Wzór Eulera-Maclaurina: Różnice pomiędzy wersjami

Z Henryk Dąbrowski
Przejdź do nawigacji Przejdź do wyszukiwania
Linia 508: Linia 508:
  
  
<span id="E16" style="font-size: 110%; font-weight: bold;">Przykład E16</span><br/>
+
<span id="E16" style="font-size: 110%; font-weight: bold;">Twierdzenie E16</span><br/>
W tabeli przedstawiamy liczby Bernoulliego <math>B_n</math> oraz minimalne <math>m_n</math> i&nbsp;maksymalne <math>M_n</math> wartości wielomianów <math>B_n(x)</math> dla <math>x \in [0, 1]</math>
+
Załóżmy, że funkcja rzeczywista <math>f(x)</math> jest ciągła w&nbsp;przedziale <math>[a, b]</math> i&nbsp;różniczkowalna w&nbsp;przedziale <math>(a, b)</math>. Jeżeli
 
+
 
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
:*&nbsp;&nbsp;&nbsp;<math>f' (x) > 0 \,</math> dla <math>\, x \in (a, b)</math>, to <math>f(x)</math> jest silnie rosnąca w&nbsp;przedziale <math>[a, b]</math>
|- style=height:3em
+
 
! <math>\quad n \quad</math> || <math>B_n(x)</math> || <math>B_n</math> || <math>m_n</math> || <math>M_n</math>
+
:*&nbsp;&nbsp;&nbsp;<math>f' (x) < 0 \,</math> dla <math>\, x \in (a, b)</math>, to <math>f(x)</math> jest silnie malejąca w&nbsp;przedziale <math>[a, b]</math>
|- style=height:3em
+
 
| <math>\quad 0 \quad</math> || <math>1</math> || <math>1</math> || <math>1</math> || <math>1</math>
+
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
|- style=height:3em
+
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
| <math>\quad 1 \quad</math> || <math>x - {\small\frac{1}{2}}</math> || <math>- {\small\frac{1}{2}}</math> || <math>- {\small\frac{1}{2}}</math> || <math>{\small\frac{1}{2}}</math>
+
Przypuśćmy, dla uzyskania sprzeczności, że <math>f(x)</math> nie jest funkcją silnie rosnącą w&nbsp;przedziale <math>[a, b]</math>. Zatem istnieją takie liczby <math>t_1, t_2 \in [a, b] \,</math> i <math>\, t_2 > t_1</math>, że <math>f(t_2) \leqslant f (t_1)</math>.
|- style=height:3em
+
 
| <math>\quad 2 \quad</math> || <math>x^2 - x + {\small\frac{1}{6}}</math> || <math>{\small\frac{1}{6}}</math> || <math>- {\small\frac{1}{12}}</math> || <math>{\small\frac{1}{6}}</math>
+
Zauważmy, że funkcja <math>f(x)</math> jest ciągła w&nbsp;przedziale <math>[t_1, t_2]</math> i&nbsp;różniczkowalna w&nbsp;przedziale <math>(t_1, t_2)</math>. Ponieważ spełnione są założenia twierdzenia Lagrange'a<ref name="Lagrange1"/>, to istnieje taki punkt <math>c \in (t_1, t_2) \subset (a, b)</math>, że
|- style=height:3em
+
 
| <math>\quad 3 \quad</math> || <math>x^3 - {\small\frac{3}{2}} x^2 + {\small\frac{1}{2}} x</math> || <math>0</math> || <math>- {\small\frac{\sqrt{3}}{36}}</math> || <math>{\small\frac{\sqrt{3}}{36}}</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
|- style=height:3em
+
::<math>f' (c) = {\small\frac{f (t_2) - f (t_1)}{t_2 - t_1}}</math>
| <math>\quad 4 \quad</math> || <math>x^4 - 2 x^3 + x^2 - {\small\frac{1}{30}}</math> || <math>- {\small\frac{1}{30}}</math> || <math>- {\small\frac{1}{30}}</math> || <math>{\small\frac{7}{240}}</math>
+
</div>
|- style=height:3em
+
 
| <math>\quad 5 \quad</math> || <math>x^5 - {\small\frac{5}{2}} x^4 + {\small\frac{5}{3}} x^3 - {\small\frac{1}{6}} x</math> || <math>0</math> || <math>- {\small\frac{1}{6}} \sqrt{{\small\frac{1}{60}} + {\small\frac{\sqrt{30}}{1125}}}</math> || <math>{\small\frac{1}{6}} \sqrt{{\small\frac{1}{60}} + {\small\frac{\sqrt{30}}{1125}}}</math>
+
Zatem otrzymujemy <math>f' (c) \leqslant 0</math>, wbrew założeniu, że <math>f' (x) > 0</math> dla <math>x \in (a, b)</math>. Otrzymana sprzeczność kończy dowód.
|- style=height:3em
+
 
| <math>\quad 6 \quad</math> || <math>x^6 - 3 x^5 + {\small\frac{5}{2}} x^4 - {\small\frac{1}{2}} x^2 + {\small\frac{1}{42}}</math> || <math>{\small\frac{1}{42}}</math> || <math>- {\small\frac{31}{1344}}</math> || <math>{\small\frac{1}{42}}</math>
+
<span style="border-bottom-style: double;">Drugi sposób</span><br/>
|}
+
Wybierzmy dowolne dwa punkty <math>t_1, t_2 \in [a, b]</math> takie, że <math>t_2 > t_1</math>. Z&nbsp;założenia wynika, że funkcja <math>f(x)</math> jest ciągła w&nbsp;przedziale <math>[t_1, t_2]</math> i&nbsp;różniczkowalna w&nbsp;przedziale <math>(t_1, t_2)</math>. Ponieważ spełnione są założenia twierdzenia Lagrange'a<ref name="Lagrange1"/>, to istnieje taki punkt <math>c \in (t_1, t_2) \subset (a, b)</math>, że
 
+
 
Zauważmy, że <math>M_3 = {\small\frac{\sqrt{3}}{36}} < {\small\frac{3}{62}}</math>, <math>\quad M_5 < {\small\frac{1}{40}}</math>, <math>\quad M_7 < {\small\frac{1}{38}} \quad</math> oraz <math>\quad M_9 < {\small\frac{1}{21}}</math>
+
<div style="margin-top: 1em; margin-bottom: 1em;">
 
+
::<math>f' (c) = {\small\frac{f (t_2) - f (t_1)}{t_2 - t_1}}</math>
 
+
</div>
 
+
 
<span id="E17" style="font-size: 110%; font-weight: bold;">Przykład E17</span><br/>
+
Wiemy, że <math>f' (x) > 0</math> dla <math>x \in (a, b)</math>, zatem w&nbsp;szczególności <math>f' (c) > 0</math> i&nbsp;otrzymujemy
Minima <math>m_n</math> i&nbsp;maksima <math>M_n</math> wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x \in [0, 1]</math> są równe<ref name="Lehmer1"/>
+
 
 
+
<div style="margin-top: 1em; margin-bottom: 1em;">
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
+
::<math>f(t_2) - f (t_1) = (t_2 - t_1) f' (c) > 0</math>
|-
+
</div>
! <math>n</math> || <math>m_n</math> || <math>M_n</math> || <math>\text{uwagi}</math>
+
 
|-
+
Czyli <math>f(t_2) > f (t_1)</math>. Ponieważ punkty <math>t_1, t_2</math> zostały wybrane dowolnie w&nbsp;przedziale <math>[a, b]</math>, to funkcja <math>f(x)</math> jest funkcją silnie rosnącą w&nbsp;tym przedziale. Co należało pokazać.<br/>
| <math>2 k + 1</math> || <math>- \bigl| B_{2 k + 1} (x_{2 k}) \bigr|</math> || <math>\bigl| B_{2 k + 1} (x_{2 k}) \bigr|</math> || <math>B_{2 k} (x_{2 k}) = 0 \;\;\; \text{dla} \;\; x \in \left( 0, \tfrac{1}{2} \right)</math>
+
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="E17" style="font-size: 110%; font-weight: bold;">Twierdzenie E17</span><br/>
 +
Załóżmy, że funkcja rzeczywista <math>f(x)</math> jest ciągła i&nbsp;różniczkowalna w&nbsp;przedziale <math>(a, b)</math>. Jeżeli
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>f' (x) > 0 \,</math> dla <math>\, x \in (a, b)</math>, to <math>f(x)</math> jest silnie rosnąca w&nbsp;przedziale <math>(a, b)</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>f' (x) < 0 \,</math> dla <math>\, x \in (a, b)</math>, to <math>f(x)</math> jest silnie malejąca w&nbsp;przedziale <math>(a, b)</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
<span style="border-bottom-style: double;">Pierwszy sposób</span><br/>
 +
Przypuśćmy, dla uzyskania sprzeczności, że <math>f(x)</math> nie jest silnie rosnąca w&nbsp;przedziale <math>(a, b)</math>. Zatem istnieją takie liczby <math>t_1, t_2 \in (a, b)</math><span style="color: Green"><sup>[a]</sup></span>&nbsp; i <math>\, t_2 > t_1</math>, że <math>f (t_2) \leqslant f (t_1)</math>.
 +
 
 +
Zauważmy, że funkcja <math>f(x)</math> jest ciągła w&nbsp;przedziale <math>[t_1, t_2]</math> i&nbsp;różniczkowalna w&nbsp;przedziale <math>(t_1, t_2)</math>. Ponieważ spełnione są założenia twierdzenia Lagrange'a<ref name="Lagrange1"/>, to istnieje taki punkt <math>c \in (t_1, t_2) \subset (a, b)</math>, że
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>f' (c) = {\small\frac{f (t_2) - f (t_1)}{t_2 - t_1}}</math>
 +
</div>
 +
 
 +
Zatem otrzymujemy <math>f' (c) \leqslant 0</math>, wbrew założeniu, że <math>f' (x) > 0</math> dla <math>x \in (a, b)</math>. Otrzymana sprzeczność kończy dowód.
 +
 
 +
<span style="border-bottom-style: double;">Drugi sposób</span><br/>
 +
Wybierzmy dowolne dwa punkty <math>t_1, t_2 \in (a, b)</math><span style="color: Green"><sup>[a]</sup></span> takie, że <math>t_2 > t_1</math>. Z&nbsp;założenia wynika, że funkcja <math>f(x)</math> jest ciągła w&nbsp;przedziale <math>[t_1, t_2]</math> i&nbsp;różniczkowalna w&nbsp;przedziale <math>(t_1, t_2)</math>. Ponieważ spełnione są założenia twierdzenia Lagrange'a<ref name="Lagrange1"/>, to istnieje taki punkt <math>c \in (t_1, t_2) \subset (a, b)</math>, że
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>f' (c) = {\small\frac{f (t_2) - f (t_1)}{t_2 - t_1}}</math>
 +
</div>
 +
 
 +
Wiemy, że <math>f' (x) > 0</math> dla <math>x \in (a, b)</math>, zatem w&nbsp;szczególności <math>f' (c) > 0</math> i&nbsp;otrzymujemy
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>f(t_2) - f (t_1) = (t_2 - t_1) f' (c) > 0</math>
 +
</div>
 +
 
 +
Czyli <math>f(t_2) > f (t_1)</math>. Ponieważ punkty <math>t_1, t_2</math> zostały wybrane dowolnie w&nbsp;przedziale <math>(a, b)</math>, to funkcja <math>f(x)</math> jest funkcją silnie rosnącą w&nbsp;tym przedziale. Co należało pokazać.
 +
 
 +
 
 +
<hr style="width: 25%; height: 2px; " />
 +
<span style="color: Green">[a]</span> Ponieważ przedział <math>(a, b)</math> jest przedziałem otwartym, to dowolny punkt <math>t \in (a, b)</math> należy do tego przedziału wraz z&nbsp;pewnym otoczeniem. Niech <math>\varepsilon = \min \left( {\small\frac{t - a}{2}}, {\small\frac{b - t}{2}} \right)</math>, wtedy otoczenie <math>U (t, \varepsilon) = (t - \varepsilon, t + \varepsilon) \subset (a, b)</math>.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="E18" style="font-size: 110%; font-weight: bold;">Twierdzenie E18</span><br/>
 +
Załóżmy, że funkcja rzeczywista <math>f(t)</math> jest ciągła w&nbsp;przedziale <math>[a, b]</math> i&nbsp;dwukrotnie różniczkowalna w&nbsp;przedziale <math>(a, b)</math>. Jeżeli
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>f'' (t) > 0</math>&nbsp;&nbsp;(odpowiednio: <math>f'' (t) < 0</math>)&nbsp;&nbsp;dla <math>t \in (a, b)</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>A = (a, f (a)) \qquad \text{i} \qquad B = (b, f (b))</math>
 +
 
 +
to dowolny punkt wykresu funkcji <math>f(t)</math>, gdzie <math>t \in (a, b)</math>, leży poniżej&nbsp;&nbsp;(odpowiednio: powyżej)&nbsp;&nbsp;odcinka (cięciwy) <math>A B</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Niech <math>x \in (a, b)</math>. Zauważmy, że w&nbsp;każdym z&nbsp;przedziałów <math>[a, x] \,</math> i <math>\, [x, b]</math> funkcja <math>f(t)</math> spełnia założenia twierdzenia Lagrange'a<ref name="Lagrange1"/>. Zatem istnieją takie punkty <math>\xi_1 \in (a, x) \,</math> i <math>\, \xi_2 \in (x, b)</math>, że
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>f' (\xi_1) = {\small\frac{f (x) - f (a)}{x - a}} \qquad \text{i} \qquad f' (\xi_2) = {\small\frac{f (b) - f (x)}{b - x}}</math>
 +
</div>
 +
 
 +
Oczywiście <math>a < \xi_1 < x < \xi_2 < b</math>. Ponieważ <math>f' (t)</math> jest ciągła i&nbsp;różniczkowalna w&nbsp;przedziale <math>(a, b)</math> oraz <math>f'' (t) > 0</math> w&nbsp;przedziale <math>(a, b)</math>, to <math>f' (t)</math> jest silnie rosnąca w&nbsp;tym przedziale (zobacz [[#E17|E17]]), zatem <math>f' (\xi_1) < f' (\xi_2)</math> i&nbsp;otrzymujemy
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>{\small\frac{f (x) - f (a)}{x - a}} < {\small\frac{f (b) - f (x)}{b - x}}</math>
 +
</div>
 +
 
 +
<div style="margin-top: 2em; margin-bottom: 2em;">
 +
::<math>(b - a) f (x) < (b - x) f (a) + (x - a) f (b)</math>
 +
</div>
 +
 
 +
<div style="margin-top: 1em; margin-bottom: 1em;">
 +
::<math>{\small\frac{f (x) - f (a)}{x - a}} < {\small\frac{f (b) - f (a)}{b - a}}</math>
 +
</div>
 +
 
 +
Skąd dostajemy
 +
 
 +
::<math>f(x) < {\small\frac{f (b) - f (a)}{b - a}} \cdot (x - a) + f (a)</math>
 +
 
 +
Zauważmy, że
 +
 
 +
::<math>y = {\small\frac{f (b) - f (a)}{b - a}} \cdot (x - a) + f (a)</math>
 +
 
 +
jest równaniem prostej przechodzącej przez punkty <math>A = (a, f (a)) \,</math> i <math>\, B = (b, f (b))</math>. Zatem z&nbsp;otrzymanej nierówności wynika, że dla dowolnego punktu <math>(x, y)</math>, gdzie <math>a < x < b</math>, należącego do odcinka (cięciwy) <math>A B</math> współrzędna <math>\, y \,</math> tego punktu jest większa od <math>f(x)</math>. Co należało pokazać.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
Możemy osłabić uczynione w&nbsp;twierdzeniu [[#E18|E18]] założenie ciągłości funkcji w <math>[a, b]</math>, ale będziemy musieli inaczej sformułować twierdzenie.</br>
 +
<span id="E19" style="font-size: 110%; font-weight: bold;">Twierdzenie E19</span><br/>
 +
Załóżmy, że funkcja rzeczywista <math>f(t)</math> jest ciągła i&nbsp;dwukrotnie różniczkowalna w <math>(a, b)</math>. Jeżeli <math>f'' (t) > 0</math> &nbsp;(odpowiednio: <math>f'' (t) < 0</math>)&nbsp; dla <math>t \in (a, b)</math>, to dla dowolnych punktów <math>t_1, t_2 \in (a, b) \,</math> i <math>\, t_2 > t_1</math> wykres funkcji <math>f(t)</math>, gdzie <math>t \in (t_1, t_2)</math>, leży poniżej &nbsp;(odpowiednio: powyżej)&nbsp; odcinka (cięciwy) <math>A B</math>, gdzie <math>A = (t_1, f (t_1)) \,</math> i <math>\, B = (t_2, f (t_2))</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 +
Ponieważ <math>f(t)</math> jest ciągła w&nbsp;przedziale <math>(a, b)</math>, to jest ciągła w <math>[t_1, t_2] \subset (a, b)</math>. Ponieważ <math>f(t)</math> jest dwukrotnie różniczkowalna w&nbsp;przedziale <math>(a, b)</math>, to jest też dwukrotnie różniczkowalna w&nbsp;przedziale <math>(t_1, t_2) \subset (a, b)</math>. Zatem funkcja <math>f(t)</math> spełnia w&nbsp;przedziale <math>[t_1, t_2]</math> założenia twierdzenia [[#E18|E18]] i&nbsp;natychmiast otrzymujemy, że wykres funkcji <math>f(t)</math>, gdzie <math>t \in (t_1, t_2)</math>, leży poniżej &nbsp;(odpowiednio: powyżej)&nbsp; odcinka (cięciwy) <math>A B</math>, gdzie <math>A = (t_1, f (t_1)) \,</math> i <math>\, B = (t_2, f (t_2))</math>. Co kończy dowód.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="E20" style="font-size: 110%; font-weight: bold;">Zadanie E20</span><br/>
 +
Korzystając ze znalezionego w&nbsp;zadaniu [[#E2|E2]] wzoru dla <math>B_3 (x)</math>, opisać wykresy wielomianów Bernoulliego <math>B_4 (x), B_5 (x), B_6 (x), B_7 (x), \ldots</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>.
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Niech <math>n \in \mathbb{N}_0</math>. Z&nbsp;twierdzenia [[#E8|E8]] p.3 wiemy, że dla nieparzystych <math>n \geqslant 3</math> jest <math>B_n (0) = B_n \left( {\small\frac{1}{2}} \right) = 0</math>.
 +
 
 +
Z twierdzenia [[#E8|E8]] p.6 wiemy, że <math>B_n \left( {\small\frac{1}{2}} \right) = - (1 - 2^{1 - n}) B_n (0)</math>. Zatem dla parzystych <math>n \geqslant 2</math> liczby <math>B_n (0) \,</math> i <math>\, B_n \left( {\small\frac{1}{2}} \right)</math> mają różne znaki (zobacz [[#E14|E14]]).
 +
 
 +
W zadaniu [[#E2|E2]] pokazaliśmy, że
 +
 
 +
::<math>B_3 (x) = x^3 - {\small\frac{3 x^2}{2}} + {\small\frac{x}{2}}</math>
 +
 
 +
Poniżej przedstawiliśmy wykres wielomianu <math>B_3 (x)</math>, a&nbsp;w&nbsp;kolejnych krokach pokazujemy, jak określić postać wykresów wielomianów <math>B_4 (x), B_5 (x), B_6 (x), B_7 (x), \ldots</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>.
 +
 
 +
{| class="wikitable"  style="font-size: 90%; text-align:center;"
 +
! <math>B_3 (x)</math>
 +
|-
 +
| style="width: 500px;" | [[File:E_B3.png|thumb|300px|center|Wielomian Bernoulliego <math>B_3 (x)</math>]]
 +
|}
 +
 
 +
{| class="wikitable"  style="font-size: 90%; text-align:center;"
 +
!colspan="2"|Aby określić kształt wykresu <math>B_n (x)</math> dla <math>n = 4</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>, wystarczy zauważyć, że
 +
|-
 +
|style="width: 500px;" rowspan="7" | [[File:E_B4.png|thumb|300px|center|Wielomian Bernoulliego <math>B_4 (x)</math>]] || <math>B'_4 (x) = 4 B_3 (x)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B'_4 (x) > 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| &nbsp;&nbsp;&nbsp;&nbsp;<math>B_4 (x)</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math> jest funkcją silnie rosnącą &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz [[#E16|E16]])&nbsp;&nbsp;&nbsp;&nbsp;
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B_4 (0) < 0 < B_4 \left( {\small\frac{1}{2}} \right)</math>, &nbsp;bo liczby <math>B_4 (0) \,</math> i <math>\, B_4 \left( {\small\frac{1}{2}} \right)</math> mają różne znaki<ref name="Darboux1"/>
 +
|}
 +
 
 +
{| class="wikitable"  style="font-size: 90%; text-align:center;"
 +
!colspan="2"|Aby określić kształt wykresu <math>B_n (x)</math> dla <math>n = 5</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>, wystarczy zauważyć, że
 +
|-
 +
|style="width: 500px;" rowspan="7" | [[File:E_B5.png|thumb|300px|center|Wielomian Bernoulliego <math>B_5 (x)</math>]] || <math>B_5 (0) = B_5 \left( {\small\frac{1}{2}} \right) = 0 \qquad \qquad B'_5 (x) = 5 B_4 (x) \qquad \qquad B''_5 (x) = 20 B_3 (x)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B''_5 (x) > 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| wykres funkcji <math>B_5 (x)</math> leży poniżej odcinka łączącego punkty <math>A = (0, 0) \,</math> i <math>\, B = \left( {\small\frac{1}{2}}, 0 \right)</math> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz [[#E18|E18]])
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B_5 (x) < 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|}
 +
 
 +
{| class="wikitable"  style="font-size: 90%; text-align:center;"
 +
!colspan="2"|Aby określić kształt wykresu <math>B_n (x)</math> dla <math>n = 6</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>, wystarczy zauważyć, że
 +
|-
 +
|style="width: 500px;" rowspan="7" | [[File:E_B6.png|thumb|300px|center|Wielomian Bernoulliego <math>B_6 (x)</math>]] || <math>B'_6 (x) = 6 B_5 (x)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B'_6 (x) < 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| &nbsp;&nbsp;&nbsp;&nbsp;<math>B_6 (x)</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math> jest funkcją silnie malejącą &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz [[#E16|E16]])&nbsp;&nbsp;&nbsp;&nbsp;
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B_6 (0) > 0 > B_6 \left( {\small\frac{1}{2}} \right)</math>, &nbsp;bo liczby <math>B_6 (0) \,</math> i <math>\, B_6 \left( {\small\frac{1}{2}} \right)</math> mają różne znaki<ref name="Darboux1"/>
 +
|}
 +
 
 +
{| class="wikitable"  style="font-size: 90%; text-align:center;"
 +
!colspan="2"|Aby określić kształt wykresu <math>B_n (x)</math> dla <math>n = 7</math> w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>, wystarczy zauważyć, że
 +
|-
 +
|style="width: 500px;" rowspan="7" | [[File:E_B7.png|thumb|300px|center|Wielomian Bernoulliego <math>B_7 (x)</math>]] || <math>B_7 (0) = B_7 \left( {\small\frac{1}{2}} \right) = 0 \qquad \qquad B'_7 (x) = 7 B_6 (x) \qquad \qquad B''_7 (x) = 42 B_5 (x)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B''_7 (x) < 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| wykres funkcji <math>B_7 (x)</math> leży powyżej odcinka łączącego punkty <math>A = (0, 0) \,</math> i <math>\, B = \left( {\small\frac{1}{2}}, 0 \right)</math> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(zobacz [[#E18|E18]])
 +
|-
 +
| <math>\big\Downarrow</math>
 +
|-
 +
| <math>B_7 (x) > 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|}
 +
 
