(n+k, n),   /* składnik sumy */
print("f(n, k) = ", f(n,k) ),
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,   /* równanie rekurencyjne dla składników sumy f(n, k) */
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),   /* równanie rekurencyjne dla sumy S(n) */
/*   przekształcamy F1, S1   */
F2: minfactorial( makefact(F1) ),   /* zamień na silnie i uprość silnie */
print("równanie: ", F2),
F3: num( factor(F2) ),   /* faktoryzuj i weź licznik */
print("licznik = ", rat(F3, k)),
deg: hipow(F3, k),
print("stopień = ", deg),
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */
LE:  [subst(0, k, F3) = 0],
for i: 1 thru deg do push(coeff(F3, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
print("lista równań: ", LE),
sol: solve( LE, [a, b, c, d] ),   /* lista rozwiązań */
print("rozwiązanie: ", sol),
S2: minfactorial( makefact(S1) ),   /* zamień na silnie i uprość silnie */
S3: subst( sol[1], S2 ),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
solve( S4 = 0, S[n] )
/*     S[n] = (2*n+1)! / (n! * (n+1)!)     */
)$


Zadanie D96
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D87 p.1)

[math]\displaystyle{ \sum_{k = 0}^{n} r^k {\small\binom{n}{k}} = (r + 1)^n }[/math]
Rozwiązanie

Oczywiście [math]\displaystyle{ f(n, k) = r^k {\small\binom{n}{k}} }[/math]. Po podstawieniu do równania (zobacz D93)

[math]\displaystyle{ a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0 }[/math]

i zredukowaniu silni, otrzymujemy

[math]\displaystyle{ a \cdot {\small\frac{(n + 1) r}{k + 1}} + b \cdot {\small\frac{n + 1}{n - k + 1}} + c \cdot {\small\frac{(n - k) r}{k + 1}} + d = 0 }[/math]

Sprowadzając do wspólnego mianownika, mamy

[math]\displaystyle{ (c r - d) k^2 + (- ((a + 2 c) n + a + c) r + (b + d) n + b) k + ((a + c) n^2 + (2 a + c) n + a) r + (b + d) n + b + d = 0 }[/math]

Ponieważ powyższe równanie musi być prawdziwe dla każdego [math]\displaystyle{ k }[/math], to współczynniki przy potęgach [math]\displaystyle{ k }[/math] muszą być równe zero. Zatem dostajemy układ równań

[math]\displaystyle{ \begin{cases} c r - d = 0 \\ - ((a + 2 c) n + a + c) r + (b + d) n + b = 0 \\ ((a + c) n^2 + (2 a + c) n + a) r + (b + d) n + b + d = 0 \\ \end{cases} }[/math]


Łatwo znajdujemy rozwiązania: [math]\displaystyle{ b = 0 }[/math], [math]\displaystyle{ c = - a }[/math], [math]\displaystyle{ d = - a \cdot r }[/math]. Skąd wynika związek dla [math]\displaystyle{ S(n) }[/math] (zobacz D93)

[math]\displaystyle{ S(n + 1) = (r + 1) S (n) }[/math]

Metodą indukcji matematycznej dowodzimy, że [math]\displaystyle{ S(n) = (r + 1)^n }[/math].


Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.

sum2() := 
(
f(n, k):= r^k * binomial(n, k),   /* składnik sumy */
print("f(n, k) = ", f(n,k) ),
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,   /* równanie rekurencyjne dla składników sumy f(n, k) */
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),   /* równanie rekurencyjne dla sumy S(n) */
/*   przekształcamy F1, S1   */
F2: minfactorial( makefact(F1) ),   /* zamień na silnie i uprość silnie */
print("równanie: ", F2),
F3: num( factor(F2) ),   /* faktoryzuj i weź licznik */
print("licznik = ", rat(F3, k)),
deg: hipow(F3, k),
print("stopień = ", deg),
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */
LE:  [subst(0, k, F3) = 0],
for i: 1 thru deg do push(coeff(F3, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
print("lista równań: ", LE),
sol: solve( LE, [a, b, c, d] ),   /* lista rozwiązań */
print("rozwiązanie: ", sol),
S2: minfactorial( makefact(S1) ),   /* zamień na silnie i uprość silnie */
S3: subst( sol[1], S2),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
/*     S[n+1] = (r+1)*S[n]     */
load("solve_rec"),
solve_rec( S4 = 0, S[n] )        /*   S[n] = C*(r+1)^n   */
)$


Zadanie D97
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D87 p.2)

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{2^{n + 1} - 1}{n + 1}} }[/math]
Rozwiązanie

Oczywiście [math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math]. Po podstawieniu do równania (zobacz D93)

[math]\displaystyle{ a \cdot {\small\frac{f (n + 1, k + 1)}{f (n, k)}} + b \cdot {\small\frac{f (n + 1, k)}{f (n, k)}} + c \cdot {\small\frac{f (n, k + 1)}{f (n, k)}} + d = 0 }[/math]

i zredukowaniu silni, otrzymujemy

[math]\displaystyle{ a \cdot {\small\frac{n + 1}{k + 2}} + b \cdot {\small\frac{n + 1}{n - k + 1}} + c \cdot {\small\frac{n - k}{k + 2}} + d = 0 }[/math]

Sprowadzając do wspólnego mianownika, mamy

[math]\displaystyle{ (c - d) k^2 + ((- a + b - 2 c + d) n - a + b - c - d) k + (a + c) n^2 + (2 a + 2 b + c + 2 d) n + a + 2 b + 2 d = 0 }[/math]

Ponieważ powyższe równanie musi być prawdziwe dla każdego [math]\displaystyle{ k }[/math], to współczynniki przy potęgach [math]\displaystyle{ k }[/math] muszą być równe zero. Zatem dostajemy układ równań

[math]\displaystyle{ \begin{cases} c - d = 0 \\ (- a + b - 2 c + d) n - a + b - c - d = 0 \\ (a + c) n^2 + (2 a + 2 b + c + 2 d) n + a + 2 b + 2 d = 0 \\ \end{cases} }[/math]


Łatwo znajdujemy rozwiązania: [math]\displaystyle{ b = 0 }[/math], [math]\displaystyle{ c = - a \cdot {\small\frac{n + 1}{n + 2}} }[/math], [math]\displaystyle{ d = - a \cdot {\small\frac{n + 1}{n + 2}} }[/math]. Skąd wynika związek dla [math]\displaystyle{ S(n) }[/math] (zobacz D93)

[math]\displaystyle{ (n + 2) S (n + 1) = 2 (n + 1) S (n) + 1 }[/math]

Metodą indukcji matematycznej łatwo dowodzimy, że [math]\displaystyle{ S(n) = {\small\frac{2^{n + 1} - 1}{n + 1}} }[/math].


Do obliczeń wykorzystaliśmy oprogramowanie Maxima. Poniżej podajemy kod procedury.

sum3() := 
(
f(n, k):= 1/(k+1) * binomial(n, k),   /* składnik sumy */
print("f(n, k) = ", f(n,k) ),
F1: a * f(n+1,k+1)/f(n,k) + b * f(n+1,k)/f(n,k) + c * f(n,k+1)/f(n,k) + d,   /* równanie rekurencyjne dla składników sumy f(n, k) */
S1: (a+b) * S[n+1] + (c+d) * S[n] - a * f(n+1, 0) - b * f(n+1, n+1) - c * ( f(n, 0) - f(n, n+1) ),   /* równanie rekurencyjne dla sumy S(n) */
/*   przekształcamy F1, S1   */
F2: minfactorial( makefact(F1) ),   /* zamień na silnie i uprość silnie */
print("równanie: ", F2),
F3: num( factor(F2) ),   /* faktoryzuj i weź licznik */
print("licznik = ", rat(F3, k)),
deg: hipow(F3, k),
print("stopień = ", deg),
/*    stopień wielomianu F3 jest równy deg i mamy deg+1 równań    */
LE:  [subst(0, k, F3) = 0],
for i: 1 thru deg do push(coeff(F3, k^i)=0, LE),   /* kolejne równania wpisujemy do listy LE */
print("lista równań: ", LE),
sol: solve( LE, [a, b, c, d] ),   /* lista rozwiązań */
print("rozwiązanie: ", sol),
S2: minfactorial( makefact(S1) ),   /* zamień na silnie i uprość silnie */
S3: subst( sol[1], S2),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
/*       (n+2)*S[n+1] = 2*(n+1)*S[n] + 1     */
load("solve_rec"),
solve_rec( S4 = 0, S[n] )        /*   S[n] = ( (C+1) * 2^n - 1 )/(n + 1)   */
)$


Zadanie D98
Niech [math]\displaystyle{ n \in \mathbb{N}_0 \; }[/math] i [math]\displaystyle{ \; k \in \mathbb{Z} }[/math]. Uzasadnić, dlaczego przyjmujemy, że [math]\displaystyle{ {\small\binom{n}{k}} = 0 }[/math], gdy [math]\displaystyle{ k \lt 0 \; }[/math] lub [math]\displaystyle{ \; k \gt n }[/math].

Rozwiązanie

Jeżeli zapiszmy [math]\displaystyle{ {\small\binom{n}{k}} }[/math] w postaci

[math]\displaystyle{ {\small\binom{n}{k}} = {\small\frac{n!}{k! (n - k) !}} = {\small\frac{n \cdot (n - 1) \cdot \ldots \cdot (n - k + 1)}{k!}} }[/math]

to natychmiast widzimy, że prawa strona musi być równa zero dla [math]\displaystyle{ k \gt n }[/math].

Jeżeli we wzorze Pascala

[math]\displaystyle{ {\small\binom{n}{k}} = {\small\binom{n - 1}{k}} + {\small\binom{n - 1}{k - 1}} }[/math]

położymy [math]\displaystyle{ n = m + 1 \; }[/math] i [math]\displaystyle{ \; k = 0 }[/math], to otrzymamy

[math]\displaystyle{ 1 = 1 + {\small\binom{m}{- 1}} }[/math]

czyli [math]\displaystyle{ {\small\binom{m}{- 1}} = 0 }[/math]

I tak samo dla wszystkich [math]\displaystyle{ k \lt 0 }[/math].


Znacznie mocniejszego uzasadnienia dostarczy nam funkcja gamma (zobacz D111), która jest uogólnieniem silni na liczby rzeczywiste. Rozważmy funkcję

[math]\displaystyle{ g(n, x) = {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} }[/math]

Jeżeli [math]\displaystyle{ k \in \mathbb{Z} \; }[/math] i [math]\displaystyle{ \; 0 \leqslant k \leqslant n }[/math], to funkcja [math]\displaystyle{ g(n, k) }[/math] jest równa współczynnikowi dwumianowemu [math]\displaystyle{ {\small\binom{n}{k}} }[/math].

[math]\displaystyle{ g(n, k) = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1) \Gamma (n - k + 1)}} = {\small\frac{n!}{k! (n - k) !}} = {\small\binom{n}{k}} }[/math]


W przypadku, gdy [math]\displaystyle{ k \lt 0 }[/math], mamy

[math]\displaystyle{ \lim_{x \rightarrow k} g (n, x) = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} = \lim_{x \rightarrow k} {\small\frac{1}{\Gamma (x + 1)}} \cdot \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (n - x + 1)}} = 0 \cdot {\small\frac{\Gamma (n + 1)}{\Gamma (n - k + 1)}} = 0 }[/math]


W przypadku, gdy [math]\displaystyle{ k \gt n }[/math], dostajemy

[math]\displaystyle{ \lim_{x \rightarrow k} g (n, x) = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1) \Gamma (n - x + 1)}} = \lim_{x \rightarrow k} {\small\frac{\Gamma (n + 1)}{\Gamma (x + 1)}} \cdot \lim_{x \rightarrow k} {\small\frac{1}{\Gamma (n - x + 1)}} = {\small\frac{\Gamma (n + 1)}{\Gamma (k + 1)}} \cdot 0 = 0 }[/math]


Co najlepiej wyjaśnia, dlaczego przyjmujemy, że [math]\displaystyle{ {\small\binom{n}{k}} = 0 }[/math], gdy [math]\displaystyle{ k \lt 0 \; }[/math] lub [math]\displaystyle{ \; k \gt n }[/math].


Twierdzenie D99
Niech [math]\displaystyle{ n, I, J \in \mathbb{N}_0 \; }[/math] i [math]\displaystyle{ \; k \in \mathbb{Z} }[/math]. Jeżeli [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] \, }[/math] i składniki sumy [math]\displaystyle{ f(n, k) }[/math] spełniają równanie rekurencyjne

[math]\displaystyle{ \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0 }[/math]

gdzie współczynniki [math]\displaystyle{ a_{i j} }[/math] są funkcjami tylko [math]\displaystyle{ n }[/math], to suma

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]

spełnia następujące równanie rekurencyjne

[math]\displaystyle{ \sum_{i = 0}^{I} S (n + i) \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]
Dowód

Z założenia [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math], zatem sumę [math]\displaystyle{ S(n) }[/math] możemy zapisać w postaci

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k = - \infty}^{+ \infty} f (n, k) }[/math]

Niech [math]\displaystyle{ 0 \leqslant i \leqslant I }[/math] oraz [math]\displaystyle{ 0 \leqslant j \leqslant J }[/math]. Rozważmy sumę

[math]\displaystyle{ \sum_{k = - J}^{n + I} f (n + i, k + j) }[/math]

Zauważmy, że [math]\displaystyle{ f(n + i, k + j) = 0 }[/math] dla [math]\displaystyle{ k \notin [- J, n + I] }[/math], bo

  •    dla [math]\displaystyle{ k \lt - J }[/math] mamy [math]\displaystyle{ k + j \lt - J + j \leqslant 0 }[/math]
  •    dla [math]\displaystyle{ k \gt n + I }[/math] mamy [math]\displaystyle{ k + j \gt n + I + j \geqslant n + I \geqslant n + i }[/math]

Wynika stąd, że rozszerzając rozpatrywaną sumę na cały zbiór liczb całkowitych, nie zmienimy wartości sumy. Czyli, że

[math]\displaystyle{ \sum_{k = - J}^{n + I} f (n + i, k + j) = \sum_{k = - \infty}^{+ \infty} f (n + i, k + j) }[/math]


Teraz już łatwo otrzymujemy równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) }[/math]

[math]\displaystyle{ 0 = \sum_{k = - J}^{n + I} \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k = - J}^{n + I} f (n + i, k + j) \, }[/math][a]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k = - \infty}^{+ \infty} f (n + i, k + j) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum^{+ \infty}_{l = - \infty} f (n + i, l) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot S (n + i) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \sum_{i = 0}^{I} S (n + i) \left[ \sum_{j = 0}^{J} a_{i j} \right] }[/math]

Co należało pokazać.



[a] W przypadku wielokrotnych sum skończonych możemy dowolnie zmieniać ich kolejność ze względu na łączność dodawania.


Uwaga D100
Z zadania D98 wynika, że jeżeli funkcja [math]\displaystyle{ f(n, k) }[/math] zawiera czynnik [math]\displaystyle{ {\small\binom{n}{k}} }[/math], to może spełniać warunek [math]\displaystyle{ f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math]. Oczywiście nie jest to warunek wystarczający, bo funkcja [math]\displaystyle{ f (n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math] jest różna od zera dla [math]\displaystyle{ k = - 1 }[/math].