 +
 
 +
Dla <math>B_8 (x)</math> i&nbsp;kolejnych wielomianów Bernoulliego argumentacja powtarza się.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="E21" style="font-size: 110%; font-weight: bold;">Uwaga E21</span><br/>
 +
Czytelnik łatwo uogólni rezultaty otrzymane w&nbsp;zadaniu [[#E20|E20]] i&nbsp;metodą indukcji matematycznej udowodni niżej sformułowane twierdzenie.
 +
 
 +
 
 +
 
 +
<span id="E22" style="font-size: 110%; font-weight: bold;">Twierdzenie E22</span><br/>
 +
Dla <math>n \geqslant 2</math> wielomiany Bernoulliego mają w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math> następujące właściwości
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: left; margin-right: auto;"
 +
|- style=height:3em
 +
! <math>\boldsymbol{n}</math> || wartości <math>\boldsymbol{ B_n(0) }</math>, <math>\boldsymbol{ B_n \left( {\small\frac{1}{2}} \right) }</math> || własności <math>\boldsymbol{ B_n(x) }</math>
 +
|- style=height:3em
 +
| <math>n = 4 k</math> || <math>B_n (0) < 0 < B_n \left( {\small\frac{1}{2}} \right)</math> || <math>B_n(x)</math> jest funkcją silnie rosnącą w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>
 +
|- style=height:3em
 +
| <math>n = 4 k + 1</math> || <math>B_n (0) = 0 = B_n \left( {\small\frac{1}{2}} \right)</math> || <math>B_n(x) < 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|- style=height:3em
 +
| <math>n = 4 k + 2</math> || <math>B_n (0) > 0 > B_n \left( {\small\frac{1}{2}} \right)</math> || <math>B_n(x)</math> jest funkcją silnie malejącą w&nbsp;przedziale <math>\left[ 0, {\small\frac{1}{2}} \right]</math>
 +
|- style=height:3em
 +
| <math>n = 4 k + 3</math> || <math>B_n (0) = 0 = B_n \left( {\small\frac{1}{2}} \right)</math> || <math>B_n(x) > 0</math> w&nbsp;przedziale <math>\left( 0, {\small\frac{1}{2}} \right)</math>
 +
|}
 +
 
 +
 
 +
 
 +
<span id="E23" style="font-size: 110%; font-weight: bold;">Zadanie E23</span><br/>
 +
Niech <math>k \in \mathbb{Z}_+</math>. Pokazać, że prawdziwe są następujące właściwości liczb Bernoulliego
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>B_{4 k} < 0</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>B_{4 k + 2} > 0 \qquad </math> dla <math>\; k \geqslant 0</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>{\small\frac{B_{2 k + 2}}{B_{2 k}}} < 0</math>
 +
 
 +
:*&nbsp;&nbsp;&nbsp;<math>| B_{2 k} | = (- 1)^{k + 1} B_{2 k}</math>
 +
 
 +
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 +
Punkty 1. i 2. są prostym wnioskiem z&nbsp;twierdzenia [[#E22|E22]]. Punkt 3. dowodzimy osobno dla <math>k</math> parzystych i&nbsp;nieparzystych. Niech <math>k = 2 j</math>, wtedy <math>B_{2 k + 2} = B_{4 j + 2} \,</math> i <math>\, B_{2 k} = B_{4 j}</math> mają przeciwne znaki i&nbsp;nierówność jest dowiedziona. Niech <math>k = 2 j + 1</math>, wtedy <math>B_{2 k + 2} = B_{4 j + 4} \,</math> i <math>\, B_{2 k} = B_{4 j + 2}</math> również mają przeciwne znaki i&nbsp;nierówność jest dowiedziona. Analogicznie dowodzimy punkt 4.<br/>
 +
&#9633;
 +
{{\Spoiler}}
 +
 
 +
 
 +
 
 +
<span id="E24" style="font-size: 110%; font-weight: bold;">Przykład E24</span><br/>
 +
W tabeli przedstawiamy liczby Bernoulliego <math>B_n</math> oraz minimalne <math>m_n</math> i&nbsp;maksymalne <math>M_n</math> wartości wielomianów <math>B_n(x)</math> dla <math>x \in [0, 1]</math>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
|- style=height:3em
 +
! <math>\quad n \quad</math> || <math>B_n(x)</math> || <math>B_n</math> || <math>m_n</math> || <math>M_n</math>
 +
|- style=height:3em
 +
| <math>\quad 0 \quad</math> || <math>1</math> || <math>1</math> || <math>1</math> || <math>1</math>
 +
|- style=height:3em
 +
| <math>\quad 1 \quad</math> || <math>x - {\small\frac{1}{2}}</math> || <math>- {\small\frac{1}{2}}</math> || <math>- {\small\frac{1}{2}}</math> || <math>{\small\frac{1}{2}}</math>
 +
|- style=height:3em
 +
| <math>\quad 2 \quad</math> || <math>x^2 - x + {\small\frac{1}{6}}</math> || <math>{\small\frac{1}{6}}</math> || <math>- {\small\frac{1}{12}}</math> || <math>{\small\frac{1}{6}}</math>
 +
|- style=height:3em
 +
| <math>\quad 3 \quad</math> || <math>x^3 - {\small\frac{3}{2}} x^2 + {\small\frac{1}{2}} x</math> || <math>0</math> || <math>- {\small\frac{\sqrt{3}}{36}}</math> || <math>{\small\frac{\sqrt{3}}{36}}</math>
 +
|- style=height:3em
 +
| <math>\quad 4 \quad</math> || <math>x^4 - 2 x^3 + x^2 - {\small\frac{1}{30}}</math> || <math>- {\small\frac{1}{30}}</math> || <math>- {\small\frac{1}{30}}</math> || <math>{\small\frac{7}{240}}</math>
 +
|- style=height:3em
 +
| <math>\quad 5 \quad</math> || <math>x^5 - {\small\frac{5}{2}} x^4 + {\small\frac{5}{3}} x^3 - {\small\frac{1}{6}} x</math> || <math>0</math> || <math>- {\small\frac{1}{6}} \sqrt{{\small\frac{1}{60}} + {\small\frac{\sqrt{30}}{1125}}}</math> || <math>{\small\frac{1}{6}} \sqrt{{\small\frac{1}{60}} + {\small\frac{\sqrt{30}}{1125}}}</math>
 +
|- style=height:3em
 +
| <math>\quad 6 \quad</math> || <math>x^6 - 3 x^5 + {\small\frac{5}{2}} x^4 - {\small\frac{1}{2}} x^2 + {\small\frac{1}{42}}</math> || <math>{\small\frac{1}{42}}</math> || <math>- {\small\frac{31}{1344}}</math> || <math>{\small\frac{1}{42}}</math>
 +
|}
 +
 
 +
Zauważmy, że <math>M_3 = {\small\frac{\sqrt{3}}{36}} < {\small\frac{3}{62}}</math>, <math>\quad M_5 < {\small\frac{1}{40}}</math>, <math>\quad M_7 < {\small\frac{1}{38}} \quad</math> oraz <math>\quad M_9 < {\small\frac{1}{21}}</math>
 +
 
 +
 
 +
 
 +
<span id="E25" style="font-size: 110%; font-weight: bold;">Przykład E25</span><br/>
 +
Minima <math>m_n</math> i&nbsp;maksima <math>M_n</math> wielomianów Bernoulliego <math>B_n(x)</math> dla <math>x \in [0, 1]</math> są równe<ref name="Lehmer1"/>
 +
 
 +
::{| class="wikitable plainlinks"  style="font-size: 100%; text-align: center; margin-right: auto;"
 +
|-
 +
! <math>n</math> || <math>m_n</math> || <math>M_n</math> || <math>\text{uwagi}</math>
 +
|-
 +
| <math>2 k + 1</math> || <math>- \bigl| B_{2 k + 1} (x_{2 k}) \bigr|</math> || <math>\bigl| B_{2 k + 1} (x_{2 k}) \bigr|</math> || <math>B_{2 k} (x_{2 k}) = 0 \;\;\; \text{dla} \;\; x \in \left( 0, \tfrac{1}{2} \right)</math>
 
|-
 
|-
 
| <math>4 k</math> || <math>B_{4 k} (0)</math> || <math>B_{4 k} \left( \tfrac{1}{2} \right)</math> || <math>\text{dla} \;\; k \geqslant 1</math>
 
| <math>4 k</math> || <math>B_{4 k} (0)</math> || <math>B_{4 k} \left( \tfrac{1}{2} \right)</math> || <math>\text{dla} \;\; k \geqslant 1</math>
Linia 606: Linia 881:
  
  
<span id="E18" style="font-size: 110%; font-weight: bold;">Definicja E18</span><br/>
+
<span id="E26" style="font-size: 110%; font-weight: bold;">Definicja E26</span><br/>
 
Funkcje okresowe Bernoulliego <math>P_n(x)</math> definiujemy następująco
 
Funkcje okresowe Bernoulliego <math>P_n(x)</math> definiujemy następująco
  
Linia 613: Linia 888:
  
  
<span id="E19" style="font-size: 110%; font-weight: bold;">Uwaga E19</span><br/>
+
<span id="E27" style="font-size: 110%; font-weight: bold;">Uwaga E27</span><br/>
 
Inaczej mówiąc funkcja okresowa Bernoulliego <math>P_n(x)</math> na odcinku <math>[0, 1]</math>, przyjmuje te same wartości, co wielomian Bernoulliego <math>B_n(x)</math>. Wartości te powtarzają się dla kolejnych odcinków <math>[k, k + 1]</math>, gdzie <math>k \in \mathbb{Z}</math>.
 
Inaczej mówiąc funkcja okresowa Bernoulliego <math>P_n(x)</math> na odcinku <math>[0, 1]</math>, przyjmuje te same wartości, co wielomian Bernoulliego <math>B_n(x)</math>. Wartości te powtarzają się dla kolejnych odcinków <math>[k, k + 1]</math>, gdzie <math>k \in \mathbb{Z}</math>.
  
  
  
<span id="E20" style="font-size: 110%; font-weight: bold;">Uwaga E20</span><br/>
+
<span id="E28" style="font-size: 110%; font-weight: bold;">Uwaga E28</span><br/>
 
Wprost z&nbsp;definicji funkcji okresowych Bernoulliego wynika, że dla <math>k \in \mathbb{Z}</math> jest
 
Wprost z&nbsp;definicji funkcji okresowych Bernoulliego wynika, że dla <math>k \in \mathbb{Z}</math> jest
  
Linia 625: Linia 900:
  
  
<span id="E21" style="font-size: 110%; font-weight: bold;">Twierdzenie E21</span><br/>
+
<span id="E29" style="font-size: 110%; font-weight: bold;">Twierdzenie E29</span><br/>
 
Własności funkcji okresowych Bernoulliego
 
Własności funkcji okresowych Bernoulliego
 
::{| border="0"  
 
::{| border="0"  
Linia 748: Linia 1023:
  
  
<span id="E22" style="font-size: 110%; font-weight: bold;">Przykład E22</span><br/>
+
<span id="E30" style="font-size: 110%; font-weight: bold;">Przykład E30</span><br/>
Przedstawiamy przykładowe wykresy funkcji okresowych Bernoulliego <math>P_n (x)</math>. Stanowią one bardzo dobrą ilustrację do twierdzenia [[#E21|E21]].
+
Przedstawiamy przykładowe wykresy funkcji okresowych Bernoulliego <math>P_n (x)</math>. Stanowią one bardzo dobrą ilustrację do twierdzenia [[#E29|E29]].
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Wykresy|Hide=Ukryj wykresy}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Wykresy|Hide=Ukryj wykresy}}
Linia 775: Linia 1050:
  
  
<span id="E23" style="font-size: 110%; font-weight: bold;">Twierdzenie E23*</span><br/>
+
<span id="E31" style="font-size: 110%; font-weight: bold;">Twierdzenie E31*</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla liczb Bernoulliego <math>B_{2 n} = (- 1)^{n + 1} | B_{2 n} |</math> prawdziwe są następujące oszacowania <ref name="Abramowitz1"/><ref name="Abramowitz2"/><ref name="DAniello1"/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla liczb Bernoulliego <math>B_{2 n} = (- 1)^{n + 1} | B_{2 n} |</math> prawdziwe są następujące oszacowania <ref name="Abramowitz1"/><ref name="Abramowitz2"/><ref name="DAniello1"/>
  
Linia 790: Linia 1065:
  
  
<span id="E24" style="font-size: 110%; font-weight: bold;">Twierdzenie E24*</span><br/>
+
<span id="E32" style="font-size: 110%; font-weight: bold;">Twierdzenie E32*</span><br/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla ilorazu kolejnych liczb Bernoulliego <math>B_{2 n}</math> prawdziwe są następujące oszacowania<ref name="FengQi1"/>
 
Niech <math>n \in \mathbb{Z}_+</math>. Dla ilorazu kolejnych liczb Bernoulliego <math>B_{2 n}</math> prawdziwe są następujące oszacowania<ref name="FengQi1"/>
  
Linia 807: Linia 1082:
 
== Wzór sumacyjny Eulera-Maclaurina ==
 
== Wzór sumacyjny Eulera-Maclaurina ==
  
<span id="E25" style="font-size: 110%; font-weight: bold;">Uwaga E25</span><br/>
+
<span id="E33" style="font-size: 110%; font-weight: bold;">Uwaga E33</span><br/>
 
Często w&nbsp;twierdzeniu musimy założyć, że rozważana funkcja <math>f(x)</math> jest określona w&nbsp;pewnym zbiorze liczb rzeczywistych i&nbsp;jest funkcją ciągłą oraz wszystkie jej pochodne od <math>f' (x)</math> do <math>f^{(n)} (x)</math> istnieją i&nbsp;są ciągłe w&nbsp;tym zbiorze. Przekazanie tego prostego założenia wymaga użycia wielu słów, a&nbsp;samo twierdzenie staje się mało czytelne. Ze względów czysto praktycznych wprowadzamy pojęcie klasy funkcji.
 
Często w&nbsp;twierdzeniu musimy założyć, że rozważana funkcja <math>f(x)</math> jest określona w&nbsp;pewnym zbiorze liczb rzeczywistych i&nbsp;jest funkcją ciągłą oraz wszystkie jej pochodne od <math>f' (x)</math> do <math>f^{(n)} (x)</math> istnieją i&nbsp;są ciągłe w&nbsp;tym zbiorze. Przekazanie tego prostego założenia wymaga użycia wielu słów, a&nbsp;samo twierdzenie staje się mało czytelne. Ze względów czysto praktycznych wprowadzamy pojęcie klasy funkcji.
  
  
  
<span id="E26" style="font-size: 110%; font-weight: bold;">Definicja E26</span><br/>
+
<span id="E34" style="font-size: 110%; font-weight: bold;">Definicja E34</span><br/>
 
Funkcję <math>f(x)</math> określoną i&nbsp;ciągłą w&nbsp;zbiorze <math>A \subset \mathbb{R}</math> i&nbsp;mającą kolejno <math>n</math> ciągłych pochodnych w&nbsp;tym zbiorze będziemy nazywali funkcją klasy <math>C^n</math>. Jeżeli funkcja <math>f(x)</math> jest ciągła w <math>A</math>, to powiemy, że jest klasy <math>C^0</math>. Jeżeli funkcja <math>f(x)</math> jest klasy <math>C^n</math> dla dowolnego <math>n \in \mathbb{Z}_+</math>, to powiemy, że funkcja <math>f(x)</math> jest klasy <math>C^{\infty}</math>. W
 
Funkcję <math>f(x)</math> określoną i&nbsp;ciągłą w&nbsp;zbiorze <math>A \subset \mathbb{R}</math> i&nbsp;mającą kolejno <math>n</math> ciągłych pochodnych w&nbsp;tym zbiorze będziemy nazywali funkcją klasy <math>C^n</math>. Jeżeli funkcja <math>f(x)</math> jest ciągła w <math>A</math>, to powiemy, że jest klasy <math>C^0</math>. Jeżeli funkcja <math>f(x)</math> jest klasy <math>C^n</math> dla dowolnego <math>n \in \mathbb{Z}_+</math>, to powiemy, że funkcja <math>f(x)</math> jest klasy <math>C^{\infty}</math>. W
 
przypadku, gdy chcemy jednocześnie zaznaczyć dziedzinę funkcji, to stosujemy zapis <math>C^0 (A)</math>, <math>C^n (A)</math> i <math>C^{\infty} (A)</math>.
 
przypadku, gdy chcemy jednocześnie zaznaczyć dziedzinę funkcji, to stosujemy zapis <math>C^0 (A)</math>, <math>C^n (A)</math> i <math>C^{\infty} (A)</math>.
Linia 818: Linia 1093:
  
  
<span id="E27" style="font-size: 110%; font-weight: bold;">Przykład E27</span><br/>
+
<span id="E35" style="font-size: 110%; font-weight: bold;">Przykład E35</span><br/>
 
Tylko dla potrzeb tego przykładu funkcję <math>f(x)</math> określoną następująco
 
Tylko dla potrzeb tego przykładu funkcję <math>f(x)</math> określoną następująco
  
Linia 859: Linia 1134:
  
  
<span id="E28" style="font-size: 110%; font-weight: bold;">Twierdzenie E28</span><br/>
+
<span id="E36" style="font-size: 110%; font-weight: bold;">Twierdzenie E36</span><br/>
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [k, k + 1] )</math>, gdzie <math>k \in \mathbb{Z}</math>. Jeżeli zastąpimy na jednostkowym odcinku pole prostokąta całką, to błąd, jaki popełnimy, jest równy
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [k, k + 1] )</math>, gdzie <math>k \in \mathbb{Z}</math>. Jeżeli zastąpimy na jednostkowym odcinku pole prostokąta całką, to błąd, jaki popełnimy, jest równy
  
Linia 891: Linia 1166:
  
  
<span id="E29" style="font-size: 110%; font-weight: bold;">Zadanie E29</span><br/>
+
<span id="E37" style="font-size: 110%; font-weight: bold;">Zadanie E37</span><br/>
 
Pokazać, że dla <math>x > 0</math> całka <math>\int^x_0 (t - \lfloor t \rfloor)^n d t</math> jest równa
 
Pokazać, że dla <math>x > 0</math> całka <math>\int^x_0 (t - \lfloor t \rfloor)^n d t</math> jest równa
  
Linia 917: Linia 1192:
  
  
<span id="E30" style="font-size: 110%; font-weight: bold;">Twierdzenie E30</span><br/>
+
<span id="E38" style="font-size: 110%; font-weight: bold;">Twierdzenie E38</span><br/>
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [a, b] )</math>, gdzie <math>a, b \in \mathbb{Z}</math>. Możemy zastąpić sumowanie całkowaniem, stosując wzór
 
Niech <math>f(x)</math> będzie funkcją rzeczywistą klasy <math>C^1 ( [a, b] )</math>, gdzie <math>a, b \in \mathbb{Z}</math>. Możemy zastąpić sumowanie całkowaniem, stosując wzór
  
Linia 934: Linia 1209:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Sumując uzyskany w&nbsp;twierdzeniu [[#E28|E28]] związek od <math>k = a</math> do <math>k = b - 1</math>, dostajemy
+
Sumując uzyskany w&nbsp;twierdzeniu [[#E36|E36]] związek od <math>k = a</math> do <math>k = b - 1</math>, dostajemy
  
 
::<math>\sum_{k = a}^{b - 1} f(k) - \int^b_a f(t) d t = \int_a^b (t - \lfloor t \rfloor - 1) f'(t) d t</math>
 
::<math>\sum_{k = a}^{b - 1} f(k) - \int^b_a f(t) d t = \int_a^b (t - \lfloor t \rfloor - 1) f'(t) d t</math>
Linia 948: Linia 1223:
  
  
<span id="E31" style="font-size: 110%; font-weight: bold;">Uwaga E31</span><br/>
+
<span id="E39" style="font-size: 110%; font-weight: bold;">Uwaga E39</span><br/>
 
Czytelnik zapewne już domyśla się, w&nbsp;jakim kierunku zmierzamy. Całkując przez części i&nbsp;korzystając z&nbsp;własności funkcji okresowych Bernoulliego, przekształcimy całkę <math>\int_a^b P_1 (t) f' (t) d t</math> do postaci <math>\int_a^b P_2 (t) f'' (t) d t</math>, a&nbsp;następnie do postaci <math>\int_a^b P_3 (t) f^{(3)} (t) d t</math> itd.
 
Czytelnik zapewne już domyśla się, w&nbsp;jakim kierunku zmierzamy. Całkując przez części i&nbsp;korzystając z&nbsp;własności funkcji okresowych Bernoulliego, przekształcimy całkę <math>\int_a^b P_1 (t) f' (t) d t</math> do postaci <math>\int_a^b P_2 (t) f'' (t) d t</math>, a&nbsp;następnie do postaci <math>\int_a^b P_3 (t) f^{(3)} (t) d t</math> itd.
  