Zadanie D101
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór (zobacz D87 p.3)

[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}} = n 2^{n - 1} }[/math]
Rozwiązanie

Oczywiście [math]\displaystyle{ f(n, k) = k {\small\binom{n}{k}} }[/math]. Do rozwiązania problemu wykorzystamy oprogramowanie Maxima i procedurę

sum5(I, J) := 
(
read("podaj definicję f(n, k)"),   /* składnik sumy */
print("f(n, k) = ", f(n, k) ),
F1: sum( sum( a[i,j] * f(n+i, k+j), i, 0, I), j, 0, J) / f(n, k),
F2: num( factor( minfactorial( makefact( expand( F1 ) ) ) ) ),
deg: hipow(F2, k),
LE:  [subst(0, k, F2) = 0],
for i: 1 thru deg do push(coeff(F2, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
LV: create_list(a[i, j], i, 0, I , j, 0, J),   /* lista zmiennych */
sol: solve( LE, LV ),   /* lista rozwiązań */
S1: sum( S[n+i] * sum(a[i,j], j, 0, J), i, 0, I),
S2: subst( sol[1], S1 ),   /* pierwszy element listy sol */
S3: num( factor( expand( S2 ) ) ),
print("rekurencja: ", S3 = 0),
load("solve_rec"),
solve_rec( S3 = 0,  S[n] )
)$


Wywołujemy procedurę sum5(1, 2) i wpisujemy funkcję

f(n, k):= k * binomial(n, k)

W wyniku otrzymujemy równanie rekurencyjne

n * S[n+1] = 2 * (n+1) * S[n]

którego rozwiązanie jest postaci

S[n] = C * n * 2^(n-1)

Łatwo sprawdzamy, że C = 1. Co należało pokazać.


Zadanie D102
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwe są wzory

[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}} = n (n + 1) 2^{n - 2} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^3 {\small\binom{n}{k}} = n^2 (n + 3) 2^{n - 3} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{n}{k}}^2 = {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^2 {\small\binom{n}{k}}^2 = n^2 {\small\binom{2 n - 2}{n - 1}} }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} k^3 {\small\binom{n}{k}}^2 = {\small\frac{1}{2}} n^2 (n + 1) {\small\binom{2 n - 2}{n - 1}} }[/math]
Rozwiązanie

Wskazówki:

Korzystamy z procedury sum5(), której kod został podany w zadaniu D101.

Zawsze próbujemy znaleźć rozwiązanie dla najmniejszych wartości parametrów I, J.

[math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} = 2^{- 2 n} \sqrt{\pi} \cdot n! \cdot {\small\binom{2 n}{n}} }[/math]

Punkt 1. sum5(1, 2), zobacz też sum5(2, 1)

Punkt 2. sum5(1, 3), zobacz też sum5(2, 2)

Punkt 3. sum5(2, 2)

Punkt 4. sum5(2, 2)

Punkt 5. sum5(2, 2)

Punkt 6. sum5(2, 3), zobacz też sum5(3, 2)


Uwaga D103
Niech [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) }[/math]. Wiemy (zobacz D99), że jeżeli dla dowolnego [math]\displaystyle{ n }[/math] wartość funkcji [math]\displaystyle{ f(n, k) }[/math] jest określona dla wszystkich [math]\displaystyle{ k \in \mathbb{Z} \; }[/math] i [math]\displaystyle{ \; f(n, k) = 0 }[/math] dla [math]\displaystyle{ k \notin [0, n] }[/math], to sumę [math]\displaystyle{ S(n) }[/math] możemy zapisać w równoważnej postaci [math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (n, k) = \sum_{k \in \mathbb{Z}} f (n, k) }[/math]


Rozważmy teraz funkcję [math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} }[/math], która powyższego warunku nie spełnia, bo jest różna od zera dla [math]\displaystyle{ k = - 1 }[/math]. Jeżeli zapiszemy [math]\displaystyle{ f(n, k) }[/math] w postaci

[math]\displaystyle{ f(n, k) = {\small\frac{1}{k + 1}} {\small\binom{n}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{n!}{k! (n - k) !}} = {\small\frac{n!}{(k + 1) ! (n - k) !}} }[/math]

to natychmiast widzimy, że

[math]\displaystyle{ f(n, - 1) = {\small\frac{n!}{0! (n + 1) !}} = {\small\frac{1}{n + 1}} }[/math]

Zatem w przypadku tej funkcji mamy

[math]\displaystyle{ \sum_{k \in \mathbb{Z}} f (n, k) = \sum_{k = 0}^{n} f (n, k) + f (n, - 1) = S (n) + {\small\frac{1}{n + 1}} }[/math]


Zakładając, że spełnione jest równanie

[math]\displaystyle{ \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = 0 }[/math]

otrzymujemy następujące równanie rekurencyjne dla sumy [math]\displaystyle{ S(n) = \sum_{k \in \mathbb{Z}} f (n, k) }[/math]

[math]\displaystyle{ \sum_{k \in \mathbb{Z}} \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot f (n + i, k + j) = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{k \in \mathbb{Z}} f (n + i, k + j) }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \sum_{l \in \mathbb{Z}} f (n + i, l) }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \sum_{j = 0}^{J} a_{i j} \cdot \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right] }[/math]
[math]\displaystyle{ \;\;\;\, = \sum_{i = 0}^{I} \left[ S (n + i) + {\small\frac{1}{n + i + 1}} \right] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]


Jeżeli mamy skończoną liczbę punktów [math]\displaystyle{ k_r \notin [0, n] }[/math], w których funkcja [math]\displaystyle{ f(n, k) }[/math] jest określona i różna od zera, to możemy zdefiniować funkcję

[math]\displaystyle{ T(n) = f (n, k_1) + f (n, k_2) + f (n, k_3) + \ldots = \sum_r f (n, k_r) }[/math]

W takim przypadku otrzymamy następujące równanie rekurencyjne dla sumy [math]\displaystyle{ S (n) = \sum_{k = 0}^{n} f (n, k) }[/math]

[math]\displaystyle{ \sum_{i = 0}^{I} [S (n + i) + T (n + i)] \cdot \left[ \sum_{j = 0}^{J} a_{i j} \right] = 0 }[/math]


Wystarczy drobna modyfikacja procedury sum5(), aby obejmowała ona również takie przypadki

sum6(I, J):= 
(
read("podaj definicję f(n, k)"),   /* składnik sumy */
print("f(n, k) = ", f(n, k) ),
read("podaj definicję T(n)"),   /* suma skończonych wartości funkcji f(n, k), gdzie k<0 lub k>n */
print("T(n) = ", T(n) ),
F1: sum( sum( a[i,j] * f(n+i, k+j), i, 0, I), j, 0, J) / f(n, k),
F2: num( factor( minfactorial( makefact( expand( F1 ) ) ) ) ),
deg: hipow(F2, k),
LE:  [subst(0, k, F2) = 0],
for i: 1 thru deg do push(coeff(F2, k^i) = 0, LE),   /* kolejne równania wpisujemy do listy LE */
LV: create_list(a[i, j], i, 0, I , j, 0, J),   /* lista zmiennych */
sol: solve( LE, LV ),   /* lista rozwiązań */
S1: sum( ( S[n+i] + T(n+i) ) * sum( a[i,j], j, 0, J ), i, 0, I ),
S2: num( factor( minfactorial( makefact( expand( S1 ) ) ) ) ),
S3: subst( sol[1], S2 ),   /* pierwszy element listy sol */
S4: num( factor( expand( S3 ) ) ),
print("rekurencja: ", S4 = 0),
load("solve_rec"),
solve_rec( S4 = 0,  S[n] )
)$


Korzystając z powyższej procedury, Czytelnik może łatwo policzyć wypisane poniżej sumy.


Zadanie D104
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n }[/math]
Rozwiązanie

Zauważmy, że składniki sumy są równe zero dla [math]\displaystyle{ k \notin [0, n] }[/math] (zobacz zadanie D116). Zatem korzystając z procedury sum6(2, 1), otrzymujemy równanie rekurencyjne

[math]\displaystyle{ (n + 2) S (n + 2) - 4 (2 n + 3) S (n + 1) + 16 (n + 1) S (n) = 0 }[/math]

i rozwiązanie

[math]\displaystyle{ S(n) = C \cdot 4^n }[/math]

Łatwo sprawdzamy, że [math]\displaystyle{ C = 1 }[/math].


Zadanie D105
Pokazać, że dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
Rozwiązanie

Zauważmy, że składniki sumy są równe zero dla [math]\displaystyle{ k \notin [0, n] }[/math] (zobacz D116) poza punktem [math]\displaystyle{ k = - 1 }[/math]. Wiemy, że (zobacz D117)

[math]\displaystyle{ \lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = - {\small\frac{1}{2}} }[/math]

Zatem

[math]\displaystyle{ \lim_{k \rightarrow - 1} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = - {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]

Czyli

[math]\displaystyle{ f(n, - 1) = - {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]


Korzystając z procedury sum6(2, 1), otrzymujemy równanie rekurencyjne

[math]\displaystyle{ (n^2 + 5 n + 6) S (n + 2) - 8 (n^2 + 4 n + 4) S (n + 1) + 16 (n^2 + 3 n + 2) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{[(n + 1) !]^2}} = 0 }[/math]
[math]\displaystyle{ (n + 2) (n + 3) S (n + 2) - 8 (n + 2)^2 S (n + 1) + 16 (n + 1) (n + 2) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{[(n + 1) !]^2}} = 0 }[/math]
[math]\displaystyle{ (n + 3) S (n + 2) - 8 (n + 2) S (n + 1) + 16 (n + 1) S (n) + 2 \cdot {\small\frac{(2 n + 2) !}{(n + 1) ! (n + 2) !}} = 0 }[/math]

Maxima nie potrafi rozwiązać tego równania rekurencyjnego, ale można sprawdzić, że [math]\displaystyle{ S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math] jest jego rozwiązaniem.



Uzupełnienie

 

Dowód własności liczb Catalana [math]\displaystyle{ {\small C_{n + 1} = \textstyle\sum_{k = 0}^{n} C_k C_{n - k}} }[/math]

Uwaga D106
Przedstawiony poniżej dowód czwartego punktu twierdzenia D85 został oparty na pracy Jovana Mikicia[27].


Twierdzenie D107
Jeżeli funkcja [math]\displaystyle{ f(k) }[/math] nie zależy od [math]\displaystyle{ n }[/math] i dane są sumy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

to

[math]\displaystyle{ T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math]
Dowód

Z definicji sumy [math]\displaystyle{ T(n) }[/math] ostatni wyraz tej sumy jest równy zero, zatem dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ T(n) = \sum_{k = 0}^{n - 1} (n - k) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n - 1} (n - k) f (k) \cdot {\small\frac{(2 n - 2 k) (2 n - 2 k - 1)}{(n - k)^2}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n - 1} 2 (2 n - 2 k - 1) f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n - 1} [4 (n - 1 - k) + 2] f (k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k - 2}{n - k - 1}} }[/math]

Czyli

[math]\displaystyle{ T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math]

Co kończy dowód.


Twierdzenie D108
Dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = 4^n }[/math]
Dowód

Niech

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

Zauważmy, że

[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} j {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \left[ \sum_{k = 0}^{n} (n - k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} k {\small\binom{2 n - 2 k}{n - k}} {\small\binom{2 k}{k}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{2}} \sum_{k = 0}^{n} (n - k + k) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{n}{2}} \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{n S (n)}{2}} }[/math]

Ponieważ [math]\displaystyle{ T(n) = {\small\frac{n S (n)}{2}} \; }[/math] i [math]\displaystyle{ \; T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math] (zobacz D107), to otrzymujemy

[math]\displaystyle{ {\small\frac{n S (n)}{2}} = 4 \cdot {\small\frac{(n - 1) S (n - 1)}{2}} + 2 S (n - 1) }[/math]

Czyli

[math]\displaystyle{ n S (n) = 4 n S (n - 1) - 4 S (n - 1) + 4 S (n - 1) }[/math]
[math]\displaystyle{ S(n) = 4 S (n - 1) }[/math]

Metodą indukcji matematycznej łatwo dowodzimy, że [math]\displaystyle{ S(n) = 4^n }[/math]. Co należało pokazać.


Twierdzenie D109
Dla [math]\displaystyle{ n \geqslant 0 }[/math] prawdziwy jest wzór

[math]\displaystyle{ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
Dowód

Oznaczmy

[math]\displaystyle{ S(n) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]

Zauważmy, że

[math]\displaystyle{ T(n) = \sum_{k = 0}^{n} {\small\frac{n - k}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = \sum_{k = 0}^{n} {\small\frac{n + 1 - (k + 1)}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = (n + 1) \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} - \sum_{k = 0}^{n} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = (n + 1) S (n) - 4^n }[/math]

Ponieważ [math]\displaystyle{ T(n) = (n + 1) S (n) - 4^n \; }[/math] i [math]\displaystyle{ \; T(n) = 4 T (n - 1) + 2 S (n - 1) }[/math] (zobacz D107), to otrzymujemy

[math]\displaystyle{ (n + 1) S (n) - 4^n = 4 \cdot (n S (n - 1) - 4^{n - 1}) + 2 S (n - 1) }[/math]
[math]\displaystyle{ (n + 1) S (n) - 4^n = 4 n S (n - 1) - 4^n + 2 S (n - 1) }[/math]
[math]\displaystyle{ S(n) = {\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) }[/math]

Metodą indukcji matematycznej dowodzimy, że [math]\displaystyle{ S(n) = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]. Dla [math]\displaystyle{ n = 0 }[/math] mamy [math]\displaystyle{ S(0) = 1 \; }[/math] i [math]\displaystyle{ \; {\small\frac{1}{2}} {\small\binom{2}{1}} = 1 }[/math]. Zatem wzór jest prawdziwy dla [math]\displaystyle{ n = 0 }[/math]. Zakładając, że wzór jest prawdziwy dla [math]\displaystyle{ n - 1 }[/math], otrzymujemy dla [math]\displaystyle{ n }[/math]

[math]\displaystyle{ {\small\frac{2 (2 n + 1)}{n + 1}} S (n - 1) = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{2 n + 1}{n + 1}} \cdot {\small\frac{(n + 1)^2}{(2 n + 1) (2 n + 2)}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{(n + 1)^2}} \cdot {\small\binom{2 n}{n}} }[/math]
[math]\displaystyle{ \;\;\; = {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
[math]\displaystyle{ \;\;\; = S (n) }[/math]

Co kończy dowód.


Twierdzenie D110
Jeżeli [math]\displaystyle{ C_n }[/math] są liczbami Catalana, to

[math]\displaystyle{ C_{n + 1} = \sum_{k = 0}^{n} C_k C_{n - k} }[/math]
Dowód

Zauważmy, że

[math]\displaystyle{ \sum_{k = 0}^{n} C_k C_{n - k} = \sum_{k = 0}^{n} {\small\frac{1}{(k + 1) (n - k + 1)}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} \sum_{k = 0}^{n} \left( {\small\frac{1}{k + 1}} + {\small\frac{1}{n - k + 1}} \right) {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{k = 0}^{n} {\small\frac{1}{n - k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} \left[ \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} + \sum_{j = 0}^{n} {\small\frac{1}{j + 1}} {\small\binom{2 n - 2 j}{n - j}} {\small\binom{2 j}{j}} \right] }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{2}{n + 2}} \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} {\small\binom{2 n - 2 k}{n - k}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{2}{n + 2}} \cdot {\small\frac{1}{2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = {\small\frac{1}{n + 2}} {\small\binom{2 n + 2}{n + 1}} }[/math]
[math]\displaystyle{ \;\;\:\, = C_{n + 1} }[/math]

Co należało pokazać.