  
  
<span id="E32" style="font-size: 110%; font-weight: bold;">Twierdzenie E32</span><br/>
+
<span id="E40" style="font-size: 110%; font-weight: bold;">Twierdzenie E40</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^1 ( [a, b] )</math>, to
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^1 ( [a, b] )</math>, to
  
Linia 984: Linia 1259:
  
  
<span id="E33" style="font-size: 110%; font-weight: bold;">Twierdzenie E33</span><br/>
+
<span id="E41" style="font-size: 110%; font-weight: bold;">Twierdzenie E41</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^k ( [a, b] )</math>, to
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>g(t)</math> jest klasy <math>C^k ( [a, b] )</math>, to
  
Linia 994: Linia 1269:
 
::<math>\int_a^b P_n (t) g (t) d t = {\normalsize\frac{B_{n + 1}}{n + 1}} [g (b) - g (a)] - {\normalsize\frac{1}{n + 1}} \int_a^b P_{n + 1} (t) g^{(1)} (t) d t</math>
 
::<math>\int_a^b P_n (t) g (t) d t = {\normalsize\frac{B_{n + 1}}{n + 1}} [g (b) - g (a)] - {\normalsize\frac{1}{n + 1}} \int_a^b P_{n + 1} (t) g^{(1)} (t) d t</math>
  
Czyli wzór udowodniony w&nbsp;twierdzeniu [[#E32|E32]]. Zatem twierdzenie jest prawdziwe dla <math>k = 1</math>. Zauważmy, że z&nbsp;tego samego twierdzenia natychmiast wynika, że
+
Czyli wzór udowodniony w&nbsp;twierdzeniu [[#E40|E40]]. Zatem twierdzenie jest prawdziwe dla <math>k = 1</math>. Zauważmy, że z&nbsp;tego samego twierdzenia natychmiast wynika, że
  
 
::<math>\int_a^b P_{n + k} (t) g^{(k)} (t) d t = {\normalsize\frac{B_{n + k + 1}}{n + k + 1}} [g^{(k)} (b) - g^{(k)} (a)] - {\normalsize\frac{1}{n + k + 1}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t</math>
 
::<math>\int_a^b P_{n + k} (t) g^{(k)} (t) d t = {\normalsize\frac{B_{n + k + 1}}{n + k + 1}} [g^{(k)} (b) - g^{(k)} (a)] - {\normalsize\frac{1}{n + k + 1}} \int_a^b P_{n + k + 1} (t) g^{(k + 1)} (t) d t</math>
Linia 1016: Linia 1291:
  
  
<span id="E34" style="font-size: 110%; font-weight: bold;">Twierdzenie E34 (wzór sumacyjny Eulera-Maclaurina, <math>\sim</math>1735)</span><br/>
+
<span id="E42" style="font-size: 110%; font-weight: bold;">Twierdzenie E42 (wzór sumacyjny Eulera-Maclaurina, <math>\sim</math>1735)</span><br/>
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, to
 
Niech <math>a, b \in \mathbb{Z}</math>, a&nbsp;funkcje <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, to
  
Linia 1027: Linia 1302:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Lewą stronę wzoru udowodnionego w&nbsp;twierdzeniu [[#E33|E33]]
+
Lewą stronę wzoru udowodnionego w&nbsp;twierdzeniu [[#E41|E41]]
  
 
::<math>\int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t</math>
 
::<math>\int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t</math>
  
chcemy przekształcić do postaci, która występuje po prawej stronie wzoru z&nbsp;twierdzenia [[#E30|E30]]. Jeżeli położymy <math>n = 1</math> oraz <math>g(t) = f' (t) = f^{(1)} (t)</math>, to dostaniemy
+
chcemy przekształcić do postaci, która występuje po prawej stronie wzoru z&nbsp;twierdzenia [[#E38|E38]]. Jeżeli położymy <math>n = 1</math> oraz <math>g(t) = f' (t) = f^{(1)} (t)</math>, to dostaniemy
  
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} \cdot B_{j + 1}}{(j + 1) !} [f^{(j)} (b) - f^{(j)} (a)] + {\normalsize\frac{(- 1)^k}{(k + 1) !}} \int_a^b P_{k + 1} (t) f^{(k + 1)} (t) d t</math>
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} \cdot B_{j + 1}}{(j + 1) !} [f^{(j)} (b) - f^{(j)} (a)] + {\normalsize\frac{(- 1)^k}{(k + 1) !}} \int_a^b P_{k + 1} (t) f^{(k + 1)} (t) d t</math>
Linia 1043: Linia 1318:
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{k = 2}^r {\normalsize\frac{(- 1)^k \cdot B_k}{k!}} [f^{(k - 1)} (b) - f^{(k - 1)} (a)] - {\normalsize\frac{(- 1)^r}{r!}} \int_a^b P_r (t) f^{(r)} (t) d t</math>
 
::<math>\int_a^b P_1 (t) f' (t) d t = \sum_{k = 2}^r {\normalsize\frac{(- 1)^k \cdot B_k}{k!}} [f^{(k - 1)} (b) - f^{(k - 1)} (a)] - {\normalsize\frac{(- 1)^r}{r!}} \int_a^b P_r (t) f^{(r)} (t) d t</math>
  
Podstawiając powyższy wzór do twierdzenia [[#E30|E30]], otrzymujemy, że jeżeli funkcja <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, gdzie <math>r \geqslant 1</math>, to
+
Podstawiając powyższy wzór do twierdzenia [[#E38|E38]], otrzymujemy, że jeżeli funkcja <math>f(t)</math> jest klasy <math>C^r ( [a, b] )</math>, gdzie <math>r \geqslant 1</math>, to
  
 
::<math>\sum_{k = a}^{b} f (k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{(- 1)^k B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
 
::<math>\sum_{k = a}^{b} f (k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{(- 1)^k B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
  
Zauważmy, że <math>(- 1)^k B_k = B_k</math>, bo dla nieparzystych liczb <math>k \geqslant 2</math> mamy <math>(- 1)^k B_k = 0 = B_k</math>, a&nbsp;dla parzystych liczb <math>k \geqslant 2</math> jest <math>(- 1)^k B_k = B_k</math>. Czynnik <math>(- 1)^k</math> został dodany tylko dla potrzeb dowodu indukcyjnego twierdzenia [[#E33|E33]]. Zatem otrzymujemy
+
Zauważmy, że <math>(- 1)^k B_k = B_k</math>, bo dla nieparzystych liczb <math>k \geqslant 2</math> mamy <math>(- 1)^k B_k = 0 = B_k</math>, a&nbsp;dla parzystych liczb <math>k \geqslant 2</math> jest <math>(- 1)^k B_k = B_k</math>. Czynnik <math>(- 1)^k</math> został dodany tylko dla potrzeb dowodu indukcyjnego twierdzenia [[#E41|E41]]. Zatem otrzymujemy
  
 
::<math>\sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
 
::<math>\sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t</math>
Linia 1057: Linia 1332:
  
  
<span id="E35" style="font-size: 110%; font-weight: bold;">Uwaga E35</span><br/>
+
<span id="E43" style="font-size: 110%; font-weight: bold;">Uwaga E43</span><br/>
 
Uwzględniając, że dla nieparzystych liczb <math>k \geqslant 2</math> jest <math>B_k = 0</math>, możemy dla parzystego <math>r = 2 s</math> napisać
 
Uwzględniając, że dla nieparzystych liczb <math>k \geqslant 2</math> jest <math>B_k = 0</math>, możemy dla parzystego <math>r = 2 s</math> napisać
  
Linia 1082: Linia 1357:
 
::<math>- {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s} (t) f^{(2 s)} (t) d t = {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1} (t) f^{(2 s + 1)} (t) d t</math>
 
::<math>- {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s} (t) f^{(2 s)} (t) d t = {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1} (t) f^{(2 s + 1)} (t) d t</math>
  
(zobacz twierdzenie [[#E32|E32]]).
+
(zobacz twierdzenie [[#E40|E40]]).
  
  
  
<span id="E36" style="font-size: 110%; font-weight: bold;">Uwaga E36</span><br/>
+
<span id="E44" style="font-size: 110%; font-weight: bold;">Uwaga E44</span><br/>
 
Poniżej wypisaliśmy gotowe wzory Eulera-Maclaurina dla <math>r = 1, \ldots, 9</math>
 
Poniżej wypisaliśmy gotowe wzory Eulera-Maclaurina dla <math>r = 1, \ldots, 9</math>
  
Linia 1126: Linia 1401:
 
== Całki niewłaściwe – zbieżność i&nbsp;kryteria zbieżności ==
 
== Całki niewłaściwe – zbieżność i&nbsp;kryteria zbieżności ==
  
<span id="E37" style="font-size: 110%; font-weight: bold;">Definicja E37</span><br/>
+
<span id="E45" style="font-size: 110%; font-weight: bold;">Definicja E45</span><br/>
 
Niech funkcja <math>f(x)</math> będzie określona w&nbsp;przedziale <math>[a, + \infty)</math> i&nbsp;całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> tego przedziału. Granicę
 
Niech funkcja <math>f(x)</math> będzie określona w&nbsp;przedziale <math>[a, + \infty)</math> i&nbsp;całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> tego przedziału. Granicę
  
Linia 1139: Linia 1414:
  
  
<span id="E38" style="font-size: 110%; font-weight: bold;">Twierdzenie E38 (kryterium porównawcze)</span><br/>
+
<span id="E46" style="font-size: 110%; font-weight: bold;">Twierdzenie E46 (kryterium porównawcze)</span><br/>
 
Jeżeli dla <math>x \geqslant a</math> funkcje <math>f(x)</math> i <math>g(x)</math> spełniają nierówności
 
Jeżeli dla <math>x \geqslant a</math> funkcje <math>f(x)</math> i <math>g(x)</math> spełniają nierówności
  
Linia 1206: Linia 1481:
  
  
<span id="E39" style="font-size: 110%; font-weight: bold;">Twierdzenie E39</span><br/>
+
<span id="E47" style="font-size: 110%; font-weight: bold;">Twierdzenie E47</span><br/>
 
Jeżeli funkcja <math>f(x)</math> jest całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> i&nbsp;całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, to zbieżna jest też całka <math>\int_{a}^{\infty} f(x) d x</math>. O&nbsp;całce <math>\int_{a}^{\infty} f (x) d x</math> powiemy wtedy, że jest bezwzględnie zbieżna.
 
Jeżeli funkcja <math>f(x)</math> jest całkowalna w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> i&nbsp;całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, to zbieżna jest też całka <math>\int_{a}^{\infty} f(x) d x</math>. O&nbsp;całce <math>\int_{a}^{\infty} f (x) d x</math> powiemy wtedy, że jest bezwzględnie zbieżna.
  
Linia 1228: Linia 1503:
  
  
<span id="E40" style="font-size: 110%; font-weight: bold;">Twierdzenie E40</span><br/>
+
<span id="E48" style="font-size: 110%; font-weight: bold;">Twierdzenie E48</span><br/>
 
Jeżeli całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, a&nbsp;funkcja <math>g(x)</math> jest ograniczona, to zbieżna jest też całka <math>\int_{a}^{\infty} | f(x) g(x) | d x</math>.
 
Jeżeli całka <math>\int_{a}^{\infty} | f(x) | d x</math> jest zbieżna, a&nbsp;funkcja <math>g(x)</math> jest ograniczona, to zbieżna jest też całka <math>\int_{a}^{\infty} | f(x) g(x) | d x</math>.
  
Linia 1242: Linia 1517:
  
  
<span id="E41" style="font-size: 110%; font-weight: bold;">Twierdzenie E41</span><br/>
+
<span id="E49" style="font-size: 110%; font-weight: bold;">Twierdzenie E49</span><br/>
 
Niech <math>F(x)</math> oznacza funkcję pierwotną funkcji <math>f(x)</math>. Całka <math>\int_{a}^{\infty} f(x) d x</math> jest zbieżna wtedy i&nbsp;tylko wtedy, gdy granica <math>\lim_{x \to \infty} F(x)</math> jest skończona.
 
Niech <math>F(x)</math> oznacza funkcję pierwotną funkcji <math>f(x)</math>. Całka <math>\int_{a}^{\infty} f(x) d x</math> jest zbieżna wtedy i&nbsp;tylko wtedy, gdy granica <math>\lim_{x \to \infty} F(x)</math> jest skończona.
  
Linia 1270: Linia 1545:
  
  
<span id="E42" style="font-size: 110%; font-weight: bold;">Twierdzenie E42</span><br/>
+
<span id="E50" style="font-size: 110%; font-weight: bold;">Twierdzenie E50</span><br/>
 
Jeżeli
 
Jeżeli
  
Linia 1301: Linia 1576:
 
::<math>\int_{a}^{\infty} f (t) d t = s \int_{a}^{\infty} [s \cdot f (t)] d t = s \int_{a}^{\infty} | f (t) | d t</math>
 
::<math>\int_{a}^{\infty} f (t) d t = s \int_{a}^{\infty} [s \cdot f (t)] d t = s \int_{a}^{\infty} | f (t) | d t</math>
  
gdzie <math>s</math> jest znakiem funkcji <math>f(x)</math> w&nbsp;przedziale <math>[a, + \infty)</math>. Czyli całka <math>\int_{a}^{\infty} f (t) d t</math> jest bezwzględnie zbieżna. Ponieważ z&nbsp;założenia funkcja <math>g(x)</math> jest ograniczona, to z&nbsp;twierdzenia [[#E40|E40]] wynika, że całka <math>\int_{a}^{\infty} | f (t) g (t) | d t</math> jest zbieżna, zatem jest też zbieżna całka <math>\int_{a}^{\infty} f (t) g (t) d t</math> (twierdzenie [[#E39|E39]]).
+
gdzie <math>s</math> jest znakiem funkcji <math>f(x)</math> w&nbsp;przedziale <math>[a, + \infty)</math>. Czyli całka <math>\int_{a}^{\infty} f (t) d t</math> jest bezwzględnie zbieżna. Ponieważ z&nbsp;założenia funkcja <math>g(x)</math> jest ograniczona, to z&nbsp;twierdzenia [[#E48|E48]] wynika, że całka <math>\int_{a}^{\infty} | f (t) g (t) | d t</math> jest zbieżna, zatem jest też zbieżna całka <math>\int_{a}^{\infty} f (t) g (t) d t</math> (twierdzenie [[#E47|E47]]).
  
 
'''Przypadek 1.'''
 
'''Przypadek 1.'''
Linia 1341: Linia 1616:
  
  
<span id="E43" style="font-size: 110%; font-weight: bold;">Twierdzenie E43</span><br/>
+
<span id="E51" style="font-size: 110%; font-weight: bold;">Twierdzenie E51</span><br/>
 
Niech <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
 
Niech <math>P_n(t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
  
Linia 1361: Linia 1636:
 
::<math>P_r(t) = B_r(t - \lfloor t \rfloor)</math>
 
::<math>P_r(t) = B_r(t - \lfloor t \rfloor)</math>
  
a wielomiany Bernoulliego <math>B_r(t)</math> są ograniczone w&nbsp;przedziale <math>[0, 1]</math><ref name="Weierstrass1"/> (zobacz przykład [[#E17|E17]]), wynika stąd, że <math>P_r(t)</math> są funkcjami ograniczonymi. Zatem z&nbsp;twierdzenia [[#E42|E42]] otrzymujemy natychmiast, że całka <math>\int_1^{\infty} {\small\frac{P_r(t)}{t^{\alpha}}} d t</math> jest zbieżna.<br/>
+
a wielomiany Bernoulliego <math>B_r(t)</math> są ograniczone w&nbsp;przedziale <math>[0, 1]</math><ref name="Weierstrass1"/> (zobacz przykład [[#E25|E25]]), wynika stąd, że <math>P_r(t)</math> są funkcjami ograniczonymi. Zatem z&nbsp;twierdzenia [[#E50|E50]] otrzymujemy natychmiast, że całka <math>\int_1^{\infty} {\small\frac{P_r(t)}{t^{\alpha}}} d t</math> jest zbieżna.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1367: Linia 1642:
  
  
<span id="E44" style="font-size: 110%; font-weight: bold;">Twierdzenie E44</span><br/>
+
<span id="E52" style="font-size: 110%; font-weight: bold;">Twierdzenie E52</span><br/>
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Całka
  
Linia 1375: Linia 1650:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
W przypadku funkcji <math>g(t) = {\small\frac{1}{t^{\varepsilon}}}</math> z&nbsp;twierdzenia [[#E32|E32]] otrzymujemy
+
W przypadku funkcji <math>g(t) = {\small\frac{1}{t^{\varepsilon}}}</math> z&nbsp;twierdzenia [[#E40|E40]] otrzymujemy
  
 
::<math>\int_1^b {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{b^{\varepsilon}}} - 1 \right] + {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
 
::<math>\int_1^b {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{b^{\varepsilon}}} - 1 \right] + {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
Linia 1383: Linia 1658:
 
::<math>\int_1^{\infty} {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = - {\small\frac{B_{n + 1}}{n + 1}} + {\small\frac{\varepsilon}{n + 1}} \int_1^{\infty} {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
 
::<math>\int_1^{\infty} {\small\frac{P_n(t)}{t^{\varepsilon}}} d t = - {\small\frac{B_{n + 1}}{n + 1}} + {\small\frac{\varepsilon}{n + 1}} \int_1^{\infty} {\small\frac{P_{n + 1}(t)}{t^{1 + \varepsilon}}} d t</math>
  
Ponieważ na mocy twierdzenia [[#E43|E43]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_1^{\infty} {\small\frac{P_n (t)}{t^{\varepsilon}}} d t</math>. Co należało pokazać.<br/>
+
Ponieważ na mocy twierdzenia [[#E51|E51]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_1^{\infty} {\small\frac{P_n (t)}{t^{\varepsilon}}} d t</math>. Co należało pokazać.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1389: Linia 1664:
  
  
<span id="E45" style="font-size: 110%; font-weight: bold;">Zadanie E45</span><br/>
+
<span id="E53" style="font-size: 110%; font-weight: bold;">Zadanie E53</span><br/>
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
  
Linia 1397: Linia 1672:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W przypadku funkcji <math>g(t) = t^{\varepsilon}</math> z&nbsp;twierdzenia [[#E32|E32]] otrzymujemy
+
W przypadku funkcji <math>g(t) = t^{\varepsilon}</math> z&nbsp;twierdzenia [[#E40|E40]] otrzymujemy
  
 
::<math>\int_1^b P_n(t) t^{\varepsilon} d t = {\small\frac{B_{n + 1}}{n + 1}} [b^{\varepsilon} - 1] - {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 - \varepsilon}}} d t</math>
 
::<math>\int_1^b P_n(t) t^{\varepsilon} d t = {\small\frac{B_{n + 1}}{n + 1}} [b^{\varepsilon} - 1] - {\small\frac{\varepsilon}{n + 1}} \int_1^b {\small\frac{P_{n + 1}(t)}{t^{1 - \varepsilon}}} d t</math>
Linia 1407: Linia 1682:
  
  
<span id="E46" style="font-size: 110%; font-weight: bold;">Zadanie E46</span><br/>
+
<span id="E54" style="font-size: 110%; font-weight: bold;">Zadanie E54</span><br/>
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
 
Niech <math>P_n (t)</math>, gdzie <math>n \geqslant 1</math>, będzie funkcją okresową Bernoulliego. Pokazać, że całka
  
Linia 1415: Linia 1690:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Rozwiązanie|Hide=Ukryj rozwiązanie}}
W przypadku funkcji <math>g(t) = {\small\frac{1}{\log t}}</math> z&nbsp;twierdzenia [[#E32|E32]] otrzymujemy
+
W przypadku funkcji <math>g(t) = {\small\frac{1}{\log t}}</math> z&nbsp;twierdzenia [[#E40|E40]] otrzymujemy
  
 
::<math>\int_2^b {\small\frac{P_n(t)}{\log t}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{\log b}} - {\small\frac{1}{\log 2}} \right] + {\small\frac{1}{n + 1}} \int_2^b {\small\frac{P_{n + 1}(t)}{t \cdot \log^2 t}} d t</math>
 
::<math>\int_2^b {\small\frac{P_n(t)}{\log t}} d t = {\small\frac{B_{n + 1}}{n + 1}} \left[ {\small\frac{1}{\log b}} - {\small\frac{1}{\log 2}} \right] + {\small\frac{1}{n + 1}} \int_2^b {\small\frac{P_{n + 1}(t)}{t \cdot \log^2 t}} d t</math>
Linia 1423: Linia 1698:
 
::<math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t = - {\small\frac{B_{n + 1}}{(n + 1) \log 2}} + {\small\frac{1}{n + 1}} \int_2^{\infty} {\small\frac{P_{n + 1} (t)}{t \cdot \log^2 t}} d t</math>
 
::<math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t = - {\small\frac{B_{n + 1}}{(n + 1) \log 2}} + {\small\frac{1}{n + 1}} \int_2^{\infty} {\small\frac{P_{n + 1} (t)}{t \cdot \log^2 t}} d t</math>
  
Ponieważ na mocy twierdzenia [[#E44|E44]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t</math>.<br/>
+
Ponieważ na mocy twierdzenia [[#E52|E52]] całka po prawej stronie jest zbieżna, to jest też zbieżna całka <math>\int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t</math>.<br/>
 
&#9633;
 
&#9633;
 
{{\Spoiler}}
 
{{\Spoiler}}
Linia 1429: Linia 1704:
  
  
<span id="E47" style="font-size: 110%; font-weight: bold;">Zadanie E47</span><br/>
+
<span id="E55" style="font-size: 110%; font-weight: bold;">Zadanie E55</span><br/>
 
Niech <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będzie funkcją okresową Bernoulliego oraz prawdziwe będzie następujące oszacowanie funkcji <math>P_r (t)</math>
 
Niech <math>P_r (t)</math>, gdzie <math>r \geqslant 1</math>, będzie funkcją okresową Bernoulliego oraz prawdziwe będzie następujące oszacowanie funkcji <math>P_r (t)</math>
  
Linia 1445: Linia 1720:
 
:* całka <math>\int^b_n P_r (t) d t</math> istnieje dla każdego <math>b > n</math>
 
:* całka <math>\int^b_n P_r (t) d t</math> istnieje dla każdego <math>b > n</math>
  
Zatem spełnione są założenia twierdzenia [[#E42|E42]] i&nbsp;natychmiast otrzymujemy, że całka <math>\int_{n}^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t</math> jest zbieżna i&nbsp;prawdziwe jest oszacowanie
+
Zatem spełnione są założenia twierdzenia [[#E50|E50]] i&nbsp;natychmiast otrzymujemy, że całka <math>\int_{n}^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t</math> jest zbieżna i&nbsp;prawdziwe jest oszacowanie
  
 
::<math>{\small\frac{m_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} \leqslant \int_n^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t \leqslant {\small\frac{M_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}}</math>
 
::<math>{\small\frac{m_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} \leqslant \int_n^{\infty} {\small\frac{P_r (t)}{t^{\alpha}}} d t \leqslant {\small\frac{M_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}}</math>
Linia 1455: Linia 1730:
  
  
Podamy teraz kryterium Dirichleta, dzięki któremu moglibyśmy natychmiast uzyskać dowody twierdzeń [[#E43|E43]] i&nbsp;[[#E44|E44]] oraz rozwiązanie zadania [[#E46|E46]].
+
Podamy teraz kryterium Dirichleta, dzięki któremu moglibyśmy natychmiast uzyskać dowody twierdzeń [[#E51|E51]] i&nbsp;[[#E52|E52]] oraz rozwiązanie zadania [[#E54|E54]].
Celowo nie stosowaliśmy tego kryterium, aby Czytelnik mógł zapoznać się z&nbsp;ciekawym zastosowaniem twierdzenia [[#E32|E32]].
+
Celowo nie stosowaliśmy tego kryterium, aby Czytelnik mógł zapoznać się z&nbsp;ciekawym zastosowaniem twierdzenia [[#E40|E40]].
  