Funkcja gamma

 

Definicja D111
Funkcja [math]\displaystyle{ \Gamma (z) }[/math][28] jest zdefiniowana równoważnymi wzorami

[math]\displaystyle{ \Gamma (z) = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t \qquad \operatorname{Re}(z) \gt 0 \qquad \qquad }[/math] (definicja całkowa Eulera)
[math]\displaystyle{ \Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja Gaussa)
[math]\displaystyle{ \Gamma (z) = {\small\frac{1}{z}} \prod_{n = 1}^{\infty} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja iloczynowa Eulera)
[math]\displaystyle{ \Gamma (z) = {\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (definicja iloczynowa Weierstrassa)

Trzy ostatnie wzory możemy wykorzystać do zdefiniowania funkcji [math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} }[/math], która jest określona dla dowolnych [math]\displaystyle{ z \in \mathbb{C} }[/math]

[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = \lim_{n \rightarrow \infty} {\small\frac{z (z + 1) \cdot \ldots \cdot (z + n)}{n^z n!}} }[/math]
[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = z \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right) }[/math]
[math]\displaystyle{ {\small\frac{1}{\Gamma (z)}} = z e^{\gamma z} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right) e^{- \tfrac{z}{n}} }[/math]
Pokaż wykres

Poniżej przedstawiamy wykresy funkcji [math]\displaystyle{ \Gamma (x) }[/math] (kolor niebieski) i [math]\displaystyle{ \, {\small\frac{1}{\Gamma (x)}} }[/math] (kolor czerwony).

Gamma1.png

Pokaż równoważność definicji

Równoważność definicji Gaussa i definicji całkowej Eulera

Niech [math]\displaystyle{ n \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \; \operatorname{Re}(z) \gt 0 }[/math]. Rozważmy całki

[math]\displaystyle{ I_k = \int^n_0 t^{z - 1 + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k} d t }[/math]

gdzie [math]\displaystyle{ k = 0, \ldots, n }[/math]. Całkując przez części

[math]\displaystyle{ d u = t^{z - 1 + k} \, d t \qquad \qquad \qquad v = \left( 1 - {\small\frac{t}{n}} \right)^{n - k} }[/math]
[math]\displaystyle{ u = {\small\frac{t^{z + k}}{z + k}} \qquad \qquad \qquad \quad \; d v = - {\small\frac{n - k}{n}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t }[/math]

otrzymujemy

[math]\displaystyle{ I_k = {\small\frac{t^{z + k}}{z + k}} \cdot \left( 1 - {\small\frac{t}{n}} \right)^{n - k} \, \biggr\rvert_{0}^{n} \; + \; {\small\frac{n - k}{n (z + k)}} \int^n_0 t^{z + k} \left( 1 - {\small\frac{t}{n}} \right)^{n - k - 1} d t }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n - k}{n (z + k)}} \cdot I_{k + 1} }[/math]

Zatem całkując [math]\displaystyle{ n }[/math]-krotnie przez części, mamy

[math]\displaystyle{ I_0 = {\small\frac{n}{n z}} \cdot I_1 }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot I_2 }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot I_3 }[/math]
[math]\displaystyle{ \;\;\;\,\, = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot I_n }[/math]

Ponieważ

[math]\displaystyle{ I_n = \int^n_0 t^{z + n - 1} \, d t = {\small\frac{n^{z + n}}{z + n}} }[/math]

to

[math]\displaystyle{ I_0 = \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = {\small\frac{n}{n z}} \cdot {\small\frac{n - 1}{n (z + 1)}} \cdot {\small\frac{n - 2}{n (z + 2)}} \cdot \ldots \cdot {\small\frac{1}{n (z + n - 1)}} \cdot {\small\frac{n^{z + n}}{z + n}} }[/math]
[math]\displaystyle{ \;\;\;\; = {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} = \lim_{n \rightarrow \infty} \int^n_0 t^{z - 1} \left( 1 - {\small\frac{t}{n}} \right)^n d t = \int_{0}^{\infty} t^{z - 1} e^{- t} \, d t }[/math]

Co należało pokazać.


Równoważność definicji iloczynowej Eulera i definicji Gaussa

[math]\displaystyle{ {\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \left( 1 + {\small\frac{1}{k}} \right)^z \left( 1 + {\small\frac{z}{k}} \right)^{- 1} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{\left( 1 + {\small\frac{1}{k}} \right)^z}{1 + {\small\frac{z}{k}}} }[/math]
[math]\displaystyle{ \:\, = {\small\frac{1}{z}} \cdot \lim_{n \rightarrow \infty} \prod^n_{k = 1} {\small\frac{k (k + 1)^z}{(k + z) k^z}} }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( {\small\frac{(n + 1) !}{n!}} \right)^z }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{(n + 1)^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \left( 1 + {\small\frac{1}{n}} \right)^z }[/math]
[math]\displaystyle{ \:\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]

Co należało pokazać.


Równoważność definicji iloczynowej Weierstrassa i definicji Gaussa

Stała [math]\displaystyle{ \gamma }[/math] jest równa

[math]\displaystyle{ \gamma = \lim_{n \rightarrow \infty} \left( - \log n + \sum_{k = 1}^{n} {\small\frac{1}{k}} \right) }[/math]

Zatem

[math]\displaystyle{ {\small\frac{e^{- \gamma z}}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{z}{n}} \right)^{- 1} e^{\tfrac{z}{n}} = z^{- 1} \cdot e^{- \gamma z} \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{e^{\tfrac{z}{k}}}{1 + \tfrac{z}{k}} \right) }[/math]
[math]\displaystyle{ \, = z^{- 1} \cdot \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} \prod^n_{k = 1} \frac{k e^{\tfrac{z}{k}}}{z + k} \right) }[/math]
[math]\displaystyle{ \, = \left( \lim_{n \rightarrow \infty} e^{\left( \log n - 1 - \tfrac{1}{2} - \ldots - \tfrac{1}{n} \right) z} \right) \cdot \left( \lim_{n \rightarrow \infty} {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot e^{\left( 1 + \tfrac{1}{2} + \ldots + \tfrac{1}{n} \right) z} \right) }[/math]
[math]\displaystyle{ \, = \lim_{n \rightarrow \infty} e^{z \log n} \cdot {\small\frac{n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]

Co należało pokazać.


Twierdzenie D112
Dla funkcji [math]\displaystyle{ \Gamma (z) }[/math] prawdziwe są następujące wzory

  •    [math]\displaystyle{ \Gamma (1) = 1 }[/math]
  •    [math]\displaystyle{ z \Gamma (z) = \Gamma (z + 1) \qquad z \notin \mathbb{Z}_- \cup \{ 0 \} }[/math]
  •    [math]\displaystyle{ \Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}} \qquad z \notin \mathbb{Z} }[/math]
  •    [math]\displaystyle{ \Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) \qquad 2 z \notin \mathbb{Z}_- \cup \{ 0 \} \qquad \qquad }[/math] (wzór Legendre'a o podwajaniu)
Dowód

Punkt 1.

[math]\displaystyle{ \Gamma (1) = \int_{0}^{\infty} t^{1 - 1} e^{- t} d t = \int_{0}^{\infty} e^{- t} d t = - e^{- t} \biggr\rvert_{0}^{\infty} = 0 - (- 1) = 1 }[/math]

Punkt 2.

Z definicji Gaussa funkcji [math]\displaystyle{ \Gamma (z) }[/math] otrzymujemy

[math]\displaystyle{ \Gamma (z) = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \Gamma (z + 1) = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) (z + 2) \cdot \ldots \cdot (z + n + 1)}} }[/math]

Zatem

[math]\displaystyle{ z \Gamma (z) = z \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} }[/math]
[math]\displaystyle{ \;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{(z + 1) \cdot \ldots \cdot (z + n)}} \cdot {\small\frac{n}{z + n + 1}} \cdot {\small\frac{z + n + 1}{n}} }[/math]
[math]\displaystyle{ \;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) \cdot \ldots \cdot (z + n) (z + n + 1)}} \cdot \left( 1 + {\small\frac{z + 1}{n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\;\, = \lim_{n \rightarrow \infty} {\small\frac{n^{z + 1} n!}{(z + 1) \cdot \ldots \cdot (z + n) (z + n + 1)}} \cdot \lim_{n \rightarrow \infty} \left( 1 + {\small\frac{z + 1}{n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\;\, = \Gamma (z + 1) }[/math]

Punkt 3.

Z definicji iloczynowej Eulera mamy

[math]\displaystyle{ \Gamma (z) = {\small\frac{1}{z}} \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 + {\small\frac{z}{n}} \right)^{- 1} }[/math]

Zatem

[math]\displaystyle{ {\small\frac{1}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{1}{- z \Gamma (z) \Gamma (- z)}} }[/math]
[math]\displaystyle{ \; = {\small\frac{z \cdot (- z)}{- z}} \cdot \prod^{\infty}_{n = 1} \left( 1 + {\small\frac{1}{n}} \right)^{- z} \left( 1 + {\small\frac{z}{n}} \right) \left( 1 + {\small\frac{1}{n}} \right)^z \left( 1 - {\small\frac{z}{n}} \right) }[/math]
[math]\displaystyle{ \; = z \cdot \prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right) }[/math]
[math]\displaystyle{ \; = {\small\frac{\sin (\pi z)}{\pi}} }[/math]

gdzie wykorzystaliśmy wzór Eulera

[math]\displaystyle{ \prod^{\infty}_{n = 1} \left( 1 - {\small\frac{z^2}{n^2}} \right) = {\small\frac{\sin (\pi z)}{\pi z}} }[/math]

Dowód wzoru Eulera jest trudny. Elegancki dowód, ale tylko dla liczb rzeczywistych, Czytelnik znajdzie na stronie ProofWiki.


Punkt 4.

Z definicji Gaussa funkcji gamma mamy

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{n^{2 z} n!}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + n)}} }[/math]

Jeżeli w powyższym równaniu położymy [math]\displaystyle{ 2 n }[/math] zamiast [math]\displaystyle{ n }[/math], to dostaniemy

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}} }[/math]


Zauważmy teraz, że

[math]\displaystyle{ 2^{2 n + 2} [z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right] = [2 z (2 z + 2) \cdot \ldots \cdot (2 z + 2 n)] \cdot [(2 z + 1) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n + 1)] }[/math]
[math]\displaystyle{ \;\;\;\,\, = 2 z (2 z + 1) (2 z + 2) (2 z + 3) \cdot \ldots \cdot (2 z + 2 n) (2 z + 2 n + 1) }[/math]

Czyli

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}} }[/math]
[math]\displaystyle{ \;\;\;\:\, = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n) (2 z + 2 n + 1)}} \cdot (2 z + 2 n + 1) }[/math]
[math]\displaystyle{ \;\;\;\:\, = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2^{2 n + 2} [z (z + 1) \cdot \ldots \cdot (z + n)] \cdot \left[ \left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right) \right]}} \cdot 2 n \left( 1 + {\small\frac{2 z + 1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = 2^{2 z} \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot {\small\frac{n^{z + (1 / 2)} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)}} \cdot {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} \cdot \left( 1 + {\small\frac{2 z + 1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = 2^{2 z} \cdot \lim_{n \rightarrow \infty} {\small\frac{n^z n!}{z (z + 1) \cdot \ldots \cdot (z + n)}} \cdot \lim_{n \rightarrow \infty}{\small\frac{n^{z + (1 / 2)} n!}{\left( z + {\small\frac{1}{2}} \right) \left( z + {\small\frac{3}{2}} \right) \cdot \ldots \cdot \left( z + n + {\small\frac{1}{2}} \right)}} \cdot \lim_{n \rightarrow \infty} {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} \cdot \lim_{n \rightarrow \infty} \left( 1 + {\small\frac{2 z + 1}{2 n}} \right) }[/math]
[math]\displaystyle{ \;\;\;\:\, = 2^{2 z} \cdot \Gamma (z) \cdot \Gamma \left( z + {\small\frac{1}{2}} \right) \cdot C \cdot 1 }[/math]


Ponieważ wyrażenie

[math]\displaystyle{ \lim_{n \rightarrow \infty} {\small\frac{(2 n) !}{(n!)^2}} \cdot {\small\frac{\sqrt{n}}{2^{2 n + 1}}} }[/math]

nie zależy od [math]\displaystyle{ z }[/math], a wartości funkcji [math]\displaystyle{ \Gamma (2 z) }[/math], [math]\displaystyle{ \Gamma (z) }[/math] i [math]\displaystyle{ \Gamma \left( z + {\small\frac{1}{2}} \right) }[/math] są określone dla [math]\displaystyle{ 2 z \notin \mathbb{Z}_- \cup \{ 0 \} }[/math], to powyższa granica musi być pewną stałą. Jeżeli po lewej stronie położymy [math]\displaystyle{ z = {\small\frac{1}{2}} }[/math], to otrzymamy

[math]\displaystyle{ \Gamma (1) = 2 \cdot \Gamma \left( {\small\frac{1}{2}} \right) \Gamma (1) \cdot C }[/math]

Czyli

[math]\displaystyle{ C = {\small\frac{1}{2 \sqrt{\pi}}} }[/math]

I ostatecznie dostajemy

[math]\displaystyle{ \Gamma (2 z) = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma (z) \Gamma \left( z + {\small\frac{1}{2}} \right) }[/math]


Przy okazji pokazaliśmy asymptotykę: [math]\displaystyle{ {\small\binom{2 n}{n}} \sim {\small\frac{2^{2 n}}{\sqrt{\pi \, n}}} }[/math]


Zauważmy jeszcze, że gdy położymy [math]\displaystyle{ 2 n + 1 }[/math] zamiast [math]\displaystyle{ n }[/math], to otrzymamy taki sam rezultat, bo

[math]\displaystyle{ \Gamma (2 z) = \lim_{n \rightarrow \infty} {\small\frac{(2 n + 1)^{2 z} (2 n + 1) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n + 1)}} = \lim_{n \rightarrow \infty} {\small\frac{(2 n)^{2 z} (2 n) !}{2 z (2 z + 1) \cdot \ldots \cdot (2 z + 2 n)}} \cdot \left( 1 + {\small\frac{1}{2 n}} \right)^{\! 2 z} \cdot \left( {\small\frac{1}{1 + {\normalsize\frac{2 z}{2 n + 1}}}} \right) }[/math]


Ze wzorów podanych w twierdzeniu D112 otrzymujemy
Twierdzenie D113
Niech [math]\displaystyle{ k \in \mathbb{Z} \; }[/math] i [math]\displaystyle{ \; n \in \mathbb{N}_0 }[/math]

  •    [math]\displaystyle{ \Gamma \left( {\small\frac{1}{2}} \right) = \sqrt{\pi} }[/math]
  •    [math]\displaystyle{ \Gamma (n + 1) = n! }[/math]
  •    [math]\displaystyle{ \Gamma \left( z + {\small\frac{1}{2}} \right) \Gamma \left( - z + {\small\frac{1}{2}} \right) = {\small\frac{\pi}{\cos (\pi z)}} \qquad z \neq k + {\small\frac{1}{2}} }[/math]
  •    [math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) \Gamma \left( - n + {\small\frac{1}{2}} \right) = \pi \cdot (- 1)^n }[/math]
  •    [math]\displaystyle{ \Gamma \left( n + {\small\frac{1}{2}} \right) = 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} }[/math]
  •    [math]\displaystyle{ \Gamma \left( - n + {\small\frac{1}{2}} \right) = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
  •    [math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
Dowód

Punkt 1.