<span id="E48" style="font-size: 110%; font-weight: bold;">Twierdzenie E48* (kryterium Dirichleta)</span><br/>
+
<span id="E56" style="font-size: 110%; font-weight: bold;">Twierdzenie E56* (kryterium Dirichleta)</span><br/>
 
Jeżeli funkcje <math>f(x)</math> i <math>g(x)</math> są całkowalne w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> oraz spełniają warunki
 
Jeżeli funkcje <math>f(x)</math> i <math>g(x)</math> są całkowalne w&nbsp;każdym podprzedziale <math>[a, b]</math> przedziału <math>[a, + \infty)</math> oraz spełniają warunki
 
::{| border="0"  
 
::{| border="0"  
Linia 1472: Linia 1747:
  
  
<span id="E49" style="font-size: 110%; font-weight: bold;">Zadanie E49</span><br/>
+
<span id="E57" style="font-size: 110%; font-weight: bold;">Zadanie E57</span><br/>
 
Korzystając z&nbsp;kryterium Dirichleta, pokazać, że całki
 
Korzystając z&nbsp;kryterium Dirichleta, pokazać, że całki
  
Linia 1525: Linia 1800:
 
== Przykłady ==
 
== Przykłady ==
  
<span id="E50" style="font-size: 110%; font-weight: bold;">Przykład E50</span><br/>
+
<span id="E58" style="font-size: 110%; font-weight: bold;">Przykład E58</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1537: Linia 1812:
  
  
<span id="E51" style="font-size: 110%; font-weight: bold;">Przykład E51</span><br/>
+
<span id="E59" style="font-size: 110%; font-weight: bold;">Przykład E59</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1566: Linia 1841:
  
  
Ponieważ dla <math>P_1(t) = t - \lfloor t \rfloor - {\small\frac{1}{2}}</math> prawdziwe jest oszacowanie <math>- {\small\frac{1}{2}} \leqslant P_1(t) \leqslant {\small\frac{1}{2}}</math>, to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E47|E47]] wzoru, dostajemy
+
Ponieważ dla <math>P_1(t) = t - \lfloor t \rfloor - {\small\frac{1}{2}}</math> prawdziwe jest oszacowanie <math>- {\small\frac{1}{2}} \leqslant P_1(t) \leqslant {\small\frac{1}{2}}</math>, to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E55|E55]] wzoru, dostajemy
  
 
::<math>- {\small\frac{1}{4 n^2}} \leqslant \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t \leqslant {\small\frac{1}{4 n^2}}</math>
 
::<math>- {\small\frac{1}{4 n^2}} \leqslant \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t \leqslant {\small\frac{1}{4 n^2}}</math>
Linia 1580: Linia 1855:
  
  
<span id="E52" style="font-size: 110%; font-weight: bold;">Przykład E52</span><br/>
+
<span id="E60" style="font-size: 110%; font-weight: bold;">Przykład E60</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1620: Linia 1895:
  
  
Ponieważ prawdziwe są oszacowania (zobacz przykłady [[#E16|E16]] i&nbsp;[[#E17|E17]])
+
Ponieważ prawdziwe są oszacowania (zobacz przykłady [[#E24|E24]] i&nbsp;[[#E25|E25]])
  
 
::<math>- {\small\frac{\sqrt{3}}{36}} \leqslant P_3 (t) \leqslant {\small\frac{\sqrt{3}}{36}}</math>
 
::<math>- {\small\frac{\sqrt{3}}{36}} \leqslant P_3 (t) \leqslant {\small\frac{\sqrt{3}}{36}}</math>
  
to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E47|E47]] wzoru, dostajemy
+
to korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E55|E55]] wzoru, dostajemy
  
 
::<math>- {\small\frac{\sqrt{3}}{108 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t \leqslant {\small\frac{\sqrt{3}}{108 n^3}}</math>
 
::<math>- {\small\frac{\sqrt{3}}{108 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t \leqslant {\small\frac{\sqrt{3}}{108 n^3}}</math>
Linia 1640: Linia 1915:
  
  
<span id="E53" style="font-size: 110%; font-weight: bold;">Przykład E53</span><br/>
+
<span id="E61" style="font-size: 110%; font-weight: bold;">Przykład E61</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1662: Linia 1937:
 
::<math>\lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = 1 + \int_{1}^{\infty} {\small\frac{P_1(t)}{t}} d t</math>
 
::<math>\lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = 1 + \int_{1}^{\infty} {\small\frac{P_1(t)}{t}} d t</math>
  
Z twierdzenia [[#E44|E44]] wiemy, że całka <math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t</math> jest zbieżna, a&nbsp;z&nbsp;rozwinięcia asymptotycznego wiemy, że granica po lewej stronie jest równa <math>\tfrac{1}{2} \log \left( 2 \pi \right)</math>, zatem otrzymujemy
+
Z twierdzenia [[#E52|E52]] wiemy, że całka <math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t</math> jest zbieżna, a&nbsp;z&nbsp;rozwinięcia asymptotycznego wiemy, że granica po lewej stronie jest równa <math>\tfrac{1}{2} \log \left( 2 \pi \right)</math>, zatem otrzymujemy
  
 
::<math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t = \tfrac{1}{2} \log (2 \pi) - 1</math>
 
::<math>\int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t = \tfrac{1}{2} \log (2 \pi) - 1</math>
Linia 1684: Linia 1959:
  
  
Z przykładów [[#E16|E16]] i&nbsp;[[#E17|E17]] wiemy, że prawdziwe są oszacowania
+
Z przykładów [[#E24|E24]] i&nbsp;[[#E25|E25]] wiemy, że prawdziwe są oszacowania
  
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
  
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E47|E47]] wzoru, dostajemy
+
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E55|E55]] wzoru, dostajemy
  
 
::<math>- {\small\frac{1}{90 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} (t) d t \leqslant {\small\frac{7}{720 n^3}}</math>
 
::<math>- {\small\frac{1}{90 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} (t) d t \leqslant {\small\frac{7}{720 n^3}}</math>
Linia 1707: Linia 1982:
  
  
<span id="E54" style="font-size: 110%; font-weight: bold;">Przykład E54</span><br/>
+
<span id="E62" style="font-size: 110%; font-weight: bold;">Przykład E62</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1730: Linia 2005:
  
  
Z przykładów [[#E16|E16]] i&nbsp;[[#E17|E17]] wiemy, że prawdziwe są oszacowania
+
Z przykładów [[#E24|E24]] i&nbsp;[[#E25|E25]] wiemy, że prawdziwe są oszacowania
  
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
 
::<math>- {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}}</math>
  
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E47|E47]] wzoru, dostajemy
+
Zatem korzystając z&nbsp;pokazanego w&nbsp;zadaniu [[#E55|E55]] wzoru, dostajemy
  
 
::<math>- {\small\frac{1}{75}} n^{- 5 / 2} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{7}{600}} n^{- 5 / 2}</math>
 
::<math>- {\small\frac{1}{75}} n^{- 5 / 2} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{7}{600}} n^{- 5 / 2}</math>
Linia 1755: Linia 2030:
  
  
<span id="E55" style="font-size: 110%; font-weight: bold;">Przykład E55</span><br/>
+
<span id="E63" style="font-size: 110%; font-weight: bold;">Przykład E63</span><br/>
 
Pokażemy, dlaczego lepiej wybrać wartość <math>r</math> za dużą niż za małą i&nbsp;dlaczego należy sprawdzać zbieżność całki
 
Pokażemy, dlaczego lepiej wybrać wartość <math>r</math> za dużą niż za małą i&nbsp;dlaczego należy sprawdzać zbieżność całki
  
 
::<math>\int_a^b P_r(t) f^{(r)}(t) d t</math>
 
::<math>\int_a^b P_r(t) f^{(r)}(t) d t</math>
  
korzystając z&nbsp;kryterium Dirichleta (twierdzenie [[#E48|E48]]) lub z&nbsp;twierdzenia [[#E44|E44]]. Rozważmy sumę
+
korzystając z&nbsp;kryterium Dirichleta (twierdzenie [[#E56|E56]]) lub z&nbsp;twierdzenia [[#E52|E52]]. Rozważmy sumę
  
 
::<math>\sum_{k = 1}^{n} k^{3 / 2}</math>
 
::<math>\sum_{k = 1}^{n} k^{3 / 2}</math>
Linia 1796: Linia 2071:
  
  
<span id="E56" style="font-size: 110%; font-weight: bold;">Uwaga E56</span><br/>
+
<span id="E64" style="font-size: 110%; font-weight: bold;">Uwaga E64</span><br/>
 
Rozwiązując przykłady znaleźliśmy wartości następujących całek oznaczonych
 
Rozwiązując przykłady znaleźliśmy wartości następujących całek oznaczonych
  
Linia 1810: Linia 2085:
 
::<math>\int_a^{\infty} P_{n + 1} (t) f'(t) d t = - B_{n + 1} f(a) - (n + 1) \int_a^{\infty} P_n(t) f(t) d t</math>
 
::<math>\int_a^{\infty} P_{n + 1} (t) f'(t) d t = - B_{n + 1} f(a) - (n + 1) \int_a^{\infty} P_n(t) f(t) d t</math>
  
(Jest to prosty wniosek z&nbsp;twierdzenia [[#E32|E32]]).
+
(Jest to prosty wniosek z&nbsp;twierdzenia [[#E40|E40]]).
  
  
Linia 1827: Linia 2102:
 
== Metody wyliczania stałej we wzorze Eulera-Maclaurina ==
 
== Metody wyliczania stałej we wzorze Eulera-Maclaurina ==
  
<span id="E57" style="font-size: 110%; font-weight: bold;">Uwaga E57</span><br/>
+
<span id="E65" style="font-size: 110%; font-weight: bold;">Uwaga E65</span><br/>
W przedstawionych wyżej przykładach wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina (przykład [[#E52|E52]] i&nbsp;[[#E54|E54]]) oraz pokazaliśmy, że wartość całki <math>\int_a^{\infty} P_r (t) f^{(r)} (t) d t</math> jest związana z&nbsp;wartością stałej (przykład [[#E51|E51]], [[#E52|E52]] i&nbsp;[[#E53|E53]]). Obecnie dokładnie omówimy ten problem.
+
W przedstawionych wyżej przykładach wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina (przykład [[#E60|E60]] i&nbsp;[[#E62|E62]]) oraz pokazaliśmy, że wartość całki <math>\int_a^{\infty} P_r (t) f^{(r)} (t) d t</math> jest związana z&nbsp;wartością stałej (przykład [[#E59|E59]], [[#E60|E60]] i&nbsp;[[#E61|E61]]). Obecnie dokładnie omówimy ten problem.
  
  
  
<span id="E58" style="font-size: 110%; font-weight: bold;">Twierdzenie E58</span><br/>
+
<span id="E66" style="font-size: 110%; font-weight: bold;">Twierdzenie E66</span><br/>
 
Jeżeli założymy, że
 
Jeżeli założymy, że
  
Linia 1874: Linia 2149:
  
  
<span id="E59" style="font-size: 110%; font-weight: bold;">Uwaga E59</span><br/>
+
<span id="E67" style="font-size: 110%; font-weight: bold;">Uwaga E67</span><br/>
 
We wzorze
 
We wzorze
  
Linia 1887: Linia 2162:
 
::<math>C(a) = \sum_{k = a}^b f (k) - E (b)</math>
 
::<math>C(a) = \sum_{k = a}^b f (k) - E (b)</math>
  
W obydwu przypadkach obliczenia wykonamy dla znanej już Czytelnikowi sumy <math>\sum_{k = 1}^{n} {\small\frac{1}{k}}</math> (przykład [[#E48|E48]]).
+
W obydwu przypadkach obliczenia wykonamy dla znanej już Czytelnikowi sumy <math>\sum_{k = 1}^{n} {\small\frac{1}{k}}</math> (przykład [[#E56|E56]]).
  
  
  
<span id="E60" style="font-size: 110%; font-weight: bold;">Przykład E60</span><br/>
+
<span id="E68" style="font-size: 110%; font-weight: bold;">Przykład E68</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 1904: Linia 2179:
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
  
to wzór na wartość stałej z&nbsp;twierdzenia [[#E57|E57]]
+
to wzór na wartość stałej z&nbsp;twierdzenia [[#E65|E65]]
  
 
::<math>C(a) = - F(a) + {\small\frac{1}{2}} f(a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t</math>
 
::<math>C(a) = - F(a) + {\small\frac{1}{2}} f(a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t</math>
Linia 1966: Linia 2241:
  
  
<span id="E61" style="font-size: 110%; font-weight: bold;">Uwaga E61</span><br/>
+
<span id="E69" style="font-size: 110%; font-weight: bold;">Uwaga E69</span><br/>
W przykładzie [[#E60|E60]] uzyskaliśmy zaskakująco dokładny wynik, ale wiemy o&nbsp;tym tylko dlatego, że znaliśmy wynik prawidłowy. Gdybyśmy nie znali wartości stałej <math>\gamma</math>, to nie bylibyśmy w&nbsp;stanie określić, ile cyfr sumy <math>C_r + I_r</math> jest prawidłowych.
+
W przykładzie [[#E68|E68]] uzyskaliśmy zaskakująco dokładny wynik, ale wiemy o&nbsp;tym tylko dlatego, że znaliśmy wynik prawidłowy. Gdybyśmy nie znali wartości stałej <math>\gamma</math>, to nie bylibyśmy w&nbsp;stanie określić, ile cyfr sumy <math>C_r + I_r</math> jest prawidłowych.
  
 
Nim przejdziemy do przedstawienia drugiego sposobu wyliczania stałej we wzorze Eulera-Maclaurina, udowodnimy twierdzenie, które pozwoli nam działać bardziej efektywnie.
 
Nim przejdziemy do przedstawienia drugiego sposobu wyliczania stałej we wzorze Eulera-Maclaurina, udowodnimy twierdzenie, które pozwoli nam działać bardziej efektywnie.
Linia 1973: Linia 2248:
  
  
<span id="E62" style="font-size: 110%; font-weight: bold;">Twierdzenie E62</span><br/>
+
<span id="E70" style="font-size: 110%; font-weight: bold;">Twierdzenie E70</span><br/>
 
Jeżeli założymy, że
 
Jeżeli założymy, że
  
Linia 1997: Linia 2272:
  
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
 
{{Spoiler|Style = font-style: italic; font-weight: bold; color: olive; text-decoration: underline;|Show=Dowód|Hide=Ukryj dowód}}
Z twierdzenia [[#E57|E57]] wiemy, że przy poczynionych założeniach wzór Eulera-Maclaurina może być zapisany w&nbsp;postaci
+
Z twierdzenia [[#E65|E65]] wiemy, że przy poczynionych założeniach wzór Eulera-Maclaurina może być zapisany w&nbsp;postaci
  
 
::<math>\sum_{k = a}^b f (k) = C (a) + E (b)</math>
 
::<math>\sum_{k = a}^b f (k) = C (a) + E (b)</math>
Linia 2017: Linia 2292:
  
  
Ponieważ <math>f^{(2 s - 1)} (t)</math> jest funkcją pierwotną funkcji <math>f^{(2 s)}(t)</math>, a&nbsp;z&nbsp;założenia jest <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math>, to na podstawie twierdzenia [[#E41|E41]] całka <math>\int_b^{\infty} f^{(2 s)}(t) d t</math> jest zbieżna.
+
Ponieważ <math>f^{(2 s - 1)} (t)</math> jest funkcją pierwotną funkcji <math>f^{(2 s)}(t)</math>, a&nbsp;z&nbsp;założenia jest <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math>, to na podstawie twierdzenia [[#E49|E49]] całka <math>\int_b^{\infty} f^{(2 s)}(t) d t</math> jest zbieżna.
  
  
Ponieważ <math>| B_{2 s} (x) | \leqslant | B_{2 s} | \,</math> dla <math>\, 0 \leqslant x \leqslant 1 \;</math> i <math>\; s \in \mathbb{N}_0</math> (zobacz [[#E15|E15]]), zatem dla funkcji okresowych Bernoulliego o&nbsp;indeksie parzystym prawdziwe jest oszacowanie <math>| P_{2 s}(x) | \leqslant | B_{2 s} |</math>. Z&nbsp;twierdzenia [[#E42|E42]] i&nbsp;założenia, że <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math> dostajemy oszacowanie całki
+
Ponieważ <math>| B_{2 s} (x) | \leqslant | B_{2 s} | \,</math> dla <math>\, 0 \leqslant x \leqslant 1 \;</math> i <math>\; s \in \mathbb{N}_0</math> (zobacz [[#E15|E15]]), zatem dla funkcji okresowych Bernoulliego o&nbsp;indeksie parzystym prawdziwe jest oszacowanie <math>| P_{2 s}(x) | \leqslant | B_{2 s} |</math>. Z&nbsp;twierdzenia [[#E50|E50]] i&nbsp;założenia, że <math>\lim_{t \to \infty} f^{(2 s - 1)}(t) = 0</math> dostajemy oszacowanie całki
  
  
Linia 2062: Linia 2337:
  
  
<span id="E63" style="font-size: 110%; font-weight: bold;">Przykład E63</span><br/>
+
<span id="E71" style="font-size: 110%; font-weight: bold;">Przykład E71</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 2075: Linia 2350:
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
 
::<math>f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}}</math>
  
to z&nbsp;twierdzenia [[#E61|E61]] dostajemy
+
to z&nbsp;twierdzenia [[#E69|E69]] dostajemy
  
 
::<math>W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - \sum_{k = 1}^s {\small\frac{B_{2 k}}{2 k \cdot n^{2 k}}} \right]</math>
 
::<math>W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - \sum_{k = 1}^s {\small\frac{B_{2 k}}{2 k \cdot n^{2 k}}} \right]</math>
Linia 2102: Linia 2377:
  
  
<span id="E64" style="font-size: 110%; font-weight: bold;">Uwaga E64</span><br/>
+
<span id="E72" style="font-size: 110%; font-weight: bold;">Uwaga E72</span><br/>
 
Zauważmy, że wyliczając wartość <math>\Delta</math>, znamy wartość błędu jeszcze przed wykonaniem całości obliczeń. Dobierając odpowiednie wartości liczb <math>s</math> i <math>n</math> możemy sprawić, że błąd będzie odpowiednio mały. Unikamy numerycznego całkowania, które w&nbsp;przypadku bardziej skomplikowanych funkcji może być długie i&nbsp;obarczone znacznym i&nbsp;nieznanym błędem.
 
Zauważmy, że wyliczając wartość <math>\Delta</math>, znamy wartość błędu jeszcze przed wykonaniem całości obliczeń. Dobierając odpowiednie wartości liczb <math>s</math> i <math>n</math> możemy sprawić, że błąd będzie odpowiednio mały. Unikamy numerycznego całkowania, które w&nbsp;przypadku bardziej skomplikowanych funkcji może być długie i&nbsp;obarczone znacznym i&nbsp;nieznanym błędem.
  
  
  
<span id="E65" style="font-size: 110%; font-weight: bold;">Przykład E65</span><br/>
+
<span id="E73" style="font-size: 110%; font-weight: bold;">Przykład E73</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 2139: Linia 2414:
 
::<math>A^k_k = k A^{k - 1}_{k - 1}</math>
 
::<math>A^k_k = k A^{k - 1}_{k - 1}</math>
  
gdzie <math>A^1_1 = 1</math> (zobacz twierdzenia [[#E68|E68]] i&nbsp;[[#E69|E69]]).
+
gdzie <math>A^1_1 = 1</math> (zobacz twierdzenia [[#E76|E76]] i&nbsp;[[#E77|E77]]).
  
  
Zauważmy, że dla <math>k \geqslant 2</math> funkcje <math>f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}}</math> są funkcjami ciągłymi i&nbsp;mają stały znak dla <math>x > 1</math> oraz <math>\lim_{x \to \infty} f^{(k - 1)} (x) = 0</math>. Zatem dla dowolnego <math>k \geqslant 2</math> spełnione są założenia twierdzenia [[#E62|E62]]. W&nbsp;przypadku rozpatrywanej przez nas sumy z&nbsp;twierdzenia [[#E62|E62]] otrzymujemy
+
Zauważmy, że dla <math>k \geqslant 2</math> funkcje <math>f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}}</math> są funkcjami ciągłymi i&nbsp;mają stały znak dla <math>x > 1</math> oraz <math>\lim_{x \to \infty} f^{(k - 1)} (x) = 0</math>. Zatem dla dowolnego <math>k \geqslant 2</math> spełnione są założenia twierdzenia [[#E70|E70]]. W&nbsp;przypadku rozpatrywanej przez nas sumy z&nbsp;twierdzenia [[#E70|E70]] otrzymujemy
  
 
::<math>\Delta = \Delta (s, n) = {\small\frac{| B_{2 s} |}{(2 s) !}} | \mathop{\text{DLog}}(2 s - 2, n) |</math>
 
::<math>\Delta = \Delta (s, n) = {\small\frac{| B_{2 s} |}{(2 s) !}} | \mathop{\text{DLog}}(2 s - 2, n) |</math>
Linia 2150: Linia 2425:
  
  
Obliczenia przeprowadziliśmy w&nbsp;programie PARI/GP. Wymagają one zwiększenia precyzji obliczeń do <math>80</math> miejsc znaczących i&nbsp;wcześniejszego przygotowania kilku funkcji omówionych szerzej w&nbsp;uwadze [[#E70|E70]]. Mamy  
+
Obliczenia przeprowadziliśmy w&nbsp;programie PARI/GP. Wymagają one zwiększenia precyzji obliczeń do <math>80</math> miejsc znaczących i&nbsp;wcześniejszego przygotowania kilku funkcji omówionych szerzej w&nbsp;uwadze [[#E78|E78]]. Mamy  
  
 
  <span style="font-size: 90%; color:black;">B(n, x) = '''sum'''(k = 0, n, 1/(k+1)*'''sum'''(j = 0, k, (-1)^j*'''binomial'''(k,j)*(x+j)^n))</span>
 
  <span style="font-size: 90%; color:black;">B(n, x) = '''sum'''(k = 0, n, 1/(k+1)*'''sum'''(j = 0, k, (-1)^j*'''binomial'''(k,j)*(x+j)^n))</span>
Linia 2178: Linia 2453:
  
  
<span id="E66" style="font-size: 110%; font-weight: bold;">Przykład E66</span><br/>
+
<span id="E74" style="font-size: 110%; font-weight: bold;">Przykład E74</span><br/>
 
Rozważmy jeszcze raz sumę
 
Rozważmy jeszcze raz sumę
  
Linia 2209: Linia 2484:
 
::<math>\int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = -0.117923474371345921663180326620119770994144590988603907635106 \ldots</math>
 
::<math>\int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = -0.117923474371345921663180326620119770994144590988603907635106 \ldots</math>
  
Właśnie w&nbsp;taki sposób została obliczona wartość całki niewłaściwej, która występuje w&nbsp;zadaniu [[#E49|E49]].
+
Właśnie w&nbsp;taki sposób została obliczona wartość całki niewłaściwej, która występuje w&nbsp;zadaniu [[#E57|E57]].
  
  
  
<span id="E67" style="font-size: 110%; font-weight: bold;">Przykład E67</span><br/>
+
<span id="E75" style="font-size: 110%; font-weight: bold;">Przykład E75</span><br/>
 
Rozważmy sumę
 
Rozważmy sumę
  
Linia 2249: Linia 2524:
  
  
W obliczeniu granicy całki dla <math>s</math> dążącego do nieskończoności pomocne będzie oszacowanie (zobacz [[#E23|E23]])
+
W obliczeniu granicy całki dla <math>s</math> dążącego do nieskończoności pomocne będzie oszacowanie (zobacz [[#E31|E31]])
  
 
<div style="margin-top: 1em; margin-bottom: 1em;">
 
<div style="margin-top: 1em; margin-bottom: 1em;">
Linia 2287: Linia 2562:
 
== Uzupełnienie ==
 
== Uzupełnienie ==
  
<span id="E68" style="font-size: 110%; font-weight: bold;">Twierdzenie E68</span><br/>
+
<span id="E76" style="font-size: 110%; font-weight: bold;">Twierdzenie E76</span><br/>
 
Ogólny wzór na <math>n</math>-tą pochodną funkcji <math>{\small\frac{1}{\log x}}</math> ma postać
 
Ogólny wzór na <math>n</math>-tą pochodną funkcji <math>{\small\frac{1}{\log x}}</math> ma postać
  
Linia 2351: Linia 2626:
  
  
<span id="E69" style="font-size: 110%; font-weight: bold;">Twierdzenie E69</span><br/>
+
<span id="E77" style="font-size: 110%; font-weight: bold;">Twierdzenie E77</span><br/>
 
Z równań rekurencyjnych
 
Z równań rekurencyjnych
  
Linia 2483: Linia 2758:
  
  
<span id="E70" style="font-size: 110%; font-weight: bold;">Uwaga E70</span><br/>
+
<span id="E78" style="font-size: 110%; font-weight: bold;">Uwaga E78</span><br/>
Z twierdzeń [[#E68|E68]] i&nbsp;[[#E69|E69]] wynika, że ogólną postać <math>n</math>-tej pochodnej funkcji <math>{\small\frac{1}{\log x}}</math> możemy łatwo wypisać
+
Z twierdzeń [[#E76|E76]] i&nbsp;[[#E77|E77]] wynika, że ogólną postać <math>n</math>-tej pochodnej funkcji <math>{\small\frac{1}{\log x}}</math> możemy łatwo wypisać
  
 
::<math>{\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}}</math>
 
::<math>{\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}}</math>
Linia 2540: Linia 2815:
 
<references>
 
<references>
  
<ref name="BernoulliPoly1">Wikipedia, ''Bernoulli polynomials'', ([https://en.wikipedia.org/wiki/Bernoulli_polynomials Wiki-en])</ref>
+
<ref name="BernoulliPoly1">Wikipedia, ''Bernoulli polynomials'', ([https://en.wikipedia.org/wiki/Bernoulli_polynomials Wiki&#8209;en])</ref>
  
 
<ref name="BernoulliPoly2">WolframAlpha, ''Bernoulli Polynomial'', ([https://www.wolframalpha.com/input?i=Bernoulli+Polynomial WolframAlpha])</ref>
 
<ref name="BernoulliPoly2">WolframAlpha, ''Bernoulli Polynomial'', ([https://www.wolframalpha.com/input?i=Bernoulli+Polynomial WolframAlpha])</ref>
Linia 2548: Linia 2823:
 
<ref name="BernoulliPoly4">NIST Digital Library of Mathematical Functions, ''Bernoulli and Euler Polynomials'', ([https://dlmf.nist.gov/24 LINK])</ref>
 
<ref name="BernoulliPoly4">NIST Digital Library of Mathematical Functions, ''Bernoulli and Euler Polynomials'', ([https://dlmf.nist.gov/24 LINK])</ref>
  
<ref name="Rolle1">Wikipedia, ''Twierdzenie Rolle’a'', ([https://pl.wikipedia.org/wiki/Twierdzenie_Rolle%E2%80%99a Wiki-pl]), ([https://en.wikipedia.org/wiki/Rolle%27s_theorem Wiki-en])</ref>
+
<ref name="Rolle1">Wikipedia, ''Twierdzenie Rolle’a'', ([https://pl.wikipedia.org/wiki/Twierdzenie_Rolle%E2%80%99a Wiki&#8209;pl]), ([https://en.wikipedia.org/wiki/Rolle%27s_theorem Wiki&#8209;en])</ref>
 +
 
 +
<ref name="Lagrange1">Wikipedia, ''Twierdzenie Lagrange’a (rachunek różniczkowy)'', ([https://pl.wikipedia.org/wiki/Twierdzenie_Lagrange%E2%80%99a_(rachunek_r%C3%B3%C5%BCniczkowy) Wiki&#8209;pl]), ([https://en.wikipedia.org/wiki/Mean_value_theorem Wiki&#8209;en])</ref>
 +
 
 +
<ref name="Darboux1">Wikipedia, ''Twierdzenie Darboux'', ([https://pl.wikipedia.org/wiki/Twierdzenie_Darboux Wiki&#8209;pl]), ([https://en.wikipedia.org/wiki/Intermediate_value_theorem Wiki&#8209;en])</ref>
  
 
<ref name="Lehmer1">D. H. Lehmer, ''On the Maxima and Minima of Bernoulli Polynomials'', The American Mathematical Monthly, Vol. 47, No. 8 (Oct., 1940), pp. 533-538</ref>
 
<ref name="Lehmer1">D. H. Lehmer, ''On the Maxima and Minima of Bernoulli Polynomials'', The American Mathematical Monthly, Vol. 47, No. 8 (Oct., 1940), pp. 533-538</ref>
  
<ref name="Weierstrass1">Twierdzenie Weierstrassa: Jeżeli funkcja <math>f(x)</math> określona w&nbsp;przedziale domkniętym jest ciągła, to jest w&nbsp;nim ograniczona. ([https://pl.wikipedia.org/wiki/Twierdzenie_Bolzana-Weierstrassa#Wniosek:_twierdzenie_Weierstrassa Wiki-pl]), ([https://en.wikipedia.org/wiki/Extreme_value_theorem Wiki-en])</ref>
+
<ref name="Weierstrass1">Twierdzenie Weierstrassa: Jeżeli funkcja <math>f(x)</math> określona w&nbsp;przedziale domkniętym jest ciągła, to jest w&nbsp;nim ograniczona i&nbsp;osiąga swoje kresy. ([https://pl.wikipedia.org/wiki/Twierdzenie_Weierstrassa_o_kresach Wiki&#8209;pl]), ([https://en.wikipedia.org/wiki/Extreme_value_theorem Wiki&#8209;en])</ref>
  
<ref name="EulerMaclaurin1">Wikipedia, ''Euler–Maclaurin formula'', ([https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula#Examples Wiki-en])</ref>
+
<ref name="EulerMaclaurin1">Wikipedia, ''Euler–Maclaurin formula'', ([https://en.wikipedia.org/wiki/Euler%E2%80%93Maclaurin_formula#Examples Wiki&#8209;en])</ref>
  
<ref name="WzorStirlinga1">Wikipedia, ''Wzór Stirlinga'', ([https://pl.wikipedia.org/wiki/Wz%C3%B3r_Stirlinga#Szybko%C5%9B%C4%87_zbie%C5%BCno%C5%9Bci_i_oszacowanie_b%C5%82%C4%99du Wiki-pl]), ([https://en.wikipedia.org/wiki/Stirling%27s_approximation#Speed_of_convergence_and_error_estimates Wiki-en])</ref>
+
<ref name="WzorStirlinga1">Wikipedia, ''Wzór Stirlinga'', ([https://pl.wikipedia.org/wiki/Wz%C3%B3r_Stirlinga#Szybko%C5%9B%C4%87_zbie%C5%BCno%C5%9Bci_i_oszacowanie_b%C5%82%C4%99du Wiki&#8209;pl]), ([https://en.wikipedia.org/wiki/Stirling%27s_approximation#Speed_of_convergence_and_error_estimates Wiki&#8209;en])</ref>
  
 
<ref name="Abramowitz1">M. Abramowitz and I. A. Stegun (Eds), ''Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables'', National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972, ([http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150&Page=805 LINK])</ref>
 
<ref name="Abramowitz1">M. Abramowitz and I. A. Stegun (Eds), ''Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables'', National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972, ([http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150&Page=805 LINK])</ref>
  
<ref name="Abramowitz2">Wikipedia, ''Abramowitz and Stegun'', ([https://en.wikipedia.org/wiki/Abramowitz_and_Stegun Wiki-en])</ref>
+
<ref name="Abramowitz2">Wikipedia, ''Abramowitz and Stegun'', ([https://en.wikipedia.org/wiki/Abramowitz_and_Stegun Wiki&#8209;en])</ref>
  
 
<ref name="DAniello1">C. D'Aniello, ''On some inequalities for the Bernoulli numbers'', Rendiconti del Circolo Matematico di Palermo Series II, Volume 43 (1994), pp. 329-332</ref>
 
<ref name="DAniello1">C. D'Aniello, ''On some inequalities for the Bernoulli numbers'', Rendiconti del Circolo Matematico di Palermo Series II, Volume 43 (1994), pp. 329-332</ref>
Linia 2566: Linia 2845:
 
<ref name="FengQi1">Feng Qi, ''A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers'', Journal of Computational and Applied Mathematics, Volume 351 (2019), pp. 1-5, ([https://www.sciencedirect.com/science/article/pii/S0377042718306575 LINK])</ref>
 
<ref name="FengQi1">Feng Qi, ''A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers'', Journal of Computational and Applied Mathematics, Volume 351 (2019), pp. 1-5, ([https://www.sciencedirect.com/science/article/pii/S0377042718306575 LINK])</ref>
  
<ref name="LogIntegral1">Wikipedia, ''Logarytm całkowy'', ([https://pl.wikipedia.org/wiki/Logarytm_ca%C5%82kowy Wiki-pl]), ([https://en.wikipedia.org/wiki/Logarithmic_integral_function Wiki-en])</ref>
+
<ref name="LogIntegral1">Wikipedia, ''Logarytm całkowy'', ([https://pl.wikipedia.org/wiki/Logarytm_ca%C5%82kowy Wiki&#8209;pl]), ([https://en.wikipedia.org/wiki/Logarithmic_integral_function Wiki&#8209;en])</ref>
  
 
<ref name="LogIntegral2">Wolfram MathWorld, ''Logarithmic Integral'', ([https://mathworld.wolfram.com/LogarithmicIntegral.html Wolfram])</ref>
 
<ref name="LogIntegral2">Wolfram MathWorld, ''Logarithmic Integral'', ([https://mathworld.wolfram.com/LogarithmicIntegral.html Wolfram])</ref>
  
<ref name="ExpIntegral1">Wikipedia, ''Funkcja całkowo-wykładnicza'', ([https://pl.wikipedia.org/wiki/Funkcja_ca%C5%82kowo-wyk%C5%82adnicza Wiki-pl]), ([https://en.wikipedia.org/wiki/Exponential_integral Wiki-en])</ref>
+
<ref name="ExpIntegral1">Wikipedia, ''Funkcja całkowo-wykładnicza'', ([https://pl.wikipedia.org/wiki/Funkcja_ca%C5%82kowo-wyk%C5%82adnicza Wiki&#8209;pl]), ([https://en.wikipedia.org/wiki/Exponential_integral Wiki&#8209;en])</ref>
  
 
<ref name="ExpIntegral2">Wolfram MathWorld, ''Exponential Integral'', ([https://mathworld.wolfram.com/ExponentialIntegral.html Wolfram])</ref>
 
<ref name="ExpIntegral2">Wolfram MathWorld, ''Exponential Integral'', ([https://mathworld.wolfram.com/ExponentialIntegral.html Wolfram])</ref>
  
<ref name="Bernoulli1">Wikipedia, ''Liczby Bernoulliego'', ([https://pl.wikipedia.org/wiki/Liczby_Bernoulliego#Liczby_Bernoulliego_%E2%80%93_definicja_1 Wiki-pl])</ref>
+
<ref name="Bernoulli1">Wikipedia, ''Liczby Bernoulliego'', ([https://pl.wikipedia.org/wiki/Liczby_Bernoulliego#Liczby_Bernoulliego_%E2%80%93_definicja_1 Wiki&#8209;pl])</ref>
  
 
</references>
 
</references>

Wersja z 19:12, 9 sty 2025

29.05.2022



Wielomiany, liczby i funkcje okresowe Bernoulliego

Definicja E1
Wielomiany [math]\displaystyle{ B_n(x) }[/math] spełniające warunki

●    [math]\displaystyle{ B_0(x) = 1 }[/math]
●    [math]\displaystyle{ {\small\frac{d}{d x}}B_n(x) = n B_{n - 1}(x) }[/math]
●    [math]\displaystyle{ \int_0^1 B_n(t) d t = 0 \qquad \text{dla} \;\; n \geqslant 1 }[/math]

będziemy nazywali wielomianami Bernoulliego[1][2][3][4].


Zadanie E2
Korzystając z definicji E1 znaleźć jawną postać wielomianów [math]\displaystyle{ B_1 (x) }[/math], [math]\displaystyle{ B_2 (x) }[/math] i [math]\displaystyle{ B_3 (x) }[/math].

Rozwiązanie


Twierdzenie E3*
Wielomiany Bernoulliego [math]\displaystyle{ B_n(x) }[/math] określone są następującym wzorem ogólnym

[math]\displaystyle{ B_n(x) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} \sum_{j = 0}^{k} (- 1)^j {\small\binom{k}{j}} (x + j)^n }[/math]


Przykład E4
W tabeli wypisaliśmy początkowe wielomiany Bernoulliego.


Przykład E5
Przedstawiamy wykresy wielomianów Bernoulliego [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math]

Wykresy


Definicja E6
Liczbami Bernoulliego [math]\displaystyle{ B_n }[/math] będziemy nazywali wartości wielomianów Bernoulliego [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x = 0 }[/math], czyli [math]\displaystyle{ B_n = B_n (0) }[/math].


Uwaga E7
Ze wzoru podanego w twierdzeniu E3 wynika natychmiast wzór ogólny dla liczb Bernoulliego.

[math]\displaystyle{ B_n = B_n (0) = \sum_{k = 0}^{n} {\small\frac{1}{k + 1}} \sum_{j = 0}^{k} (- 1)^j {\small\binom{k}{j}} j^n }[/math]


Twierdzenie E8
Niech [math]\displaystyle{ B_n (x) }[/math] i [math]\displaystyle{ B_n }[/math] oznaczają odpowiednio wielomiany i liczby Bernoulliego. Prawdziwe są następujące wzory

Dowód


Zadanie E9
Niech [math]\displaystyle{ k \in \mathbb{N}_0 }[/math]. Pokazać, że wykres funkcji [math]\displaystyle{ B_{2 k} (x) }[/math] jest symetryczny, a funkcji [math]\displaystyle{ B_{2 k + 1} (x) }[/math] jest antysymetryczny względem prostej [math]\displaystyle{ x = {\small\frac{1}{2}} }[/math].

Rozwiązanie


Zadanie E10
Niech [math]\displaystyle{ k \in \mathbb{N}_0 }[/math]. Pokazać, że

[math]\displaystyle{ \int_{0}^{1 / 2} B_{2 k + 1} (x) d x = - \int^1_{1 / 2} B_{2 k + 1} (t) d t }[/math]
[math]\displaystyle{ \int_{0}^{1 / 2} B_{2 k + 2} (x) d x = 0 }[/math]
Rozwiązanie


Zadanie E11
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Pokazać, że [math]\displaystyle{ B_n = - {\small\frac{n}{2 (1 - 2^{- n})}} \int_{0}^{1 / 2} B_{n - 1} (t) d t }[/math]

Rozwiązanie


Twierdzenie E12
Niech [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ f' (x) }[/math] będą ciągłymi funkcjami rzeczywistymi określonymi w przedziale [math]\displaystyle{ [a, b] }[/math] i różniczkowalnymi w [math]\displaystyle{ (a, b) }[/math]. Jeżeli dla pewnego punktu [math]\displaystyle{ r \in (a, b) }[/math] spełnione są warunki [math]\displaystyle{ f(a) = f (b) = f (r) = 0 }[/math], to istnieje taki punkt [math]\displaystyle{ t \in (a, b) }[/math], że [math]\displaystyle{ f'' (t) = 0 }[/math].

Dowód


Twierdzenie E13
Niech [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Wielomian [math]\displaystyle{ B_{2 k + 1} (x) }[/math] ma dokładnie trzy pierwiastki w przedziale [math]\displaystyle{ [0, 1] }[/math]. Są to liczby [math]\displaystyle{ x = 0 }[/math], [math]\displaystyle{ x = {\small\frac{1}{2}} \, }[/math] i [math]\displaystyle{ \, x = 1 }[/math].

Dowód


Twierdzenie E14
Niech [math]\displaystyle{ k \in \mathbb{N}_0 }[/math]. Liczby Bernoulliego [math]\displaystyle{ B_{2 k} }[/math] są różne od zera.

Dowód


Twierdzenie E15
Niech [math]\displaystyle{ k \in \mathbb{N}_0 }[/math]. Dla wielomianów Bernoulliego [math]\displaystyle{ B_{2 k} (x) \, }[/math] i [math]\displaystyle{ \, x \in [0, 1] }[/math] prawdziwe jest następujące oszacowanie

[math]\displaystyle{ | B_{2 k} (x) | \leqslant | B_{2 k} | }[/math]
Dowód


Twierdzenie E16
Załóżmy, że funkcja rzeczywista [math]\displaystyle{ f(x) }[/math] jest ciągła w przedziale [math]\displaystyle{ [a, b] }[/math] i różniczkowalna w przedziale [math]\displaystyle{ (a, b) }[/math]. Jeżeli

  •    [math]\displaystyle{ f' (x) \gt 0 \, }[/math] dla [math]\displaystyle{ \, x \in (a, b) }[/math], to [math]\displaystyle{ f(x) }[/math] jest silnie rosnąca w przedziale [math]\displaystyle{ [a, b] }[/math]
  •    [math]\displaystyle{ f' (x) \lt 0 \, }[/math] dla [math]\displaystyle{ \, x \in (a, b) }[/math], to [math]\displaystyle{ f(x) }[/math] jest silnie malejąca w przedziale [math]\displaystyle{ [a, b] }[/math]
Dowód


Twierdzenie E17
Załóżmy, że funkcja rzeczywista [math]\displaystyle{ f(x) }[/math] jest ciągła i różniczkowalna w przedziale [math]\displaystyle{ (a, b) }[/math]. Jeżeli

  •    [math]\displaystyle{ f' (x) \gt 0 \, }[/math] dla [math]\displaystyle{ \, x \in (a, b) }[/math], to [math]\displaystyle{ f(x) }[/math] jest silnie rosnąca w przedziale [math]\displaystyle{ (a, b) }[/math]
  •    [math]\displaystyle{ f' (x) \lt 0 \, }[/math] dla [math]\displaystyle{ \, x \in (a, b) }[/math], to [math]\displaystyle{ f(x) }[/math] jest silnie malejąca w przedziale [math]\displaystyle{ (a, b) }[/math]
Dowód


Twierdzenie E18
Załóżmy, że funkcja rzeczywista [math]\displaystyle{ f(t) }[/math] jest ciągła w przedziale [math]\displaystyle{ [a, b] }[/math] i dwukrotnie różniczkowalna w przedziale [math]\displaystyle{ (a, b) }[/math]. Jeżeli

  •    [math]\displaystyle{ f'' (t) \gt 0 }[/math]  (odpowiednio: [math]\displaystyle{ f'' (t) \lt 0 }[/math])  dla [math]\displaystyle{ t \in (a, b) }[/math]
  •    [math]\displaystyle{ A = (a, f (a)) \qquad \text{i} \qquad B = (b, f (b)) }[/math]

to dowolny punkt wykresu funkcji [math]\displaystyle{ f(t) }[/math], gdzie [math]\displaystyle{ t \in (a, b) }[/math], leży poniżej  (odpowiednio: powyżej)  odcinka (cięciwy) [math]\displaystyle{ A B }[/math].

Dowód


Możemy osłabić uczynione w twierdzeniu E18 założenie ciągłości funkcji w [math]\displaystyle{ [a, b] }[/math], ale będziemy musieli inaczej sformułować twierdzenie.
Twierdzenie E19
Załóżmy, że funkcja rzeczywista [math]\displaystyle{ f(t) }[/math] jest ciągła i dwukrotnie różniczkowalna w [math]\displaystyle{ (a, b) }[/math]. Jeżeli [math]\displaystyle{ f'' (t) \gt 0 }[/math]  (odpowiednio: [math]\displaystyle{ f'' (t) \lt 0 }[/math])  dla [math]\displaystyle{ t \in (a, b) }[/math], to dla dowolnych punktów [math]\displaystyle{ t_1, t_2 \in (a, b) \, }[/math] i [math]\displaystyle{ \, t_2 \gt t_1 }[/math] wykres funkcji [math]\displaystyle{ f(t) }[/math], gdzie [math]\displaystyle{ t \in (t_1, t_2) }[/math], leży poniżej  (odpowiednio: powyżej)  odcinka (cięciwy) [math]\displaystyle{ A B }[/math], gdzie [math]\displaystyle{ A = (t_1, f (t_1)) \, }[/math] i [math]\displaystyle{ \, B = (t_2, f (t_2)) }[/math].

Dowód


Zadanie E20
Korzystając ze znalezionego w zadaniu E2 wzoru dla [math]\displaystyle{ B_3 (x) }[/math], opisać wykresy wielomianów Bernoulliego [math]\displaystyle{ B_4 (x), B_5 (x), B_6 (x), B_7 (x), \ldots }[/math] w przedziale [math]\displaystyle{ \left[ 0, {\small\frac{1}{2}} \right] }[/math].

Rozwiązanie


Uwaga E21
Czytelnik łatwo uogólni rezultaty otrzymane w zadaniu E20 i metodą indukcji matematycznej udowodni niżej sformułowane twierdzenie.


Twierdzenie E22
Dla [math]\displaystyle{ n \geqslant 2 }[/math] wielomiany Bernoulliego mają w przedziale [math]\displaystyle{ \left[ 0, {\small\frac{1}{2}} \right] }[/math] następujące właściwości


Zadanie E23
Niech [math]\displaystyle{ k \in \mathbb{Z}_+ }[/math]. Pokazać, że prawdziwe są następujące właściwości liczb Bernoulliego

  •    [math]\displaystyle{ B_{4 k} \lt 0 }[/math]
  •    [math]\displaystyle{ B_{4 k + 2} \gt 0 \qquad }[/math] dla [math]\displaystyle{ \; k \geqslant 0 }[/math]
  •    [math]\displaystyle{ {\small\frac{B_{2 k + 2}}{B_{2 k}}} \lt 0 }[/math]
  •    [math]\displaystyle{ | B_{2 k} | = (- 1)^{k + 1} B_{2 k} }[/math]
Rozwiązanie


Przykład E24
W tabeli przedstawiamy liczby Bernoulliego [math]\displaystyle{ B_n }[/math] oraz minimalne [math]\displaystyle{ m_n }[/math] i maksymalne [math]\displaystyle{ M_n }[/math] wartości wielomianów [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math]

Zauważmy, że [math]\displaystyle{ M_3 = {\small\frac{\sqrt{3}}{36}} \lt {\small\frac{3}{62}} }[/math], [math]\displaystyle{ \quad M_5 \lt {\small\frac{1}{40}} }[/math], [math]\displaystyle{ \quad M_7 \lt {\small\frac{1}{38}} \quad }[/math] oraz [math]\displaystyle{ \quad M_9 \lt {\small\frac{1}{21}} }[/math]


Przykład E25
Minima [math]\displaystyle{ m_n }[/math] i maksima [math]\displaystyle{ M_n }[/math] wielomianów Bernoulliego [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math] są równe[8]


W zamieszczonej niżej tabeli przedstawiamy liczby Bernoulliego [math]\displaystyle{ B_n }[/math] oraz minimalne i maksymalne wartości wielomianów [math]\displaystyle{ B_n(x) }[/math] dla [math]\displaystyle{ x \in [0, 1] }[/math] w zapisie dziesiętnym.

Tabela


Definicja E26
Funkcje okresowe Bernoulliego [math]\displaystyle{ P_n(x) }[/math] definiujemy następująco

[math]\displaystyle{ P_n(x) = B_n(x - \lfloor x \rfloor) }[/math]


Uwaga E27
Inaczej mówiąc funkcja okresowa Bernoulliego [math]\displaystyle{ P_n(x) }[/math] na odcinku [math]\displaystyle{ [0, 1] }[/math], przyjmuje te same wartości, co wielomian Bernoulliego [math]\displaystyle{ B_n(x) }[/math]. Wartości te powtarzają się dla kolejnych odcinków [math]\displaystyle{ [k, k + 1] }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z} }[/math].