Wystarczy położyć [math]\displaystyle{ z = {\small\frac{1}{2}} }[/math] we wzorze 3. twierdzenia D112

Punkt 2.

Indukcja matematyczna. Wzór jest prawdziwy dla [math]\displaystyle{ n = 0 }[/math]. Zakładając, że jest prawdziwy dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \Gamma (n + 2) = (n + 1) \Gamma (n + 1) = (n + 1) n! = (n + 1) ! }[/math]

Zauważmy, że funkcja [math]\displaystyle{ \Gamma (z) }[/math] jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych / zespolonych.

Punkt 3.

Wystarczy położyć [math]\displaystyle{ z = z' + {\small\frac{1}{2}} }[/math] we wzorze 3. twierdzenia D112

Punkt 4.

Wystarczy położyć [math]\displaystyle{ z = n }[/math] we wzorze 3. tego twierdzenia

Punkt 5.

Indukcja matematyczna. Wzór jest prawdziwy dla [math]\displaystyle{ n = 0 }[/math]. Zakładając, że jest prawdziwy dla [math]\displaystyle{ n }[/math], otrzymujemy dla [math]\displaystyle{ n + 1 }[/math]

[math]\displaystyle{ \Gamma \left( n + 1 + {\small\frac{1}{2}} \right) = \left( n + {\small\frac{1}{2}} \right) \Gamma \left( n + {\small\frac{1}{2}} \right) }[/math]
[math]\displaystyle{ \;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot 2^{- 2 n} \sqrt{\pi} \cdot {\small\frac{(2 n) !}{n!}} }[/math]
[math]\displaystyle{ \;\;\:\, = \left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} \cdot 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}} }[/math]
[math]\displaystyle{ \;\;\:\, = 2^{- 2 n - 2} \sqrt{\pi} \cdot {\small\frac{(2 n + 2) !}{(n + 1) !}} }[/math]

bo

[math]\displaystyle{ \left( n + {\small\frac{1}{2}} \right) \cdot {\small\frac{4 (n + 1)}{(2 n + 2) (2 n + 1)}} = 1 }[/math]

Punkt 6.

Ze wzoru 3. i 4. tego twierdzenia dostajemy

[math]\displaystyle{ \Gamma \left( - n + {\small\frac{1}{2}} \right) = \frac{\pi \cdot (- 1)^n}{\Gamma \left( n + {\small\frac{1}{2}} \right)} = \frac{\pi \cdot (- 1)^n \cdot n!}{2^{- 2 n} \sqrt{\pi} \cdot (2 n) !} = (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} }[/math]

Punkt 7.

Ze wzoru Legendre'a o podwajaniu otrzymujemy

[math]\displaystyle{ {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{2 z - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( z + {\small\frac{1}{2}} \right) }[/math]

gdzie [math]\displaystyle{ z \notin \mathbb{Z}_- \cup \{ 0 \} }[/math]

Dla [math]\displaystyle{ z = - n }[/math] po lewej stronie mamy symbol nieoznaczony [math]\displaystyle{ {\small\frac{\infty}{\infty}} }[/math], ale w punktach [math]\displaystyle{ z = - n }[/math] istnieje granica funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 z)}{\Gamma (z)}} }[/math]

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (2 z)}{\Gamma (z)}} = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot \Gamma \left( - n + {\small\frac{1}{2}} \right) = {\small\frac{2^{- 2 n - 1}}{\sqrt{\pi}}} \cdot (- 1)^n \cdot 2^{2 n} \sqrt{\pi} \cdot {\small\frac{n!}{(2 n) !}} = (- 1)^n \cdot {\small\frac{1}{2}} \cdot {\small\frac{n!}{(2 n) !}} }[/math]
Pokaż wykres

Poniżej przedstawiamy wykres funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 x)}{\Gamma (x)}} \cdot 10^{| x |} }[/math]. Uwaga: wykres funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 x)}{\Gamma (x)}} }[/math] został celowo zniekształcony przez dodanie czynnika [math]\displaystyle{ 10^{| x |} }[/math], aby dało się zauważyć, że wartości granic [math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x)}{\Gamma (x)}} }[/math] są różne od zera dla [math]\displaystyle{ n \in \mathbb{N}_0 }[/math].

Gamma2.png



Twierdzenie D114
Jeżeli [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \; a \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}} }[/math]
Dowód

Wiemy, że jeżeli [math]\displaystyle{ z }[/math] nie jest liczbą całkowitą, to prawdziwy jest wzór (zobacz D112 p.3)

[math]\displaystyle{ \Gamma (z) \Gamma (- z + 1) = {\small\frac{\pi}{\sin (\pi z)}} }[/math]

Zatem

[math]\displaystyle{ \Gamma (a z) \Gamma (- a z + 1) = {\small\frac{\pi}{\sin (\pi a z)}} }[/math]

Dzieląc powyższe równania przez siebie, otrzymujemy

[math]\displaystyle{ {\small\frac{\Gamma (a z) \Gamma (- a z + 1)}{\Gamma (z) \Gamma (- z + 1)}} = {\small\frac{\pi}{\sin (\pi a z)}} \cdot {\small\frac{\sin (\pi z)}{\pi}} = {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} }[/math]

Skąd dostajemy

[math]\displaystyle{ {\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (- z + 1)}{\Gamma (- a z + 1)}} \cdot {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} }[/math]

Niech [math]\displaystyle{ k }[/math] oznacza dowolną liczbę całkowitą. W granicy, gdy [math]\displaystyle{ z \rightarrow k }[/math], mamy

[math]\displaystyle{ \lim_{z \rightarrow k} {\small\frac{\sin (\pi z)}{\sin (\pi a z)}} = {\small\frac{\pi \cdot \cos (\pi k)}{a \pi \cdot \cos (\pi a k)}} = {\small\frac{1}{a}} \cdot {\small\frac{(- 1)^k}{(- 1)^{a k}}} = {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) k} }[/math]

gdzie skorzystaliśmy z reguły de l'Hospitala. Wynika stąd, że

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z)}{\Gamma (z)}} = {\small\frac{\Gamma (n + 1)}{\Gamma (a n + 1)}} \cdot {\small\frac{1}{a}} \cdot (- 1)^{(a - 1) n} = (- 1)^{(a - 1) n} \cdot {\small\frac{1}{a}} \cdot {\small\frac{n!}{(a n) !}} }[/math]

Co należało pokazać.


Twierdzenie D115
Jeżeli [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \; a \in \mathbb{Z}_+ }[/math], to

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}} }[/math]
Dowód

Z twierdzenia D112 p.2 wynika, że

[math]\displaystyle{ \Gamma (a z + a n + 1) = \Gamma (a z + 1) \cdot \prod^{a n}_{j = 1} (a z + j) }[/math]
[math]\displaystyle{ \Gamma (b z + b n + 1) = \Gamma (b z + 1) \cdot \prod^{b n}_{j = 1} (b z + j) }[/math]

Dzieląc równania przez siebie, otrzymujemy

[math]\displaystyle{ {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (b z + b n + 1)}} \cdot \frac{\displaystyle\prod^{b n}_{j = 1} (b z + j)}{\displaystyle\prod^{a n}_{j = 1} (a z + j)} = {\small\frac{\Gamma (a z + a n + 1)}{\Gamma (z + n + 1)}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (b z + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (a z + j)} \cdot {\small\frac{b}{a}} }[/math]

Zatem

[math]\displaystyle{ \lim_{z \rightarrow - n} {\small\frac{\Gamma (a z + 1)}{\Gamma (b z + 1)}} = {\small\frac{b}{a}} \cdot \frac{\displaystyle\prod^{b n - 1}_{j = 1} (- b n + j)}{\displaystyle\prod^{a n - 1}_{j = 1} (- a n + j)} \cdot {\small\frac{\Gamma (1)}{\Gamma (1)}} = {\small\frac{b}{a}} \cdot \frac{(- 1)^{b n - 1} \cdot \displaystyle\prod^{b n - 1}_{j = 1} (b n - j)}{(- 1)^{a n - 1} \cdot \displaystyle\prod^{a n - 1}_{j = 1} (a n - j)} = {\small\frac{b}{a}} \cdot (- 1)^{(a - b) n} \cdot {\small\frac{(b n - 1) !}{(a n - 1) !}} = (- 1)^{(a - b) n} \cdot {\small\frac{(b n) !}{(a n) !}} }[/math]

Co należało pokazać.