Uwaga E28
Wprost z definicji funkcji okresowych Bernoulliego wynika, że dla [math]\displaystyle{ k \in \mathbb{Z} }[/math] jest

[math]\displaystyle{ P_n (k) = B_n (k - \lfloor k \rfloor) = B_n (0) = B_n }[/math]


Twierdzenie E29
Własności funkcji okresowych Bernoulliego

●    funkcja [math]\displaystyle{ P_0 (x) }[/math] jest ciągła i różniczkowalna
●    funkcja [math]\displaystyle{ P_1 (x) }[/math] nie jest ciągła w punktach [math]\displaystyle{ x \in \mathbb{Z} }[/math]
●    funkcja [math]\displaystyle{ P_2 (x) }[/math] jest ciągła, ale nie jest różniczkowalna w punktach [math]\displaystyle{ x \in \mathbb{Z} }[/math]
●    dla [math]\displaystyle{ n \geqslant 3 }[/math] funkcje [math]\displaystyle{ P_n (x) }[/math] są ciągłe i różniczkowalne
●    [math]\displaystyle{ {\small\frac{d}{d x}} P_n (x) = n P_{n - 1} (x) \qquad }[/math] o ile [math]\displaystyle{ n \neq 1, 2 }[/math] lub [math]\displaystyle{ n = 1, 2 }[/math] oraz [math]\displaystyle{ x \notin \mathbb{Z} }[/math]
●    [math]\displaystyle{ \int^x_0 P_n (t) d t = {\small\frac{P_{n + 1} (x)}{n + 1}} - {\small\frac{B_{n + 1}}{n + 1}} }[/math]
Dowód


Przykład E30
Przedstawiamy przykładowe wykresy funkcji okresowych Bernoulliego [math]\displaystyle{ P_n (x) }[/math]. Stanowią one bardzo dobrą ilustrację do twierdzenia E29.

Wykresy


Twierdzenie E31*
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla liczb Bernoulliego [math]\displaystyle{ B_{2 n} = (- 1)^{n + 1} | B_{2 n} | }[/math] prawdziwe są następujące oszacowania [9][10][11]

[math]\displaystyle{ {\small\frac{2 (2 n) !}{(2 \pi)^{2 n}}} \cdot {\small\frac{1}{1 - 2^{- 2 n}}} \lt | B_{2 n} | \lt {\small\frac{2 (2 n) !}{(2 \pi)^{2 n}}} \cdot {\small\frac{1}{1 - 2^{1 - 2 n}}} }[/math]

i asymptotyki

[math]\displaystyle{ B_{2 n} \sim (- 1)^{n + 1} \cdot {\small\frac{2 (2 n) !}{(2 \pi)^{2 n}}} }[/math]
[math]\displaystyle{ B_{2 n} \sim (- 1)^{n + 1} \cdot 4 \sqrt{\pi n} \cdot \left( {\small\frac{n}{\pi e}} \right)^{2 n} }[/math]


Twierdzenie E32*
Niech [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math]. Dla ilorazu kolejnych liczb Bernoulliego [math]\displaystyle{ B_{2 n} }[/math] prawdziwe są następujące oszacowania[12]

[math]\displaystyle{ {\small\frac{2^{2 n - 1} - 1}{2^{2 n + 1} - 1}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{\pi^2}} \lt \left| {\small\frac{B_{2 n + 2}}{B_{2 n}}} \right| \lt {\small\frac{2^{2 n} - 1}{2^{2 n + 2} - 1}} \cdot {\small\frac{(2 n + 1) (2 n + 2)}{\pi^2}} }[/math]

i asymptotyka

[math]\displaystyle{ {\small\frac{B_{2 n + 2}}{B_{2 n}}} \sim - {\small\frac{n^2}{\pi^2}} }[/math]



Wzór sumacyjny Eulera-Maclaurina

Uwaga E33
Często w twierdzeniu musimy założyć, że rozważana funkcja [math]\displaystyle{ f(x) }[/math] jest określona w pewnym zbiorze liczb rzeczywistych i jest funkcją ciągłą oraz wszystkie jej pochodne od [math]\displaystyle{ f' (x) }[/math] do [math]\displaystyle{ f^{(n)} (x) }[/math] istnieją i są ciągłe w tym zbiorze. Przekazanie tego prostego założenia wymaga użycia wielu słów, a samo twierdzenie staje się mało czytelne. Ze względów czysto praktycznych wprowadzamy pojęcie klasy funkcji.


Definicja E34
Funkcję [math]\displaystyle{ f(x) }[/math] określoną i ciągłą w zbiorze [math]\displaystyle{ A \subset \mathbb{R} }[/math] i mającą kolejno [math]\displaystyle{ n }[/math] ciągłych pochodnych w tym zbiorze będziemy nazywali funkcją klasy [math]\displaystyle{ C^n }[/math]. Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest ciągła w [math]\displaystyle{ A }[/math], to powiemy, że jest klasy [math]\displaystyle{ C^0 }[/math]. Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest klasy [math]\displaystyle{ C^n }[/math] dla dowolnego [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math], to powiemy, że funkcja [math]\displaystyle{ f(x) }[/math] jest klasy [math]\displaystyle{ C^{\infty} }[/math]. W przypadku, gdy chcemy jednocześnie zaznaczyć dziedzinę funkcji, to stosujemy zapis [math]\displaystyle{ C^0 (A) }[/math], [math]\displaystyle{ C^n (A) }[/math] i [math]\displaystyle{ C^{\infty} (A) }[/math].


Przykład E35
Tylko dla potrzeb tego przykładu funkcję [math]\displaystyle{ f(x) }[/math] określoną następująco

[math]\displaystyle{ f(x) = \left\{ \begin{array}{lll} g (x) & & x \lt 0\\ h (x) & & x \geqslant 0 \end{array} \right. }[/math]

będziemy zapisywali jako [math]\displaystyle{ f(x) = \left \{ g (x) \big\rvert h (x) \right \} }[/math].


Przykłady funkcji klasy [math]\displaystyle{ C^0 (\mathbb{R}) }[/math]

[math]\displaystyle{ \left \{ - x \big\rvert x \right \} \;\; \text{czyli} \;\; | x | , \quad \left \{ 0 \big\rvert x \right \} , \quad \left \{ 1 \big\rvert e^x \right \} , \quad \left \{ 1 + x \big\rvert \cos (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^1 (\mathbb{R}) }[/math]

[math]\displaystyle{ \left \{ 0 \big\rvert x^2 \right \} , \quad \left \{ 1 + x \big\rvert e^x \right \} , \quad \left \{ 1 \big\rvert \cos (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^2 (\mathbb{R}) }[/math]

[math]\displaystyle{ x^2 \sqrt{x^2} , \quad \left \{ 0 \big\rvert x^3 \right \} , \quad \left \{ 1 + x + \tfrac{1}{2} x^2 \big\rvert e^x \right \} , \quad \left \{ x \big\rvert \sin (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^3 (\mathbb{R}) }[/math]

[math]\displaystyle{ \left \{ 0 \big\rvert x^4 \right \} , \quad \left \{ 1 + x + \tfrac{1}{2} x^2 + \tfrac{1}{6} x^3 \big\rvert e^x \right \} , \quad \left \{ 1 - \tfrac{1}{2} x^2 \big\rvert \cos (x) \right \} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^n (\mathbb{R}) }[/math]

[math]\displaystyle{ P_{n + 2} (x) , \quad x^n \sqrt{x^2} , \quad \left \{ 0 \big\rvert x^{n + 1} \right \} , \quad \left\{ \sum_{k = 0}^{n} {\small\frac{x^k}{k!}} \biggr\rvert e^x \right\} }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^{\infty} (\mathbb{R}) }[/math]

[math]\displaystyle{ x^k \;\; \text{dla} \;\; k \in \mathbb{N}_0 , \quad e^x , \quad \sin (x) , \quad \cos (x) }[/math]

Przykłady funkcji klasy [math]\displaystyle{ C^{\infty} (\mathbb{R}_+) }[/math]

[math]\displaystyle{ {\small\frac{1}{x}} }[/math],    [math]\displaystyle{ \sqrt{x} }[/math],    [math]\displaystyle{ \log x }[/math]


Twierdzenie E36
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją rzeczywistą klasy [math]\displaystyle{ C^1 ( [k, k + 1] ) }[/math], gdzie [math]\displaystyle{ k \in \mathbb{Z} }[/math]. Jeżeli zastąpimy na jednostkowym odcinku pole prostokąta całką, to błąd, jaki popełnimy, jest równy

[math]\displaystyle{ f(k) - \int_{k}^{k + 1} f(t) d t = \int_k^{k + 1} (t - \lfloor t \rfloor - 1) f'(t) d t }[/math]
Dowód


Zadanie E37
Pokazać, że dla [math]\displaystyle{ x \gt 0 }[/math] całka [math]\displaystyle{ \int^x_0 (t - \lfloor t \rfloor)^n d t }[/math] jest równa

[math]\displaystyle{ \int^x_0 (t - \lfloor t \rfloor)^n d t = {\small\frac{\lfloor x \rfloor + (x - \lfloor x \rfloor)^{n + 1}}{n + 1}} }[/math]
Rozwiązanie


Twierdzenie E38
Niech [math]\displaystyle{ f(x) }[/math] będzie funkcją rzeczywistą klasy [math]\displaystyle{ C^1 ( [a, b] ) }[/math], gdzie [math]\displaystyle{ a, b \in \mathbb{Z} }[/math]. Możemy zastąpić sumowanie całkowaniem, stosując wzór

[math]\displaystyle{ \sum_{k = a}^{b} f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \int_a^b \left( t - \lfloor t \rfloor - {\small\frac{1}{2}} \right) f'(t) d t }[/math]

Powyższy wzór można zapisać w postaci

[math]\displaystyle{ \sum_{k = a}^{b} f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \int_a^b P_1(t) f'(t) d t }[/math]

gdzie [math]\displaystyle{ P_1(t) }[/math] jest funkcją okresową Bernoulliego.

Dowód


Uwaga E39
Czytelnik zapewne już domyśla się, w jakim kierunku zmierzamy. Całkując przez części i korzystając z własności funkcji okresowych Bernoulliego, przekształcimy całkę [math]\displaystyle{ \int_a^b P_1 (t) f' (t) d t }[/math] do postaci [math]\displaystyle{ \int_a^b P_2 (t) f'' (t) d t }[/math], a następnie do postaci [math]\displaystyle{ \int_a^b P_3 (t) f^{(3)} (t) d t }[/math] itd.


Twierdzenie E40
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], a funkcje [math]\displaystyle{ P_n(t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista [math]\displaystyle{ g(t) }[/math] jest klasy [math]\displaystyle{ C^1 ( [a, b] ) }[/math], to

[math]\displaystyle{ \int_a^b P_n(t) g(t) d t = {\small\frac{B_{n + 1}}{n + 1}} [g(b) - g(a)] - {\small\frac{1}{n + 1}} \int_a^b P_{n + 1}(t) g'(t) d t }[/math]
Dowód


Twierdzenie E41
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], a funkcje [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista [math]\displaystyle{ g(t) }[/math] jest klasy [math]\displaystyle{ C^k ( [a, b] ) }[/math], to

[math]\displaystyle{ \int_a^b P_n (t) g (t) d t = \sum_{j = 1}^k \frac{(- 1)^{j + 1} n! \cdot B_{n + j}}{(n + j) !} [g^{(j - 1)} (b) - g^{(j - 1)} (a)] + {\normalsize\frac{(- 1)^k n!}{(n + k) !}} \int_a^b P_{n + k} (t) g^{(k)} (t) d t }[/math]
Dowód


Twierdzenie E42 (wzór sumacyjny Eulera-Maclaurina, [math]\displaystyle{ \sim }[/math]1735)
Niech [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], a funkcje [math]\displaystyle{ P_r (t) }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math], będą funkcjami okresowymi Bernoulliego. Jeżeli funkcja rzeczywista [math]\displaystyle{ f(t) }[/math] jest klasy [math]\displaystyle{ C^r ( [a, b] ) }[/math], to

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 2}^r {\small\frac{B_k}{k!}} [f^{(k - 1)}(b) - f^{(k - 1)}(a)] - {\small\frac{(- 1)^r}{r!}} \int_a^b P_r(t) f^{(r)}(t) d t }[/math]

Dowód


Uwaga E43
Uwzględniając, że dla nieparzystych liczb [math]\displaystyle{ k \geqslant 2 }[/math] jest [math]\displaystyle{ B_k = 0 }[/math], możemy dla parzystego [math]\displaystyle{ r = 2 s }[/math] napisać

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} [f^{(2 k - 1)}(b) - f^{(2 k - 1)}(a)] - {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s}(t) f^{(2 s)}(t) d t }[/math]


W przypadku, gdy [math]\displaystyle{ r = 2 s + 1 }[/math] mamy [math]\displaystyle{ B_{2 s + 1} = 0 }[/math], zatem nie pojawi się nowy składnik sumy, ale ostatni wyraz ulegnie zmianie

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} [f^{(2 k - 1)}(b) - f^{(2 k - 1)}(a)] + {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1}(t) f^{(2 s + 1)}(t) d t }[/math]


Oczywiście

[math]\displaystyle{ - {\small\frac{1}{(2 s) !}} \int_a^b P_{2 s} (t) f^{(2 s)} (t) d t = {\small\frac{1}{(2 s + 1) !}} \int_a^b P_{2 s + 1} (t) f^{(2 s + 1)} (t) d t }[/math]

(zobacz twierdzenie E40).


Uwaga E44
Poniżej wypisaliśmy gotowe wzory Eulera-Maclaurina dla [math]\displaystyle{ r = 1, \ldots, 9 }[/math]

[math]\displaystyle{ \sum_{k = a}^b f(k) = \int_a^b f(t) d t + {\small\frac{1}{2}} [f(b) + f(a)] + Q_r }[/math]

gdzie


Nim przejdziemy do przykładów, przypomnimy kilka podstawowych definicji i twierdzeń dotyczących całek niewłaściwych.



Całki niewłaściwe – zbieżność i kryteria zbieżności

Definicja E45
Niech funkcja [math]\displaystyle{ f(x) }[/math] będzie określona w przedziale [math]\displaystyle{ [a, + \infty) }[/math] i całkowalna w każdym podprzedziale [math]\displaystyle{ [a, b] }[/math] tego przedziału. Granicę

[math]\displaystyle{ \lim_{b \to + \infty} \int^b_a f(x) d x }[/math]

będziemy nazywali całką niewłaściwą funkcji [math]\displaystyle{ f(x) }[/math] w granicach od [math]\displaystyle{ a }[/math] do [math]\displaystyle{ + \infty }[/math] i zapisywali symbolicznie jako

[math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math]

Jeżeli powyższa granica jest skończona, to powiemy, że całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] jest zbieżna. Jeżeli granica jest nieskończona lub nie istnieje, to powiemy, że całka jest rozbieżna.


Twierdzenie E46 (kryterium porównawcze)
Jeżeli dla [math]\displaystyle{ x \geqslant a }[/math] funkcje [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ g(x) }[/math] spełniają nierówności

[math]\displaystyle{ 0 \leqslant f(x) \leqslant g(x) }[/math]

to

●    ze zbieżności całki [math]\displaystyle{ \int_{a}^{\infty} g(x) d x }[/math] wynika zbieżność całki [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math]
●    z rozbieżności całki [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] wynika rozbieżność całki [math]\displaystyle{ \int_{a}^{\infty} g(x) d x }[/math]
Dowód


Twierdzenie E47
Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] jest całkowalna w każdym podprzedziale [math]\displaystyle{ [a, b] }[/math] przedziału [math]\displaystyle{ [a, + \infty) }[/math] i całka [math]\displaystyle{ \int_{a}^{\infty} | f(x) | d x }[/math] jest zbieżna, to zbieżna jest też całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math]. O całce [math]\displaystyle{ \int_{a}^{\infty} f (x) d x }[/math] powiemy wtedy, że jest bezwzględnie zbieżna.

Dowód


Twierdzenie E48
Jeżeli całka [math]\displaystyle{ \int_{a}^{\infty} | f(x) | d x }[/math] jest zbieżna, a funkcja [math]\displaystyle{ g(x) }[/math] jest ograniczona, to zbieżna jest też całka [math]\displaystyle{ \int_{a}^{\infty} | f(x) g(x) | d x }[/math].

Dowód


Twierdzenie E49
Niech [math]\displaystyle{ F(x) }[/math] oznacza funkcję pierwotną funkcji [math]\displaystyle{ f(x) }[/math]. Całka [math]\displaystyle{ \int_{a}^{\infty} f(x) d x }[/math] jest zbieżna wtedy i tylko wtedy, gdy granica [math]\displaystyle{ \lim_{x \to \infty} F(x) }[/math] jest skończona.

Dowód


Twierdzenie E50
Jeżeli

●    funkcja [math]\displaystyle{ f(x) }[/math] jest funkcją ciągłą i ma stały znak w przedziale [math]\displaystyle{ [a, + \infty) }[/math]
●    całka [math]\displaystyle{ \int_{a}^{\infty} f (x) d x }[/math] jest zbieżna
●    funkcja [math]\displaystyle{ g(x) }[/math] jest ograniczona w przedziale [math]\displaystyle{ [a, + \infty) }[/math], czyli dla [math]\displaystyle{ x \geqslant a }[/math] jest

1. [math]\displaystyle{ \qquad m \leqslant g (x) \leqslant M }[/math]

      lub

2. [math]\displaystyle{ \qquad | g (x) | \leqslant L }[/math]
●    całka [math]\displaystyle{ \int^b_a g (x) d x }[/math] istnieje dla każdego [math]\displaystyle{ b \gt a }[/math]

to całki [math]\displaystyle{ \int_{a}^{\infty} | f (x) g (x) | d x }[/math] oraz [math]\displaystyle{ \int_{a}^{\infty} f (x) g (x) d x }[/math] są zbieżne i prawdziwe są następujące oszacowania

1. [math]\displaystyle{ \qquad s \:\! m \int_{a}^{\infty} f (x) d x \leqslant s \int_{a}^{\infty} f (x) g (x) d x \leqslant s M \int_{a}^{\infty} f (x) d x }[/math]

lub

2. [math]\displaystyle{ \qquad \int_{a}^{\infty} | f (x) g (x) | d x \leqslant L \left| \int_{a}^{\infty} f (x) d x \right| }[/math]

gdzie [math]\displaystyle{ s }[/math] jest znakiem funkcji [math]\displaystyle{ f(x) }[/math] w przedziale [math]\displaystyle{ [a, + \infty) }[/math].

Dowód


Twierdzenie E51
Niech [math]\displaystyle{ P_n(t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Całka

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_n(t)}{t^{\alpha}}} d t }[/math]

gdzie [math]\displaystyle{ \alpha \gt 1 }[/math], jest zbieżna.

Dowód


Twierdzenie E52
Niech [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Całka

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_n(t)}{t^{\varepsilon}}} d t }[/math]

gdzie [math]\displaystyle{ \varepsilon \gt 0 }[/math], jest zbieżna.

Dowód


Zadanie E53
Niech [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Pokazać, że całka

[math]\displaystyle{ \int_1^{\infty} P_n (t) t^{\varepsilon} d t }[/math]

gdzie [math]\displaystyle{ 0 \lt \varepsilon \lt 1 }[/math], jest rozbieżna.

Rozwiązanie


Zadanie E54
Niech [math]\displaystyle{ P_n (t) }[/math], gdzie [math]\displaystyle{ n \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego. Pokazać, że całka

[math]\displaystyle{ \int_2^{\infty} {\small\frac{P_n (t)}{\log t}} d t }[/math]

jest zbieżna.

Rozwiązanie


Zadanie E55
Niech [math]\displaystyle{ P_r (t) }[/math], gdzie [math]\displaystyle{ r \geqslant 1 }[/math], będzie funkcją okresową Bernoulliego oraz prawdziwe będzie następujące oszacowanie funkcji [math]\displaystyle{ P_r (t) }[/math]

[math]\displaystyle{ m_r \leqslant P_r (t) \leqslant M_r }[/math]

Pokazać, że dla [math]\displaystyle{ \alpha \gt 1 }[/math] i [math]\displaystyle{ n \in \mathbb{Z}_+ }[/math] jest

[math]\displaystyle{ {\small\frac{m_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} \leqslant \int_n^{\infty} {\small\frac{P_r(t)}{t^{\alpha}}} d t \leqslant {\small\frac{M_r}{\alpha - 1}} \cdot {\small\frac{1}{n^{\alpha - 1}}} }[/math]
Rozwiązanie


Podamy teraz kryterium Dirichleta, dzięki któremu moglibyśmy natychmiast uzyskać dowody twierdzeń E51E52 oraz rozwiązanie zadania E54. Celowo nie stosowaliśmy tego kryterium, aby Czytelnik mógł zapoznać się z ciekawym zastosowaniem twierdzenia E40.

Twierdzenie E56* (kryterium Dirichleta)
Jeżeli funkcje [math]\displaystyle{ f(x) }[/math] i [math]\displaystyle{ g(x) }[/math] są całkowalne w każdym podprzedziale [math]\displaystyle{ [a, b] }[/math] przedziału [math]\displaystyle{ [a, + \infty) }[/math] oraz spełniają warunki

●    całka z funkcji [math]\displaystyle{ f(x) }[/math] jest ograniczona, czyli istnieje taka stała [math]\displaystyle{ M \gt 0 }[/math], że dla każdego [math]\displaystyle{ b \gt a }[/math] jest [math]\displaystyle{ \left| \int^b_a f(x) d x \right| \leqslant M }[/math]
●    funkcja [math]\displaystyle{ g(x) }[/math] jest funkcją monotoniczną (czyli malejącą lub rosnącą)
●    [math]\displaystyle{ \lim_{x \to \infty} g (x) = 0 }[/math]

to całka [math]\displaystyle{ \int_{a}^{\infty} f (x) g (x) d x }[/math] jest zbieżna.


Zadanie E57
Korzystając z kryterium Dirichleta, pokazać, że całki

[math]\displaystyle{ \int_{0}^{\infty} {\small\frac{\sin x}{x}} d x = {\small\frac{1}{2}} \pi }[/math]
[math]\displaystyle{ \int_{2}^{\infty} {\small\frac{P_1 (x)}{\log x}} d x = - 0.117923474371 \ldots }[/math]

są zbieżne.