Zadanie D116
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ \, }[/math] i [math]\displaystyle{ \; g(n) = {\small\binom{2 n}{n}} }[/math]. Pokazać, że

  •    rozszerzając funkcję [math]\displaystyle{ g(n) }[/math] na zbiór liczb rzeczywistych, otrzymujemy [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} }[/math]
  •    [math]\displaystyle{ \lim_{x \rightarrow - n} g (x) = 0 }[/math]
Rozwiązanie

Zapiszmy funkcję [math]\displaystyle{ g(n) = {\small\binom{2 n}{n}} }[/math] w postaci

[math]\displaystyle{ g(n) = {\small\binom{2 n}{n}} = {\small\frac{(2 n) !}{(n!)^2}} = {\small\frac{\Gamma (2 n + 1)}{\Gamma (n + 1)^2}} }[/math]

Możemy teraz przejść do zmiennej rzeczywistej

[math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} }[/math]

bo funkcja [math]\displaystyle{ \Gamma (x) }[/math] jest rozszerzeniem pojęcia silni na zbiór liczb rzeczywistych.

Korzystając z twierdzenia D115, otrzymujemy

[math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1)^n \cdot {\small\frac{n!}{(2 n) !}} }[/math]

Ale wiemy, że (zobacz D111)

[math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{1}{\Gamma (x + 1)}} = 0 }[/math]

Zatem

[math]\displaystyle{ \lim_{x \rightarrow - n} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} = 0 }[/math]

Co należało pokazać i co jest dobrze widoczne na wykresie funkcji [math]\displaystyle{ {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)^2}} }[/math]

Gamma3.png


Zadanie D117
Niech [math]\displaystyle{ n \in \mathbb{N}_0 \, }[/math] i [math]\displaystyle{ \; g(n) = {\small\frac{1}{n + 1}} {\small\binom{2 n}{n}} }[/math]. Pokazać, że

  •    rozszerzając funkcję [math]\displaystyle{ g(n) }[/math] na zbiór liczb rzeczywistych, otrzymujemy [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} }[/math]
  •    [math]\displaystyle{ \lim_{x \rightarrow - 1} g (x) = - {\small\frac{1}{2}} }[/math]
Rozwiązanie

Oczywiście funkcja [math]\displaystyle{ g(k) }[/math] nie jest określona w punkcie [math]\displaystyle{ k = - 1 }[/math]

[math]\displaystyle{ g(k) = {\small\frac{1}{k + 1}} {\small\binom{2 k}{k}} = {\small\frac{1}{k + 1}} \cdot {\small\frac{(2 k) !}{(k!)^2}} = {\small\frac{(2 k) !}{(k + 1) !k!}} = {\small\frac{\Gamma (2 k + 1)}{\Gamma (k + 2) \Gamma (k + 1)}} }[/math]

Jeżeli przejdziemy do zmiennej rzeczywistej

[math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} }[/math]

to łatwo pokażemy, że granica funkcji [math]\displaystyle{ g(x) }[/math] w punkcje [math]\displaystyle{ x = - 1 }[/math] istnieje i jest równa [math]\displaystyle{ - {\small\frac{1}{2}} }[/math].

Z twierdzenia D115 dostajemy

[math]\displaystyle{ \lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 1)}} = (- 1) \cdot {\small\frac{1}{2}} = - {\small\frac{1}{2}} }[/math]

Czyli

[math]\displaystyle{ \lim_{x \rightarrow - 1} g (x) = \lim_{x \rightarrow - 1} {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} = - {\small\frac{1}{2}} \cdot {\small\frac{1}{\Gamma (1)}} = - {\small\frac{1}{2}} }[/math]


Co dobrze widać na wykresie funkcji [math]\displaystyle{ g(x) = {\small\frac{\Gamma (2 x + 1)}{\Gamma (x + 2) \Gamma (x + 1)}} }[/math]

Gamma4.png








Przypisy

  1. Wikipedia, Funkcja η, (Wiki-pl), (Wiki-en)
  2. Wikipedia, Funkcja dzeta Riemanna, (Wiki-pl), (Wiki-en)
  3. Twierdzenie: funkcja ciągła w przedziale domkniętym jest całkowalna w tym przedziale.
  4. W szczególności: funkcja ograniczona i mająca skończoną liczbę punktów nieciągłości w przedziale domkniętym jest w tym przedziale całkowalna.
  5. 5,0 5,1 Wikipedia, Twierdzenia Mertensa, (Wiki-pl), (Wiki-en)
  6. 6,0 6,1 Wikipedia, Franciszek Mertens, (Wiki-pl)
  7. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94, (LINK)
  8. Zobacz twierdzenie D43.
  9. The On-Line Encyclopedia of Integer Sequences, A001620 - Decimal expansion of Euler's constant, (A001620)
  10. The On-Line Encyclopedia of Integer Sequences, A083343 - Decimal expansion of constant B3 (or B_3) related to the Mertens constant, (A083343)
  11. The On-Line Encyclopedia of Integer Sequences, A138312 - Decimal expansion of Mertens's constant minus Euler's constant, (A138312)
  12. Pierre Dusart, Estimates of Some Functions Over Primes without R.H., 2010, (LINK)
  13. Wikipedia, Stałe Bruna, (Wiki-pl), (Wiki-en)
  14. The On-Line Encyclopedia of Integer Sequences, A065421 - Decimal expansion of Viggo Brun's constant B, (A065421)
  15. Paul Erdős, Über die Reihe [math]\displaystyle{ \textstyle \sum {\small\frac{1}{p}} }[/math], Mathematica, Zutphen B 7, 1938, 1-2.
  16. sumowanie przez części (ang. summation by parts)
  17. ciąg wypukły (ang. convex sequence)
  18. Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, vol. 45(1), 2018, 227-251.
  19. 19,0 19,1 Wikipedia, Szereg geometryczny, (Wiki-pl), (Wiki-en)
  20. Wikipedia, Sumowalność metodą Cesàro, (Wiki-pl), (Wiki-en)
  21. Wikipedia, Indefinite sum, (Wiki-en)
  22. Sister Mary Celine Fasenmyer, Some Generalized Hypergeometric Polynomials, Bull. Amer. Math. Soc. 53 (1947), 806-812
  23. Sister Mary Celine Fasenmyer, A Note on Pure Recurrence Relations, Amer. Math. Monthly 56 (1949), 14-17
  24. Doron Zeilberger, Sister Celine's technique and its generalizations, Journal of Mathematical Analysis and Applications, 85 (1982), 114-145
  25. Herbert Wilf and Doron Zeilberger, Rational Functions Certify Combinatorial Identities, J. Amer. Math. Soc. 3 (1990), 147-158
  26. Marko Petkovšek, Herbert Wilf and Doron Zeilberger, A = B, AK Peters, Ltd., 1996
  27. Jovan Mikić, A Proof of a Famous Identity Concerning the Convolution of the Central Binomial Coefficients, Journal of Integer Sequences, Vol. 19, No. 6 (2016), pp. 1 - 10, (LINK)
  28. Wikipedia, Funkcja Γ, (Wiki-pl), (Wiki-en)