Rozwiązanie



Przykłady

Przykład E58
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^n k^2 }[/math]

Ponieważ [math]\displaystyle{ f(t) = t^2 }[/math], to [math]\displaystyle{ f'(t) = 2 t }[/math], [math]\displaystyle{ f''(t) = 2 }[/math], a dla [math]\displaystyle{ i \geqslant 3 }[/math] mamy [math]\displaystyle{ f^{(i)}(t) = 0 }[/math]. Zatem dla [math]\displaystyle{ r = 3 }[/math] wyraz [math]\displaystyle{ {\small\frac{1}{6}} \int_1^n P_3(t) f^{(3)}(t) d t }[/math] jest równy zero i otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^n k^2 = {\small\frac{1}{6}} n (n + 1) (2 n + 1) }[/math]


Przykład E59
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} }[/math]

Wiemy, że przypadku szeregu nieskończonego jest

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{\pi^2}{6}} }[/math]

gdzie [math]\displaystyle{ {\small\frac{\pi^2}{6}} = 1.644934066848226436472415166646 \ldots }[/math]


Dla [math]\displaystyle{ r = 1 }[/math] mamy

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} = {\small\frac{3}{2}} - {\small\frac{1}{n}} + {\small\frac{1}{2 n^2}} - 2 \int_1^n {\small\frac{P_1 (t)}{t^3}} d t }[/math]

Przechodząc z [math]\displaystyle{ n }[/math] do nieskończoności, otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{\infty} {\small\frac{1}{k^2}} = {\small\frac{3}{2}} - 2 \int_1^{\infty} {\small\frac{P_1 (t)}{t^3}} d t }[/math]

Rzeczywiście, całka po prawej stronie jest zbieżna i równa [math]\displaystyle{ \tfrac{1}{12} ( 9 - \pi^2 ) }[/math].

Jeżeli tak, to możemy sumę zapisać w postaci

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} = {\small\frac{3}{2}} - {\small\frac{1}{n}} + {\small\frac{1}{2 n^2}} - 2 \int_1^{\infty} {\small\frac{P_1 (t)}{t^3}} d t + 2 \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t }[/math]
[math]\displaystyle{ \:\:\, = {\small\frac{\pi^2}{6}} - {\small\frac{1}{n}} + {\small\frac{1}{2 n^2}} + 2 \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t }[/math]


Ponieważ dla [math]\displaystyle{ P_1(t) = t - \lfloor t \rfloor - {\small\frac{1}{2}} }[/math] prawdziwe jest oszacowanie [math]\displaystyle{ - {\small\frac{1}{2}} \leqslant P_1(t) \leqslant {\small\frac{1}{2}} }[/math], to korzystając z pokazanego w zadaniu E55 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{1}{4 n^2}} \leqslant \int_n^{\infty} {\small\frac{P_1 (t)}{t^3}} d t \leqslant {\small\frac{1}{4 n^2}} }[/math]

Teraz już łatwo otrzymujemy oszacowania

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \leqslant {\small\frac{\pi^2}{6}} - {\small\frac{1}{n}} + {\small\frac{1}{n^2}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k^2}} \geqslant {\small\frac{\pi^2}{6}} - {\small\frac{1}{n}} }[/math]

Jeśli we wzorze Eulera-Maclaurina uwzględnimy więcej wyrazów, to otrzymamy dokładniejsze oszacowania.


Przykład E60
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math]

Rozwinięcie asymptotyczne tej sumy jest dobrze znane[14]

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + \gamma + {\small\frac{1}{2 n}} - \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2k \cdot n^{2 k}}} }[/math]
[math]\displaystyle{ = \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + {\small\frac{1}{120 n^4}} - {\small\frac{1}{252 n^6}} + {\small\frac{1}{240 n^8}} - {\small\frac{1}{132 n^{10}}} + \cdots }[/math]

gdzie [math]\displaystyle{ \gamma = 0.57721566490153286060651209 \ldots }[/math] jest stałą Eulera.


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + {\small\frac{1}{2}} + {\small\frac{1}{2 n}} - \int_1^n {\small\frac{P_1 (t)}{t^2}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left( \sum_{k = 1}^{n} {\small\frac{1}{k}} - \log n \right) = {\small\frac{1}{2}} - \int_1^{\infty} {\small\frac{P_1 (t)}{t^2}} d t }[/math]

Rzeczywiście, całka po prawej stronie jest zbieżna i równa [math]\displaystyle{ \tfrac{1}{2} - \gamma }[/math].


Zastosujemy teraz wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 3 }[/math] i znajdziemy oszacowanie

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + {\small\frac{7}{12}} + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} - \int_1^n {\small\frac{P_3 (t)}{t^4}} d t }[/math]
[math]\displaystyle{ \: = \log n + {\small\frac{7}{12}} + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} - \int_1^{\infty} {\small\frac{P_3 (t)}{t^4}} d t + \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t }[/math]

Oczywiście

[math]\displaystyle{ {\small\frac{7}{12}} - \int_1^{\infty} {\small\frac{P_3 (t)}{t^4}} d t = \gamma }[/math]

Dostajemy

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} = \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t }[/math]


Ponieważ prawdziwe są oszacowania (zobacz przykłady E24E25)

[math]\displaystyle{ - {\small\frac{\sqrt{3}}{36}} \leqslant P_3 (t) \leqslant {\small\frac{\sqrt{3}}{36}} }[/math]

to korzystając z pokazanego w zadaniu E55 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{\sqrt{3}}{108 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_3 (t)}{t^4}} d t \leqslant {\small\frac{\sqrt{3}}{108 n^3}} }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} \leqslant \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + {\small\frac{\sqrt{3}}{108 n^3}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} \geqslant \log n + \gamma + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} - {\small\frac{\sqrt{3}}{108 n^3}} }[/math]

Powyższe nierówności mogą nam posłużyć do wyznaczenia stałej [math]\displaystyle{ \gamma }[/math]. Przykładowo dla [math]\displaystyle{ n = 10^6 }[/math], otrzymujemy

[math]\displaystyle{ 0.5772156649015328605 \leqslant \gamma \leqslant 0.5772156649015328607 }[/math]


Przykład E61
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} \log k }[/math]

Rozwinięcie asymptotyczne tej sumy jest dobrze znane[15]

[math]\displaystyle{ \log n! = n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{2 k (2 k - 1) \cdot n^{2 k - 1}}} }[/math]
[math]\displaystyle{ \quad \; = n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{1260 n^5}} - {\small\frac{1}{1680 n^7}} + {\small\frac{1}{1188 n^9}} - \cdots }[/math]

gdzie [math]\displaystyle{ \tfrac{1}{2} \log \left( 2 \pi \right) = 0.91893853320467274178 \ldots }[/math]


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + 1 + \int_1^n {\small\frac{P_1 (t)}{t}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = 1 + \int_{1}^{\infty} {\small\frac{P_1(t)}{t}} d t }[/math]

Z twierdzenia E52 wiemy, że całka [math]\displaystyle{ \int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t }[/math] jest zbieżna, a z rozwinięcia asymptotycznego wiemy, że granica po lewej stronie jest równa [math]\displaystyle{ \tfrac{1}{2} \log \left( 2 \pi \right) }[/math], zatem otrzymujemy

[math]\displaystyle{ \int_{1}^{\infty} {\small\frac{P_1 (t)}{t}} d t = \tfrac{1}{2} \log (2 \pi) - 1 }[/math]


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 4 }[/math], otrzymujemy

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + {\small\frac{331}{360}} + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{4}} \int_1^n {\small\frac{P_4 (t)}{t^4}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \log k - \left( n \log n - n + {\small\frac{1}{2}} \log n \right) \right] = {\small\frac{331}{360}} + {\small\frac{1}{4}} \int_1^{\infty} {\small\frac{P_4 (t)}{t^4}} d t }[/math]

Ponieważ całka po prawej stronie jest zbieżna, to granica wypisana po lewej stronie istnieje i jest równa stałej – w tym przypadku [math]\displaystyle{ \tfrac{1}{2} \log \left( 2 \pi \right) }[/math]. Możemy teraz wzór Eulera-Maclaurina zapisać w postaci

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + {\small\frac{331}{360}} + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} + {\small\frac{1}{4}} \int_1^{\infty} {\small\frac{P_4(t)}{t^4}} d t - {\small\frac{1}{4}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} d t }[/math]

Czyli

[math]\displaystyle{ \sum_{k = 1}^{n} \log k = n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} - {\small\frac{1}{360 n^3}} - {\small\frac{1}{4}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} d t }[/math]


Z przykładów E24E25 wiemy, że prawdziwe są oszacowania

[math]\displaystyle{ - {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}} }[/math]

Zatem korzystając z pokazanego w zadaniu E55 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{1}{90 n^3}} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^4}} (t) d t \leqslant {\small\frac{7}{720 n^3}} }[/math]

Czyli

[math]\displaystyle{ - {\small\frac{7}{2880 n^3}} \leqslant - {\small\frac{1}{4}} \int_n^{\infty} {\small\frac{P_4(t)}{t^4}} (t) d t \leqslant {\small\frac{1}{360 n^3}} }[/math]


Skąd natychmiast otrzymujemy oszacowania

[math]\displaystyle{ \sum_{k = 1}^{n} \log k \leqslant n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} \log k \geqslant n \log n - n + {\small\frac{1}{2}} \log n + \tfrac{1}{2} \log \left( 2 \pi \right) + {\small\frac{1}{12 n}} - {\small\frac{1}{192 n^3}} }[/math]

Oczywiście, podobnie jak w poprzednim przykładzie, powyższe nierówności mogą służyć do wyznaczenia wartości stałej.


Przykład E62
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} }[/math]

Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 4 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} = {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} - {\small\frac{133}{640}} + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1920}} n^{- 5 / 2} + {\small\frac{5}{128}} \int_1^n {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} \sqrt{k} - \left( {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} \right) \right] = - {\small\frac{133}{640}} + {\small\frac{5}{128}} \int_1^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]


Ponieważ całka po prawej stronie jest zbieżna, to granica wypisana po lewej stronie istnieje i jest równa pewnej stałej [math]\displaystyle{ C }[/math]. Możemy teraz wzór Eulera-Maclaurina zapisać w postaci

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} = {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} - {\small\frac{133}{640}} + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1920}} n^{- 5 / 2} + {\small\frac{5}{128}} \int_1^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t - {\small\frac{5}{128}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]

Zatem

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} = {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} + C + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1920}} n^{- 5 / 2} - {\small\frac{5}{128}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t }[/math]


Z przykładów E24E25 wiemy, że prawdziwe są oszacowania

[math]\displaystyle{ - {\small\frac{1}{30}} \leqslant P_4 (x) \leqslant {\small\frac{7}{240}} }[/math]

Zatem korzystając z pokazanego w zadaniu E55 wzoru, dostajemy

[math]\displaystyle{ - {\small\frac{1}{75}} n^{- 5 / 2} \leqslant \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{7}{600}} n^{- 5 / 2} }[/math]

Czyli

[math]\displaystyle{ - {\small\frac{7}{15360}} n^{- 5 / 2} \leqslant - {\small\frac{5}{128}} \int_n^{\infty} {\small\frac{P_4 (t)}{t^{7 / 2}}} (t) d t \leqslant {\small\frac{1}{1920}} n^{- 5 / 2} }[/math]


I otrzymujemy oszacowania

[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} \leqslant {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} + C + {\small\frac{1}{24}} n^{- 1 / 2} }[/math]
[math]\displaystyle{ \sum_{k = 1}^{n} \sqrt{k} \geqslant {\small\frac{2}{3}} n^{3 / 2} + {\small\frac{1}{2}} n^{1 / 2} + C + {\small\frac{1}{24}} n^{- 1 / 2} - {\small\frac{1}{1024}} n^{- 5 / 2} }[/math]

Powyższe nierówności mogą nam posłużyć do wyznaczenia stałej [math]\displaystyle{ C }[/math]. Przykładowo dla [math]\displaystyle{ n = 10^6 }[/math], otrzymujemy

[math]\displaystyle{ - 0.207886224977354567 \leqslant C \leqslant - 0.207886224977354565 }[/math]


Przykład E63
Pokażemy, dlaczego lepiej wybrać wartość [math]\displaystyle{ r }[/math] za dużą niż za małą i dlaczego należy sprawdzać zbieżność całki

[math]\displaystyle{ \int_a^b P_r(t) f^{(r)}(t) d t }[/math]

korzystając z kryterium Dirichleta (twierdzenie E56) lub z twierdzenia E52. Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} }[/math]

Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} = {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{10}} + {\small\frac{3}{2}} \int_1^n \sqrt{t} \cdot P_1 (t) d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} k^{3 / 2} - \left( {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} \right) \right] = {\small\frac{1}{10}} + {\small\frac{3}{2}} \int_1^{\infty} \sqrt{t} \cdot P_1(t) d t }[/math]

Jeszcze nie wszystkie wyrazy rozbieżne, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, zostały wyodrębnione – lewa strona jest rozbieżna. Podobnie rozbieżna jest całka po prawej stronie – rozbieżność tej całki informuje nas, że wybraliśmy za małą wartość [math]\displaystyle{ r }[/math].


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 2 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} = {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} - {\small\frac{1}{40}} - {\small\frac{3}{8}} \int_1^n {\small\frac{P_2(t)}{\sqrt{t}}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, otrzymujemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} k^{3 / 2} - \left( {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} \right) \right] = - {\small\frac{1}{40}} - {\small\frac{3}{8}} \int_1^{\infty} {\small\frac{P_2(t)}{\sqrt{t}}} d t }[/math]

Całka po prawej stronie jest zbieżna, co wynika z kryterium Dirichleta. Zatem i lewa strona jest zbieżna, czyli wszystkie wyrazy rozbieżne, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, zostały wyodrębnione. Możemy to łatwo sprawdzić, obierając większą wartość [math]\displaystyle{ r }[/math].


Stosując wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 4 }[/math], mamy

[math]\displaystyle{ \sum_{k = 1}^{n} k^{3 / 2} = {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} - {\small\frac{49}{1920}} + {\small\frac{1}{1920}} n^{- 3 / 2} - {\small\frac{3}{128}} \int_1^n {\small\frac{P_4 (t)}{t^{5 / 2}}} d t }[/math]

W granicy, gdy [math]\displaystyle{ n }[/math] dąży do nieskończoności, dostajemy

[math]\displaystyle{ \lim_{n \to \infty} \left[ \sum_{k = 1}^{n} k^{3 / 2} - \left( {\small\frac{2}{5}} n^{5 / 2} + {\small\frac{1}{2}} n^{3 / 2} + {\small\frac{1}{8}} n^{1 / 2} \right) \right] = - {\small\frac{49}{1920}} - {\small\frac{3}{128}} \int_1^{\infty} {\small\frac{P_4(t)}{t^{5 / 2}}} d t }[/math]


Uwaga E64
Rozwiązując przykłady znaleźliśmy wartości następujących całek oznaczonych

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_1 (t)}{t}} d t = {\small\frac{1}{2}} \log (2 \pi) - 1 }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_1 (t)}{t^2}} d t = {\small\frac{1}{2}} - \gamma }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_1 (t)}{t^3}} d t = {\small\frac{9 - \pi^2}{12}} }[/math]


Jeżeli funkcja rzeczywista [math]\displaystyle{ f(t) }[/math] ma ciągłą pochodną w [math]\displaystyle{ [a, b] \subset \mathbb{R} }[/math] oraz [math]\displaystyle{ \lim_{t \to \infty} f (t) = 0 }[/math], to dla [math]\displaystyle{ n \geqslant 1 }[/math] mamy

[math]\displaystyle{ \int_a^{\infty} P_{n + 1} (t) f'(t) d t = - B_{n + 1} f(a) - (n + 1) \int_a^{\infty} P_n(t) f(t) d t }[/math]

(Jest to prosty wniosek z twierdzenia E40).


Powyższy rezultat możemy wykorzystać do wyliczenia kolejnych całek zawierających funkcje okresowe Bernoulliego. Przykładowo mamy

[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_2 (t)}{t^2}} d t = \log (2 \pi) - {\small\frac{11}{6}} }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_2 (t)}{t^3}} d t = {\small\frac{7}{12}} - \gamma }[/math]
[math]\displaystyle{ \int_1^{\infty} {\small\frac{P_2 (t)}{t^4}} d t = {\small\frac{10 - \pi^2}{18}} }[/math]



Metody wyliczania stałej we wzorze Eulera-Maclaurina

Uwaga E65
W przedstawionych wyżej przykładach wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina (przykład E60E62) oraz pokazaliśmy, że wartość całki [math]\displaystyle{ \int_a^{\infty} P_r (t) f^{(r)} (t) d t }[/math] jest związana z wartością stałej (przykład E59, E60E61). Obecnie dokładnie omówimy ten problem.


Twierdzenie E66
Jeżeli założymy, że

●    całka nieoznaczona [math]\displaystyle{ F(x) = \int f(x) d x }[/math] nie zawiera wyrazów, które nie zależą od [math]\displaystyle{ x }[/math] (takie wyrazy ulegają redukcji przy wyliczaniu całki [math]\displaystyle{ \int_a^b f(t) d t = F(b) - F(a) }[/math] i nie występują we wzorze Eulera-Maclaurina)
●    dla pewnego [math]\displaystyle{ r \geqslant 1 }[/math] całka [math]\displaystyle{ \int_a^{\infty} P_r (t) f^{(r)} (t) d t }[/math] jest zbieżna

to wzór Eulera-Maclaurina może być zapisany w postaci

[math]\displaystyle{ \sum_{k = a}^b f (k) = C (a) + E (b) }[/math]

gdzie

[math]\displaystyle{ C(a) = - F (a) + {\small\frac{1}{2}} f (a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)} (a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r (t) f^{(r)} (t) d t }[/math]
[math]\displaystyle{ E(b) = F (b) + {\small\frac{1}{2}} f (b) + \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(b) + {\small\frac{(- 1)^r}{r!}} \int_b^{\infty} P_r (t) f^{(r)} (t) d t }[/math]
Dowód


Uwaga E67
We wzorze

[math]\displaystyle{ \sum_{k = a}^b f (k) = C (a) + E (b) }[/math]

składnik [math]\displaystyle{ C(a) }[/math] jest wartością stałej [math]\displaystyle{ C }[/math] we wzorze Eulera-Maclaurina, a [math]\displaystyle{ E(b) }[/math] zwraca kolejne wyrazy rozwinięcia. Pokażemy, że wartość tej stałej możemy wyliczyć bezpośrednio ze wzoru

[math]\displaystyle{ C = C (a) }[/math]

lub metodą pośrednią, wykorzystując związek

[math]\displaystyle{ C(a) = \sum_{k = a}^b f (k) - E (b) }[/math]

W obydwu przypadkach obliczenia wykonamy dla znanej już Czytelnikowi sumy [math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math] (przykład E56).


Przykład E68
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math]

Ponieważ

[math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math]
[math]\displaystyle{ F(x) = \int {\small\frac{d x}{x}} = \log x }[/math]
[math]\displaystyle{ f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}} }[/math]

to wzór na wartość stałej z twierdzenia E65

[math]\displaystyle{ C(a) = - F(a) + {\small\frac{1}{2}} f(a) - \sum_{k = 2}^r {\small\frac{B_k}{k!}} f^{(k - 1)}(a) - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r(t) f^{(r)}(t) d t }[/math]

przyjmuje postać

[math]\displaystyle{ C(1) = - \log (1) + {\small\frac{1}{2}} - \sum_{k = 2}^r {\small\frac{B_k}{k!}} \cdot {\small\frac{(- 1)^{k - 1} (k - 1) !}{x^k}} - {\small\frac{(- 1)^r}{r!}} \int_a^{\infty} P_r (t) \cdot {\small\frac{(- 1)^r r!}{x^{r + 1}}} d t }[/math]
[math]\displaystyle{ C(1) = {\small\frac{1}{2}} + \sum_{k = 2}^r {\small\frac{B_k}{k}} - \int_1^{\infty} {\small\frac{P_r(t)}{t^{r + 1}}} d t }[/math]

Oznaczmy

[math]\displaystyle{ C_r = {\small\frac{1}{2}} + \sum_{k = 2}^r {\small\frac{B_k}{k}} }[/math]
[math]\displaystyle{ I_r = - \int_1^{\infty} {\small\frac{P_r (t)}{t^{r + 1}}} d t }[/math]

Wartość [math]\displaystyle{ I_r }[/math] obliczymy numerycznie w programie PARI/GP poleceniem

Int(r) = - intnum(t = 1,+oo, P(r, t)/t^(r+1), 12 )

gdzie

P(r, t) = B(r, t - floor(t))

jest funkcją okresową Bernoulliego [math]\displaystyle{ P_r (t) }[/math].

Ponieważ wyliczenie wartości [math]\displaystyle{ C_r }[/math] jest bardzo łatwe, to w tabeli przedstawiamy jedynie wartość całki [math]\displaystyle{ I_r }[/math] oraz wielkość błędu, z jakim wyliczyliśmy wartość stałej we wzorze Eulera-Maclaurina. Przy precyzji obliczeń w PARI/GP równej [math]\displaystyle{ 77 }[/math] cyfr znaczących (wyświetlanych jest tylko [math]\displaystyle{ 60 }[/math]) otrzymujemy


Zwróćmy uwagę, jak bardzo [math]\displaystyle{ C_r \approx \gamma - I_r }[/math] odbiega od wartości stałej [math]\displaystyle{ \gamma }[/math] dla dużych wartości [math]\displaystyle{ r }[/math] – dopiero suma [math]\displaystyle{ C_r + I_r }[/math] daje prawidłowy rezultat. Tylko po to, aby uwidocznić ten fakt, przedstawiliśmy dane dla tak wielu wartości [math]\displaystyle{ r }[/math].


Uwaga E69
W przykładzie E68 uzyskaliśmy zaskakująco dokładny wynik, ale wiemy o tym tylko dlatego, że znaliśmy wynik prawidłowy. Gdybyśmy nie znali wartości stałej [math]\displaystyle{ \gamma }[/math], to nie bylibyśmy w stanie określić, ile cyfr sumy [math]\displaystyle{ C_r + I_r }[/math] jest prawidłowych.

Nim przejdziemy do przedstawienia drugiego sposobu wyliczania stałej we wzorze Eulera-Maclaurina, udowodnimy twierdzenie, które pozwoli nam działać bardziej efektywnie.


Twierdzenie E70
Jeżeli założymy, że

●    całka nieoznaczona [math]\displaystyle{ F(x) = \int f (x) d x }[/math] nie zawiera wyrazów, które nie zależą od [math]\displaystyle{ x }[/math] (takie wyrazy ulegają redukcji przy wyliczaniu całki [math]\displaystyle{ \int_a^b f (t) d t = F (b) - F (a) }[/math] i nie występują we wzorze Eulera-Maclaurina)
●    funkcja [math]\displaystyle{ f^{(2 s)} (t) }[/math] jest funkcją ciągłą i ma stały znak w przedziale [math]\displaystyle{ [b, \infty) }[/math]
●    [math]\displaystyle{ \lim_{t \to \infty} f^{(2 s - 1)} (t) = 0 }[/math]

to dla stałej [math]\displaystyle{ C(a) }[/math] we wzorze Eulera-Maclaurina prawdziwe jest oszacowanie

[math]\displaystyle{ W - \Delta \leqslant C(a) \leqslant W + \Delta }[/math]

gdzie

[math]\displaystyle{ W = W (s, a, b) = \sum_{k = a}^b f(k) - \left[ F (b) + {\small\frac{1}{2}} f(b) + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} f^{(2 k - 1)}(b) \right] }[/math]
[math]\displaystyle{ \Delta = \Delta (s, b) = {\small\frac{| B_{2 s} |}{(2 s) !}} | f^{(2 s - 1)} (b) | }[/math]

Czyli błąd, jakim obarczony jest wynik [math]\displaystyle{ W }[/math], jest nie większy od wartości bezwzględnej ostatniego składnika sumy.

Dowód


Przykład E71
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 1}^{n} {\small\frac{1}{k}} }[/math]

Ponieważ

[math]\displaystyle{ f(x) = {\small\frac{1}{x}} }[/math]
[math]\displaystyle{ F(x) = \int {\small\frac{d x}{x}} = \log x }[/math]
[math]\displaystyle{ f^{(r)} (x) = {\small\frac{d^r}{d x^r}} {\small\frac{1}{x}} = {\small\frac{(- 1)^r r!}{x^{r + 1}}} }[/math]

to z twierdzenia E69 dostajemy

[math]\displaystyle{ W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - \sum_{k = 1}^s {\small\frac{B_{2 k}}{2 k \cdot n^{2 k}}} \right] }[/math]
[math]\displaystyle{ \Delta = {\small\frac{| B_{2 s} |}{2 s \cdot n^{2 s}}} }[/math]


Dla [math]\displaystyle{ s = 4 }[/math] i [math]\displaystyle{ n = 10^8 }[/math] mamy

[math]\displaystyle{ \Delta = 4.17 \cdot 10^{- 67} }[/math]

Uznając, że dokładność rzędu [math]\displaystyle{ 10^{- 65} }[/math] nas zadowala, otrzymujemy dla [math]\displaystyle{ s = 4 }[/math]

[math]\displaystyle{ W = \sum_{k = 1}^n {\small\frac{1}{k}} - \left[ \log n + {\small\frac{1}{2 n}} - {\small\frac{1}{12 n^2}} + {\small\frac{1}{120 n^4}} - {\small\frac{1}{252 n^6}} + {\small\frac{1}{240 n^8}} \right] }[/math]

Wyliczając wartość prawej strony dla [math]\displaystyle{ n = 10^8 }[/math], dostajemy

[math]\displaystyle{ W = 0.57721566490153286060651209008240243104215933593992359880576723488486772677766467 \ldots }[/math]

Ponieważ [math]\displaystyle{ \Delta = 4.17 \cdot 10^{- 67} }[/math], to ostatecznie możemy napisać

[math]\displaystyle{ \gamma = 0.57721566490153286060651209008240243104215933593992359880576723488 \ldots }[/math]

Wyznaczyliśmy stałą [math]\displaystyle{ \gamma }[/math] z dokładnością [math]\displaystyle{ 65 }[/math] cyfr po przecinku. W rzeczywistości błąd jest mniejszy od [math]\displaystyle{ 10^{- 81} }[/math].


Uwaga E72
Zauważmy, że wyliczając wartość [math]\displaystyle{ \Delta }[/math], znamy wartość błędu jeszcze przed wykonaniem całości obliczeń. Dobierając odpowiednie wartości liczb [math]\displaystyle{ s }[/math] i [math]\displaystyle{ n }[/math] możemy sprawić, że błąd będzie odpowiednio mały. Unikamy numerycznego całkowania, które w przypadku bardziej skomplikowanych funkcji może być długie i obarczone znacznym i nieznanym błędem.


Przykład E73
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 2}^n \mathop{\text{li}}(k) }[/math]

W PARI/GP funkcję specjalną [math]\displaystyle{ \mathop{\text{li}}(x) = \int^x_0 {\small\frac{d t}{\log t}} }[/math] (logarytm całkowy[16][17]) możemy uzyskać następująco

li(x) = real( -eint1( -log(x) ) )

W powyższym wzorze wykorzystaliśmy zaimplementowaną pod nazwą [math]\displaystyle{ \text{eint1} (x) }[/math] inną funkcję specjalną [math]\displaystyle{ E_1 (x) = \int_{x}^{\infty} {\small\frac{e^{- t}}{t}} d t }[/math][18][19].


Mamy:

[math]\displaystyle{ f(x) = \mathop{\text{li}}(x) }[/math]
[math]\displaystyle{ F(x) = \int \mathop{\text{li}}(x) d x = x \mathop{\text{li}}(x) - \mathop{\text{li}}(x^2) }[/math]
[math]\displaystyle{ f^{(1)} (x) = {\small\frac{1}{\log x}} }[/math]

dla [math]\displaystyle{ k \geqslant 2 }[/math] jest

[math]\displaystyle{ f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}} = (- 1)^{k - 1} \sum_{j = 1}^{k - 1} {\small\frac{A^{k - 1}_j}{x^{k - 1} \log^{j + 1} x}} = \mathop{\text{DLog}}(k - 1, x) }[/math]

Oznaczenie [math]\displaystyle{ k }[/math]-tej pochodnej funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] jako [math]\displaystyle{ \mathop{\text{DLog}}(k, x) }[/math] znacząco ułatwi nam zapisywanie wzorów. Liczby naturalne [math]\displaystyle{ A^k_j }[/math] spełniają następujące równania rekurencyjne

[math]\displaystyle{ A^k_1 = (k - 1) A^{k - 1}_1 }[/math]
[math]\displaystyle{ A_j^k = j A^{k - 1}_{j - 1} + (k - 1) A^{k - 1}_j \qquad }[/math] dla [math]\displaystyle{ \quad j = 2, \ldots, k - 1 }[/math]
[math]\displaystyle{ A^k_k = k A^{k - 1}_{k - 1} }[/math]

gdzie [math]\displaystyle{ A^1_1 = 1 }[/math] (zobacz twierdzenia E76E77).


Zauważmy, że dla [math]\displaystyle{ k \geqslant 2 }[/math] funkcje [math]\displaystyle{ f^{(k)} (x) = {\small\frac{d^{k - 1}}{d x^{k - 1}}} {\small\frac{1}{\log x}} }[/math] są funkcjami ciągłymi i mają stały znak dla [math]\displaystyle{ x \gt 1 }[/math] oraz [math]\displaystyle{ \lim_{x \to \infty} f^{(k - 1)} (x) = 0 }[/math]. Zatem dla dowolnego [math]\displaystyle{ k \geqslant 2 }[/math] spełnione są założenia twierdzenia E70. W przypadku rozpatrywanej przez nas sumy z twierdzenia E70 otrzymujemy

[math]\displaystyle{ \Delta = \Delta (s, n) = {\small\frac{| B_{2 s} |}{(2 s) !}} | \mathop{\text{DLog}}(2 s - 2, n) | }[/math]
[math]\displaystyle{ W = W (s, 2, n) = \sum_{k = 2}^n \mathop{\text{li}}(k) - \left[ n \mathop{\text{li}}(n) - \mathop{\text{li}}(n^2) + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{B_2}{2 \log n}} + \sum_{k = 2}^s {\small\frac{B_{2 k}}{(2 k) !}} \mathop{\text{DLog}}(2 k - 2, n) \right] }[/math]


Obliczenia przeprowadziliśmy w programie PARI/GP. Wymagają one zwiększenia precyzji obliczeń do [math]\displaystyle{ 80 }[/math] miejsc znaczących i wcześniejszego przygotowania kilku funkcji omówionych szerzej w uwadze E78. Mamy

B(n, x) = sum(k = 0, n, 1/(k+1)*sum(j = 0, k, (-1)^j*binomial(k,j)*(x+j)^n))

A(n, k) = if( k == 1 || k == n, k*(n-1)!, k*A(n-1, k-1) + (n-1)*A(n-1, k) )

DLog(n, x) = (-1)^n * sum(k = 1, n, A(n,k)/( x^n * log(x)^(k+1) ))

li(x) = real( -eint1( -log(x) ) )

delta(s, n) = B(2*s, 0)/(2*s)! * DLog(2*s-2, n)

W(s, n) = sum(k = 2, n, li(k)) - n*li(n) + li(n^2) - 1/2*li(n) - B(2,0)/2! * 1/log(n) - sum(k = 2, s, B(2*k,0)/(2*k)! * DLog(2*k-2, n))


Dla [math]\displaystyle{ s = 5 }[/math] i [math]\displaystyle{ n = 10^7 }[/math] otrzymujemy (porównaj WolframAlpha)

[math]\displaystyle{ \Delta = {\small\frac{B_{10}}{10!}} \cdot | \mathop{\text{DLog}}(8, 10^7) | = 5.632 \cdot 10^{- 63} }[/math]

[math]\displaystyle{ W = 1.28191595049146577908068521816208913078488987854947239276268700691879666704021184913771562 }[/math]


Po uwzględnieniu możliwego błędu znajdujemy wartość stałej z dokładnością [math]\displaystyle{ 61 }[/math] miejsc po przecinku.

[math]\displaystyle{ C = 1.2819159504914657790806852181620891307848898785494723927626870 \ldots }[/math]


Przykład E74
Rozważmy jeszcze raz sumę

[math]\displaystyle{ \sum_{k = 2}^n \mathop{\text{li}}(k) }[/math]

Wypiszmy dla tej sumy wzór Eulera-Maclaurina dla [math]\displaystyle{ r = 1 }[/math].

[math]\displaystyle{ \sum_{k = 2}^n \mathop{\text{li}}(k) = \int_2^n \mathop{\text{li}}(t) d t + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{1}{2}} \mathop{\text{li}}(2) + \int_2^n {\small\frac{P_1(t)}{\log t}} d t }[/math]
[math]\displaystyle{ \;\;\;\: = (x \mathop{\text{li}}(x) - \mathop{\text{li}}(x^2)) \biggr\rvert_{2}^{n} + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{1}{2}} \mathop{\text{li}}(2) + \int_2^n {\small\frac{P_1 (t)}{\log t}} d t }[/math]
[math]\displaystyle{ \;\;\;\: = n \mathop{\text{li}}(n) - \mathop{\text{li}}(n^2) - 2 \mathop{\text{li}}(2) + \mathop{\text{li}}(4) + {\small\frac{1}{2}} \mathop{\text{li}}(n) + {\small\frac{1}{2}} \mathop{\text{li}}(2) + \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t - \int_n^{\infty} {\small\frac{P_1 (t)}{\log t}} d t }[/math]
[math]\displaystyle{ \;\;\;\: = \left[ - {\small\frac{3}{2}} \mathop{\text{li}}(2) + \mathop{\text{li}}(4) + \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t \right] + n \mathop{\text{li}}(n) - \mathop{\text{li}}(n^2) + {\small\frac{1}{2}} \mathop{\text{li}}(n) - \int_n^{\infty} {\small\frac{P_1 (t)}{\log t}} d t }[/math]


Wyrażenie w nawiasie kwadratowym jest stałą wstępującą we wzorze Eulera-Maclaurina, zatem

[math]\displaystyle{ C = - {\small\frac{3}{2}} \mathop{\text{li}}(2) + \mathop{\text{li}}(4) + \int_2^{\infty} {\small\frac{P_1(t)}{\log t}} d t }[/math]
[math]\displaystyle{ \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = C + {\small\frac{3}{2}} \mathop{\text{li}}(2) - \mathop{\text{li}}(4) }[/math]


W poprzednim przykładzie wyliczyliśmy wartość stałej [math]\displaystyle{ C }[/math]

[math]\displaystyle{ C = 1.2819159504914657790806852181620891307848898785494723927626870 \ldots }[/math]

Wynika stąd natychmiast, że

[math]\displaystyle{ \int_2^{\infty} {\small\frac{P_1 (t)}{\log t}} d t = -0.117923474371345921663180326620119770994144590988603907635106 \ldots }[/math]

Właśnie w taki sposób została obliczona wartość całki niewłaściwej, która występuje w zadaniu E57.


Przykład E75
Rozważmy sumę

[math]\displaystyle{ \sum_{k = 0}^{n} e^k }[/math]

Mamy

[math]\displaystyle{ f(x) = e^x }[/math]
[math]\displaystyle{ F(x) = \int e^x d x = e^x }[/math]
[math]\displaystyle{ f^{(r)} (x) = {\small\frac{d^r}{d x^r}} e^x = e^x }[/math]

Zatem ze wzoru Eulera-Maclaurina otrzymujemy

[math]\displaystyle{ \sum_{k = 0}^{n} e^k = e^n - 1 + {\small\frac{1}{2}} (e^n + 1) + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} (e^n - 1) - {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} e^k = 1 + (e^n - 1) + {\small\frac{1}{2}} (e^n - 1) + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} (e^n - 1) - {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t }[/math]
[math]\displaystyle{ \sum_{k = 0}^{n} e^k = 1 + (e^n - 1) \left( 1 + {\small\frac{1}{2}} + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} \right) - {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t }[/math]


Ponieważ dla [math]\displaystyle{ | x | \lt 2 \pi }[/math] prawdziwy jest wzór[20]

[math]\displaystyle{ {\small\frac{x}{e^x - 1}} = \sum_{k = 0}^{\infty} {\small\frac{B_k \cdot x^k}{k!}} }[/math]

to dla [math]\displaystyle{ x = 1 }[/math] dostajemy

[math]\displaystyle{ {\small\frac{1}{e - 1}} = \sum_{k = 0}^{\infty} {\small\frac{B_k}{k!}} = 1 - {\small\frac{1}{2}} + \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{(2 k) !}} = {\small\frac{1}{2}} + \sum_{k = 1}^{\infty} {\small\frac{B_{2 k}}{(2 k) !}} }[/math]


W granicy, gdy [math]\displaystyle{ s }[/math] dąży do nieskończoności, mamy

[math]\displaystyle{ \lim_{s \to \infty} \left[ 1 + (e^n - 1) \left( {\small\frac{3}{2}} + \sum_{k = 1}^s {\small\frac{B_{2 k}}{(2 k) !}} \right) \right] = 1 + (e^n - 1) \left( {\small\frac{3}{2}} + {\small\frac{1}{e - 1}} - {\small\frac{1}{2}} \right) = 1 + (e^n - 1) \left( 1 + {\small\frac{1}{e - 1}} \right) = {\small\frac{e^{n + 1} - 1}{e - 1}} }[/math]


W obliczeniu granicy całki dla [math]\displaystyle{ s }[/math] dążącego do nieskończoności pomocne będzie oszacowanie (zobacz E31)

[math]\displaystyle{ {\small\frac{| B_{2 k} |}{(2 k) !}} \lt {\small\frac{2}{(2 \pi)^{2 k}}} \cdot {\small\frac{1}{1 - 2^{1 - 2 k}}} \leqslant {\small\frac{4}{(2 \pi)^{2 k}}} }[/math]

prawdziwe dla [math]\displaystyle{ k \geqslant 1 }[/math].


Teraz już łatwo znajdujemy

[math]\displaystyle{ 0 \leqslant {\small\frac{1}{(2 s) !}} \left| \int_0^n P_{2 s} (t) e^t d t \right| \leqslant {\small\frac{1}{(2 s) !}} \int_0^n | P_{2 s} (t) | e^t d t \leqslant {\small\frac{| B_{2 s} |}{(2 s) !}} \int_0^n e^t d t = {\small\frac{| B_{2 s} |}{(2 s) !}} (e^n - 1) \lt {\small\frac{4}{(2 \pi)^{2 s}}} (e^n - 1) }[/math]


Dla dowolnego, ale ustalonego [math]\displaystyle{ n }[/math], jest

[math]\displaystyle{ \lim_{s \to \infty} {\small\frac{4}{(2 \pi)^{2 s}}} (e^n - 1) = 0 }[/math]


Zatem z twierdzenia o trzech ciągach (zobacz twierdzenia C10C8) dostajemy natychmiast

[math]\displaystyle{ \lim_{s \to \infty} {\small\frac{1}{(2 s) !}} \left| \int_0^n P_{2 s} (t) e^t d t \right| = \lim_{s \to \infty} {\small\frac{1}{(2 s) !}} \int_0^n P_{2 s} (t) e^t d t = 0 }[/math]


Ostatecznie otrzymujemy wzór

[math]\displaystyle{ \sum_{k = 0}^{n} e^k = {\small\frac{e^{n + 1} - 1}{e - 1}} }[/math]


Znalezienie wzoru na sumę częściową szeregu geometrycznego nie jest odkrywcze, ale z pewnością było pouczające.




Uzupełnienie

Twierdzenie E76
Ogólny wzór na [math]\displaystyle{ n }[/math]-tą pochodną funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] ma postać

[math]\displaystyle{ {\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}} }[/math]

Liczby naturalne [math]\displaystyle{ A^n_k }[/math] spełniają następujące równania rekurencyjne

[math]\displaystyle{ A^n_1 = (n - 1) A^{n - 1}_1 }[/math]
[math]\displaystyle{ A_k^n = k A^{n - 1}_{k - 1} + (n - 1) A^{n - 1}_k \qquad }[/math] dla [math]\displaystyle{ \quad k = 2, \ldots, n - 1 }[/math]
[math]\displaystyle{ A^n_n = n A^{n - 1}_{n - 1} }[/math]

gdzie [math]\displaystyle{ A^1_1 = 1 }[/math].

Dowód


Twierdzenie E77
Z równań rekurencyjnych

[math]\displaystyle{ A^n_1 = (n - 1) A^{n - 1}_1 }[/math]
[math]\displaystyle{ A_k^n = k A^{n - 1}_{k - 1} + (n - 1) A^{n - 1}_k \qquad }[/math] dla [math]\displaystyle{ \quad k = 2, \ldots, n - 1 }[/math]
[math]\displaystyle{ A^n_n = n A^{n - 1}_{n - 1} }[/math]

gdzie [math]\displaystyle{ A^1_1 = 1 }[/math], wynikają następujące wzory ogólne

[math]\displaystyle{ A^n_1 = (n - 1) ! }[/math]
[math]\displaystyle{ A^n_n = n! }[/math]

oraz

[math]\displaystyle{ A^n_{n - 1} = {\small\frac{1}{2}} (n - 1) \cdot n! }[/math]
[math]\displaystyle{ A^n_{n - 2} = {\small\frac{1}{24}} (n - 2) (3 n - 1) \cdot n! }[/math]
[math]\displaystyle{ A^n_{n - 3} = {\small\frac{1}{48}} n (n - 1) (n - 3) \cdot n! }[/math]
[math]\displaystyle{ A^n_{n - 4} = {\small\frac{1}{5760}} (n - 4) (15 n^3 - 30 n^2 + 5 n + 2) \cdot n! }[/math]
[math]\displaystyle{ A^n_2 = 2 (n - 1) ! \cdot \sum_{k = 1}^{n - 1} {\small\frac{1}{k}} }[/math]
Dowód


Uwaga E78
Z twierdzeń E76E77 wynika, że ogólną postać [math]\displaystyle{ n }[/math]-tej pochodnej funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math] możemy łatwo wypisać

[math]\displaystyle{ {\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} = (- 1)^n \sum_{k = 1}^{n} {\small\frac{A^n_k}{x^n \log^{k + 1} x}} }[/math]

ale nie istnieje wzór ogólny, który pozwoliłby łatwo wyliczać wartości współczynników [math]\displaystyle{ A_k^n }[/math]. W tej sytuacji jedynym wyjściem jest wykorzystanie równania rekurencyjnego

[math]\displaystyle{ A_k^n = k A^{n - 1}_{k - 1} + (n - 1) A^{n - 1}_k \qquad }[/math] dla [math]\displaystyle{ \quad k = 2, \ldots, n - 1 }[/math]

oraz wzorów

[math]\displaystyle{ A^n_1 = (n - 1) ! }[/math]
[math]\displaystyle{ A^n_n = n! }[/math]


Programy odwołujące się do wzorów rekurencyjnych są zazwyczaj niezwykle proste, ale należy ich unikać, bo działają wolno i zużywają duże ilości pamięci. Niżej podajemy przykłady prostych funkcji rekurencyjnych wyliczających silnię i liczby Fibonacciego napisanych w PARI/GP

silnia(n) = if( n == 0, 1, n*silnia(n-1) )
Fibonacci(n) = if( n <= 1, n, Fibonacci(n-1) + Fibonacci(n-2) )


W naszym przypadku rekurencji ominąć nie można, ale rozwiązaniem problemu jest równie prosta funkcja

A(n, k) = if( k == 1 || k == n, k*(n-1)!, k*A(n-1, k-1) + (n-1)*A(n-1, k) )


Dysponując funkcją wyliczającą współczynniki A(n, k), możemy łatwo zapisać wzór na [math]\displaystyle{ n }[/math]-tą pochodną funkcji [math]\displaystyle{ {\small\frac{1}{\log x}} }[/math]

DLog(n, x) = (-1)^n * sum(k = 1, n, A(n, k)/( x^n * log(x)^(k+1) ))


Powyższy wzór jest bardzo przydatny przy wyliczaniu wartości [math]\displaystyle{ {\small\frac{d^n}{d x^n}} {\small\frac{1}{\log x}} }[/math] dla większych liczb [math]\displaystyle{ n }[/math]. Jednak [math]\displaystyle{ n }[/math] nie może być zbyt duże – ceną, jaką musimy zapłacić za użycie funkcji rekurencyjnych, jest wydłużenie czasu obliczeń. Przykładowo obliczenie

DLog(26, 10^8) = 7.1305293508389973644228947613613744962 10^(-186)

trwało ponad pół minuty. Zobacz też WolframAlpha









Przypisy

  1. Wikipedia, Bernoulli polynomials, (Wiki‑en)
  2. WolframAlpha, Bernoulli Polynomial, (WolframAlpha)
  3. Wolfram MathWorld, Bernoulli Polynomial, (Wolfram)
  4. NIST Digital Library of Mathematical Functions, Bernoulli and Euler Polynomials, (LINK)
  5. Skocz do: 5,0 5,1 Wikipedia, Twierdzenie Rolle’a, (Wiki‑pl), (Wiki‑en)
  6. Skocz do: 6,0 6,1 6,2 6,3 6,4 Wikipedia, Twierdzenie Lagrange’a (rachunek różniczkowy), (Wiki‑pl), (Wiki‑en)
  7. Skocz do: 7,0 7,1 Wikipedia, Twierdzenie Darboux, (Wiki‑pl), (Wiki‑en)
  8. D. H. Lehmer, On the Maxima and Minima of Bernoulli Polynomials, The American Mathematical Monthly, Vol. 47, No. 8 (Oct., 1940), pp. 533-538
  9. M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972, (LINK)
  10. Wikipedia, Abramowitz and Stegun, (Wiki‑en)
  11. C. D'Aniello, On some inequalities for the Bernoulli numbers, Rendiconti del Circolo Matematico di Palermo Series II, Volume 43 (1994), pp. 329-332
  12. Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics, Volume 351 (2019), pp. 1-5, (LINK)
  13. Twierdzenie Weierstrassa: Jeżeli funkcja [math]\displaystyle{ f(x) }[/math] określona w przedziale domkniętym jest ciągła, to jest w nim ograniczona i osiąga swoje kresy. (Wiki‑pl), (Wiki‑en)
  14. Wikipedia, Euler–Maclaurin formula, (Wiki‑en)
  15. Wikipedia, Wzór Stirlinga, (Wiki‑pl), (Wiki‑en)
  16. Wikipedia, Logarytm całkowy, (Wiki‑pl), (Wiki‑en)
  17. Wolfram MathWorld, Logarithmic Integral, (Wolfram)
  18. Wikipedia, Funkcja całkowo-wykładnicza, (Wiki‑pl), (Wiki‑en)
  19. Wolfram MathWorld, Exponential Integral, (Wolfram)
  20. Wikipedia, Liczby Bernoulliego, (Wiki‑pl)